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Abstract

The first part of this paper provides a new description of chiral differential operators (CDOs)
in terms of global geometric quantities. The main result is a recipe to define all sheaves of CDOs
on a smooth cs-manifold; its ingredients consist of an affine connection V and an even 3-form that
trivializes p1(V). With V fixed, two suitable 3-forms define isomorphic sheaves of CDOs if and only if
their difference is exact. Moreover, conformal structures are in one-to-one correspondence with even
1-forms that trivialize ¢1(V).

Applying our work in the first part, we construct what may be called “chiral Dolbeault complexes”
of a complex manifold M, and analyze conditions under which these differential vertex superalgebras
admit compatible conformal structures or extra gradings (fermion numbers). When M is compact,
their cohomology computes (in various cases) the Witten genus, the two-variable elliptic genus and a
spin® version of the Witten genus. This part contains some new results as well as provides a geometric
formulation of certain known facts from the study of holomorphic CDOs and o-models.

§1. INTRODUCTION

In physics, the study of a type of quantum field theory called o-models has inspired many important
insights in topology and geometry. The theory of elliptic genera is an example. In particular, associated
to any compact, string manifold I M is a o-model whose “partition function” equals, up to a constant
factor, the formal power series

W(M) = /M A(TM) ch ( &) Sym. (TM & cc:)) =gyt

n=1 n=1

known as the Witten genus of M. [Wit87, [Wit88] Similarly, associated to any compact, spin manifold M
is another o-model, which gives rise to the formal power series

Och(M) = /M L(TM) ch<(§8qun(TM®<C) ®(§)Aqn (TM®(C)) : ﬁ GJ—FZz)‘“mM

n=1 n=1 n=1

known as the Ochanine elliptic genus of M. [Och87, [Wit87] The physical interpretation of these topological
invariants have led to predictions that are not immediately clear from the mathematical point of view. Even
though many of them have since been verified, e.g. [BT8Y], a complete, geometric understanding of
elliptic genera has yet to emerge. The latter probably requires to some extent a mathematical framework
for o-models.

Sheaves of vertex algebras provide a mathematical approach to o-models. Important constructions

along this line include the chiral de Rham compler and, more generally, sheaves of chiral differential
operators, or CDOs. [MSV99, [GMS00] In particular, a complex manifold M admits a sheaf of holomorphic

1 Let A € H*(BSpin;Z) 2 Z be the generator such that 2\ = p;. This defines a characteristic class A(-) for spin vector
bundles. A spin manifold M is said to be string if A(TTM) = 0. Moreover, a string structure on M is a “trivialization of
A(TM)?, i.e. a homotopy class of liftings of the classifying map M — BSpin along the homotopy fiber of A : BSpin — K (Z, 4).
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CDOs D% with a conformal structure if and only if cf/(T'M) = c5°/(T M) = 0; A notice that M as a spin®
manifold admits a string structure if and only if ¢1 (T'M) = ¢o(TM) = 0. Furthermore, if M is compact

char H*(M,DS}) = W (M) - (a constant factor)

suggesting a connection between D$} and the o-model underlying the Witten genus. In fact, physicists
have recognized a connection between CDOs and o-models of various flavors. [Kap06, Wit07, [Tan06]
More recently, a new construction of the Witten genus has been given under a systematic mathematical
framework for perturbative quantum field theory. [Cos10]

The first goal of this paper is to provide a new description of CDOs using global geometric quantities
and the language of cs-manifolds, i.e. supermanifolds equipped with C-valued functions. The algebra of
smooth CDOs on RPI9 is the smooth analogue of the conformal vertex superalgebra (87)®? ® (bc)®9 (§211
Proposition2.2)); its behavior under a change of coordinates, first computed in [GMS00], are restated here in
more geometric terms (§2.3] Proposition [2.4]). The notions of a sheaf of CDOs and its conformal structures
are then generalized from RP!% to a general cs-manifold M in a natural way (Definition 25)). After dealing
with some technical issues (Lemmas[2.6] 2.7]), we prove the main result on the global construction of CDOs
(Theorem 28). Namely, given an affine connection V and an even 3-form H that satisfies

dH = Str (R A R)

where R = curv(V), there is a recipe to define a sheaf of CDOs Diﬁ)vﬂ, and this recipe yields essentially

all sheaves of CDOs on M. Moreover, conformal structures on D§ 5 are in one-to-one correspondence
with even 1-forms w that satisfy

dw = Str R.

To classify these objects, we also prove that, with V fixed, two suitable 3-forms H, H' define isomorphic
sheaves of CDOs if and only if H — H' is exact (Theorem 211]). In contrast to [GMS00], our description
of CDOs does not rely on a choice of coordinate charts or other local data. For the special case of the
chiral de Rham complex, in which both H and w are trivial (Example 2.T3]), an invariant description has
also been given in [BHS08]. The formulation of CDOs developed here has been applied e.g. to study how
to lift a Lie group action on a manifold to a “formal loop group action” on CDOs. [Chell]

In the rest of the paper, we apply our work in the first part to construct what may be called “chiral
Dolbeault complexes.” Let M be a complex manifold and £ — M a holomorphic vector bundle. The
Dolbeault complex of M valued in A*EV is identified with the smooth functions on the cs-manifold

M =1I(TM @& E)

under the action of an odd vector field @ that satisfies Q% = 0 (§3.1]). This motivates us to construct a
sheaf of CDOs ’Df\}/}yv’ g on M (§32), and study the condition under which the supersymmetry @ lifts to

one on CDOs, i.e. an odd derivation Q on DR%)VH that satisfies Q2 = 0 (Theorem B3] Proposition [B.3]).

At the same time we also analyze the condition for Q to respect a conformal structure. Moreover, if one or
both of the line bundles det T'M, det E are flat, () is compatible with certain gradings on Dl(i];ll,v7 o called
fermion numbers (§8.6] Propositions 377 B8). The sheaf of differential vertex superalgebras

(Dl(i];l[,v,Hv Q)

may be thought of as a Dolbeault resolution of holomorphic CDOs on IIFE, as well as a particular limit
of a o-model. [Kap06] When M is compact, its cohomology computes various elliptic genera (Theorem
BI0), including the Witten genus in the case E = 0 (Example B13)), a two-variable generalization of the
Ochanine genus in the case £ = TM (Example B.I4)), and a spin® version of the Witten genus [CHZ10] in
the cases E = det TM and E = (det TM)®2 — det TM (Examples [3.15, BI6). Most of the results in this

2 See Definition [3:4]



part are similar to and consistent with what is known from the study of holomorphic CDOs and o-models,
but our formulation may provide a new geometric point of view. On the other hand, the last two examples
seem to be new.

The first appendix reviews the notion of vertex algebroids (first introduced in [GMS04]), their relation
with vertex algebras, and gives some examples. Despite the rather complicated-looking definition, vertex
algebroids and their super analogues provide a convenient tool in our study of CDOs. In the second
appendix, we construct affine connections on cs-manifolds and obtain formulae that are needed in various
calculations with CDOs.

Conventions. For the definition of a vertex superalgebra, see [Kac98| [FB04]. In this paper, every vertex
superalgebra V is graded by non-negative integers called weights. The notation Vj means its component
of weight k, and Ly denotes the weight operator, so that Lo|y, = k.

For the definition of a cs-manifold, see [DM99]. Given a smooth cs-manifold M, we always denote
by Cxi, Tm and Qf; its sheaves of smooth functions, vector fields and n-forms; when “M” appears in
parentheses instead of the subscript, it means the corresponding spaces of global sections. Restricting CRg
to an open subset U C M9 defines a new cs-manifold, denoted by M|y. Square brackets are used for
supercommutators between operators of any parities, while “Str” stands for the supertrace. Notice that
R?!9 is regarded as a cs-manifold in this paper, namely

rola = Crp @ N"(R?) ® C.
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Meng-Chwan Tan. He did most of the work in this paper under the generous support of the Max-Planck-
Institut fiir Mathematik, before finishing it during a visit at the Hong Kong University of Science and
Technology. He also gratefully acknowledges the current support of an EPSRC grant.



§2. CHIRAL DIFFERENTIAL OPERATORS

Sheaves of CDOs on a manifold were first studied in [GMS00]. This section provides an alternative
construction of the smooth version using global geometric quantities.

§ 2.1. The sheaf of CDOs on RPI9, Let b',... b7 and b*t1, ... bP19 be respectively the even and odd
coordinates of RPI4. The following notations are used

0 . i i1
a’i = % ) | ' | = pa’rltY7 € = (_1)|b ‘7 €ij = (_1)“) 1171
and repeated indices are summed over (but not counting those from ¢;,¢;;). Regard RP17 as a smooth
cs-manifold, namely

o (qu) = C>®(RP) ® /\(bp""l, oL, BPT @ C.

Given an open set W C R?, let W = (RPI9)|y,. Consider the vertex superalgebra D"(W) constructed in
ATl Tt is freely generated by a vertex superalgebroid

(C*(W), Q1 (W), T(W),#, { }°.{ }§)

and, by the following result, equipped with a family of conformal elements
1 _
VY = €0 _1db" + gw-el,  we QW) |w| =0, dw = 0. (2.1)

The assignment W + D! (W) := D (W) defines a sheaf of conformal vertex superalgebras on R?.

plg
Proposition 2.2. The elements v* in (21) are conformal in D"(W) of central charge 2(p — q).

Proof. First consider v := eiai)_ldbi. Let us show that
(i) v =T, vay = Lo on C*(W)U {9 }7 1] (i) vayv=pr-gq
The operators 0, for i =1,...,p+ ¢ and n € Z commute with each other, because
[0in, Ojom] = 104, Oslnsm +{0i, 03} mym + 1403, 05} 4 = 0.
Keeping this in mind, we compute the following for f € C*°(W)and k=1,...,p+g¢q
vayf = (db")ed;of =0
voyf = €i0i,—1(db")of + (db")_10;0f =0+db" - 0;f =df =Tf
V(2)Ok = (db")10;,00k + (db")0;,10 = 0
v(1)Ok = €0;,—1(db")10) + (db")00;,00k + (db")-10;10k = €;0;,—1db"(O)) + 0+ 0 = O
V(0)Ok = €0i,—2(db")10) + €;0;,—1(db")o Ok + (db") 10,00k + (db") —20;,10k
= €;0;,—2db" (k) + 0+ 0+ 0 = 9y, _21 =T,
veyv = €1, O;_1]db" = ei(y(o)&)(g)dbi + 3ei(y(1)8i)(1)dbi + 3ei(V(2)8i)(0)dbi
= —2¢;0;1db" + 3¢;0;1db" + 0 = db"(9;) =p — ¢

This proves (i) and (ii). Now notice that [v(1), fo] = (v(0)f)(0) + (Y1) f)(=1) = 0, and also that both v(g), T
are vertex superalgebra derivations commuting with 7. Then compute for o € Q'(W), X € T(W)

v = V(l)(akdbk) = V(l)OékyoTbk = v, o] TH" + ozkyo[u(l),T]bk + OékyoTV(l)bk
=0+ o, 0(0)b" + 0 = apdb® = o

vy = u(o)(akdbk) = V(O)Oék70Tbk = TakyoTbk =Ta

vy X = vy (XF0) = vy X§0k — vy (XF ¢ 01) = vy, X§1Ok + X§v )0k — X¥ 5 0
=04 XF0), — XF+¢ 9, = X*9, = X

Vo)X = Vo) (X 0) = vi0) X5k — v(0) (X" % O) = TX§0, — T(X" +°0) =TX



Hence (i) implies that vy =T, v(1) = Lo also hold on Q'(W) and 7(W). This yields the commutation
relations:

Vo), fal = (L =n)fae1 [V(0), @n] = —nan—1 [V(0), Xn] = —nXp—1
[V(l)u fn] =—nfn [V(l)u an] = —Nan [V(l)aXn] =-nX,

Since we also have v(g)1 = 0 = v()1, the operators v(g), (1) satisfy respectively the defining relations of
T and Ly, i.e. vy =T, v(1) = Lo on the entire vertex superalgebra D"(W). By Lemma 3.4.5 of [EB04],
this together with (ii) proves the proposition for v.

