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TOROIDAL AUTOMORPHIC FORMS, WALDSPURGER PERIODS
AND DOUBLE DIRICHLET SERIES

GUNTHER CORNELISSEN AND OLIVER LORSCHEID

ABSTRACT. The space of toroidal automorphic forms was introduced agi&r in the
1970s: asLq-automorphic form is toroidal if it has vanishing constaatiFer coefficients
along all embedded non-split tori. The interest in this spstems (amongst others) from
the fact that an Eisenstein series of weiglig toroidal for a given torus precisely sfis a
non-trivial zero of the zeta function of the quadratic fietdresponding to the torus.

In this paper, we study the structure of the space of tor@damorphic forms for an
arbitrary number field”. We prove that this space admits a decomposition into a sglesp
of Eisenstein series (and derivatives) and a subspace pffousis. The subspace of
Eisenstein series is generated by all derivatives up torarde 1 of an Eisenstein series
of weight s and class group characterfor certainn, s, w, namely, precisely whenis a
zero of ordem of the L-seriesL »(w, s). The subspace of cusp forms consists of exactly
those cusp forms whose central.-value is zeroL(w, 1/2) = 0.

The proofs are based on an identity of Hecke for toroidagrgks of Eisenstein series
and a result of Waldspurger about toroidal integrals of dasms combined with non-
vanishing results for twists df-series proven by the method of double Dirichlet series.

1. INTRODUCTION

A classical theorem of Hecke (cf. Hecke [14] Werke p. 201 ahthat on the modular
curve X (1), the integral of an Eisenstein series along a closed geodésiiscriminant
d > 0 is essentially the zeta function of the number fi€¢/d). As was observed by
Don Zagier in [27], the formula fits into a more general frameky where integrals of
automorphic forms for global fields over tori (of any discim@ant) evaluate td.-series.
The approach in [27] is to define a space of so-caitedidal automorphic forms by the
vanishing of these integrals for varying tori, and the auttalls for an (independent)
understanding of the space of toroidal automorphic forrter ahich one may hopefully
apply the gained knowledge in combination with the geneasilbn of Hecke’s formula to
deduce something about zeta functions. For example, iftéducible subrepresentations
of the space of toroidal automorphic forms are temperedRtemann hypothesis follows.
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This seems for now an elusive programme, but see [8] for astasly for some function
fields.

In this paper, we study the space of toroidal automorphim$oin its own right. We
use our increased knowledge (compared to the 1970s, WhgnvEa7written) about the
decomposition of the space of automorphic forms for a gémeraber field (by Franke),
toroidal integrals of cusp forms (by Waldspurger in his gtoflthe Shimura correspon-
dence), and non-vanishing of quadratic twists (by the ntetfanultiple Dirichlet series,
essentially in the works of Friedberg, Hoffstein and Liepntanprove the following theo-
rem, which summarizes our main results. Note that in lighhefprevious paragraph, we
avoid using any unproven hypothesis about the zerdsséries.

Theorem. The space of toroidal automorphic forms for an arbitrary raenfield decom-
poses into an Eisenstein part and a cuspidal part. More gedygj

(i) (cf. TheorenL4.lL)'he Eisenstein part of the space of toroidal automorphior
is spanned by all derivatives of Eisenstein series of weight C and class group
characterw, precisely up to the order of vanishing of theseries corresponding
tow at sy.

(i) (cf. Theoren{5.2No nontrivial residues of Eisenstein series are toroidal.

(iii) (cf. Theoren(6.1)The cuspidal part of the space of toroidal automorphic forsns
spanned by those cusp formg$or which the central value of it§-series vanish:
L(r,1/2) = 0.

We will use the next section to set up notation and give pestéginitions of the spaces
involved.

1.1.Remark. How many derivatives of Eisenstein series will be toroidai® reasonable
to expect that the only multiplicities in the zerosoffunctions of a number field” arise
from multiplicities in the decomposition of the regular repentation of the Galois group
of the normal closure of'/Q (following the Artin formalism of factorisation of-series).
The Rudnick-Sarnak theory of statistical distribution efas of principal primitivel-
series (cf.[[2R],[[21]§5) indicates that the zeros of different such principal jitiira L-
series should be uncorrelated. For example,Ho= Q, all zeros of the Riemann zeta
function are expected to be simple.

