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Let X be a translation surface of genus g > 1 with 2g − 2 conical points of angle 4π and let γ, γ′

be two homologous saddle connections of length s joining two conical points of X and bounding two
surfaces S+ and S− with boundaries ∂S+ = γ − γ′ and ∂S− = γ′ − γ. Gluing the opposite sides of
the boundary of each surface S+, S− one gets two (closed) translation surfaces X+, X− of genera g+,
g−; g+ + g− = g. Let ∆, ∆+ and ∆− be the Friedrichs extensions of the Laplacians corresponding to
the (flat conical) metrics on X , X+ and X− respectively. We study the asymptotical behavior of the
(modified, i. e. with zero modes excluded) zeta-regularized determinant det∗ ∆ as γ and γ′ shrink.
We find the asymptotics

det∗ ∆ ∼ κs1/2 Area (X )

Area (X+)Area (X−)
det∗ ∆+det∗ ∆−

as s → 0; here κ is a certain absolute constant admitting an explicit expression through spectral
characteristics of some model operators. We use the obtained result to fix an undetermined constant
in the explicit formula for det∗ ∆ found in [11].

1 Introduction

Let Hg(1, . . . , 1) (one has here 2g − 2 units) be the principal stratum of the moduli space of Abelian
differentials over compact Riemann surfaces of genus g. One defines Hg(1, . . . , 1) as the moduli space
of pairs (X , ω), where X is a compact Riemann surface of genus g and ω is a holomorphic one-form (an
Abelian differential) on X with 2g − 2 zeros of multiplicity one. It is known ([12]) that Hg(1, . . . , 1) is
a connected complex orbifold of (complex) dimension 4g − 3.

Let a pair (X , ω) belong to Hg(1, . . . , 1). The holomorphic differential ω defines the conformal
flat conical metric |ω|2 on X , this metric has conical points of angle 4π at the zeros of ω and trivial
monodromy along any closed loop in X \ {conical points}. Thus, the 2-d manifold X equipped with
metric |ω|2 becomes a so-called translation surface. It should be noted that any translation surface
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(a compact 2-manifold with flat conical metric having trivial holonomy) can be obtained as a pair
(X , |φ|2), where X is a compact Riemann surface and φ is an Abelian differential on X (in general,
with zeros of arbitrary multiplicities).

To the metric |ω|2 one can associate the Laplace operator ∆|ω|2 (often denoted below simply by
∆; we assume ∆ be a nonnegative operator, i. e. one attaches minus to the usual definition of the
Laplace operator) with domain C∞

c (X \ {conical points}). The Friedrichs extension of ∆ (from now
on the notation ∆ refers only to this self-adjoint operator in the Hilbert space L2(X , |ω|2)) is known
to have discrete spectrum 0 = λ0 < λ1 ≤ λ2 ≤ . . . of finite multiplicity. The operator zeta-function,
defined for ℜt > 1 as

ζ∆(t) =

∞∑

=1

λ−t
j

admits analytic continuation to C as a meromorphic function with the only pole t = 1. The (modified)
zeta-regularized determinant of the operator ∆ is defined via the relation log det∗ ∆ = −ζ ′∆(0).

If X is an elliptic curve the Abelian differentials on X have no zeros; the moduli space of Abelian
differentials on Riemann surfaces of genus one is denoted by H1(∅). Introduce the real-valued function
F1 on H1(∅) via

H1(∅) ∋ (X , ω) 7→ F1(X , ω) = det∗ ∆|ω|2 .

In genus one the spectrum of the operator ∆ is known explicitly and the direct calculation of the
value ζ ′∆(0) (which essentially reduces to making use of the first Kronecker limit formula) leads to the
following expression (found in [18]; see also [17])

F1(X , ω) = 4ℑ(B/A)Area(X , |ω|2)|η(B/A)|4 , (1.1)

where A =
∮
a ω, B =

∮
b ω with {a, b} being a canonical basis of cycles on X ; Area(X , |w|2) = ℑ(AB̄),

and η is the Dedekind eta-function

η(σ) = exp

(
πiσ

12

)∏

n∈N

(
1 − exp(2πinσ)

)
.

In [11] this classical result was generalized to the case of an arbitrary genus and an explicit expression
for the function

Hg(1, . . . , 1) ∋ (X , ω) 7→ Fg(X , ω) = det∗ ∆|ω|2

was found. To formulate this result we need to introduce some auxiliary objects. Let {aα, bα}α=1,...,g

be a canonical basis of cycles on X . Denote by X̂ a fundamental polygon obtained via cutting the
surface X along a system of 2g loops starting at some chosen point of X and homologous to the basic
cycles.

Introduce the basis of normalized Abelian differentials {vα} on X , the matrix of corresponding
b-periods B = ||

∮
βα

vβ|| and the vector of Riemann constants:

KP
α =

1

2
+

1

2
Bαα −

g∑

β=1,β 6=α

∮

aβ

(
vβ

∫ x

P
vα

)
, (1.2)

where the interior integral is taken along a path which does not intersect ∂X̂ . Let E(P,Q) be the
Schottky-Klein prime form (see [7]).

As in [8] introduce
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• the following holomorphic multi-valued (g/2,−g/2)-differential σ(P,Q):

σ(P,Q) = exp

{

−
g∑

α=1

∮

aα

vα(R) log
E(R,P )

E(R,Q)

}

; (1.3)

the right-hand side of (1.3) is a non-vanishing holomorphic g/2-differential on X̂ with respect to
P and a non-vanishing holomorphic (−g/2)-differential with respect to Q;

• the following holomorphic multivalued g(1 − g)/2-differential on X :

C(P ) =
1

W[v1, . . . , vg](P )

g∑

α1,...,αg=1

∂gΘ(KP )

∂zα1 . . . ∂zαg

vα1 . . . vαg (P ) , (1.4)

where
W(P ) := det1≤α,β≤g||v(α−1)

β (P )|| (1.5)

is the Wronskian determinant of holomorphic differentials at the point P .

Let (ω) =
∑2g−2

k=1 Pk be the divisor of the holomorphic differential ω, denote by AP (·) the Abel
map with the base point P . Then one has the relation

A((ω)) + 2KP + Br + q = 0 (1.6)

with some integer vectors r and q. Let us emphasize that vectors r, q as well as the prime form and
the differentials C and σ depend on the choice of the fundamental polygon X̂ .

Now we are able to formulate the result from [11]. One has the relation

Fg(X , ω) = δgdetℑBArea(X , |ω|2)|τg(X , ω, {aα, bα})|2 (1.7)

where δg is a constant depending only on genus g and τg(X , ω, {aα, bα}) is defined up to a unitary
multiplicative factor (and not a choice of the fundamental polygon!) by the formula

τ−6
g (X , ω, {aα, bα}) = e2πi<r,KP >C−4(P )

2g−2∏

k=1

σ(Pk, P ) {E(Pk, P )}(g−1) . (1.8)

Here P is an arbitrary point of X and the integer vector r is defined by (1.6), the values of the prime

form and σ at the zeros Pk of the differential ω are calculated in the local parameter xk(Q) =
√∫ Q

Pk
ω ,

the values of the prime form and σ at the point P are taken in the local parameter z(Q) =
∫ Q

ω; the
expression (1.8) is independent of the choice of P .

Remark 1 In case g = 1, using (1.1), the formula

C(P ) = 2πiη3(B/A)e−πi B
4A

from ([8], p. 21) and the relation KP = 1
2 + B

2A (implying r = −1 in (1.6)) together with (1.7) and
(1.8), one gets the relation

δ1 =
4

(2π)4/3
. (1.9)
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One of the main motivations of this paper is to fix the undetermined constant δg in (1.7) for g > 1.
To this end we are to study the asymptotics of det∗ ∆ when two zeros of the differential collide and
the surface X degenerates to a nodal surface with two irreducible components X+ and X−.

In terminology of [6] we approach the principal boundary of Hg(1, . . . , 1) shrinking two homologous
saddle connections (i. e. geodesics, joining two colliding zeros). One can think about this situation
as follows. Let g+, g− ≥ 1 be integers such that g+ + g− = g and let (X±, ω±) ∈ Hg±(1, . . . , 1)
(2g± − 2 units). Introduce two straight cuts, [P+, P+(s)] and [P−, P−(s)], of equal length s: one on
the translation surface X+ and another on the translation surface X− (these cuts should not contain
the conical points). Identifying each shore of the cut on the surface X+ with the corresponding
shore of the cut on the surface X−, one gets a translation surface X (s) of genus g = g+ + g− with
2g−2 = (2g+ −2)+(2g− −2)+2 conical points of angle 4π: 2g+ −2 of them, P+

1 , . . . , P+
g+ come from

the surface X+, the 2g− − 2 points, P−
1 , . . . , P+

g−
, come from the surface X− and the remaining two

conical points, Pr and Pl, are the end points of the cuts. One can see that the points Pr and Pl are
joined by two homologous saddle connections of length s on the surface X (s), these saddle connections
are just the former shores of the cuts. The translation surface X (s) comes with holomorphic one form
ω(s) having simple zeros at conical points of X (s) and coinciding with ω± in X± \ [P±, P±(s)] ⊂ X (s).

