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TOROIDAL AUTOMORPHIC FORMS, WALDSPURGER PERIODS
AND DOUBLE DIRICHLET SERIES

GUNTHER CORNELISSEN AND OLIVER LORSCHEID

ABSTRACT. The space of toroidal automorphic forms was introduced by Zagier in the
1970s: aGL2-automorphic form is toroidal if it has vanishing constant Fourier coefficients
along all embedded non-split tori. The interest in this space stems (amongst others) from
the fact that an Eisenstein series of weights is toroidal for a given torus precisely ifs is a
non-trivial zero of the zeta function of the quadratic field corresponding to the torus.

In this paper, we study the structure of the space of toroidalautomorphic forms for an
arbitrary number fieldF . We prove that this space admits a decomposition into a subspace
of Eisenstein series (and derivatives) and a subspace of cusp forms. The subspace of
Eisenstein series is generated by all derivatives up to order n − 1 of an Eisenstein series
of weights and class group characterω for certainn, s, ω, namely, precisely whens is a
zero of ordern of theL-seriesLF (ω, s). The subspace of cusp forms consists of exactly
those cusp formsπ whose centralL-value is zero:L(π, 1/2) = 0.

The proofs are based on an identity of Hecke for toroidal integrals of Eisenstein series
and a result of Waldspurger about toroidal integrals of cuspforms combined with non-
vanishing results for twists ofL-series proven by the method of double Dirichlet series.

1. INTRODUCTION

A classical theorem of Hecke (cf. Hecke [14] Werke p. 201) shows that on the modular
curveX(1), the integral of an Eisenstein series along a closed geodesic of discriminant
d > 0 is essentially the zeta function of the number fieldQ(

√
d). As was observed by

Don Zagier in [27], the formula fits into a more general framework, where integrals of
automorphic forms for global fields over tori (of any discriminant) evaluate toL-series.
The approach in [27] is to define a space of so-calledtoroidal automorphic forms by the
vanishing of these integrals for varying tori, and the author calls for an (independent)
understanding of the space of toroidal automorphic forms, after which one may hopefully
apply the gained knowledge in combination with the generalization of Hecke’s formula to
deduce something about zeta functions. For example, if the irreducible subrepresentations
of the space of toroidal automorphic forms are tempered, theRiemann hypothesis follows.
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This seems for now an elusive programme, but see [8] for a casestudy for some function
fields.

In this paper, we study the space of toroidal automorphic forms in its own right. We
use our increased knowledge (compared to the 1970s, when [27] was written) about the
decomposition of the space of automorphic forms for a general number field (by Franke),
toroidal integrals of cusp forms (by Waldspurger in his study of the Shimura correspon-
dence), and non-vanishing of quadratic twists (by the method of multiple Dirichlet series,
essentially in the works of Friedberg, Hoffstein and Lieman) to prove the following theo-
rem, which summarizes our main results. Note that in light ofthe previous paragraph, we
avoid using any unproven hypothesis about the zeros ofL-series.

Theorem. The space of toroidal automorphic forms for an arbitrary number field decom-
poses into an Eisenstein part and a cuspidal part. More precisely,

(i) (cf. Theorem 4.1)The Eisenstein part of the space of toroidal automorphic forms
is spanned by all derivatives of Eisenstein series of weights0 ∈ C and class group
characterω, precisely up to the order of vanishing of theL-series corresponding
to ω at s0.

(ii) (cf. Theorem 5.2)No nontrivial residues of Eisenstein series are toroidal.
(iii) (cf. Theorem 6.1)The cuspidal part of the space of toroidal automorphic formsis

spanned by those cusp formsπ for which the central value of itsL-series vanish:
L(π, 1/2) = 0.

We will use the next section to set up notation and give precise definitions of the spaces
involved.

1.1.Remark. How many derivatives of Eisenstein series will be toroidal?It is reasonable
to expect that the only multiplicities in the zeros ofL-functions of a number fieldF arise
from multiplicities in the decomposition of the regular representation of the Galois group
of the normal closure ofF/Q (following the Artin formalism of factorisation ofL-series).
The Rudnick-Sarnak theory of statistical distribution of zeros of principal primitiveL-
series (cf. [22], [21],§5) indicates that the zeros of different such principal primitive L-
series should be uncorrelated. For example, forF = Q, all zeros of the Riemann zeta
function are expected to be simple.

But of course, as soon asF/Q is non-abelian, there will be such multiplicities arising
from irreducible representations of the Galois group of higher dimension. Cf. also the pos-
sibility that a Galois extensionN/Q contains two distinct subfields that are arithmetically
equivalent (corresponding to two subgroups of the Galois groupG from which the trivial
representation induces the same representation ofG, cf. [15]), hence have the same zeta
function, whose zeros will then occur with multiplicity in the zeta function ofN .