But of course, as soon d$/Q is non-abelian, there will be such multiplicities arising
from irreducible representations of the Galois group ohkigdimension. Cf. also the pos-
sibility that a Galois extensiofY/Q contains two distinct subfields that are arithmetically
equivalent (corresponding to two subgroups of the Galasigt; from which the trivial
representation induces the same representatian of. [15]), hence have the same zeta
function, whose zeros will then occur with multiplicity ihe zeta function ofV.

1.2.Remark. Our way of averaging toroidal integrals is a two-step methmydirst relat-
ing them to twists of_-series, anthenusing standard techniques to average those. Is there
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a direct way to average toroidal integrals, e.g. by a RaSiatberg unfolding of an Eisen-
stein series twisted with toroidal integrals? We did notkubiis out. But for example, the
toroidal integral of a holomorphic weight two cusp forfrover a torus corresponding to
Q(V/d) for somed > 0 is the integral of the differential formy corresponding tgf over

the closed geodesig; in the modular curve correspondingdoln this specific case, one

wants to have an asymptotic result for a sum of ‘modular sy&ibd . [ w. Compare
d<X Fd
with [5], where Eisenstein series twisted by modular syralaoé studied.

1.3. Remark. There is an obvious generalization ‘bftoroidal automorphic forms on
GL(n) for a maximal indecomposable toriilsC GL(n). One may wonder whether the
methods presented in this paper can be generalized ltke)-case.

Part of the ingredients of our proof are already in the ltigne on the one hand, Wielon-
sky [26] generalized Hecke’s formula (Theorem] 312 (i)):oidel integrals of Eisenstein
series orGL(n) that are induced by a parabolic subgroup of type- 1, 1) equal certain
L-series; see Lachaud [18] for a recent treatment. On the b#med, Friedberg, Hoff-
stein and Liemari[12] introduced double Dirichlet seriestw:-th order twists of Hecke
L-series and showed that they admit a meromorphic contimuatid satisfy a functional
equation.

However, we are not aware of a generalization of Hecke'sréral3.2 toall Eisenstein
series onGL(n), or of Waldspurger’s work on toroidal integrals of cusp ferfg.1) to
GL(n). Maybe there is a way to circumvent the relatior’tseries, compare the previous
remark and the method inl[6].

1.4.Remark. In [16] (extended version in [18]) and [17], Lachaud ties bp theory of
toroidal automorphic forms with Connes’ trace form progna@7] in the study of zeros
of zeta functions.

1.5.Remark. For global function fields, methods more akin to the georoétainglands
programme allow one to prove that the space of toroidal aatphc forms is finite di-
mensional, and one can control the linear relations betviig@senstein series in a very
precise way, leading to an actual dimension formula for tiseriStein part of the space of
toroidal automorphic forms, cf. [19].

2. DEFINITION OF TOROIDAL AUTOMORPHIC FORMS

2.1.Notation. Let F' be a number fieldF, be the completion at, A = A the adeles of
F. SetG = GL(2) and letZ be its center. Le#d be the space of automorphic forms t@r
over F with trivial central character.

2.2.Notation. Let 7" € G be a maximal non-split torus defined ov€r y the corre-
sponding character on the idele class group &nd F7r the corresponding quadratic field
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extension ofF". This means that there is a non squére F' such thatt'/ F' is generated
by a square-root af and thatl’( F") is conjugated irG (') to the standard torus

Ty(F) = {(ziz 2) EG(F)} .

If 7= T,, then writey, for yr.

2.3.Definition. Thezeroth Fourier coefficient w.r.i’ (or T-toroidal integral) of an auto-
morphic formf € A is defined to be the function

o= [ s
TpZ(A)\T(A)
forg € G(A).
2.4.Definition.
(i) Thespace ofl'- or E-toroidal automorphic forms foF' is

Aior(T) i = Aior(E) :={f € A : fr(g) =0,Vg € G(A)}.
(i) The space of toroidal automorphic forms fért is

Ator = m Ator(E)7

E/F
where the intersection is taken over all quadratic field esitnsE/ F.

