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Abstract

We give the generalized triangle inequalities which determine the possible ∆-valued

side lengths of n-gons in thick Euclidean buildings of rank 2.

1 Introduction

Let X be a symmetric space of noncompact type or a thick Euclidean building. We are inter-

ested in the following geometric question:

Which are the possible side lengths of polygons in X?

In this context the appropriate notion of length of an oriented geodesic segment is given by a

vector in the Euclidean Weyl chamber ∆euc associated to X . If X = G/K is a symmetric space,

the full invariant of a segment modulo the action of G is precisely this vector-valued length

since we can identify X ×X/G ∼= ∆euc (cf. [KLM09a]). For X a Euclidean building the same

notion of vector-valued length can be defined (cf. [KLM09b]). We denote by Pn(X) ⊂ ∆n
euc

the set of all possible ∆euc-valued side lengths of n-gons in X .

An algebraic question (the so-called Eigenvalue Problem), which goes back to 1912 when it

was already studied by H. Weyl, is closely related to a special case of the geometric question

above, namely, for the symmetric space X = SL(m,C)/SU(m). It is one of the motivations

for considering this geometric problem. The Eigenvalue Problem asks:

How are the eigenvalues of two Hermitian matrices related to the eigenvalues of their sum?

We refer to [KLM09a] for more information on the relation between these two questions and

[Fu00] for more history on this problem.

In [KLM09a] and [KLM09b] it is shown that the set Pn(X) depends only on the spherical

Coxeter complex associated to X (i.e. on the spherical Weyl chamber △sph). We will therefore

sometimes refer to Pn(△sph) as the set of side lengths of n-gons in X a symmetric space or a

Euclidean building with △sph as spherical Weyl chamber.

∗cramos@mathematik.uni-muenchen.de
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For a symmetric space X = G/K the set of possible side lengths has been completely deter-

mined in [KLM09a]: Pn(X) is a finite sided convex polyhedral cone and it can be described as

the solution set of a finite set of homogeneous linear inequalities in terms of the Schubert cal-

culus in the homology of the generalized Grassmannian manifolds associated to the symmetric

space G/K. It follows, that for a Euclidean building X ′ with the same associated spherical Weyl

chamber △sph as X , the set Pn(X
′) is also a finite sided convex polyhedral cone determined by

the same inequalities as Pn(X) = Pn(△sph).

As already pointed out in [KLM09b] for the case of exotic spherical Coxeter complexes (i.e.

when it is the Coxeter complex of a Euclidean building but it does not occur for a symmetric

space) the structure of the set Pn(△sph) cannot be described with this method, since we do

not have a Schubert calculus for these Coxeter complexes. Thus, the structure of Pn(△sph) for

these Coxeter complexes and even its convexity were unknown. It is clear that we can restrict

our attention to irreducible Coxeter complexes. By a result of Tits [Ti77], exotic irreducible

Coxeter complexes occur only in rank 2. Our main result is the description of Pn(X) in this

case (compare with Theorem 6.14).

Theorem 1.1. For a Euclidean building X of rank 2, the space Pn(X) is a finite sided convex

polyhedral cone. The set of inequalities defining Pn(X) can be given in terms of the combina-

torics of the spherical Coxeter complex associated to X.

The inequalities given in our main theorem coincide with the so-called weak triangle in-

equalities (cf. [KLM09a, Sec. 3.8]). Moreover, our arguments also work (see Remark 6.12)

to prove the weak triangle inequalities for buildings of arbitrary rank (cf. [KLM09a, Thm.

3.34]). For symmetric spaces, these inequalities correspond to specially simple intersections of

Schubert cells in the description of Pn(X) given in [KLM09a]. Their description depend only

in the Weyl group of X and therefore, they can be defined for arbitrary Coxeter complexes.

Consider the side length map σ : Poln(X) = Xn → ∆n
euc. The set Pn(X) which we are

interested in is nothing else than the image of σ. We use a direct geometric approach to

describe this image. Our main idea is to study the singular values of σ by deforming the sides

of a given polygon in X . This strategy was already used for the case of symmetric spaces by B.

Leeb in [Le] to give a simple proof of the Thompson Conjecture (cf. [KLM09a, Theorem 1.1]).

In this paper we adapt this variational method to the case of Euclidean buildings and use it to

describe the space Pn(X).

Throughout this paper we state the results, whenever possible, in such a way that they

apply to Euclidean buildings of arbitrary rank. In particular, Sections 4, 5 and 6.1 (except

Lemma 6.6 and Proposition 6.7) do not use the assumption on the rank of the building. And

when we do use the assumption, we indicate it explicitly in the statement of the corresponding

result.

The set of inequalities obtained in Theorem 1.1 constitute an irredundant system defining

the polyhedral cone Pn(X). The inequalities given by Schubert calculus in [KLM09a] are

known to be irredundant for the cases of type An (see [KTW04]), however, these seem to be

the only cases. A smaller set of inequalities is given in [BK06] by defining a new product in the

cohomology of flag varieties. The irredundancy of this set has been recently shown in [Re10].

After a first version of this paper was written, the author learned about a recent related
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paper of Berenstein and Kapovich [BKa10], where the generalized triangle inequalities for rank

2 are also determined by a different approach.

Acknowledgments. I would like to thank Bernhard Leeb for bringing this problem to my

attention and sharing his ideas in the case of symmetric spaces with me.

Contents

1 Introduction 1

2 Preliminaries 3

2.1 CAT(0) spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.2 Coxeter complex . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.3 Buildings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

3 The set of functionals Ln 5

4 Polygons 5

4.1 Holonomy map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

4.2 Opening a polygon in an apartment . . . . . . . . . . . . . . . . . . . . . . . . . 6

4.3 Folding a polygon into an apartment . . . . . . . . . . . . . . . . . . . . . . . . 7

5 Critical values of the side length map σ 8

6 The generalized triangle inequalities 11

6.1 Crossing the walls HL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

6.2 The boundary of Pn(X) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2 Preliminaries

A very good introduction to the concepts used in this paper is the work [KL98, ch. 2-4]. We

refer also to [BH99] for more information on metric spaces with upper curvature bounds and

to [KLM09b, ch. 2-3] for the different concepts of length in Euclidean buildings.

2.1 CAT(0) spaces

Recall that a complete geodesic metric space X is said to be CAT (0) if the geodesic triangles

in X are not thicker that the corresponding triangles in the Euclidean space.

For two points x, y ∈ X we denote with xy the geodesic segment between them. The link

ΣxX is the completion of the space of directions at x with the angle metric. −→xy ∈ ΣxX denotes

the direction of the segment xy at x.
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Two complete geodesic lines γ1, γ2 are said to be parallel if they have finite Hausdorff

distance, or equivalently, if the functions d(·, γi)|γ3−i
are constant. The parallel set Pγ is defined

as the union of all geodesic lines parallel to γ. It is a closed convex set that splits as a metric

product Pγ ∼= R× Y , where Y is also a CAT (0) space.

For a polygon p, or more precisely, an n-gon in X we mean the union of n oriented geodesic

segments x0x1, . . . , xn−1xn with xn = x0. Since geodesic segments in CAT (0) spaces between

two given points are unique, we can also describe p by its vertices. We write p = (x0, . . . , xn−1).

The union q of n oriented geodesic segments x0x1, . . . , xn−1xn where xn 6= x0 will be called a

polyhedral path and we write q = (x0, . . . , xn).

2.2 Coxeter complex

A spherical Coxeter complex is a pair (S,W ) consisting of a unit sphere S with its usual metric

and a finite group W of isometries, the Weyl group, generated by reflections on total geodesic

spheres of codimension one. A Weyl chamber in S is a fundamental domain of the action

W y S. The model Weyl chamber is defined as ∆sph := S/W . We say that two points in S

have the same W -type (or just type) if they belong to the same W -orbit.