Let 0 denote an even element of D*(W),. Replacing v by v + ¢ in the above arguments shows that
v+ ¢ is also conformal of the same central charge if

Suppose § = w_31 = Tw, where w € Q'(W). Then §(,) = —nwp_1. For f € C*(W), k=1,...,p+q

dyf=-wof =0
5(1)8k = —weOk = [Ok,—1,wo]1 = Ly, w — dw(Ix) = Lo, dw

Hence (i)’ is satisfied if dw = 0. On the other hand, [v(2), fo] = (v(0)f) 1) + 2(v(1)f) (o) = —f1 implies
V(o)W = V(2) (wkdbk) = V(Q)W]g)OTbk = —wk,lTbk + wk7ou(2)Tbk =0+ 2wk)01/(1)bk =0
= V(3)6 + 5(3)V + 5(3)5 = yEw-21 — 3war — 3waw 21
= [v(3),w—2]1 + 3[y(_1),w2]1 — 3[wa, w_2]1
= 4(V(0)w)(1)1 + 61/(2)w =0
so that (i)’ holds. This completes the proof of the proposition. O

Remark. In the above proof, full details are shown in order to demonstrate the type of arguments
involved in similar calculations. Subsequent proofs will be given more briefly.

§ 2.3. Coordinate transformations of CDOs on R, Let W, W/, W” be restrictions of RPI9 (as
a cs-manifold) to open sets in RP. Suppose ¢ : W — W’ is a diffeomorphism of cs-manifolds. Recall
the notations in §AT6) and Theorem [A17 Given an even 2-form £ on W with d§ = WZ,, there is a
corresponding isomorphism of vertex superalgebras

@i DM(W') = DN(W).
For f € C®°(W'), a € Q}(W’) and X € T(W’), we have
Gl =) el =@, PlX) =@ X +Ape(X). (22)

All isomorphisms between D"(W') and D®*(W) are of this form. According to the result below, i
permutes the conformal elements (Z1)). If ¢’ : W/ — W” is another diffeomorphism of cs-manifolds and
&' is an even 2-form on W’ with d¢’ = WZ,, then

propn =(¢' @), N=E+9E +0p .

Proposition 2.4. Consider the isomorphism g : DE(W') — DN(W) described above. For even closed
1-forms w on W', we have

(pz (Uw) _ ULp*w—Str >y



Remark. Notice that df, = —0, A 0, implies Str 0, is closed. Also, as a consistency check, it follows
from 0,1, = 0, + g;l ~ @0, - g, that Stré,, = Stro, + @*Str o, .

Proof of Proposition [2.4] It suffices to consider the case w = 0. To simplify notations, let us write g = g,
h=g' 6=0,and A=A, By 22), we have

Pr(v) = €i( 0 + A0))) _ (" db') = ein (hN01) -1 (9" db") + €M) -1 (9" db")
The first term above is computed as follows:
i (h0) —1(g'edb")
= ein (h’g.’_g Dot + 5y Do+ 1P o g1 — (W % ak),l) G0 db’
= erh”; o g% + erh® 1 dgly + B, 1db* — e (01h") -1 g0 D" + e (B%) 1 g%y 0 db*
=v+ % Str ((dh)—2 g) + Str ((dh)—1 dg) = v — % Str (6_21) — % Str (6-16)
Then we compute the second term above:
€iA(07)-1(g"db")

1 1 )
= (—ekereike”ekrarhki 0", — geikStr (0 ® 9)(hki8k ®-)-— §€ik §(hki8k, - )) gzg)o dp®
1

= €07, _ W dg', — %ekeTStr (0 0) (O @ 0, )o(db")_1db* — %ekeTf(ak, dr)o(db")_1db*
= Str (6-16) — %Str (0-10) = %Str (0_10)
where we have used the graded symmetry of (db")_,db* = b" ;b* ;1. This yields
pe(v) =v— %(Str@),zl =Sl O

Preparation. Given topological spaces X, X', a presheaf S on X and a presheaf &’ on X’ valued in
some category, let (¢, ®) : (X,S8) — (X', 8’) denote the data consisting of a continuous map ¢ : X — X’
and a morphism of presheaves ® : &’ — .S on X’. Composition reads (¢', ) o (¢, @) = (¢'p, . P o P’).
Recall the sheaf of vertex superalgebras ’D;]“q described in §2.11
Definition 2.5. A sheaf of CDOs on a smooth (p|q)-dimensional cs-manifold M = (M, CRg) is a sheaf of
vertex superalgebras ¥V on M with the following properties:

- The weight-zero component is Vo = Cxy.

- Given x € M, there exist open sets U C M, W C RP with z € U, and an isomorphism between

(U,V|y) and (W, D;}“q|w) as topological spaces equipped with sheaves of vertex superalgebras.

A conformal structure on V is an element v € V(M )9 such that, under each isomorphism postulated above,

v|ly € V(U) corresponds to one of the conformal elements v* € D;]ilq(W) described in (21]).

h
lq
a general sheaf of CDOs is locally isomorphic to D;ll’q, the latter has up to this point been defined using

Remark. For example, D; is a sheaf of CDOs on R?!? with a family of conformal structures v. While

coordinates in a manifest way (see §2.1] and appendix §Al). The geometric data required to globalize the
construction is the main content of Theorem 2.8

Preparation. The sheaves of smooth functions, 1-forms and vector fields on a smooth cs-manifold M
form a sheaf of extended Lie superalgebroids (CR3, 24, Tm) using the usual differential on functions, Lie
brackets on vector fields, Lie derivations on functions and 1-forms by vector fields, and pairing between
1-forms and vector fields.



Lemma 2.6. Let (o, ®) : (U, V|y) = (W, 'D;}‘]q|w) be an isomorphism as postulated in Definition[Z3. Also
let U=M]|y, W = (RPI9)|y.

(a) The data determine a diffeomorphism of cs-manifolds ¢ : U — W. The presheaf (in fact, sheaf)
of extended Lie superalgebroids associated to V|y can be identified with (CgF, %, Tu) in a canonical way.
Under this identification, the isomorphism of sheaves of extended Lie superalgebroids induced by ® is given
by ™ : (C{.I\ONQ%NvTW) - @*(C%Ovﬂ%bTU)'

(b) The quotient map V1 |y — Tu is split as a morphism of sheaves of C-vector spaces, and V|y is freely
generated by any associated sheaf of vertex superalgebroids. Moreover, ® is induced by an isomorphism of
sheaves of vertex superalgebroids.

Proof. (a) At weight zero, (¢, ®) defines an isomorphism of ringed spaces (U, Cg) — (W, Csv), which is
the same as a diffeomorphism ¢ : U — W. Let (Cxg, 2, T) be the presheaf of extended Lie superalgebroids
associated to V. The following isomorphisms, induced respectively by ® and ¢

o

P (CF . v, Tlr) =< (G35, V. Tw) — > . (CFF, 2, To)

allow us to identify (CgF, Qu, Tlu) with (CgF, Qiy, Tu) via identity on Cg. Since any isomorphism with
(Cg, Ny, Tu) is determined by its first component, the above identification is independent of the choice
of W and (¢, @).

(b) The statements about V|y are true because their analogues for D;Tq|w are true. The statement
about @ is then clear. O

Lemma 2.7. Let V be a sheaf of CDOs on a smooth cs-manifold M = (M, CR3).

(a) The presheaf (in fact, sheaf) of extended Lie superalgebroids associated to V can be identified with
(CR3: O, Tm) in a canonical way.

(b) The quotient map Vi — Tam is split as a morphism of sheaves of C-vector spaces, and V is freely
generated by any associated sheaf of vertex superalgebroids.

Proof. Let sl = {U, }qer be an open cover of M such that (U, V|, ) admit isomorphisms as postulated in
Definition For A C M, let “AN” denote the open cover {ANU,}qer of A.

(a) Let (CRg,9,T) be the presheaf of extended Lie superalgebroids associated to V and U C M an
arbitrary open set. Consider the diagram (natural in U)

QU) ——= CO(U N4, Q) —2— CHU N 1L, Q)

0 ——> Q4 (U) —> CO(U N4, Q) — = C U N L, Q)

where (C*(-),d) denote Cech complexes and the isomorphisms are given by Lemma[Z6h. By the exactness
of the bottom row, the dotted arrow ¢ can be filled in in a unique way. By construction, ¢ is compatible
with the derivations CJ; — Q, Cf3 — Q44, and this implies ¢ is surjective. On the other hand, since ©
is a subpresheaf of a sheaf, ¢ is injective, and so is ¢. Hence we have an isomorphism Q = Q. Now T
must also be a sheaf. This is a formal consequence of: (i) 7(U) := V1(U)/QU) for open sets U C M,
(ii) V1 is a sheaf, and (iii) Q = Q3 is a fine sheaf. Then a diagram similar to the one above produces an
isomorphism 7 22 Tyr. By construction, the isomorphisms Q = Q3 and T 2 Ty respect the extended Lie
superalgebroid structures.

(b) Let 7 denote the quotient map V; — Ta. By Lemma [Z6b, the restriction of 7 to each U, has a
splitting sq : Tm|u, — Vilu,- Let {fa}aer be a smooth partition of unity on M subordinate to il. Use the
operation (_p) : C37 X V1 — V1 to define such morphisms of sheaves (fa)(,l)sa that extend from U, to M.
Since the said operation induces via 7 the usual CRj-multiplication on 7m, the sum

s:= Y (fa)(-1)Sa: T = Wi

acl



splits 7. Such a splitting yields a sheaf of vertex superalgebroids.

Given a sheaf of vertex superalgebroids associated to V), its sections freely generate a presheaf of
vertex superalgebras V’'. Moreover, there is a canonical morphism of presheaves of vertex superalgebras
k: V' — V. Since k|y, are isomorphisms, so is « if and only if V' is a sheaf. Now each weight component
Vi, k > 1, admits a filtration whose associated graded presheaf is a sheaf (see §A.0). It follows formally
from this fact that V' is indeed a sheaf as desired. O

Preparation. Suppose M is a smooth cs-manifold and V a connection on TM. Given X € T(M), let
V!X denote the section of End TM defined by (V!X )(Y) = VxY — [X,Y] for Y € T(M). Notice that if
V is torsion-free, then V!X = VX.