So we are interest in the asymptotics of det∗ ∆|ω(s)|2 as s → 0.
As we see the degeneration scheme we encounter here is slightly different from the usual one (see, e.

g., [7], [15], [25]), where the family of degenerating Riemann surfaces is obtained from two surfaces X+

and X− via the well known plumbing construction (one glues not the shores of the cuts as we do here
but the annuli A± = {s ≤ |z±| ≤ 1} ⊂ X± identifying the points z+ and z− such that z+z− = s). Thus,
one has to modify the results from [7] (later corrected in [25]) concerning the asymptotical behavior
of basic holomorphic objects on the degenerating Riemann surface (in particular those entering (1.8))
in order to serve a different degeneration scheme. Section 2 of the present paper is devoted to this
tedious but, unfortunately, indispensable task. In this section we closely follow Fay and Yamada, we
have chosen to use a certain hybrid of their approaches in order to keep all the proofs elementary and
(hopefully) a little bit more readable than their prototypes.

After this task is completed it becomes possible to calculate the asymptotics of τg(X (s), ω(s), {αα, bα})
from (1.8) as s → 0. The result (obtained in subsection 2.4) looks as follows

τg(X (s), ω(s), {αα, bα}) ∼
1√
2
s1/4τg+(X+, ω+, {α+

α , b+
α })τg−(X−, ω−, {α−

α , b−α }) ; (1.10)

here the canonical basis {αα, bα} on the surface X (s) is the union of the canonical basis {α+
α , b+

α } on
X+ and the canonical basis {α−

α , b−α } on X−.
This result implies the asymptotics

det∗ ∆|ω(s)|2 ∼ δg

2δg+δg−

s1/2 Area (X )

Area (X+)Area (X−)
det∗ ∆+det∗ ∆− (1.11)

and in order to fix the constant δg it is sufficient to get the asymptotics of det∗ ∆|ω(s)|2 for some special
elements (X±

0 , ω±
0 ) of Hg±(1, . . . , 1) using another method and then compare the coefficients in the two

asymptotics. (It should be noted that a similar program was recently realized by R. Wentworth for the
determinants of the Laplacian in the Arakelov metric in order to calculate the so-called bosonisation
constants (see [20])). This is done in Section 3. The key idea (picked up by the author in a conversation
with L. Hillairet) is the following: one can start (in case of even genus g = 2g0) with a translation
surface X0 of genus g0 with a cut [P,P (s)] of length s and glue two copies of X0 together along the cut.
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(So, one takes X+ = X− = X0 in the above construction.) In this symmetric situation the Laplacian
∆ on the translation surface X (s) is unitary equivalent to the direct sum of the two operators, ∆D
and ∆N , of Neumann and Dirichlet homogeneous boundary value problems in X0 \ [P,P (s)]. Thus,
one has the relation

det∗ ∆ = det∆D det∗ ∆N (1.12)

(notice that the Dirichlet Laplacian has no zero modes and one does not modify its determinant here).
I turns out that the asymptotics of det ∆D and det∗ ∆N as s → 0 can be found if one makes use of
a certain variant of the BFK surgery formula (see [3]), the Wentworth lemma on the asymptotics of
the Dirichlet-to-Neumann operator on a shrinking contour ([20]) and a simple idea based on rescaling
properties of the determinant of the Laplacian. So, one can find the asymptotics det∗∆ for a symmetric
translation surface (and, therefore, for an arbitrary translation surface of genus which is an integer
power of 2); a simple trick based on BFK surgery formula reduces the general case to this symmetric
one.

Beyond the scope of the present paper remains the case of another possible collision of conical
points (in other words we consider here the asymptotical behavior of det∗∆ only near a part of the
principal boundary of the stratum): one can shrink a saddle connection of length s → 0 which has
no saddle connection homologous to it. In this case the underlying Riemann surface X (s) does not
degenerate (and tends to a nonsingular Riemann surface X (0); we denote by ∆0 the Laplacian on the
translation surface X (0)) but the colliding zeros form a single zero of multiplicity two (a conical point
of the angle 6π). It is relatively easy to show that in this case the asymptotics of τg has the form

τg(X (s), ω(s), {αα, bα}) ∼ s1/36τ̃g(X (0), ω0, {αα, bα}),

where τ̃g is an analog of the function τg for the stratum Hg(2, 1, . . . , 1) (2g − 4 units; see [11] for
definitions). This (together with results from [11]) leads to the asymptotics det∗∆ ∼ Cgs

1/18det∗∆0

with the unknown constant Cg. Finding this constant presents an interesting open problem. Even
more complicated looks the problem of finding the asymptotics of det∗∆ at the boundary of a general
stratum Hg(k1, . . . , kM ), at the moment we see no reasonable approach to it.

Finally we notice that similar problems for hyperbolic metric of constant curvature were studied
by S. Wolpert ([24]) and R. Lundelius ([14]), the case of Arakelov metric (with curvature given by the
Bergman 2-form) was considered in [10] and [22, 23] (the complete results were recently obtained by
R. Wentworth in [20]). We think that the case of a metric with curvature concentrated at a finite set
(considered in the present work) forms a natural complement to these results filling the right hand
side of the picture (if one puts the constant curvature metric at the left hand side and the Arakelov
metric in the center).

The author is grateful to R. Wentworth for explaining some subtle details from [20] and clarification
of the reason of divergence between the results of [7] and [25]; the author also thanks L. Hillairet for
generous sharing of his ideas on spectral theory of translation surfaces and D. Korotkin for numerous
useful discussions.

2 Families of degenerating surfaces and asymptotical formulas

We construct several one-parametric families of Riemann surfaces degenerating as the parameter tends
to zero.

Let X+ and X− be two compact Riemann surfaces of genus g+ and g−, g± ≥ 0. Choose points
P± ∈ X± and their open neighborhoods D± ⊂ X± such that for a certain choice of holomorphic local
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parameters z± on X± one has D± = {P ∈ X± : |z±(P )| < 1} and z±(P±) = 0. Define the map
z : D+ ∪ D− → C setting z(P ) = z±(P ) if P ∈ D±.

Using these data we construct three families of degenerating Riemann surfaces of genus g− + g+.
Case I. Let s be a complex number, |s| < 1 and let P±(s) be the points in D± such that

z(P±(s)) = s.
Cut the discs D± along the (oriented) straight segments [P±, P±(s)] and glue the surfaces X+

and X− along these cuts identifying a point P on the left shore of the ”+”-cut with the point Q
(z+(P ) = z−(Q)) on right shore of the ”−”-cut and vice versa; the resulting topological real 2-d
surface can be turned into a compact Riemann surface Xs of genus g = g− + g+ in a usual way (one
chooses the local parameter near the left endpoint P of the cut as ζ(Q) =

√
z(Q), near the right

endpoint P (s) the local parameter is ζ(Q) =
√

z(Q) − z(P (s)), the choice of the local parameter at
other points of Xs is obvious).

Case Ia. This family is constructed similarly to Cases I, the only difference is the position of cuts
inside the disks D±: choose a complex number t, |t| < 1 and introduce the cuts inside the discs D±

connecting the points z =
√

t and z = −
√

t; after the same gluing of the shores of these cuts as in
case I we get the family Xt of degenerating compact Riemann surfaces.

Case Ib. This family is obtained similarly to Cases I and Ia, but instead of gluing the disks along
the cuts we use the standard ”plumbing construction” (see [7]). Choose t, |t| < 1 delete from the
discs D± the smaller discs |z±| ≤ |t| and glue the obtained annuli, A±, identifying points P ∈ A+ and
Q ∈ A− such that z+(P )z−(Q) = t. After this gluing the surfaces X± turn into a single Riemann
surface X ′

t of genus g− + g+.
In what follows we derive asymptotical formulas (as s → 0) for basic holomorphic objects (the

normalized holomorphic differentials, the canonical meromorphic differential, the prime-form, etc) on
the Riemann surfaces constructed in case I.

The asymptotical formulas (as t → 0) for case Ib were first derived in [7]. In [25] it was claimed
that all the formulas from [7] are incorrect and new ones were proved. Our analysis (in particular,
see Example 1 below) shows that formulas from [7] (as well as Fay’s proofs of these formulas) are
applicable in case Ia. As it was explained to us by Richard Wentworth (private communication) Fay
in fact makes a mistake when considering case Ib: his ”pinching parameter” depends in its turn on
deformation parameter and this results in additional terms in asymptotical expansions which were lost
in [7]. In case Ia the pinching parameter is independent of deformation parameter and Fay’s scheme
works perfectly.

The case of our concern, I, is very similar to case Ia (the pinching parameter, z in equation
(2.22) below, is independent of the deformation parameter s) and we give here the proofs of all the
asymptotical formulas for it. Mainly we use the methods similar to those of Fay (where they are
applicable); although we have chosen to follow the pretty elementary analytical methods of Yamada
(avoiding Grauert’s theorem and sheaf cohomologies from [7], [15]) when introducing a holomorphic
family of Abelian differentials on Xs and studying the analytical properties of the coefficients in the
Laurant expansions in the pinching zone.

2.1 Two examples in genus 0

Canonical meromorphic bidifferential W . Recall that to any compact Riemann surface X of
genus g with a chosen canonical basis of cycles {aα, bα} on it one associates the so-called canonical
meromorphic bidifferential W ( · , · ), which

• is a meromorphic one-form with respect to each argument,
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• is symmetric, i. e. W (P,Q) = W (Q,P )

• has a single pole at the diagonal P = Q and

W (z(P ), z(Q)) ∼ dz(P )dz(Q)

(z(P ) − z(Q))2
+

1

6
SB(z(Q))dz(P )dz(Q) + o(1)

as P → Q, where SB is the Bergman projective connection (see [7]).

