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MODULI VIA DOUBLE PANTS DECOMPOSITIONS
ANNA FELIKSON AND SERGEY NATANZON

ABSTRACT. We consider (local) parametrizations of Teichmiiller space T, ,, (of genus
g hyperbolic surfaces with n boundary components) by lengths of 6g—6+3n geodesics.
We find a large family of suitable sets of 6g—6+3n geodesics, each set forming a special
structure called “admissible double pants decomposition”. For admissible double
pants decompositions containing no double curves we show that the lengths of curves
contained in the decomposition determine the point of 7y ,, up to finitely many choices.
Moreover, these lengths provide a local coordinate in a neighborhood of all points of
Tgn \ X where X is a union of 3¢g — 3 +n hypersurfaces. Furthermore, there exists a
groupoid acting transitively on admissible double pants decompositions and generated
by transformations exchanging only one curve of the decomposition. The local charts
arising from different double pants decompositions compose an atlas covering the
Teichmiiller space. The gluings of the adjacent charts are coming from the elementary
transformations of the decompositions, the gluing functions are algebraic. The same
charts provide an atlas for a large part of the boundary strata in Deligne-Mumford
compactification of the moduli space M, .
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Consider a hyperbolic structure on a closed oriented surface S, ,,, 2g+n > 2, of genus
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g with n boundary components. In [4], Fricke and Klein proved that in case n = 0 the
Teichmiiller space T = 7Ty, for such a surface is homeomorphic to (6g — 6)-dimensional
Euclidean space. Moreover, they specified a point of Teichmiiller space by the lengths
of closed geodesics contained in some (rather large) set.
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After Fricke and Klein many authors investigated various sets of global parameters on
the Teichmiiller space. Fenchel and Nielsen [3] introduced “length-twists” coordinates
which in case of closed surface consist of 3g — 3 lengths of mutually non-intersecting
geodesics and 3g — 3 twist parameters along them. Natanzon [9] described a convenient
set of parameters (including both lengths of geodesics and parameters of other nature),
allowing to recover the Fuchsian group of the surface. A lot of efforts were spent on
descriptions of purely length global parameters, especially, for the question of minimal
possible number of geodesics whose lengths are sufficient to serve as a global coordinate
on the Teichmiiller space. First, it was shown that 9g — 9 length of geodesics may serve
as global parameters in 7,. Later, Wolpert [L3] used the construction of Fricke and
Klein to show that 6g — 6 lengths are sufficient for a local coordinate in 7, (but
not for a global one). It was natural to expect that 6g — 6 lengths of geodesics can
serve as a global coordinate on 7,0, however, Wolpert [14] showed that 7, can not
be parametrized globally by lengths of 6g — 6 geodesics. Seppéld and Sorvali [11]
presented a global parameterization of 7, by 6g —4 length functions (as a by-product
they also gave an example of 6g — 6 length parameters defining the surface up to at
most 4 possibilities). Finally, in [10] Schmutz obtained a global parameterization by
6g — 5 lengths of geodesics, which is due to [14] is minimal possible. Another example
of such a minimal parameterization is given in [5] by Hamenstddt. In the case of
surfaces with cusps or holes the situation is easier: the (6g — 6+ 2m + 3n)-dimensional
Teichmiiller space of surfaces with m cusps and n holes may be globally parametrized
by (6g — 6 + 2m + 3n) length parameters (see [L1], [L0] and [5]). Hamenstadt [6] also
showed that such a parametrization may be extended to the Thurston boundary of 7.

In this paper, we consider the Teichmiiller space 7 = 7,, of marked hyperbolic
structures on an oriented surface S = S;,, 2g +n > 2 of genus g with n geodesic
boundary components. The dimension of this space is 6g — 6 + 3n, so we are interested
in sets of 6g — 6 + 3n curves on S whose lengths parametrize 7. We build a large
family of the sets of 6g — 6 4+ 3n curves such that the lengths of curves from each set
determine a point of 7 up to finitely many possibilities and provide a local coordinate
in neighborhoods of most points of 7, the local charts of this type compose an atlas
on 7T, the transition functions between the charts are algebraic. Moreover, the same
atlas works for regular points of the moduli the space M = T /Mod (where Mod is a
modular group) and covers also a large part of the Deligne-Mumford compactification
of M.

In more details, we build a large family of the sets of 6g—643n curves on S satisfying
the following properties:

1. (Parametrizing property). The lengths of the curves of each set determine a
point of 7 up to finitely many choices; they provide a local coordinate in the
neighborhoods of almost all points of 7.

2. (Double pants decomposition property). Each set compose an admissible double
pants decomposition defined and studied recently in [2]; it consists of two pants
decompositions (where a pants decomposition is a set of curves decomposing
the surface into “pairs of pants”, i.e. into spheres with 3 holes). Each pants
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decomposition defines a handlebody with S as the boundary, so, two pants de-
compositions define a Heegaard splitting of some 3-manifold M?3. The admissi-
ble double pants decompositions are ones corresponding to Heegaard splittings
of the 3-sphere (there exists also an equivalent combinatorial definition which
is used throughout the proofs).

