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Remarks on the Milnor conjecture over schemes

Asher Auel

Abstract.

The Milnor conjecture has been a driving force in the theory of qua-
dratic forms over fields, guiding the development of the theory of coho-
mological invariants, ushering in the theory of motivic cohomology, and
touching on questions ranging from sums of squares to the structure of ab-
solute Galois groups. Here, we survey some recent work on generalizations
of the Milnor conjecture to the context of schemes (mostly smooth vari-
eties over fields of characteristic 6= 2). Surprisingly, a version of the Milnor
conjecture fails to hold for certain smooth complete p-adic curves with no
rational theta characteristic (this is the work of Parimala, Scharlau, and
Sridharan). We explain how these examples fit into the larger context of
the unramified Milnor question, offer a new approach to the question, and
discuss new results in the case of curves over local fields and surfaces over
finite fields.

The first cases of the (as of yet unnamed) Milnor conjecture were studied
in Pfister’s Habilitationsschrift [85] in the mid 1960s. As Pfister [86, p. 3]
himself points out, “[the Milnor conjecture] stimulated research for quite
some time.” Indeed, it can be seen as one of the driving forces in the theory
of quadratic forms since Milnor’s original formulation [66] in the early 1970s.

The classical cohomological invariants of quadratic forms (rank, dis-
criminant, and Clifford–Hasse–Witt invariant) have a deep connection with
the history and development of the subject. In particular, they are used
in the classification (Hasse–Minkowski local-global theorem) of quadratic
forms over local and global fields. The first “higher invariant” was de-
scribed in Arason’s thesis [1], [3]. The celebrated results of Merkurjev [62]
and Merkurjev–Suslin [64] settled special cases of the Milnor conjecture in
the early 1980s, and served as a starting point for Voevodsky’s development
of the theory of motivic cohomology. Other special cases were settled by
Arason–Elman–Jacob [5] and Jacob–Rost [46]. Voevodsky’s motivic coho-
mology techniques [99] ultimately led to a complete solution of the Milnor
conjecture, for which he was awarded the 2002 Fields Medal.

The consideration of quadratic forms over rings (more general than
fields) has its roots in the number theoretic study of lattices (i.e. quadratic
forms over Z) by Gauss as well as the algebraic study of division algebras
and hermitian forms (i.e. quadratic forms over algebras with involution) by
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Albert. A general framework for the study of quadratic forms over rings was
established by Bass [17], with the case of (semi)local rings treated in depth
by Baeza [9]. Bilinear forms over Dedekind domains (i.e. unimodular lat-
tices) were studied in a number theoretic context by Fröhlich [35], while the
consideration of quadratic forms over algebraic curves (and their function
fields) was initiated by Geyer, Harder, Knebusch, Scharlau [44], [39], [53],
[55]. The theory of quadratic (and bilinear) forms over schemes was devel-
oped by Knebusch [54], [52], and utilized by Arason [2], Dietel [27], Parimala
[76], [83], Fernández-Carmena [32], Sujatha [94], [82], Arason–Elman–Jacob
[6], [7], and others. A theory of symmetric bilinear forms in additive and
abelian categories was developed by Quebbemann–Scharlau–Schulte [87],
[88]. Further enrichment came eventually from the triangulated category
techniques of Balmer [10], [11], [12], and Walter [101]. This article will
focus on progress in generalizing the Milnor conjecture to these contexts.

These remarks grew out of a lecture at the RIMS-Camp-Style semi-
nar “Galois-theoretic Arithmetic Geometry” held October 19-23, 2010, in
Kyoto, Japan. The author would like to thank the organizers for their
wonderful hospitality during that time. He would also like to thank Stefan
Gille, Moritz Kerz, R. Parimala, and V. Suresh for many useful conversa-
tions. The author acknowledges the generous support of the Max Plank
Institute for Mathematics in Bonn, Germany where this article was written
under excellent working conditions. This author is also partially supported
by National Science Foundation grant MSPRF DMS-0903039.

Conventions. A graded abelian group or ring
∏

n≥0 M
n will be denoted

by M•. If 0 ⊂ · · · ⊂ N2 ⊂ N1 ⊂ N0 = M is a decreasing filtration of a ring
M by ideals, denote by N•/N•+1 =

∏

n≥0 N
n/Nn+1 the associated graded

ring. Denote by 2M the elements of order 2 in an abelian group M . All
abelian groups will be written additively.

§1. The Milnor conjecture over fields

Let F be a field of characteristic 6= 2. The total MilnorK-ringK•
M(F ) =

T •(F×)/〈a⊗(1−a) : a ∈ F×〉 was introduced in [66]. The total Galois co-
homology ring H•(F,µ⊗•

2 ) =
⊕

n≥2 H
n(F,µ⊗n

2 ) is canonically isomorphic,
under our hypothesis on the characteristic of F , to the total Galois cohomol-
ogy ring H•(F,Z/2Z) with coefficients in the trivial Galois module Z/2Z.
The Witt ring W (F ) of nondegenerate quadratic forms modulo hyperbolic
forms has an decreasing filtration 0 ⊂ · · · ⊂ I1(F ) ⊂ I0(F ) = W (F ) gen-
erated by powers of the fundamental ideal I(F ) of even rank forms. The
Milnor conjecture relates these three objects: Milnor K-theory, Galois co-
homology, and quadratic forms.

The quotient map K1
M(F ) = F× → F×/F×2 ∼= H1(X,µ2) induces

a graded ring homomorphism h• : K•
M(F )/2 → H•(F,µ⊗•

2 ) called the
norm residue symbol by Bass–Tate [16]. The Pfister form map K1

M(F ) =
F× → I(F ) given by a 7→≪ a ≫=< 1,−a > induces a group homo-
morphism K1

M(F )/2 → I1(F )/I2(F ) (see Scharlau [91, 2 Lemma 12.10]),
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which extends to a surjective graded ring homomorphism s• : K•
M(F )/2 →

I•(F )/I•+1(F ), see Milnor [66, Thm. 4.1].

Theorem 1 (Milnor conjecture). Let F be a field of characteristic
6= 2. There exists a graded ring homomorphism e• : I•(F )/I•+1(F ) →
H•(F,µ⊗•

2 ) called the higher invariants of quadratic forms, which fits into
the following diagram

K•
M
(F )/2

h•

//

s•

��

H•(F,µ⊗•
2 )

I•(F )/I•+1(F )

e•

66nnnnnnnnnnnn

of isomorphisms of graded rings.

