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Abstract

The first part of this paper provides a new description of chiral differential operators (CDOs)
in terms of global geometric quantities. The main result is a recipe to define all sheaves of CDOs
on a smooth cs-manifold; its ingredients consist of an affine connection ∇ and an even 3-form that
trivializes p1(∇). With ∇ fixed, two suitable 3-forms define isomorphic sheaves of CDOs if and only if
their difference is exact. Moreover, conformal structures are in one-to-one correspondence with even
1-forms that trivialize c1(∇).

Applying our work in the first part, we construct what may be called “chiral Dolbeault complexes”
of a complex manifold M , and analyze conditions under which these differential vertex superalgebras
admit compatible conformal structures or extra gradings (fermion numbers). When M is compact,
their cohomology computes (in various cases) the Witten genus, the two-variable elliptic genus and a
spinc version of the Witten genus. This part contains some new results as well as provides a geometric
formulation of certain known facts from the study of holomorphic CDOs and σ-models.

§1. Introduction

In physics, the study of a type of quantum field theory called σ-models has inspired many important
insights in topology and geometry. The theory of elliptic genera is an example. In particular, associated
to any compact, string manifold 1 M is a σ-model whose “partition function” equals, up to a constant
factor, the formal power series

W (M) =

∫

M

Â(TM) ch

( ∞⊗

n=1

Symqn(TM ⊗ C)

)
·

∞∏

n=1

(1 − qn)dimM

known as the Witten genus of M . [Wit87, Wit88] Similarly, associated to any compact, spin manifold M
is another σ-model, which gives rise to the formal power series

Och(M) =

∫

M

L(TM) ch

( ∞⊗

n=1

Symqn(TM ⊗ C)⊗

∞⊗

n=1

∧qn(TM ⊗ C)

)
·

∞∏

n=1

(
1− qn

1 + qn

)dimM

known as the Ochanine elliptic genus ofM . [Och87, Wit87] The physical interpretation of these topological
invariants have led to predictions that are not immediately clear from the mathematical point of view. Even
though many of them have since been verified, e.g. [Zag88, BT89], a complete, geometric understanding of
elliptic genera has yet to emerge. The latter probably requires to some extent a mathematical framework
for σ-models.

Sheaves of vertex algebras provide a mathematical approach to σ-models. Important constructions
along this line include the chiral de Rham complex and, more generally, sheaves of chiral differential
operators, or CDOs. [MSV99, GMS00] In particular, a complex manifold M admits a sheaf of holomorphic

1 Let λ ∈ H4(BSpin;Z) ∼= Z be the generator such that 2λ = p1. This defines a characteristic class λ(·) for spin vector
bundles. A spin manifold M is said to be string if λ(TM) = 0. Moreover, a string structure on M is a “trivialization of
λ(TM)”, i.e. a homotopy class of liftings of the classifying map M → BSpin along the homotopy fiber of λ : BSpin → K(Z, 4).
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CDOs Dch
M with a conformal structure if and only if chol1 (TM) = chol2 (TM) = 0; 2 notice that M as a spinc

manifold admits a string structure if and only if c1(TM) = c2(TM) = 0. Furthermore, if M is compact

charH∗(M,Dch
M ) = W (M) · (a constant factor)

suggesting a connection between Dch
M and the σ-model underlying the Witten genus. In fact, physicists

have recognized a connection between CDOs and σ-models of various flavors. [Kap06, Wit07, Tan06]
More recently, a new construction of the Witten genus has been given under a systematic mathematical
framework for perturbative quantum field theory. [Cos10]

The first goal of this paper is to provide a new description of CDOs using global geometric quantities
and the language of cs-manifolds, i.e. supermanifolds equipped with C-valued functions. The algebra of
smooth CDOs on Rp|q is the smooth analogue of the conformal vertex superalgebra (βγ)⊗p⊗ (bc)⊗q (§2.1,
Proposition 2.2); its behavior under a change of coordinates, first computed in [GMS00], are restated here in
more geometric terms (§2.3, Proposition 2.4). The notions of a sheaf of CDOs and its conformal structures
are then generalized from Rp|q to a general cs-manifold M in a natural way (Definition 2.5). After dealing
with some technical issues (Lemmas 2.6, 2.7), we prove the main result on the global construction of CDOs
(Theorem 2.8). Namely, given an affine connection ∇ and an even 3-form H that satisfies

dH = Str (R ∧R)

where R = curv(∇), there is a recipe to define a sheaf of CDOs Dch
M,∇,H , and this recipe yields essentially

all sheaves of CDOs on M. Moreover, conformal structures on Dch
M,∇,H are in one-to-one correspondence

with even 1-forms ω that satisfy

dω = StrR.

To classify these objects, we also prove that, with ∇ fixed, two suitable 3-forms H,H ′ define isomorphic
sheaves of CDOs if and only if H −H ′ is exact (Theorem 2.11). In contrast to [GMS00], our description
of CDOs does not rely on a choice of coordinate charts or other local data. For the special case of the
chiral de Rham complex, in which both H and ω are trivial (Example 2.13), an invariant description has
also been given in [BHS08]. The formulation of CDOs developed here has been applied e.g. to study how
to lift a Lie group action on a manifold to a “formal loop group action” on CDOs. [Che11]

In the rest of the paper, we apply our work in the first part to construct what may be called “chiral
Dolbeault complexes.” Let M be a complex manifold and E → M a holomorphic vector bundle. The
Dolbeault complex of M valued in ∧∗E∨ is identified with the smooth functions on the cs-manifold

M = Π(TM ⊕ E)

under the action of an odd vector field Q that satisfies Q2 = 0 (§3.1). This motivates us to construct a
sheaf of CDOs Dch

M,∇,H on M (§3.2), and study the condition under which the supersymmetry Q lifts to

one on CDOs, i.e. an odd derivation Q̂ on Dch
M,∇,H that satisfies Q̂2 = 0 (Theorem 3.3, Proposition 3.5).

At the same time we also analyze the condition for Q̂ to respect a conformal structure. Moreover, if one or
both of the line bundles detTM , detE are flat, Q̂ is compatible with certain gradings on Dch

M,∇,H called
fermion numbers (§3.6, Propositions 3.7, 3.8). The sheaf of differential vertex superalgebras

(Dch
M,∇,H , Q̂)

may be thought of as a Dolbeault resolution of holomorphic CDOs on ΠE, as well as a particular limit
of a σ-model. [Kap06] When M is compact, its cohomology computes various elliptic genera (Theorem
3.10), including the Witten genus in the case E = 0 (Example 3.13), a two-variable generalization of the
Ochanine genus in the case E = TM (Example 3.14), and a spinc version of the Witten genus [CHZ10] in
the cases E = detTM and E = (detTM)⊗2 − detTM (Examples 3.15, 3.16). Most of the results in this

2 See Definition 3.4.
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part are similar to and consistent with what is known from the study of holomorphic CDOs and σ-models,
but our formulation may provide a new geometric point of view. On the other hand, the last two examples
seem to be new.

The first appendix reviews the notion of vertex algebroids (first introduced in [GMS04]), their relation
with vertex algebras, and gives some examples. Despite the rather complicated-looking definition, vertex
algebroids and their super analogues provide a convenient tool in our study of CDOs. In the second
appendix, we construct affine connections on cs-manifolds and obtain formulae that are needed in various
calculations with CDOs.

Conventions. For the definition of a vertex superalgebra, see [Kac98, FB04]. In this paper, every vertex
superalgebra V is graded by non-negative integers called weights. The notation Vk means its component
of weight k, and L0 denotes the weight operator, so that L0|Vk

= k.
For the definition of a cs-manifold, see [DM99]. Given a smooth cs-manifold M, we always denote

by C∞
M
, TM and Ωn

M
its sheaves of smooth functions, vector fields and n-forms; when “M” appears in

parentheses instead of the subscript, it means the corresponding spaces of global sections. Restricting C∞
M

to an open subset U ⊂ Mred defines a new cs-manifold, denoted by M|U . Square brackets are used for
supercommutators between operators of any parities, while “Str ” stands for the supertrace. Notice that
Rp|q is regarded as a cs-manifold in this paper, namely

C∞
Rp|q = C∞

Rp ⊗ ∧∗(Rq)⊗ C.

