
COEFFICIENTS OF HARMONIC MAASS FORMS

KATHRIN BRINGMANN AND KEN ONO

Abstract. Harmonic Maass forms have recently been related to many different topics
in number theory: Ramanujan’s mock theta functions, Dyson’s rank generating func-
tions, Borcherds products, and central values and derivatives of quadratic twists of
modular L-functions. Motivated by these connections, we obtain exact formulas for the
coefficients of harmonic Maass forms of non-positive weight, and we obtain a condi-
tional result for such forms of weight 1/2. This extends earlier work of Rademacher and
Zuckerman in the case of weakly holomorphic modular forms of negative weight.

1. Introduction and Statement of Results

In work which gave birth to the “circle method”, Hardy and Ramanujan [19, 20] derived
their famous asymptotic formula for the partition function

(1.1) p(n) ∼ 1

4n
√

3
· eπ
√

2n/3.

In celebrated work, Rademacher perfected [30] the method to derive the exact formula

(1.2) p(n) = 2π(24n− 1)−
3
4

∞∑
k=1

Ak(n)

k
· I 3

2

(
π
√

24n− 1

6k

)
.

Here I`(x) is the I-Bessel function of order `, and Ak(n) is the Kloosterman sum

Ak(n) :=
1

2

√
k

12

∑
x (mod 24k)

x2≡−24n+1 (mod 24k)

χ12(x) · e
( x

12k

)
,

where e(α) := e2πiα and χ12(x) :=
(

12
x

)
.

These works make use of the fact that

P (τ) =
∞∑

n=0

p(n)qn− 1
24 = q−

1
24

∞∏
n=1

1

1− qn
,

where q := e2πiτ , is a weight -1/2 weakly holomorphic modular form, a meromorphic
modular form whose poles (if any) are supported at cusps. Rademacher and Zuckerman
[31, 38, 39] subsequently generalized (1.2) to obtain exact formulas for the coefficients of
generic weakly holomorphic modular forms of negative weight.
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We recall that the partition generating function also has the Eulerian form
∞∑

n=0

p(n)qn = 1 +
∞∑

n=1

qn2

(1− q)2(1− q2)2 · · · (1− qn)2
.

By changing signs, one obtains Ramanujan’s mock theta function

(1.3) f(q) =
∞∑

n=0

a(n)qn := 1 +
∞∑

n=1

qn2

(1 + q)2(1 + q2)2 · · · (1 + qn)2
.

The problem of obtaining an asymptotic formula for a(n) is greatly complicated by
the fact that f(q) is not a modular form. In their doctoral theses (written under
Rademacher), Andrews and Dragonette overcame this difficulty, and they confirmed a
conjecture of Ramanujan by proving [1, 14] that

a(n) ∼ (−1)n−1

2
√

n− 1
24

· eπ
√

n
6
− 1

144 .

Andrews and Dragonette conjectured an exact formula for a(n) to accompany (1.2).
However, without a suitable description of the modular transformation properties of f(q),
this conjecture seemed out of reach. Then in his 2002 Ph.D. thesis (written under Zagier),
Zwegers [40, 41] provided this required theory. He related Ramanujan’s mock theta
functions to harmonic Maass forms. By combining his work with a lengthy argument,
the authors proved the Andrews-Dragonette Conjecture [7].

Here we generalize this example to the general setting of harmonic Maass forms (see
Section 2 for the definition), a class of automorphic forms which includes the weakly
holomorphic modular forms. These results are of particular interest thanks to the recent
appearance of harmonic Maass forms in a wide array of subjects: Ramanujan’s mock
theta functions [2, 7, 8, 9, 10, 37, 40, 41], Borcherds products [3, 4, 11], derivatives and
values of modular L-functions [13], probability theory [2, 6], and mathematical physics
[22, 23, 24, 25, 27, 28, 36].

Let H2−k(N, χ) denote the space of weight 2−k harmonic Maass forms on Γ0(N) with
Nebentypus character χ, where we assume that 3

2
≤ k ∈ 1

2
Z. The Fourier expansions of

such forms are given in terms of the incomplete Gamma-function

Γ(α, x) :=

∫ ∞

x

e−ttα−1 dt.