Many excellent introductions to the Milnor conjecture and its proof exist
in the literature. For example, see the surveys of Kahn [47], Friedlander–
Rapoport–Suslin [34], Friedlander [33], Pfister [84], and Morel [68].

The conjecture breaks up naturally into three parts: the conjecture
for the norm residue symbol h•, the conjecture for the Pfister form map
s•, and the conjecture for the higher invariants e•. Milnor [66, Question
4.3, §6] originally made the conjecture for h• and s•, which was already
known for finite, local, global, and real closed fields, see [66, Lemma 6.2].
For general fields, the conjecture for h1 follows from Hilbert’s theorem 90,
and for s1 and e1 by elementary arguments. The conjecture for s2 is easy,
see Pfister [85]. Merkurjev [62] proved the conjecture for h2 (hence for e2

as well), with alternate proofs given by Arason [4], Merkurjev [63], and
Wadsworth [100]. The conjecture for h3 was settled by Merkurjev–Suslin
[64] (and independently by Rost [89]). The conjecture for e• can be divided
into two parts: to show the existence of maps en : In(F ) → Hn(X,µ⊗n

2 )
(which are a priori only defined on generators, the Pfister forms), and then
to show they are surjective. The existence of e3 was proved by Arason [1],
[3]. The existence of e4 was proved by Jacob–Rost [46] and independently
Szyjewski [93]. Voevodsky [99] proved the conjecture for h•. Orlov–Vishik–
Voevodsky [73] proved the conjecture for s•, with different proofs given by
Morel [69] and Kahn–Sujatha [48].

1.1. Classical invariants of quadratic forms

The theory of quadratic forms over a general field has its genesis in
Witt’s famous paper [102]. Because of the assumption of characteristic
6= 2, we do not distinguish between quadratic and symmetric bilinear forms.
The orthogonal sum (V, b) ⊥ (V ′, b′) = (V ⊕ V ′, b + b′) and tensor product
(V, b) ⊗ (V ′, b′) = (V ⊗ V ′, b ⊗ b′) give a semiring structure on the set of
isometry classes of symmetric bilinear forms over F . The hyperbolic plane is
the symmetric bilinear form (H,h), where H = F 2 and h((x, y), (x′, y′)) =
xy′ + x′y. The Witt ring of symmetric bilinear forms is the quotient of the
Grothendieck ring of nondegenerate symmetric bilinear forms over F with
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respect to ⊥ and ⊗, modulo the ideal generated by the hyperbolic plane,
see Scharlau [91, Ch. 2].

The rank of a bilinear form (V, b) is the F -vector space dimension of V .
Since the hyperbolic plane has rank 2, the rank modulo 2 is a well defined
invariant of an element of the Witt ring, and gives rise to a surjective ring
homomorphism

e0 : W (F ) = I0(F ) → Z/2Z = H0(F,Z/2Z)

whose kernel is the fundamental ideal I(F ).
The signed discriminant of a non-degenerate bilinear form (V, b) is de-

fined as follows. Choosing an F -vector space basis v1, . . . , vr of V , we con-
sider the Gram matrix Mb of b, i.e. the matrix given by Mb = (b(vi, vj)).
Then b is given by the formula b(v, w) = vtMbw, where v, w ∈ F r ∼= V . The
Gram matrix of b, with respect to a different basis for V with change of basis
matrix T , is T tMbT . Thus detMb ∈ F×, which depends on the choice of
basis, is only well-defined up to squares. For a ∈ F×, denote by (a) its class
in the abelian group F×/F×2. The signed discriminant of (V, b) is defined
as (−1)r(r−1)/2 detMb ∈ F×/F×2. Introducing the sign into the signed
discriminant ensures its vanishing on the ideal of hyperbolic forms, hence it
descents to the Witt group. While the signed discriminant is not additive
on W (F ), its restriction to I(F ) gives rise to a group homomorphism

e1 : I(F ) → F×/F×2 ∼= H1(F,µ2)

which is easily seen to be surjective. It’s then not difficult to check that
its kernel coincides with the square I2(F ) of the fundamental ideal. See
Scharlau [91, §2.2] for more details.

The Clifford invariant of a non-degenerate symmetric bilinear form
(V, b) is defined in terms of its Clifford algebra. The Clifford algebra C(V, b)
of (V, b) is the quotient of the tensor algebra T (V ) =

⊕

r≥0 V
⊗r by the

two-sided ideal generated by {v ⊗ w + w ⊗ v − b(v, w) : v, w ∈ V }. If
(V, b) has rank r, then C(V, b) = C0(V, b)⊕C1(V, b) inherits the structure of
a Z/2Z-graded semisimple F -algebra of F -dimension 2r, see Scharlau [91,
§9.2]. By the structure theory of the Clifford algebra, C(V, b) or C0(V, b)
is a central simple F -algebra depending on whether (V, b) has even or odd
rank, respectively. The Clifford invariant c(V, b) ∈ Br(F ) is then the Brauer
class of C(V, b) or C0(V, b), respectively. Since the Clifford algebra and its
even subalgebra carry canonical involutions of the first kind, their respective
classes in the Brauer group are of order 2, see Knus [57, §IV.7.8]. While
the Clifford invariant is not additive on W (F ), its restriction to I2(F ) gives
rise to a group homomorphism

e2 : I2(F ) → 2Br(F ) ∼= H2(F,µ2) ∼= H2(F,µ⊗2
2 ),

see Knus [57, IV Prop. 8.1.1].
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Any symmetric bilinear form (V, b) over a field of characteristic 6= 2
can be diagonalized, i.e. a basis can be chosen for V so that the Gram ma-
trix Mb is diagonal. For a1, . . . , ar ∈ F×, we write < a1, . . . , ar > for the
standard symmetric bilinear form with associated diagonal Gram matrix.
For a, b ∈ F×, denote by (a, b)F the (quaternion) F -algebra generated by
symbols x and y subject to the relations x2 = a, y2 = b, and xy = −yx.
For example, (−1,−1)R is Hamilton’s ring of quaternions. Then the dis-
criminant and Clifford invariant can be conveniently calculated in terms of
a diagonalization. For (V, b) ∼=<a1, . . . , ar>, we have

d±(V, b) = ((−1)r(r−1)/2a1 · · · ar) ∈ F×/F×2

and

(1) c(V, b) = α(r)(−1, a1 · · · ar)F +β(r)(−1,−1)F +
∑

i<j

(aj , aj)F ∈ 2Br(F )

where

α(r) =
(r − 1)(r − 2)

2
, β(r) =

(r + 1)r(r − 1)(r − 2)

24
,

see Lam [59], Scharlau [91, II.12.7] or Esnault–Kahn–Levine–Viehweg [30,
§1].