A Euclidean Coxeter complex is a pair (E,Waff ) consisting of a Euclidean space E and a

group of isometries Waff , the affine Weyl group, generated by reflections on hyperplanes and

such that its rotational part W := rot(Waff ) is finite. The set of fixed points of reflections

in Waff are called walls of (E,Waff ). We define the Waff -type of a point in E as above. To

(E,Waff ), we can associate the spherical Coxeter complex (S,W ), where S := ∂∞E is the Tits

boundary of E. The Euclidean model Weyl chamber ∆euc is the complete Euclidean cone over

∆sph.

The link ΣxE of a point x ∈ E is naturally a spherical Coxeter complex with Weyl group

StabWaff
(x). We will also use another structure on ΣxE as a Coxeter complex with Weyl group

W . This will be given by the natural identification ΣxE ∼= ∂∞E.

The refined length of the oriented geodesic segment xy ⊂ E is defined as the image of (x, y)

under the projection E×E → (E×E)/Waff . The ∆-valued length, or just length, is the image

of the refined length under the natural forgetful map (E × E)/Waff → ∆euc. We denote with

σ the length map assigning to a segment its ∆-valued length.

We can also define the refined length of an oriented segment xy in the spherical Coxeter

complex (S,W ) analogously as the image of (x, y) under the projection S × S → (S × S)/W .

2.3 Buildings

For an introduction to spherical and Euclidean buildings from the point of view of metric

geometry, we refer to [KL98].

Let X be a thick Euclidean building modelled in the Euclidean Coxeter complex (E,Waff ).

The concepts of refined length and ∆-valued length of an oriented geodesic segment xy ⊂ X can

be also defined naturally by identifying an apartment containing xy with the Coxeter complex

(E,Waff ).
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For a polygon p = (x0, . . . , xn−1) in X , we write σ(p) = (σ(x0x1), . . . , σ(xn−1x0)) ∈ ∆n
euc

and call σ : Xn → ∆n
euc the side length map. The space Pn(X) := σ(Xn) is the set of possible

∆-valued side lengths of n-gons in X . We say that a polygon in X is regular if all its sides

are regular, that is if their ∆-valued lengths lie in the interior of ∆euc. The space of regular

polygons is an open dense subset of Xn.

We will use following result from [KLM09b] concerning the refined side lengths of polygons

in X . We reproduce here its statement for the convenience of the reader.

Theorem 2.1 (Transfer theorem). Let X and X ′ be thick Euclidean buildings modelled on

the same Euclidean Coxeter complex (E,Waff). Let p = (x0, . . . , xn−1) be a polygon in X and

let x′0x
′
1 be a segment in X ′ with the same refined length as x0x1. Then there exists a polygon

p′ = (x′0, x
′
1, . . . , x

′
n−1) in X

′ with the same refined side lengths as of p.

3 The set of functionals Ln

We fix a vertex v0 of (E,Waff ) with StabWaff
(v0) ∼= W . We obtain in this way an identification

E ∼= RdimE . By fixing v0 we get an embedding W →֒ Waff and also the (coarser) structure

(E,W ) as Euclidean Coxeter complex. We will think of the Euclidean Weyl chamber ∆euc
∼=

E/W as embedded in E, such that ∆euc is a fundamental domain of the actionW y E. Hence,

the cone point of ∆euc corresponds to v0.

Let η ∈ E be a maximal singular unit vector, i.e. −→v0η is a vertex of (Σv0E,W ). We define

the following linear functional:

lη : ∆euc → R

v 7→ 〈v, η〉

where 〈·, ·〉 denotes the standard scalar product on RdimE . We denote with Ln the finite set of

functionals on ∆n
euc of the form L(e1, . . . , en) = lη1(e1) + · · ·+ lηn(en) where all the ηi have the

same W -type. We write L = (lη1 , . . . , lηn) for such a functional.

Let HL denote the hyperplane L−1(0) ∩∆n
euc for L ∈ Ln. We call HL a wall in ∆n

euc. The

set of walls HL divide ∆n
euc in finitely many convex polyhedral cones. We denote with Cn

the family of the interiors of these cones, i.e. Cn is the set of the connected components of

int(∆n
euc) \

⋃

L∈Ln
HL.

4 Polygons

4.1 Holonomy map

Let p = (x0, . . . , xn−1) be an n-gon in X . We say that a n-tuple F = (F1, . . . , Fn) of apartments

in X supports the polygon p if ei := xi−1xi ⊂ Fi and the convex set Fi ∩Fi+1 is top dimensional

and contains xi in its interior.

Remark 4.1. If p is a regular polygon then there always exists an n-tuple F supporting p. F

can be constructed as follows: Let A ∈ Σx0X be an apartment containing −−→x0x1 and
−−−−→x0xn−1 and
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take v ∈ A antipodal to −−→x0x1. Extend the segment x0x1 a little further than x0 in direction

of v to a segment x′0x1. Inductively for i = 1, . . . , n− 1 choose Fi ∈ X to be an apartment

containing x′i−1xi and an initial part of xixi+1 and extend xixi+1 in Fi a little further than xi
to a segment x′ixi+1. Finally choose Fn to contain x′n−1x0 and an initial part of x0x1 and x0x

′
0.

This last step is possible because of our first choice of x′0. The polyhedron Fi ∩Fi+1 contains a

regular segment with xi in its interior. In particular Fi ∩ Fi+1 is top dimensional.

Let now p be a polygon and F an n-tuple supporting it. Notice that the convex set Fi∩Fi+1

is a neighborhood of xi in Fi and Fi+1. Therefore we have:

Si := ΣxiFi = ΣxiFi+1 = Σxi(Fi ∩ Fi+1).

So we have a natural map φi : Si → Si+1 (just take parallel transport in Fi+1 along the

side ei+1) and an associated holonomy map φp : Si → Si defined as the composition φp =

φi+n−1 ◦ · · · ◦ φi+1 ◦ φi. We introduce also the following notation:

φki := φi+k−1 ◦ · · · ◦ φi : Si → Si+k

If we identify Si with ∂∞Fi in the natural way, we obtain a structure of spherical Coxeter

complex on Si with Weyl group W . With this structure the maps φi are isomorphisms of

Coxeter complexes and the holonomy map φp is an element of the Weyl group W . In particular

the set of fixed points of φp is a singular sphere in (Si,W ). Notice that the holonomy map (and

therefore also its fixed points set) depends on the choice of the n-tuple F supporting p. We

will make use of this flexibility later.

4.2 Opening a polygon in an apartment

Let p = (x0, . . . , xn−1) be a n-gon in X and let F be an n-tuple supporting it. We construct

points x′i ∈ F1, i = 1, . . . , n inductively as follows: for i = 0, 1 just set x′0 = x0 and x′1 = x1
and suppose we have already constructed x′i. For each x ∈ F1 we can identify naturally ΣxF1

with ∂∞F1 thus giving it a structure of spherical Coxeter complex with Weyl group W . Let

ψi : Si → Σx′iF be a isomorphism of spherical Coxeter complexes such that ψi(
−−−→xixi−1) =

−−−→
x′ix

′
i−1.

Notice that if p is regular such an isomorphism is unique. Let now x′i+1 be the point in F1 such

that d(x′i, x
′
i+1) = d(xi, xi+1) and

−−−−→
x′i, x

′
i+1 = ψi(

−−−−→xi, xi+1) (see Fig. 1). We remark that in general

x′n 6= x′0 and (x′0, . . . , x
′
n) is a polygonal path hence the expression “opening a polygon”. We

can continue this process and define x′j ∈ F1 for j > n.

The isomorphisms ψi can be chosen (and we do so) so that the induced automorphisms of

(S1,W )

Si
φi

−−−→ Si+1




y

ψi





y

ψi+1

Σx′iF
∼= S1 −−−→ Σx′i+1

F ∼= S1

are just the identity map.
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F2

x0

x1

x2x′

2

x′

3

F1

F3

Figure 1: Opening a triangle

4.3 Folding a polygon into an apartment

This construction was first considered in [KLM08, Sec. 6.1].