• satisfies
∮
aα

W (P, · ) = 0 for any P ∈ X and α = 1, . . . , g.

(In case g = 0 the last condition is void.) The canonical meromorphic bidifferential is related to the
prime form via the equation W (P,Q) = dP dQ log E(P,Q) (see [7]).

Example 1: case Ia. We start with the following simple statement. Let X be the two-fold
branched covering of the Riemann sphere P

1 with branch points z1, z2. Let P ∈ X and z be the
projection of P on P

1. Then the map

P 7→ δ =

√
z − z1

z − z2

is the biholomorphic isomorphism of X and P
1. Applying to δ the fractional linear transformation

δ 7→ γ = z2−z1
δ−1 + z2, we get the isomorphism

P 7→ γ = z +
√

(z − z1)(z − z2) (2.1)

of X and P
1 which is more convenient for our future purposes.

Now let t > 0 and z1 = −
√

t, z2 =
√

t. When t → 0 the Riemann sphere Xt degenerates to the
singular Riemann surface with two components, Riemann spheres S+ and S−, attached to each other
at the point 0. So, our situation is exactly the one described in Case Ia.

Let Wt(·, ·), W−(·, ·) and W+(·, ·) be the canonical meromorphic bidifferentials on Xt, S− and S+

respectively.
Then the following asymptotics holds:

Wt(z(P ), z(Q)) =

{
W±(z(P ), z(Q)) + t

4W±(z(P ), 0±)W±(z(Q), 0±) + O(t2), if P,Q ∈ S±

− t
4W±(z(P ), 0±)W∓(z(Q), 0∓) + O(t2) if P ∈ S±, Q ∈ S∓

(2.2)
(This asymptotics (with the minus sign in the last line lost) was mistakenly stated in ([7], formula

(49), p. 41) for two Riemann surfaces glued via plumbing construction (Case Ib), however, being false
in Case Ib, it is true in Case Ia.)

Let P,Q be two points of the covering Xt lying on the same sheet (say S+) with projections z and
ζ; assume for simplicity that z and ζ are real and positive.

Using the uniformization map (2.1), one can write the following asymptotics for the canonical
meromorphic differential on Xt:

Wt(z, ζ) =
dγ(z)dγ(ζ)

(γ(z) − γ(ζ))2
=

(1 + z√
z2−t

)(1 + ζ√
ζ2−t

)

[z − ζ +
√

z2 − t −
√

ζ2 − t]2
dz dζ =

=
dz dζ

(z − ζ)2
+

t

4z2ζ2
dz dζ + O(t2)dz dζ (2.3)

7



as t → 0+ which agrees with Fay’s formula (49).
(We remind the reader that the canonical bidifferential W+ on S+ (as well as on S−) is dz dζ

(z−ζ)2
and,

therefore, W±(z(P ), 0±)W±(z(Q), 0±) = 1
z2ζ2 dzdζ.)

If P ∈ S+, Q ∈ S− then all the ”ζ”- square roots in (2.3) change their sign and we arrive at the
second case of Fay’s expansion (2.2).

Example 2: Case Ib. This is a rather elementary simplification of Yamada’s Example 1 ([25],
pp. 140-142), the author thanks D. Korotkin for pointing it out to him.

Let S+ = Sv and S− = Sw be two Riemann spheres with standard coordinates v and w in
Sv,w\{∞}. Let also ζ = 1/w be the local parameter near the point at infinity of Sw. Glue Sv\{|v| < t}
and Sw \ {|ζ| < t} together identifying the points v ∈ {t ≤ |v| ≤ 1} ⊂ Sv and ζ ∈ {t ≤ |ζ| ≤ 1} ⊂ Sw

such that vζ = v/w = t. We get a Riemann surface Xt of genus 0. It is easy to write the uniformization
map Xt → Sz, where Sz is the Riemann sphere with standard coordinate z in Sz \ {∞}.

Namely, define the map z : Sv \ {|v| < t} ∪ Sw \ {|ζ| < t} → Sz via z(v) = v for v ∈ Sv \ {|v| < t}
and z(w) = tw for w ∈ Sw \ {|ζ| < t}. Obviously, the relation v/w = t implies z(v) = z(w), therefore,
the map z gives rise to a biholomorphic map Xt → Sz.

One has the following obvious relations for the canonical meromorphic bidifferentials Wt, W± on
Xt and X±.

Wt(z1, z2) =
dz1dz2

(z1 − z2)2
=

dv1dv2

(v1 − v2)2
= W+(v1, v2), (2.4)

if v1, v2 ∈ S+ \ {|v| ≤ 1};

Wt(z1, z2) =
dz1dz2

(z1 − z2)2
=

d(tw1)d(tw2)

(tw1 − tw2)2
=

dw1dw2

(w1 − w2)2
= W−(w1, w2), (2.5)

if w1, w2 ∈ S− \ {|ζ| ≤ 1};

Wt(z1, z2) =
dz1dz2

(z1 − z2)2
=

dvd(tw)

(v − tw)2
= t

dvdw

v2
+ O(t2) (2.6)

as t → 0, if v ∈ S+ \ {|w| ≤ 1} and w ∈ S− \ {|ζ| ≤ 1} in complete agreement with Yamada’s
asymptotical formulas for the case Ib:

Wt(z1, z2) =






W+(v1, v2) + t2SB(ζ)|ζ=0W+(v1, 0)W+(v2, 0) + O(t3) for v1, v2 ∈ S+ \ {|v| ≤ 1};
W−(w1, w2) + t2SB(v)|v=0W−(w1,∞)W−(w2,∞) + O(t3) for w1, w2 ∈ S− \ {|ζ| ≤ 1};
−tW+(v, 0)W−(w,∞) + O(t2) for v ∈ S+ \ {|v| ≤ 1}, w ∈ S− \ {|ζ| ≤ 1}

(2.7)
(see [25], formula (15) on p. 122; it should be noted that for coordinates v and ζ on the Riemann
sphere one has SB(v) = SB(ζ) ≡ 0).

2.2 Asymptotical formulas.

Here we deal with Case I, assuming that the genera of the surfaces X± are greater than zero.
Denote the part of the Riemann surface Xs which came from the discs D± after the gluing procedure

by U . The domain U is an open (topological) annulus and the map z can be considered as defined on
U . The map

z : U → {z ∈ C : |z| < 1} (2.8)
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defines a two-sheeted covering of the disc {|z| < 1} ramified over z = 0 and z = s, whereas the map

U ∋ P 7→ X = z − s

2
+
√

z(z − s) (2.9)

is a well-defined biholomorphic bijection (of course, the value of the square root depends on to which
disk, D+ or D−, the point P belongs; one also has to fix a branch of the square root, say, for the disk
D+ with the cut between 0 and s, there are two choices and we make one once and forever).

(It should be noted that map (2.9) (being appropriately extended) uniformizes the two-sheeted
covering of the Riemann sphere branched over the points 0 and s. The image of the point at infinity
of the first sheet is ∞, the image of the point at infinity of the second one is 0.)

For sufficiently small s the annulus

As = {P :
|s|2
4

< |X| < 1}

belongs to U . Moreover, the boundary curve |X| = 1 lies in a small vicinity of the circle |z| = 1/2 of
the ”+”-sheet of the covering (2.8), whereas the boundary curve |X| = |s|2/4 lies in a small vicinity
of the circle |z| = 1/2 of the ”−”-sheet.

The following two lemma are analogs of Yamada’s Theorem 1 and Lemma 1 ([25], p. 116) for the
family Xs. We follow the proofs of Yamada making necessary (in fact, rather minor) modifications.

Lemma 1 Let v± be holomorphic differentials on X±. There exists a holomorphic differential ws on
Xs such that for any ρ,

√
|s| < ρ < 1 holds the inequality

||ws − v+||Ω+
ρ

+ ||ws − v−||Ω−
ρ
≤ C(ρ)|s|, (2.10)

where
Ω+

ρ = X+ \ {P ∈ D+ : |X(P )| ≤ ρ}
Ω−

ρ = X− \ {P ∈ D− : |X(P )| ≥ |s|2/(4ρ)} .

Here as usual, the L2-norm of a one-form in a subdomain Ω of a Riemann surface is defined via

||u||Ω =

∫ ∫

Ω
u ∧ ∗u .

Remark. The curves |X| =
√

|s| and |X| = |s|3/2/4 belong to small vicinities of the circles
|z| =

√
|s|/2 lying on the ”+” and ”-” sheets of the covering (2.8) respectively.

Proof.