Acknowledgements. This paper grew out of an effort to understand some of the pioneering work by
Vassily Gorbounov, Fyodor Malikov, Vadim Schechtman and Arkady Vaintrob. The author would like
to thank Ralph Cohen, Haynes Miller, Stephan Stolz and Peter Teichner for their continual interest and
encouragement. He has also benefited from discussions with Vassily Gorbounov, Fei Han, Qin Li and
Meng-Chwan Tan. He did most of the work in this paper under the generous support of the Max-Planck-
Institut für Mathematik, before finishing it during a visit at the Hong Kong University of Science and
Technology. He also gratefully acknowledges the current support of an EPSRC grant.
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§2. Chiral Differential Operators

Sheaves of CDOs on a manifold were first studied in [GMS00]. This section provides an alternative
construction of the smooth version using global geometric quantities.

§ 2.1. The sheaf of CDOs on R
p|q. Let b1, . . . , bp and bp+1, . . . , bp+q be respectively the even and odd

coordinates of Rp|q. The following notations are used

∂i =
∂

∂bi
, | · | = parity, ǫi = (−1)|b

i|, ǫij = (−1)|b
i||bj|

and repeated indices are summed over (but not counting those from ǫi, ǫij). Regard Rp|q as a smooth
cs-manifold, namely

C∞(Rp|q) = C∞(Rp)⊗
∧
(bp+1, . . . , bp+q)⊗ C.

Given an open set W ⊂ Rp, let W = (Rp|q)|W . Consider the vertex superalgebra Dch(W) constructed in
§A.15. It is freely generated by a vertex superalgebroid

(
C∞(W),Ω1(W), T (W), ∗c, { }c, { }cΩ

)

and, by the following result, equipped with a family of conformal elements

νω := ǫi∂i,−1db
i +

1

2
ω−21, ω ∈ Ω1(W), |ω| = 0̄, dω = 0. (2.1)

The assignment W 7→ Dch
p|q(W ) := Dch(W) defines a sheaf of conformal vertex superalgebras on Rp.

Proposition 2.2. The elements νω in (2.1) are conformal in Dch(W) of central charge 2(p− q).

Proof. First consider ν := ǫi∂i,−1db
i. Let us show that

(i) ν(0) = T, ν(1) = L0 on C∞(W) ∪ {∂k}
p+q
k=1 (ii) ν(3)ν = p− q

The operators ∂i,n for i = 1, . . . , p+ q and n ∈ Z commute with each other, because

[∂i,n, ∂j,m] = [∂i, ∂j ]n+m + {∂i, ∂j}
c
Ω,n+m + n{∂i, ∂j}

c
n+m = 0.

Keeping this in mind, we compute the following for f ∈ C∞(W) and k = 1, . . . , p+ q

ν(1)f = (dbi)0∂i,0f = 0

ν(0)f = ǫi∂i,−1(db
i)0f + (dbi)−1∂i,0f = 0 + dbi · ∂if = df = Tf

ν(2)∂k = (dbi)1∂i,0∂k + (dbi)0∂i,1∂k = 0

ν(1)∂k = ǫi∂i,−1(db
i)1∂k + (dbi)0∂i,0∂k + (dbi)−1∂i,1∂k = ǫi∂i,−1db

i(∂k) + 0 + 0 = ∂k

ν(0)∂k = ǫi∂i,−2(db
i)1∂k + ǫi∂i,−1(db

i)0∂k + (dbi)−1∂i,0∂k + (dbi)−2∂i,1∂k

= ǫi∂i,−2db
i(∂k) + 0 + 0 + 0 = ∂k,−21 = T∂k

ν(3)ν = ǫi[ν(3), ∂i,−1]db
i = ǫi(ν(0)∂i)(2)db

i + 3ǫi(ν(1)∂i)(1)db
i + 3ǫi(ν(2)∂i)(0)db

i

= −2ǫi∂i,1db
i + 3ǫi∂i,1db

i + 0 = dbi(∂i) = p− q

This proves (i) and (ii). Now notice that [ν(1), f0] = (ν(0)f)(0) +(ν(1)f)(−1) = 0, and also that both ν(0), T
are vertex superalgebra derivations commuting with T . Then compute for α ∈ Ω1(W), X ∈ T (W)

ν(1)α = ν(1)(αkdb
k) = ν(1)αk,0Tb

k = [ν(1), αk,0]Tb
k + αk,0[ν(1), T ]b

k + αk,0Tν(1)b
k

= 0 + αk,0ν(0)b
k + 0 = αkdb

k = α

ν(0)α = ν(0)(αkdb
k) = ν(0)αk,0Tb

k = Tαk,0Tb
k = Tα

ν(1)X = ν(1)(X
k∂k) = ν(1)X

k
0 ∂k − ν(1)(X

k ∗c ∂k) = [ν(1), X
k
0 ]∂k +Xk

0 ν(1)∂k −Xk ∗c ∂k

= 0 +Xk
0 ∂k −Xk ∗c ∂k = Xk∂k = X

ν(0)X = ν(0)(X
k∂k) = ν(0)X

k
0 ∂k − ν(0)(X

k ∗c ∂k) = TXk
0∂k − T (Xk ∗c ∂k) = TX
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Hence (i) implies that ν(0) = T , ν(1) = L0 also hold on Ω1(W) and T (W). This yields the commutation
relations:

[ν(0), fn] = (1 − n)fn−1 [ν(0), αn] = −nαn−1 [ν(0), Xn] = −nXn−1

[ν(1), fn] = −nfn [ν(1), αn] = −nαn [ν(1), Xn] = −nXn

Since we also have ν(0)1 = 0 = ν(1)1, the operators ν(0), ν(1) satisfy respectively the defining relations of

T and L0, i.e. ν(0) = T , ν(1) = L0 on the entire vertex superalgebra Dch(W). By Lemma 3.4.5 of [FB04],
this together with (ii) proves the proposition for ν.

Let δ denote an even element of Dch(W)2. Replacing ν by ν + δ in the above arguments shows that
ν + δ is also conformal of the same central charge if

(i)
′

δ(0) = δ(1) = 0 on C∞(W) ∪ {∂k}
p+q
k=1 (ii)

′
ν(3)δ + δ(3)ν + δ(3)δ = 0

Suppose δ = ω−21 = Tω, where ω ∈ Ω1(W). Then δ(n) = −nωn−1. For f ∈ C∞(W), k = 1, . . . , p+ q

δ(0)f = 0 = δ(0)∂k

δ(1)f = −ω0f = 0

δ(1)∂k = −ω0∂k = [∂k,−1, ω0]1 = L∂k
ω − dω(∂k) = ι∂k

dω

Hence (i)′ is satisfied if dω = 0. On the other hand, [ν(2), f0] = (ν(0)f)(1) + 2(ν(1)f)(0) = −f1 implies

ν(2)ω = ν(2)(ωkdb
k) = ν(2)ωk,0Tb

k = −ωk,1Tb
k + ωk,0ν(2)Tb

k = 0 + 2ωk,0ν(1)b
k = 0

⇒ ν(3)δ + δ(3)ν + δ(3)δ = ν(3)ω−21− 3ω2ν − 3ω2ω−21

= [ν(3), ω−2]1+ 3[ν(−1), ω2]1− 3[ω2, ω−2]1

= 4(ν(0)ω)(1)1+ 6ν(2)ω = 0

so that (ii)′ holds. This completes the proof of the proposition.

Remark. In the above proof, full details are shown in order to demonstrate the type of arguments
involved in similar calculations. Subsequent proofs will be given more briefly.