More precisely, suppose that if f(τ) ∈ H2−k(N, χ). We then have that

(1.4) f(τ) =
∑

n�−∞

c+
f (n)qn +

∑
n<0

c−f (n)Γ(k − 1, 4π|n|v)qn,

where τ = u+ iv ∈ H, with u, v ∈ R. Obviously, each f is the sum of two disjoint pieces,
the holomorphic part of f

(1.5) f+(τ) :=
∑

n�−∞

c+
f (n)qn,
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and the nonholomorphic part of f

(1.6) f−(τ) :=
∑
n<0

c−f (n)Γ(k − 1, 4π|n|v)qn.

Remark. Weakly holomorphic modular forms are those f ∈ H2−k(N, χ) with f− = 0.

Generalizing earlier work of Rademacher and Zuckerman for weakly holomorphic mod-
ular forms of non-positive weight [30, 31], and work of Bruinier and Hejhal [11, 21] for
the harmonic Maass forms, we determine exact formulas for the coefficients c+

f (n). The
idea is simple. We shall obtain our results by explicitly constructing Maass-Poincaré se-
ries which have poles supported (to arbitrary order) at individual cusps. We then relate
a generic harmonic Maass form f to that linear combination of Maass-Poincaré series
which matches the divisor of f . If 2− k ≤ 0, then it turns out that f equals this linear
combination of Maass-Poincaré series.

We now define the functions which are required for these exact formulas. Throughout,
we let k ∈ 1

2
Z, and we let χ be a Dirichlet character modulo N , where 4 | N whenever

k ∈ 1
2
Z \ Z. Using this character, for a matrix M = ( a b

c d ) ∈ Γ0(N), we let

(1.7) Ψk(M) :=

{
χ(d) if k ∈ Z,
χ(d)

(
c
d

)
ε2k
d if k ∈ 1

2
Z \ Z,

where εd is defined by

(1.8) εd :=

{
1 if d ≡ 1 (mod 4),

i if d ≡ 3 (mod 4),

and where
(

c
d

)
denotes the extended Legendre symbol. In addition, if T = ( a b

c d ) ∈ SL2(Z),
then we let

(1.9) µ(T ; τ) := (cτ + d)2−k.

Moreover, for pairs of matrices S, T ∈ SL2(Z), we let

(1.10) σ(T, S) :=
µ(T ; Sτ)µ(S; τ)

µ(TS; τ)
.

Using this notation, we now define certain generic Kloosterman sums which are naturally
associated with cusps of Γ0(N).

Suppose that ρ = aρ

cρ
= L−1∞, (L ∈ SL2(Z)) is a cusp of Γ0(N) with cρ|N and

gcd(aρ, N) = 1. Let tρ and κρ be the cusp width and parameter of ρ with respect to
Γ0(N) (see 1.13). Suppose that c > 0 with cρ|c and N

cρ
- c. Then for integers n and m we

have the Kloosterman sum
(1.11)

Kc (2− k, ρ, χ,m, n) :=
∑

0<d<c
0<a<ct

aρa≡− c
cρ

(mod N
cρ

)

(ad,c)=1

σ(L−1, S)

Ψk (L−1S)
· exp

(
2πi

c

(
(m + κρ)a

tρ
+ nd

))
,
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where S := ( a b
c d ) ∈ SL2(Z) is the unique matrix defined using the integers a, c, and d.

Using properties of σ and Ψk, one can easily show that (1.11) is well-defined. For similar
Kloosterman sums we refer the reader to [32].

For convenience, we let SN be a subset of SL2(Z) with the property that S−1
1 ∞ and

S−1
2 ∞ are inequivalent cusps in Γ0(N) whenever S1 and S2 are distinct elements of SN .

For M = ( a b
c d ) ∈ SL2(Z), we define

(1.12) fM(τ) := (cτ + d)k−2f

(
aτ + b

cτ + d

)
,

where
√

τ is the principal branch of the holomorphic square root. Using this notation,
we can speak of the Fourier expansion of a form f at a cusp ρ. More precisely, if L ∈ SN

with ρ = L−1∞, then we have

(1.13) fρ(τ) =
∑
n∈Z

a+
ρ (n)q

n+κρ
tρ + f−ρ (τ).