For simplicity on the notation, suppose p = (x0, x1, x2) is a triangle in X . There is a

partition y1 = x1, y1, . . . , yk = x2 of the segment x1x2 such that the triangles (x0, yi, yi+1) for

i = 1, . . . , k − 1 are contained in an apartment Ai. We define points ŷi in the apartment A1

inductively as follows: for i = 1 set ŷ1 = y1 = x1 and suppose we have already defined ŷi. Let

βi : Ai → A1 be an isomorphism of Euclidean Coxeter complexes, such that β(x0yi) = x0ŷi.

We define ŷi+1 := β(yi+1). We say that the polygon p̂ = (x0, ŷ1, . . . , ŷk) is the result of folding

the triangle p into A1. We say that the points ŷi for i = 2, . . . , k− 1 are the break points of the

folded polygon p̂. Notice that the segments x0x1 and x0x2 have the same refined side lengths as

the segments x0ŷ1 and x0ŷk respectively. Write y0 = x0 and define ζi :=
−−−→yiyi−1 and ξi :=

−−−→yiyi+1,

analogously ζ̂i :=
−−−→
ŷiŷi−1 and ξ̂i :=

−−−→
ŷiŷi+1.

A billiard triangle is a polygon p̂ = (x0, ŷ1, . . . , ŷk) in an apartment A1 such that for

i = 2, . . . , k − 1 the directions ζ̂i and ξ̂i are antipodal in the spherical Coxeter complex

(ΣŷiA1, StabWaff
(ŷi)) modulo the action of the Weyl group StabWaff

(ŷi). Clearly, a folded

triangle is a billiard triangle. Conversely, the next condition is necessary and sufficient for a

billiard triangle to be a folded triangle.

For i = 2, . . . , k − 1 there is a triangle (ζ ′i, ξ
′
i, τ

′
i) in the spherical building ΣŷiX such that

d(ζ ′i, ξ
′
i) = π and the refined lengths of ζ ′iτ

′
i and ξ′iτ

′
i are the same as of ζ̂i

−−→
ŷix0 and ξ̂i

−−→
ŷix0

respectively.

We investigate now the relation between the constructions of opening and folding a polygon.

Let p = (x0, x1, x2) be a triangle in X and let F be a triple supporting p. Observe that we can

choose A1 = F1. Let p̂ = (x0, ŷ1, . . . , ŷk) be the folded triangle. Again we identify naturally

ΣxFj ∼= Sj with ∂∞Fj for each x ∈ Fj and give the structure of spherical Coxeter complex with

Weyl group W .

For i = 1, . . . , k − 1. Let αi : S2
∼= ΣyiF2 → S1

∼= ΣŷiF1 be an isomorphism of spherical

Coxeter complexes so that αi(ζi) = ζ̂i. Notice that for i = 1 we just have α1 = φ−1
1 . Analogously,

let αk : S3
∼= Σx2F3 → S1 be an isomorphism so that αk(ζk = −−→x2x1) = ζ̂k and let α0 : S1

∼=

Σx0F1 → S1 be so that α0(
−−→x0x2) =

−−→
ŷ0ŷk = ζ̂0. Observe that if p is regular, then the αi are
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unique.

Since p̂ = (x0, ŷ1, . . . , ŷk) is a billiard triangle, there are isometries µi of F1 in the affine

Weyl group Waff for i = 0, . . . , k such that ζ̂i
−−−−−−→
ŷiµi(ŷi+1) has the same refined length as ζiξi. In

particular for i = 2, . . . , k− 1 the points ŷi−1, ŷi, µi(ŷi+1) lie on a geodesic segment. Hence, we

call the µi the straightening isometries. It holds:

µ1 ◦ · · · ◦ µk ◦ µ0(ŷ1) = x′n+1

where x′n+1 is constructed as in Section 4.2. Consider the natural action of µi on S1. The

straightening isometries can be chosen (if p is regular then they are unique) such that

αi = µi ◦ αi+1 for i = 1, . . . , k − 2

αi = µi ◦ αi+1 ◦ φi−1 for i = k − 1, k, 0.

It follows that

µ−1
0 ◦ µ−1

k ◦ · · · ◦ µ−1
1 = φ0 ◦ φ2 ◦ φ1 = φp : S1 → S1

is the holonomy map at x1.

x
′

2

x
′

3

y
′

3

x1 = ŷ1 = x
′

1

x0

µ2

µ3

ŷ3
α3(ξ3)

α1(ξ1)

α4(ξ4)

ŷ4

α2(ξ2)
ŷ2

Figure 2: Folding and opening a triangle

The constructions for n-gons (n > 3) are analogous.

5 Critical values of the side length map σ

For a regular value of the side length map σ we mean a value s ∈ Pn(X) for which there is

a polygon p with σ(p) = s and such that σ is an open map at p. First we give a sufficient

condition in terms of the holonomy map for σ(p) being a regular value of σ.

Proposition 5.1. Let p be an n-gon in X and F an n-tuple supporting p. Suppose that the

holonomy map φp has no fixed points, then the space Pn(X) is a neighborhood of σ(p) in ∆n
euc.
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Proof. Choose ǫ > 0 so that Bxi(nǫ) ⊂ Fi ∩ Fi+1 for all i. For v ∈ Si and for 0 < t < nǫ we

write exp(tv) to denote the point x ∈ Fi ∩ Fi+1 with d(x, xi) = t and −→xix = v.

We want to vary the polygon p along v ∈ Si to a polygon pv = (xv0, . . . , x
v
n−1) with side

lengths σ(evj ) = σ(ej) for j 6= i. For this, let t < ǫ and define xvi+k := exp(t φki (v)) for

k = 0, . . . , n − 1 where the subindices are considered modulo n. Notice that for j 6= i the

segment evj = xvj−1x
v
j is just a translation in the apartment Fj of the segment ej . Hence the

condition on the side lengths above is clearly fulfilled. But since φni (v) = φp(v) 6= v we get (see

Fig. 3)

σ(evi ) = σ(exp(d(xi−1, xi)
−−−→xi−1xi − t (φp(v)− v))).

xi−1

xi

xi+1

xv
i+1

ei

ei+1

ev
i ev

i+1

exp(tφp(v))

xv
i−1

xv
i

Figure 3: Variation of the side ei

Since φp has no fixed points the set {σ(evi ) | v ∈ Si, 0 ≤ t < ǫ} is a neighborhood of σ(ei)

in ∆euc. This means that we can deform every side length of p independently, thus Pn(X) is a

neighborhood of σ(p) in ∆n
euc.

The next proposition says that for a building with only one vertex the critical values of σ

must lie in the walls HL.

Proposition 5.2. Let p be an n-gon in a thick Euclidean building X which has only one vertex.

Let F be an n-tuple supporting p. Suppose that the holonomy map φp fixes a maximal singular

direction. Then there exists a functional L ∈ Ln, such that L(σ(p)) = 0.

Proof. First observe that we have a natural identification of any apartment with R
dimX since

we assumed that X has only one vertex. This gives us also an identification Waff = W . Let

η ∈ S1 be a maximal singular direction fixed by φp : S1 → S1. Let v ∈ F1 be a unit vector with

direction η ∈ S1. Now open the polygon p = (x0, . . . , xn) in the apartment F1 to the polygonal

path p′ = (x′1, . . . , x
′
n+1). We can also fold p into F1 and obtain the straightening isometry

µ := µ−1
0 ◦µ−1

k ◦ · · · ◦µ−1
1 . Recall that µ(x′n+1) = x′1 and µ(v) = v since µ induces the holonomy

map. It then follows that 〈x′1, v〉 = 〈x′n+1, v〉.

Now let ηi ∈ E be a maximal singular unit vector of the same W -type as η, such that

lηi(σ(xi−1xi)) = 〈x′i − x′i−1, v〉. Set L = (lη1 , . . . , lηn), then

L(σ(p)) =

∫

p′
〈·, v〉 = 〈x′n+1, v〉 − 〈x′1, v〉 = 0.
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We use next the result in [KLM09b] that Pn(X) depends only on the spherical Coxeter

complex to transfer the result above to arbitrary buildings.