1.2.Remark. Our way of averaging toroidal integrals is a two-step method: by first relat-
ing them to twists ofL-series, andthenusing standard techniques to average those. Is there
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a direct way to average toroidal integrals, e.g. by a Rankin-Selberg unfolding of an Eisen-
stein series twisted with toroidal integrals? We did not work this out. But for example, the
toroidal integral of a holomorphic weight two cusp formf over a torus corresponding to
Q(

√
d) for somed > 0 is the integral of the differential formω corresponding tof over

the closed geodesicΓd in the modular curve corresponding tod. In this specific case, one
wants to have an asymptotic result for a sum of ‘modular symbols’

∑

d<X

∫

Γd

ω. Compare

with [5], where Eisenstein series twisted by modular symbols are studied.

1.3. Remark. There is an obvious generalization ofT -toroidal automorphic forms on
GL(n) for a maximal indecomposable torusT ⊂ GL(n). One may wonder whether the
methods presented in this paper can be generalized to theGL(n)-case.

Part of the ingredients of our proof are already in the literature: on the one hand, Wielon-
sky [26] generalized Hecke’s formula (Theorem 3.2 (i)): toroidal integrals of Eisenstein
series onGL(n) that are induced by a parabolic subgroup of type(n− 1, 1) equal certain
L-series; see Lachaud [18] for a recent treatment. On the other hand, Friedberg, Hoff-
stein and Lieman [12] introduced double Dirichlet series w.r.t. n-th order twists of Hecke
L-series and showed that they admit a meromorphic continuation and satisfy a functional
equation.

However, we are not aware of a generalization of Hecke’s theorem 3.2 toall Eisenstein
series onGL(n), or of Waldspurger’s work on toroidal integrals of cusp forms (6.1) to
GL(n). Maybe there is a way to circumvent the relation toL-series, compare the previous
remark and the method in [6].

1.4.Remark. In [16] (extended version in [18]) and [17], Lachaud ties up the theory of
toroidal automorphic forms with Connes’ trace form programme [7] in the study of zeros
of zeta functions.

1.5.Remark. For global function fields, methods more akin to the geometric Langlands
programme allow one to prove that the space of toroidal automorphic forms is finite di-
mensional, and one can control the linear relations betweenEisenstein series in a very
precise way, leading to an actual dimension formula for the Eisenstein part of the space of
toroidal automorphic forms, cf. [19].

2. DEFINITION OF TOROIDAL AUTOMORPHIC FORMS

2.1.Notation. Let F be a number field,Fv be the completion atv, A = AF the adeles of
F . SetG = GL(2) and letZ be its center. LetA be the space of automorphic forms forG
overF with trivial central character.

2.2. Notation. Let T ⊂ G be a maximal non-split torus defined overF , χT the corre-
sponding character on the idele class group andE = FT the corresponding quadratic field
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extension ofF . This means that there is a non squared ∈ F such thatE/F is generated
by a square-root ofd and thatT (F ) is conjugated inG(F ) to the standard torus

Td(F ) =

{
 a b
bd a


 ∈ G(F )

}

.

If T = Td, then writeχd for χT .

2.3.Definition. Thezeroth Fourier coefficient w.r.t.T (or T -toroidal integral) of an auto-
morphic formf ∈ A is defined to be the function

fT (g) :=

∫

TFZ(A)\T (A)

f(tg) dt

for g ∈ G(A).

2.4.Definition.
(i) Thespace ofT - or E-toroidal automorphic forms forF is

Ator(T ) := Ator(E) := {f ∈ A : fT (g) = 0, ∀g ∈ G(A)}.
(ii) The space of toroidal automorphic forms forF is

Ator :=
⋂

E/F

Ator(E),

where the intersection is taken over all quadratic field extensionsE/F .

2.5.Remark. These definitions are independent of the choice of torus corresponding to
E/F since they are conjugacy invariant.

2.6.Remark. There is also a definition ofT -toroidal automorphic form for a split torus
T , but one has to be careful, since the toroidal integralfT as defined above over a split
torusT can diverge. This can be taken care of by subtracting suitable parabolic Fourier
coefficients before integrating (cf. [19,§1.5] for the definition in the function field case).
One could thus consider the space of automorphic forms that areT -toroidal for all maximal
tori T , split or not. Due to the results of the present text and [19,§6.2] (which transfer to
the number field case), this space coincides withAtor, and we forgo describing the more
involved theory for split tori.