We define the principal part of f at ρ by

(1.14) Pf,ρ(τ) :=
∑

m+κρ<0

a+
ρ (m)q

m+κρ
tρ .

We shall use the principal parts of a form f to determine our exact formulas. To this
end, we identify, for each cusp ρ, its contribution to the exact formula. To make this
precise, let M = L−1 and µ = L∞. For positive n, we then define

A(N, 2− k, χ, ρ,m, c; n) :=

− ik2π

tµ

∣∣∣∣(−m + κµ)

tµn

∣∣∣∣ k−1
2 ∑

c>0
cµ|c, N

cµ
-c

Kc (2− k, µ, χ,−m,−n)

c
· Ik−1

(
4π

c

√
n| −m + κµ|

tµ

)
.

(1.15)

Here tµ and κµ are the cusp parameters for µ as in the notation above.
Using this notation, we define the order N Kloosterman approximation of c+

f (n) by

(1.16) C(f,N ; n) :=
∑

L∈SN

∑
m+κρ<0

a+
ρ (m)

N∑
c=1

A(N, 2− k, χ, ρ,m, c; n).

Moreover, we define C(f,∞; n) in the obvious way.

Remark. We stress again that L and ρ are related (throughout this section) by the formula
ρ = L−1∞.

Theorem 1.1. If f ∈ H2−k(N, χ) with 2 ≤ k ∈ 1
2
Z, then for positive n we have

c+
f (n) = C(f,∞; n).
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Two remarks.
1) Using the asymptotic behavior of I-Bessel functions, an inspection of the principal
parts of f gives a minimal N for which

C(f,N ; n) ∼ c+
f (n).

Moreover, it is not difficult to show that

c+
f (n) = C(f,

√
n; n) + Of (n

ε).

2) Theorem 1.1 gives the results of Rademacher and Zuckerman in the very special case
of those f ∈ H2−k(N, χ) for which 2− k < 0 and f− = 0.

For weight 2− k = 1
2
, we have a conditional result. To make it precise, we say that a

form f ∈ H 1
2
(N, χ) is good if the Maass-Poincaré series corresponding to nontrivial terms

in the principal parts of f are individually convergent.

Theorem 1.2. If f ∈ H 1
2
(N, χ) is good, then there is a finite set SΘ(f) of complex

numbers such that for positive n we have

c+
f (n) = C(f,∞; n) + µ(n)

for some µ(n) ∈ SΘ(f). Moreover, if n 6= dm2 for some d | N and m ∈ Z+, then
µ(n) = 0.

Four remarks.

1) Our method approximates each form as a linear combination of Poincaré series. In
this paper, apart from the cases when the weight is 1/2, this exactly determines the form.
When the weight is 1/2, this uniquely determines the form up to a holomorphic modular
form, which must be a linear combination of theta functions. This contribution is given
by SΘ(f) and the numbers µ(n).

2) We believe that all f ∈ H 1
2
(N, χ) are good. In earlier work we deduced convergence of

such Maass-Poincaré series by making using of relationships between Kloosterman sums
and Salié sums (see Section 4 of [7]), and by generalizing work of Goldfeld and Sarnak
[18] on sums of Kloosterman sums (see [17]). It seems likely that a careful application of
these ideas will prove that each such f is indeed good.

3) Theorems 1.1 and 1.2 give exact formulas for harmonic weak Maass forms on congru-
ence groups of the form Γ1(N). This follows from the fact that

H2−k(Γ1(N)) = ⊕χH2−k(N, χ),

where the sum is over Dirichlet characters modulo N .