Corollary 5.3. Let s ∈ Pn(X)∩ int ∆n
euc and suppose that L(s) 6= 0 for all functionals L ∈ Ln.

Then Pn(X) is a neighborhood of s in ∆n
euc.

Proof. By [KLM09b] we may assume that X has only one vertex. Let p be a regular polygon

with σ(p) = s and let F be an n-tuple supporting p. By Proposition 5.2 the holonomy map

has no fixed points. The result now follows from Proposition 5.1.

Lemma 5.4. Let pk be a sequence of regular n-gons in X such that σ(pk) → s in ∆n
euc, then

there exists an n-gon p in X such that σ(p) = s.

Proof. We assume again that X has only one vertex. Let pk = (xk0, . . . , x
k
n−1) and let Fk =

(F k
1 , . . . , F

k
n ) be n-tuples supporting pk. After transferring the polygons pk (cf. Theorem 2.1)

we may assume that the sides xk0x
k
1 lie in the same apartment F and that xk0 lie in the same

Euclidean Weyl chamber ∆euc ⊂ F . After a small perturbation of the polygons we may also

suppose that xk0 lie in the interior of ∆euc. We open now the polygons pk in the apartment F

to polygonal paths p′k = (xk0
′
, . . . , xkn

′
).

If xk0
′
→ ∞ in F , then for k big enough p′k must be completely contained in the interior of

∆euc. In particular, folding the polygon pk into F cannot have break points. This implies that

pk is contained in the apartment F for k big enough. Since σ(pk) → s, then it is clear that the

polygons pk subconverge in F modulo translations in F to a polygon p with σ(p) = s.

Suppose now that xk0
′
stay in a bounded region. Then after taking a subsequence we can

assume that the polygonal paths p′k converge to a polygonal path p′ = (x′0, . . . , x
′
n) with ∆-

valued side lengths s. We want now to lift this polygonal path near the polygons pk. Let

ρki : F
k
i → F be the isomorphisms of Euclidean Coxeter complexes that send xki−1x

k
i to x

k
i−1

′
xki

′
.

So we have xki
′
∈ ρki (F

k
i ∩ F k

i+1) = ρki+1(F
k
i ∩ F k

i+1). Hence, for k big enough we have x′i ∈

ρki (F
k
i ∩F k

i+1) = ρki+1(F
k
i ∩F

k
i+1) and we can define zki := (ρki )

−1(x′i) = (ρki+1)
−1(x′i) ∈ F k

i ∩F k
i+1.

Then qk := (zk0 , . . . , z
k
n) is a polygonal path with the same side lengths as p′, i.e. σ(qk) = s.

However qk may still not be a closed polygon.

Notice that d(zk0 , x
k
0) = d(x′0, x

k
0

′
) and d(zkn, x

k
0) = d(x′n, x

k
n

′
), thus d(zk0 , z

k
n) ≤ d(x′0, x

k
0

′
) +

d(x′n, x
k
n

′
) → 0. On the other hand, observe that xk0

′
and xkn

′
have the same Waff -type and

therefore also zk0 and zkn have the same type. But Waff is finite, so d(zk0 , z
k
n) can only take

finitely many values. It follows that for k big enough zk0 = zkn and qk is a closed polygon with

∆-valued side lengths s.

Corollary 5.5. For any open cone C ∈ Cn the intersection Pn(X)∩C is empty or C. Moreover,

if C ⊂ Pn(X), then C̄ ⊂ Pn(X).

Proof. The intersection Pn(X) ∩ C is open by Corollary 5.3 and closed by Lemma 5.4.
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6 The generalized triangle inequalities

6.1 Crossing the walls HL

Suppose p is a polygon in X with σ(p) = s ∈ HL for some functional L ∈ Ln. Considering

Corollary 5.5 the natural question is if there is a cone C ∈ Cn such that s ∈ C̄ ⊂ Pn(X). We

would also like to describe all cones in Cn with this property. With this in mind we investigate

in this section following question. When can we find polygons p′ with ∆-valued side lengths

near s and such that L ◦ σ(p) > 0 (or < 0)? For this we might try to study the side lengths of

small perturbations of p. However since a Euclidean building has dimension equal to his rank,

we do not have much flexibility to perturbate the polygon. Thus we must be more compliant

with the variations of p that we want to admit. Therefore we will often have to translate the

polygon to other place in X where we can perform the perturbations.

Let L = (lη1 , . . . , lηn) be a functional in Ln. For the rest of this section p = (x0, . . . , xn−1)

will be always a regular n-gon such that σ(p) ∈ HL.

Let F be a n-tuple of apartments supporting p. Let vi, wi ∈ Si be maximal singular

directions (in the structure coming from Si ∼= ∂∞Fi with Weyl group W ) such that if yi ∈

Fi, zi ∈ Fi+1 are unit vectors with base point xi and directions vi and wi respectively, then

lηi(σ(ei)) = 〈ei, yi〉 and lηi+1
(σ(ei+1)) = 〈ei+1, zi〉. Observe that vi, wi are of the same W -type

as ηi, . . . , ηn We will therefore sometimes write lηi ◦ σ = 〈·, vi〉 and lηi+1
◦ σ = 〈·, wi〉. Notice

that yi is just the parallel translation along ei in Fi of zi−1, that is vi = φi−1(wi−1).

Lemma 6.1. If in the notation above vi 6= wi for some i, then for any neighborhood U of σ(p)

in ∆n
euc there exist n-gons p1, p2 in X with σ(pi) ∈ U and L ◦ σ(p1) > 0 > L ◦ σ(p2).

Proof. The proof is similar to the one of Proposition 5.1. For ǫ > 0 small, let x′i := exp(ǫvi).

Consider the polygon p1 := (x0, . . . , x
′
i, . . . , xn−1), then

L(σ(p1)) = lη1(σ(x0x1)) + · · ·+ 〈xi−1xi + ǫ yi, yi〉+ 〈xixi+1 − ǫ yi, zi〉+ · · ·+ lηn(σ(xn−1x0))

= L(σ(p)) + ǫ(〈yi, yi〉 − 〈yi, zi〉) > L(σ(p)) = 0.

Analogously for p2 := (x1, . . . , exp(ǫwi), . . . , xn−1) we have L(σ(p2)) < L(σ(p)) = 0.

Assume now that vi = wi ∈ Si for all i. In particular, the holonomy map φp : Si → Si has

the fixed point vi. Let γi (resp. λi) be the line (i.e. complete geodesic) in Fi (resp. Fi+1) with

xi = γi(0) = λi(0) and vi = γ̇i(0) = λ̇i(0). If γi = λi for all i, then the polygon p is contained

in a parallel set, namely the set Pγ0 of all lines parallel to γ0.

Lemma 6.2. Suppose p is not contained in any parallel set Pγ, where γ is a geodesic line with

η = γ(∞) such that vi =
−→xiη for all i. Then for any neighborhood U of σ(p) in ∆n

euc there exist

n-gons p1, p2 in X with σ(pi) ∈ U and L ◦ σ(p1) > 0 > L ◦ σ(p2).

Proof. Let P = (ν0, . . . , νn−1) be an n-tuple of geodesic segments νi : [s−, s+] → X with

νi(0) = xi, ν̇i = vi. and such that the convex hull CH(νi, νi+1) is a (2-dimensional) flat

quadrilateral. Such a P exists, just take the initial parts of the geodesics γi ∩ λi. Suppose

now that P is maximal, i.e. the segments νi cannot be extended. If |s±| = ∞, then the νi are

11



parallel geodesic lines and p ⊂ Pν0. Hence at least one of s+ or −s− must be < ∞. Suppose

s = s+ <∞ (the other case is analogous).

Now we want to displace p along νi to the region, where it does not look locally like a

parallel set anymore: set p′ = (x′0, . . . , x
′
n−1) = (ν0(s), . . . , νn−1(s)). Then p′ is an n-gon with

σ(p′) = σ(p). Choose apartments Ai containing the convex sets CH(νi−1, νi). Let ui :=

−ν̇i(s) ∈ Σx′i(Ai ∩ Ai+1) and let v′i ∈ Σx′iAi, w
′
i ∈ Σx′iAi+1 be the antipodes of ui in Σx′iAi and

Σx′iAi+1 respectively.