Theorem 2.8. Let M = (M, CR}) be a smooth cs-manifold.
(a) Suppose V is a connection on TM with curvature operator R, and H is an even 3-form on M with
dH = Str (R A R). Given such data, a sheaf of vertex superalgebroids

(Cﬁv Q11\/[7 TMa *, { }a { }Q)

can be defined on M wusing the following formulae

FeX = —(Vdf)(X)

{X,)Y} =-Str(V'X-V'Y)

1

{X, Y}Q = Str ( — V(VtX) VY + \i' wwR—1xR- VtY) + ngLyH
and it freely generats a sheaf of CDOs on M, denoted by Dl(i];l[,v,H' Up to isomorphism, this construction
yields all sheaves of CDOs on M.

(b) Conformal structures on DIC\}/}N)H are in one-to-one correspondence with even l-forms w on M

satisfying dw = Str R. This correspondence is independent of the choice of H. Given w as described, the
corresponding conformal structure, denoted by v*, is characterized by

LYX =y X = Str VX —w(X)
for vector fields X on M.

Proof. (a) Suppose V is a sheaf of CDOs on M. By Lemma [277] V is freely generated by a sheaf of vertex
superalgebroids (Cﬁ, D T, { 1o }Q). Let 44 = {U, }aer be an open cover of M and

(¢a, Dq) - (Ua,V|Ua) — (Wa,’Dg}“q|Wa), W, CRP open, a€l

be isomorphisms as postulated in Definition Also let U, = M|y, and W, = (RP19)|y, . By Lemma
2.6 there are diffeomorphisms ¢, : U, — W, such that ®, are induced by isomorphisms of sheaves of
vertex superalgebroids of the form

(80:;7 SOZAG) : (O%.\;av Q%}Vav TWav *cv { }05 { }?2) — Pax (C{.?G,Q%ja,TUa, *, { }7 { }Q) (23)

where A, : Tw, — Q{,Va are some even morphisms of sheaves on W,.
Somewhat abusing notations, we will write ¢q, ¢,, Pa, etc. also for their restrictions to various open
subsets. For a,a’ € I, let Wyo = o (Ua NUq ), Waar = (Rp|q)|waa, and
Pa’a = Pa’ © 4%7;1 : Waa/ — Wa/a; Para = Pa’ © 90;1 : Waa/ — Wa’a
((pa/au (I)a’a) = ((pa/a (I)a/) o (90117 (I)a)il : (Waa/a D;LC)}|1q|Waa’) — (Wa/aa DCh |Wa/a)

plg

Recall the notations in §AT6 and write gy, ., 0y, , WZ,,,, more simply as gara, Oaras W Zara. According



to 2.3 &y = (cpa,a)g , for some unique even 2-forms £,/ on Woor with d€yq = W 2414, and it is induced
by an isomorphism of sheaves of vertex superalgebroids (¢?,,, Aara), where

1
Aa/a = ALpa’zwga’a : TWa’a - (wa,a)*ﬂwaa’

is defined as in Theorem [A. 17l The definition of ®,/, given above is equivalent to

(@hrar Dara) = (Para)« (@, )~ 0 (i, @l Dar)
& Apo=@ra000 — (Para)ela 0 @h (2.4)

For a,a’,a” € I, let Wagrar = ©a(Ua NUy MU ) and W graqr = (qu”Waa/an' In Wya e we have
Para =Para’ ©Parar  (Para)e,n, = (Para)s(Parali,,, © (Parar), .,
According to §2.3 the latter is equivalent to
b = Ewra + Phrabaras + Carara (25)

where 0arara =0, .. € Q*(Waarar) is defined as in Theorem [ATT

Lemma 2.9. Given @, and £uq for a,a’ € I as above (which determine Agr,), a collection of even
morphisms of sheaves A, : Tw, — Q%,Va satisfy (24) if and only if they are of the form

: | 1
Ao(X) = eeije; ;X )(Ta); + GuxStr (T ® Ta) + 50xBa + Oa(X)

3

for homogeneous X, where:

- Ty € QY(W,) ® gl(plg) are even, i.e. |(Tn)";| = [b'| + b7, and
65 QoL Gutn — T = o (2.6)
- Ba € Q*(W,,) are even and
@ aBa — Ba = —£ara — Str (ura ATa) (2.7)
and Oy : Tw, —= Qg are even and @7, © Oy = (Para)«Oa © Phry.
Proof. If we assume A, are first-order differential operators, we may write
Aa(X) = geizes T @ X7 (o), + %Lx(sa +B,)

for some gl(p|q)-valued 1-forms 'y, symmetric (0, 2)-tensors S, and 2-forms B, on W ; their parities are
dictated by that of A,. Plugging this into ([2.4), namely

ParaBar (X) = Da(pgo X) = Awra(X)
results in three sets of equations: (Z.6]), (2.7) and
@51 Sar — Sa = —Str Ty @ fura) — Str (Bura @ Ta) + Str (Bura @ fara)-

By (24, the last set of equations is satisfied by S, = Str (I'y ® I';). Observe that once we have a solution
to (24), any other solution differs precisely by a term O, with the properties stated in the lemma. O



Proof of Theorem continued. Consider the formula of A, obtained in Lemma The condition on
the term O, lets us define a map O : Tyr — Q4 such that O(p:X) = ¢:0,(X) for a € I. By Lemma
[A 10, O determines an isomorphism of sheaves of vertex superalgebroids

(idu _O) : (Cﬁv Q11\/[7 TM7 *, { }7 { }Q) - (Cﬁv Qll\/lvTMv */7 { }/7 { }gl)
whose composition with (23] equals
Pax(id, =0)|v, © (5, Pala) = (@5, Palda — 93 0a).

Therefore up to isomorphism of sheaves of CDOs, we may assume O, = 0. The following lemma concerns
the other ingredients in the formula of A,.

Lemma 2.10. Assume that U,, a € I, are contractible. Given @, for a,a’ € I as above, the existence
of the following are equivalent:

(i) Eara € D2(Wara) that are even, and satisfy dqq = W Zgrq and (2.3)
(ii) Ty € QY (W,) ® gl(plg) and B, € Q*(W,) that are even, and satisfy (2.0) and
¢} 0dBa — dBy = — %, CS(Ta) + CS(T,) (2.8)
where CS(T,) € Q3(W,,) is defined below
(iii) a connection V on TM and H € Q3(M) that is even and satisfies

dH = Str (RAR) (2.9)
where R is the curvature operator of V

Proof. First, a collection of T', € Q(W,) ® gl(p|q) that are even and satisfy (Z6) is equivalent to a
connection V on TM. Indeed, the two are related via

V(i) = eiei @i (Ta)’; © 05) (2.10)
for i =1,...,p+ q. The curvature operator R € Q?(M,End TM) of V is locally given by
R(Lpzaz) = eieij Lp:;((Ra)ji ® aj)u Ra = dra + Fa N Fa

whose tensoriality means g;/i ~@riaRa - gara = Rq. Define the following even 3-forms on W,
1
CS(T,) :=Str Ty AR,) — gStr (Ta AT, ATY).

Notice that d CS(T',) = Str (R, A R,) and (26) implies
‘P:;faCS(Fa’) - CS(Fa) =WZ4q + dStr (9a/a AN Fa). (211)

Now we prove the equivalences.

(i) = (ii): Choose a connection V on TM and define I', as in 2I0). Then T, satisfy (2.6). The right
hand side of ([2.7), after being pulled back by %, defines a 1-cochain in the Cech complex C* (4, O2,); it
is a cocycle by (ZH) and (Z6). Since C*(4,Q3,) is acyclic, we may choose such even 2-forms B, on W,
that satisfy [27). Then (2.8) follows from d¢,, = WZ,, and (ZI1).

(ii) = (i): Define &4q using (Z7T). Then (Z20) implies (ZH). On the other hand, (Z8) and ZIII)
together imply d€,/q = W Zu14.

(ii) = (iii): Define V as in ([2I0). By (28], there is a global even 3-form H on M with

Hly, = @} (dB, + CS(T)). (2.12)

Then ([Z9) follows from d CS(T,) = Str (Rq A Ry).

(iii) = (ii): Define Iy as in (ZI0). Then T, satisfy (26). The 3-forms H|y, — @%CS(T,) are closed
because of (Z9) and the fact that dC'S(T'y) = Str (Rq A R,). Since U, are contractible, we may choose
such even 2-forms B, on W, that satisfy (Z12]), which implies (Z8]). O
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Proof of Theorem continued. Now compute the maps *t, { }5, { }I. In view of ([Z3), the restrictions
of the three maps to U, are given by

FeX = @0 (far® Xat BalfuXa) = falha(Xa)
{X7 Y} = CP:; ({Xll7 Ya}c - Aa(Xa)(Ya) - (_1)|XHY‘Aa(Ya)(Xa)) (213)
{X7 Y}Q = ‘P:; ({Xll7 Ya}?) - LXaAa(Ya) + (_1)IXHY‘LYaAa(Xa) - dAa(Xa)(Ya) + Aa([Xav Ya]))

where f,, X4, Y, are such that f = @*f,, X = ¢*X,, Y = ¢!Y,. To evaluate (ZI3)), apply the formulae
of ¢, { }¢, { }§ in (A.G), and that of A, in Lemma 29 (with O, = 0). Also use the data I',, B, in the
formula of A, to define a connection V on TM and an even 3-form H on M as in [ZI0) and (ZI2); by
the proof of Lemma they satisfy ([Z3). A lengthy but straightforward computation then yields the
formulae of %, { }, { }q stated in the theorem. This proves the last statement of part (a).

It remains to argue that the construction described in the theorem always produces a sheaf of CDOs
on M. Notations in this paragraph will have the same meaning as above. Choose a covering 4 = {U, }aer
of M by contractible open sets, and diffeomorphisms ¢, : U, — Wy; let ¢/, = @ © @, . Starting with
the given data V, H, define 'y, B, as in the proof of Lemma [2Z.I0] and then A, as in Lemma (with
O, = 0). By the same computation mentioned before, A, and the given formulae of x, { }, { }q satisfy
ZI3). Then by Lemma [AT0 *, { }, { }o define a sheaf of vertex superalgebroids equipped with the
isomorphisms (Z3)). Its freely generated sheaf of vertex superalgebras is therefore a sheaf of CDOs.

(b) Use the notations in (a). Suppose v is a conformal structure on V. For a € [

vy, = P, (V‘”a)

for some even closed 1-forms w, on W,. For a,a’ € I, the isomorphism ®,, = (cpa/a)z , sends v*a’ to
v¥e. By Proposition 2.4 this is equivalent to the relation

PrraWar —Wq = Strlyq = —pr, StrTa + Strly,
where the second equality is given by (Z8]). Hence there is an even 1-form w on M with
wlu, = @h(we + StrTy).

Since dw, = 0 and dStrI', = Str R,, we have dw = Str R. Observe that the construction of w from v is
reversible. To relate v and w more explicitly, we compute ®,(v**) as follows:

V|Ua =€ (Soaa’i + SoaAa(ai))_l(Soadb ) + 5(90(1“0‘)*21

€ (8%)1 dipy, + 5 Str ((soal“a)—l(soal“a) (goal"a)_21> + 5wl (2.14)

where we first recall that ®, is induced by (Z3]) and then use Lemma The computation does not
depend on B,, hence not on H. Let LY = v(,11). Using (Z.I4)) we have

w 1 a *
L1 X‘Ua = (dgoa)l <W)OX + Str (QDaFa>1X —CLJ1X

— gl (| 5 x] ) + S (eira) () - w(x)

for vector fields X. The sum of the first two terms is a local expression for Str V*X. O

Remarks. (i) Given an open set U C M, let U = M|y. The vertex superalgebra DIC\}/},V,H(U) will also
be written as DCVh)H(U). A conformal structure v on DIC\?I,V,H restricts to a conformal structure v|y on
Dcv}: 5 (U) of central charge 2(p — ¢). (ii) By definition, there are canonical identifications

(DR2,V7H)O = Oﬁv (Diﬁ,vH)l = Qll\/[ O Tm.