2.5.Remark. These definitions are independent of the choice of torusespanding to
E/F since they are conjugacy invariant.

2.6.Remark. There is also a definition df-toroidal automorphic form for a split torus
T, but one has to be careful, since the toroidal integfaas defined above over a split
torusT can diverge. This can be taken care of by subtracting seitadtabolic Fourier
coefficients before integrating (cf. [191.5] for the definition in the function field case).
One could thus consider the space of automorphic forms tadt-goroidal for all maximal
tori 7', split or not. Due to the results of the present text $62] (which transfer to
the number field case), this space coincides vth, and we forgo describing the more
involved theory for split tori.

The spaced is an automorphic representation@fA ) for right translation byG (A ).
By [10] applied toGL(2), the spaced decomposes into a direct sum of automorphic
representations as follows:
A=Ay E DR,
whereA, is the space of cusp form&,is the space generated by the derivatives of Eisen-
stein series an® is generated by the residues of these Eisenstein seriebeaintideriva-
tives”. We will give the precise definitions éfandR in section$ B andl5, respectively.
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Multiplicity one holds forG L(2), hence ifr is any subrepresentation g, it inherits
this decomposition, since it is determined by its isomaphiype. In order to investigate
the space of toroidal automorphic forms,., which is an automorphic representation by
its very definition, it thus suffices to investigate

AO,tor = Ator N AO) gtor =&N Ator and Rtor =RN Ator
Separate|y, Sincﬂtor = AO,tor ©® 5.tor © Rtor-

3. TOROIDAL INTEGRALS OFEISENSTEIN SERIES A FORMULA OF HECKE

3.1. Notation. Let x denote a character of the idele class grdup F*\A*. We can

write y = w - | |S°‘% for some finite order character, and we will sometimes regard a
function of x as a function of, (assumingv to be fixed). We seRe(y) = Re(sq) — 3.
We also remark that the shift iy by —% is in accordance with the usual convention in the
adelic theory of Eisenstein series, putting the center ofragtry ato.

We define theprincipal series

Pix) = { f:GA)TB"C : v(84), g GA), f((*1)g) = x(a/d) a/d|"* f(g) },

where a functiorf : G(A) — Cis smoothifitis smooth in the usual sense at archimedean
places and locally constant at finite places. et P(x) be embedded in fiat section
fy, of the principal series, i.e. there exists a functigis) of s € C such thatf,(s) €
P(x| ) with f = £,(0) and f(s)(e) = f(e) forall s € C, wheree = (} ¢). Note that
every f € P(x) is embedded into a unique flat section. In the following, w# wiite
f = £(0) € P(x) to refer to this situation. We define tifeompleted) Eisenstein series
as

E(g,f) = LOG 3 - >, f(9)

YEB(F)\G(F)

in terms of meromorphic continuation. Hef¢y?,1/2) denotes theompleted.-series
i.e. including the factors at infinity. Note thé#i(g, f) is defined for allf = f,(0) un-
lessy? = | |i1, when the Eisenstein series has a simple pole. At thesesvalue the
residues of the Eisenstein series define automorphic fommigh will be investigated in
sectior b—these values gfcharacterize the cases where the principal séigg is not
irreducible as an automorphic representatiofi’oA ).

Also note that the symbolE” is now in use for both a field / F' and a functior® (g, f),
but this should cause no confusion.

We now compute the toroidal integrals of Eisenstein seB¢stement{i) in the theorem
below is the adelic formulation of a theorem of HecKe ([141{) this formulation, it was
first stated by Zagief [27].
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3.2.Theorem. Let T be a maximal torus id corresponding to the quadratic field exten-
sionE/F. Letyg : I — C* be the quadratic character whose kernel equals the norms of
Ag. Foreveryf = f,(0) € P(x), everyg € G and every charactex : I — C*, there
exists a holomorphic function- (g, f,(s)) of s € C with the following properties.

(i) Forall y such thaty? # | |,

ET(gv f) = 6T(gv f) L(X7 %) L(XXE7 %) .
(i) Foreveryg € Gy andy : I — C*, thereisaf € P(x) such thaker(g, f) # 0.