§2. Globalization of cohomology theories

Generalizations (what we will call globalizations) of the Milnor conjec-
ture to the context of rings and schemes have emerged from many sources,
see Parimala [75], Colliot-Thélène–Parimala [21], Parimala–Sridharan [78],
Monnier [67], Pardon [74], Elbaz-Vincent–Müller-Stach [28], Gille [41], and
Kerz [49]. To begin with, one must ask for appropriate globalizations of
the objects in the conjecture: Milnor K-theory, Galois cohomology theory,
and the Witt group with its fundamental filtration. While there are many
possible choices of such globalizations, we will focus on two types: global
and unramified.

2.1. Global globalization

Let F be a field of characteristic 6= 2. Let FieldF (resp. RingF ) be the
category of fields (resp. commutative unital rings) with an F -algebra struc-
ture together with F -algebra homomorphisms. Let SchF be the category of
F -schemes, and SmF the category of smooth F -schemes. We will denote, by
the same names, the associated (large) Zariski sites. Let Ab (resp. Ab•) be
the category of abelian groups (resp. graded abelian groups), we will always
consider Ab as embedded in Ab• in degree 0.

Let M• : FieldF → Ab• be a functor. A globalization of M• to rings
(resp. schemes) is a functor M̃• : RingF → Ab• (resp. contravariant functor

M̃• : SchF → Ab•) extending M•. If M̃• is a globalization of M• to
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rings, then we can define a globalization to schemes by taking the sheaf M•

associated to the presheaf U 7→ M̃•(Γ(U,OU )) on SchF (always considered
with the Zariski topology).

“Näıve” Milnor K-theory. For a commutative unital ring R, mimicking
Milnor’s tensorial construction (with the additional relation that a⊗(−a) =
0, which is automatic for fields) yields a graded ring K•

M(R), which should
be referred to as “näıve” Milnor K-theory. This already appears in Guin
[43, §3] and later studied by Elbaz-Vincent–Müller-Stach [28]. Näıve Milnor
K-theory has some bad properties when R has small finite residue fields,
see Kerz [50] who also provides a improved Milnor K-theory repairing these
defects. Thomason [96] has shown that there exists no globalization of
Milnor K-theory to smooth schemes which satisfies A1-homotopy invariance
and has a functorial homomorphism to algebraic K-theory.

Étale cohomology. Étale cohomology provides a natural globalization
of Galois cohomology to schemes. We will thus consider the functor X 7→
H•

ét(X,µ⊗•
2 ) on SchF .

Global Witt group. For a scheme X , the global Witt group W (X) of
regular symmetric bilinear forms introduced by Knebusch [52] provides a
natural globalization of the Witt group to schemes. Other possible global-
izations are obtained from the Witt groups of triangulated category with
duality introduced by Balmer [10], [11], [12], [13]. These include: the de-
rived Witt group of the bounded derived category of coherent locally free
OX -modules; the coherent Witt group of the bounded derived category of
quasicoherent OX -modules with coherent cohomology (assuming X has a
dualizing complex, see Gille [40, §2.5], [41, §2]); the perfect Witt group
of the derived category of perfect complexes of OX -modules. The global
and derived Witt groups are canonically isomorphic by Balmer [12, Thm.
4.3]. All of the above Witt groups are isomorphic (though not necessarily
canonically) if X is assumed to be regular.

Fundamental filtration and the classical invariants. Globalizations of
the classical invariants of quadratic forms are defined as follows. Let (E , q)
be a regular symmetric bilinear form of rank n on X .

The rank (modulo 2) of E gives rise to a functorial homomorphism

e0 : W (X) → Homcont(X,Z/2Z) = H0
ét(X,Z/2Z),

whose kernel I1(X) is called the fundamental ideal of W (X).
The signed discriminant form (detE , (−1)n(n−1)/2 det q) gives rise to a

functorial homomorphism

e1 : I1(X) → H1
ét(X,µ2)

see Knus [57, III §4.2] and Milne [65, III §4]. Alternatively, the center of the
(even) Clifford OX -algebra of (E , q) defines a class in H1

ét(X,Z/2Z) called
the Arf invariant, which coincides with the signed discriminant under the
canonical morphism H1

ét(X,Z/2Z) → H1
ét(X,µ2) (see Knus [57, IV Prop.

4.6.3] or Parimala–Srinivas [81, §2.2]). Denote the kernel of e1 by I2(X),
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which is an ideal of W (X). Note that I2(X) may not be the square of the
ideal I1(X).

The Clifford OX -algebra C (E , q) gives rise to a functorial homomor-
phism

e2 : I2(X) → 2Br(X)

called the Clifford invariant, see Knus–Ojanguren [58] and Parimala–Srinivas
[81, §2]. Denote the kernel of e2 by I3(X), which is an ideal of W (X).

As Parimala–Srinivas [81, p. 223] point out, there is no functorial map
I2(X) → H2

ét(X,µ2) lifting the Clifford invariant. Instead, we can work
with Grothendieck–Witt groups. The rank (modulo 2) gives rise to a func-
torial homomorphism

ge0 : GW (X) → H0
ét(X,Z/2Z)

with kernel denoted by GI(X). The signed discriminant gives rise to a
functorial homomorphism

ge1 : GI1(X) → H1
ét(X,µ2)

with kernel denoted by GI2(X). The class of the Clifford OX -algebra,
together with it’s canonical involution (via the “involutive” Brauer group
construction of Parimala–Srinivas [81, §2]), gives rise to a functorial homo-
morphism

ge2 : GI2(X) → H2
ét(X,µ2)

also see Knus–Parimala–Sridharan [56]. Denote the kernel of ge2 byGI3(X),
which is an ideal of GW (X).