11



Consider the following C-bilinear operation for each k > 0
Cnr X (DIC\}/},V,H)k - (Dl(i];l[,v,H)ka (f,v) = fov= Jf—nv.

For k > 0, this operation does not make (IDIC\}/}V, )k a Cri-module, B but it induces a Cyi-module structure
on an associated graded sheaf 9T(D1C\}/},V, )k Given a CRj-module &€, we use the notation S/yzlté' for the

formal sum 7 t"S/y?n"E , where ¢ is a formal variable and S/y?n"E is the n-fold graded symmetric tensor
power of £ over C}7. There is an isomorphism of CRi-modules

Cyi @ @ qur(ch\}/Lv)H)k = ® Sym,. (g ® T )-
k=1 =1

For more details of the vertex superalgebra structure of Dy ¢ 5, consult §A7 and A9l

Theorem 2.11. Let M be a smooth cs-manifold, V a connection on TM with curvature operator R, and
H,H' even 3-forms on M with dH = dH' = Str (R A R). Define %, { }, { }a (resp. { }) using V and H
(resp. H') as in Theorem [2.8a.

(a) There is a one-to-one correspondence:

isomorphisms of sheaves of CDOs Dﬁ)vﬂ — DIC\}/}N)H, o B € Q%2(M), even,
dB=H' - H

whose weight-zero components are identity on CRy

Given B as above, the corresponding isomorphism, denoted by idp, is induced by an isomorphism between
the associated sheaves of vertex superalgebroids

(id, Ap) : (O3, % T+, { 1 { ta) = (CRE Qn Taa, +, { 1. { 16)

where the map Ap : Ta — Qi 48 given by Ap(X) = %LxB.
(b) The isomorphism idp preserves the correspondence in Theorem [Z8b, i.e. idg(v*) = v*.

Proof. (a) If an isomorphism between the two sheaves of CDOs equals the identity on Cgy, then it induces
the identity on the sheaf of extended Lie superalgebroids (CR3, 24, Tm), and is therefore determined by
an isomorphism of sheaves of vertex superalgebroids of the form

(id7 A) : (Cﬁv Q11\/177-1\/17 *, { }7 { }Q) — (Cﬁv Qll\/lvTMv *, { }7 { }gl)
By definition, the even map A : Tp — Q4 has to satisfy precisely the following equations:

A(fX) = FAX),  AQY)(X) = -(=DFIMAX)(Y)
LxA(Y) = (=) WILy A(X) + dAX)(Y) = A([X,Y]) = {X,Y}o - {X, Y]}
According to the first two equations, B(X,Y) := 2A(
last equation can be rewritten as

X)(Y) defines an even 2-form B on M. Then the

LxLydB = LxLy(H/ — H)

(b) Since the said correspondence is independent of H, this is clear. This also follows from the local
expression (ZI4) of v and the graded symmetry of (de?)_1dp?. O

Example 2.12. Sheaves of CDOs on IIE. Let M be a smooth manifold, E — M a smooth C-vector
bundle and M = IIE as a smooth cs-manifold. The canonical pullback embeds 2*(M) into Q*(M) quasi-
isomorphically. [DM99] Choose connections VM on TM and V¥ on E, which determine a connection V

3 For example, we have foX = fX + f* X = fX — (Vdf)(X) for vector fields X.
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on TM in the sense of §B.3} denote by RM, R¥ and R the corresponding curvature tensors. As stated in
Lemma [B.5 we have

Str (R A R) = Tr (R™ A RM) — Tr (RF A RF), Str R = Tr RM — Tr R”.

By Theorems [2.8h and 2ZTTh, M admits sheaves of CDOs if and only if pi (T M) — cha(E) vanishes in de
Rham cohomology, and their isomorphism classes form an H?(M; C)-torsor. By Theorem [2.8b, the sheaves
of CDOs possess conformal structures if and only if ¢;(E) vanishes in de Rham cohomology as well.

Example 2.13. The smooth chiral de Rham complex. Consider the case £ = TM ® C in the
previous example. Both obstructions are now trivial, so that M always admits sheaves of CDOs equipped
with conformal structures. In particular, we may define a sheaf of CDOs ch\l/}ﬁv = ch\?[,v,o using the trivial

3-form and a conformal structure v = v° using the trivial 1-form.
Let J and @ be the vector fields on M defined in §B.2] and Example Regarded as elements of
D& (M) of weight 1, they satisfy

2Q5 = [Qo, Qo] = [Q, Qlo + ({Q, Q}a)o =0, [Jo, Qo] = [/, Qlo + ({/,Q}a)o = Qo.
In view of the formulae in Theorem 2.8h and Lemma[2.14] the two equations follow from (B.7)) and Lemma
[B.8 with the second also requiring Lemmas [B.4b and [B.5c. B Moreover, we have
1 1
Qov = —§T2(L1Q) =0, Jov = —ETQ(LlJ) =0.

In view of Theorem 2.8b, the two equations follow from Lemmas [B.§ and [B:4h respectively. Therefore,
with Jy as the grading operator and Q¢ as the differential, D%‘(M) becomes a differential graded conformal
vertex superalgebra. %

Lemma 2.14. Consider a sheaf of CDOs DIC\]/HI,V,H on a smooth cs-manifold M constructed as in Theorem
Z38. Given a € QY (M), we have ag = 0 on D%H(M) if and only if da = 0.

Proof. Since «y is a derivation, it acts trivially on the entire vertex superalgebra Dcv}: (M) if and only if
it acts trivially on functions and vector fields. For f € C°°(M), we always have apf = 0. For X € T(M),
we compute

apX = £[X_1,a0]1 = £(Lxa — dixa) = fixda

which proves the assertion. o

4 In fact, we are assuming that V™ is Levi-Civita. The torsion-free condition is used to obtain various formulae in
Example and subsequently Lemma [B.8] while orthogonality ensures that the right hand side of Lemma [B:5k vanishes.
5 For a description of a richer structure on D& (M), see [BHS08].
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§3. CHIRAL DOLBEAULT ALGEBRAS

Applying the description of CDOs obtained in Theorem 2.8, we study a vertex algebraic analogue of the
Dolbeault complex of a complex manifold. This provides a new point of view on the relation between
CDOs and elliptic genera.

§ 3.1. Dolbeault cs-manifolds. Let M be a complex manifold, 7'M its holomorphic tangent bundle, E
a holomorphic vector bundle over M, and M = II(TM & E) as a smooth cs-manifold. Let d = dim¢ M
and r = rank E. Under the identification

C>®(M) =2 Q" (M;N*EY) (3.1)

vector fields on M correspond to derivations of the (0, *)-forms on M valued in A*EV. In particular, let

J@ the vector field on M Dolb§au1t degre'e R
J = corresponding to the exterior degree in A\* E (3.2)
Q P & Dolbeault operator 0 ® 1

For more discussion of 7 (M), see Example

§ 3.2. Sheaves of CDOs on M. Choose connections VM on TM and V¥ on E such that both are of
type (1,0) and VM is torsion-free (see footnote [[H). Let V be the induced connection on TM defined as
in Example Denote by RM, RF and R the respective curvature tensors. Notice that the canonical
pullback embeds Q*(M) into Q*(M) quasi-isomorphically [DM99] and recall Lemma [B.12l

Assume that cho(TM) — che(E) = 0 in de Rham cohomology and choose H € Q3(M) such that

dH = Str (R A R) = Tr (R™ A RM) — Tr (RF A RP). (3.3)

By Theorems 2.8h and 21Tk, this determines a sheaf of CDOs Dﬁﬁ)v g and every sheaf of CDOs on M
is up to isomorphism of this form. Assume also that ¢;(TM) — ¢1(F) = 0 in de Rham cohomology and
choose w € Q' (M) such that

dw = Str R = Tr RM — Tr R¥. (3.4)
By Theorem [2:8b, this determines a conformal structure v* on ch\}/},v, g of central charge 2(d — r).
Theorem 3.3. Regard Q) as an element of DCV}"H(M) of weight 1. The odd derivation Qq:

(a) is a differential if and only if H has no (1,2)- or (0,3)-part, and
(b) respects the conformal structure v if and only if w has no (0, 1)-part.

Proof. (a) The supercommutator of Q with itself is given by

203 = Qo Qul = [@.Qlo + (1@, Q) = 5 (a1eH)y

where the last step follows from (BI3]), Theorem 28, Lemma [B14] and Lemma 214 By Lemma 214
again, Q3 vanishes if and only if tgigH is closed. In view of the identity

2LQLQH = LJ'V‘LQLQH = LerLQLQH

toigH can only be closed when it is in fact trivial. When applied to a differential form on M, tgiq picks
out those components of type (i,7) with j > 2.
(b) Applying Qo to v* yields

Qo) = ~[¥1), Qol1 = —3T*L5Q = L T%(Q)
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where the last step follows from Theorem 2.8b and Lemma [B.14l Hence Q¢ annihilates v* if and only if
Tw(Q) = dw(Q) = 0. In view of the identity

w(@) = J'w(@Q) = tjrdw(Q)

w(Q) can only be constant when it is in fact trivial. When applied to a differential form on M, ¢ picks
out those components of type (i,7) with j > 1. O

Definition 3.4. For each n > 0, let Q7 | (resp. Q;') denote the sheaf of holomorphic (resp. smooth)
closed n-forms on M and define an element

N (E) € HM Q4 h0)

as follows. Since V¥ is of type (1,0), its curvature R has only (2,0)- and (1,1)-parts. Thus the n-th
Chern form ¢, (VE) lives in Q"**(M). Consider the diagram of fine resolutions of sheaves:

n,cl N4k, %
0 QM,hol (QM ’ d)

Pk

0 —— Q" —— (24", d)
In light of this diagram, ¢, (V¥) represents an element “cl°Y(E)” of H "(QX/’[?LOI), whose image under

H™ Qo) = H™ () = H*™(M;C) (3.5)

is the n-th Chern class ¢, (E). More generally, if C'(F) is a polynomial in the Chern classes ¢, (E), denote
by C°!(E) the corresponding polynomial in ci°!(E). The following result relates some of these cohomology
classes to the conditions encountered in Theorem B3

Proposition 3.5. There exists:
(a) H € Q3(M) satisfying (33) and H? = H*3 = 0 if and only if chi° (T M) — chi°/(E) = 0;
(b) w € QY (M) satisfying [34]) and w®* = 0 if and only if Y (T M) — cfY(E) = 0.