4) Apart from those harmonic Maass forms f which are holomorphic modular forms
(which in this paper can only happen if 2 − k = 1/2), the results above imply that the
c+
f (n) are not bounded by any power of n. There are arithmetic progressions of n for

which c+
f (n) grows subexponentially in n. We note that Bruinier and Funke [12] have
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a more general notion of a harmonic Maass form for which this claim is false. Indeed,
Zagier’s weight 3/2 Eisenstein series g(τ) [35], whose holomorphic part

g+(τ) = −1/12 +
∑
n>0

h(−n)qn

is the generating function for Hurwitz class numbers, is such a form. Obviously, we have
that h(−n) = O(n

1
2
+ε) which does not have subexponential growth.

As mentioned earlier, harmonic Maass forms have appeared in a wide variety of con-
texts in recent years. We conclude the introduction with one application of these results.

In his work on Ramanujan’s partition congruences

p(5n + 4) ≡ 0 (mod 5),

p(7n + 5) ≡ 0 (mod 7),

p(11n + 6) ≡ 0 (mod 11).

Dyson defined [15] the rank of a partition to be its largest part minus its number of sum-
mands. If 0 ≤ r < t are integers, then let N(r, t; n) denote the number of partitions with
rank congruent to r (mod t). In a recent paper [5], the first author obtained asymptotic
formulas for each N(r, t; n) when t is odd. Theorem 1.2, combined with a generalization
of Section 4 of [7], proves that these asymptotics can be extended to exact formulas.

Theorem 1.3. If 0 ≤ r < t, where t is odd, then Theorem 1.2 gives an exact formula
for N(r, t; n).

Remark. For brevity, we do not repeat the formulas from [5]. Theorem 1.2 proves that one
obtains exact formulas, up to the coefficients of a linear combination of theta functions,
by summing the first author’s formulas to infinity.

This paper is organized as follows. In Section 2 we recall basic facts about harmonic
Maass forms, and in Section 3 we construct the relevant Maass-Poincaré series. In Sec-
tion 4 we prove Theorems 1.1 and 1.2.

2. Harmonic Maass forms

We recall the notion of a harmonic Maass form of weight k ∈ 1
2
Z. Throughout let

τ = u + iv ∈ H with u, v ∈ R, and we define the weight k hyperbolic Laplacian

(2.1) ∆k := −v2

(
∂2

∂u2
+

∂2

∂v2

)
+ ikv

(
∂

∂u
+ i

∂

∂v

)
.

For odd integers d, define εd by

(2.2) εd :=

{
1 if d ≡ 1 (mod 4),

i if d ≡ 3 (mod 4).
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Definition 2.1. If N is a positive integer (with 4 | N if k ∈ 1
2
Z \Z) and χ is a Dirichlet

character modulo N , then a weight k harmonic Maass form on Γ0(N) with Nebentypus
χ is any smooth function M : H → C satisfying the following:

(1) For all A = ( a b
c d ) ∈ Γ0(N) and all τ ∈ H, we have

(2.3) M

(
aτ + b

cτ + d

)
=

{
χ(d)(cτ + d)kM(τ) if k ∈ Z,(

c
d

)2k
ε−2k
d χ(d)(cτ + d)k M(τ) if k ∈ 1

2
Z \ Z.

(2) We have that ∆kM = 0.
(3) There is a polynomial PM =

∑
n≤0 c+(n)qn ∈ C[q−1] such that

M(τ)− PM(τ) = O(e−εv)

as v → +∞ for some ε > 0. Analogous conditions are required at all cusps.

Remark. We call PM(τ) the principal part of M at ∞, with analogous parts at others
cusps.

Remark. Since holomorphic functions on H are harmonic, it follows that weakly holo-
morphic modular forms are harmonic Maass forms.

Harmonic Maass forms are related to classical modular forms thanks to the properties
of differential operators. Here we require the differential operator

(2.4) ξw := 2ivw · ∂

∂τ
.

The following lemma1, which is a straightforward refinement of a proposition of Bruinier
and Funke (see Proposition 3.2 of [12]), shall play a central role throughout this paper.

Lemma 2.2. If f ∈ H2−k(N, χ), then

ξ2−k : H2−k(N, χ) −→ Sk(N, χ)

is a surjective map. Moreover, if

f(τ) =
∑

n�−∞

c+
f (n)qn +

∑
n<0

c−f (n)Γ(k − 1, 4π|n|v)qn,

then we have that

ξ2−k(f) = −(4π)k−1

∞∑
n=1

c−f (−n)nk−1qn.