§ 2.3. Coordinate transformations of CDOs on R
p|q. Let W, W′, W′′ be restrictions of Rp|q (as

a cs-manifold) to open sets in Rp. Suppose ϕ : W → W′ is a diffeomorphism of cs-manifolds. Recall
the notations in §A.16 and Theorem A.17. Given an even 2-form ξ on W with dξ = WZϕ, there is a
corresponding isomorphism of vertex superalgebras

ϕ∗
ξ : Dch(W′)→ Dch(W).

For f ∈ C∞(W′), α ∈ Ω1(W′) and X ∈ T (W′), we have

ϕ∗
ξ(f) = ϕ∗f, ϕ∗

ξ(α) = ϕ∗α, ϕ∗
ξ(X) = ϕ∗X +∆ϕ,ξ(X). (2.2)

All isomorphisms between Dch(W′) and Dch(W) are of this form. According to the result below, ϕ∗
ξ

permutes the conformal elements (2.1). If ϕ′ : W′ →W′′ is another diffeomorphism of cs-manifolds and
ξ′ is an even 2-form on W′ with dξ′ = WZϕ′ , then

ϕ∗
ξ ◦ϕ

′∗
ξ′ = (ϕ′ϕ)∗η, η = ξ +ϕ∗ξ′ + σϕ′,ϕ.

Proposition 2.4. Consider the isomorphism ϕ∗
ξ : Dch(W′)→ Dch(W) described above. For even closed

1-forms ω on W′, we have

ϕ∗
ξ(ν

ω) = νϕ
∗ω−Str θϕ .

5



Remark. Notice that dθϕ = −θϕ ∧ θϕ implies Str θϕ is closed. Also, as a consistency check, it follows
from θϕ′ϕ = θϕ + g−1

ϕ
·ϕ∗θϕ′ · gϕ that Str θϕ′ϕ = Str θϕ +ϕ∗Str θϕ′ .

Proof of Proposition 2.4. It suffices to consider the case ω = 0. To simplify notations, let us write g = gϕ,
h = g−1, θ = θϕ and ∆ = ∆ϕ,ξ. By (2.2), we have

ϕ∗
ξ(ν) = ǫi

(
ϕ∗∂i +∆(∂i)

)
−1

(ϕ∗dbi) = ǫik(h
k
i∂k)−1(g

i
ℓdb

ℓ) + ǫi∆(∂i)−1(g
i
ℓdb

ℓ)

The first term above is computed as follows:

ǫik(h
k
i∂k)−1(g

i
ℓdb

ℓ)

= ǫik

(
hk

i,−2 ∂k,1 + hk
i,−1 ∂k,0 + hk

i,0 ∂k,−1 − (hk
i ∗ ∂k)−1

)
giℓ,0 db

ℓ

= ǫkh
k
i,−2 g

i
k + ǫkh

k
i,−1 dg

i
k + ǫk∂k,−1db

k − ǫk(∂kh
k
i)−1 g

i
ℓ,0 db

ℓ + ǫk(∂kh
k
i)−1 g

i
ℓ,0 db

ℓ

= ν +
1

2
Str
(
(dh)−2 g

)
+ Str

(
(dh)−1 dg

)
= ν −

1

2
Str (θ−21)−

1

2
Str (θ−1θ)

Then we compute the second term above:

ǫi∆(∂i)−1(g
i
ℓdb

ℓ)

=

(
−ǫkǫrǫikǫirǫkr∂rh

k
i · θ

r
k −

1

2
ǫikStr (θ ⊗ θ)(hk

i∂k ⊗ - )−
1

2
ǫik ξ(h

k
i∂k, - )

)

−1

giℓ,0 db
ℓ

= ǫrθ
r
k,−1 h

k
i,0 dg

i
r −

1

2
ǫkǫrStr (θ ⊗ θ)(∂k ⊗ ∂r)0(db

r)−1db
k −

1

2
ǫkǫrξ(∂k, ∂r)0(db

r)−1db
k

= Str (θ−1θ)−
1

2
Str (θ−1θ) =

1

2
Str (θ−1θ)

where we have used the graded symmetry of (dbr)−1db
k = br−1b

k
−11. This yields

ϕ∗
ξ(ν) = ν −

1

2
(Str θ)−21 = ν−Str θ.

Preparation. Given topological spaces X,X ′, a presheaf S on X and a presheaf S ′ on X ′ valued in
some category, let (ϕ,Φ) : (X,S)→ (X ′,S ′) denote the data consisting of a continuous map ϕ : X → X ′

and a morphism of presheaves Φ : S ′ → ϕ∗S on X ′. Composition reads (ϕ′,Φ′) ◦ (ϕ,Φ) = (ϕ′ϕ, ϕ′
∗Φ ◦Φ

′).
Recall the sheaf of vertex superalgebras Dch

p|q described in §2.1.

Definition 2.5. A sheaf of CDOs on a smooth (p|q)-dimensional cs-manifold M = (M,C∞
M
) is a sheaf of

vertex superalgebras V on M with the following properties:

· The weight-zero component is V0 = C∞
M
.

· Given x ∈ M , there exist open sets U ⊂ M , W ⊂ Rp with x ∈ U , and an isomorphism between
(U,V|U ) and (W,Dch

p|q|W ) as topological spaces equipped with sheaves of vertex superalgebras.

A conformal structure on V is an element ν ∈ V(M)2 such that, under each isomorphism postulated above,
ν|U ∈ V(U) corresponds to one of the conformal elements νω ∈ Dch

p|q(W ) described in (2.1).

Remark. For example, Dch
p|q is a sheaf of CDOs on Rp|q with a family of conformal structures νω. While

a general sheaf of CDOs is locally isomorphic to Dch
p|q, the latter has up to this point been defined using

coordinates in a manifest way (see §2.1 and appendix §A). The geometric data required to globalize the
construction is the main content of Theorem 2.8.

Preparation. The sheaves of smooth functions, 1-forms and vector fields on a smooth cs-manifold M
form a sheaf of extended Lie superalgebroids (C∞

M
,Ω1

M
, TM) using the usual differential on functions, Lie

brackets on vector fields, Lie derivations on functions and 1-forms by vector fields, and pairing between
1-forms and vector fields.

6



Lemma 2.6. Let (ϕ,Φ) : (U,V|U )→ (W,Dch
p|q|W ) be an isomorphism as postulated in Definition 2.5. Also

let U = M|U , W = (Rp|q)|W .
(a) The data determine a diffeomorphism of cs-manifolds ϕ : U →W. The presheaf (in fact, sheaf)

of extended Lie superalgebroids associated to V|U can be identified with (C∞
U
,Ω1

U
, TU) in a canonical way.

Under this identification, the isomorphism of sheaves of extended Lie superalgebroids induced by Φ is given
by ϕ∗ : (C∞

W
,Ω1

W
, TW)→ ϕ∗(C

∞
U
,Ω1

U
, TU).

(b) The quotient map V1|U → TU is split as a morphism of sheaves of C-vector spaces, and V|U is freely
generated by any associated sheaf of vertex superalgebroids. Moreover, Φ is induced by an isomorphism of
sheaves of vertex superalgebroids.

Proof. (a) At weight zero, (ϕ,Φ) defines an isomorphism of ringed spaces (U,C∞
U
) → (W,C∞

W
), which is

the same as a diffeomorphism ϕ : U→W. Let (C∞
M
,Ω, T ) be the presheaf of extended Lie superalgebroids

associated to V . The following isomorphisms, induced respectively by Φ and ϕ

ϕ∗(C
∞
U
,Ω|U , T |U ) (C∞

W
,Ω1

W
, TW)

∼=oo
∼= // ϕ∗(C

∞
U
,Ω1

U
, TU)

allow us to identify (C∞
U
,Ω|U , T |U ) with (C∞

U
,Ω1

U
, TU) via identity on C∞

U
. Since any isomorphism with

(C∞
U
,Ω1

U
, TU) is determined by its first component, the above identification is independent of the choice

of W and (ϕ,Φ).
(b) The statements about V|U are true because their analogues for Dch

p|q|W are true. The statement
about Φ is then clear.