Proof. Recall Definition B4l Statement (a) holds because the said element of H 2(9?\;1}]01) is represented,
via the fine resolution

d 3,0 2,1 _d 4,0 3,1 22 _d _ .
ey — e o0y —

2,cl 2,0
0 QMc,hol QM
by the right hand side of (B3] up to a constant factor. Statement (b) is similar. O

Remark. In the case M is Kahler, [B.3]) is injective, as it can be identified with the inclusion

@ /Hn-l-;mq N H2n

p>0,p+g=n

where H" P4 H?" are the spaces of harmonic (n + p, ¢)- and 2n-forms respectively. Thus the conditions
in Proposition B.E become equivalent to che(TM) — chao(E) = 0 and ¢, (TM) — ¢1(E) = 0.

§ 3.6. Fermion numbers. The eigenvalues of J§ and J§ on Dl(i];ll,v7 g will be referred to respectively as
right (i.e. antiholomorphic) and left (i.e. holomorphic) fermion numbers. Recall from B2) that in weight
0, these numbers correspond to the exterior degrees in A*T MY and A*EV.

Proposition 3.7. The operator Qo always increases right fermion numbers by 1 if and only if the line
bundle det T M 1is flat.
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Proof. Denote by VM the connection on TM induced by VM and RM its curvature tensor. The commu-
tator between Jj and Q) is given by

[J5, Qo) = [J", Qlo + ({J", Q}a)o = Qo — (tgqTr RM)g

which follows from (B.I3)), Theorem 2.8a, Lemmas [B.10b, B.12t and B 14 Hence by Lemma T4, Qo is
compatible with right fermion numbers if and only if 1o Tr R is closed. By the same argument used in

the proof of Theorem [3.3] 1oTr RM can only be closed when it is in fact trivial. Since VM is of type (1,0),
RM has only (1,1)- and (0,2)-parts, so that 1o Tr RM =0 if and only if Tr RM = 0. O

Proposition 3.8. The operator Qo respects left fermion numbers if and only if Tr RE has no (1,1)-part.

Proof. The commutator between J§ and Qg is given by
[J5, Qo] = [7°, Qo + ({1, Q}a)o = —(1qTr R¥)o

which follows from (BI3), Theorem 28k, Lemmas [B11b, B12k and [B14l Hence by Lemma B4 Qo

commutes with J¢ if and only if 1o Tr RE is closed. By the same argument used in the proof of Theorem
B3l toTr R can only be closed when it is in fact trivial. Since V¥ is of type (1,0), R has only (2,0)-
and (1,1)-parts, so that g picks out the (1,1)-part. O

Remark. Given a hermitian metric on F, there exists a unique unitary connection V¥ of type (1,0),
and its curvature R¥ is of pure type (1,1). [Wel80] If DG ;; (M) has been defined using this V¥, then Qo
respects left fermion numbers if and only if Tr R¥ = 0, i.e. the line bundle det F is flat.

Corollary 3.9. Suppose Q3 = 0 holds, so that (’D%‘)H(M), Qo) is a differential vertex superalgebra.

(a) If det TM = det E' as holomorphic line bundles, (Dg’yH(M), Qo) is a differential conformal vertex
superalgebra.

(b) If det TM is flat, the grading by right fermion numbers makes (Dcv}fH(M), Qo) a differential graded
vertexr superalgebra.

(c¢) If det E is flat, left fermion numbers are well-defined on the cohomology of (Dg’)H(M), Qo).

Proof. (a) Under the assumption we may compare the induced connections det VM and det V¥ via the
isomorphism, and they differ by a (1,0)-form w. This implies 4] and, by Theorem B3b, Qo(r*) = 0.
(b)-(c) These are simply restatements of Propositions 37 and B8 O

For the rest of this section, M is always compact.
Theorem 3.10. Suppose Q3 = 0 holds and consider the vertex superalgebra
V= H(DE 5 (M), Qo)
Let q be a formal variable. There is an identity of formal power series

sy (™) = [

Td(T M) ch <® Sym (TM & TMY) @ QA -n E @ X) A_anV> . (3.6)
M

n=1 n=1 n=0

Let y be another formal variable. If det E is flat, there is a more refined identity

Stry (y70gL0) = / Td(TM) ch <® Symgn (TM & TMY) @ Q) A—y-14: E ® (X) A_yanV> :
M

n=1 n=1 n=0
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Proof. By Proposition B8 if det RF is flat, J§ is well-defined on V. Otherwise, set y = 1 whenever it
appears in the proof below.
Observe that Q¢ respects the filtration on Dcvh) (M) described in §A.9 and induces the operator L¢

on the associated graded space gr(Dg ;(M)). Let
V' =H(gr(Dg y(M)), Lg).
The quantity we want to compute can be rephrased as follows:
supertrace of y‘]fLw]L0 onV
= supertrace of y"‘l)qL0 on V'
= supertrace of y70 on H (é S/y?nqn (Q'M) @ T(M)),LQ> (3.7)
n=1
where the graded symmetric tensor products are taken over C°°(M). Recall the local coordinates
(Rez!, Imzt, - | Rez?, Imz¢, L, .-+ ¢4, el, .- |en)
defined in Example[B.9l To compute (B.1)), consider the following subspaces of Q'(M) and 7 (M):
QY(M) = {a € Q' (M) s.t. ais locally a C*°-linear combination of dz", dak}
QY (M)" = {a € Q' (M) s.t. a is locally a C*°-linear combination of dz"}
TOM) = {X € T(M) s.t. X is locally a C*-linear combination of 9/9z",0/0¢"}
TOM)' = {X € T(M) s.t. X is locally a C*-linear combination of 9/9¢" }
Lemma 3.11. The following inclusions

(QYO(M), Lg) — (' (M), Lg), (T"°(M), Lg) — (T(M), Lg)

(
(

are quasi-isomorphisms.

Proof. Denote both of the projections Q'(M) — QM9(M) and T(M) — T+9(M) by 710, Tt suffices to
show that id — 710 are null homotopic. Define G : (M) — Q'(M) and G : T (M) — T (M) locally by

0
¢t
and notice that the expressions are independent of local coordinates. By a calculation we have
LoG+GLg =id — n'°
on both Q'(M) and 7(M), as desired. O

Lemma 3.12. There are natural filtrations on (Q1°(M), Lg) and (T1°(M), Lg) whose associated graded
complexes are isomorphic respectively to

(QO’*(M;E’),é) and (QO’*(M;E”),g)
where B' = N"EQ (TMY ® EY) and E" = N N"E® (TM ¢ E).

Ga = (—l)a'oe(a%)dzi, GX = (—1)Xlazi(x)

Proof. There are identifications defined by the following local expressions

QMO(M)’ = C®(M) @coe(ary Q40 (M), dz' — 1®dz*
QMO (M) /QHO(M) = C*°(M) ®@ceear) T(EY), def mod QMO(M) = 1 ® ¥
THOM) = C®(M) ®@ce () [(E), 0/0ek = 1®ey
THOM)/THO(M) = C®°(M) ®coo(ary THO(M), 0/0z' mod THO(M) — 1® /07"
and C°°(M)-linearity. Then it remains to recall B1]). O
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Proof of Theorem [ZI0 continued. Now we apply Lemmas [B.11] and B2 to compute [B.7). Since (graded
symmetric) tensor products of quasi-isomorphic complexes are quasi-isomorphic and filtrations on com-
plexes induce filtrations on their (graded symmetric) tensor products, we have

B0 = supertrace of y‘]fl) on H <® S/yzlqn Q"°'(M) & Tl’O(M)),LQ>

n=1

= supertrace of nyl) on H <® S/yzlqn QY (M;E' & E"), 5)

n=1

= sdim H (QO’* (M; AyEY @ R) Symy. (TM & TMY & (—y  )E @ (—y)EV)> , a)

n=1
= sdim H (QO’* (M; Q) Sym (TM & TMY) @ Q) A_y-14nE @ X) /\_yanV> , a)
n=1 n=1 n=0

Notice that the graded symmetric tensor products in the second expression are taken over Q%*(M; A*EV).
To finish the proof, apply the Hirzebruch-Riemann-Roch Theorem. O

Remark. In terms of the Chern roots x1, ..., z4 of TM and ¥ ... xF of E, we may write the integrand
in (3:6) as follows

oo ™

1 E

<1_ s — - 1_ z)) ((l—ezj)
1 e o q"e q"e ol

d

I I

d 0o . "
_ x1/2 1 7]
= i_l_[1<smh (zi/2) 1;[ (1 — gmezi) - ) ]___[(25111 5

1_qne x;

(1— g™ )1 = q"e "7 >>

M:18 e

1
B B eEcl(TM)
1_ n xj 1_ n 7acj -
(1—¢"e )1 —q" )) o

If c1(TM) = ¢, (E), this expression lives in H**(M;C) if r is even, or in H**2(M;C) if r is odd, so that
Str v (qF°) = 0 whenever d + r is odd.

Example 3.13. The case E = 0. By Theorem [3.3h and Proposition [3.5h, there exists a differential
vertex superalgebra

(DY (M), Qo) M=I1ITM

if and only if ch}° (T M) = 0; denote its cohomology by V. By Theorem

o0

2d
Stry (¢™) :/ et M0 W (T M) - (H 1 n)
M

n:ll_q

where W (T Mg) is the Witten class of the real tangent bundle of M. By Theorem B3b and Proposition
B.5b, if cM(TM) = 0 as well, V is conformal with central charge 2d. Then, writing ¢ = €2™", we have

) W (M
char V = ¢~ ¥/'2 Stry (¢*0) = ﬁ (38)

where W (M) is the Witten genus of M and
=all0=a

The condition ¢;(T'M) = co(TM) = 0 guarantees that W (M) is a modular form of weight d, while A(7) is
a modular form of weight 12, both over SL(2,Z). The expression in ([.8) is the conjectured S'-equivariant
index of the Dirac operator on the free loop space LM . [Wit88]
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Example 3.14. The case F = T'M. By Theorem and Proposition [3.5] there always exists a differ-
ential conformal vertex superalgebra

(D¢ (M), Qo), M =I(TM &TM)
with no central charge; denote its cohomology by V. By Theorem 310, we have
Stry(¢") = x(M)
and, if det T'M is flat, also have

y_d Stry (yJ[L)qLO) = E”y,q(M)

2miT

namely the two-variable elliptic genus of M. [BL0OQ] In particular, writing ¢ = e*™", we have the special

value
Och(M)

Strv (1)) = 57

(3.9)
where Och(M) is the Ochanine elliptic genus of M and

= (155

n=1

respectively a modular form of weight d and a modular form of weight 4 over I'o(2) C SL(2,Z). The
expression in ([3.9) is the S'-equivariant signature of LM. [HBJ92]

Example 3.15. The case E = det TM. Let ¢ = ¢;(T'M) and ¢! = ¢°Y(TM). By Theorem B3k and
Proposition [3.5h, there exists a differential vertex superalgebra

(DL 1;(M), Qo), M = II(TM @ det T M)
if and only if
1
() = ()2 =0 (3.10)

denote its cohomology by V. By Theorem and Proposition B.5b, V' is always conformal with central
charge 2(d — 1). By Theorem B.I0 and the remark below its proof, we have

O — g"eC — q"e—¢ O 2(d—1)
Strv(qL°)=2/MW(TMR)sinhgH(l q"e)1—q )-(H 1 ) (3.11)