The spaceA is an automorphic representation ofG(A) for right translation byG(A).
By [10] applied toGL(2), the spaceA decomposes into a direct sum of automorphic
representations as follows:

A = A0 ⊕ E ⊕R,

whereA0 is the space of cusp forms,E is the space generated by the derivatives of Eisen-
stein series andR is generated by the residues of these Eisenstein series and their “deriva-
tives”. We will give the precise definitions ofE andR in sections 3 and 5, respectively.
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Multiplicity one holds forGL(2), hence ifπ is any subrepresentation ofA, it inherits
this decomposition, since it is determined by its isomorphism type. In order to investigate
the space of toroidal automorphic formsAtor, which is an automorphic representation by
its very definition, it thus suffices to investigate

A0,tor := Ator ∩A0, Etor := E ∩ Ator and Rtor := R ∩Ator

separately, sinceAtor = A0,tor ⊕ Etor ⊕Rtor.

3. TOROIDAL INTEGRALS OFEISENSTEIN SERIES: A FORMULA OF HECKE

3.1. Notation. Let χ denote a character of the idele class groupI = F×\A×. We can

write χ = ω · | |s0−
1
2 for some finite order characterω, and we will sometimes regard a

function ofχ as a function ofs0 (assumingω to be fixed). We setRe(χ) = Re(s0) − 1
2
.

We also remark that the shift ins0 by−1
2

is in accordance with the usual convention in the
adelic theory of Eisenstein series, putting the center of symmetry at0.

We define theprincipal series

P(χ) =
{

f : G(A)
smooth−→ C : ∀

(

a b
d

)

, g ∈ G(A), f(
(

a b
d

)

g) = χ(a/d) |a/d|1/2 f(g)
}

,

where a functionf : G(A) → C is smooth if it is smooth in the usual sense at archimedean
places and locally constant at finite places. Letf ∈ P(χ) be embedded in aflat section
fχ of the principal series, i.e. there exists a functionfχ(s) of s ∈ C such thatfχ(s) ∈
P(χ | |s) with f = fχ(0) andfχ(s)(e) = f(e) for all s ∈ C, wheree =

(

1 0
0 1

)

. Note that
everyf ∈ P(χ) is embedded into a unique flat section. In the following, we will write
f = fχ(0) ∈ P(χ) to refer to this situation. We define the(completed) Eisenstein series
as

E(g, f) = L(χ2, 1
2
) ·

∑

γ∈B(F )\G(F )

f(γg)

in terms of meromorphic continuation. HereL(χ2, 1/2) denotes thecompletedL-series,
i.e. including the factors at infinity. Note thatE(g, f) is defined for allf = fχ(0) un-
lessχ2 = | |±1, when the Eisenstein series has a simple pole. At these values of χ the
residues of the Eisenstein series define automorphic forms,which will be investigated in
section 5—these values ofχ characterize the cases where the principal seriesP(χ) is not
irreducible as an automorphic representation ofG(A).

Also note that the symbol “E” is now in use for both a fieldE/F and a functionE(g, f),
but this should cause no confusion.

We now compute the toroidal integrals of Eisenstein series.Statement (i) in the theorem
below is the adelic formulation of a theorem of Hecke ([14]).In this formulation, it was
first stated by Zagier [27].
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3.2.Theorem. LetT be a maximal torus inG corresponding to the quadratic field exten-
sionE/F . LetχE : I → C× be the quadratic character whose kernel equals the norms of
AE. For everyf = fχ(0) ∈ P(χ), everyg ∈ GA and every characterχ : I → C×, there
exists a holomorphic functioneT (g, fχ(s)) of s ∈ C with the following properties.

(i) For all χ such thatχ2 6= | |±1,

ET (g, f) = eT (g, f) L(χ,
1
2
) L(χχE ,

1
2
) .

(ii) For everyg ∈ GA andχ : I → C×, there is af ∈ P(χ) such thateT (g, f) 6= 0.

Proof. The strategy of the proof is as follows: we first prove (i) forRe(χ) sufficiently
large, so we are in the region of absolute convergence. We rewrite the Eisenstein series
conveniently as a certain adelic integral. Then a change of variables identifies its toroidal
integral with a Tate integral for anL-series ofE.

Rewriting the Eisenstein series.First, we explain how to representE(g, f) by a certain
adelic integral, and then the statement in (i) is a simple application of a change of variables.
Let ϕ be a Schwartz-Bruhat function onA2. Then

(1) F (g, ϕ, χ) =

∫

Z(A)

ϕ((0, 1)zg)χ(det zg) |det zg|1/2 dz

is a Tate integral forL(χ2, 1), which converges if the real part ofχ is larger than1/2 (the
square of the characterχ occurs because in the above integrandχ(det(z)) = χ(z)2). One
verifies easily thatF (·, ϕ, χ) is an element ofP(χ).