Let
∫ z
0 u+ =

∑∞
n=1 αnzn near P+; after passing to coordinate X,

z =
X

2
+

s

2
+

s2

8X
,

we get

f+(z) =

∫ z

0
u+ =

∞∑

n=1

a+
n (s)Xn + a0(s) +

−1∑

n=−∞
a−n (s)Xn,

where
a+

n (s) = αn(1/2n + O(s)); a0(s) = O(s); a−n (s) = O(s2|n|) ,
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as s → 0.
Analogously, from the expansion the expansion f−(z) =

∫ z
0 u− =

∑∞
n=1 βnzn near P− one gets

∫ z

0
u− =

∞∑

n=1

b+
n (s)Xn + b0(s) +

−1∑

n=−∞
b−n (s)Xn,

where
b+
n (s) = βn(1/2n + O(s)); b0(s) = O(s); b−n (s) = O(s2|n|) ,

as s → 0.
Now, [25], we are to construct a sequence, Φ

(k)
s , of C1-forms on Xs coinciding with v± in Ω±

ρ and
such that

||Φ(k)
s − i ∗ Φ(k)

s ||2 ≤ O(s2) + 1/k . (2.11)

For harmonic function hs in the annulus {|s|2/4ρ ≤ |X| ≤ ρ} with boundary values f− and f+ one
has the relation

1

2π

∫ ∫

|s|2/4ρ≤|X|≤ρ
(|∂Xhs|2 + |∂X̄hs|2)

|dX ∧ dX |
2

=

=

∞∑

n=1

n|b−−n − a−−n|2

ρ2n − ( |s|
2

4ρ )2n
+

∞∑

n=1

n|b+
n − a+

n |2

ρ−2n − ( |s|
2

4ρ )−2n
+

|b0 − a0|2
2 log( ρ2

|s|2/4
)

= O(s2) . (2.12)

It can be shown (say, via polynomial interpolation along radii directions) that one can change the
function hs in small vicinities of boundary circles |X| = ρ and |X| = |s2|/4ρ obtaining the function

h
(k)
s such that

∫ ∫

|s|2/4ρ≤|X|≤ρ
(|∂X(hs − h(k)

s )|2 + |∂X̄(hs − h(k)
s )|2) |dX ∧ dX|

2
≤ 1

k
(2.13)

and the 1-form

Φ(k)
s =

{
v± in Ω±

ρ ,

d(h
(k)
s ) in Xs \ (Ω+

ρ ∪ Ω−
ρ )

(2.14)

is C1-smooth. Since the operator Id− i∗ kills the (1, 0)-forms, the inequality (2.11) follows from (2.2)
and (2.13).

Decomposing (Id − i∗)Φ(k)
s into (L2-orthogonal!) sum of a harmonic one-form ωh, an exact form

ωe and a co-exact form ω∗
e (see [1], Chapter V; here ”exact form” means a form belonging to the

L2-closure of the space of smooth exact forms), we observe that the left part of the equation

Φ(k)
s − ωe = i ∗ Φ(k)

s + ωh + ω∗
e

is a closed form, whereas its left part is co-closed, therefore, both are harmonic by virtue of Weyl’s
Lemma (see [1], Chapter V).

Now, applying to the harmonic form Φ
(k)
s − ωe the operator 1

2 (Id + i∗) one gets a holomorphic
one-form

Ψ(k)
s =

1

2
(Id + i∗)[Φ(k)

s − ωe] .,

which coincides with v± + 1
2(Id + i∗)ωe in Ω±

ρ . Therefore,

||Ψ(k)
s − v+||2Ω+

ρ
+ ||Ψ(k)

s − v−||2Ω−
ρ
≤ 1

4
||ωe + i ∗ ωe|| ≤

1

2
||ωe|| ≤

1

2
||Φ(k)

s − i ∗ Φ(k)
s || (2.15)
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and

||Ψ(k)
s − v+||2Ω+

ρ
+ ||Ψ(k)

s − v−||2Ω−
ρ
≤ O(s2) +

1

k

by virtue of (2.11).

Choosing from the sequence {Ψ(k)
s }k≥1 a converging subsequence (uniform L2-boundedness of

holomorphic forms on a compact Riemann surface implies uniform boundedness of their coefficients)
and passing to the limit k → ∞ we get a holomorphic 1-form ws with all the needed properties. �

Remark 2 Actually a stronger variant of Lemma 1 is true: the differentials v± can be meromorphic
with poles lying outside of D±. In this case the differential ws is also meromorphic and have the same
singularities as v±.

Now choose on X± a canonical basis of cycles {a±α , b±α }α=1,...,g± such that none of the cycles
intersects the disk D±. Let also {u±

α }α=1,...,g± be the corresponding basis of normalized differentials.
The set of cycles {aα, βα}α=1,...,g++g− = {a+

1 , . . . , a+
g+ , a−1 , . . . , a−

g−
; b+

1 , . . . , b+
g+ , b−1 , . . . , b−

g−
} forms

a canonical basis on the Riemann surface Xs. Let {v(s)
α }α=1,...,g−+g+ be the corresponding basis of

normalized holomorphic differentials on Xs.

Let also w
(s)
α be a holomorphic one form on Xs which is constructed in Lemma 1 when one takes

(v+, v−) = (v+
α , 0) for α = 1, . . . , g+ and (v+, v−) = (0, v−

α−g+) for α = g+ + 1, . . . , g+ + g−.

The corresponding a-period matrix P = ||
∮
aα

w
(s)
β ||α,β=1,...,g++g− satisfies

P = Ig++g− + O(s)

as s → 0 due to Lemma 1. This immediately implies the following lemma.

Lemma 2 The basis {v(s)
α }α=1,...,g++g− of normalized holomorphic differentials on Xs satisfies

(v
(s)
1 , . . . , v

(s)
g++g−

) = (Ig−+g+ + O(s))(w
(s)
1 , . . . , w

(s)
g++g−

), (2.16)

in particular, all the differentials v
(s)
α are uniformly (with respect to s) bounded in, say, Xs \ {P ∈

Xs, |z(P )| < 1/4}.

Laurent expansion for basic holomorphic differentials. Writing the differential v
(s)
α as

v
(s)
α (X)dX in the local parameter X = z − s

2 +
√

z(z − s) and expanding the coefficient v
(s)
α (·) in the

Laurent series in the annulus |s|2/4 < |X| < 1, one gets

v(s)
α (X)dX = (

∑

n>o

γ−n(s)X−n +
∑

n≥0

γn(s)Xn)dX . (2.17)

Observe that dX = Xdz√
z(z−s)

and for n ≥ 0 one has

XndX =

(
z − s/2 +

√
z(z − s)

)n+1

√
z(z − s)

dz =

{
n+1∑

k=0

pk(s)z
k +

1√
(z(z − s)

n+1∑

k=0

qk(s)z
k

}
dz (2.18)

with some polynomials pk(s), qk(s). On the other hand, since

(z − s/2 +
√

z(z − s))(z − s/2 −
√

z(z − s)) = s2/4 ,
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for n > 0 one has

X−ndX =
4n

s2n

(
z − s/2 −

√
z(z − s)

)n (
z − s/2 +

√
z(z − s)

)

√
z(z − s)

dz =

=
1

s2n−2

{
n−1∑

k=0

p̃k(s)z
k +

1√
z(z − s)

n−1∑

k=0

q̃k(s)z
k

}

dz (2.19)

with some polynomials p̃k(s), q̃k(s).
For n > 0 one has

γ−n(s) =
1

2πi

∫

|X|=|s|2/4
v(s)
α (X)Xn−1dX =

1

2πi

∫

Γ−

v(s)
α (z)

(
z − s/2 +

√
z(z − s)

)n−1
dz =

=

∫

Γ−

O(1) × O(s2n−2)dz = O(s2n−2) (2.20)

as s → 0 (the contour Γ− over which goes the last integration lies in a small vicinity of the circle

|z| = 1/2 of the ”-”-sheet; the factor v
(s)
α (z) is uniformly bounded on this contour with respect to s

by virtue of Lemma 2).
In the same manner for n ≥ 0 one has

γn(s) =
1

2πi

∫

|X|=1

v
(s)
α (X)

Xn+1
dX =

1

2πi

∫

Γ+

v
(s)
α (z)dz

(
z − s/2 +

√
z(z − s)

)n+1 = O(1) (2.21)

(The contour Γ+ lies in a small vicinity of the circle |z| = 1/2 of the +-sheet, the factor v
(s)
α (z) is

uniformly bounded by virtue of Lemma 2, the denominator of the integrand is close to 1.)
Now from (2.17), (2.18) and (2.19) together with the estimates (2.21) and (2.20) one gets the

expansion

v(s)
α (z)dz =

∞∑

k=0

ak(s)z
k dz +

1√
z(z − s)

∞∑

k=o

bk(s)z
k dz, (2.22)

where the coefficients ak, bk are analytic near s = 0. This expansion is valid in the zone {|s|2/4 <
|X| < 1} (the latter for small s is close to the set {P ∈ Xs : |z(P )| ≤ 1/2}).

Remark 3 Expansion (2.22) is a complete analog of Fay’s expansion stated on page 40 of [7] for
deformation family Ib. However, it is important here that in (2.22) the parameter z is s-independent
whereas in expansion from [7] the pinching parameter χ depends on deformation parameter. The latter
fact was missed by Fay when he wrote his asymptotical expansions (in particular, his last formula on
page 40 of [7] should contain more terms at the right hand side) ([21]).

Main asymptotical formulas for basic holomorphic differentials and the canonical

meromorphic bidifferential. Let W,W± be the canonical meromorphic bidifferentials on Xs and
X± respectively.
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Theorem 1 For α = 1, . . . , g+ one has the asymptotics as s → 0

v(s)
α (P ) =

{
u+

α (P ) + s2

16u+
α (P+)W+(P,P+) + o(s2) if P ∈ L+ \ D+ ⊂ Xs

− s2

16u+
α (P+)W−(P,P−) + o(s2) if P ∈ X− \ D− ⊂ Xs .

