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ABSTRACT. In this note, we generalize the Proj–construction from usual schemes to
blue schemes. This yields the definition of projective space and projective varieties over a
blueprint. In particular, it is possible to descend closed subvarieties of a projective space
to a canonical F1–model. We discuss this in case of the Grassmannian Gr(2, 4).

1. INTRODUCTION

Blueprints are a common generalization of commutative (semi)rings and monoids. The
associated geometric objects, blue schemes, are therefore a common generalization of
usual scheme theory and F1–geometry (as considered by Kato [5], Deitmar [3] and Connes-
Consani [2]). The possibility of forming semiring schemes allows us to talk about idem-
potent schemes and tropical schemes (cf. [11]). All this is worked out in [9].

It is known, though not covered in literature yet, that the Proj-construction from usual
algebraic geometry has an analogue in F1-geometry (after Kato, Deitmar and Connes-
Consani). In this note we describe a generalization of this to blueprints. In private commu-
nication, Koen Thas announced a treatment of Proj for monoidal schemes (see [13]).

We follow the notations and conventions of [10]. Namely, all blueprints that appear in
this note are proper and with a zero. We remark that the following constructions can be
carried out for the more general notion of a blueprint as considered in [9]; the reason that
we restrict to proper blueprints with a zero is that this allows us to adopt a notation that is
common in F1-geometry.

Namely, we denote by AnB the (blue) affine n-space Spec
(
B[T1, . . . , Tn]

)
over a blue-

print B. In case of a ring, this does not equal the usual affine n-space since B[T1, . . . , Tn]
is not closed under addition. Therefore, we denote the usual affine n-space over a ring
B by +AnB = Spec

(
B[T1, . . . , Tn]+

)
. Similarly, we use a superscript “+” for the usual

projective space +PnB and the usual Grassmannian Gr(k, n)+B over a ring B.

2. GRADED BLUEPRINTS AND Proj

Let B be a blueprint and M a subset of B. We say that M is additively closed in B
if for all additive relations b ≡

∑
ai with ai ∈ M also b is an element of M . Note that,

in particular, 0 is an element of M . A graded blueprint is a blueprint B together with
additively closed subsets Bi for i ∈ N such that 1 ∈ B0, such that for all i, j ∈ N and
a ∈ Bi, b ∈ Bj , the product ab is an element of Bi+j and such that for every b ∈ B, there
are a unique finite subset I of N and unique non-zero elements ai ∈ Bi for every i ∈ I
such that b ≡

∑
ai. An element of

⋃
i≥0Bi is called homogeneous. If a ∈ Bi is non-zero,

then we say, more specifically, that a is homogeneous of degree i.
We collect some immediate facts for a graded blueprint B as above. The subset B0 is

multiplicatively closed, i.e. B0 can be seen as a subblueprint of B. The subblueprint B0

equals B if and only if for all i > 0, Bi = {0}. In this case we say that B is trivially
graded. By the uniqueness of the decomposition into homogeneous elements, we have
Bi ∩Bj = {0} for i 6= j. This means that the union

⋃
i≥0Bi has the structure of a wedge

product
∨
i≥0Bi. Since

∨
i≥0Bi is multiplicatively closed, it can be seen as a subblueprint
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of B. We define Bhom =
∨
i≥0Bi and call the subblueprint Bhom the homogeneous part of

B.
Let S be a multiplicative subset of B. If b/s is an element of the localization S−1B

where f is homogeneous of degree i and s is homogeneous of degree j, then we say that
b/s is a homogeneous element of degree i− j. We define S−1B0 as the subset of homoge-
neous elements of degree 0. It is multiplicatively closed, and inherits thus a subblueprint
structure from S−1B. If S is the complement of a prime ideal p, then we write B(p) for
the subblueprint (Bp)0 of homogeneous elements of degree 0 in Bp.

An ideal I of a graded blueprint B is called homogeneous if it is generated by homo-
geneous elements, i.e. if for every c ∈ I , there are homogeneous elements pi, qj ∈ I and
elements ai, bj ∈ B and an additive relation

∑
aipi + c ≡

∑
bjqj in B.

Let B be a graded blueprint. Then we define ProjB as the set of all homogeneous
prime ideals p of B that do not contain B+

hom =
∨
i>0Bi. The set X = ProjB comes

together with the topology that is defined by the basis

Uh = { p ∈ X | h /∈ p }
where h ranges throughBhom and with a structure sheafOX that is the sheafification of the
association Uh 7→ B[h−1]0 where B[h−1] is the localization of B at S = {hi}i≥q0.

Note that if B is a ring, the above definitions yield the usual construction of ProjB for
graded rings. In complete analogy to the case of graded rings, one proves the following
theorem.