If v′i = w′
i for all i, then we can extend the νi inside Ai ∩Ai+1 contradicting the maximality

of P . Hence, there is a j such that v′j 6= w′
j.

Moreover, if it holds for all i that d(
−−−→
x′ix

′
i+1, v

′
i) = d(

−−−→
x′ix

′
i+1, w

′
i), then ui

−−−→
x′ix

′
i+1v

′
i is a geodesic

segment in Σx′iX of length π. Let zi+1 ∈ Ai+1 be a point near x′i+1 with
−−−−−→
x′i+1zi+1 = v′i+1. We can

choose zi+1 close enough to x′i+1, so that
−−−→
x′izi+1 is a regular point in the same Weyl chamber as

−−−→
x′ix

′
i+1. It follows that

−−−→
x′izi+1 lies in the intersection of the segments ui

−−−→
x′ix

′
i+1v

′
i and ui

−−−→
x′ix

′
i+1w

′
i.

Thus ui
−−−→
x′izi+1v

′
i is a geodesic segment of length π. Let now zi ∈ Ai be a point with

−−→
x′izi = v′i

and so that CH(x′i, zi, zi+1) is a flat triangle. It follows that the union of the (2-dimensional)

flat convex sets CH(xi, xi+1, x
′
i+1, x

′
i), CH(x′i, xi+1′ , zi+1) and CH(x′i, zi+1, zi) is a flat convex

quadrilateral. (See Figure 4.) Notice also that νi(s
−)zi are extensions of the geodesic segments

νi(s
−)νi(s

+). Thus this contradicts as well the maximality of P . Hence, there is a j such that

d(
−−−−→
x′jx

′
j+1, v

′
j) > d(

−−−−→
x′jx

′
j+1, w

′
j).

xi+1

x
′

i+1

w
′

i

x
′

i

v
′

i

v
′

i+1

zi+1

ui+1

ui

xi

zi

Figure 4: Extending the geodesics νi

Let x̃j := exp(ǫv′j) in Aj for some small ǫ > 0. Then σ(x̃jx
′
j+1) = σ(x′jx

′
j+1) − ǫη̃ =

σ(xjxj+1)− ǫη̃ for some unit vector η̃ ∈ E of the same type as ηj+1. By the above consideration

we must have η̃ 6= ηj+1, otherwise d(
−−−−→
x′jx

′
j+1, v

′
j) = d(

−−−−→
x′jx

′
j+1, w

′
j). In particular lηj+1

(σ(x̃jx
′
j+1)) =

〈σ(xjxj+1) − ǫη̃ , ηj+1〉 > lηj+1
(σ(xjxj+1)) − ǫ. On the other hand, lηj (σ(x

′
j−1x̃j)) = 〈x′j−1x

′
j +

ǫv′j , v′j〉 = lηj (σ(xj−1xj)) + ǫ. Thus, for p1 := (x′1, . . . , x̃j , . . . , x
′
n−1) we have L(σ(p1)) >

L(σ(p)) = 0.

Analogously for p2 := (x′1, . . . , exp(ǫw
′
j), . . . , x

′
n−1) we get L(σ(p2)) < L(σ(p)) = 0.

The next question is what happens when p is contained in such a parallel set Pγ. In this last

situation we cannot always get the same conclusion as in Lemmata 6.1 and 6.2. For instance,

if the wall HL lies in the boundary of Pn(X), then we can cross HL in one direction but not in

the opposite one.
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Remark 6.3. Suppose that p is contained in Pγ. Let bη− : X → R be a Busemann function

associated to η− = γ(−∞) (see e.g. [KLM09b, Sec. 2.2] for a definition). Then by considering

an apartment parallel to γ containing the side xi−1xi, we see that lηi(σ(xi−1xi)) = bη−(xi) −

bη−(xi−1). In particular

L(σ(p)) = lη1(σ(x0x1)) + · · ·+ lηn(σ(xn−1x0)) =

n
∑

i=1

(bη−(xi)− bη−(xi−1)) = 0.

Thus, if p′ is the result of a small variation of the polygon p within the parallel set Pγ , it still

holds L(σ(p′)) = 0.

The next lemma gives a contition that let us cross the wall HL in the positive direction.

Suppose p is contained in Pγ . Assume also that there are vertices xi, xj, xj+1 of p with

the following property. Let A0, A1 be apartments in Pγ containing the segment xjxj+1 and an

initial part of the segment xjxi and xj+1xi respectively. Let yk ∈ Ak for k = 0, 1 be points in

the initial parts of the segments xjxi and xj+1xi respectively. Thus xjxj+1yk are flat triangles

in Ak. Suppose that for some k = 0, 1 there is a singular hyperplane wk ⊂ Ak such that the

directions η = γ(∞), −−−−→xjxj+1 and (−1)k−−−−→ykxj+k lie in the same open half space determined by

wk (after the natural identification of ∂∞Ai and ΣxAi for x ∈ Ai). (See Figure 5.)

y0

xj

xj+1

w0

η

A0

Figure 5: Setting of Lemma 6.4

Lemma 6.4. Under the assumptions above, for any neighborhood U of σ(p) in ∆n
euc there is

an n-gon p̄ in X with σ(p̄) ∈ U and L ◦ σ(p̄) > 0.

Proof. We show the lemma when the singular hyperplane wk exists for k = 0. The other case

k = 1 is analogous.

Denote h± the open half space of A0 determined by w0 containing the direction γ(±∞). Let

ǫ > 0 be small. First we displace the polygon p along γ such that xj lies in h
+ and d(xj, w0) < ǫ.

Let A′
0 be an apartment in X such that A0 ∩ A′

0 = h−. Let x′j ∈ A′
0 be the point such that

d(y0, x
′
j) = d(y0, xj) and

−−→
y0x

′
j =

−−→y0xj . Let z ∈ A0 be the reflection of xj in the hyperplane w0.

Observe that x′j /∈ A0 and xj+1 /∈ A′
0. It follows that σ(x

′
jxj+1) = σ(zxj+1). In particular

lηj+1
(σ(x′jxj+1)) = lηj+1

(σ(zxj+1)) = 〈zxj+1, η〉 = lηj+1
(σ(xjxj+1)) + 〈zxj , η〉 > lηj+1

(σ(xjxj+1)).

Notice that the refined length of x′jxi is the same as of xjxi. Hence, by Theorem 2.1 we can

transfer the polygon (xi, xi+1, . . . , xj) to a polygon (x′i, x
′
i+1, . . . , x

′
j) with the same ∆-valued side

lengths. The n-gon p̄ = (x′i, x
′
i+1, . . . , x

′
j, xj+1, . . . , xi−1) satisfy the conclusion of the lemma.
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If the polygon p is completely contained in an apartment in Pγ, then the condition for the

lemma above can be stated more easily.

Corollary 6.5. Suppose p is contained in an apartment A ⊂ Pγ. Suppose there are two sides

xixi+1, xjxj+1 of p and a singular hyperplane w ⊂ A, such that the directions η = γ(∞), −−−→xixi+1

and −−−−→xjxj+1 lie in the same open half space determined by w. Then for any neighborhood U of

σ(p) in ∆n
euc there is an n-gon p̄ in X with σ(p̄) ∈ U and L ◦ σ(p̄) > 0.

Proof. Consider the segments d1 = xixj and d2 = xjxi. After a small variation of the polygon

p inside of the apartment A, we may assume that d1 (and therefore also d2) is regular. Then

for one k = 1, 2, it must hold, that dk and η lie in the same open half space determined by w.

Suppose w.l.o.g. k = 1. Then Lemma 6.4 applies for the vertices xi, xj , xj+1.

Let us assume now that the building X has rank 2. We explain another method special for

this case to cross the wall HL.

Let p = (x0, x1, x2) be a regular triangle contained in Pγ but not contained in any apartment.