(2.23)

For α = g+ + k, k = 1, . . . , g− one has

v(s)
α (P ) =

{
u−

k (P ) + s2

16u−
k (P−)W−(P,P−) + o(s2) if P ∈ L− \ D− ⊂ Xs

− s2

16u−
k (P−)W+(P,P+) + o(s2) if P ∈ X+ \ D+ ⊂ Xs .

(2.24)

Here the values of differentials at the points P± are calculated in the local parameter z, the values
of differentials at P ∈ X± \D± ⊂ Xs are calculated in an arbitrary local parameter inherited from X±

(of course, the same for the l. h. s. and the r. h. s.)

Theorem 2 For the canonical meromorphic differential on Xs one has the following asymptotics as
s → 0:

W (R,S) =






W+(R,S) + s2

16W+(R,P+)W+(S,P+) if R,S ∈ X+ \ D+ ⊂ Xs,

− s2

16W+(R,P+)W−(S,P−) if R ∈ X+ \ D+ ⊂ Xs; S ∈ X− \ D− ⊂ Xs,

W−(R,S) + s2

16W−(R,P−)W−(S,P−) if R,S ∈ X− \ D− ⊂ Xs .

(2.25)

Proof. Observe that lims→0

√
z(P )(z(P ) − s) = ±z(P ) if P ∈ D± \ [0, s] ⊂ Xs. Let α = 1, . . . , g+.

Taking two points in U with z(P ) = z and sending s → 0 in (2.22), one gets

u+
α (z)dz =

( ∞∑

k=0

ak(0)z
k +

∞∑

k=0

bk(0)z
k−1

)

dz

for the point on the ”+”-sheet and

0 =
∞∑

k=0

ak(0)z
k −

∞∑

k=o

bk(0)z
k−1

for the point on the ”−”-sheet. This implies the relations

b0(0) = 0 (2.26)

and
u+

α (P+)

2
= a0(0) = b1(0). (2.27)

For P ∈ D+ one has
1

s
(v(s)

α − v(0)
α ) =

∞∑

k≥0

ak(s) − ak(0)

s
zk dz+

=
∑

k≥0





bk(s) − bk(0)

s

zk

√
z(z − s)

+ bk(0)z
k−1

z√
z(z−s)

− 1

s




 dz = (2.28)
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=

{ ∞∑

k=0

a′k(0)z
k +

∞∑

k=0

b′k(0)z
k−1 +

1

2

∞∑

k=0

bk(0)z
k−2 + O(s)

}
dz .

Since b0(0) = 0, the limit of the left hand side of (2.28) as s → 0 is a meromorphic differential on X+

with a single pole at P+, therefore, it is a holomorphic differential, i. e.

b′0(0) +
1

2
b1(0) = 0 . (2.29)

Moreover, since all the a-periods of this differential vanish it equals to zero.
Then, again for a point on the ”+”-sheet, we have

1

s2
(v(s)

α − v(0)
α ) =

1

s2




∑

k≥0

(ak(0) + sa′k(0) +
s2

2
a′′k(0) + O(s3))zk+

∑

k≥0

(bk(0) + sb′k(0) +
s2

2
b′′k(0) + O(s3))zk−1(1 +

s

2z
+

3

8

s2

z2
+ O(s3)) −

∑

k≥0

ak(0)z
k −

∑

k≥0

bk(0)z
k−1



 dz

Since s-linear term in the braces vanishes, the limit of this expression as s → 0 equals to

[ ∞∑

k=0

a′′k(0)
2

zk +
b′′k(0)

2
zk−1 +

3

8
bk(0)z

k−3 +
b′k(0)

2
zk−2

]
dz.

Thus the limit is a meromorphic differential on X+ with a single pole of the second order (b0(0) = 0!);
the corresponding Laurent coefficient is

3

8
b1(0) +

b′0(0)
2

=
b1(0)

8
=

1

16
u+

α (P+)

due to (2.27) and (2.29). All the a-periods of this differential vanish, therefore, it coincides with

1

16
u+

α (P+)W+( · , P+)

and the first asymptotics in (2.23) is proved.
The other asymptotics of Theorem 1 can be proved in a similar way. Theorem 2 follows from

Theorem 1 (see [7] p. 41 for a short explanation of this implication). �

It is also possible to prove Theorem 2 independently: one starts from the generalization of Lemma
1 given in Remark 2, using this generalization with, say, v− = 0 and v+ = W+( · , Q) with Q ∈ X+\D+,
one establishes expansion (2.22) for one-form W ( · , Q) exactly in the same manner as it was done for

a basic holomorphic differential. Repeating the proof of Theorem 1 with W ( · , Q) instead of v
(s)
α we

arrive to the asymtotics stated in Theorem 2.
The following proposition gives the asymptotics of other type than given in Theorem 2: now one

of the arguments of the canonical meromorphic bidifferential lies inside the pinching zone (being one
of the two endpoints of the cut).

Proposition 1 Let a point P lies on the surface X± far from the pinching zone and let Pr = z−1(s)
and Pl = z−1(0) be the critical points of the map z : U → {z : |z| < 1}. Then
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W (P,Pr) =

√
s

2
W±(P±, P ) + O(s3/2), (2.30)

W (P,Pl) = −i

√
s

2
W±(P±, P ) + O(s3/2), (2.31)

as s → 0. Here the differentials are calculated in the local parameters related to corresponding branched
coverings: i. e.

√
z(·) − s at Pr,

√
z(·) at Pl; z±(·) at P± and an arbitrary local parameter inherited

from X± at P .

Proof. For the 1-form W ( · , P ) one has the expansion (2.22) with b0(0) = 0, b′0(0) + 1
2b1(0) = 0

and b1(0) = a0(0) = 1
2W±(P±, P ).

Now substituting in this expansion z = s + t2, dz = 2t dt setting t = 0 and then sending s → 0 we
get (2.30). Substituting z = t2, dz = 2t dt, setting t = 0 and sending s → 0, we get (2.31). �

2.3 Asymptotics of E(P, Q), σ(P, Q), C(P ) and KP

First recall the following expression, relating the prime form, E(x, y), to the canonical meromorphic
differential on an arbitrary compact Riemann surface of genus g (see [7], p. 26):

θ(
∫ y
x ~v − e)θ(

∫ y
x ~v + e)

θ2(e)E2(x, y)
= W (x, y) +

g∑

i,j=1

∂2 log θ(e)

∂zi∂zj
vi(x)vj(y), (2.32)

where ~v = (v1, . . . , vg)
t is a column of basic holomorphic differentials, e is an arbitrary vector from

C
n.

From this expression taken together with the asymptotics for the basic holomorphic differentials
and the canonical meromorphic bidifferential one easily derives the following asymptotics for the prime
form on the family Xs.

•
E2(P,Q) = E2

±(P,Q) + o(1) (2.33)

as s → 0, here the points P,Q belong to X± and are far from the pinching zone, E±(P,Q) is
the prime form on X±, all the prime forms are calculated in local parameters near P and Q
inherited from X±;

•
E2(P,Q) = −16

s2
E2

±(P,P±)E2
∓(Q,P∓) + O(

1

s
) (2.34)

if P ∈ X± and Q ∈ X∓;

•
E2(P,Pr) =

2√
s
E2

±(P,P±) + O(
√

s), E2(P,Pl) =
2i√
s
E2

±(P,P±) + O(
√

s), (2.35)

if P ∈ X±, the local parameter at Pl is
√

z, the local parameter near Pr is
√

z − s.

From now on we use the following notation ∆(s) = 4
s and denote by a single letter ǫ different

unitary constants (”phase factors”, (|ǫ| = 1) which may appear as additional factors in some of our
formulas; the concrete values of these factors are of no interest for us.
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The next two quantities whose asymptotics we need are defined as follows (see [8], (1.13) and
(1.17)):

σ(P,Q) = exp

{
−

g∑

k=1

∫

ak

vk(x) log
E(x, P )

E(x,Q)

}
, (2.36)

and

C(P ) =
θ(
∫ Q1

P ~v · · · +
∫ Qg

P ~v + KP )
∏g

i<j E(Qi, Qj)
∏g

i=1 σ(Qi, P )

det(vi(Qj))
∏g

i=1 E(P,Qi)
(2.37)

where Q1, . . . Qg are arbitrary points of X (expression (2.37) is independent of the choice of these
points) and KP is the vector of Riemann constants.

