PROJECTIVE GEOMETRY FOR BLUEPRINTS

JAVIER LÓPEZ PEÑA AND OLIVER LORSCHEID

ABSTRACT. In this note, we generalize the Proj-construction from usual schemes to blue schemes. This yields the definition of projective space and projective varieties over a blueprint. In particular, it is possible to descend closed subvarieties of a projective space to a canonical \mathbb{F}_1 -model. We discuss this in case of the Grassmannian Gr(2,4).

1. Introduction

Blueprints are a common generalization of commutative (semi)rings and monoids. The associated geometric objects, blue schemes, are therefore a common generalization of usual scheme theory and \mathbb{F}_1 -geometry (as considered by Kato [5], Deitmar [3] and Connes-Consani [2]). The possibility of forming semiring schemes allows us to talk about idempotent schemes and tropical schemes (cf. [11]). All this is worked out in [9].

It is known, though not covered in literature yet, that the Proj-construction from usual algebraic geometry has an analogue in \mathbb{F}_1 -geometry (after Kato, Deitmar and Connes-Consani). In this note we describe a generalization of this to blueprints. In private communication, Koen Thas announced a treatment of Proj for monoidal schemes (see [13]).

We follow the notations and conventions of [10]. Namely, all blueprints that appear in this note are proper and with a zero. We remark that the following constructions can be carried out for the more general notion of a blueprint as considered in [9]; the reason that we restrict to proper blueprints with a zero is that this allows us to adopt a notation that is common in \mathbb{F}_1 -geometry.

Namely, we denote by \mathbb{A}^n_B the (blue) affine n-space $\operatorname{Spec} \left(B[T_1, \dots, T_n] \right)$ over a blue-print B. In case of a ring, this does not equal the usual affine n-space since $B[T_1, \dots, T_n]$ is not closed under addition. Therefore, we denote the usual affine n-space over a ring B by ${}^+\mathbb{A}^n_B = \operatorname{Spec} \left(B[T_1, \dots, T_n]^+ \right)$. Similarly, we use a superscript "+" for the usual projective space ${}^+\mathbb{P}^n_B$ and the usual Grassmannian $\operatorname{Gr}(k,n)^+_B$ over a ring B.

2. Graded blueprints and Proj

Let B be a blueprint and M a subset of B. We say that M is additively closed in B if for all additive relations $b \equiv \sum a_i$ with $a_i \in M$ also b is an element of M. Note that, in particular, 0 is an element of M. A graded blueprint is a blueprint B together with additively closed subsets B_i for $i \in \mathbb{N}$ such that $1 \in B_0$, such that for all $i, j \in \mathbb{N}$ and $a \in B_i$, $b \in B_j$, the product ab is an element of B_{i+j} and such that for every $b \in B$, there are a unique finite subset I of \mathbb{N} and unique non-zero elements $a_i \in B_i$ for every $i \in I$ such that $b \equiv \sum a_i$. An element of $\bigcup_{i \geq 0} B_i$ is called homogeneous. If $a \in B_i$ is non-zero, then we say, more specifically, that a is homogeneous of degree i.

We collect some immediate facts for a graded blueprint B as above. The subset B_0 is multiplicatively closed, i.e. B_0 can be seen as a subblueprint of B. The subblueprint B_0 equals B if and only if for all i>0, $B_i=\{0\}$. In this case we say that B is trivially graded. By the uniqueness of the decomposition into homogeneous elements, we have $B_i\cap B_j=\{0\}$ for $i\neq j$. This means that the union $\bigcup_{i\geq 0}B_i$ has the structure of a wedge product $\bigvee_{i\geq 0}B_i$. Since $\bigvee_{i\geq 0}B_i$ is multiplicatively closed, it can be seen as a subblueprint

1

J. López Peña's research was supported by MCIM grant MTM2010-20940-C02-01, research group FQM-266 (Junta de Andalucía) and Max-Planck Institute for Mathematics in Bonn.

of B. We define $B_{\text{hom}} = \bigvee_{i \geq 0} B_i$ and call the subblueprint B_{hom} the homogeneous part of B.