In [25, Ch. VII, §7], Weil defines a particular test functionϕ0 (the “standard function”)
with the property that fore =

(

1 0
0 1

)

,we haveF (e, ϕ0, χ) = c−1
F L(χ2, 1) for a nonzero

constantcF that only depends on the fieldF . Thus

cF · F (g, ϕ0, χ) = L(χ2, 1) · f(g)
for anf ∈ P(χ) with f(e) = 1; in particular,F (·, ϕ0, χ) is a non-trivial element ofP(χ).

We note that for everyg ∈ G(A), the functionϕ0( · g) is a Schwartz-Bruhat function,
too. SinceP(χ) is irreducible, the integralsF (g, ϕ, χ) for varyingϕ exhaust all products
of the formL(χ2, 1)f(g), wheref ∈ P(χ). Thus there is a Schwartz-Bruhat function
ϕ = ϕ(f) for everyf ∈ P(χ) such that

(2) E(g, f) =
∑

γ∈B(F )\G(F )

F (γg, ϕ, χ),

where the equality has to be interpreted in terms of meromorphic continuation. Since
for all ϕ, the Tate integral (1) is a multiple ofL(χ2, 1), there existsf ∈ P(χ) for every
Schwartz-Bruhat functionϕ such that equation (2) holds true.

Computing the toroidal integral.With this reformulation at hand, we can prove the
theorem precisely as it has been done by Zagier in [27]: by identifying T (F ) with E× and
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T (AF ) with A×
E and using Fubini’s theorem, the toroidal integral ofE(g, f) is changed

into a Tate integral for anL-series ofE. Explicitly,

ET (g, f) =

∫

T (F )Z(A)\T (A)

∑

γ∈B(F )\G(F )

∫

Z(A)

ϕ((0, 1)zγtg)χ(det zγtg) |det zγtg|1/2 dz dt

Via T (F ) = E× and

B(F )\G(F ) = F×\F 2 − {(0, 0)} = F×\E×,

we identify the “domain of integration” with

T (F )Z(A)\T (A)×B(F )\G(F )× Z(A) ∼= A×
E,

and note that this identification is compatible with measures. Hence

ET (g, f) = χ(det g) |det(g)|1/2 ·
∫

A
×
E

Φ(t) (χ ◦NE/F )(t) |t|1/2E dt

for a certain Schwartz-Bruhat functionΦ on A×
E. This is a Tate integral forLE(χ ◦

NE/F , 1/2) and factors in a product of twoL-series as in (i), thus giving (i) forRe(χ)
sufficiently large. Statement (i) now follows for all characters by meromorphic continua-
tion in s since both sides are meromorphic functions ofs ∈ C.

Non-vanishing of the ’constant’.For (ii), note that the non-vanishing ofeT (g, f) fol-
lows from the fact that we can chooseϕ such that the test functionΦ is again the standard
function as described by [25, Ch. VII,§7], and then

(3) eT (g, fχ(s)) = c−1
E χ(det(g)) |det(g)|s+1/2

is a nonvanishing holomorphic function ofs. �

In order to accord for possible multiple zeros ofL-series, we need to also take into
account higher derivatives of Eisenstein series.

3.3.Notation.
(i) We denote byE(n)(g, f) then-th derivative ofE(g, fχ(s)) w.r.t. s at s = 0.

(ii) We denote byE the space of automorphic forms that is generated by all derivatives
E(n)(·, f) of Eisenstein series, wheren > 0 andf ∈ P(χ) with χ varying through
all idele class group characters whose square is not trivial.

(iii) Similarly we denote byL(n)(χ, 1/2) then-th derivative ofL(χ, 1/2 + s) ats = 0

and bye(n)T (g, f) then-th derivative of the functioneT (g, fχ(s)) at s = 0.

3.4.Definition. We sayχ is a zero ofL(·, 1/2) of ordern if L(i)(χ, 1/2) = 0 for all i < n
but 6= 0 for i = n, and then we writeordχL(·, 1/2) = n.

3.5.Proposition. LetT be a maximal non-split torus inG andn a non-negative integer.
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(i) For all g ∈ GA andχ such thatχ2 6= | |±1, we have

E
(n)
T (g, f) =

∑

i+j+k=n
i,j,k>0

n!

i! j! k!
e
(i)
T (g, f) L(j)(χ, 1

2
) L(k)(χχT ,

1
2
) .