Using asymptotics for the prime-form (2.33–2.35) and the basic holomorphic differentials one easily
obtains from (2.36) the following asymptotics as s → 0:

σ(P,Q) ∼ σ±(P,Q)

[
E±(Q,P±)

E±(P,P±)

]g∓

, (2.38)

for P,Q ∈ X±;

σ(P,Q) ∼ ǫσ±(P,P±)σ∓(P∓, Q)
[E∓(P∓, Q)]g

±

[E±(P,P±)]g
∓ [∆(s)]g

±−g∓ , (2.39)

if P ∈ X±, Q ∈ X∓;

σ(Pr, Q) ∼ ǫσ(Pl, Q) ∼ ǫσ±(P±, Q) [E±(P±, Q)]g
∓

[∆(s)](3g∓−g±)/4 (2.40)

if Q ∈ X±.
The asymptotics of (2.37) is a bit more tricky to obtain and we give more details. First choose

the points {Qi} in such a way that g+ of them, R1, . . . , Rg+ belong to X+ and the other g− points,
S1, . . . , Sg− , belong to X−. Then, assuming for definiteness P ∈ X+, one has as s → 0

θ(

∫ Q1

P
~v · · · +

∫ Qg

P
~v + KP |B) ∼

θ

(∫ R1

P

(
~v+

~0

)
+ · · · +

∫ Rg+

P

(
~v+

~0

)
+ g−

∫ P+

P

(
~v+

0

)
+

∫ S1

P−

(
~0
~v−

)
+ · · · +

∫ Sg−

P−

(
~0
~v−

)
+

+

(
K+

P −g−
R P+
P ~v+

K−
P−

) ∣∣∣diag(B+, B−)

)
=

= θ+(

∫ R1

P
~v+ + · · · +

∫ Rg+

P
~v+ + K+

P ) θ−(

∫ S1

P−

~v− + · · · +
∫ Sg−

P−

~v− + K−
P−

) . (2.41)

Now using the asymptotics for the prime form and σ, we see that the numerator of (2.37) (with the
just made choice of Q1, . . . , Qg) is equivalent to

ǫ θ+(

∫ R1

P
~v+ + · · ·+

∫ Rg+

P
~v+ + K+

P ) θ−(

∫ S1

P−

~v− + · · ·+
∫ Sg−

P−

~v− + K−
P−

)
∏

i<j

E+(Ri, Rj)
∏

i<j

E−(Si, Sj)
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g+∏

i=1

g−∏

j=1

E+(Ri, P+)E−(Sj, P−)




 [∆(s)]g
+g−

g+∏

i=1

σ+(Ri, P )
{E+(P,P+)}g+g−

{∏g+

j=1 E+(Rj , P+)
}g−

[σ+(P+, P )]g
−
[E+(P+, P )](g

−)2 [∆(s)]g
−(g−−g+)

g−∏

j=1

σ−(Sj , P−)

{E−(Sj, P−)}g+ ,

whereas the denominator of (2.37) is equivalent to

ǫ






g+∏

i=1

E+(P,Ri)




 [E+(P,P+)]g
−






g−∏

j=1

E−(P−, Sj)




 [∆(s)]g
−
det(v+

i (Rj))det(v−i (Sj)) .

So, after rearranging the terms and numerous cancelations, one gets the asymptotics

C(P ) ∼ ǫC±(P )C∓(P∓) {E±(P,P±)}g∓(g±+g∓−1) {σ±(P±, P )}g∓ ∆(s)[g
∓]2−g∓ (2.42)

if P ∈ X±.

Remark 4 Let us emphasize that in order to define the vector KP and the Abel map AP (as well
as the prime-form and the left hand side of expression (2.32)) one has to introduce the system of
cuts on the surface X in such a way that the integration

∫ y
x ~v is well-defined for any x, y belonging

to the surface X = Xs dissected along the cuts. We choose the usual symplectic basis of homologies
{a±α , b±α }α=1,...,g± on X±, take curves representing this basis and dissect the X± along these curves.
The resulting dissected surface X± is homeomorphic to a sphere with g± holes, whereas the surface Xs

dissected along the same curves is homeomorphic to a sphere with g holes. Notice that the boundary of
any hole is the trivial cycle (a±α + b±α −a±α − b±α = 0) and, therefore, the

∫ y
x ~v± and

∫ y
x ~v are well-defined

on the corresponding dissected surfaces.

The following lemma immediately follows from the definition of the vector of the Riemann constants,

KP
β =

1

2
+

Bββ

2
−

g∑

α=1,α6=β

∫

aα

(
vα

∫ x

P
vβ

)
,

and Theorem 1.

Lemma 3 One has the asymptotics

KP ∼
(

KP
+−g−

R P+
P

~v+

K
P−
−

)
, (2.43)

as s → 0, where KP
+ and K

P−
− are the vectors of Riemann constants for the surfaces X+ and X− with

the base points P and P− respectively.
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2.4 Asymptotics of τg

Now we are able to prove asymptotics (1.10) from the Introduction. Let M± = 2g± − 2 and let

(ω±) =
∑M±

k=1 D±
k be the divisor of the holomorphic differential ω± on X±.

Assume that the point P lies on the component X+. Using Lemma 3, one can pass to the limit
s → 0 in the equation (1.6). This results in the relations

A+
P ((ω+)) = 2KP

+ + B
+r+ + q+ (2.44)

and
A−

P−
((ω−)) = 2K

P−
− + B

−r− + q+ , (2.45)

where r = (r+, r−), q = (q+,q−) and A± is the Abel map on X±.
Now one has

τ−6(X , z) ∼ ǫe2πi<r
+, KP

+>e2πi<r
−, K

P−
− >e−2πig−<r

+,
R P+
P ~v+>

{C+(P )}−4{C−(P−)}−4{E+(P,P+)}4g−(1−g){σ+(P+, P )}−4g− [∆(s)]4(g
−−(g−)2)

M+∏

k=1

σ+(D+
k , P )

[
E+(P,P+)

E+(D+
k , P+)

]g−

[
σ+(P+, P ){E+(P+, P )}g− [∆(s)](3g−−g+)/4

]2

M−∏

k=1

{

σ−(D−
k , P−)σ+(P+, P )

[E+(P+, P )]g
−

[E−(D−
k , P−)]g+ [∆(s)]g

−−g+

}

M+∏

k=1

{E+(D+
k , P )}(g−1)

[
[∆(s)]1/4E(P,P+)

]2(g−1)
M−∏

k=1

{∆(s)E+(P,P+)E−(D−
k , P−)}(g−1)

with g = g+ + g−. Observe that ∆(s) enters the above expression with power

4(g− − (g−)2) +
3g− − g+

2
+ (g− − g+)(2g− − 2) +

g − 1

2
+ (g − 1)(2g− − 2) =

3

2
,

all the factors E+(P,P+) cancel out (4g−(1− g) + g−(2g+ − 2) + 2g− + g−(2g− − 2) + 2(g − 1) + (g −
1)(2g− − 2) = 0) and the remaining terms can be rearranged into the product of

e2πi<r
+, KP

+>C−4
+ (P )

M+∏

k=1

σ+(D+
k , P )

{
E+(D+

k , P )
}(g+−1)

, (2.46)

e2πi<r
−, K

P−
− >C−4

− (P−)

M−∏

k=1

σ−(D−
k , P−)

{
E−(D−

k , P−)
}(g−−1)

. (2.47)

and

e−2πig−<r
+,

R P+
P ~v+>

{
[σ+(P+, P )]−2

∏M+

k=1 E+(D+
k , P )

∏M+

k=1 E+(D+
k , P+)

}g−

. (2.48)

According to [11] (see Theorem 2 on page 47), the expression in the braces in (2.48) is nothing but

e2πi<r
+, A+

P (P+)> and, therefore, the expression (2.48) equals one; expressions (2.46) and (2.47) coincide
with τ−6

g+ (X+, ω+, {a+
α , b+

α }) and τ−6
g−

(X−, ω−, {a−α , b−α }) respectively. �
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3 Surgery and asymptotics

3.1 Wentworth lemma

The following important Lemma essentially coincides with the statement proved in §3 of [20]. We
formulate the Wentworth result, adapting it for our needs.

Lemma 4 Let X be a translation surface, ∆ the Friedrichs extension of the Laplacian on X . Let z
be a local parameter near a (nonsingular) point P ∈ X such that z(P ) = 0 and ∆ = −4∂z∂z̄ in the
unit ball B(1) = {|z| ≤ 1} ⊂ X . For 0 < ǫ ≤ 1 set B(ǫ) = {|z| ≤ ǫ} and Xǫ = X \B(ǫ). Denote by Nǫ

the Dirichlet-to-Neumann operator for Xǫ:

Nǫ : C∞(∂Xǫ) → C∞(∂Xǫ) ,

Nǫ(f) = ∂nu
∣∣∣
∂Xǫ

,

where the function u satisfies 



∆u = 0 in Xǫ

u
∣∣∣
∂Xǫ

= f
(3.1)

and n is the unit outer normal to ∂Xǫ. (Actually, Nǫ is a pseudodifferential operator of order 1 on
∂Xǫ).

Let z = reiφ, then φ is the angular coordinate on the circle {r = ǫ} = ∂Xǫ. Let f ∈ L2(∂Xǫ, dφ),
f(φ) =

∑
k∈Z

ake
ikφ. Define the (unbounded) operators ν and |ν| in L2(∂Xǫ, dφ) via

νf(φ) =
∑

k∈Z

kake
ikφ

and
|ν|f(φ) =

∑

k∈Z

|k|ake
ikφ .

Then one has the following relation:
ǫNǫ = |ν| + O(ǫ) (3.2)

where O(ǫ) is the operator of trace class in L2(∂Xǫ, dφ) with the trace norm which is asymptotically
O(ǫ) as ǫ → 0.