3. (Groupoid action). There exists a groupoid acting on admissible double pants
decompositions transitively and generated by simple transformations of two
types (called “flips” and “handle-twists”), each of the generating transforma-
tions changes exactly one curve of a double pants decomposition. The length
of the new curve is an algebraic function of the lengths of the initial curves.

4. (Atlas on T with algebraic transition functions). The charts arising from ad-
missible double pants decompositions compose an atlas on 7 ; the transition
functions between the charts are algebraic.

5. (Extension to most strata of Deligne-Mumford compactification). Let Mod be
a modular group of S and let M = T /Mod be the corresponding moduli space.
Each point of the Deligne-Mumford compactification M of M is a boundary
point for some chart coming from a double pants decomposition. Moreover,
for most points of M (including almost all points of the strata of minimal
codimension) there exists a chart coming from a double pants decomposition
and covering a neighborhood of the point in the corresponding stratum as well
as covering almost all point in the neighborhood of the point in M.

More precisely, let DP be an admissible double pants decomposition whose curves
are closed geodesics in S. In principle, two pants decompositions contained in D P may
have a common curve (called a double curve), we will be interested in double pants
decompositions containing no double curves. Let I[(DP) be the ordered set of lengths
of curves composing DP. Then we prove the following:

Theorem A. (see Theorem [AII] below). Let DP be an admissible double pants
decomposition without double curves. Then DP together with the ordered set of
lengths [(DP) = {l(¢;)|c; € DP} is a local coordinate in T \ Z where Z is a union of
finitely many codimension 1 subsurfaces in 7 (each homeomorphic to a codimension 1
disk).

Moreover, we also prove the following result.

Theorem B. (see Theorem [B.1] below). Let DP be an admissible double pants de-
composition containing no double curves. Then [(DP) determines a point of 7 up to
finitely many choices.

Composing Theorems A and B with the fact (see [2]) that there exists a groupoid
acting on admissible double pants decompositions transitively, we derive the following
theorem.

Theorem C. (see Theorem [6.8 below). (1) The charts with coordinates [(DP), where
DP is an admissible double pants decomposition without double curves, provide an
atlas on Teichmiller space T .
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(2) The elementary transition functions of these charts are induced by elementary
transformations of double pants decompositions, each elementary transition function
change only one coordinate. This unique non-trivial transition function is algebraic.

(3) The compositions of elementary transition functions act transitively on the charts.

The structure of double pants decomposition is convenient to work with Deligne-
Mumford compactification of the moduli space. Let C' be a set of mutually disjoint
simple curves on S. Contracting the curves contained in C' we obtain a point of the
compactification, on the other hand, we stay in any chart arising from a double pants
decomposition DP such that C' € DP (more precisely, the limit point belongs to the
boundary of the chart), see Theorem [.I] and Corollary

Furthermore, contraction of the curves of C' turns a conveniently chosen double
pants decomposition DP into a double pants decomposition of the obtained surface
with nodal singularities (provided that C' € DP and each curve of C'is intersected by a
unique other curve of DP). There are some cases when such a convenient decomposition
does not exist, however, for the most configuration of curves C' we show that it does
exist. In this case we say that the set C'is good and the stratum S € M is good (here S¢
is the set of nodal surfaces obtained by shrinking all curves of C';, M is the moduli space
and M is its Deligne-Mumford compactification). In particular, all strata of minimal
codimension (i.e. of codimension 2) are good strata. For a good set of curves C' we
define another length-type coordinates as {(DP,C) = {i(¢;), @ |ci e C,c; € DP\CY.

We show that the functions [(DP, C') produce almost charts covering the good strata of
M, i.e. given a point 7 € S¢ in a good stratum S¢ there exists an admissible double
pants decomposition DP and a neighborhood O(7/) C M in a natural topology such
that [(DP,C) produce a local coordinate in O(7') NS¢ and give a local coordinate in
some set O(7')\ Z € M, where Z is a union of finitely many codimension 1 subsurfaces
in M. More precisely, we prove the following theorem.

Theorem D. (see Theorem below). Let S be a nodal surface, let M(S) be its
moduli space and let M(S) be Deligne-Mumford compactification of M. Let Sit,; =
Syood/Mod be the union of good strata in M. Let O be a locus of orbifold points of

M, let O be the closure of O in M. Then

(1) the charts with coordinates I(DP, C') provide an atlas on M\ O and on SO,
(here C' is a good set and DP is an admissible double pants decomposition
without double curves);

(2) each point 7' € St \ O is covered by some almost chart (O'(7'),1(DP,C));

(3) the elementary transition functions of these charts (almost charts) change only
one coordinate, this unique non-trivial transition function is algebraic;

(4) the compositions of elementary transition functions act transitively on the union
of charts and almost charts.