Lemma 2.1. Let X be a scheme satisfying 2Br(X) ∼= 2H
2
ét(X,Gm).

Then under the quotient map GW (X) → W (X), the image of the ideal
GIn(X) is precisely the ideal In(X), for n ≤ 3.

Proof. For n = 1, 2 this is a consequence of the following diagram with
exact rows and columns

0

��

0

��

K0(X)

H
��

K0(X)

H
��

0 // GIn(X)

��

// GIn−1(X)
gen−1

//

��

Hn−1
ét (X,Z/2Z) // 0

0 // In(X)

��

// In−1(X)

��

en−1
// Hn−1

ét (X,Z/2Z)

��

// 0

0 0 0

which is commutative since hyperbolic spaces have even rank and trivial
signed discriminant. Here, K0(X) is the Grothendieck group of locally free
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OX -modules of finite rank and H is the hyperbolic map V 7→ H(V ) =
(

V ⊕ V ∨, ((v, f), (w, g)) 7→ f(w) + g(x)
)

.

For n = 3, we have the formula ge2(H(V )) = c1(V ,µ2) due to Esnault–
Kahn–Viehweg [29, Prop. 5.5] (combined with (1)). Here c1(−,µ2) is the 1st
Chern class modulo 2, defined as the first coboundary map in the long-exact
sequence in étale cohomology

· · · → Pic(X)
2−→ Pic(X)

c1−→ H2
ét(X,µ2) → H2

ét(X,Gm)
2−→ H2

ét(X,Gm) → · · ·

arising from the Kummer exact sequence

1 → µ2 → Gm
2−→ Gm → 1,

see Grothendieck [42]. The claim then follows by a diagram chase through

0

��

0

��

0

��

0 // K ′
0(X)

H
��

// K0(X)

H
��

det
// Pic(X)/2

c1
��

// 0

0 // GI3(X)

��

// GI2(X)

��

ge2
// H2

ét(X,µ2)

��

0 // I3(X)

��

// I2(X)

��

e2
//
2Br(X)

��

0 0 0

where the right vertical column arises from the Kummer sequence, and
K ′

0(X) is the subgroup of K0(X) generated by locally free OX -modules
whose determinant is a square. Q.E.D.

Remark 2.1. The hypothesis that 2Br(X) = 2H
2
ét(X,Gm) is satisfied if

X is a quasi-compact quasi-separated scheme admitting an ample invertible
sheaf by de Jong’s extension [26] (see also [61, Th. 2.2.2.1]) of a result of
Gabber [36].

The existence of global globalizations of the higher invariants (e.g. a
globalization of the Arason invariant) remains a mystery. Esnault–Kahn–
Levine–Viehweg [30] have shown that for a regular symmetric bilinear form
(E , q) that represents a class in GI3(X), the obstruction to having an Ara-
son invariant in H3

ét(X,Z/2Z) is precisely the 2nd Chern class c2(E ) ∈
CH2(X)/2 in the Chow group modulo 2 (note that the invariant c(E ) ∈
Pic(X)/2 of [30] is trivial if (E , q) represents a class in GI3(X)). They
also provide examples where this obstruction does not vanish. On the other
hand, higher cohomological invariants always exist in unramified cohomol-
ogy.
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2.2. Unramified globalization

A functorial framework for the notion of “unramified element” is estab-
lished in Colliot-Thélène [20, §2]. See also the survey by Zainoulline [103,
§3]. Rost [90, Rem. 5.2] gives a different perspective in terms of cycle mod-
ules, also see Morel [69, §2]. Assume that X has finite Krull dimension and
is equidimensional over a field F . For simplicity of exposition, assume that
X is integral. Denote by X(i) its set of codimension i points.

Denote by LocalF the category of local F -algebras together with local
F -algebra morphisms. Given a functor M• : LocalF → Ab•, call

M•
ur(X) =

⋂

x∈X(1)

im
(

M•(OX,x) → M•(F (X))
)

the group of unramified elements of M• over X . Then X 7→ M•
ur(X) is a

globalization of M• to schemes.
Given a functor M• : SchF → Ab•, there is a natural map M•(X) →

M•
ur(X). If this map is injective, surjective, or bijective we say that the in-

jectivity, weak purity, or purity property hold, respectively. Whether these
properties hold for various functors M• and schemes X is the subject of
many conjectures and open problems, see Colliot-Thélène [20, §2.2] for ex-
amples.

Unramified Milnor K-theory. Define the unramified Milnor K-theory
(resp. modulo 2) ofX to be the graded ring of unramified elementsK•

M,ur(X)

(resp. K•
M,ur/2(X)) of the “näıve” Milnor K-theory (resp. modulo 2) func-

tor K•
M (resp. K•

M/2) restricted to LocalF , see §2.1. Let K•
M be the Zariski

sheaf on SchF associated to “näıve” Milnor K-theory and K•
M/2 the asso-

ciate sheaf quotient, which is the Zariski sheaf associated to the presheaf
U 7→ K•

M(U)/2, see Morel [69, Lemma 2.7]. Then K•
M,ur(X) = Γ(X,K•

M)

and K•
M,ur/2(X) = Γ(X,K•

M/2) when X is smooth over an infinite field

(compare with the remark in §2.1) by the Bloch–Ogus–Gabber theorem
for Milnor K-theory, see Colliot-Thélène–Hoobler–Kahn [23, Cor. 5.1.11,
§7.3(5)]. Also, see Kerz [49]. Note that the long exact sequence in Zariski
cohomology yields a short exact sequence

0 → K•
M,ur(X)/2 → K•

M,ur/2(X) → 2H
1(X,K•

M) → 0

still assuming X is smooth over an infinite field.
Unramified cohomology. Define the unramified étale cohomology (mod-

ulo 2) of X to be the graded ring of unramified elements H•
ur(X,µ⊗•

2 ) of
the functor H•

ét(−,µ⊗•
2 ). Letting H•

ét be the Zariski sheaf on SchF associ-

ated to the functor H•
ét(−,µ⊗•

2 ), then Γ(X,H•
ét) = H•

ur(X,Z/2Z) when X
is smooth over a field of characteristic 6= 2 by the exactness of the Gersten
complex for étale cohomology, see Bloch–Ogus [19, §2.1, Thm. 4.2].