Lemma 2.7. Let V be a sheaf of CDOs on a smooth cs-manifold M = (M,C∞
M
).

(a) The presheaf (in fact, sheaf) of extended Lie superalgebroids associated to V can be identified with
(C∞

M
,Ω1

M
, TM) in a canonical way.

(b) The quotient map V1 → TM is split as a morphism of sheaves of C-vector spaces, and V is freely
generated by any associated sheaf of vertex superalgebroids.

Proof. Let U = {Ua}a∈I be an open cover of M such that (Ua,V|Ua
) admit isomorphisms as postulated in

Definition 2.5. For A ⊂M , let “A ∩ U” denote the open cover {A ∩ Ua}a∈I of A.
(a) Let (C∞

M
,Ω, T ) be the presheaf of extended Lie superalgebroids associated to V and U ⊂ M an

arbitrary open set. Consider the diagram (natural in U)

Ω(U)
ε //

ι

��

Č0(U ∩ U,Ω)
δ //

∼=

��

Č1(U ∩ U,Ω)

∼=

��

∼=

��

0 // Ω1
M
(U) // Č0(U ∩ U,Ω1

M
)

δ // Č1(U ∩ U,Ω1
M
)

where (Č∗( · ), δ) denote Cech complexes and the isomorphisms are given by Lemma 2.6a. By the exactness
of the bottom row, the dotted arrow ι can be filled in in a unique way. By construction, ι is compatible
with the derivations C∞

M
→ Ω, C∞

M
→ Ω1

M
, and this implies ι is surjective. On the other hand, since Ω

is a subpresheaf of a sheaf, ε is injective, and so is ι. Hence we have an isomorphism Ω ∼= Ω1
M
. Now T

must also be a sheaf. This is a formal consequence of: (i) T (U) := V1(U)/Ω(U) for open sets U ⊂ M ,
(ii) V1 is a sheaf, and (iii) Ω ∼= Ω1

M
is a fine sheaf. Then a diagram similar to the one above produces an

isomorphism T ∼= TM. By construction, the isomorphisms Ω ∼= Ω1
M

and T ∼= TM respect the extended Lie
superalgebroid structures.

(b) Let π denote the quotient map V1 → TM. By Lemma 2.6b, the restriction of π to each Ua has a
splitting sa : TM|Ua

→ V1|Ua
. Let {fa}a∈I be a smooth partition of unity on M subordinate to U. Use the

operation (−1) : C
∞
M ×V1 → V1 to define such morphisms of sheaves (fa)(−1)sa that extend from Ua to M .

Since the said operation induces via π the usual C∞
M
-multiplication on TM, the sum

s :=
∑

a∈I

(fa)(−1)sa : TM → V1

7



splits π. Such a splitting yields a sheaf of vertex superalgebroids.
Given a sheaf of vertex superalgebroids associated to V , its sections freely generate a presheaf of

vertex superalgebras V ′. Moreover, there is a canonical morphism of presheaves of vertex superalgebras
κ : V ′ → V . Since κ|Ua

are isomorphisms, so is κ if and only if V ′ is a sheaf. Now each weight component
V ′
k, k ≥ 1, admits a filtration whose associated graded presheaf is a sheaf (see §A.9). It follows formally

from this fact that V ′ is indeed a sheaf as desired.

Preparation. Suppose M is a smooth cs-manifold and ∇ a connection on TM. Given X ∈ T (M), let
∇tX denote the section of EndTM defined by (∇tX)(Y ) = ∇XY − [X,Y ] for Y ∈ T (M). Notice that if
∇ is torsion-free, then ∇tX = ∇X .

Theorem 2.8. Let M = (M,C∞
M
) be a smooth cs-manifold.

(a) Suppose ∇ is a connection on TM with curvature operator R, and H is an even 3-form on M with
dH = Str (R ∧R). Given such data, a sheaf of vertex superalgebroids

(
C∞

M
,Ω1

M
, TM, ∗, { }, { }Ω

)

can be defined on M using the following formulae

f ∗X = −(∇df)(X)

{X,Y } = −Str (∇tX · ∇tY )

{X,Y }Ω = Str

(
−∇(∇tX) · ∇tY +∇tX · ιY R− ιXR · ∇tY

)
+

1

2
ιX ιY H

and it freely generats a sheaf of CDOs on M, denoted by Dch
M,∇,H . Up to isomorphism, this construction

yields all sheaves of CDOs on M.
(b) Conformal structures on Dch

M,∇,H are in one-to-one correspondence with even 1-forms ω on M
satisfying dω = StrR. This correspondence is independent of the choice of H. Given ω as described, the
corresponding conformal structure, denoted by νω, is characterized by

Lω
1X := νω(2)X = Str∇tX − ω(X)

for vector fields X on M.

Proof. (a) Suppose V is a sheaf of CDOs on M. By Lemma 2.7, V is freely generated by a sheaf of vertex
superalgebroids

(
C∞

M
,Ω1

M
, TM, ∗, { }, { }Ω

)
. Let U = {Ua}a∈I be an open cover of M and

(ϕa,Φa) :
(
Ua,V|Ua

)
→
(
Wa,D

ch
p|q|Wa

)
, Wa ⊂ R

p open, a ∈ I

be isomorphisms as postulated in Definition 2.5. Also let Ua = M|Ua
and Wa = (Rp|q)|Wa

. By Lemma
2.6, there are diffeomorphisms ϕa : Ua → Wa such that Φa are induced by isomorphisms of sheaves of
vertex superalgebroids of the form

(ϕ∗
a,ϕ

∗
a∆a) :

(
C∞

Wa
,Ω1

Wa
, TWa

, ∗c, { }c, { }cΩ
)
→ ϕa∗

(
C∞

Ua
,Ω1

Ua
, TUa

, ∗, { }, { }Ω
)

(2.3)

where ∆a : TWa
→ Ω1

Wa
are some even morphisms of sheaves on Wa.

Somewhat abusing notations, we will write ϕa, ϕa, Φa, etc. also for their restrictions to various open
subsets. For a, a′ ∈ I, let Waa′ = ϕa(Ua ∩ Ua′), Waa′ = (Rp|q)|Waa′ and

ϕa′a = ϕa′ ◦ ϕ−1
a : Waa′ →Wa′a, ϕa′a = ϕa′ ◦ϕ−1

a : Waa′ →Wa′a

(ϕa′a,Φa′a) = (ϕa′ ,Φa′) ◦ (ϕa,Φa)
−1 :

(
Waa′ ,Dch

p|q|Waa′

)
→
(
Wa′a,D

ch
p|q|Wa′a

)

Recall the notations in §A.16 and write gϕa′a
, θϕa′a

, WZϕa′a
more simply as ga′a, θa′a, WZa′a. According
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to §2.3, Φa′a = (ϕa′a)
∗
ξa′a

for some unique even 2-forms ξa′a on Waa′ with dξa′a = WZa′a, and it is induced

by an isomorphism of sheaves of vertex superalgebroids (ϕ∗
a′a,∆a′a), where

∆a′a = ∆ϕa′a,ξa′a
: TWa′a

→ (ϕa′a)∗Ω
1
Waa′

is defined as in Theorem A.17. The definition of Φa′a given above is equivalent to

(ϕ∗
a′a,∆a′a) = (ϕa′a)∗(ϕ

∗
a,ϕ

∗
a∆a)

−1 ◦ (ϕ∗
a′ ,ϕ∗

a′∆a′)

⇔ ∆a′a = ϕ∗
a′a ◦∆a′ − (ϕa′a)∗∆a ◦ϕ

∗
a′a (2.4)

For a, a′, a′′ ∈ I, let Waa′a′′ = ϕa(Ua ∩ Ua′ ∩ Ua′′) and Waa′a′′ = (Rp|q)|Waa′a′′ . In Waa′a′′ we have

ϕa′′a = ϕa′′a′ ◦ϕa′a, (ϕa′′a)
∗
ξa′′a

= (ϕa′′a′)∗(ϕa′a)
∗
ξa′a
◦ (ϕa′′a′)∗ξa′′a′

According to §2.3, the latter is equivalent to

ξa′′a′ = ξa′a +ϕ∗
a′aξa′′a′ + σa′′a′a (2.5)

where σa′′a′a = σϕa′′a′ ,ϕa′a
∈ Ω2(Waa′a′′) is defined as in Theorem A.17.