Let S be a multiplicative subset of B. If b/s is an element of the localization $S^{-1}B$ where f is homogeneous of degree i and s is homogeneous of degree j, then we say that b/s is a homogeneous element of degree i-j. We define $S^{-1}B_0$ as the subset of homogeneous elements of degree 0. It is multiplicatively closed, and inherits thus a subblueprint structure from $S^{-1}B$. If S is the complement of a prime ideal \mathfrak{p} , then we write $B_{(\mathfrak{p})}$ for the subblueprint $(B_{\mathfrak{p}})_0$ of homogeneous elements of degree 0 in $B_{\mathfrak{p}}$.

An ideal I of a graded blueprint B is called *homogeneous* if it is generated by homogeneous elements, i.e. if for every $c \in I$, there are homogeneous elements $p_i, q_j \in I$ and elements $a_i, b_j \in B$ and an additive relation $\sum a_i p_i + c \equiv \sum b_j q_j$ in B.

Let B be a graded blueprint. Then we define $\operatorname{Proj} B$ as the set of all homogeneous prime ideals $\mathfrak p$ of B that do not contain $B_{\text{hom}}^+ = \bigvee_{i>0} B_i$. The set $X = \operatorname{Proj} B$ comes together with the topology that is defined by the basis

$$U_h = \{ \mathfrak{p} \in X \mid h \notin \mathfrak{p} \}$$

where h ranges through B_{hom} and with a structure sheaf \mathcal{O}_X that is the sheafification of the association $U_h \mapsto B[h^{-1}]_0$ where $B[h^{-1}]$ is the localization of B at $S = \{h^i\}_{i>q_0}$.

Note that if B is a ring, the above definitions yield the usual construction of $\overline{\text{Proj}}B$ for graded rings. In complete analogy to the case of graded rings, one proves the following theorem.

Theorem 2.1. The space $X = \operatorname{Proj} B$ together with \mathcal{O}_X is a blue scheme. The stalk at a point $\mathfrak{p} \in \operatorname{Proj} B$ is $\mathcal{O}_{x,\mathfrak{p}} = B_{(\mathfrak{p})}$. If $h \in B_{\text{hom}}^+$, then $U_h \simeq \operatorname{Spec} B[h^{-1}]_0$. The inclusions $B_0 \hookrightarrow B[h^{-1}]_0$ yield morphisms $\operatorname{Spec} B[h^{-1}]_0 \to \operatorname{Spec} B_0$, which glue to a structural morphism $\operatorname{Proj} B \to \operatorname{Spec} B_0$.

If B is a graded blueprint, then the associated semiring B^+ inherits a grading. Namely, let $B_{\text{hom}} = \bigvee_{i \geq 0} B_i$ the homogeneous part of B. Then we can define B_i^+ as the additive closure of B_i in B^+ , i.e. as the set of all $b \in B$ such that there is an additive relation of the form $b \equiv \sum a_k$ in B with $a_k \in B_i$. Then $\bigvee B_i^+$ defines a grading of B^+ . Similarly, the grading of B induces a grading on a tensor product $B \otimes_C D$ with respect to blueprint morphisms $C \to B$ and $C \to D$ under the assumption that the image of $C \to B$ is contained in B_0 . Consequently, a grading of B implies a grading of $B_{\text{inv}} = B \otimes_{\mathbb{F}_1} \mathbb{F}_{1^2}$ and of the ring $B_{\mathbb{Z}}^+ = B_{\text{inv}}^+$. Along the same lines, if both B and B are graded and the images of B and B and B and B are grading obtained from the gradings of B and B.

3. PROJECTIVE SPACE

The functor Proj allows the definition of the projective space \mathbb{P}^n_B over a blueprint B. Namely, the free blueprint $C=B[T_0,\ldots,T_n]$ over B comes together with a natural grading (cf. [9, Section 1.12] for the definition of free blueprints). Namely, C_i consists of all monomials $bT_0^{e_0}\cdots T_n^{e_n}$ such that $e_0+\cdots+e_n=i$ where $b\in B$. Note that $C_0=B$ and $C_{\text{hom}}=C$. The projective space \mathbb{P}^n_B is defined as $\operatorname{Proj} B[T_0,\ldots,T_n]$. It comes together with a structure morphism $\mathbb{P}^n_B\to\operatorname{Spec} B$.

In case of $B = \mathbb{F}_1$, the projective space $\mathbb{P}_{\mathbb{F}_1}^n$ is the monoidal scheme that is known from \mathbb{F}_1 -geometry (see [4], [1, Section 3.1.4]) and [10, Ex. 1.6]). The topological space of $\mathbb{P}_{\mathbb{F}_1}^n$ is finite. Its points correspond to the homogeneous prime ideals $(S_i)_{i\in I}$ of $\mathbb{F}_1[S_0,\ldots,S_n]$ where I ranges through all proper subsets of $\{0,\ldots,n\}$.