The paper is organized as follows. In Section [Il we recall from [2] the definition
of double pants decompositions and their properties. In Sections 2 and Bl we discuss
Fenchel-Nielsen coordinates on 7, and use them to prove some technical lemmas. In



MODULI VIA DOUBLE PANTS DECOMPOSITIONS 5

Section [4], we prove Theorem A, i.e. we prove that double pants decompositions induce
some local charts on 7 (see Theorem [LTT]). Section [ is devoted to the proof of
Theorem B (see Theorem [5.1]). In Section[@] we collect the above mentioned local charts
into an atlas on 7, this leads to Theorem C (see Theorem [6.8). Finally, in Section [7] we
consider Deligne-Mumford compactification of the moduli space and prove Theorem D

(see Theorem [T.T3).

Acknowledgments. We are grateful to Antonio Costa, Dan Margalit and Saul
Schleimer for helpful discussions. The work was partially written during the first
author’s stay at Max Planck Institute for Mathematics in Bonn. We are grateful to
the Institute for hospitality, support and a nice working atmosphere.

1. PRELIMINARIES [: DOUBLE PANTS DECOMPOSITIONS

In this section we recall from [2] the definition of double pants decompositions and
their properties.

1.1. Pants decompositions. Let S = §,, be an oriented closed surface of genus
g > 0 with n boundary components. We assume 2g + n > 2, which excludes spheres
with less than 3 holes and the torus. The surface S is fixed throughout the paper.

A curve ¢ on S is an embedded closed non-contractible non-selfintersecting curve
considered up to a homotopy of S.

Given a set of curves we always assume that there are no “unnecessary intersections”,
so that if two curves of this set intersect each other in k points then there are no
homotopy equivalent pair of curves intersecting in less than k& points.

For a pair of curves ¢; and ¢y we denote by |c; N ¢z| the number of (geometric)
intersections of ¢; with cs.

Definition 1.1 (Pants decomposition). A pants decomposition of S is a set of (non-
oriented) mutually disjoint curves P = {c¢y, ..., cx} decomposing S into pairs of pants
(i.e. into spheres with 3 holes). In this paper, all boundary curves of S are considered
as a part of each pants decomposition of S.

It is easy to see that any pants decomposition of S, ,, consists of 3g — 3 + 2n (where
39 — 3 + n curves decompose S and n curves are boundary curves). Note, that we
do allow self-folded pants, two of whose boundary components are identified in S. A
surface which consists of one self-folded pair of pants will be called handle.

A curve ¢ € P, is reqular if ¢ ¢ 0S and c is not a self-identified boundary curve of
the self-folded pair of pants (i.e. if it is not lying inside a handle cut out by a curve
d e P).

Definition 1.2 (Flip). Let P = {cy,...,35—3+2,} be a pants decomposition. Define a
flip of P in a regular curve ¢; as a replacing of ¢; C P by any curve ¢, satisfying the
following properties:

e ¢, does not coincide with any of ¢y, ..., c3g—3124;

o |cN¢| =2
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e ¢.Nc; =0 forall j #i.

See Fig. [Tl for an example of a flip. Clearly, an inverse operation to a flip is also a
flip (so that the set of flips compose a groupoid acting on pants decompositions).

OO
N R

FiGure 1.1. Flips of pants decomposition.

Definition 1.3 (Standard decomposition). A decomposition P of Sy, is standard if P
contains g curves cy, ..., ¢, such that ¢;, ¢ = 1,...,n, cuts out a handle.

1.2. Double pants decompositions. Let P = {cy,...,3y_3+2,} be a pants decom-
position. A Lagrangian plane L(P) C H1(S,Z) is a subspace spanned by the homology
classes h(c;), 1 =1,...,3g — 3+ 2n (here ¢; is taken with any orientation).

Two Lagrangian planes £(P;) and L(P,) are in general position if £, N Ly = 0 and
H,(S,Z) = (L4, L2) (where (Ly, Ly) denotes the sublattice of Hy(S,Z) spanned by £,
and Lo).

Definition 1.4 (Double pants decomposition). A double pants decomposition DP =
(P, Py) is a pair of pants decompositions P, and P, of the same surface such that the
Lagrangian planes £, = L(P,) and £, = L(P,) spanned by these pants decompositions
are in general position. P, and P, are called parts of DP.

See Fig. for an example of a double pants decomposition.

FIGURE 1.2. A double pants decomposition (P,, B).

There are several natural transformations on the set of double pants decompositions:
e flips of P,;
e flips of P;
e handle-twists (see Definition below).