(1—q")? 1—qn

which always vanishes if d is even. Now assume d is odd. This case provides a geometric interpretation
of the notions introduced in [CHZI10|] for certain spin® manifolds of (real) dimension 2 mod 4. Firstly,
condition (BI0) implies that M is rationally string® in the sense of loc. cit., namely

n=1

1
chao(TM) — ECQ =0 in H*(M;C). (3.12)
In the case M is Kahler, (BI0) and ([I2) are equivalent, as remarked after the proof of Proposition B35
Secondly, writing ¢ = €2, we have
2We (M)
A(r)d-1D/12

where W, (M) is the generalized Witten genus of M defined in loc. cit. B The string® condition (BI2])
guarantees that W,(M) is a modular form of weight d — 1 over SL(2,Z).

char V = ¢~ (@~ D/128¢ry, (¢F0) =

6 To recover the expression for W.(M) in [CHZI0], notice that they write ¢ = ¢™7, and the factor sinh(c/2) in (GII)
may be replaced by e/2 since d = dim¢ M is odd.
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Example 3.16. The case E = (det TM)®2 — det TM. [] Let ¢ = ¢1(TM) and ™' = /(T M). By
Theorem B3k and Proposition 3.5k, there exists a differential vertex superalgebra

(D4 (M), Qu), M =“TI(TN & (det TM)® — det TM))"
if and only if

3
() = () =0 (3.13)

denote its cohomology by V. By Theorem and Proposition B.5b, V' is always conformal with central
charge 2d. By Theorem B.I0 and the remark below its proof, we have

O (1 _ qn620)(1 _ qn672c) ' O 1 2d
(1—qre)(1 —qre=c) (,1:[1 1- Q")

n=1

II [(1 )L+ g e (1 4 gne)
n=1

N O

Stry (¢0) = 2 / W (T Mg) cosh
M

N O

= 2/ W (T Mg) cosh
M

0o 2d
1 1 1
c(1=q¢""2e7 )14+ q¢" 2 )1+ q"e 9| - 3.14
T (RN (1 Fr) (3.14)
which always vanishes if d is odd. Now assume d is even. This case provides a geometric interpretation of
the notions introduced in [CHZI0] for certain spin® manifolds of (real) dimension divisible by 4. Firstly,

condition (BI3)) implies that M is rationally string® in the sense of loc. cit., namely

3 2

chao(TM) — 3¢ =0 in H*(M;C). (3.15)
In the case M is Kédhler, (313) and (BI%]) are equivalent, as remarked after the proof of Proposition 35
Secondly, writing ¢ = €2, we have
_ 2W.(M)
_ d/12 Loy __ C
charV = ¢ Stry (¢™°) = INGLE

where W, (M) is the generalized Witten genus of M defined in loc. cit. B The string® condition BI19)
guarantees that W.(M) is a modular form of weight d over SL(2,7Z).

7 The results obtained above may be formally applied to a virtual holomorphic vector bundle E = Ej — Eo. This amounts
to using “C°(M)”:=I'(A*E) ® Sym*Ey) in the construction of “D%"H(M).”

8 To recover the expression for W.(M) in [CHZI0], notice that they write ¢ = ™7, and the factor cosh(c/2) in (BI4)
may be replaced by e/2 since d = dimg M is even.
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APPENDIX §A. VERTEX ALGEBROIDS

The notion of a vertex algebroid, introduced in [GMS04], captures the part of structure of a vertex algebra
involving only the two lowest weights. In this appendix, we review the category of vertex algebroids, the
forgetful functor from vertex algebras to vertex algebroids, and its adjoint functor. Some examples are
given, including the construction of local smooth CDOs.

Definition A.1. An extended Lie algebroid (A, Q,T) consists of
a commutative, associative C-algebra with unit (A, 1)
- two A-modules Q and T
- an A-derivation d : A — € whose image generates ) as an A-module
- a Lie bracket [] on T
- an A-linear homomorphism of Lie algebras 7 — End A, denoted X — X
- a C-linear homomorphism of Lie algebras 7 — End (2, denoted X — Lx
- an A-bilinear pairing Q x T — A, denoted (a, X) — a(X)
Furthermore, we require that
- the T-actions on A and Q commute with d
- the T-actions on A4,Q and T (via []) satisfy the Leibniz rule w.r.t. A-multiplication
df(X)=Xffor feA XeT
Definition A.2. A morphism of extended Lie algebroids ¢ : (A, Q,T) — (A, ', T") is a map of triples
that respects the extended Lie algebroid structures. Composition of morphisms is defined in the obvious

way.

Definition A.3. A vertex algebroid (A,Q,T,*,{ },{ }a) consists of an extended Lie algebroid (A4,Q,T)
and three C-bilinear maps

x: AXT = Q, {}:TxT—= A, {}a:TxT—=>Q

that satisfy the following identities
- A{X, Y} ={Y, X}
S d{X, Y} ={X,Y}o+{YV,X}q
C(fg)x X — f*(9X) = flg*X) = —(X[)dg — (Xg)df
AX Y - XY =—(f*Y)(X) - YX S
AX Yo - X, Yia=—Lx(f*Y)+(Xf) Y + [+ [X,Y]
- X{Y, Z} - {[X)Y], Z} —{Y, [X, Z]} = {X, Y }a(Z) + {X, Z}a(Y)
< Lx{Y,Z}a — Iy{X, Z} o+ Lz{X,Y}o +{X,[Y, Z]}o — {Y, [X, Z]}o — {[X, Y], Z}a
=d({X,Y}a(2))
for f,gec Aand X,Y, Z € T.

Remark. This definition is slightly different from but equivalent to the original one in [GMS04]. What
we denote by x, { },{ }q equal respectively —, (), —c+ 3d o () in their notations.

Definition A.4. A morphism of vertex algebroids

(907 A) : (A7 Q,T, { }7 { }Q) - (Alv Q/v T/v */7 { }/7 { }b)
consists of a morphism of extended Lie algebroids ¢ : (A,Q,7) — (A, ', T’) and a C-linear map A :
T — € such that
cof ¥ X —o(f x X) = A(fX) = (0f)A(X)
H{eX oYY — o XV} = —AX)(¢Y) = A(Y)(pX)
e X, 9V }o — o{X, Yo = —LoxA(Y) + Ley A(X) — d(A(X)(¢Y)) + A([X, Y])
for f € Aand X,Y € T. Composition of morphisms is given by

(¢, Ao (p,A) = (o, ¢'A+ Aop|7).
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§ A.5. The vertex algebroid associated to a vertex algebra (and a “splitting”). Given a vertex
algebra (V,1,T,Y), let

A=V, Q= Ay (TA), T :=V/Q.
Choose a splitting s : T — V; of the quotient map to obtain an identification of vector spaces
QT =W, (a, X) — a+ s(X). (A1)

The vertex algebra structure on V' involving only the two lowest weights consists of an element 1 € V), a
linear map T : Vi — Vi, and eight bilinear maps
(i+j—k—1) : Vi X Vj = Vi, 4,5,k =0,1

satisfying a set of (Borcherds) identities. These data, when rephrased in terms of the identification (AJ]),
are equivalent to a vertex algebroid (A4,Q,T,*,{ },{ }a). The extended Lie algebroid (4,2, T) consists
of precisely those data that are independent of the choice of s, namely

f9:=Ffng fo= fno fX = f-1)s(X) mod ©
Xfi=s(X)of Lxa:= s(X)@ [X,Y] = 5(X))s(Y) mod 2 (A.2)
df :=Tf a(X) = aq)s(X)

[ for f,g€ A, a € Qand X,Y € T; on the other hand

f*X = fns(X) = s(fX)
{X, Y} = s(X))s(Y) (A.3)
{X, Y}a = s(X))s(Y) — s([X,Y])

for fe Aand X,Y € T.

§ A.6. The induced morphism of vertex algebroids. Consider a homomorphism of vertex algebras
O:V - V. Let (A, QT,+{},{}a), (A, T « {},{}g) be the vertex algebroids associated to V,
V' and some splittings s : T — V4, s : T/ — V. The part of data of ® involving only the two lowest
weights, when rephrased in terms of identifications like (A]), are equivalent to a morphism (p, A) between
the two vertex algebroids. It consists of the obvious map of triples ¢ : (A,Q,T) — (A, ', T") induced by
@, and a map A : T — ' given by

AX)=ds(X) -5 (pX), XeT.

§ A.7. The vertex algebra freely generated by a vertex algebroid. Let (A4,Q,7,x,{ },{ }a) be
a vertex algebroid. Throughout this discussion, we always have f,g € A, a, 8 € Q, X,Y € T. Define an
associative C-algebra W with generators of the form f,,, a,, X,,, n € Z and the following relations

(cf)n =cfn (cat)n = cay, (eX)n =cX,

1, = 571,0 (df)n = —nfn [fnagm] = [fnvam] = [O‘naﬁm] =0
(X, fm] = (X atm [Xn, am] = (Lxa)ntm + na(X)nim
(X, Y] = [X, Y]ntm + (X, Yia)ntm +n({X, Y Pngm

where ¢ € C, n,m € Z. g‘he subalgebra W, C W generated by f,, n > 0 ang Qpy Xpy n > 0 admits a
trivial action on C. Let V' := W ®y, C be the induced W-module and V' := V/ ~ the quotient module
obtained by imposing the following relations for v € v

(A.4)

(fg)nv ~ Zkgz frgn—rv
(fa)nv ~ Zkez fkanfkv (A5)
(fX)nv ~ Zkgo SeXnkv + 3 a0 Xn-rfrev — (f % X)nv

9 For example, the definition of X f is indeed independent of s because ayf =0for f € Aand a € Q.
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Notice that the summations are always finite. It is a consequence of the axioms of a vertex algebroid that
(A4)-(AH) are consistent. Define a vertex algebra structure on V as follows. The vacuum 1 € V is
given by the coset of 1 ® 1 € V. The infinitesimal translation 7' and weight operator L are determined
by the requirements

T1=0 T, fn] = (1 —n)fn- [T, an] = —nag,—1 T, X,] = —nX,—1
LO]‘ = 0 [L07f71] = _nf’ﬂ [L07an] = —No&p [L07Xn] == _an

which are consistent with (A4))-(A.5); notice that actions of f,, a,, X, change weights by —n. Identify
f, a, X with fo1, a—11, X_11 and associate to them the following fields

Zn fnzin ’ En anzinil ’ En X"27n71

which are mutually local by (A.4); notice that f,,) = fui1, @) = @n, X(n) = X,. Now apply the Strong
Reconstruction Theorem [FB04].

Suppose (A, Q, T, *,{ },{ }a) is the vertex algebroid associated with a vertex algebra V' and a splitting
s: T — V/. There is a canonical homomorphism of vertex algebras ® : V' — V', determined by ®f = f,
o =« and DX = s(X). If @ is an isomorphism, V' is said to be freely generated by a vertezx algebroid.

8 A.8. The induced homomorphism of vertex algebras. A morphism of vertex algebroids

(907 A) : (A7 Q,T, { }7 { }Q) - (Alv Q/v T/v */7 { }/7 { }g))
induces a homomorphism ® : V — V'’ between the freely generated vertex algebras by the equations

Of =of da = pa PX =pX + A(X)
Do f,=(Pf)po® boa, = (Pa),od PoX, =(PX),0®

for fe A, aeQ, X € T,n € Z. Indeed, these equations are consistent with (AZ)—(AF).