Unramified fundamental filtration of the Witt group. Define the unram-
ified Witt group ofX to be the abelian group of unramified elementsWur(X)
of the global Witt group functor W . Letting W be the Zariski sheaf asso-
ciated to the global Witt group functor, then Wur(X) = Γ(X,W) when X
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is regular over a field of characteristic 6= 2 by Ojanguren–Panin [72] (also
see Morel [69, Thm. 2.2]). Writing Inur(X) = In(F (X)) ∩Wur(X), then the
functors Inur(−) are Zariski sheaves (still assuming X is regular), denoted
by In, which form a filtration of W , see Morel [69, Thm. 2.3].

Note that the long exact sequence in Zariski cohomology yields short
exact sequences

0 → Inur(X)/In+1
ur (X) → In/In+1(X) → H1(X, In+1)′ → 0

where H1(X, In+1)′ = ker
(

H1(X, In) → H1(X, In+1)
)

and we are still
assuming X is regular over a field of characteristic 6= 2. If the obstruction
group H1(X, In+!)′ is nontrivial, then not every element of In/In+1(X) is
represented by a quadratic form on X . If X is the spectrum of a regular
local ring, then I•ur(X)/I•+1

ur (X) = I•/I•+1(X), see Morel [69, Thm. 2.12].

Remark 2.2. As before, the notation Inur(X) does not necessarily mean
the nth power of Iur(X). This is true, however, when X is the spectrum
of a regular local ring containing an infinite field of characteristic 6= 2, see
Kerz–Müller-Stach [51, Cor. 0.5].

2.3. Gersten complexes

Gersten complexes (Cousin complexes) exists in a very general frame-
work, but for our purposes, we will only need the Gersten complex for Milnor
K-theory, étale cohomology, and Witt groups.

Gersten complex for Milnor K-theory. Let X be a regular excellent
integral F -scheme. Let C(X,Kn

M) denote the Gersten complex for Milnor
K-theory

0 // Kn
M(F (X))

∂Kn
M

//
⊕

x∈X(1)

Kn−1
M (F (x))

∂K
n−1
M

//
⊕

y∈X(2)

Kn−2
M (F (y)) // ···

where ∂KM is the “tame symbol” homomorphism defined in Milnor [66,
Lemma 2.1]. We have that H0(C(X,Kn

M)) = Kn
M,ur(X). See Rost [90, §1]

or Fasel [31, Ch. 2] for more details. We will also consider the Gersten
complex (C,Kn

M/2) for Milnor K-theory modulo 2, for which we have that
H0(C(X,Kn

M/2)) = Kn
M,ur/2(X).

Gersten complex for étale cohomology. Let X be a smooth integral F -
scheme, with F of characteristic 6= 2. Let C(X,Hn) denote the Gersten
complex for étale cohomology

0 // Hn(F (X))
∂Hn

//
⊕

x∈X(1)

Hn−1(F (x))
∂Hn−1

//
⊕

y∈X(2)

Hn−2(F (y)) // ···

where Hn(−) = Hn(−,µ⊗n
2 ) and ∂H is the homomorphism induced from

the spectral sequence associated to the coniveau filtration, see Bloch–Ogus
[19]. Then we have that C(X,Hn) is a resolution of Hn

ur(X,µ⊗n
2 ).
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Gersten complex for Witt groups. Let X be a regular integral F -scheme
of finite Krull dimension. Let C(X,W ) denote the Gersten–Witt complex

0 // W (F (X))
∂W

//

⊕

x∈X(1)

W (F (x))
∂W

//

⊕

y∈X(2)

W (F (y)) // ···

where ∂W is the homomorphism induced from the second residue map for
a set of choices of local parameters, see Balmer–Walter [15]. Because of
these choices, C(X,W ) is only defined up to isomorphism, though there is
a canonical complex defined in terms of Witt groups of finite length modules
over the local rings of points. We have that H0(C(X,W )) = Wur(X).

Fundamental filtration. The filtration of the Gersten complex for Witt
groups induced by the fundamental filtration was first studied methodically
by Arason–Elman–Jacob [5], see also Parimala–Sridharan [78], Gille [41],
and Fasel [31, §9].

The differentials of the Gersten complex for Witt groups respect the
fundamental filtration as follows:

∂In
(

⊕

x∈X(p)

In(F (x))
)

⊂
⊕

y∈X(p+1)

In−1(F (y)),

see Fasel [31, Thm. 9.2.4] and Gille [41]. Thus for all n ≥ 0 we have
complexes C(X, In)

0 // In(F (X))
∂In

//
⊕

x∈X(1)

In−1(F (x))
∂In−1

//
⊕

y∈X(2)

In−2(F (y)) // ···

which provide a filtration of C(X,W ) in the category of complexes of
abelian groups. Here we write In(−) = W (−) for n ≤ 0. We have that
H0(C(X, In)) = Inur(X).

The canonical inclusion C(X, In+1) → C(X, In) respects the differen-
tials, and so defines a cokernel complex C(X, In/In+1)

0 // In/In+1(F (X)) //
⊕

x∈X(1)

In−1/In(F (x)) //
⊕

y∈X(2)

In−2/In−1(F (y)) // ···

see Fasel [31, Déf. 9.2.10], where In/In+1(L) = In(L)/In+1(L) for a field
L. We have that H0(C(X, In/In+1)) = In/In+1(X)

Unramified norm residue symbol. The norm residue symbol for fields
provides a morphism of complexes hn : C(X,Kn

M/2) → C(X,Hn), where
the map on terms of degree j is hn−j . By the Milnor conjecture for fields,
this is an isomorphism of complexes. Upon restriction, we have an isomor-
phism hn

ur : K
n
M,ur/2(X) → Hn

ur(X,µ⊗n
2 ). Upon further restriction, we have

an injection hn
ur : K

n
M,ur(X)/2 → Hn

ur(X,µ⊗n
2 ).