It is easy to see, that when we fold p into an apartment A, it has exactly one break point. After

relabeling the vertices we can assume that the break point y lies in the side x1x2 and that the

sides of the folded triangle p̂ = (x̂0 = x0, x̂1 = x1, y, x̂2) do not intersect in their interiors (see

Figure 6). After displacing p̂ along γ we can assume that y is a vertex of X . We can take γ to

be contained in A and go through y.

Lemma 6.6. We use the setting above (in particular, rank(X) = 2). Suppose that the Weyl

chamber containing −→yx1 is not adjacent to Σyγ. Then for any neighborhood U of σ(p) in ∆3
euc

there are triangles p1, p2 in X with σ(pi) ∈ U and L ◦ σ(p1) > 0 > L ◦ σ(p2).

Proof. We identify A with R2 by taking y to the origin. For a unit vector a ∈ A we write

h±a := {±〈·, a〉 > 0}. Let ℓ ⊂ A be the singular line through y such that Σyℓ is adjacent to

the simplicial convex hull of −→yx1
−→
yx̂2 and the directions η = γ(∞), −→yx1 and

−→
yx̂2 are in the same

open half plane determined by ℓ. It exists by the assumptions of the lemma. Let ℓ′ ⊂ A be

the reflection of ℓ in γ. Let u, v, v′ be unit vectors orthogonal to γ, ℓ and ℓ′ respectively and

such that x0 ∈ h−u and η = γ(∞) ∈ h+v ∩ h+v′ . Then the simplicial convex hull of −→yx1
−→
yx̂2 is

Σy(h+v ∩ h−v′). (See Figure 6.)

Let A3 be an apartment in X such that A ∩ A3 = h−u ∩ h−v . Let x′2 ∈ A3 be the point so

that d(x0, x
′
2) = d(x0, x̂2) and

−−→
x0x

′
2 =

−−→
x0x̂2. Notice that x̂2 /∈ A3, thus, x

′
2 6= x̂2. Observe also

that x′2 /∈ Pγ, hence, x
′
2 6= x2.

Let ζ := γ(−∞). The concatenation of the segments −→yx1
−→
yζ ∈ ΣyA and

−→
yζ

−→
yx′2 ∈ ΣyA3 gives

a segment in ΣyX of length π (see Figure 7). Therefore x1yx2 is a geodesic segment and the

triangle p′ = (x0, x1, x
′
2) =: (z0, z1, z2) has the same side lengths as p. Set A1 := A and let A2

be an apartment in X containing the segment z1z2.

Let νi be the geodesic rays with νi(0) = zi and νi(−∞) = ζ . Then CH(νi, νi+1) are (2-

dimensional) flat stripes. We want to see that the νi cannot be extended to parallel geodesic

lines. Suppose then the contrary: there are parallel geodesic lines ν ′i containing νi. Set η′ :=

ν ′i(∞). Then p′ ⊂ Y := Pν′
0
and in particular,

−→
yζ,−→yzi ∈ ΣyY . Since −→yz1,

−→yz2 ∈ ΣyA2 are

antipodal regular points, the apartment containing them is unique. Therefore ΣyA2 ⊂ ΣyY
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ℓ
γ

ℓ′

y
x0

x̂2

x1

A1 ∩ A3

Figure 6: The folded triangle p̂

and in particular,
−→
yη′ ∈ ΣyA2.

Let k ∈ {1, 2} so that the Weyl chamber containing
−→
yx̂k is adjacent to Σyℓ

′. Let σk ⊂

ΣyA2k−1 be the Weyl chamber containing −→yzk and let σ̂k ∈ Σy(A1 ∩ A3) be the antipodal

chamber to σk. (See Figure 7 for k = 2.) Notice that
−→
yζ−→yz0 intersects σ̂k in its interior. In

particular σ̂k ⊂ ΣyY . It follows that the unique apartment containing σk and σ̂k is contained

in ΣyY , i.e. ΣyA2k−1 ⊂ ΣyY .

�
�
�
�

��

��
��
��
��

��
��
��
��

−→
yζ

−→yz2−→yη

σ

σ̂k

Σyℓ
′

Σyℓ

−→yz1

−→yz0

Σyℓ

Σyℓ
′

−→
yη′

Figure 7: ΣyX

Let σ ⊂ Σy(A1 ∩ A3) ⊂ ΣyY be the Weyl chamber adjacent to ℓ. The Weyl chamber

containing −−−→yz3−k is antipodal to σ. Hence, the unique apartment containing σ and −−−→yz3−k is

contained in ΣyY , i.e. ΣyA5−2k ⊂ ΣyY .

We have conclude that A1, A3 ⊂ ΣyY = ΣyPν′
0
, but this is not possible because of the

construction of A3. Therefore the geodesic rays νi cannot be extended to complete parallel

geodesic lines. The lemma now follows from Lemma 6.2 and its proof.

We can show now that for rank 2 the space Pn(X) is a polyhedral cone. Its convexity will

be shown in the next section.

Proposition 6.7. If X has rank 2, then Pn(X) is a union of the closures of polyhedral cones

in Cn.
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Proof. We have already seen in Corollary 5.5 that if for C ∈ Cn holds Pn(X) ∩ C 6= ∅, then

C ⊂ Pn(X). Now let p = (x0, . . . , xn−1) be a polygon in X . We want to show that σ(p) is

contained in C for some C ∈ Cn. Since any polygon can be approximated by regular polygons,

we may assume that p is regular. Suppose now s := σ(p) ∈ HL. If for any neighborhood U of s

we can find polygons with side lengths in U \HL, then we are done. Indeed, in this case, there

is an open cone C ∈ Cn such that Pn(X) ∩ C 6= ∅ and s ∈ C.

Suppose then that for some neighborhood U of σ(p) we cannot find polygons p′ with side

lengths in U and L ◦ σ(p′) 6= 0. Lemmata 6.1 and 6.2 implies that p lies in a parallel set Pγ
and the functional L is given in p by taking scalar product with the direction of η = γ(∞).

Suppose first that the triangle t = (x0, x1, x2) lies in an apartment parallel to γ. Then it is

easy to see that Lemma 6.4 must apply for one of the functionals L′ = (lη1 , lη2 , lη′) or −L′,

where η′ is so that lη′(σ(x2x0)) = 〈x2x0, η〉. If t is not contained in an apartment, then we fold

it into an apartment as in the setting of Lemma 6.6. Then, either Lemma 6.6 applies or the

Weyl chamber containing the direction −−−→xixi+1 of the side of t with the break point must be

adjacent to γ. If the last occurs, it is again easy to see, that Lemma 6.4 must apply for L′ or

−L′. In either case, we find a triangle t′ = (x′0, x
′
1, x

′
2) with L

′(σ(t)) 6= 0 and such that (modulo

displacement along γ) the refined side lengths of t′ are as near as we want to the ones of t.

After a small variation of the polygon (x0, x2, . . . , xn−1) inside the parallel set Pγ and displacing

it along γ, we obtain a polygon q = (x′′0, x
′′
2, . . . , x

′′
n−1) so that the refined side length of x′0x

′
2 is

the same as of x′′0x
′′
2. Then by the Transfer Theorem 2.1 we can glue t and q along x′0x

′
2 and

x′′0x
′′
2 to a polygon p′ with ∆-valued side lengths near s and L(σ(p)) 6= 0.

Remark 6.8. Proposition 6.7 is also true in rank > 2 by the results of [KLM09a] and

[KLM09b]. However our proof here uses Lemma 6.6, which we only showed in rank 2.

6.2 The boundary of Pn(X)

We have seen in the previous section different methods which allows to cross certain walls HL

within the space Pn(X). We will show in this section that for the case of buildings of rank 2 the

walls where this method cannot be applied are precisely the walls that determine the boundary

of Pn(X). That is, if a wall cannot be crossed with the methods of Section 6.1, it is because

that wall cannot be crossed at all.