Proof. The strategy of the proof is as follows: we first prolle (i) fe(y) sufficiently
large, so we are in the region of absolute convergence. Weatecie Eisenstein series
conveniently as a certain adelic integral. Then a changadbles identifies its toroidal
integral with a Tate integral for ah-series ofE.

Rewriting the Eisenstein seridsirst, we explain how to represest g, f) by a certain
adelic integral, and then the statementlin (i) is a simpldiegion of a change of variables.
Let ¢ be a Schwartz-Bruhat function o%?. Then

(1) F(g, 0, %) = / ©((0,1)2g)x(det 2g) |det zg|"/* d=
Z(A)

is a Tate integral fol.(x?, 1), which converges if the real part gfis larger thanl /2 (the
square of the charactgroccurs because in the above integraiidet(z)) = x(2)?). One
verifies easily that'(-, ¢, x) is an element oP ().

In [25, Ch. VII, §7], Weil defines a particular test function (the “standard function”)
with the property that foe = ({{),we haveF (e, ¢o, x) = c¢z'L(x? 1) for a nonzero
constanty that only depends on the field. Thus

Cp - F(.gv 9007X> = L(X27 1) ’ f(g>
foranf € P(x) with f(e) = 1; in particular,F'(-, vo, x) is a non-trivial element P ().
We note that for every € G(A), the functionyy( - ¢g) is a Schwartz-Bruhat function,
too. SinceP(x) is irreducible, the integral8'(g, ¢, x) for varying exhaust all products
of the form L(x?,1)f(g), where f € P(x). Thus there is a Schwartz-Bruhat function
v = (f) forevery f € P(x) such that

2) E(g.f) = >, F(g.ex),

YEBFN\G(F)
where the equality has to be interpreted in terms of meromorgontinuation. Since
for all o, the Tate integral{1) is a multiple df(x?, 1), there existsf € P(y) for every
Schwartz-Bruhat functiop such that equation2) holds true.

Computing the toroidal integraWith this reformulation at hand, we can prove the
theorem precisely as it has been done by Zagier in [27]: bytifyeng 7'(F') with E* and
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T(Ar) with A} and using Fubini's theorem, the toroidal integralfofy, f) is changed
into a Tate integral for aii-series ofE. Explicitly,

Ero.n)= > [ ez et tg) det sty e
T(F)Z(ANT(A) YEBUNGE) Z(a)
ViaT(F) = FE*and
B(P)\G(F) = F*\F? = {(0,0)} = F*\E*,
we identify the “domain of integration” with
T(F)Z(ANT(A) x B(F)\G(F) x Z(A) = Ap,
and note that this identification is compatible with measukence

Ex(g, f) = x(det g) |det(g)] "2 - / D(t) (x 0 Nioy) (1) [t]1/2

for a certain Schwartz-Bruhat functioh on A%. This is a Tate integral foLg(y o
Ng/r,1/2) and factors in a product of twa-series as in[ki), thus givingl (i) foRe(y)
sufficiently large. Statemerid (i) now follows for all chatexs by meromorphic continua-
tion in s since both sides are meromorphic functions af C.

Non-vanishing of the 'constant’For (ii), note that the non-vanishing ef(g, f) fol-
lows from the fact that we can choogesuch that the test functioh is again the standard
function as described by [25, Ch. VR7], and then

3) er (g, f(s)) = cp'x(det(g)) |det(g)""?
is a nonvanishing holomorphic function ef U
In order to accord for possible multiple zeros biseries, we need to also take into
account higher derivatives of Eisenstein series.
3.3.Notation.

(i) We denote byE™ (g, f) then-th derivative ofE(g, f, (s)) w.r.t. s ats = 0.

(i) We denote by the space of automorphic forms that is generated by all alivas
E™(., f) of Eisenstein series, where> 0 andf € P(x) with y varying through
all idele class group characters whose square is not trivial

(iii) Similarly we denote byL ™ (y, 1/2) then-th derivative ofL(y,1/2 + s) ats = 0
and byegf’) (g, f) then-th derivative of the functiors(g, f,(s)) ats = 0.