Unramified Pfister form map. The Pfister form map for fields provides a
morphism of complexes sn : C(X,Kn

M/2) → C(X, In/In+1), where the map
on terms of degree j is sn−j. Upon restriction, we have a homomorphism
snur : K

n
M,ur/2(X) → In/In+1(X). See Fasel [31, Thm. 10.2.6].
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Unramified higher cohomological invariants. By the Milnor conjecture
for fields, there exists a higher cohomological invariant morphism of com-
plexes en : C(X, In) → C(X,Hn), where the map on terms of degree
j is en−j . Upon restriction, we have homomorphisms enur : Inur(X) →
Hn

ur(X,µ⊗n
2 ) factoring through to enur : I

n
ur(X)/In+1

ur (X) → Hn
ur(X,µ⊗n

2 ).
Furthermore, on the level of complexes, the higher cohomological invari-

ant morphisms factors through to a morphism of complexes en : C(X, In/In+1) →
C(X,Hn), which by the Milnor conjecture over fields, is an isomorphism.
Upon restriction, we have isomorphisms enur : In/In+1(X) → Hn

ur(X,µ⊗n
2 ).

Also see Morel [69, §2.3].

2.4. Motivic globalization

There is another important globalization of Milnor K-theory and Galois
cohomology, but we only briefly mention it here. Conjectured to exist by
Bĕılinson [18] and Lichtenbaum [60], and then constructed by Voevodsky
[99], motivic complexes modulo 2 give rise to Zariski and étale motivic
cohomology groups modulo 2 Hn

Zar(X,Z/2Z(m)) and Hn
ét(X,Z/2Z(m)).

For a field F , Nesterenko–Suslin [70] and Totaro [97] establish a canon-
ical isomorphism Hn

Zar(SpecF,Z/2Z(n))
∼= K2

M(F )/2 while the work of
Bloch, Gabber, and Suslin (see the survey by Geisser [37, §1.3.1]) establishes
an isomorphism Hn

ét(SpecF,Z/2Z(n))
∼= Hn(F,µ⊗n

2 ) (for F of characteris-
tic 6= 2). The natural pullback map

ε∗ : Hn
Zar(SpecF,Z/2Z(n)) → Hn

ét(SpecF,Z/2Z(n))

induced from the change of site ε : Xét → XZar is then identified with the
norm residue homomorphism. ThusHn

Zar(−,Z/2Z(n)) andHn
ét(−,Z/2Z(n))

provide motivic globalizations of the mod 2 Milnor K-theory and Galois co-
homology functors, respectively. On the other hand, there does not seem
to exist a direct motivic globalization of the Witt group or its fundamental
filtration.

§3. Globalization of the Milnor conjecture

Unramified. Let F be a field of characteristic 6= 2. Summarizing the
results cited in §2.2–2.3, we have a commutative diagram of isomorphisms

K•
M/2

h•

//

s•

��

H•
ét

I•/I•+1

e•

;;vvvvvvvvv

of sheaves of graded abelian groups on SmF . In particular, we have such a
commutative diagram of isomorphisms on the level of global sections. What
we will consider as a globalization of the Milnor conjecture — the unramified
Milnor question — is a refinement of this.
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(S) Let X be a smooth scheme over a field of characteristic 6= 2. Then
restricting s•ur gives rise to a homomorphism s•ur : K

•
M,ur(X)/2 →

I•ur(X)/I•+1
ur (X).

Question 3.1 (Unramified Milnor question). Let X be a smooth scheme
over a field of characteristic 6= 2. Consider the following diagram:

K•
M,ur(X)/2

?

��
�

�

�

�

� i•K
// K•

M
/2(X)

h•

ur
//

s•ur
��

H•
ur(X,µ⊗•

2 )

I•ur(X)/I•+1
ur (X)

�

� i•I
// In/In+1(X)

e•ur

77nnnnnnnnnnnn

(1) Is the inclusion i•I surjective?
(2) Is the inclusion i•K surjective?
(3) Does the restriction of s•ur to K•

M,ur(X)/2 have image contained in

I•ur(X)/I•+1
ur (X)? If so, is it an isomorphism?

Note that in degree n, Questions 3.1 (1), (2), and (3) can be rephrased
in terms of the obstruction groups, respectively: does H1(X, In+1)′ van-
ish; does 2H

1(X,Kn
M) vanish; and does the restriction of snur yield a map

2H
1(X,Kn

M) → H1(X, In+1)′ and is it an isomorphism?
From now on we shall focus mainly on the unramified Milnor question

for quadratic forms (i.e. Question 3.1(1)), which was already explicitly asked
by Parimala–Sridharan [78, Question Q].

Global Grothendieck–Witt. We mention a global globalization of the
Milnor conjecture for quadratic forms. Because of the conditional definition
of the global cohomological invariants, we restrict ourselves to the classical
invariants on Grothendieck–Witt groups defined in §2.1.

Question 3.2 (Global Merkurjev question). Let X be a regular scheme
with 2 invertible. For n ≤ 2, consider the homomorphisms,

gen : GIn(X)/GIn+1(X) → Hn
ét(X,Z/2Z)

induced from the (classical) cohomological invariants on Grothendieck–Witt
groups. Are they surjective?

This can be viewed as a globalization of Merkurjev’s theorem. Indeed,
first note that the cases n = 0, 1 of Question 3.2 are easy. Next, a conse-
quence of Lemma 2.1 is that ge2 : GI2(X) → H2

ét(X,Z/2Z) is surjective if
and only e2 : I2(X) → 2Br(X) is surjective. This, in turn, is a consequence
of a positive answer to Question 3.1(1) for any X satisfying weak purity for
the Witt group (see §3.1 for examples).

Motivic. The globalization of the Milnor conjecture for MilnorK-theory
using Zariski and étale motivic cohomology modulo 2 (see §2.4) is the (n, n)
modulo 2 case of the Bĕılinson–Lichtenbaum conjecture: for a smooth vari-
etyX over a field, the canonical mapHn

Zar(X,Z/2Z(m)) → Hn
ét(X,Z/2Z(m))

is an isomorphism for n ≤ m. The combined work of Suslin–Voevodsky [95]
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and Geisser–Levine [38] show the Bĕılinson–Lichtenbaum conjecture to be
a consequence of the Bloch–Kato conjecture, a proof of which has been
announced by Rost and Voevodsky.

3.1. Some purity results

In this section we review some of the purity results (see §2.2) relating
the global and unramified Witt groups and cohomology.