MODULI VIA DOUBLE PANTS DECOMPOSITIONS 7

Definition 1.5 (Handle-twists). Given a double pants decomposition DP = (P,, P,)
we define an additional transformation which may be performed if both parts P, and P,
contain the same curve a; = b; separating the same handle b, see Fig.[[3[(a). Let a € h
and b € b be the only curves from P, and P, respectively. Then a handle-twist t,(b)
(respectively, t,(a)) is a Dehn twist along a (respectively, b) in any of two directions

(see Fig. [L3(b)).

Ficure 1.3. Handle-twists: (a) Double self-folded pair of pants; (b)
The same pair of pants after a handle-twist ¢,(b)

Notice that both flips and handle-twists are reversible transformations, so that flips
and handle-twists generate a groupoid acting on the set of double pants decompositions.

Definition 1.6 (Double curve). A curve ¢ € (P,, B,) is double if ¢ € (P, N P,) and

c¢0S.
Definition 1.7 (Standard decomposition). A double pants decomposition (F,, P,) of
Syn 1s standard if there exist g double curves ¢y, ..., ¢, € (P,, P) such that ¢; cuts out

of S a handle b;.

A standard double pants decomposition (P,, P,) is strictly standard if (P,, P,) con-
tains 2g —3+n double curves (i.e. ¢ € {P,UP,} \{P,N P} if and only if ¢ is contained
inside some handle).

See Fig. [[4 for an example of a standard double pants decomposition (this decom-
position may be turned into a strictly standard one in one flip).

FIGURE 1.4. A standard double pants decomposition (P,, F).

Definition 1.8 (Admissible decomposition). A double pants decomposition (FP,, P,) is
admissible if it is possible to transform (P,, P,) to a standard pants decomposition by
a sequence of flips.
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For example, the decomposition shown in Fig. [[.2]is admissible.
The following theorem is the main result of [2].

Theorem 1.9 ([2]). A groupoid generated by flips and handle-twists acts transitively on
admissible double pants decompositions of S = S, ,, (for any (g,n) such that 2g4+n > 2).

Remark 1.10 (Admissible double pants decompositions and Heegaard splitting of S?). A
set of admissible double pants decompositions have an invariant topological description
in terms of Heegaard splittings of 3-manifolds. For each pants decomposition P of S
one may construct a handlebody S such that S is the boundary of S, and all curves of
P are contractible inside S, . A union of two pants decompositions of the same surface
define two different handlebodies bounded by S. Attaching this handlebodies along S
one obtains a Heegaard splitting of some 3-manifold M?(DP). Tt is shown in [2] that
a pants decomposition DP is admissible if and only if M3(DP) = S?, where S is a
3-sphere.

We will also use the following result proved in [2, Lemma 6.1].

Proposition 1.11 ([2]). Let S = S, 29 +n > 2, and Mod(S) be its modular group.
Let (P,, Py) be an admissible double pants decomposition without double curves. Then
v € Mod(S) fizes (P,, Py) if and only if v = id.

2. PRELIMINARIES II: COORDINATES ON TEICHMULLER SPACE

Let S = Sy, be a hyperbolic surface of genus g with n boundary components. Each
boundary component is assumed to be a geodesic of finite length.

A Teichmiiller space T = 7T, is a parameter space of marked hyperbolic metrics on
the surface Sy,. For the marking on S we will usually use admissible double pants
decompositions containing no double curves (this provides a correct marking since any
elements v # e of the modular group Mod(S, ) acts non-trivially on the decomposition,
see [2, Lemma 6.1]).

We will use Fenchel-Nielsen parameterization of the Teichmiiller space. We shortly
explain the parametrization below and refer to [12] for the details.

To build the parameterization one chooses a pants decomposition P of S. Each pair
of pants is uniquely determined by the lengths of its boundary curves. To encode the
concrete hyperbolic structure one need also to now how the adjacent pairs of pants a
sewed together: one can choose an arbitrary way to attach them, and then rotate one
piece along another by any real angle. More precisely, to determine the angle of the

rotation one does the following:

1) for each pair of pants p* € P one chooses three disjoint segments sfj, 1,] €

{1,2, 3} orthogonal to the boundary components b} and bf of p* (so that p* is
decomposed into two right-angled hexagons);

2) then one fixes some way to attach the adjacent pairs of pants p* and p*’ so that
the segments sfj and sf,’j, intersect the curve p* N p* at the same points, this
will produce some special gluing of pairs of pants, all other gluings (with other
angles of rotation of p* with respect to pk’) will be compared with this special
gluing;
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3) for arbitrary gluing the angles of rotation are compared with the chosen spe-
cial gluing, when the angle is changed by 27 one obtains the same hyperbolic
structure on the surface, but the different point of the Teihmiiller space.

So, the Fenchel-Nielsen coordinates on 7 build from the pants decomposition P
consist of 3g — 3+ 2n length parameters [(¢;) (lengths of all the curves ¢; € P including
the boundary curves of S) and 3g — 3 + n angle parameters a(c;) (angles along all
non-boundary curves ¢; € P, ¢; ¢ 05). We denote

FN(P)=A{l(c),a(cj) | c; € P; ¢;j € Pc; ¢ 0S}.