For completeness we give the proof here (it differs from the one given in [20] by insignificant
changes). Introduce the operator Rǫ : L2(S

1, dφ) → L2(S
1, dφ) via Rǫf = g = u|{|z|=1}, where u and

f are from (3.1). Using Green formula for the Friedrichs extension of the Laplacian, it is easy to check
the identity ∫

|z|=ǫ
|f |2dφ −

∫

|z|=1
|g|2dφ = 2

∫ 1

ǫ

dr

r

∫∫

Xr

|∇u|2,

which implies the norm estimate
||Rǫ|| ≤ 1 . (3.3)

(It is important here that ∆ is the Friedrichs extension; for other extensions the above double integral
may be infinite!)
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The function u from (3.1) is harmonic in the annulus {ǫ ≤ |z| ≤ 1} and, therefore, admits there
the standard representation

u(r, φ) =
∑

k∈Z

ake
ikφrk + c0 log r +

∑

k∈Z\0
(r|k| − r−|k|)bke

ikφ .

On the other hand the Green formula implies the relation
∫
∂Xǫ

∂u
∂r = 0 and, therefore, one has c0 = 0

in the previous representation. Thus, the function u from (3.1) is representable inside the annulus
{ǫ ≤ |z| ≤ 1} as

u = a0 +
∑

k 6=0

akr
keikφ +

∑

k 6=0

bkr
−keikφ . (3.4)

Now notice that the operators ǫNǫ and Rǫ map the boundary value of the function u from (3.1) and
(3.4) at the circle |z| = ǫ to the functions

∑

k 6=0

k(bkǫ
−k − akǫ

k)eikφ

and
a0 +

∑

k 6=0

(ak + bk)e
ikφ

respectively. For a sequence of complexe numbers {αk}k∈Z introduce the operator (may be unbounded)
Op(αk) in L2(S

1, dφ) via

Op(αk)f(φ) =
∑

k∈Z

αkake
ikφ .

where f ∈ L2(S
1, dφ), u =

∑
k∈Z

ake
ikφ. (In this notation ν = Op(k) and |ν| = Op(|k|).)

Now one has

Op(ǫk − ǫ−k)(ǫNǫ)(u||z|=ǫ) =
∑

k 6=0

k(bk + ak − akǫ
2k − bkǫ

−2k)eikφ =

=
∑

k 6=0

(kak + kbk)e
ikφ −

∑

k 6=o

{k(akǫk + bkǫ−k)(ǫk + ǫ−k) − k(ak + bk)}eikφ =

= 2
∑

k 6=0

(kak + kbk)e
ikφ −

∑

k 6=0

(ǫk + ǫ−k)k(akǫ
k + bkǫ

−k)eikφ

which implies the relation

ǫNǫ = Op(
2

ǫk − ǫ−k
)νRǫ − Op(

ǫk + ǫ−k

ǫk − ǫ−k
)ν . (3.5)

(Notice that functions from the image of the operator ν are orthogonal to 1 and, therefore, the
right hand side of (3.5) is correctly defined.) Clearly, the operator Op( 2

ǫk−ǫ−k )ν is of trace class with

the trace norm |||Op( 2
ǫk−ǫ−k )ν||| = O(ǫ), due to (3.3) the same is true for the first term in the right

hand side of (3.5). For k 6= 0 one has ǫk+ǫ−k

ǫk−ǫ−k → −sgn k as ǫ → 0 and the simple estimate shows that

−Op(
ǫk + ǫ−k

ǫk − ǫ−k
)ν = |ν| + r(ǫ) ,

where |||r(ǫ)||| = O(ǫ2) which proves the Lemma.
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3.2 Analytic surgery for translation surfaces

The following proposition is a variant of Theorem B* from [3]. Its proof does not essentially differ
from the proof of classical BFK formula.

Proposition 2 Let Γ be a smooth closed curve on a translation surface X containing no conical points
and dividing X into two parts X1 and X2 with common boundary Γ. Let (∆,X1,2) be the operators of
the Dirichlet boundary value problems in X1,2. Then one has the relation

det∗∆ =
Area(X)

length(Γ)
det(∆,X1)det(∆,X2)det∗(N1 + N2),

where Nk is the Dirichlet-to-Neumann operator C∞(Γ) → C∞(Γ), Nk(f) = ∂nk
uk|Γ with ∆uk = 0 in

Xk, u|Γ = f and nk being the outer unit normal to ∂Xk, k = 1, 2.

The following proposition (see [20]) is a consequence of Wentworth lemma

Proposition 3 Let X1 = X \ B(ǫ), X2 = B(ǫ), Γ = {|z| = ǫ}. Then

lim
ǫ→0

det∗(N1 + N2)

length (Γ)
=

1

2
. (3.6)

We give a proof of this proposition following [20]. Representing the function u2 harmonic in the disk
X2 = {|z| ≤ ǫ} in the form

u2 =
∑

k∈Z

akr
|k|eikφ ,

one immediately gets the relation
ǫN2 = |ν| .

One has now
ǫ(N1 + N2) = 2|ν| + O(ǫ) (3.7)

and, therefore,
log det∗{ǫ(N1 + N2)} = log det∗{2|ν|} + o(1) (3.8)

which implies

log
det∗(N1 + N2)

ǫ
= log

det∗|ν|
2

+ o(1) (3.9)

or, what is the same,

log
det∗(N1 + N2)

2πǫ
= − log 2 + log det∗|ν| − log 2π + o(1). (3.10)

Using the known properties of the Riemann zeta-function, −2ζ ′(0) = log 2π and ζ(0) = −1/2, one
gets the relation det∗|ν| = 2π which (together with (3.10)) implies the (3.6).

Remark 5 Implication (3.7)⇒(3.8) is a consequence of the following estimate

| log det∗(2|ν| + O(ǫ)) − log det∗(2|ν|)| =

∣∣∣∣
∫ 1

0

d

dt
log det∗(2|ν| + tO(ǫ))dt

∣∣∣∣ ≤

≤
∫ 1

0

∣∣∣∣tr
(

(2|ν| + tO(ǫ))
∣∣∣
−1

{1}⊥
O(ǫ)

)∣∣∣∣ dt ≤ C1|trO(ǫ)| ≤ C2ǫ

(cf. [13], Lemma 4.1).
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Remark 6 Implication (3.8)⇒(3.9) is a consequence of the standard relations

det∗(ǫA) = ǫζA(0)det∗A, (3.11)

ζN1+N2(0) = h0 − dim Ker(N1 + N2) = h0 − 1, (3.12)

where h0 is the constant term in the asymptotical expansion of tr e−t(N1+N2) as t → 0+, the relation
ζ|ν|(0) = −1 and the result from [5]:

h0 = 0 . (3.13)

Corollary 1 One has the asymptotics

det(∆,X \ B(ǫ)) ∼ 27/6√πe2ζ′(−1)+5/12det∗∆
Area(X )

ǫ1/3 (3.14)

as ǫ → 0.

Proof. This immediately follows from Proposition 2, (3.6) and the relation

det(∆, B(ǫ)) = 2−1/6π−1/2ǫ−1/3e−2ζ′(−1)−5/12

found in [19].

Remark 7 It is interesting to compare (3.14) with the asymptotics of the first eigenvalue of the
operator of the Dirichlet boundary value problem in X \ B(ǫ),

λ1(∆,X \ B(ǫ)) ∼ − 2π

Area(X )
(log ǫ)−1

as ǫ → 0, which was found in [16].

3.3 Symmetric case

Let X be a translation surface of genus g ≥ 1, z a local coordinate in a vicinity of a nonsingular point
P of X , such that z(P ) = 0 and in the ball {|z| ≤ ǫ} the operator ∆ acts as −4∂z∂z̄. Introduce a
straight cut I(ǫ/2) connecting the points z = 0 and z = ǫ/2 and glue two copies of X \I(ǫ/2) along the
cut in a usual way. One gets a translation surface X̂ of genus 2g and the area Area(X̂ ) = 2Area(X ).
The end points of the cut give rise to two conical points, P1, P2 of conical angles 4π on X̂ . Let ∆̂ be
the (Friedrichs extension of) Laplacian on X̂ . The following statement is a very special case of (1.11)
proved in an alternative way in order to get information about the unknown constants δg in (1.11)

Proposition 4 One has the asymptotics

det∗∆̂ ∼ 2κ0

Area(X )
{det∗∆}2 ǫ1/2, (3.15)

as ǫ → 0, where the constant κ0 is the same for all translation surfaces X (and for all g ≥ 1) and is
defined via formula (3.27) below.