Purity results for Witt groups. For a survey on purity results for Witt
groups, see Zainoulline [103]. Purity for the global Witt group means that
the natural map W (X) → Wur(X) is an isomorphism.

Theorem 2. Let X be a regular integral noetherian scheme with 2
invertible. Then purity holds for the global Witt group functor under the
following hypotheses:

(1) X is dimension ≤ 3,
(2) X is the spectrum of a regular local ring of dimension ≤ 4,
(3) X is the spectrum of a regular local ring containing a field.

For part (1), the case of dimension ≤ 2 is due to Colliot-Thélène–Sansuc
[22, Cor. 2.5], the case of dimension 3 and X affine is due to Ojanguren–
Parimala–Sridharan–Suresh [71], and for the general case (as well as (2))
see Balmer–Walter [15]. For (3), see Ojanguren–Panin [72].

As a consequence, for any scheme over which purity for the Witt group
holds, the unramified Milnor question for en (with n ≤ 2) is equivalent to
the analogous global Milnor question. This is especially useful for the case
of curves.

Purity results for étale cohomology. For X geometrically locally facto-
rial and integral, the purity property holds for unramified cohomology in
degree ≤ 1, i.e.

H0
ét(X,Z/2Z) = H0

ur(X,Z/2Z) = Z/2Z, and H1
ét(X,µ2) = H1

ur(X,µ2)

see Colliot-Thélène–Sansuc [24, Cor. 3.2, Prop. 4.1].
For X smooth over a field of characteristic 6= 2, we have a canoni-

cal identification 2Br(X) = H2
ur(X,µ2) by Bloch–Ogus [19] such that the

canonical map H2
ét(X,µ2) → H2

ur(X,µ2) = 2Br(X) is the map arising from
the Kummer exact sequence already considered in the proof of Lemma 2.1.

3.2. Positive results

We now survey some of the known positive cases of the unramified
Milnor question in the literature.

Theorem 3 (Kerz–Müller-Stach [51, Cor. 0.8], Kerz [49, Thm. 1.2]).
Let R be a local ring with infinite residue field of characteristic 6= 2. Then
the unramified Milnor question (all parts of Question 3.1) has a positive
answer over SpecR.

Hoobler [45] had already proved this in degree 2.
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The following result was communicated to us by Stefan Gille (who was
inspired by Totaro [98]).

Theorem 4. Let X be a proper smooth integral variety over a field of
characteristic 6= 2. If X is F -rational then the unramified Milnor question
(all parts of Question 3.1) has a positive answer over X.

Proof. The groups Kn
M,ur(X), Hn

ur(X,µ⊗n
2 ), and Inur(X) are birational

invariants of smooth proper F -varieties. To see this, one can use Colliot-
Thélène [20, Prop. 2.1.8e] and the fact that the these functors satisfy weak
purity for regular local rings (see Theorem 2). Another proof uses the fact
that the complexes C(X,Kn

M), C(X,Hn), and C(X, In) are cycle modules
in the sense of Rost, see [90, Cor. 12.10]. In any case, by Colliot-Thélène [20,
Prop. 2.1.9] the pullback induces isomorphisms Kn

M(F ) ∼= Kn
M,ur(P

m) (first

proved by Milnor [66, Thm. 2.3] for P1), Hn(F,µ⊗n
2 ) ∼= Hn

ur(P
m,µ⊗n

2 ), and
Inur(F ) ∼= Inur(F )(Pm) for all n ≥ 0 and m ≥ 1. In particular, Kn

M(F )/2 ∼=
Kn

M,ur(X)/2 and Inur(F )/In+1
ur (F ) ∼= Inur(X)/In+1

ur (X), and the theorem fol-
lows from the Milnor conjecture over fields. Q.E.D.

The following positive results are known for low dimensional schemes.
Recall the notion of cohomological dimension cd(F ) of a field (see Serre
[92, I §3.1]), virtual cohomological 2-dimension vcd2(F ) = cd2(F (

√
−1))

and their 2-primary versions. Denoting by d(F ) any of these notions of
dimension, note that if d(F ) ≤ k and dimX ≤ l then d(F (X)) ≤ k + l.

Theorem 5 (Parimala–Sridharan [78], Monnier [67]). Let X be a smooth
integral curve over a field F of characteristic 6= 2. Then the unramified Mil-
nor question for quadratic forms (Question 3.1(1)) has a positive answer
over X in the following cases:

(1) cd2(F ) ≤ 1,
(2) vcd(F ) ≤ 1,
(3) cd2(F ) = 2 and X is affine,
(4) vcd(F ) = 2 and X is affine.

Proof. For (1), this follows from Parimala–Sridharan [78, Lemma 4.1]
and the fact that e1 is always surjective. For (2), the case vcd(F ) = 0
(i.e. F is real closed) is contained in Monnier [67, Cor. 3.2] and the case
vcd(F ) = 1 follows from a straightforward generalization to real closed
fields of the results in [78, §5] for the real numbers. For (3), see [78, Lemma
4.2]. For (4), the statement follows from a generalization of [78, Thm.
6.1]. Q.E.D.

We wonder whether vcd can be replaced by vcd2 in Theorem 5. Parimala–
Sridharan [78, Rem. 4] ask whether there exist affine curves (over a well-
chosen field) over which the unramified Milnor question has a negative an-
swer.

For surfaces, there are positive results are in the case of vcd(F ) = 0. If
F is algebraically closed, then the unramified Milnor question for quadratic
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forms (Question 3.1(1)) has a positive answer by a direct computation, see
Fernández-Carmena [32]. If F is real closed, one has the following result.

Theorem 6 (Monnier [67, Thm. 4.5]). Let X be smooth integral surface
over a real closed field F . If the number of connected components of X(F )
is ≤ 1 (i.e. in particular if X(F ) = ∅), then the unramified Milnor question
for quadratic forms (Question 3.1(1)) has a positive answer over X.

Examples of surfaces with many connected components over a real
closed field, and over which the unramified Milnor question still has a pos-
itive answer, are also given in Monnier [67].