We will also assume that the Dehn twist along ¢; changes a(c;) by 2m.
The construction establishes the homeomorphism between 7~ and R %" x R39-3+n
(where R stays for positive real numbers).

Remark 2.1. After the Teichmiiller space 7T is introduced using any given pants de-
composition Py (or even using a marking of other type), one can choose any pants
decomposition P to introduce the coordinates F'N(P) on the same space 7.

Our aim is to transform Fenchel-Nielsen coordinates to coordinates containing only
length parameters.

Definition 2.2 (Locally parametrizing decomposition). We say that a double pants
decomposition D P is locally parametrizing at the point 7 € T if the functions [(DP) =
{l(¢) | ¢ € DP} provide a local homeomorphism from a neighborhood of 7 to a neigh-
borhood of some point in R%~6t3" By a chart €(DP) we mean a pair (X,[(DP))

where X is the set of points 7 € T such that DP is locally parametrizing at 7.

Our first aim is to prove that admissible double pants decompositions are locally
parametrizing. As an intermediate technical step in the proof we will use mized coordi-
nates, containing some angle-parameters (but less than Fenchel-Nielsen coordinates).

Definition 2.3 (Mized coordinates). Let DP = (P,, P,) be a double pants decom-
position, possibly with some double curves. Let F'N(P,) be some Fenchel-Nielsen
coordinates build from P,. Denote by miz(DP, FN(F,)) the following set of functions:

mix(DP,FN(P,)) ={l(c),a(d) | ce DP,d € P,N P},

where «(c’) is the corresponding angle coordinate in FN(F).

3. SOME PROPERTIES OF LENGTH FUNCTIONS

In this section we prove several facts from hyperbolic geometry. In particular, Lem-
mas [3.4] and will be crucial for the construction of locally parametrizing double
pants decompositions. Lemmas are preparatory. We will denote the hyperbolic
plane by HZ2.

Lemma 3.1. Let S = Spg, let ¢,d € S be two closed curves |dNc| = 2. Let P be a
pants decomposition of S, ¢ € P. Suppose that d' € S is a curve obtained from ¢ by a
flip of P. Then d' = t*(d) for some integer k, where t. is a Dehn twist along c.
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The lemma follows immediately from [2, Lemma 1.16].

Lemma 3.2. Let p € H? be a line separating points O and O'. Given the distances
from p to O and O', the distance OO’ is a monotonic function on the distance PP,
where P and P' are the orthogonal projections of points O and O’ to p.

Proof. Suppose that the points P and O are fixed, and the point P’ (together with O’)
glide away from P, see Fig. Bdlb. Then the point X = OO’ N p glide away from P
which implies that the distance OX grows monotonically when PP’ increases. By the

similar reason O’X grows, and hence, OO’ grows monotonically.
O

FiGURE 3.1. To the proof of Lemma

Lemma 3.3. Let S = Sy 3 be a three-holed sphere with a boundary 0S = c¢; U cy U cs,
and let s;; be a segment orthogonal to ¢; and c;, for i # j, i,j € {1,2,3}. Then the
segments s12, S13, S2.3 decompose S into two congruent right-angled hexagons.

Proof. 1t is clear that the segments s;; decompose S into two right-angled hexagons.
Since a right-angled hexagon is determined (up to an isometry) by the lengths of three

non-adjacent sides (the lengths of s19, 513, S2.3), the hexagons are congruent.
OJ

If the curves a,b € S are orthogonal to each other we will write “a 1 b”.

Lemma 3.4. Let S = 511 be a handle with a boundary curve c, let a,b C S be two
curves la Nb| = 1. Then the set of functions T = (I(a),l(b),l(c)) is a local coordinate
on T\ X where X = {7 € Tl|a L b}. Moreover, T determines the point T € T up to at
most two possibilities.

Proof. Shortly speaking, the coordinates & = (I(a), (), (c)) are produced from Fenchel-
Nielsen coordinates. More precisely, we fix Fenchel-Nielsen coordinates F'N(P) =
(I(a),a(a),l(c)) arising from pants decomposition P = {a,c}. We fix some values of
l(a) and [(c) and denote by o the value of a(a) at the point where [(a) and [(c) have
the chosen values and a is orthogonal to b. We will show that I(b) is a monotonic func-
tion on the absolute value |a(a) — ag|, which will imply all statements of the lemma.
Below we explain this in more details.

First, we cut S along a and obtain a pair of pants S’ with three boundary components
¢, a and a’. For each of the three pairs of boundary components of S’ we draw a segment
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orthogonal to both of these two components. Denote these segments by S¢.q, Sc,a/, Sa,a’s
see Fig. B2la. The three segments decompose S’ into two right-angled hexagons H
and H,. Similarly, together with the curve a the three segments decompose the initial
handle S into two hexagons.