In case of a ring B, the projective space \mathbb{P}^n_B does not coincide with the usual projective space since the free blueprint $B[S_0,\dots,S_n]$ is not a ring, but merely the blueprint of all monomials of the form $bS_0^{e_0}\cdots S_n^{e_n}$ with $b\in B$. However, the associated scheme ${}^+\mathbb{P}^n_B=(\mathbb{P}^n_B)^+$ coincides with the usual projective space over B, which equals $\operatorname{Proj} B[S_0,\dots,S_n]^+$.

4. CLOSED SUBSCHEMES

Let \mathcal{X} be a scheme of finite type. By an \mathbb{F}_1 -model of \mathcal{X} we mean a blue scheme X of finite type such that $X^+_{\mathbb{Z}}$ is isomorphic to \mathcal{X} . Since a finitely generated \mathbb{Z} -algebra is, by definition, generated by a finitely generated multiplicative subset as a \mathbb{Z} -module, every scheme of finite type has an \mathbb{F}_1 -model. It is, on the contrary, true that a scheme of finite type possesses a large number of \mathbb{F}_1 -models.

Given a scheme $\mathcal X$ with an $\mathbb F_1$ -model X, we can associate to every closed subscheme $\mathcal Y$ of $\mathcal X$ the following closed subscheme Y of X, which is an $\mathbb F_1$ -model of $\mathcal Y$. In case that $X=\operatorname{Spec} B$ is the spectrum of a blueprint $B=A/\!\!/\mathcal R$, and thus $\mathcal X\simeq\operatorname{Spec} B^+_\mathbb Z$ is an affine scheme, we can define Y as $\operatorname{Spec} C$ for $C=A/\!\!/\mathcal R(Y)$ where $\mathcal R(Y)$ is the pre-addition that contains $\sum a_i \equiv \sum b_j$ whenever $\sum a_i = \sum b_j$ holds in the coordinate ring $\Gamma \mathcal Y$ of $\mathcal Y$. This is a process that we used already in [10, Section 3].

Since localizations commute with additive closures, i.e. $(S^{-1}B)^+_{\mathbb{Z}} = S^{-1}(B^+_{\mathbb{Z}})$ where S is a multiplicative subset of B, the above process is compatible with the restriction to affine opens $U \subset X$. This means that given $U = \operatorname{Spec}(S^{-1}B)$, which is an \mathbb{F}_1 -model for $\mathcal{X}' = U^+_{\mathbb{Z}}$, then the \mathbb{F}_1 -model Y' that is associated to the closed subscheme $\mathcal{Y}' = \mathcal{X}' \times_{\mathcal{X}} \mathcal{Y}$ of \mathcal{X}' by the above process is the spectrum of the blueprint $S^{-1}C$. Consequently, we can associate with every closed subscheme \mathcal{Y} of a scheme \mathcal{X} with an \mathbb{F}_1 -model X a closed subscheme Y of X, which is an \mathbb{F}_1 -model of Y; namely, we apply the above process to all affine open subschemes of \mathcal{X} and glue them together, which is possible since additive closures commute with localizations.

In case of a projective variety, i.e. a closed subscheme $\mathcal Y$ of a projective space ${}^+\mathbb P^n_{\mathbb Z}$, we derive the following description of the associated $\mathbb F_1$ -model Y in $\mathbb P^n_{\mathbb F_1}$ by homogeneous coordinate rings. Let C be the homogeneous coordinate ring of $\mathcal Y$, which is a quotient of $\mathbb Z[S_0,\ldots,S_n]^+$ by a homogeneous ideal I. Let $\mathcal R$ be the pre-addition on $\mathbb F_1[S_0,\ldots,S_n]$ that consists of all relations $\sum a_i \equiv \sum b_j$ such that $\sum a_i = \sum b_j$ in C. Then $B = \mathbb F_1[S_0,\ldots,S_n]$ $/\!\!/R$ inherits a grading from $\mathbb F_1[S_0,\ldots,S_n]$ by defining B_i as the image of $\mathbb F_1[S_0,\ldots,S_n]_i$ in B. Note that $B \subset C$ and that the sets B_i equal the intersections $B_i = C_i \cap B$ for $i \geq 0$ where C_i is the homogeneous part of degree i of C. Then the $\mathbb F_1$ -model Y of $\mathcal Y$ equals $\operatorname{Proj} B$.