Lemma 2.9. Given ϕa′a and ξa′a for a, a′ ∈ I as above (which determine ∆a′a), a collection of even
morphisms of sheaves ∆a : TWa

→ Ω1
Wa

satisfy (2.4) if and only if they are of the form

∆a(X) = ǫiǫijǫ
1+|X|
j (∂jX

i)(Γa)
j
i +

1

2
ιXStr (Γa ⊗ Γa) +

1

2
ιXBa +Oa(X)

for homogeneous X, where:

· Γa ∈ Ω1(Wa)⊗ gl(p|q) are even, i.e. |(Γa)
i
j | = |b

i|+ |bj|, and

g−1
a′a ·ϕ

∗
a′aΓa′ · ga′a − Γa = −θa′a (2.6)

· Ba ∈ Ω2(Wa) are even and

ϕ∗
a′aBa′ −Ba = −ξa′a − Str (θa′a ∧ Γa) (2.7)

and Oa : TWa
→ Ω1

Wa
are even and ϕ∗

a′a ◦Oa′ = (ϕa′a)∗Oa ◦ϕ
∗
a′a.

Proof. If we assume ∆a are first-order differential operators, we may write

∆a(X) = ǫiǫijǫ
1+|X|
j (∂jX

i)(Γa)
j
i +

1

2
ιX(Sa +Ba)

for some gl(p|q)-valued 1-forms Γa, symmetric (0, 2)-tensors Sa and 2-forms Ba on Wa; their parities are
dictated by that of ∆a. Plugging this into (2.4), namely

ϕ∗
a′a∆a′(X)−∆a(ϕ

∗
a′aX) = ∆a′a(X)

results in three sets of equations: (2.6), (2.7) and

ϕ∗
a′aSa′ − Sa = −Str (Γa ⊗ θa′a)− Str (θa′a ⊗ Γa) + Str (θa′a ⊗ θa′a).

By (2.6), the last set of equations is satisfied by Sa = Str (Γa⊗Γa). Observe that once we have a solution
to (2.4), any other solution differs precisely by a term Oa with the properties stated in the lemma.
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Proof of Theorem 2.8 continued. Consider the formula of ∆a obtained in Lemma 2.9. The condition on
the term Oa lets us define a map O : TM → Ω1

M
such that O(ϕ∗

aX) = ϕ∗
aOa(X) for a ∈ I. By Lemma

A.10, O determines an isomorphism of sheaves of vertex superalgebroids

(id,−O) :
(
C∞

M
,Ω1

M
, TM, ∗, { }, { }Ω

)
→
(
C∞

M
,Ω1

M
, TM, ∗′, { }′, { }′Ω

)

whose composition with (2.3) equals

ϕa∗(id,−O)|Ua
◦ (ϕ∗

a,ϕ
∗
a∆a) = (ϕ∗

a,ϕ
∗
a∆a −ϕ∗

aOa).

Therefore up to isomorphism of sheaves of CDOs, we may assume Oa = 0. The following lemma concerns
the other ingredients in the formula of ∆a.

Lemma 2.10. Assume that Ua, a ∈ I, are contractible. Given ϕa′a for a, a′ ∈ I as above, the existence
of the following are equivalent:

(i) ξa′a ∈ Ω2(Wa′a) that are even, and satisfy dξa′a = WZa′a and (2.5)

(ii) Γa ∈ Ω1(Wa)⊗ gl(p|q) and Ba ∈ Ω2(Wa) that are even, and satisfy (2.6) and

ϕ∗
a′adBa′ − dBa = −ϕ∗

a′aCS(Γa′) + CS(Γa) (2.8)

where CS(Γa) ∈ Ω3(Wa) is defined below

(iii) a connection ∇ on TM and H ∈ Ω3(M) that is even and satisfies

dH = Str (R ∧R) (2.9)

where R is the curvature operator of ∇

Proof. First, a collection of Γa ∈ Ω1(Wa) ⊗ gl(p|q) that are even and satisfy (2.6) is equivalent to a
connection ∇ on TM. Indeed, the two are related via

∇(ϕ∗
a∂i) = ǫiǫij ϕ

∗
a

(
(Γa)

j
i ⊗ ∂j

)
(2.10)

for i = 1, . . . , p+ q. The curvature operator R ∈ Ω2(M,EndTM) of ∇ is locally given by

R(ϕ∗
a∂i) = ǫiǫij ϕ

∗
a

(
(Ra)

j
i ⊗ ∂j

)
, Ra = dΓa + Γa ∧ Γa

whose tensoriality means g−1
a′a ·ϕ

∗
a′aRa′ · ga′a = Ra. Define the following even 3-forms on Wa

CS(Γa) := Str (Γa ∧Ra)−
1

3
Str (Γa ∧ Γa ∧ Γa).

Notice that dCS(Γa) = Str (Ra ∧Ra) and (2.6) implies

ϕ∗
a′aCS(Γa′)− CS(Γa) = WZa′a + d Str (θa′a ∧ Γa). (2.11)

Now we prove the equivalences.
(i) ⇒ (ii): Choose a connection ∇ on TM and define Γa as in (2.10). Then Γa satisfy (2.6). The right

hand side of (2.7), after being pulled back by ϕ∗
a, defines a 1-cochain in the Čech complex Č∗(U,Ω2

M
); it

is a cocycle by (2.5) and (2.6). Since Č∗(U,Ω2
M
) is acyclic, we may choose such even 2-forms Ba on Wa

that satisfy (2.7). Then (2.8) follows from dξa′a = WZa′a and (2.11).
(ii) ⇒ (i): Define ξa′a using (2.7). Then (2.6) implies (2.5). On the other hand, (2.8) and (2.11)

together imply dξa′a = WZa′a.
(ii) ⇒ (iii): Define ∇ as in (2.10). By (2.8), there is a global even 3-form H on M with

H |Ua
= ϕ∗

a

(
dBa + CS(Γa)

)
. (2.12)

Then (2.9) follows from dCS(Γa) = Str (Ra ∧Ra).
(iii) ⇒ (ii): Define Γa as in (2.10). Then Γa satisfy (2.6). The 3-forms H |Ua

− ϕ∗
aCS(Γa) are closed

because of (2.9) and the fact that dCS(Γa) = Str (Ra ∧ Ra). Since Ua are contractible, we may choose
such even 2-forms Ba on Wa that satisfy (2.12), which implies (2.8).
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Proof of Theorem 2.8 continued. Now compute the maps ∗†, { }†0, { }
†
1. In view of (2.3), the restrictions

of the three maps to Ua are given by

f ∗X = ϕ∗
a

(
fa ∗

c Xa +∆a(faXa)− fa∆a(Xa)
)

{X,Y } = ϕ∗
a

(
{Xa, Ya}

c −∆a(Xa)(Ya)− (−1)|X||Y |∆a(Ya)(Xa)
)

(2.13)

{X,Y }Ω = ϕ∗
a

(
{Xa, Ya}

c
Ω − LXa

∆a(Ya) + (−1)|X||Y |LYa
∆a(Xa)− d∆a(Xa)(Ya) + ∆a([Xa, Ya])

)

where fa, Xa, Ya are such that f = ϕ∗
afa, X = ϕ∗

aXa, Y = ϕ∗
aYa. To evaluate (2.13), apply the formulae

of ∗c, { }c, { }cΩ in (A.6), and that of ∆a in Lemma 2.9 (with Oa = 0). Also use the data Γa, Ba in the
formula of ∆a to define a connection ∇ on TM and an even 3-form H on M as in (2.10) and (2.12); by
the proof of Lemma 2.10 they satisfy (2.9). A lengthy but straightforward computation then yields the
formulae of ∗, { }, { }Ω stated in the theorem. This proves the last statement of part (a).