Consider the covering of S by hyperbolic plane. We are interested in the tiling of the
plane by the images of H; and Hs. Notice that the copies of H; and H, adjacent along
the image of s, 4 (Or S.q O Sc o) have this side in common, while the gluing along the
images of a and a' depends on the angle parameter a(a) € FN(P). More precisely,
when a(a) = ap the adjacent along a hexagons have a common side, otherwise the
hexagons are shifted one along another as in Fig. B2lb. With growth of «(a) the
hexagons in one row glide monotonically along the hexagons of the other row. We
denote by p and p’ the lines separating the rows. R

Now, consider the curve b € S, |bNa| = 1. First, suppose that b L «a, i.e. the image b
of b in the hyperbolic plane coincide with the image AA’ of s, . Now, we increase a(a)
and look at the image b € H? of b: since b is a closed geodesic on S, b is a line forming
the same angles with p and p/. This implies that b passes through the midpoint O of
AA’. Hence, AY = A'Y’, where Y = b p and Y’ = bN p/. Furthermore, the hexagon
H is shifted with respect to the hexagon Hj to the distance p = Z(Q)W. Denote
by T' the vertex of Hj projecting to the same point of S as A’ (as in Fig. B.2lb), then
TY = AY = A'Y’. Hence, AY =1/2p = l(a)w. The same formula holds for
any positive value of (a(a) — ap) as well as for any negative one (in the latter case the
point Y € [ lies on the other side with respect to A).

This implies that the distance Y'Y’ = [(b) grows monotonically with the growth of
la(a) — apl:

!/

Y = cosh OY = cosh OA cosh AY = cosh OA cosh(l(a) M

cosh

)

Hence, |a(a) —ap| may be recovered from I(b). So, given the lengths (I(a),[(b),1(c)) one
may find the Fenchel-Nielsen coordinates F'N(P) up to two possibilities. In particular,
in the neighborhood of a point 7 € 7 where a is not orthogonal to b, the sign of
(a(a) — ) does not changes, which implies that the functions (I(a),1(b),[(c)) form a
local coordinate in 7\ X, X = {7 € T|a L b}.

0]

Remark 3.5. Given Fenchel-Nielsen coordinates (I(a), a(a),(c)) on the handle, for each
pair of lengths ly(a) and ly(c) there exists a unique angle ag(a) such that a is orthogonal
to b.

Lemma 3.6. Let S = Sy 4 be a sphere with four holes, with boundary curves cy, ca, c3, c4.
Let a € S be a closed geodesic and let b € S be a closed geodesic obtained from the
curve a by a flip. Then
(1) the angle formed by a and b is of the same size for both intersections of a and
b;.
(2) the set of functions T = (I(a),l(b),l(c1),1(ca),l(c3),l(cq)) is a local coordinate
on T\ X where X = {7 € Tla L b};
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FIGURE 3.2. Length coordinates on a handle

(3) T determines the point T € T up two at most two possibilities.

Proof. The idea of the proof is the same as in the proof of Lemma B4} the coordinate
7 is obtained from Fenchel-Nielsen coordinates F'N(P) built from pants decomposition
P ={a,c1,co,c3,¢4}. We show that given the values of (I(a),l(c1),1(cz2),(cs3),1(cq)) the
length [(b) is a monotonic function on the absolute value |a(a) — |, where oy is the
value of a(a) € FN(P) at the point of T such that a is orthogonal to b (and the values
of (I(a),l(c1),1(c2),1(c3),1(cq)) are the chosen ones). Hence, [(b) determines a(a) up to
2 possibilities. Moreover, in the neighborhood of a point 7 € T where |a(a) — ag| # 0,
the sign of (a(a) — ap) is determined uniquely by the sign at 7.

In more details, the curve a decompose S into two pairs of pants, and each pair
of pants is decomposed into two right-angled hexagons (respectively, by the segments
Sacys Sereas Seza AN Sareqs Sezeqs Seyar Orthogonal to a pair of boundary components), see
Fig.B3la. The images of four right-angled hexagons tile the covering hyperbolic plane:
two hexagons adjacent by the image of the side a are shifted by the distance p =
l(a)o‘(agigao along the line containing the images of a, see Fig. B.3lb.

Denote by O and O’ the midpoints of images of s., ., and S. .. Notice that the
symmetry in the point O preserves the tiling of the hyperbolic plane by hexagons
(compare with Lemma [B3). The same holds for the symmetry in O’. Consider a line
OO’ and its intersection with the images of the curve a. It is easy to see that all angles
made by OO’ and images of a are equal. Furthermore, OO’ intersects the images of
Seq o ad Sy ¢, always in midpoints (to see that consider an image O” of O with respect
to the symmetry in O": it lies on OO’ and in the midpoint of some image of s.,.,, then
consider the image of O’ with respect to a symmetry in O” and so on). This implies
that the line OO’ is the union of images of some closed geodesic ¢ € S, |cNa| = 2.
Hence, ¢ may be obtained from a by a flip. Notice that ¢ intersects a in two points,
forming two angles of the same size. The length I(c) = 2- OO’ increases as |a(a) — oy
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increases (the distances from the points O and O’ to the line p remain constant, but
one point glide along p with respect to the other, so that we may apply Lemma [3.2)).