Finally, as a consequence of [8, Cor. 3.4], the unramified Milnor ques-
tion for quadratic forms (Question 3.1(1)) has a positive answer over any
scheme X satisfying: 2Br(X) is generated by quaternion Azumaya algebras
(i.e. index|period for 2-torsion classes); or 2Br(X) is generated by Azumaya
algebras of degree dividing 4 (i.e. index|period2 for 2-torsion classes) and
Pic(X) is 2-divisible. In particular, this recovers the known cases of curves
over finite fields (by class field theory) and surfaces over algebraically closed
fields (by de Jong [25]).

§4. Negative results

Alex Hahn asked if there exists a ring R over which the global Merkurjev
question (Question 3.2) has a negative answer, i.e. e2 : I2(R) → 2Br(R) is
not surjective. The results of Parimala, Scharlau, and Sridharan [77], [78],
[79], show that there exist smooth complete curves X (over p-adic fields
F ) over which the unramified Milnor question (Question 3.1(1)) in degree 2
(and hence, by purity, the global Merkurjev question) has a negative answer.

Remark 4.1. The assertion (in Gille [41, §10.7] and Pardon [74, §5]) that
the unramified Milnor question (Question 3.1(1)) has a positive answer over
any smooth scheme (over a field of characteristic 6= 2) is incorrect. In these
texts, the distinction between the groups Inur(X)/In+1

ur (X) and In/In+1(X)
is not made clear.

Definition 4.1 (Parimala–Sridharan [78]). A scheme X over a field F
has the extension property for quadratic forms if there exists x0 ∈ X(F )
such that every regular quadratic form on X \ {x0} extends to X .

Proposition 4.1 (Parimala–Sridharan [78, Lemma 4.3]). Let F be a
field of characteristic 6= 2 and with cd2F ≤ 2 and X a smooth integral F -
curve. Then the unramified Milnor question for quadratic forms (Question
3.1(1)) has a positive answer for X if and only if X has the extension
property.

The extension property is guaranteed when a residue theorem holds for
the Witt group. The reside theorem for X = P1 is due to Milnor [66, §5].
For nonrational curves, the choice of local uniformizers inherent in defining
the residue maps is eliminated by considering quadratic forms with values
in the canonical bundle ωX/F .
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Definition 4.2. Let X be a scheme and L an invertible OX -module.
An (L -valued) symmetric bilinear form on X is a triple (E , b,L ), where E

is a locally free OX -module of finite rank and b : S2E → L is an OX -module
morphism.

Theorem 7 (Geyer–Harder–Knebusch–Scharlau [39]). Let X be a smooth
proper integral curve over a field F of characteristic 6= 2. Then there is a
canonical complex (which is exact at the first two terms)

0 // W (X,ωX/F ) // W (F (X),ωF (X)/F )
∂ωX

//

⊕

x∈X(1)

W (F (x),ωF (x)/F )
TrX/F

// W (F )

and thus in particular W (X,ωX/F ) has a residue theorem.

Now any choice of isomorphism ϕ : N
⊗2 ∼= ωX/F , induces a group iso-

morphism W (X) → W (X,ωX/F ) via (E , q) 7→ (E ⊗N , ϕ◦(q⊗idN ), ωX/F ).
Thus in particular, if ωX/F is a square in Pic(X), then X has the extension
property. Conversely:

Theorem 8 (Parimala–Sridharan [79, Thm. 3]). Let F be a local field of
characteristic 6= 2 and X a smooth integral hyperelliptic F -curve of genus
≥ 2 with X(F ) 6= ∅. Then the unramified Milnor question for quadratic
forms (Question 3.1(1)) holds over X if and only if ωX/k is a square.

Example 4.1 (Parimala–Sridharan [79, Rem. 3]). LetX be the smooth
proper hyperelliptic curve over Q3 with affine model y2 = (x2−3)(x4+x3+
x2 + x+ 1). One can show using [77, Thm. 2.4] that ωX/F is not a square.

The point (y, x) = (
√
31, 2) defines a Q3-rational point of X . Hence by

Theorem 8, the unramified Milnor question has a negative answer over X .

Note that possible counter examples which are surfaces could be ex-
tracted from the following result.

Theorem 9 (Monnier [67, Thm. 4.5]). Let X be a smooth integral
surface over a real closed field F . Then the unramified Milnor question for
quadratic forms (Question 3.1(1)) has a positive answer over X if and only
if the cokernel of the mod 2 signature homomorphism is 4-torsion.

§5. Line bundle-valued quadratic forms

Let X be a smooth F -scheme. Let W (X,L ) be the Witt group of
L -valued symmetric bilinear forms on X and Wtot(X) =

⊕

L
W (X,L )

the total Witt group, where the sum is taken over a set of representatives
of Pic(X)/2. While this group is only defined up to non-canonical isomor-
phism depending on our choice of representatives, none of our cohomological
invariants depend on such isomorphisms, see [8, §1.2]. Furthermore, we will
not consider any ring structure on this group. Thus we will not need to
descend into most of the important considerations of Balmer–Calmès [14].

Let e0 be the usual rank modulo 2 map

e0tot : Wtot(X) → Z/2Z = H0
ur(X,Z/2Z)



18 Asher Auel

and I1tot(X) = ⊕L I1(X,L ) its kernel. Then the signed discriminant (see
[80]) defines a surjective map

e1tot : I
1
tot(X) → H1

ét(X,µ2) = H1
ur(X,µ2).

Finally, denote by I2(X,L ) ⊂ I1(X,L ) the subgroup generated by forms
of trivial Arf invariant and I2tot(X) = ⊕L I2(X,L ). Then there exists a
total Clifford invariant for line bundle-valued quadratic forms

e2tot : I
2
tot(X) → 2Br(X) = H2

ur(X,µ2)

defined in [8, Prop. 1.4]. The surjectivity of the total Clifford invariant can
be viewed as a version of the global Merkurjev question (Question 3.2) for
line bundle-valued quadratic forms.

Theorem 10 ([8]). Let X be a smooth proper integral curve over a
local field F of characteristic 6= 2 or a smooth proper integral surface over
a finite field F of characteristic 6= 2. Then the total Clifford invariant

e2tot : I
2
tot(X) → 2Br(X)

is surjective.

The surjectivity of the total Clifford invariant can also be reinterpreted
as the statement that while not every class in I2/I3(X) = H2

ur(X) is rep-
resented by a quadratic form on X , every class is represented by a line
bundle-valued quadratic form on X .
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