3.4.Definition. We sayy is a zero ofL(-, 1/2) of ordern if LW (y,1/2) = 0foralli <n
but# 0 for i = n, and then we writerd, L(-, 1/2) = n.

3.5.Proposition. Let7T be a maximal non-split torus i& andn a non-negative integer.
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(i) Forall g € G4 andy such thaty? # | |*', we have

BP9 = X g o 0 ) LV 063) K900 3)
itjtk=n 7
1,7,k>0

(i) Then-th derivativeE™ (g, f) of an Eisenstein series i8-toroidal if and only if
xisazeroofL(-,1/2) - L(-xg, 1/2) of order at least..

Proof. The first part follows from the Leibniz rule. Fdrl(ii), usé éhd observe the follow-
ing:
e The derivativessgf) (g, f) are non-zero as function gf as is easily seen frorl(3).
o If E(™ (g, f)is E-toroidal, then so igZ™ (g, f) for all n < m sinceE(™ gener-
ates an automorphic subrepresentation of the space ofl&baitomorphic forms
that contains all derivatives of lower order.

This finishes the proof. U

4. AN APPLICATION OF DOUBLEDIRICHLET SERIES TOROIDAL EISENSTEIN SERIES
In this section we will prove the following:

4.1. Theorem. Let f € P(x). Then-th derivativeE™ (g, f) of an Eisenstein series is
toroidal if and only ify is a zero ofL(-, ) of order at least.. Hence

Eior = (EM(-, f) - Ix, f € P(x) andn < ord, L(-, )

Proof. Recall that we know from the computation of toroidal intégiia Propositiori 3.5
when then-th derivativeE™ (-, ) of an Eisenstein series i&-toroidal. It suffices to prove
that for all y there exists a quadratic/ F' such thatl.(xxg, 1/2) # 0. This follows from
Theoreni4.R below. O

As before, we now writey = w - | |S°‘% for a finite charactew, where we consider
s = 59 € C as varying parameter. We use the notatigw, s) for L(x, 1/2).

4.2. Theorem. Let F' denote a number field, let denote a class group character dn
Then there exists a quadratic field extensiof' such thatl(wxg, s) # 0.

4.3. Remark. Before we start with the proof, we make some incomplete hisibre-
marks. Non-vanishing of quadratic twists can be proven byesmethods, but only for a
restricted set of number fields. A method that works moreaunify is that of multiple
Dirichlet series (so Fourier coefficients of metaplectisdfistein series); unfortunately,
the result we need is not literally in the existing litera&wn multiple Dirichlet series, but
rather arises from a combination of existing methods. Weniesthat forRe(s) # 1, the
result can be proven using “unweighted” double Dirichleiese(see Chinta, Friedberg
and Hoffstein[[8] Thm. 1.1). To extend to the (for us inteiregt rangeRe(s) = 3, one
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needs to analytically continue the double Dirichlet seviith weights; for higher order

characters and a general number field, this is done by Frigdbtffstein and Lieman

in [12]; and for quadratic twists of function fields by Fisterd Friedberg [9]. It is the

methods of these latter two sources that we will combinece&Sproofs of many facts are
literally the same, we will not repeat them here, but we wall gp all required notations.
One can go a (small) step further and combine the method vaitibdrian theorems to
establish lower bounds on the number of non-vanishing $wasbounded conductor, but
we will not need those. Also, we refrain from discussing agarg of toroidal integrals

directly, without first relating them td.-series, cf. also Remark1.2.

Proof of Theorerh 4]12First note that thd.-series we consider are ‘completed’ by the cor-
rect archimedean factors, so they do not have trivial zeutsiae the critical strip.

Because of the functional equation, we can asumelthaRe(s) < 1. SinceL(wyg, )
does not vanish oRe(s) = 1 ([20] Ch. 1,§4), we can even assunje< Re(s) < 1.

The strategy of the proof is now the following: we assume byti@miction that all
non-trivial twistsL(wx g, s) vanish ats = s,. Then the (analytically continued) double
Dirichlet seriesZ’ (s, w) (to be defined below), with the trivial twist extracted, \&mes
identically inw for s = sq. Butit has residue at = 1 anon-zero constant timégw, 2s).
Hence we find(w, 2s,) = 0, and this is impossible if < Re(s) < 1.