Increasing the angle «(a), we increase the shift between the adjacent hexagons.
Increasing «(a) by 2w we obtain the initial tiling of the plane by hexagons, but the
line OO’ in the new picture is moved, so that it is an image of another closed curve
¢ € S which may be obtained from a by a flip. Increasing (or decreasing) «(a) by
27k we run through all curves on S which may be obtained by a flip from a (compare
with Lemma B.J]). In particular, for some value of k we obtain the curve b. This
implies statement (1). So, the length I(b) increases with growth of |a(a) — ap|. Hence
[(b) determines a(a) up to two possibilities, which implies that the set of functions
Z determines Fenchel-Nielsen coordinates F'N(P) up to two possibilities. This proves
statement (3). If b is not orthogonal to a at 7 € T then in the neighborhood of 7 the
function I(b) (together with the chosen value of a(a) at 7) determines completely the
function a(a), which implies that Z is a set of local coordinates, and statement (2) is

also proved.
O

F1GURE 3.3. Length coordinates on a four-holed sphere

Remark 3.7. Given Fenchel-Nielsen coordinates on Sp 4, for each lengths ly(a) together
with fixed lengths of the boundary components of Sy 4 there exists a unique angle ag(a)
such that a is orthogonal to b.

4. LOCALLY PARAMETRIZING DOUBLE PANTS DECOMPOSITIONS

In this section we prove Theorem [LTT] which states that for an admissible double
pants decomposition DP the functions [(DP) provide a local parameter in neighbor-
hoods of almost all points 7 € T.

The proof of the theorem is inductive. In Section I we build some examples
of locally parametrizing double pants decompositions. These examples called special
decompositions will be the base of the induction. In section [4.2] we show that any ad-
missible double pants decomposition may be obtained from a special one by a sequence
of flips. Finally, in Section we show that flips preserve the parametrizing properties
of double pants decompositions.
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4.1. Examples of locally parametrizing double pants decompositions. In this
section we present an example of a locally parametrizing double pants decomposition
for each surface Sy ,,. This will provide a base for the inductive proof of Theorem [.11]
The construction is obtained as a modification of Fenchel-Nielsen coordinates.

Definition 4.1 (Special decomposition, conjugate curves). A double pants decompo-
sition DP = (P,, P,) is special with the standard part P, if the following holds:

(1) DP contains no double curves;

(2) the part P, is standard,

(3) DP may be obtained from a strictly standard double pants decomposition D Py
via a sequence of m = 3g — 3 + n flips fi,..., f, of the P,-part.

For a special decomposition DP = (P,, P,) we will say that a curve a; € P, is
conjugate to a curve b; € P, if either a; is obtained by a flip f; from b; or a; and b;
belong to the same handle in the standard decomposition P,. In the former case (a;, b;)
will called a flip-conjugate pair, in the latter case (a;, b;) will called a handle-conjugate
Dair.

See Fig. [4.1] for an example of a special decomposition. Notice, that any special
double pants decomposition is admissible.

FIGURE 4.1. Example of a special double pants decomposition. The
black nodes show the intersections of the conjugate curves. The number
near the nodes show the sequence of flips taking the strictly standard
decomposition to the special one.

Lemma 4.2. For each standard pants decomposition P, there exists a special double
pants decomposition DP = (P,, P,).

Proof. To build the required decomposition we consider a strictly standard double
pants decomposition DP' = (P!, P,) containing P, and apply a flip of the P,-part to
each of the double curves.

O

Notation 4.3. Let DP = (P,, P,) be a special double pants decomposition. Denote
by Z(DP) € T the locus of points where q; is orthogonal to b; for at least one pair of
conjugate curves (a;,b;) € DP.
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Remark 4.4. Let (a;,b;) be a pair of conjugate curves in a special double pants de-
composition. Remarks and B.7 imply that the locus of points where a; is or-
thogonal to b; is homeomorphic to a hyperplane in 7 = R °>" x R39-3+" (here
Remarks and [B.7 work for cases of handle-conjugate and flip-conjugate pairs re-
spectively). Therefore, the set Z(DP) € T is homeomorphic to a union of 3g — 3 +n

hyperplanes in 7 = R 22" x R3g-3+n,

Lemma 4.5. Let DP = (P,, B,) be a special double pants decomposition. Then

(1) I(DP) is a local coordinate in T \ Z(DP);
(2) I(DP) determine the point in T up to at most 23973%" choices.