First we characterize the walls HL that cannot be crossed with the methods above in terms

of the combinatorics of the associated spherical Coxeter complex (S,W ). Let η ∈ ∆euc ⊂ E

be a maximal singular unit vector (we use the same notation as in Section 3). We define the

following set of singular hyperplanes of E through v0 (i.e. walls of (E,W )):

Tη := {w ⊂ E | w is a wall of (E,W ) not containing η}.

For each element ω ∈ W ∼= StabWaff
(v0) we define the subset of Tη

T ωη := {w ∈ T | η and ω∆euc lie in the same half space determined by w}.

Finally define Bη as the set of n-tuples (η1, . . . , ηn) ∈ (Wη)n such that for i = 1, . . . , n there

are ωi ∈ W with ωiηi = η and with the following properties:
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(∗) T ωi
η ∩ T

ωj
η = ∅ for all i 6= j,

(∗∗)
n
⋃

i=1

T ωi
η = Tη.

For η̄ = (η1, . . . , ηn) ∈ (Wη)n write Lη̄ = (lη1 , . . . , lηn). Let Bn ⊂ Ln be the union of the

sets {Lη̄ | η̄ ∈ Bη} for all maximal singular unit vectors η ∈ ∆euc.

We will see in Lemma 6.13 below that the walls HL that cannot be crossed with our previous

methods are precisely the ones of the form Lη̄ with η̄ = (η1, . . . , ηn) satisfying the property (∗).

A motivation for this property (∗) can already be seen in Corollary 6.5. The property (∗∗) is

introduced to avoid later obvious redundancies in the set of generalized triangle inequalities.

This can be seen in the Proposition 6.11.

Lemma 6.9. If (E,W ) has rank 2, then η̄ ∈ Bη if and only if for i = 1, . . . , n we can find

ωi ∈ W with ωiηi = η such that there exist j, j′ ∈ {1, . . . , n}, j 6= j′ with ωj∆euc antipodal to

ωj′∆euc and ωi∆euc adjacent to −η for i 6= j, j′.

Proof. (⇐). ωj∆euc is antipodal to ωj′∆euc if and only if T
ωj
η = Tη \ T

ωj′

η . On the other hand,

ωi∆euc is adjacent to −η if and only if T ωi
η = ∅.

(⇒). By property (∗∗), there is a j with T
ωj
η 6= ∅. If T

ωj
η = Tη, then ωj∆euc = ∆euc and

the assertion is clear. Otherwise let ℓ1 ∈ T
ωj
η be the singular line adjacent to ωj∆euc. Let ℓ2

be the other singular line adjacent to ωj∆euc. Then ℓ2 /∈ T
ωj
η . Let j′ be such that ℓ2 ∈ T

ωj′

η , it

follows that ℓ1 /∈ T
ωj′

η and ωj′∆euc must be antipodal to ωj∆euc. The rest follows as in the first

part.

Remark 6.10. The ⇐ direction in Lemma 6.9 holds for arbitrary rank. Let Bwn ⊂ Ln be

the set of functionals Lη̄ for η̄ with this property (the assumption in the ⇐ direction). The

inequalities L ≤ 0 for L ∈ Bwn are the so-called weak triangle inequalities (cf. [KLM09a, Section

3.8]). Thus, Lemma 6.9 states that Bwn ⊂ Bn and for rank 2 also holds Bn = Bwn .

η

∆euc

ωi∆euc

ωj∆eucT
ωj

η

ωj′∆euc

T
ωj′

η

Figure 8: Bwn : weak triangle inequalities

Proposition 6.11. Suppose X has rank 2. For any n-gon p in X and any functional L ∈ Bn
holds L ◦ σ(p) ≤ 0. That is,

Pn(X) ⊂
⋂

L∈Bn

{L ≤ 0}.
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Moreover, if η̄ ∈ (Wη)n satisfies the property (∗) but not the property (∗∗), then there is a

η̄′ ∈ Bη so that Lη̄ ◦ σ(p) ≤ Lη̄′ ◦ σ(p) for all n-gons p in X. If p is regular, then the strict

inequality holds.

Proof. Let p = (x0, . . . , xn−1) be an n-gon in X . For the functional L = (lη1 , . . . , lηn) ∈ Bn, let

ωi ∈ W and j, j′ be as in Lemma 6.9. Notice that since for i 6= j, j′, ωi∆euc is adjacent to −η

and ωiηi = η then we have lηi ≤ lη′ in ∆euc for all η
′ of the same type as η. That is, lηi is the

smallest functional of the same type as η. After shifting the subindices of the polygon and the

functional we can assume that j = 1.

Suppose first that j′ = j − 1, that is j′ = n. Fold the polygon p into an apartment A,

so that the broken sides are x1x2, . . . , xn−2xn−1. Let ρ : A → E be an isometry that sends

x0 to the vertex of ∆euc ⊂ E, induces an isomorphism of the Coxeter complexes (∂∞A,W )

and (E,W ) and so that ρ(x0x1) ⊂ ω1∆euc. Notice that ρ is not necessarily an isomorphism of

Coxeter complexes with the Weyl group Waff . Denote with q the image under ρ of the folded

polygon. By folding E onto the Euclidean Weyl chamber ω1∆euc with the natural “accordion”

map, we obtain a further folded polygon q′ = (y0, . . . , yk) where y0 is the vertex of ∆euc and the

∆-valued side lengths of y0y1, yky0 ⊂ ω1∆euc are the same as for x0x1 and xn−1x0 respectively.

Observe that q′ is not necessarily a billiard polygon in (E,Waff ), but if the side xrxr+1 of p

is broken in q′ to the sides ysys+1, ys+1ys+2, . . . , yt−1yt, then the vectors σ(ysys+1), . . . , σ(yt−1yt)

are just multiples of σ(xrxr+1). This means, that if W ′
aff is the group generated by Waff and

the whole translation group of E, then q′ is a billiard polygon in (E,W ′
aff ). Notice also that

for r 6= 1, n holds lηr(σ(ylyl+1)) ≤ 〈yl+1, η〉− 〈yl, η〉 because of the observation at the beginning

of the proof. It follows that

lη2(σ(x1x2)) + · · ·+ lηn−1
(σ(xn−2xn−1)) ≤ 〈yk, η〉 − 〈y1, η〉.

On the other hand, since y0y1, yky0 ⊂ ω1∆euc and ωn∆euc is antipodal to ω1∆euc it follows that

lη1(σ(x0x1)) = lη1(σ(y0y1)) = 〈y1, η〉 − 〈y0, η〉 and lηn(σ(xn−1x0)) = lηn(σ(yky0)) = 〈y0, η〉 −

〈yk, η〉. Hence, L(σ(p)) ≤ 〈yk, η〉 − 〈y1, η〉+ 〈y1, η〉 − 〈y0, η〉+ 〈y0, η〉 − 〈yk, η〉 = 0.

The general case now follows from the special case above by considering the polygons p1 =

(xj′−1, xj−1, xj , . . . , xj′−2), i.e. p1 is the polygon p with the vertices xj′ , xj′+1, . . . , xj−2 deleted,

and p2 = (xj−1, xj′−1, xj′, . . . , xj−2) with the functionals (lηj′ , lηj , lηj+1
, . . . , lηj′−1

) respectively

(lηj , lη′j , lηj′+1
, . . . , lηj−1

). Indeed, notice that since ωj∆euc and ωj′∆euc are antipodal, it follows

lηj′ (σ(xj′−1xj−1)) = −lηj (σ(xj−1xj′−1)).

For the second assertion, let ωiηi = η satisfy the property (∗). It is easy to see that in rank

2 at most for two indices i can hold T ωi
η 6= ∅. Let j 6= j′ be so that T ωi

η = ∅ for all i 6= j, j′. If

η̄ does not satisfy the property (∗∗), then ωj′∆euc is not antipodal to ωj∆euc. Let ω̂j ∈ W be

so that ω̂j∆euc is antipodal to ωj∆euc. From the property (∗) follows that for η̂j := ω̂−1

j η holds

lηj′ ≤ lη̂j and since η̂j 6= ηj′ the strict inequality holds for regular segments.