Theorem 2.1. The space X = ProjB together with OX is a blue scheme. The stalk at a
point p ∈ ProjB is Ox,p = B(p). If h ∈ B+

hom, then Uh ' SpecB[h−1]0. The inclusions
B0 ↪→ B[h−1]0 yield morphisms SpecB[h−1]0 → SpecB0, which glue to a structural
morphism ProjB → SpecB0. �

If B is a graded blueprint, then the associated semiring B+ inherits a grading. Namely,
let Bhom =

∨
i≥0Bi the homogeneous part of B. Then we can define B+

i as the additive
closure of Bi in B+, i.e. as the set of all b ∈ B such that there is an additive relation of
the form b ≡

∑
ak in B with ak ∈ Bi. Then

∨
B+
i defines a grading of B+. Similarly,

the grading of B induces a grading on a tensor product B ⊗C D with respect to blueprint
morphisms C → B and C → D under the assumption that the image of C → B is
contained in B0. Consequently, a grading of B implies a grading of Binv = B⊗F1

F12 and
of the ring B+

Z = B+
inv. Along the same lines, if both B and D are graded and the images

of C → B and C → D lie in B0 and C0 respectively, then B ⊗C D inherits a grading
obtained from the gradings of B and D.

3. PROJECTIVE SPACE

The functor Proj allows the definition of the projective space PnB over a blueprint B.
Namely, the free blueprint C = B[T0, . . . , Tn] over B comes together with a natural grad-
ing (cf. [9, Section 1.12] for the definition of free blueprints). Namely, Ci consists of all
monomials bT e00 · · ·T enn such that e0 + · · ·+ en = i where b ∈ B. Note that C0 = B and
Chom = C. The projective space PnB is defined as ProjB[T0, . . . , Tn]. It comes together
with a structure morphism PnB → SpecB.

In case of B = F1, the projective space PnF1
is the monoidal scheme that is known from

F1-geometry (see [4], [1, Section 3.1.4]) and [10, Ex. 1.6]). The topological space of PnF1

is finite. Its points correspond to the homogeneous prime ideals (Si)i∈I of F1[S0, . . . , Sn]
where I ranges through all proper subsets of {0, . . . , n}.

In case of a ring B, the projective space PnB does not coincide with the usual pro-
jective space since the free blueprint B[S0, . . . , Sn] is not a ring, but merely the blue-
print of all monomials of the form bSe00 · · ·Senn with b ∈ B. However, the associated
scheme +PnB = (PnB)+ coincides with the usual projective space over B, which equals
ProjB[S0, . . . , Sn]+.
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4. CLOSED SUBSCHEMES

Let X be a scheme of finite type. By an F1-model of X we mean a blue scheme X
of finite type such that X+

Z is isomorphic to X . Since a finitely generated Z-algebra is,
by definition, generated by a finitely generated multiplicative subset as a Z-module, every
scheme of finite type has an F1-model. It is, on the contrary, true that a scheme of finite
type possesses a large number of F1-models.

Given a scheme X with an F1-model X , we can associate to every closed subscheme
Y of X the following closed subscheme Y of X , which is an F1-model of Y . In case that
X = SpecB is the spectrum of a blueprintB = A�R, and thus X ' SpecB+

Z is an affine
scheme, we can define Y as SpecC for C = A�R(Y ) where R(Y ) is the pre-addition
that contains

∑
ai ≡

∑
bj whenever

∑
ai =

∑
bj holds in the coordinate ring ΓY of Y .

This is a process that we used already in [10, Section 3].
Since localizations commute with additive closures, i.e. (S−1B)+Z = S−1(B+

Z ) where
S is a multiplicative subset of B, the above process is compatible with the restriction to
affine opens U ⊂ X . This means that given U = Spec(S−1B), which is an F1-model for
X ′ = U+

Z , then the F1–model Y ′ that is associated to the closed subscheme Y ′ = X ′×X Y
of X ′ by the above process is the spectrum of the blueprint S−1C. Consequently, we can
associate with every closed subscheme Y of a scheme X with an F1-model X a closed
subscheme Y of X , which is an F1–model of Y; namely, we apply the above process to
all affine open subschemes of X and glue them together, which is possible since additive
closures commute with localizations.

In case of a projective variety, i.e. a closed subscheme Y of a projective space +PnZ ,
we derive the following description of the associated F1-model Y in PnF1

by homogeneous
coordinate rings. Let C be the homogeneous coordinate ring of Y , which is a quotient of
Z[S0, . . . , Sn]+ by a homogeneous ideal I . Let R be the pre-addition on F1[S0, . . . , Sn]
that consists of all relations

∑
ai ≡

∑
bj such that

∑
ai =

∑
bj in C. Then B =

F1[S0, . . . , Sn]�R inherits a grading from F1[S0, . . . , Sn] by defining Bi as the image
of F1[S0, . . . , Sn]i in B. Note that B ⊂ C and that the sets Bi equal the intersections
Bi = Ci ∩ B for i ≥ 0 where Ci is the homogeneous part of degree i of C. Then the
F1-model Y of Y equals ProjB.