Proof. Suppose that P, is a standard part of DP. Choose Fenchel-Nielsen coordinates
FN(P,) based on the pants decomposition P,. It is a global coordinate on 7. We will
substitute angle coordinates of F'N(F,) by length coordinates one by one.

Let f1,..., fm be the sequence of flips described in the Definition d.2] let by, . . ., b,, be
the curves of P, such that f; is a flip applied to b;. Let DP;, = f;o---o fi(DPF,), where
DP, is the corresponding strictly standard double pants decomposition. Applying
Lemma [3.4] sufficiently to all handle-conjugate pairs of curves a;,b; € DP we see that
mix(DPy, FN(P,)) is a local coordinate away from Z (D Fy) and defines the coordinate
FN(P,) up to 29 choices. Then, applying Lemma to each pair of flip-conjugate
curves successively (more precisely, to the subsurface Sy 4 obtained by a union of two
pairs of pants adjacent to b; in P,-part of DP;), we see that mix(DFP;, FN(F,)) is a
local coordinate away from Z(DP;) and defines mix(DP;_1, FN(P,)) up to 2 choices.
This implies the lemma.

O

4.2. Induction step: reduction to flips.

Lemma 4.6. Let DP be an admissible double pants decomposition. Then there exists
a sequence of flips fi,..., fx such that DPy = fyo---0o fi(DP) is a strictly standard
double pants decomposition.

Proof. Since DP is an admissible decomposition, there exists a sequence of flips taking
DP to a standard double pants decomposition. It is known that flips act transitively on
pants decompositions of Sy (see [7]), which implies that any strictly standard double
pants decomposition may be transformed to a strictly standard ones by flips.

O

Lemma 4.7. Let DP be a double pants decomposition containing no double curves.
Suppose that DP'" = fi o ---o fi(DP), where f;, i = 1,...,k, is a flip. If DP’
contains no double curves then there exists a sequence of flips g1,...,g, such that
DP = g.o0---0g(DP) and no of the decompositions g; o ---0 g (DP), i =1,...,r
contains double curves.

Proof. Denote DP = (P,, P,) and DP" = (P., P/) We will use the fact that flips of the
P,-part commute with flips of the P,-part.

Let C={c|ce DP; = fio---0 fi(DP),0 <i <k} be a set of all curves appearing
during the transformation from DP to DP’' = fyo---o fi(DP).
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First, for each of the curves a; € P, we apply a flip g; so that g;(a;) ¢ C: this is
possible, since C'is a finite set, while a set of flips for a given curve a; in a given pants
decomposition is either infinite or empty (in the later case, a; lies in a handle bounded
by some other curve a;, so we can first destroy the handle applying a flip to a;, and
then apply a flip to a;). Denote by P/ the obtained P,-part of the decomposition.

Second, we transform P, to P, by the same sequence of flips as in f1,..., fi.

Third, there exists a sequence fi,..., f/ of flips taking P” to P,. Denote £ = f/ o
-+-o f]. Denote C" ={c|c€ DP" = flo---0 f{(DP),0 < i < }. For each of the
curves b; € P/ we apply a flip g/ so that gi(b;) ¢ C".

Next, we transform P, to P, by the same sequence of flips as in fi,..., fx.

Finally, we apply the inverse sequence 7! to take the Py-part back to the state P.

Clearly, we can not obtain double curves at any stage of the transformation, so the

lemma is proved.
O

Lemma together with Lemma [A.7 imply the following lemma.

Lemma 4.8. Let DP be an admissible double pants decomposition without double
curves. Then there exists a special double pants decomposition DP' and a sequence
of flips f1,..., fr such that DPy = fy o ---o fi(DP) and no of the decompositions
fio---o fi(DP),1=1,...,k, contains double curves.

4.3. Induction step: flips. In this section we show that flips take locally parametriz-
ing double pants decompositions to locally parametrizing ones.
In the next lemma we show this property for almost all flips.

Lemma 4.9. Let DP be a parametrizing double pants decomposition at 7 € T. Let f’
and f" be two different flips of the same curve ¢ € DP, such that neither DP' = f'(DP)
nor DP" = f"(DP) contain double curves. If DP' is not parametrizing at T € T then
DP" is parametrizing at 7.

Proof. Let DP = (P,,P,), ¢ € P,. Let DP' = (P., P,), DP" = (P!, P,). Denote by
¢ and ¢’ the curves of P! and P! obtained from ¢ by flips f’ and f” respectively. In
addition, denote by S, a subsurface of S composed of two pairs of pants in P, adjacent
to the curve c.

Suppose that DP’ is not a parametrizing double pants decomposition at 7 € 7. By
definition, this means that there exists a non-trivial deformation £(7) of the hyperbolic
structure, where & preserves all lengths of curves contained in (P!, B,). This deforma-
tion may be described as a set of simultaneous small twists along the curves of P, (the
rates of the twists need not coincide or to be constant).

Suppose that £ contains no twist