Remark 6.12. The same proof as for the first assertion of Proposition 6.11 works for buildings

of arbitrary rank to prove the weak triangle inequalities (see Remark 6.10). That is,

Pn(X) ⊂
⋂

L∈Bw
n

{L ≤ 0}.
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Lemma 6.13. Suppose X has rank 2 and let p be a regular n-gon in X. Suppose that σ(p) ∈ HL

for some functional L with L,−L ∈ Ln \ Bn. Then for any neighborhood U of σ(p) in ∆n
euc

there exist n-gons p1, p2 in X with σ(pi) ∈ U and L ◦ σ(p1) > 0 > L ◦ σ(p2).

Proof. Suppose that for a neighborhood U of σ(p) in ∆n
euc, we cannot find a polygon p1 in X

with σ(p1) ∈ U and L ◦ σ(p1) > 0. (The other inequality follows considering the functional

−L.) It follows from Lemmata 6.1 and 6.2 that p lies in a parallel set Pγ and the functional

L in p is just given by taking scalar product with the direction of γ(∞). Fold the polygon

in an apartment A ⊂ Pγ so that the broken sides are x1x2, . . . , xn−2xn−1. Let ρ : A → E be

an isomorphism that sends η = γ(∞) to the singular direction in ∆euc of the same type. By

abusing the notation, we write also η to denote the unit vector in ∆euc with direction ρ(η).

Suppose X has only one vertex and γ goes through it. Then the break points of the folded

polygon all lie on γ. We may assume that the folded polygon has only one break point because

any two consecutive break points can be simultaneously unfolded. Let k be so that the break

point y lies on the side xkxk+1 (if there is no break point we take k = n − 1). Then the

folded polygon has the form p′ = (x0, x1, . . . , xk, y, x̂k+1, . . . , x̂n−1). Let ωi ∈ W be so that

ωi∆euc contains the direction ρ(−−−→xi−1xi) for 1 ≤ i ≤ k, ρ(−→xky) for i = k + 1, ρ(
−−−→
x̂i−1x̂i) for

k + 2 ≤ i ≤ n − 1, and ρ(
−−−−→
x̂n−1x0) for i = n, respectively. Then the functional L is just given

by (lη1 , . . . , lηn) for ηi = ω−1

i η. After a small variation inside the parallel set Pγ we may assume

that the segments x0xk and x0x̂k+1 are regular. Let α, β ∈ W be so that α∆euc contains the

direction ρ(−−→x0xk) and β∆euc contains ρ(
−−−−→
x̂k+1x0). Let δ ∈ W be such that ∆euc and δ∆euc are

antipodal. For ω ∈ W set ω̃ := δω.

Consider the regular polygon q = (x0, . . . , xk) ⊂ A and the functional L′ = (lη1 , . . . , lηk , lη′)

for η′ := α̃−1η. That is, L′ is the functional given in q by taking scalar product with the

direction η. Hence L′(σ(q)) = 0. Set (τ1, . . . , τk, τk+1) := (ω1, . . . , ωk, α̃). Suppose that there

are 1 ≤ i < j ≤ k+1 such that T τiη ∩ T
τj
η 6= ∅. Corollary 6.5 and its proof imply that there is a

polygon q′ = (z0, . . . , zk) with L
′(σ(q′)) > 0 and with refined side lengths as near as we want to

those of q modulo displacement along γ. We can then choose x′k ∈ Pγ near xk such that x0x
′
k

has the same refined side length (again modulo displacement along γ) as z0zk. The functional

(−lη′ , lηk+1
, . . . , lηn) applied to the polygon (x0, x

′
k, xk+1, . . . , xn−1) is 0 because it is contained in

the parallel set Pγ. After displacing the polygon (x0, x
′
k, xk+1, . . . , xn−1) along γ we can glue it

together to q′ and obtain a polygon p1 with ∆-valued side lengths as near as we want to those

of p and with L(σ(p1)) > 0 (compare with the proof of Proposition 6.7). This contradicts the

assumption at the beginning of the proof. Thus, T τiη ∩ T
τj
η = ∅ for all 1 ≤ i < j ≤ k + 1. Since

q is a regular polygon with L(σ(q)) = 0, then by the second claim in Proposition 6.11 we must

also have T α̃η = Tη \
k
⋃

i=1

T ωi
η , or equivalently, T αη =

k
⋃

i=1

T ωi
η .

Analogously, considering the polygon (x0, x̂k+1, . . . , x̂n−1) we obtain T ωi
η ∩ T

ωj
η = ∅ for all

k + 2 ≤ i < j ≤ n and T βη =
n
⋃

i=k+2

T ωi
η .

Consider now the triangle t = (x0, xk, xk+1) with the functional L′′ = (lα−1η, lηk+1
, lβ−1η). Let

ω′
k+1 ∈ W be so that ω′

k+1∆euc contains the direction ρ(
−−−→
yx̂k+1). Then ω

′
k+1ηk+1 = ωk+1ηk+1 = η.

We want to show that (α, ωk+1, β) or (α, ω
′
k+1, β) have the property (∗). By Lemma 6.4 applied

to the side x0xk we get T αη ∩ T βη = ∅ = T αη ∩ T
ωk+1

η . Again by Lemma 6.4 now applied to the
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side xk+1x0 we obtain T
β
η ∩T

ω′

k+1

η = ∅. Therefore if T αη or T βη = ∅, then we are done, so suppose

both are nonempty. Now by Lemma 6.6 one of α∆euc, β∆euc or ωk+1∆euc must be adjacent to

ρ(γ). Notice that for ω ∈ W , ω∆euc is adjacent to ρ(γ) if and only if T ωη ∈ {∅, Tη}. This and

T αη ∩ T βη = ∅ imply that ωk+1∆euc must be adjacent to ρ(γ). T αη ∩ T
ωk+1

η = ∅ implies that T
ωk+1

η

must be empty and we are also done in this case.

So we have conclude that η̄ = (η1, . . . , ηn) has the property (∗) and since p is a regular

polygon with L(σ(p)) = 0, it follows from Proposition 6.11 that L ∈ Bn.

Now we are ready to prove our main theorem.

Theorem 6.14. Let X be a building of rank 2. Pn(X) is a convex polyhedral cone determined

by the inequalities {L ≤ 0} for L ∈ Bn. That is,

Pn(X) =
⋂

L∈Bn

{L ≤ 0}.

This inequalities constitute an irredundant set of inequalities.

Proof. Let Q ⊂ Cn be the subset of open cones such that
⋂

L∈Bn

{L ≤ 0} =
⋃

C∈Q

C̄. Analogously,

let Q′ ⊂ Cn be the subset of open cones such that Pn(X) =
⋃

C∈Q′

C̄ (this can be done by

Proposition 6.7). We have shown in Proposition 6.11 that Q′ ⊂ Q. Let C0 ∈ Q′ and C ∈ Q.

Take a chain C0, C1, . . . , Ck = C ∈ Q such that Ci ∩ Ci+1 is a face of codimension one. We

prove now inductively that Ci ∈ Q′. Suppose then that Ci ∈ Q′ and take a regular polygon

p with σ(p) in the interior of the face Ci ∩ Ci+1. Since Ci ∩ Ci+1 is not in the boundary of
⋂

L∈Bn
{L ≤ 0}, it lies in a wall HL with neither L,−L in Bn. It follows from Lemma 6.13 that

Pn(X) ∩ Ci+1 is not empty and therefore Ci+1 ⊂ Pn(X). Thus C ∈ Q′, and Q = Q′.

For L ∈ Bn it is clear that we can find a regular polygon p in an apartment A and γ ⊂ A

a maximal singular line, such that the functional L in p is given by taking scalar product with

the direction of η = γ(∞). In particular, L(σ(p)) = 0. It is also clear that we can find a regular

polygon p′ in Pγ but not contained in any apartment and such that the functional L in p′ is

also given by taking scalar product with the direction of η. It follows from Lemmata 6.1 and

6.2 that L is the only functional in Bn for which it can hold L(σ(p′)) = 0. Thus the inequalities

{L ≤ 0} with L ∈ Bn are irredundant.
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