5. F1–MODELS FOR GRASSMANNIANS

One of the simplest examples of projective varieties that is not a toric variety (and
in particular, not a projective space) is the Grassmann variety Gr(2, 4). The problem of
finding models over F1 for Grassmann varieties was originally posed by Soulè in [12], and
solved by the authors by obtaining a torification from the Schubert cell decomposition (cf.
[8, 7]).

In this note, we present F1-models for Grassmannians as projective varieties defined
through (homogeneous) blueprints. The proposed construction for the Grassmannians fits
within a more general framework for obtaining blueprints and totally positive blueprints
from cluster data (cf. the forthcoming preprint [6]).

Classically, the homogeneous coordinate ring for the Grassmannian Gr(k, n) is ob-
tained by quotienting out the homogeneous coordinate ring of the projective space P(n

k)−1

by the homogeneous ideal generated by the Plücker relations. A similar construction can
be carried out using the framework of (graded) blueprints. In what follows, we make that
construction explicit for the Grassmannian Gr(2, 4).

Define the blueprint OF1
(Gr(2, 4)) = F1[x12, x13, x14, x23, x24, x34]�R where the

congruence R is generated by the Plücker relation x12x34 + x14x23 ≡ x13x24 (the signs
have been picked to ensure that the totally positive part of the Grassmannian is preserved,
cf. [6]). SinceR is generated by a homogeneous relation,OF1

(Gr(2, 4)) inherits a grading
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from the canonical morphism

π : F1[x12, x13, x14, x23, x24, x34] −→ F1[x12, x13, x14, x23, x24, x34]�R.

Let Gr(2, 4)F1
:= Proj(OF1

(Gr(2, 4))). The base extension Gr(2, 4)+Z is the usual Grass-
mannian, and π defines a closed embedding of Gr(2, 4)F1 into P5

F1
, which extends to the

classical Plücker embedding Gr(2, 4)+Z ↪→ +P5
Z.

Homogeneous prime ideals in OF1(Gr(2, 4)) are described by their generators as the
proper subsets I ( {x12, x13, x14, x23, x24, x25} such that I is either contained in one of
the sets {x12, x34}, {x14, x23}, {x13, x24}, or otherwise I has a nonempty intersection
with all three of them. In other words, I cannot contain elements in two of the above sets
without also containing an element of the third one.

FIGURE 1. Points of the Grassmannian Gr(2, 4)F1 .

Generator xij belonging to an ideal is depicted as segment i–j in
1 2

34

The structure of the set of (homogeneous) prime ideals of OF1
(Gr(2, 4)) is depicted in

Figure 1. It consists of 6 + 12 + 11 + 6 + 1 = 36 prime ideals of ranks 0, 1, 2, 3 and 4,
respectively (cf. [10, Def. 2.3] for the definition of the rank of a prime ideal), thus resulting
in a model essentially different to the one presented in [8] by means of torifications, which
had 6+12+11+5+1 = 35 points, in correspondence with the coefficients of the counting
polynomial NGr(2,4)(q) = 6 + 12(q− 1) + 11(q− 1)2 + 5(q− 1)3 + 1(q− 1)4. It is worth
noting that despite arising from different constructions, both F1-models for Gr(2, 4) have
6 =

(
4
2

)
closed points, corresponding to the combinatorial interpretation of Gr(2, 4)F1 as

the set of all subsets with two elements inside a set with four elements. These six points
correspond to the F1-rational Tits points of Gr(2, 4)F1

, which reflect the naive notion of
F1-rational points of an F1-scheme (cf. [10, Section 2.2]).

Like in the classical geometrical setting, the Grassmannian Gr(2, 4)F1
does admit a

covering by six F1-models of affine 4-space, which correspond to the open subsets of
Gr(2, 4)F1 where one of x12, x34, x14, x23, x13 or x24 is non-zero. However, these F1-
models of affine 4-space are not the standard model A4

F1
= Spec

(
F1[a, b, c, d]

)
, but the

“2 × 2-matrices” M2,F1 = Spec
(
F1[a, b, c, d]�〈ad ≡ bc + D〉

)
in case that one of x12,

x34, x14 or x23 is non-zero, and the “twisted 2×2-matrices”Mτ
2,F1

= Spec
(
F1[a, b, c, d]�

〈ad+ bc ≡ D〉
)

in case that one of x13 or x24 is non-zero.
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