It remains to argue that the construction described in the theorem always produces a sheaf of CDOs
on M. Notations in this paragraph will have the same meaning as above. Choose a covering U = {Ua}a∈I

of M by contractible open sets, and diffeomorphisms ϕa : Ua →Wa; let ϕa′a = ϕa′ ◦ϕ−1
a . Starting with

the given data ∇, H , define Γa, Ba as in the proof of Lemma 2.10, and then ∆a as in Lemma 2.9 (with
Oa = 0). By the same computation mentioned before, ∆a and the given formulae of ∗, { }, { }Ω satisfy
(2.13). Then by Lemma A.10, ∗, { }, { }Ω define a sheaf of vertex superalgebroids equipped with the
isomorphisms (2.3). Its freely generated sheaf of vertex superalgebras is therefore a sheaf of CDOs.

(b) Use the notations in (a). Suppose ν is a conformal structure on V . For a ∈ I

ν|Ua
= Φa

(
νωa
)

for some even closed 1-forms ωa on Wa. For a, a′ ∈ I, the isomorphism Φa′a = (ϕa′a)
∗
ξa′a

sends νωa′ to
νωa . By Proposition 2.4, this is equivalent to the relation

ϕ∗
a′aωa′ − ωa = Str θa′a = −ϕ∗

a′aStr Γa′ + Str Γa

where the second equality is given by (2.6). Hence there is an even 1-form ω on M with

ω|Ua
= ϕ∗

a(ωa + Str Γa).

Since dωa = 0 and d Str Γa = StrRa, we have dω = StrR. Observe that the construction of ω from ν is
reversible. To relate ν and ω more explicitly, we compute Φa(ν

ωa) as follows:

ν|Ua
= ǫi

(
ϕ∗

a∂i +ϕ∗
a∆a(∂i)

)
−1

(ϕ∗
adb

i) +
1

2
(ϕ∗

aωa)−21

= ǫi

(
∂

∂ϕi
a

)

−1

dϕi
a +

1

2
Str

(
(ϕ∗

aΓa)−1(ϕ
∗
aΓa)− (ϕ∗

aΓa)−21

)
+

1

2
ω−21 (2.14)

where we first recall that Φa is induced by (2.3) and then use Lemma 2.9. The computation does not
depend on Ba, hence not on H . Let Lω

n = ν(n+1). Using (2.14) we have

Lω
1X
∣∣
Ua

= (dϕi
a)1

(
∂

∂ϕi
a

)

0

X + Str (ϕ∗
aΓa)1X − ω1X

= dϕi
a

([
∂

∂ϕi
a

, X

])
+ Str (ϕ∗

aΓa)(X)− ω(X)

for vector fields X . The sum of the first two terms is a local expression for Str∇tX .

Remarks. (i) Given an open set U ⊂ M , let U = M|U . The vertex superalgebra Dch
M,∇,H(U) will also

be written as Dch
∇,H(U). A conformal structure ν on Dch

M,∇,H restricts to a conformal structure ν|U on

Dch
∇,H(U) of central charge 2(p− q). (ii) By definition, there are canonical identifications

(Dch
M,∇,H)0 = C∞

M
, (Dch

M,∇,H)1 = Ω1
M
⊕ TM.
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Consider the following C-bilinear operation for each k ≥ 0

C∞
M × (Dch

M,∇,H)k → (Dch
M,∇,H)k, (f, v) 7→ f0v = f(−1)v.

For k > 0, this operation does not make (Dch
M,∇,H)k a C∞

M
-module, 3 but it induces a C∞

M
-module structure

on an associated graded sheaf gr(Dch
M,∇,H)k. Given a C∞

M
-module E , we use the notation ŜymtE for the

formal sum
∑∞

n=0 t
nŜymnE , where t is a formal variable and ŜymnE is the n-fold graded symmetric tensor

power of E over C∞
M
. There is an isomorphism of C∞

M
-modules

C∞
M
⊕

∞⊕

k=1

qkgr(Dch
M,∇,H)k ∼=

∞⊗

ℓ=1

Ŝymqℓ(Ω
1
M
⊕ TM).

For more details of the vertex superalgebra structure of Dch
M,∇,H , consult §A.7 and §A.9.

Theorem 2.11. Let M be a smooth cs-manifold, ∇ a connection on TM with curvature operator R, and
H,H ′ even 3-forms on M with dH = dH ′ = Str (R ∧R). Define ∗, { }, { }Ω (resp. { }′Ω) using ∇ and H
(resp. H ′) as in Theorem 2.8a.

(a) There is a one-to-one correspondence:

{
isomorphisms of sheaves of CDOs Dch

M,∇,H → D
ch
M,∇,H′

whose weight-zero components are identity on C∞
M

}
∼
←→

{
B ∈ Ω2(M), even,
dB = H ′ −H

}

Given B as above, the corresponding isomorphism, denoted by idB, is induced by an isomorphism between
the associated sheaves of vertex superalgebroids

(id,∆B) :
(
C∞

M,Ω1
M, TM, ∗, { }, { }Ω

)
→
(
C∞

M,Ω1
M, TM, ∗, { }, { }′Ω

)

where the map ∆B : TM → Ω1
M

is given by ∆B(X) = 1
2 ιXB.

(b) The isomorphism idB preserves the correspondence in Theorem 2.8b, i.e. idB(ν
ω) = νω.

Proof. (a) If an isomorphism between the two sheaves of CDOs equals the identity on C∞
M
, then it induces

the identity on the sheaf of extended Lie superalgebroids (C∞
M
,Ω1

M
, TM), and is therefore determined by

an isomorphism of sheaves of vertex superalgebroids of the form

(id,∆) :
(
C∞

M
,Ω1

M
, TM, ∗, { }, { }Ω

)
→
(
C∞

M
,Ω1

M
, TM, ∗, { }, { }′Ω

)
.

By definition, the even map ∆ : TM → Ω1
M

has to satisfy precisely the following equations:

∆(fX) = f∆(X), ∆(Y )(X) = −(−1)|X||Y |∆(X)(Y )

LX∆(Y )− (−1)|X||Y |LY ∆(X) + d∆(X)(Y )−∆([X,Y ]) = {X,Y }Ω − {X,Y }′Ω

According to the first two equations, B(X,Y ) := 2∆(X)(Y ) defines an even 2-form B on M. Then the
last equation can be rewritten as

ιX ιY dB = ιX ιY (H
′ −H).

(b) Since the said correspondence is independent of H , this is clear. This also follows from the local
expression (2.14) of νω and the graded symmetry of (dϕi

a)−1dϕ
j
a.

Example 2.12. Sheaves of CDOs on ΠE. Let M be a smooth manifold, E → M a smooth C-vector
bundle and M = ΠE as a smooth cs-manifold. The canonical pullback embeds Ω∗(M) into Ω∗(M) quasi-
isomorphically. [DM99] Choose connections ∇M on TM and ∇E on E, which determine a connection ∇

3 For example, we have f0X = fX + f ∗X = fX − (∇df)(X) for vector fields X.
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on TM in the sense of §B.3; denote by RM , RE and R the corresponding curvature tensors. As stated in
Lemma B.5, we have

Str (R ∧R) = Tr (RM ∧RM )− Tr (RE ∧RE), StrR = TrRM − TrRE .

By Theorems 2.8a and 2.11a, M admits sheaves of CDOs if and only if p1(TM)− ch2(E) vanishes in de
Rham cohomology, and their isomorphism classes form an H3(M ;C)-torsor. By Theorem 2.8b, the sheaves
of CDOs possess conformal structures if and only if c1(E) vanishes in de Rham cohomology as well.