5. \mathbb{F}_1 -models for Grassmannians

One of the simplest examples of projective varieties that is not a toric variety (and in particular, not a projective space) is the Grassmann variety Gr(2,4). The problem of finding models over \mathbb{F}_1 for Grassmann varieties was originally posed by Soulè in [12], and solved by the authors by obtaining a torification from the Schubert cell decomposition (cf. [8, 7]).

In this note, we present \mathbb{F}_1 -models for Grassmannians as projective varieties defined through (homogeneous) blueprints. The proposed construction for the Grassmannians fits within a more general framework for obtaining blueprints and totally positive blueprints from cluster data (cf. the forthcoming preprint [6]).

Classically, the homogeneous coordinate ring for the Grassmannian Gr(k,n) is obtained by quotienting out the homogeneous coordinate ring of the projective space $\mathbb{P}^{\binom{n}{k}-1}$ by the homogeneous ideal generated by the Plücker relations. A similar construction can be carried out using the framework of (graded) blueprints. In what follows, we make that construction explicit for the Grassmannian Gr(2,4).

Define the blueprint $\mathcal{O}_{\mathbb{F}_1}(Gr(2,4)) = \mathbb{F}_1[x_{12},x_{13},x_{14},x_{23},x_{24},x_{34}] /\!\!/ \mathcal{R}$ where the congruence \mathcal{R} is generated by the Plücker relation $x_{12}x_{34} + x_{14}x_{23} \equiv x_{13}x_{24}$ (the signs have been picked to ensure that the totally positive part of the Grassmannian is preserved, cf. [6]). Since \mathcal{R} is generated by a homogeneous relation, $\mathcal{O}_{\mathbb{F}_1}(Gr(2,4))$ inherits a grading

from the canonical morphism

$$\pi: \mathbb{F}_1[x_{12}, x_{13}, x_{14}, x_{23}, x_{24}, x_{34}] \longrightarrow \mathbb{F}_1[x_{12}, x_{13}, x_{14}, x_{23}, x_{24}, x_{34}] /\!\!/ \mathcal{R}.$$

Let $Gr(2,4)_{\mathbb{F}_1}:=\operatorname{Proj}(\mathcal{O}_{\mathbb{F}_1}(Gr(2,4)))$. The base extension $Gr(2,4)_{\mathbb{Z}}^+$ is the usual Grassmannian, and π defines a closed embedding of $Gr(2,4)_{\mathbb{F}_1}$ into $\mathbb{P}_{\mathbb{F}_1}^5$, which extends to the classical Plücker embedding $Gr(2,4)_{\mathbb{Z}}^+ \hookrightarrow {}^+\mathbb{P}_{\mathbb{Z}}^5$.

Homogeneous prime ideals in $\mathcal{O}_{\mathbb{F}_1}(Gr(2,4))$ are described by their generators as the proper subsets $I \subseteq \{x_{12}, x_{13}, x_{14}, x_{23}, x_{24}, x_{25}\}$ such that I is either contained in one of the sets $\{x_{12}, x_{34}\}$, $\{x_{14}, x_{23}\}$, $\{x_{13}, x_{24}\}$, or otherwise I has a nonempty intersection with all three of them. In other words, I cannot contain elements in two of the above sets without also containing an element of the third one.

FIGURE 1. Points of the Grassmannian $\operatorname{Gr}(2,4)_{\mathbb{F}_1}$. Generator x_{ij} belonging to an ideal is depicted as segment i-j in $\begin{bmatrix} 4 \\ 1 \end{bmatrix}_2^3$