We shall also require the following proposition.

Lemma 2.3. If f ∈ H2−k(N, χ) has the property that ξ2−k(f) 6= 0, then the principal
part of f is nonconstant for at least one cusp.

1The formula for ξ2−k(f) corrects a typographical error in [12].
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Proof. This lemma follows from the work of Bruinier and Funke [12]. Using their pairing
{•, •}, one finds that {ξ2−kf, f} 6= 0 thanks to its interpretation in terms of Petersson
norms. On the other hand, Proposition 3.5 of [12] expresses this quantity in terms of the
principal part of f and the coefficients of the cusp form ξ2−k(f). An inspection of this
formula reveals that at least one principal part of f must be nonconstant. �

3. Maass-Poincaré series

Here we use the method of Poincaré series to construct more general harmonic Maass
forms with multiplier (i.e. generalizing the notion of Nebentypus). Such forms have been
considered by Fay, Hejhal, and Niebur [16, 21, 29], and more recently by the authors and
Bruinier [9, 11].

We closely follow the set-up in Rankin’s classic text [32]. Suppose that Γ is a subgroup
of finite index in SL2(Z) with −I ∈ Γ, 3

2
≤ k ∈ 1

2
Z, and let ν(•) be a multiplier system.

Moreover, let ρ := L−1∞ be a cusp and let t and κ be its cusp width and parameter for
Γ. Let Γ̂ρ be the stabilizer of ρ in Γ̂, the homogenization of Γ. For T = ( a b

c d ) ∈ SL2(Z),
we let

(3.1) µ(T ; τ) := (cτ + d)2−k,

and for T ∈ Γ we let

(3.2) ν(T ; τ) := ν(T )µ(T ; τ).

For s ∈ C and y ∈ R \ {0}, let

(3.3) Ms(y) := |y|
k
2
−1Msign(y)(1−k/2),s− 1

2
(|y|),

where Mν,µ(z) is the M -Whittaker function which is a solution to the differential equation

∂2u

∂z2
+

(
−1

4
+

ν

z
+

1
4
− µ2

z2

)
u = 0.

Using this function we let
φs(τ) := Ms(4πv)e(u),

where τ = u + iv. If m > 0, then we have the Maass-Poincaré series

(3.4) PL(τ,m, Γ, 2− k, s, ν) :=
∑

T∈Γ̂ρ\Γ̂

φs

(
(−m+κ)

t
LTτ

)
µ(L; Tτ)ν(T ; τ)

.

It is easy to check that φs(τ) is an eigenfunction of ∆2−k with eigenvalue

s(1− s) +
k2 − 2k

4
.

From this one can conclude, when the series converges absolutely, that PL is an eigen-
function of ∆2−k. Next define for S ∈ SL2(Z)

ΓS := S−1ΓS
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and let νS be the multiplier defined on ΓS by

νS
(
S−1TS

)
:=

ν(T )σ(T, S)

σ (S, S−1TS)
,

where

(3.5) σ(T, S) :=
µ(T ; Sτ)µ(S; τ)

µ(TS; τ)
.

We denote by H2−k(Γ, ν) the space of harmonic Maass forms with multiplier ν. This is
the space of forms satisfying the conditions in Definition 2.1 where (2.3) is replaced, for
all S ∈ Γ, by

(3.6) f(Sτ) =
µ(S; τ)

σ(L, S)
f(τ).

The following lemma follows immediately from the properties described above for the
functions in this construction.

Lemma 3.1. If Re(s) > 1, then the series in (3.4) is absolutely and uniformly convergent.
Moreover, if k > 2 and s = k/2, then the series is in H2−k(Γ, ν).

Now we return to the setting in the introduction, where we consider forms with Neben-
typus χ on Γ0(N). Recalling (1.7), we set

(3.7) PL(τ,m,N, 2− k, χ) :=
1

Γ(k)
PL

(
τ,m, Γ0(N), 2− k,

k

2
, Ψk

)
.