To define the double Dirichlet series in a rigorous way, wéofel[12], §1. Since the
class number of” is not necessarily one, the most natural double Dirichleesg¢and the
one that has a natural analytic continuation and set of fomak equations) doesn't only
sum over quadratic twistgg, but rather over more general characters on a ray class .group
We now introduce this series first.

LetS = Sy U S denote a finite set of places éfthat contains all infinite place$,,
of " and a setS; of finite places such that the ring &f;-integers has class number one.
For v a finite place corresponding to an idgal let ¢, = |O/p,|. SetC = Hvesf m,
wheren, = 1 for v not above2, and forv above2, n, is so large that any € F;, with
ord,(a — 1) > n, is a square irf,. Let H- denote the ray class group of moduluslet
he = |He| and set

Re=Hc®Z/2=7]a; X---xXZ/a,.

Choose generatots for Z /a;, and choose a sé€}, of ideals prime toS that represent the
b;. ForanyE, € &, letmp, denote an element df* that generates the (principal) ideal
EyOg. Let £ denote a set of representativesiy that are of the formkl = HEg Fo
where thekE, are elements of, and theny, are natural numbers, and sef;, = ngfo
with the convention that) € £ with mp = 1. ThenEOg = (mg). Let I(S) denote the
set of fractional ideals coprime t8;. Ford,e € I(S) coprime, writed = (a) EG* with
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Ee€&ac F*,a=1modC,G € I(5); and define

= (8= ()

This is well-defined (cf/[12], Prop. 1.1), it does not dependhe decomposition af (but
it does depend on the choicemfz). Ford principal, x4 is the usual quadratic character
for F(v/d)/F (cf. NotationZ.2).

Let Ls(w, s) denote thd.-series off’ for the class group character but with the Euler
factors corresponding to the placesdmemoved. Forl € I(.S), let S; denote the set of
primes abovel. Let J(.S) denote the set of integral ideals iQS). Ford € J(5), let|d]
denote its norm. Writd = dyd? with d, squarefree.

We define the weight factor to be

M 61 Xd 61 (6163)
le1|*|ea]?s

a(w, s,d) : ,

e; €J(S)
6162\d1

wherey is the Mobius function. Lep denote a character on the idele class group unram-
ified outsidesS; this will be used later on to filter out principal ideals, whiare the ones
we are interested in. We define the double Dirichlet series as

L d
Zw,p(sv w) = Z SUSd(T;TZ’ S)p( ) . CL(CU, S, d)
deJ(S)

This is convergent foRe(s) andRe(w) sufficiently large (sayz 1). The following prop-
erties are proven in exactly the same way as in [12] (The oiffgrdnce to [12], which
treats the case of twists by characters of higher order,eis¢h of functional equations,
which here is of order 12 instead of 32, ¢f.[12], Remark 2.6.)

(i) The functionZ,, ,(s,w) admits a meromorphic continuation@;
(i) The poles ofZ, ,(s,w) are located on the union of the lines

1
w=0w=1s=0,s=1w+s= §andw+s: ot
(iiiy If p # 1, thenZ, ,(s,w) is holomorphic atw = 1; if p = 1 ands # 1/2,

Zyp(s,w) has a simple pole ab = 1. If p = 1 ands = 2, Zy (s, w) has a
double pole atv = 1, andLs(w?, 25) has a simple pole. We have

' 0 if p#£1;
il@ﬂ(W—l)Zw,p(S,w) = { (Resy—1 Cr(w)) - (Huesf CF,v(l)_1> - Ls(w?,2s) if p=1,

(cf. [4], Section 5; see also Section 5.3 at. cit. for a computation of the principal part
of Z,, ,(s, w) aroundw = 1, which we will not need here.)
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Let

Lsus,(wxa, )

0 o SUS, d

(4) Zw<s7w) T Z Td# ’ a(w7 S, d)u
deJ(S)

[d]=0
denote the modified double Dirichlet series, where we oniy swer principal ideals!
(indicated by the fact that their clagd is trivial in R¢). Note that by plugging in the
decomposition of the characteristic function of the clasash;' . p, we find

pERc

HenceZ! (s, w) inherits an analytic continuation frou, ,(s, w). Using the above com-
putation of residues, we find that

5) lluiinﬂ(w —1)Z2%(s0,w) = ¢ - L(w?, 2s0),
wherec is some non-zero constant.