(ii) Then-th derivativeE(n)(g, f) of an Eisenstein series isE-toroidal if and only if
χ is a zero ofL(·, 1/2) · L(·χE, 1/2) of order at leastn.

Proof. The first part follows from the Leibniz rule. For (ii), use (i)and observe the follow-
ing:

• The derivativese(i)T (g, f) are non-zero as function off , as is easily seen from (3).
• If E(m)(g, f) is E-toroidal, then so isE(n)(g, f) for all n < m sinceE(m) gener-

ates an automorphic subrepresentation of the space of toroidal automorphic forms
that contains all derivatives of lower order.

This finishes the proof. �

4. AN APPLICATION OF DOUBLE DIRICHLET SERIES: TOROIDAL EISENSTEIN SERIES

In this section we will prove the following:

4.1. Theorem. Let f ∈ P(χ). Then-th derivativeE(n)(g, f) of an Eisenstein series is
toroidal if and only ifχ is a zero ofL(·, 1

2
) of order at leastn. Hence

Etor = 〈E(n)(·, f) : ∃χ, f ∈ P(χ) andn 6 ordχL(·, 1
2
)〉.

Proof. Recall that we know from the computation of toroidal integrals in Proposition 3.5
when then-th derivativeE(n)(·, f) of an Eisenstein series isE-toroidal. It suffices to prove
that for allχ there exists a quadraticE/F such thatL(χχE , 1/2) 6= 0. This follows from
Theorem 4.2 below. �

As before, we now writeχ = ω · | |s0−
1
2 for a finite characterω, where we consider

s = s0 ∈ C as varying parameter. We use the notationL(ω, s) for L(χ, 1/2).

4.2.Theorem. Let F denote a number field, letω denote a class group character onF .
Then there exists a quadratic field extensionE/F such thatL(ωχE, s) 6= 0.

4.3. Remark. Before we start with the proof, we make some incomplete historical re-
marks. Non-vanishing of quadratic twists can be proven by sieve methods, but only for a
restricted set of number fields. A method that works more uniformly is that of multiple
Dirichlet series (so Fourier coefficients of metaplectic Eisenstein series); unfortunately,
the result we need is not literally in the existing literature on multiple Dirichlet series, but
rather arises from a combination of existing methods. We observe that forRe(s) 6= 1

2
, the

result can be proven using “unweighted” double Dirichlet series (see Chinta, Friedberg
and Hoffstein [3] Thm. 1.1). To extend to the (for us interesting) rangeRe(s) = 1

2
, one
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needs to analytically continue the double Dirichlet serieswith weights; for higher order
characters and a general number field, this is done by Friedberg, Hoffstein and Lieman
in [12]; and for quadratic twists of function fields by Fisherand Friedberg [9]. It is the
methods of these latter two sources that we will combine. Since proofs of many facts are
literally the same, we will not repeat them here, but we will set up all required notations.
One can go a (small) step further and combine the method with Tauberian theorems to
establish lower bounds on the number of non-vanishing twists of bounded conductor, but
we will not need those. Also, we refrain from discussing averaging of toroidal integrals
directly, without first relating them toL-series, cf. also Remark 1.2.

Proof of Theorem 4.2.First note that theL-series we consider are ‘completed’ by the cor-
rect archimedean factors, so they do not have trivial zeros outside the critical strip.

Because of the functional equation, we can asume that1
2
6 Re(s) 6 1. SinceL(ωχE, s)

does not vanish onRe(s) = 1 ([20] Ch. 1,§4), we can even assume1
2
6 Re(s) < 1.

The strategy of the proof is now the following: we assume by contradiction that all
non-trivial twistsL(ωχE , s) vanish ats = s0. Then the (analytically continued) double
Dirichlet seriesZ0

ω(s, w) (to be defined below), with the trivial twist extracted, vanishes
identically inw for s = s0. But it has residue atw = 1 a non-zero constant timesL(ω, 2s0).
Hence we findL(ω, 2s0) = 0, and this is impossible if1

2
6 Re(s0) < 1.

To define the double Dirichlet series in a rigorous way, we follow [12], §1. Since the
class number ofF is not necessarily one, the most natural double Dirichlet series (and the
one that has a natural analytic continuation and set of functional equations) doesn’t only
sum over quadratic twistsχE , but rather over more general characters on a ray class group.
We now introduce this series first.