We can determine the Fourier expansion of these Poincaré series at all cusps. The next
theorem gives the holomorphic parts (1.5) for these series.

Theorem 3.2. If 2 ≤ k ∈ 1
2
Z, then PL(τ,m,N, 2 − k, χ) is in H2−k(N, χ). Moreover,

the following are true:

(1) We have

P+
L (τ,m,N, 2− k, χ) = δ∞,ρ ·

q−m

Ψk(L−1)σ(L, L−1)
+
∑
n≥0

a+(n)qn,

where δ∞,ρ = 0, unless ∞ ∼ ρ in Γ0(N), in which case it is 1. Moreover, if n > 0,
then

a+(n) = −ik2π

∣∣∣∣(−m + κ)

tn

∣∣∣∣ k−1
2 1

t

∑
c>0

cρ|c, N
cρ

-c

Kc(2− k, ρ, χ,−m, n)

c
·Ik−1

(
4π

c

√
n| −m + κ|

t

)
.

(2) The principal part of PL(τ,m,N, 2− k, χ) at the cusp µ = S∞ is given by

δL,S · q
(−m+κρ)

tρ ,

where δL,S = 0, unless L = S, in which case it equals 1.



10 KATHRIN BRINGMANN AND KEN ONO

Three remarks.
(1) Theorem 3.2 holds when 2 − k = 1/2, provided that one can guarantee convergence
in the formulas for the Fourier coefficients.

(2) Although Theorem 3.2 (1) is about the coefficients of the holomorphic parts of these
Poincaré series, we also give the Fourier cefficients of the non-holomorphic parts in the
proof of the theorem.

(3) Two features of Theorem 3.2 are important for us. Obviously, the exact formulas for
the coefficients are important. Secondly, the fact that the principal parts are distinguished
by cusps is vital. This fact allows us to piece together such Maass forms using the
collection of principal parts at cusps.

Proof of Theorem 3.2. We first consider the more general Poincaré series from above and
assume Re(s) > 1. We require more notation. Let t1 (resp. t2) be the cusp width of ∞
(resp. ρ) in Γ and κ1 (resp. κ2) the associated parameter. Define

(3.8) Ws(y) := |y|
k
2
−1W(1− k

2 )sign(y),s− 1
2
(|y|),

where Wν,µ(z) is the standard W -Whittaker function. Define the Kloosterman sum

Kc(ρ, Γ, ν, m, n) :=
∑

( a b
c d )=S∈FL(c)

σ (L−1, S)

ν (L−1S)
exp

(
2πi

c

(
(m + κ2)a

t2
+

(n + κ1)d

t1

))
,

where FL(c) consists of all matrices S ∈ LΓ for which

0 ≤ d < ct1 0 ≤ a < ct2.

One can compute the Fourier expansion of the Poincaré series using Poisson summation.
Then the calculation boils down to computing integrals of the form∫

R
τ 2−k exp

(
−2πix(κ + n)− 2πiλRe

(
1

τ

))
Ms

(
−4πλIm

(
1

τ

))
dx.

This integral can be computed using pages 32-33 of [11]. This yields the following Fourier
expansion:

PL(τ,m, Γ, 2−k, s, ν) = δL,Γ·
Ms

(
4π(−m+κ1)y

t1

)
e
(

(−m+κ1)(x+r)
t1

)
ν (L−1U r) σ (L, L−1)

+
∑
n∈Z

ay(n)e

(
x

t1
(n + κ1)

)
,

where δL,Γ = 0 unless L−1U r ∈ Γ for some r ∈ Z with U := ( 1 1
0 1 ) in which case it is

equal to 1. In this case we have in particular that t1 = t2 and κ1 = κ2. Moreover the
coefficients ay(n) are given as follows.
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(1) If n + κ1 < 0, then

ay(n) = −ik
2πΓ(2s)

Γ
(
s + k

2
− 1
) ∣∣∣∣t1(−m + κ2)

t2(n + κ1)