We can now finish the proof of the theorem. We are assumingath@trincipal’ twists
L(wxa, so) ([d] = 0, x4 non-trivial) vanish at some, with % < Re(sp) < 1. Note first
that this obviously implies the vanishing of all twists févet modifiedL-series with the
S U Sz-Euler factors removed.

A slight complication arises since thg we consider are outside of the region of abso-
lute convergence of the seri&§ (s, w), but we can use a convexity estimate to get that for
suchs, andRe(w) large enoughthe double Dirichlet serieg? (s, w) as defined in[{4)
will also converge. This is because of Phragmén-Lindegiifmates in thé-aspect of the
form

|Lsus, (wxd, So)a(w, so, d)| < |d|

(cf. [4], 3.3), soRe(w) > 2 will do.

Now recall our hypothesis thdts s, (wxq, so) = 0 for all principald with x, # 1, i.e.,
d not a square. Hence if we substract the terms for whiehe? is a square fronf {4), we
find the identically zero function

L w, S
(6) ZS)(SOu U)) - Z % ' CL(M, S0, 62) =0
S

(first for Re(w) sufficiently large, hence after analytic continuation,déinw).
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We now prove that the term we have subtracted off doesn't hagele atw = 1;
actually, it converges absolutelyat= 1. Write the term as

B
(7) LS(waso) : Z ‘6|2w : a(w,80,62),
662‘;(50)
[e<]=

where B, consists of the reciprocals of the (finitely manyj. \ S)-Euler factors of
L(w, sg). Essentially, the absolute convergence is due to the fatttte exponent of
le] is~ 2 if w ~ 1 and the other factors are smalljir}. We present some details. First
of all, note thatLs(w, sy) doesn’t have a pole fof < Re(sp) < 1. We estimate for
Re(so) > 1/2

= 11 (- 58)

peSe\S

N

2@ eDFQ (e Q <« |e|'/?

(wherew(n) is the number of positive prime divisors of an integerandd(n) is the
number of positive divisors of, e.g. [13] Section 22.13). We estimate the other factor as

2
}a(%SO’e?)} - Z M < Z 1 < d(le)? Q¥ <« e/,

e1,e2€J(S) ‘61‘SO|€2|280_1 e1,e9€J(S)

erezle ejezle

since|uu(e1)w(ere3)] < 1andle;|®les* 0~ > 1 for Re(sg) > 5. We combine this into the

estimate
)

e€J(S) ecJ(S)
[e2]=0 [e2]=0

for some constari, the latter sum being an absolutely convergent series fer1.
We conclude from this and equatidn (6) tiat( sy, w) also doesn’t have a poleat= 1,
ie., liml(w —1)Z%(sp,w) = 0. Then by [b), we find thal.(w?,2sy) = 0 with 1 <
w—

Re(2s¢) < 2, which is impossible. This finishes the proof. O

B.

|€‘2w ’

-a(w,so,e2)‘ < k

1
|e[2w—2/3

5. TOROIDAL RESIDUES OFEISENSTEIN SERIES

Let x be a character of the idele class group suchyfat | |*" andf = £, (0) € P(x).
Then the Eisenstein serié¥ g, f,(s)) has a simple pole at= 0, but the residue

R(g, f) = Ress=o E(g, fy(5))
is an automorphic form. More generally, we consider thei\@ives”

n

d
R™(g, f) = Tim —— (s - E(g, fy(5)))
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forn > 0.

5.1.Definition. DefineR as the space of automorphic forms that is generated by tlee fun
tionsR™ (g, f), wheren > 0, f ranges throug® () andy ranges through all characters
on the idele group such that = | [*'.

5.2.Theorem. Ry, = {0}.