§ A.9. More details on the constructions in §A.7 and §A.8. Given a possibly empty sequence of
negative integers n = {n; < --- <ng; < 0}, we write

nj=ni+---+ns, (0if n={}), n(i) = number of times ¢ appears in n

and regard n as a partition of |n|. For & > 0, let I be the set of pairs (n,m) of such sequences with
—|n| — |m| = k. Define a partial ordering on I; such that (n,m) < (n’, m’) if and only if

—|n| < —|n’| or |n| = |n’| and n’ is a proper subpartition of n

or n = n’ and m is a proper subpartition of m’

For example, ({},{-2,-2,-1}) < ({}, {3, -2}) < ({-4},{-1}) < ({3, -1}, {-1}) in I5.
Consider the vertex algebra V constructed in A7l Associate to each n = {n1 <--- <ng <0} and
s-tuples a = (g, ..., a5) € Q°, X = (X4,...,X;) € T* the following operators on V'
Qn 1= Q1 sy Xn =X Xon, (both 1if n = {})
For k > 0, we have V;, = span { Xnaml| (n,m) € I;}; for (n,m) € I, define the subspaces

F<(nm) := span { X pam 1] (n,m’) € Iy, (n',m’) < (n,m)} C Vi
Fnm) = span{Xpom 1| (n’,m’) € I, (n',m’) < (n,m)} C Vi

10 For example, [Xn, (fY)m] can be computed by either taking the commutator first or expanding (fY)n, first. The
resulting identity is already implied by the vertex algebroid axioms and does not lead to a new relation.
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The bilinear operation A X Vi, — Vj, given by (f,v) — fov does not make Vj, an A-module, but it preserves
F<(n,m), F<(nm) and induces an A-module structure on their quotient. In fact,

F=(nm)/ F<(mm) = (@ Symg<i>7> ® ® Sym™YQ

i=—1 j=—1

as A-modules. This allows us to compute the “associated graded space”

Ao@P (" B Fznm/Fimm) | = @) Symy,(T 0 Q)
k=1

(n,m)€er} /=1

where ¢ is a formal variable and Sym,(-) = > t"Sym’i(:). The subspaces F<n m)s F<(nm) and the
isomorphisms stated here are natural, i.e. respected by the homomorphism ® constructed in JA.8

The omitted proofs of the following lemmas are straightforward (though somewhat tedious).

Lemma A.10. Given the following data:
- a vertex algebroid (A,Q,T,*,{},{ }a)
- an isomorphism of extended Lie algebroids ¢ : (A,Q,T) — (A, Q,T")
- a C-linear map A : T —

if we define maps

AT = O {V:T'xT = A, {Yo:T' xT =

by the equations in Definition [A7), then (A, Y, T',«',{ },{ }t) is a vertex algebroid and (p,A) is by
construction an isomorphism between the two vertex algebroids. [

Lemma A.11. Given the following data:

- two vertex algebroids (A, Q,T,x,{ },{ }a) and (A", Q, T« . {}.{}Q)

- a morphism of extended Lie algebroids ¢ : (A,Q,T) — (A, Q, T

- a C-linear map A : T —

- a subset S C T that is closed under || and spans T as an A-module
if (¢, A) satisfies the equations in Definition[A]] for (f, X,Y) € A x S?, then it also does for (f,X,Y) €
A x T? and hence is a morphism between the two given vertex algebroids. [

§ A.12. Super version. There is no difficulty in generalizing the discussions in this appendix to define
extended Lie superalgebroids, verter superalgebroids, and relate them to vertex superalgebras.

Example A.13. The vertex algebroids associated to a Lie algebra. Consider a Lie algebra g over
C and a vertex algebroid of the form (C, 0, g, 0, A,0) with g acting trivially on C. The second, fourth and
last components are trivial by necessity. The conditions on A : g x g — C are

AXY) =AY, X),  MX.Y],Z)+AY,[X,Z]) =0
i.e. it is a symmetric invariant bilinear form on g. Let
Va(g) = the vertex algebra freely generated by (C,0,g,0, A, 0).

In the case g is simple, finite-dimensional and A equals k times the normalized Killing form, this is the
vertex algebra defined on the level-k vacuum representation of the affine Kac-Moody algebra g. [FB04]

11 More precisely, the coefficient of ¢* is the associated graded space of a certain filtration on V.
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Example A.14. Polynomial CDOs. Given nonnegative integers p and ¢, let WW be the associative
C-superalgebra generated by elements of the form

. , 0, i=1,...
b:m ai,n; TLGZ, Zzlvap+Qa |b:z|:|az,n|: 7, Z ’ P
1, i=p+1,...,p+¢q
(| - | = parity) satisfying the following relations
(b5, 03] = 0 = [ain, jm)s (@i, 0] = 6]6n,—m

%

where [ | is the supercommutator. The subalgebra Wy C W generated by b%,, n > 0 and a;,, n > 0 is
supercommutative and admits a (purely even) trivial representation C. The induced W-module

DM (APIY) .= W@y, C

has the structure of a vertex superalgebra. The vacuum is given by 1 = 1®1. The infinitesimal translation
T and weight operator Ly are determined by

T1=0 [T,b1] = (1 —n)bl,_, [T, a;n] = —na;n-1
Lo]_ =0 [Lo, b;] = —nb; [Lo, aiyn] = —Najn

The vertex operators of bj1 and a; —11 are given respectively by the fields

Zn bilz_n7 Zn ai;nz_n_l

while the other vertex operators follow from the Reconstruction Theorem [FB04].
The vertex superalgebra DCh(A”‘Q) is freely generated by the associated vertex superalgebroid. To
describe the latter, consider the algebraic supermanifold

Aplq = Spec ((C[b17 e 7bd] ® /\(bp'"‘l7 . 7bP+Q))

and identify its functions, 1-forms and vector fields with the following subquotients of D (API9):
- O(API9) = DR(API9)) via b = b1, b'b = bybI1, ete
- QYAPI9) € DM(API9)) via db' = bl 1
- T(API7) = D (API9), /Q(API?) via ; = D/Ob" = coset of a;,_11
Then “the” vertex superalgebroid associated to D*(AP!9) is of the form
(O(AP1), Q1 (AP19), T(AP19), %, { 1%, { }5,).

The extended Lie superalgebroid structure consists of the usual differential on functions, Lie bracket on
vector fields, Lie derivations by vector fields on functions and 1-forms, and pairing between 1-forms and
vector fields. Let €; := (—1)I*'l. If we use the splitting

S T(Aplq) — 'DCh(Ap‘q)l, X = XZ(?Z — €3+‘X|ai7_1Xi
the rest of the vertex superalgebroid structure, as given by ([A.3)), reads
f *¢ X = —(EiEj)H_If‘-HX‘(ajaif)Xidbj
(X, Y} = - T, x 0y 0,v7) (A.6)
{(X,Y}a = —(gen) (0,0, X ) (97 )db"

The superscript c refers to the dependence on coordinates.

12 This vertex superalgebra is the tensor product of p copies of the B+-system and g copies of the be-system.
13 From another point of view, making these identifications dictates our (sign) conventions for calculus on APl (or RPI9).

For example, it follows from a(X) := ayqys(X) in (A2) that db(9;) = Ej5;.
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Example A.15. Local smooth CDOs. Let b',...,b” and bPt!, ... bPT7 be respectively the real, even
and odd coordinates of R?I9, regarded as a smooth cs-manifold, namely

C>®(RPI9) = C°(RP) @ A(bPH1, ..., 0PT9) @ C.

Let W be the restriction of R?1? to an open set in R?. Motivated by Example [A.14] we define a vertex
superalgebra D"(W) as follows. The functions, 1-forms and vector fields on W form an extended Lie
superalgebroid as in Example [A-T4] and formulae (A6 again yield a vertex superalgebroid

(C=(W), QY (W), T(W),**, { }%,{ }8);
then take the freely generated vertex superalgebra.

§ A.16. The Wess-Zumino form of a diffeomorphism. Suppose ¢ : W — W' is a diffeomorphism
between restrictions of RPI? (as a cs-manifold) to open sets. The following notations will be used:

|- | = parity, € = (—1)‘“, €j = (—1)‘bi”bj|, ,j=1,...,p+¢q
Let g, : W — GL(p|q) be the map of cs-manifolds whose components (ng)ij are given by
@ b’ = (95)' ;A & (95)'; = €jeij0p"
where ¢ = ¢*b?. 1Y Define the following differential forms
Op = g," - dgp € Q' (W) @ gllplg),  WZ,:= %Str (0 A Op N O,) € 2°(W).

It follows from df, = —0, A0, that WZ, is closed.

Theorem A.17. Let W, W', W"' be restrictions of RP'? (as a cs-manifold) to open sets in RP.
(a) Suppose p : W — W' is a diffeomorphism. There is a one-to-one correspondence:

isomorphisms of vertex superalgebras DH(W') — D (W) N £ € Q%(W), even
whose weight-zero components are @* : C°(W') = C°(W) and d§ =WZ,

Given £ as above, the corresponding isomorphism, denoted by g, s induced by an isomorphism between
the associated verter superalgebroids

(#", D) + (C(W), QY (W), T(W'),+, { }°,{ }5) — (C™(W), Q1 (W), T(W), =", { }.{ }5)

where Ay ¢ 2 T(W') = QY W) is given by

Age(X) = —eieize; 10, (0" X) (0, — e XSt (0 ® 0p) — St x€

K2

for homogeneous elements.
(b) Suppose @' : W' — W" is another diffeomorphism, & € Q*(W') is even, and d¢’ = WZ,. Then

we have the composition
pioplh =(P'p), =6+ tope
where 01 = Str(0p A gt - @ 00 - gp).

Remarks. (i) This is a reformulation of a result in [GMS00] in the smooth case. (ii) As a consistency
check, it follows from 6/, = 0, + g;l @ 0y - gp that WZy =WZ, + @ W2y +doyr .

14 In this notation, the chain rule reads g,/ = (P* ) * Goo-
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Proof of Theorem[A.17 (a) Any morphism between the extended Lie superalgebroids associated to W
and W' is induced by a map of cs-manifolds, which is ¢ in this case. Consider a morphism of vertex
superalgebroids of the form

(", A) + (C(W), QY (W), T(W'), ¢, { 1, { }§) = (C*(W), Q1 (W), T(W), =, { }*.{ }5)

and write A = Ag o @*|7(wr) in terms of an even map Ag : T(W) — Q'(W). Applying Lemma [A 1Tl with
S = {,0;}’* and using (A6), we obtain a complete set of equations for Ag, namely

Ao(f0s) — fA0(9:) —€ el-Hfl(a e <p) i
Ao(9:)(0;) + €580(95)(0;) = —Str (9 ® 0,)(0; ® 95)
9 (80(97)(0k)) — €ij0;(20(9;) (k) +61k63kak(A0 1)(0)))

= _frfjkekreks (( w)r ( )) : (etp)sr(aj)
The first equation implies that for any X € T(W)
Ag(X) = —ciesjes 1Y@, X0 (0,)7; + X 20(0)) ;

the second equation allows us to write
1 1
Ao(0:)(9;) = —QSU (0p ®0,)(0; ® 95) — 551‘;', §ji = —€iz&ij;
then it follows from df, = —0, A 0, that the third equation is equivalent to
1
ds=W2Z, = §Str (Op Nbyp NB,)

where ¢ is the even 2-form with £(0;,0;) = &;;. Since DP(W) and D"(W') are freely generated by vertex
superalgebroids, an isomorphism between them is equivalent to an isomorphism between the associated
vertex superalgebroids. This completes the proof of (a).