The structure of the set of (homogeneous) prime ideals of $\mathcal{O}_{\mathbb{F}_1}(\operatorname{Gr}(2,4))$ is depicted in Figure 1. It consists of 6+12+11+6+1=36 prime ideals of ranks 0,1,2,3 and 4, respectively (cf. [10, Def. 2.3] for the definition of the rank of a prime ideal), thus resulting in a model essentially different to the one presented in [8] by means of torifications, which had 6+12+11+5+1=35 points, in correspondence with the coefficients of the counting polynomial $N_{\operatorname{Gr}(2,4)}(q)=6+12(q-1)+11(q-1)^2+5(q-1)^3+1(q-1)^4$. It is worth noting that despite arising from different constructions, both \mathbb{F}_1 -models for $\operatorname{Gr}(2,4)$ have $6=\binom{4}{2}$ closed points, corresponding to the combinatorial interpretation of $\operatorname{Gr}(2,4)_{\mathbb{F}_1}$ as the set of all subsets with two elements inside a set with four elements. These six points correspond to the \mathbb{F}_1 -rational Tits points of $\operatorname{Gr}(2,4)_{\mathbb{F}_1}$, which reflect the naive notion of \mathbb{F}_1 -rational points of an \mathbb{F}_1 -scheme (cf. [10, Section 2.2]).

Like in the classical geometrical setting, the Grassmannian $\operatorname{Gr}(2,4)_{\mathbb{F}_1}$ does admit a covering by six \mathbb{F}_1 -models of affine 4-space, which correspond to the open subsets of $\operatorname{Gr}(2,4)_{\mathbb{F}_1}$ where one of $x_{12},\,x_{34},\,x_{14},\,x_{23},\,x_{13}$ or x_{24} is non-zero. However, these \mathbb{F}_1 -models of affine 4-space are not the standard model $\mathbb{A}^4_{\mathbb{F}_1} = \operatorname{Spec}(\mathbb{F}_1[a,b,c,d])$, but the "2 \times 2-matrices" $M_{2,\mathbb{F}_1} = \operatorname{Spec}(\mathbb{F}_1[a,b,c,d])$ in case that one of $x_{12},\,x_{34},\,x_{14}$ or x_{23} is non-zero, and the "twisted 2×2 -matrices" $M_{2,\mathbb{F}_1}^{\tau} = \operatorname{Spec}(\mathbb{F}_1[a,b,c,d])$ $\langle ad+bc\equiv D\rangle$ in case that one of x_{13} or x_{24} is non-zero.

REFERENCES

- [1] Chenghao Chu, Oliver Lorscheid, and Rekha Santhanam. Sheaves and K-theory for \mathbb{F}_1 -schemes. Adv. Math., 229(4):2239–2286, 2012.
- [2] Alain Connes and Caterina Consani. Characteristic 1, entropy and the absolute point. Preprint, arXiv:0911.3537v1, 2009.
- [3] Anton Deitmar. Schemes over \mathbb{F}_1 . In *Number fields and function fields—two parallel worlds*, volume 239 of *Progr. Math.*, pages 87–100. Birkhäuser Boston, Boston, MA, 2005.
- [4] Anton Deitmar. \mathbb{F}_1 -schemes and toric varieties. Beiträge Algebra Geom., 49(2):517–525, 2008.
- [5] Kazuya Kato. Toric singularities. Amer. J. Math., 116(5):1073-1099, 1994.
- [6] Javier López Peña. \mathbb{F}_1 -models for cluster algebras and total positivity. In preparation.
- [7] Javier López Peña and Oliver Lorscheid. Mapping F₁-land. an overview of geometries over the field with one element. In *Noncommutative geometry, arithmetic and related topics*, pages 241–265. Johns Hopkins University Press, 2011.
- [8] Javier López Peña and Oliver Lorscheid. Torified varieties and their geometries over F₁. Math. Z., 267(3-4):605-643, 2011.
- [9] Oliver Lorscheid. The geometry of blueprints. Part I: algebraic background and scheme theory. Adv. Math., 229(3):1804–1846, 2012.
- [10] Oliver Lorscheid. The geometry of blueprints. Part II: Tits-Weyl models of algebraic groups. Preprint, arXiv:1201.1324, 2012.
- [11] Grigory Mikhalkin. Tropical geometry. Unpublished notes, 2010.
- [12] Christophe Soulé. Les variétés sur le corps à un élément. Mosc. Math. J., 4(1):217-244, 312, 2004.
- [13] Koen Thas. Notes on \mathbb{F}_1 , I. Combinatorics of \mathcal{D}_0 -schemes and \mathbb{F}_1 -geometry. In preparation.

Department of Mathematics, University College London, 25 Gower Street, London WC1E 6BT, United Kingdom

E-mail address: jlp@math.ucl.ac.uk

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF WUPPERTAL, GAUSSSTR. 20, 42097 WUPPERTAL, GERMANY

E-mail address: lorscheid@math.uni-wuppertal.de