Proof. We compute the toroidal integral (g, /) for a torusT” corresponding to a qua-
dratic field £

Rr(g. f) = lm s Br(g, £,(5))
~ i s er(g, fy(5)) L0 s + L0 s+ )
= 6T(gv f) Res;—o L(Xa 5+ %)L(XXEH 5+ %)

Recall thaty> = ||, hencey | |7/? is quadratic, so either trivial or by class field
theory equal toyg for some quadratic field extensidii/ F'. In the case thal’ is non-
trivial, we have that

L(xxe,s+3) =Cr(s+3 £ 3),
where(r is as usual the completed zeta functionFowith poles at) and1, so
Cr(s+1/2+£1/2)

has a pole at = 0 (for both choices of sign). Hence, by the above formulaie(g, f),
the toroidal integral of?(g, f) for this E cannot vanish, since the other factary, 1/2)
does not vanish.

If x| \3”/2 is trivial, then we choose an arbitrary non-split tofitiswWe find that

L(x,s4+1/2) = Cp(s +1/2£1/2)
has a pole at = 0, but the other factor in the above computation of the tolaidagral,
L(xxe,s+1/2) = L(xg,s+1/2+1/2)
doesn’t vanish at = 0.
This also implies thaR(™ (g, f) cannot be toroidal, sinc&(g, f) is contained in the
automorphic representation generated by this automofpinit O
6. AN APPLICATION OF WALDSPURGER PERIODS TOROIDAL CUSP FORMS
In this section, we prove the following:
6.1. Theorem. A cuspidal representatiom C A, is toroidal if and only ifL (7, 1/2) = 0:
Ao tor = (m € Ay : L(m, %) =0).
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Proof. A formula of Waldspurger [([23, Prop. 7]) shows that thigoeriod of an automor-
phic form f in an irreducible cuspidal representatioiis a non-zero multiple of

L(m,3) - L(r ® X1, 3)-
Thusr is toroidal if L(7,1/2) = 0.
We are left to prove the reverse implication. Assume fiat, 1/2) # 0. Note that all

automorphic representation Gfi.(n) with trivial central character are self-contragredient.
Thus, the functional equation of thieseries ofr in s = 1/2is

L(m,1/2) = €e(m,1/2) - L(m, 1/2),

and necessarily(m, 1/2) = 1. This allows us to apply a theorem of Friedberg and Hoff-
stein: letr, be representations @f(F;,) such thatr ~ ®'r,, wherev ranges over all
places; letS be the (finite) set of places such thatr, is square integrable; I&tbe the
trivial Hecke character. Then [11, Thm. B (1)] states that¢hare infinitely many differ-
ent nonconjugate toff" such that’.(r @ xr, 1/2) # 0 and such that for alt € S, the local
charactery, is trivial, i.e. T, is split. In particular, there is such a non-split tofiis

We want to apply to apply [23, Thm. 2, p. 221] (in the “situatiglobale”, where the
guaternion algebra is chosen to split), which implies thetnot7-toroidal. To do so, we
have to verify that condition (i) in loc. cit. is satisfied. B3, Lemme 8 (iii)], condition
(i) is satisfied for all local factors, that are not square integrable.lfe S, thenT, is
split and [23, Lemme 8 (ii)] implies that condition (i) holfts square integrable,.

This shows that is not toroidal, which concludes the proof of the theorem. O

6.2. Remark. Theorem[[24, Thm. 4, p. 288] of Waldspurger says that theigtea y,

for d € F* such thatL(m ® x4, 1/2) # 0, but without the claim thag, is nontrivial.
However, if there exists one sueh(square or not), there exist infinitely many, as may
be seen from Lemma 7.1 ihl[1], which shows that the Dirichégtes occuring as Mellin
transform of the serie§o) on p. 289 of the proof in [24] cannot have only finitely many
non-zero coefficients.

6.3. Remark. There do exist number fields for which there exist non-trivial toroidal
cusp forms. We only need to be a cusp form with.(7, 1/2) = 0. This happens when
the root number is-1, which is for example the case for a cuspidal lift of a claalsic
holomorphic cusp form to an imaginary quadratic field (c$oalValdspurgef [24], Remark
on p. 282). The argument also shows that there are no toraidalfor forF = Q.
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