Remark 8 The factor 2/Area(X ) is nothing but Area(X̂ )/[Area(X )Area(X )] that is why we are not
attaching the factor 2 to the constant κ0 in (3.15).
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Proof. First, notice that the surface X̂ is provided with a natural involution ∗, and the shores of the
cut I(ǫ) (two homologous saddle connections, γ and γ′ on X̂ ) are fixed by this involution. One has
the standard (∆̂-invariant) decomposition L2(X̂ ) = Lsymm

2 (X̂ )
⊕

Lantisymm
2 (X̂ ) and the functions u

from the domain of ∆̂ which enter Lantisymm
2 (X̂ ) satisfy u|γ∪γ′ = 0, whereas the functions u from the

domain of ∆̂ which enter Lsymm
2 (X̂ ) satisfy un|γ∪γ′ = 0. This shows that the operator ∆̂ is unitary

equivalent to the direct sum of the operators ∆D and ∆N of the homogeneous Dirichlet and Neumann
boundary value problems in X \ I(ǫ) (cf., e. g., [9], p. 79) and, therefore,

det∗∆̂ = det∆Ddet∗∆N . (3.16)

We are to study the asymptotics of det∆D and det∗∆N as ǫ → 0.
Asymptotics of det∆D. We will be using the generalizations of the BFK formula (Theorems

B and B* from [3]) to the case of Laplacians on 2d manifolds with boundary with Dirichlet (and
Neumann) boundary conditions. Such generalizations are straightforward and are mentioned in [13]
(see Remark on page 326). Their proofs differ from the standard proof of Theorem B* from [3]
insignificantly. For the operator ∆D the following surgery formula holds true:

det∆D = det(∆,X \ B(ǫ))det(∆, B(ǫ) \ I(ǫ))det(Nǫ + N int,D
ǫ ) , (3.17)

where Nǫ is the Dirichlet-to-Neumann operator from Lemma 4; the operator N int,D
ǫ : C∞(∂B(ǫ)) →

C∞(∂B(ǫ)) is defined via N int,D
ǫ (f) = un|∂B(ǫ), with u subject to






∆u = 0 in B(ǫ) \ I(ǫ)

u|∂B(ǫ) = f

u|I(ǫ) = 0

(3.18)

and (∆, B(ǫ)\I(ǫ)) is the operator of the homogeneous Dirichlet boundary value problem in B(ǫ)\I(ǫ).
(Notice that there are no coefficient of the type Area/length at the right hand side of (3.17): all the
operators there are invertible and (3.17) is an analog of Theorem B from [3].) The asymptotics of
the first factor in (3.17) is given in (3.14), the asymptotics of other two factors can be obtained as
consequences of homogeneity properties. Due to (3.11) one has

det(∆, B(ǫ) \ I(ǫ)) = ǫ−2ζ(∆,B(ǫ)\I(ǫ))(0)det(∆, B(1) \ I(1)), (3.19)

where the value of ζ(∆,B(ǫ)\I(ǫ))(0) coincides with the term h0 of the corresponding heat asymptotics
(cf., (3.12); clearly, dimKer(∆, B(ǫ) \ I(ǫ)) = 0). The term h0 is easy to find, namely one has

h0 =
1

6
+ 2

π2 − (2π)2

24π(2π)
=

1

24
, (3.20)

where the term 1
6 comes from the part ∂B(ǫ) of ∂[B(ǫ) \ I(ǫ)] and two terms π2−(2π)2

24π(2π) come from two

angle points of opening β = 2π at the end points of the cut I(ǫ) (see [4], formula (4.41) or [2], formula
(37); the straight part, int(I(ǫ)) of the boundary makes no input in h0). Thus, one has

det(∆, B(ǫ) \ I(ǫ)) = ǫ−
1
12 det(∆, B(1) \ I(1)) . (3.21)

Moreover, from the result of [5] and the relation dimKer(Nǫ + N int,D
ǫ ) = 0 one gets the equality

ζNǫ+N int,D
ǫ

(0) = 0
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and, therefore,

det(Nǫ + N int,D
ǫ ) = det(ǫNǫ + ǫN int,D

ǫ ) = det(|ν| + O(ǫ) + N int,D
1 ) ∼ det(|ν| + N int,D

1 ),

as ǫ → 0 due to Lemma 4. Summarizing, one arrives at the asymptotics

det∆D ∼ 27/6√πe2ζ′(−1)+5/12det∗∆ det(|ν| + N int,D
1 )det(∆, B(1) \ I(1))

Area(X )
ǫ

1
4 (3.22)

as ǫ → 0.
Asymptotics of det∆N . For the operator ∆N the analog of the Theorem B* from [3] looks as

follows:

det∗∆N =
Area(X )

2πǫ
det(∆,X \ B(ǫ))det(∆, B(ǫ) \ I(ǫ);D,N)det∗(Nǫ + N int,N

ǫ ) , (3.23)

where Nǫ is the Dirichlet-to-Neumann operator from Lemma 4; the operator N int,N
ǫ : C∞(∂B(ǫ)) →

C∞(∂B(ǫ)) is defined via N int,N
ǫ (f) = un|∂B(ǫ), with u subject to






∆u = 0 in B(ǫ) \ I(ǫ)

u|∂B(ǫ) = f

un|I(ǫ) = 0

(3.24)

and (∆, B(ǫ) \ I(ǫ);D,N) is the operator of the homogeneous boundary value problem in B(ǫ) \ I(ǫ)
with Dirichlet conditions on ∂B(ǫ) and Neumann conditions on I(ǫ). As above, the asymptotics of
the first factor in (3.24) is given in (3.14), the asymptotics of other two factors can be obtained as
consequences of homogeneity properties. Due to (3.11) one has

det(∆, B(ǫ) \ I(ǫ)) = ǫ−2ζ(∆,B(ǫ)\I(ǫ);D,N)(0)det(∆, B(1) \ I(1);D,N) = ǫ−
1
12 det(∆, B(1) \ I(1);D,N) .

(3.25)
(The inputs from the angle points to the h0 are the same for Dirichlet and Neumann problems.) Since
dimKer(Nǫ + N int,N

ǫ ) = 1 one gets the equality

ζNǫ+N int,N
ǫ

(0) = −1

and, therefore,

det∗(Nǫ + N int,N
ǫ ) = ǫdet∗(ǫNǫ + ǫN int,N

ǫ ) = ǫdet∗(|ν| + O(ǫ) + N int,N
1 ) ∼ ǫdet∗(|ν| + N int,N

1 ),

as ǫ → 0 due to Lemma 4. Summarizing, one arrives at the asymptotics

det∗∆N ∼ 21/6π−1/2e2ζ′(−1)+5/12det∗∆ det∗(|ν| + N int,N
1 )det(∆, B(1) \ I(1);D,N)ǫ

1
4 (3.26)

as ǫ → 0. Now from (3.26), (3.22) and (3.16) one gets (3.15) with

κ0 = 21/3e4ζ′(−1)+5/6det(|ν| + N int,D
1 )det(∆, B(1) \ I(1)) det∗(|ν| + N int,N

1 )det(∆, B(1) \ I(1);D,N) .
(3.27)

�

Now from (1.11) (with s = ǫ/2) and (3.15) one gets the relation

δ2g = 2
√

2κ0(δg)
2

for the constant δg from (1.7). This implies

δN = (2
√

2κ0)
N−1δN

1 , (3.28)

with δ1 from (1.9) for any N of the form N = 2n. In the next subsection we show that (3.28) holds
for any natural number N .
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Figure 1:

3.4 General case

Let Y be a translation surface of genus g−1 and let also T be a translation surface of genus one (a flat
torus). Take two disks, DY and DT of radius ǫ in Y and T with centers P and Q and introduce two
straight cuts of length ǫ/2 starting at points P ∈ Y and Q ∈ T . Gluing the surfaces Y and T along
the cuts one gets the translation surface X of genus g. The shores of the cuts give rise to the saddle
connections γ and γ′ on X . The boundary ∂B(ǫ) = ∂DY of the disk in Y gives rise to the contour Γ
on X . Let Yǫ = Y \ DY and Zǫ = X \ Yǫ. Let Wǫ = T \ DT , gluing Wǫ and Zǫ along the boundary
∂DT = Γ one gets the symmetric translation surface S of genus two. (See Figure 1, the opposite sides
of all the parallelograms there are identified.)

By virtue of Proposition 2, one has

det∗∆X =
Area(X )

length(Γ)
det(∆,Yǫ)det(∆,Zǫ)det∗(NYǫ + NZǫ) (3.29)

det∗∆S =
2Area(T )

length(Γ)
det(∆,Wǫ)det(∆,Zǫ)det∗(NWǫ + NZǫ) (3.30)

and, therefore,

det∗∆X =
Area(X )

2Area(T )

det∗(NYǫ + NZǫ)

det∗(NWǫ + NZǫ)

det(∆,Yǫ)

det(∆,Wǫ)
det∗∆S . (3.31)

Using Lemma 4, we have

log
det∗(NYǫ + NZǫ)

det∗(NWǫ + NZǫ)
= log

det∗(|ν| + O1(ǫ) + NZǫ)

det∗(|ν| + O2(ǫ) + NZǫ)
=
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=

∫ 1

0

d

dt
log det∗(|ν| + tO1(ǫ) + (1 − t)O2(ǫ) + NZǫ)dt =

=

∫ 1

0
tr
[
(|ν| + tO1(ǫ) + (1 − t)O2(ǫ) + NZǫ)

−1
{1}⊥(O1(ǫ) − O2(ǫ))

]
dt = O(ǫ)

and, therefore,
det∗(NYǫ + NZǫ)

det∗(NWǫ + NZǫ)
∼ 1

as ǫ → 0. Due to (3.14) we get

det(∆,Yǫ)

det(∆,Wǫ)
∼ det∗∆Y

det∗∆T

Area(T )

Area(Y)
.

Finally, from (3.15) it follows that

det∗∆S ∼ 2κ0

Area(T )
{det∗∆T }2ǫ

1
2 .

Thus, we conclude from (3.31) that

det∗∆X ∼ Area(X )

Area(Y)Area(T )
κ0det∗∆Ydet∗∆T ǫ

1
2 (3.32)

as ǫ → 0. Comparing (3.32) and (1.11) (with s := ǫ/2), one arrives at the main result of the present
paper.

Theorem 3 The following expression for the constant δg from (1.7) holds true:

δg = (2
√

2κ0)
g−1δg

1 , (3.33)

where κ0 is given by (3.27) and δ1 is from (1.9).
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