Example 2.13. The smooth chiral de Rham complex. Consider the case E = TM ⊗ C in the
previous example. Both obstructions are now trivial, so that M always admits sheaves of CDOs equipped
with conformal structures. In particular, we may define a sheaf of CDOs Dch

M,∇ = Dch
M,∇,0 using the trivial

3-form and a conformal structure ν = ν0 using the trivial 1-form.
Let J and Q be the vector fields on M defined in §B.2 and Example B.6. Regarded as elements of

Dch
∇ (M) of weight 1, they satisfy

2Q2
0 = [Q0, Q0] = [Q,Q]0 + ({Q,Q}Ω)0 = 0, [J0, Q0] = [J,Q]0 + ({J,Q}Ω)0 = Q0.

In view of the formulae in Theorem 2.8a and Lemma 2.14, the two equations follow from (B.7) and Lemma
B.8, with the second also requiring Lemmas B.4b and B.5c. 4 Moreover, we have

Q0ν = −
1

2
T 2(L1Q) = 0, J0ν = −

1

2
T 2(L1J) = 0.

In view of Theorem 2.8b, the two equations follow from Lemmas B.8 and B.4a respectively. Therefore,
with J0 as the grading operator and Q0 as the differential, D

ch
∇ (M) becomes a differential graded conformal

vertex superalgebra. 5

Lemma 2.14. Consider a sheaf of CDOs Dch
M,∇,H on a smooth cs-manifold M constructed as in Theorem

2.8. Given α ∈ Ω1(M), we have α0 = 0 on Dch
∇,H(M) if and only if dα = 0.

Proof. Since α0 is a derivation, it acts trivially on the entire vertex superalgebra Dch
∇,H(M) if and only if

it acts trivially on functions and vector fields. For f ∈ C∞(M), we always have α0f = 0. For X ∈ T (M),
we compute

α0X = ±[X−1, α0]1 = ±(LXα− dιXα) = ±ιXdα

which proves the assertion.

4 In fact, we are assuming that ∇M is Levi-Civita. The torsion-free condition is used to obtain various formulae in
Example B.6 and subsequently Lemma B.8, while orthogonality ensures that the right hand side of Lemma B.5c vanishes.

5 For a description of a richer structure on Dch
∇ (M), see [BHS08].
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§3. Chiral Dolbeault Algebras

Applying the description of CDOs obtained in Theorem 2.8, we study a vertex algebraic analogue of the
Dolbeault complex of a complex manifold. This provides a new point of view on the relation between
CDOs and elliptic genera.

§ 3.1. Dolbeault cs-manifolds. Let M be a complex manifold, TM its holomorphic tangent bundle, E
a holomorphic vector bundle over M , and M = Π(TM ⊕ E) as a smooth cs-manifold. Let d = dimC M
and r = rankE. Under the identification

C∞(M) ∼= Ω0,∗(M ;∧∗E∨) (3.1)

vector fields on M correspond to derivations of the (0, ∗)-forms on M valued in ∧∗E∨. In particular, let





Jr

Jℓ

Q



 =

the vector field on M
corresponding to the





Dolbeault degree
exterior degree in ∧∗ E∨

Dolbeault operator ∂̄ ⊗ 1



 (3.2)

For more discussion of T (M), see Example B.9.

§ 3.2. Sheaves of CDOs on M. Choose connections ∇M on TM and ∇E on E such that both are of
type (1, 0) and ∇M is torsion-free (see footnote 15). Let ∇ be the induced connection on TM defined as
in Example B.9. Denote by RM , RE and R the respective curvature tensors. Notice that the canonical
pullback embeds Ω∗(M) into Ω∗(M) quasi-isomorphically [DM99] and recall Lemma B.12.

Assume that ch2(TM)− ch2(E) = 0 in de Rham cohomology and choose H ∈ Ω3(M) such that

dH = Str (R ∧R) = Tr (RM ∧RM )− Tr (RE ∧RE). (3.3)

By Theorems 2.8a and 2.11a, this determines a sheaf of CDOs Dch
M,∇,H and every sheaf of CDOs on M

is up to isomorphism of this form. Assume also that c1(TM) − c1(E) = 0 in de Rham cohomology and
choose ω ∈ Ω1(M) such that

dω = StrR = TrRM − TrRE . (3.4)

By Theorem 2.8b, this determines a conformal structure νω on Dch
M,∇,H of central charge 2(d− r).

Theorem 3.3. Regard Q as an element of Dch
∇,H(M) of weight 1. The odd derivation Q0:

(a) is a differential if and only if H has no (1, 2)- or (0, 3)-part, and
(b) respects the conformal structure νω if and only if ω has no (0, 1)-part.

Proof. (a) The supercommutator of Q0 with itself is given by

2Q2
0 = [Q0, Q0] = [Q,Q]0 + ({Q,Q}Ω)0 =

1

2
(ιQιQH)0

where the last step follows from (B.13), Theorem 2.8a, Lemma B.14 and Lemma 2.14. By Lemma 2.14
again, Q2

0 vanishes if and only if ιQιQH is closed. In view of the identity

2ιQιQH = LJr ιQιQH = ιJrdιQιQH

ιQιQH can only be closed when it is in fact trivial. When applied to a differential form on M , ιQιQ picks
out those components of type (i, j) with j ≥ 2.

(b) Applying Q0 to νω yields

Q0(ν
ω) = −[νω(−1), Q0]1 = −

1

2
T 2Lω

1Q =
1

2
T 2ω(Q)
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where the last step follows from Theorem 2.8b and Lemma B.14. Hence Q0 annihilates νω if and only if
Tω(Q) = dω(Q) = 0. In view of the identity

ω(Q) = Jrω(Q) = ιJrdω(Q)

ω(Q) can only be constant when it is in fact trivial. When applied to a differential form on M , ιQ picks
out those components of type (i, j) with j ≥ 1.

Definition 3.4. For each n ≥ 0, let Ωn,cl
M,hol (resp. Ω

n,cl
M ) denote the sheaf of holomorphic (resp. smooth)

closed n-forms on M and define an element

choln (E) ∈ Hn(Ωn,cl
M,hol)

as follows. Since ∇E is of type (1, 0), its curvature RE has only (2, 0)- and (1, 1)-parts. Thus the n-th
Chern form cn(∇

E) lives in Ωn+∗,∗(M). Consider the diagram of fine resolutions of sheaves:

0 // Ωn,cl
M,hol

//

∩

��

(Ωn+∗,∗
M , d)

∩

��

0 // Ωn,cl
M

// (Ωn+∗
M , d)

In light of this diagram, cn(∇
E) represents an element “choln (E)” of Hn(Ωn,cl

M,hol), whose image under

Hn(Ωn,cl
M,hol)→ Hn(Ωn,cl

M ) ∼= H2n(M ;C) (3.5)

is the n-th Chern class cn(E). More generally, if C(E) is a polynomial in the Chern classes cn(E), denote
by Chol(E) the corresponding polynomial in choln (E). The following result relates some of these cohomology
classes to the conditions encountered in Theorem 3.3.

Proposition 3.5. There exists:
(a) H ∈ Ω3(M) satisfying (3.3) and H1,2 = H0,3 = 0 if and only if chhol

2 (TM)− chhol
2 (E) = 0;

(b) ω ∈ Ω1(M) satisfying (3.4) and ω0,1 = 0 if and only if chol1 (TM)− chol1 (E) = 0.

Proof. Recall Definition 3.4. Statement (a) holds because the said element of H2(Ω2,cl
M,hol) is represented,

via the fine resolution

0 // Ω2,cl
M,hol

// Ω2,0
M

d // Ω3,0
M ⊕ Ω2,1

M

d // Ω4,0
M ⊕ Ω3,1

M ⊕ Ω2,2
M

d // · · ·

by the right hand side of (3.3) up to a constant factor. Statement (b) is similar.

Remark. In the case M is Kähler, (3.5) is injective, as it can be identified with the inclusion

⊕

p≥0,p+q=n

Hn+p,q →֒ H2n

where Hn+p,q, H2n are the spaces of harmonic (n+ p, q)- and 2n-forms respectively. Thus the conditions
in Proposition 3.5 become equivalent to ch2(TM)− ch2(E) = 0 and c1(TM)− c1(E) = 0.