(b) By part (a), the composition in question must be of the form (¢’p); for some 1 € Q*(W). At the
level of vertex superalgebroids, we have

(p" " Do) = (95 Age) 0 o (¢, Ayrer)
= AlP"PvU = AlP’f’ + A¢7£QO/*.

Evaluation at e.g. ¢’ ¢, 0k then yields the desired formula for 7. O
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APPENDIX §B. AFFINE CONNECTIONS ON CS-MANIFOLDS

Consider a smooth manifold M and a smooth C-vector bundle £ — M. In this appendix, we construct
an affine connection on the smooth cs-manifold M = IIE and obtain a number of formulae used in the
computations of CDOs on M.

§ B.1. Functions on M. Let d = dim M and r = rank E. There is a canonical identification

C>®(M) =2T(A*EY). (B.1)
In particular, a set of local coordinates (z!,- - ,xd) on M and a local frame (g!,--- ,&") of EV together
determine a set of local coordinates (x!,- - ,xd el ,e™) on M.

§ B.2. Vector fields on M. Choose a connection V¥ on E and use the same notation for the induced
connection on A*EV. Let (e1,--- ,&,) be the local frame of E dual to (g!,--- ,e"). Let X,Y € T(M) and
o,7 € T'(E). Under the identification (B, vector fields on M correspond to derivations on sections of
A*EY. In particular, denote by

. . . . E
Dx the vector fields on M covariant differentiation V%

Zs . contraction with o (B.2)
g corresponding to the exterior degree

The vector fields Dx and Z, span T (M) over C*°(M). The super Lie brackets of (B:2) are given by

[Dx,Dy] = Dixy) = Tpe oy [Px L) =Tye,, (L, L] =0=[J,Dx], [JT,]=-Z, (B3)

where RE is the curvature of V.

§ B.3. An affine connection on M. Choose also a connection VM on TM. Let X,Y,Z € T(M) and
o,7 € I'(E). Define a connection V on TM by

VoxDy =Dyuy. VoL =Ty, Vz,Dx=VzZ =0 (B.4)
and the Leibniz rule. Using (B.3)), we compute the curvature of V as follows
RpypyPz =Dry 7z, Boxpylo =Tz o, Boxz, =Rz,z.=0 (B.5)

where RM is the curvature of V.
Lemma B.4. (a) The operator V'.J sends Dx to 0, and Z, to itself. (b) V(V'J) = 0.

Proof. Recall that V!J := V; — [J, -]. Using the fact that J = e*Z,,, (a) follows readily from (B.3]) and
(B4). Then (b) is clear. O

Lemma B.5. Regarding Q* (M) as a subalgebra of Q*(M), we have
(a) Str R = Tr RM — Tr RF,
(b) Str (RA R) = Tr (RM A RM) — Tr (RE A RE),
(c) Str (R-V!J) = —Tr RF.

Proof. All these statements follow easily from (B.E) and Lemma [B.4h. O
Example B.6. The de Rham cs-manifold. In the case £ = TM ® C, (B.]) can be rewritten as

O (M) = Q*(M).
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Let ¢ = da® and ¢; = 0; = 0/0z'. Besides (B.2)), consider also the odd vector field Q = £'0; on M
corresponding to the de Rham operator d. Assume that VM is torsion-free. This implies the identity
d = dz' AV, or equivalently

where the second equality should be understood as the definition of a new notation. Similar abuse of
notation will appear below without further comment. The super Lie brackets with @) are given by

(@ Dx] =Dyyx —Iry @ [@:Ix]=Toux+Dx, [/ Q=Q, [Q Q=0 (B.7)
Indeed, the first two equations follow from the following calculations
[Q,Dx] = [£'Ds,, Dx| = '[Do,, Dx| — (Dx&")Do, = €'Djp, x| — EistRé\f,Xaj +&'Dyuy,
= EiDvgfx - IRgXQ = Dvgx - IRgXQ
Q. Zx] = [£'Do,, Ix] = &'[Do,, Ix] + (Ixe")Do, = ¢'Iyy x + Dx =Lyyx + Dx

where we have used (B.G)), (B:3) and the torsion-free condition. By (B4) and (B.G]), covariant differentiation
with respect to @ is given by

Lemma B.7. The operator V'Q and its covariant derivatives are computed as follows:
(a) VtQ sends Dx to Try @, and Ix to —Dx.
(b) Vo (V'Q) sends Dy to Ligupuy, g, and Iy to 0.
(c) V1, (VtQ) sends Dy to IF%Qy, and Zy to 0.

Proof. Recall that V'Q := Vg — [Q, -]. (a) follows from (B7) and (B.8)). For (b) and (c) we compute

(VDx(VtQ))DY =VoxIpy g~ (V'Q)Dyyy = Ioyry ot (DXEiEj)IRngYaj —Ipm Q

Q. v¥y
- IV%Rg,yQ B EZIR@[%@-,YQ B EZIRI(‘Q/{YV%& B IR?Q/I,V%YQ =Z(vy rRM)q.vQ
(VDX (VtQ))IY =~V Dy — (V'Q)Iyuy = ~Dyyy + Dyuy =0
(VZX(VtQ))DY = VIXIRg[,YQ = (IXEiEj)IRg{,YYaj = IR%YQ - IR%{,,X = IRQ({QY
(V2 (V'Q)) Ty = -V, Dy =0
where we have used (B.4) and the first Bianchi identity. O

Lemma B.8. The operators V!Q, R-V!Q, R-V!'Q - V!Q and V(V!Q) A V(V!Q) all have supertrace
zero. It follows that the supertrace of V(V!Q) - ViQ is closed.

Proof. The first three operators have no supertrace by Lemma [B.7h and (B.5). For the third, notice that
(th)2DX = _DRI\QJ,XQ7 (th)QIX - _IRI\Q/I,XQ'
The fourth operator has no supertrace by Lemma and c¢. The remaining assertion follows from

dStr (V(va) : th) = 2Str (R- V'Q - V!Q) — Str (V(VtQ) A V(th)). O
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Example B.9. Dolbeault cs-manifolds. Now we change our notations as follows: M is a complex
manifold, 7'M its holomorphic tangent bundle, E a holomorphic vector bundle over M, and M = II(TM &
E) as a smooth cs-manifold. There is a canonical identification

C>®(M) = Q% (M; A*EY). (B.9)

Given a set of local holomorphic coordinates (z!,--- , 2%) on M and a local holomorphic frame (g!,--- ")

of EV, there is an associated set of local coordinates on M, namely
(Rez!, Imzt, -+ Rez?, Imz¢, L, .-+ ¢4 el | en)

where ¢* correspond to dz* under (B.9). Let 0; = 3/0%" and (£1,--- , ;) be the dual local frame of E.

Choose connections VM on TM and V¥ on E of type (1,0); denote by VM the induced connection on
TM. Let X,Y,Z € T(M), U,V € T% (M) and 0,7 € T'(E). Under the identification (B.3)), vector fields
on M correspond to derivations of (0, x)-forms on M valued in A*EY. In particular, denote by

Dx covariant differentiation V¥ ® 1+ 1® V£

T, 2, the vector fields on M contractions with U, o

Jr,Jt corresponding to the exterior degrees in A* TMY, A*EY (B.10)
Q Dolbeault operator 9 @ 1

The vector fields Dx, Zy and Z, span T (M) over C*°(M). Adopt an abuse of notation similar to that in
Example The super Lie brackets among the first three types of vector fields in (B.I0) are

[Dx.Dy] =Dixy) —Try @ — " Ire e, [Px.Tul=TIoyy, [Dx.Is]=TIyz,
[IUqu] = [IUa-Zo'] = [Iaazr] =0= [JT7,DX] = [JT,IU] = [Jévtpx] = [Jész] = [JT?JZ] (Bll)
[‘]Tsz] = _IUa [‘]2710’] = _IU

Assume that VM is torsion-free. This implies the identity 0 = dz° A @g_[ , or equivalently
Q = ({'Dy, = Dy. (B.12)
Then the various super Lie brackets with @) are given by

[Q.Dx] =Dyyxiorvyxon —Ipy o +€"Ipe o [Q.Tu]l =TIgmy +Du

B.13
QL) =Tor, MQ1=Q. [J9Q1=0=[Q.Q] (B13)
Indeed, the first two follow from (B.I2)) and calculations similar to those below (B.7).
Define a connection V on TM as in §B.3l More explicitly, we define
VDXDY == Dv%yl,o_;,_@%yo,l, V’DXIU :I@%U, V'DXIO' :IV)E(O' (B14)
Vi,Dx =V1,Iy =V1,2, =V, Dx =V, Iy =V, I, =0
By (BI2), covariant differentiation with respect to @ is given by
VoDx = 'DngLo_i_@gXo,l, Voly = I@gIU, Vol, = IVS(T' (B.15)
Using (BI1)), we compute the curvature of V as follows
RpypyDz =Dry  z104rY 200, BoxpyIv =Igy vy, Boxpylo = Iy o (B.16)

Rpy.1, = Rpy 1, = R1y,7v = Rzy7, = Rz, 7, =0

15 1f VM has a nontrivial torsion T, we can replace it with a new connection V'™ defined by V’)?/I = Vé(/f — %TX’_ , which
is also of type (1,0) and is torsion-free.
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The following statements and their proofs are similar to Lemmas [B.4] and [B.5

Lemma B.10. (a) The operator V'J" sends Dx, I, to 0, and Iy to itself. (b) V(V'J") =0.

Proof. Use (BII), (B:I14) and the fact that J" = ('Z,. O
Lemma B.11. (a) The operator Vt.J' sends Dx, Iy to 0, and I, to itself. (b) V(VIJ*) =0.
Proof. Use (B.11), (B.14) and the fact that J¢ = *Z_, . O

Lemma B.12. Regarding Q*(M) as a subalgebra of Q* (M), we have
(a) Str R = Tr RM — Tr RF,
(b) Str (R A R) = Tr (RM A RM) — Tr (RF A RP),
(c) Str(R-VtJ") = —Tr RM and Str (R - V*'J*) = —Tr RF.

Proof. Use (B6) and the previous two lemmas. O
The following statements and their proofs are similar to Lemmas and [B.8

Lemma B.13. The operator VIQ and its covariant derivatives are computed as follows:
(a) VIQ sends Dx to Try @~ akIRstk’ Iy to =Dy, and I, to 0.
(b) Vo, (VtQ) sends Dy to Lupmyg yQ — EkI(v)E(RE)Q’YEk, and Iy, Iy to 0.
(c) Vz,(VIQ) sends Dx to IR[I\]/I’QX + 5kIR5,Xsk: and Ty, I, to 0.
(d) Vz,(V'Q) sends Dx to _IRE,XU’ and Iy7, Iy to 0.

Proof. Use (B3), (B.14), (B.I5) and the first Bianchi identity. O

Lemma B.14. The operators V'Q, R-V'Q, R-V'Q -V'Q and V(V'Q) A V(V'Q) all have supertrace
zero. It follows that the supertrace of V(ViQ) - V'Q is closed.

Proof. Use (BIG) and the previous lemma. For the third operator, also notice that R xQ = 3R} o X!
by the first Bianchi identity, and RS)U = 0 by our assumption on V¥. O
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