∣∣∣∣ k−1
2

Ws

(
4π(n + κ1)y

t1

)
1

t1

∑
c>0

Kc(ρ, Γ, ν,−m, n)

c
· J2s−1

4π

c

√
| −m + κ2||n + κ1|

t1t2

 ,

where J` is the Bessel function of order `.
(2) If n + κ1 = 0, then

ay(n) = −ik2kπ
k
2
+sy

k
2
−st−2

1 t
− k

2
+1−s

2

Γ(2s)

(2s− 1)Γ
(
s− k

2
+ 1
)
Γ
(
s + k

2
− 1
) | −m + κ2|

k
2
+s−1

∑
c>0

Kc(ρ, Γ, ν,−m, 0)

c2s+1
.

(3) If n + κ1 > 0, then

ay(n) = −ik
2πΓ(2s)

Γ
(
s− k

2
+ 1
) ∣∣∣∣t1(−m + κ2)

t2(n + κ1)

∣∣∣∣ k−1
2

Ws

(
4π(n + κ1)y

t1

)
1

t1

∑
c>0

Kc(ρ, Γ, ν,−m, n)

c
· I2s−1

4π

c

√
| −m + κ2||n + κ1|

t1t2

 .

Using special values of Whittaker functions, we obtain

PL

(
τ,m, Γ, 2− k,

k

2
, ν

)
= δL,Γ ·

Γ(k) · e
(

(−m+κ1)r
t1

)
ν (L−1U r) σ (L, L−1)

q
(−m+κ1)

t11−
Γ
(
k − 1, 4π(−m+κ1)y

t1

)
Γ(k − 1)

+
∑

n+κ1≥0

a(n)q
n+κ1

t1

+
∑

n+κ1<0

a(n)Γ

(
k − 1,

4π|n + k1|y
t1

)
q

n+κ1
t1 .

Here the coefficients a(n) are given as follows.
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(1) If n + κ1 < 0, then

a(n) = −ik2π(k − 1)

∣∣∣∣t1(−m + κ2)

t2(n + κ1)

∣∣∣∣ k−1
2 1

t1∑
c>0

Kc(ρ, Γ, ν,−m, n)

c
· Jk−1

4π

c

√
| −m + κ2||n + κ1|

t1t2

 .

(2) If n + κ1 = 0, then

a(n) = −ik(2π)kt−2
1 t1−k

2 | −m + κ2|k−1
∑
c>0

Kc(ρ, Γ, ν,−m, 0)

ck+1
.

(3) If n + κ1 > 0, then

a(n) = −ik2πΓ(k)

∣∣∣∣t1(−m + κ2)

t2(n + κ1)

∣∣∣∣ k−1
2 1

t1∑
c>0

Kc(ρ, Γ, ν,−m, n)

c
· Ik−1

4π

c

√
| −m + κ2||n + κ1|

t1t2

 .

The proof of Theorem 3.2 follows easily for 2 − k ≤ 0. One merely observes that the
defining series are convergent. �

4. Proof of Theorems 1.1 and 1.2

Here we prove Theorems 1.1 and 1.2 simultaneously. Thanks to Theorem 3.2, we
have an explicit linear combination of Maass-Poincaré series, say f ∈ H2−k(N, χ), whose
principal parts agree with the principal parts of f up to additive constants. There are
three possibilites:

Case 1. We have that f− f is a holomorphic modular form. It can only be nonzero when
2 − k = 1

2
, in which case the Serre-Stark Basis Theorem implies that f − f is a linear

combination of theta functions. Either way, we obtain the relevant desired conclusions
in Theorems 1.1 and 1.2.

Case 2. We have that f − f is a weakly holomorphic modular form which is not a
holomorphic modular form. Such a form must have a pole at a cusp. However, this
cannot happen since we constructed f so that the principal parts of f − f are constant.

Case 3. We have that f− f is a harmonic Maass form with a non-trivial nonholomorphic
part. However, Lemma 2.3 shows that all such harmonic Maass forms have at least one
principal part which is nonconstant. Therefore, this possibility never occurs.

This completes the proofs of the claimed exact formulas in Theorems 1.1 and 1.2.
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