Let S = Sf ∪ S∞ denote a finite set of places ofF that contains all infinite placesS∞

of F and a setSf of finite places such that the ring ofSf -integers has class number one.
For v a finite place corresponding to an idealpv, let qv = |O/pv|. SetC =

∏

v∈Sf
pnv
v ,

wherenv = 1 for v not above2, and forv above2, nv is so large that anya ∈ Fv with
ordv(a− 1) > nv is a square inFv. LetHC denote the ray class group of modulusC, let
hC := |HC| and set

RC = HC ⊗ Z /2 = Z /a1 × · · · × Z /ar.

Choose generatorsbi for Z /ai, and choose a setE0 of ideals prime toS that represent the
bi. For anyE0 ∈ E0, letmE0 denote an element ofF ∗ that generates the (principal) ideal
E0OS. Let E denote a set of representatives ofRC that are of the formE =

∏

E
nE0
0 ,

where theE0 are elements ofE0 and thenE0 are natural numbers, and setmE =
∏

m
nE0
E0

with the convention thatO ∈ E with mO = 1. ThenEOS = (mE). Let I(S) denote the
set of fractional ideals coprime toSf . Ford, e ∈ I(S) coprime, writed = (a)EG2 with
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E ∈ E , a ∈ F ∗, a ≡ 1 modC,G ∈ I(S); and define

χd(e) =

(

d

e

)

:=
(amE

e

)

.

This is well-defined (cf. [12], Prop. 1.1), it does not dependon the decomposition ofd (but
it does depend on the choice ofmE). Ford principal,χd is the usual quadratic character
for F (

√
d)/F (cf. Notation 2.2).

LetLS(ω, s) denote theL-series ofF for the class group characterω, but with the Euler
factors corresponding to the places inS removed. Ford ∈ I(S), let Sd denote the set of
primes aboved. Let J(S) denote the set of integral ideals inI(S). Ford ∈ J(S), let |d|
denote its norm. Writed = d0d

2
1 with d0 squarefree.

We define the weight factor to be

a(ω, s, d) :=
∑

ei∈J(S)

e1e2|d1

µ(e1)χd(e1)ω(e1e
2
2)

|e1|s|e2|2s−1
,

whereµ is the Möbius function. Letρ denote a character on the idele class group unram-
ified outsideS; this will be used later on to filter out principal ideals, which are the ones
we are interested in. We define the double Dirichlet series as

Zω,ρ(s, w) :=
∑

d∈J(S)

LS∪Sd
(ωχd, s)ρ(d)

|d|w · a(ω, s, d).

This is convergent forRe(s) andRe(w) sufficiently large (say,> 1). The following prop-
erties are proven in exactly the same way as in [12] (The only difference to [12], which
treats the case of twists by characters of higher order, is the set of functional equations,
which here is of order 12 instead of 32, cf. [12], Remark 2.6.):

(i) The functionZω,ρ(s, w) admits a meromorphic continuation toC2;
(ii) The poles ofZω,ρ(s, w) are located on the union of the lines

w = 0, w = 1, s = 0, s = 1, w + s =
1

2
andw + s =

3

2
;

(iii) If ρ 6= 1, thenZω,ρ(s, w) is holomorphic atw = 1; if ρ = 1 and s 6= 1/2,
Zω,ρ(s, w) has a simple pole atw = 1. If ρ = 1 ands = 1

2
, Zω,ρ(s, w) has a

double pole atw = 1, andLS(ω
2, 2s) has a simple pole. We have

lim
w→1

(w−1)Zω,ρ(s, w) =

{

0 if ρ 6= 1;

(Resw=1 ζF (w)) ·
(

∏

v∈Sf
ζF,v(1)

−1
)

· LS(ω
2, 2s) if ρ = 1,

(cf. [4], Section 5; see also Section 5.3 inloc. cit. for a computation of the principal part
of Zω,ρ(s, w) aroundw = 1, which we will not need here.)
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Let

(4) Z0
ω(s, w) :=

∑

d∈J(S)
[d]=0

LS∪Sd
(ωχd, s)

|d|w · a(ω, s, d),

denote the modified double Dirichlet series, where we only sum over principal idealsd
(indicated by the fact that their class[d] is trivial in RC). Note that by plugging in the
decomposition of the characteristic function of the class[0] ash−1

C

∑

ρ∈R̂C

ρ, we find

Z0
ω(s, w) =

1

hC

∑

ρ∈R̂C

Zω,ρ(s, w).

HenceZ0
ω(s, w) inherits an analytic continuation fromZω,ρ(s, w). Using the above com-

putation of residues, we find that

(5) lim
w→1

(w − 1)Z0
ω(s0, w) = c · L(ω2, 2s0),

wherec is some non-zero constant.
We can now finish the proof of the theorem. We are assuming thatall ‘principal’ twists

L(ωχd, s0) ([d] = 0, χd non-trivial) vanish at somes0 with 1
2
6 Re(s0) < 1. Note first

that this obviously implies the vanishing of all twists for the modifiedL-series with the
S ∪ Sd-Euler factors removed.

A slight complication arises since thes0 we consider are outside of the region of abso-
lute convergence of the seriesZ0

ω(s, w), but we can use a convexity estimate to get that for
suchs0 andRe(w) large enough, the double Dirichlet seriesZ0

ω(s0, w) as defined in (4)
will also converge. This is because of Phragmén-Lindelöfestimates in thed-aspect of the
form

|LS∪Sd
(ωχd, s0)a(ω, s0, d)| ≪ |d|

(cf. [4], 3.3), soRe(w) > 2 will do.
Now recall our hypothesis thatLS∪Sd

(ωχd, s0) = 0 for all principald with χd 6= 1, i.e.,
d not a square. Hence if we substract the terms for whichd = e2 is a square from (4), we
find the identically zero function

(6) Z0
ω(s0, w)−

∑

e∈J(S)

[e2]=0

LS∪Se
(ω, s0)

|e|2w · a(ω, s0, e2) = 0

(first for Re(w) sufficiently large, hence after analytic continuation, forall w).
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We now prove that the term we have subtracted off doesn’t havea pole atw = 1;
actually, it converges absolutely atw = 1. Write the term as

(7) LS(ω, s0) ·
∑

e∈J(S)

[e2]=0

Be

|e|2w · a(ω, s0, e2),

whereBe consists of the reciprocals of the (finitely many)(Se \ S)-Euler factors of
L(ω, s0). Essentially, the absolute convergence is due to the fact that the exponent of
|e| is ≈ 2 if w ≈ 1 and the other factors are small in|e|. We present some details. First
of all, note thatLS(ω, s0) doesn’t have a pole for1

2
6 Re(s0) < 1. We estimate for

Re(s0) > 1/2

|Be| =

∣

∣

∣

∣

∣

∣

∏

p∈Se\S

(

1− ω(p)

|p|s0

)

∣

∣

∣

∣

∣

∣

6 2̟(|e|)[F :Q] 6 d(|e|)[F :Q] ≪ |e|1/3

(where̟(n) is the number of positive prime divisors of an integern, andd(n) is the
number of positive divisors ofn, e.g. [13] Section 22.13). We estimate the other factor as

∣

∣a(ω, s0, e
2)
∣

∣ =

∣

∣

∣

∣

∣

∣

∣

∑

e1,e2∈J(S)
e1e2|e

µ(e1)ω(e1e
2
2)

|e1|s0|e2|2s0−1

∣

∣

∣

∣

∣

∣

∣

6
∑

e1,e2∈J(S)
e1e2|e

1 6 d(|e|)2[F :Q] ≪ |e|1/3,

since|µ(e1)ω(e1e22)| 6 1 and|e1|s0|e2|2s0−1 > 1 for Re(s0) > 1
2
. We combine this into the

estimate
∑

e∈J(S)

[e2]=0

∣

∣

∣

∣

Be

|e|2w · a(ω, s0, e2)
∣

∣

∣

∣

≪ k
∑

e∈J(S)

[e2]=0

∣

∣

∣

∣

1

|e|2w−2/3

∣

∣

∣

∣

,

for some constantk, the latter sum being an absolutely convergent series forw = 1.
We conclude from this and equation (6) thatZ0

ω(s0, w) also doesn’t have a pole atw = 1,
i.e., lim

w→1
(w − 1)Z0

ω(s0, w) = 0. Then by (5), we find thatL(ω2, 2s0) = 0 with 1 6

Re(2s0) < 2, which is impossible. This finishes the proof. �

5. TOROIDAL RESIDUES OFEISENSTEIN SERIES

Letχ be a character of the idele class group such thatχ2 = | |±1 andf = fχ(0) ∈ P(χ).
Then the Eisenstein seriesE(g, fχ(s)) has a simple pole ats = 0, but the residue

R(g, f) := Ress=0E(g, fχ(s))

is an automorphic form. More generally, we consider the “derivatives”

R(n)(g, f) := lim
s→0

dn

dsn
(s · E(g, fχ(s)))
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for n > 0.

5.1.Definition. DefineR as the space of automorphic forms that is generated by the func-
tionsR(n)(g, f), wheren > 0, f ranges throughP(χ) andχ ranges through all characters
on the idele group such thatχ2 = | |±1.

5.2.Theorem. Rtor = {0}.

Proof. We compute the toroidal integral ofR(g, f) for a torusT corresponding to a qua-
dratic fieldE:

RT (g, f) = lim
s→0

s ET (g, fχ(s))

= lim
s→0

s eT (g, fχ(s)) L(χ, s+
1
2
)L(χχE , s+

1
2
)

= eT (g, f) Ress=0 L(χ, s + 1
2
)L(χχE , s+

1
2
).

Recall thatχ2 = | |±1, henceχ | |∓1/2 is quadratic, so either trivial or by class field
theory equal toχE for some quadratic field extensionE/F . In the case thatE is non-
trivial, we have that

L(χχE , s+
1
2
) = ζF (s+

1
2
± 1

2
),

whereζF is as usual the completed zeta function ofF with poles at0 and1, so

ζF (s+ 1/2± 1/2)

has a pole ats = 0 (for both choices of sign). Hence, by the above formula forRT (g, f),
the toroidal integral ofRT (g, f) for thisE cannot vanish, since the other factorL(χ, 1/2)
does not vanish.

If χ | |∓1/2 is trivial, then we choose an arbitrary non-split torusT . We find that

L(χ, s+ 1/2) = ζF (s+ 1/2± 1/2)

has a pole ats = 0, but the other factor in the above computation of the toroidal integral,

L(χχE , s+ 1/2) = L(χE , s+ 1/2± 1/2)

doesn’t vanish ats = 0.
This also implies thatR(n)(g, f) cannot be toroidal, sinceR(g, f) is contained in the

automorphic representation generated by this automorphicform. �

6. AN APPLICATION OF WALDSPURGER PERIODS: TOROIDAL CUSP FORMS

In this section, we prove the following:

6.1.Theorem. A cuspidal representationπ ⊂ A0 is toroidal if and only ifL(π, 1/2) = 0:

A0,tor = 〈π ∈ A0 : L(π, 1
2
) = 0〉.
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Proof. A formula of Waldspurger ([23, Prop. 7]) shows that theT -period of an automor-
phic formf in an irreducible cuspidal representationπ is a non-zero multiple of

L(π, 1
2
) · L(π ⊗ χT ,

1
2
).

Thusπ is toroidal ifL(π, 1/2) = 0.
We are left to prove the reverse implication. Assume thatL(π, 1/2) 6= 0. Note that all

automorphic representation ofGL(n) with trivial central character are self-contragredient.
Thus, the functional equation of theL-series ofπ in s = 1/2 is

L(π, 1/2) = ǫ(π, 1/2) · L(π, 1/2),

and necessarilyǫ(π, 1/2) = 1. This allows us to apply a theorem of Friedberg and Hoff-
stein: letπv be representations ofG(Fv) such thatπ ≃ ⊗′πv, wherev ranges over all
places; letS be the (finite) set of placesv such thatπv is square integrable; letξ be the
trivial Hecke character. Then [11, Thm. B (1)] states that there are infinitely many differ-
ent nonconjugate toriT such thatL(π⊗χT , 1/2) 6= 0 and such that for allv ∈ S, the local
characterχv is trivial, i.e.Tv is split. In particular, there is such a non-split torusT .

We want to apply to apply [23, Thm. 2, p. 221] (in the “situation globale”, where the
quaternion algebra is chosen to split), which implies thatπ is notT -toroidal. To do so, we
have to verify that condition (i) in loc. cit. is satisfied. By[23, Lemme 8 (iii)], condition
(i) is satisfied for all local factorsπv that are not square integrable. Ifv ∈ S, thenTv is
split and [23, Lemme 8 (ii)] implies that condition (i) holdsfor square integrableπv.

This shows thatπ is not toroidal, which concludes the proof of the theorem. �

6.2. Remark. Theorem [24, Thm. 4, p. 288] of Waldspurger says that there exists aχd

for d ∈ F× such thatL(π ⊗ χd, 1/2) 6= 0, but without the claim thatχd is nontrivial.
However, if there exists one suchd (square or not), there exist infinitely many, as may
be seen from Lemma 7.1 in [1], which shows that the Dirichlet series occuring as Mellin
transform of the seriest(σ) on p. 289 of the proof in [24] cannot have only finitely many
non-zero coefficients.

6.3. Remark. There do exist number fieldsF for which there exist non-trivial toroidal
cusp forms. We only needπ to be a cusp form withL(π, 1/2) = 0. This happens when
the root number is−1, which is for example the case for a cuspidal lift of a classical
holomorphic cusp form to an imaginary quadratic field (cf. also Waldspurger [24], Remark
on p. 282). The argument also shows that there are no toroidalcusp for forF = Q.
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