§ 3.6. Fermion numbers. The eigenvalues of Jr
0 and Jℓ

0 on Dch
M,∇,H will be referred to respectively as

right (i.e. antiholomorphic) and left (i.e. holomorphic) fermion numbers. Recall from (3.2) that in weight
0, these numbers correspond to the exterior degrees in ∧∗TM∨ and ∧∗E∨.

Proposition 3.7. The operator Q0 always increases right fermion numbers by 1 if and only if the line
bundle detTM is flat.
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Proof. Denote by ∇̄M the connection on TM induced by ∇M and R̄M its curvature tensor. The commu-
tator between Jr

0 and Q0 is given by

[Jr
0 , Q0] = [Jr, Q]0 + ({Jr, Q}Ω)0 = Q0 − (ιQTr R̄

M )0

which follows from (B.13), Theorem 2.8a, Lemmas B.10b, B.12c and B.14. Hence by Lemma 2.14, Q0 is
compatible with right fermion numbers if and only if ιQTr R̄

M is closed. By the same argument used in
the proof of Theorem 3.3, ιQTr R̄

M can only be closed when it is in fact trivial. Since ∇M is of type (1, 0),
R̄M has only (1, 1)- and (0, 2)-parts, so that ιQTr R̄

M = 0 if and only if Tr R̄M = 0.

Proposition 3.8. The operator Q0 respects left fermion numbers if and only if TrRE has no (1, 1)-part.

Proof. The commutator between Jℓ
0 and Q0 is given by

[Jℓ
0 , Q0] = [Jℓ, Q]0 + ({Jℓ, Q}Ω)0 = −(ιQTrR

E)0

which follows from (B.13), Theorem 2.8a, Lemmas B.11b, B.12c and B.14. Hence by Lemma 2.14, Q0

commutes with Jℓ
0 if and only if ιQTrR

E is closed. By the same argument used in the proof of Theorem
3.3, ιQTrR

E can only be closed when it is in fact trivial. Since ∇E is of type (1, 0), RE has only (2, 0)-
and (1, 1)-parts, so that ιQ picks out the (1, 1)-part.

Remark. Given a hermitian metric on E, there exists a unique unitary connection ∇E of type (1, 0),
and its curvature RE is of pure type (1, 1). [Wel80] If Dch

∇,H(M) has been defined using this ∇E , then Q0

respects left fermion numbers if and only if TrRE = 0, i.e. the line bundle detE is flat.

Corollary 3.9. Suppose Q2
0 = 0 holds, so that (Dch

∇,H(M), Q0) is a differential vertex superalgebra.

(a) If detTM ∼= detE as holomorphic line bundles, (Dch
∇,H(M), Q0) is a differential conformal vertex

superalgebra.
(b) If detTM is flat, the grading by right fermion numbers makes (Dch

∇,H(M), Q0) a differential graded
vertex superalgebra.

(c) If detE is flat, left fermion numbers are well-defined on the cohomology of (Dch
∇,H(M), Q0).

Proof. (a) Under the assumption we may compare the induced connections det∇M and det∇E via the
isomorphism, and they differ by a (1, 0)-form ω. This implies (3.4) and, by Theorem 3.3b, Q0(ν

ω) = 0.
(b)-(c) These are simply restatements of Propositions 3.7 and 3.8.

For the rest of this section, M is always compact.

Theorem 3.10. Suppose Q2
0 = 0 holds and consider the vertex superalgebra

V = H
(
Dch

∇,H(M), Q0

)
.

Let q be a formal variable. There is an identity of formal power series

StrV (q
L0) =

∫

M

Td(TM) ch

(
∞⊗

n=1

Symqn(TM ⊕ TM∨)⊗

∞⊗

n=1

∧−qnE ⊗

∞⊗

n=0

∧−qnE
∨

)
. (3.6)

Let y be another formal variable. If detE is flat, there is a more refined identity

StrV (y
Jℓ
0qL0) =

∫

M

Td(TM) ch

(
∞⊗

n=1

Symqn(TM ⊕ TM∨)⊗

∞⊗

n=1

∧−y−1qnE ⊗

∞⊗

n=0

∧−yqnE
∨

)
.
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Proof. By Proposition 3.8, if detRE is flat, Jℓ
0 is well-defined on V . Otherwise, set y = 1 whenever it

appears in the proof below.
Observe that Q0 respects the filtration on Dch

∇,H(M) described in §A.9 and induces the operator LQ

on the associated graded space gr(Dch
∇,H(M)). Let

V ′ = H
(
gr(Dch

∇,H(M)), LQ

)
.

The quantity we want to compute can be rephrased as follows:

supertrace of yJ
l
0qL0 on V

= supertrace of yJ
l
0qL0 on V ′

= supertrace of yJ
l
0 on H

(
∞⊗

n=1

Ŝymqn
(
Ω1(M)⊕ T (M)

)
, LQ

)
(3.7)

where the graded symmetric tensor products are taken over C∞(M). Recall the local coordinates

(Rez1, Imz1, · · · ,Rezd, Imzd, ζ̄1, · · · , ζ̄d, ε1, · · · , εr)

defined in Example B.9. To compute (3.7), consider the following subspaces of Ω1(M) and T (M):

Ω1,0(M) =
{
α ∈ Ω1(M) s.t. α is locally a C∞-linear combination of dzi, dεk

}

Ω1,0(M)′ =
{
α ∈ Ω1(M) s.t. α is locally a C∞-linear combination of dzi

}

T 1,0(M) =
{
X ∈ T (M) s.t. X is locally a C∞-linear combination of ∂/∂zi, ∂/∂εk

}

T 1,0(M)′ =
{
X ∈ T (M) s.t. X is locally a C∞-linear combination of ∂/∂εk

}

Lemma 3.11. The following inclusions
(
Ω1,0(M), LQ

)
→֒
(
Ω1(M), LQ

)
,

(
T 1,0(M), LQ

)
→֒
(
T (M), LQ

)

are quasi-isomorphisms.

Proof. Denote both of the projections Ω1(M) → Ω1,0(M) and T (M) → T 1,0(M) by π1,0. It suffices to
show that id− π1,0 are null homotopic. Define G : Ω1(M)→ Ω1(M) and G : T (M)→ T (M) locally by

Gα = (−1)|α|α
( ∂

∂ζ̄i

)
dz̄i, GX = (−1)|X|dz̄i(X)

∂

∂ζ̄i

and notice that the expressions are independent of local coordinates. By a calculation we have

LQG+GLQ = id− π1,0

on both Ω1(M) and T (M), as desired.

Lemma 3.12. There are natural filtrations on (Ω1,0(M), LQ) and (T 1,0(M), LQ) whose associated graded
complexes are isomorphic respectively to

(
Ω0,∗(M ;E′), ∂̄

)
and

(
Ω0,∗(M ;E′′), ∂̄

)

where E′ = ∧∗E ⊗ (TM∨ ⊕ E∨) and E′′ = ∧∗E ⊗ (TM ⊕ E).

Proof. There are identifications defined by the following local expressions

Ω1,0(M)′ ∼= C∞(M)⊗C∞(M) Ω
1,0(M), dzi 7→ 1⊗ dzi

Ω1,0(M)/Ω1,0(M)′ ∼= C∞(M)⊗C∞(M) Γ(E
∨), dεk mod Ω1,0(M)′ 7→ 1⊗ εk

T 1,0(M)′ ∼= C∞(M)⊗C∞(M) Γ(E), ∂/∂εk 7→ 1⊗ εk
T 1,0(M)/T 1,0(M)′ ∼= C∞(M)⊗C∞(M) T

1,0(M), ∂/∂zi mod T 1,0(M)′ 7→ 1⊗ ∂/∂zi

and C∞(M)-linearity. Then it remains to recall (3.1).
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Proof of Theorem 3.10 continued. Now we apply Lemmas 3.11 and 3.12 to compute (3.7). Since (graded
symmetric) tensor products of quasi-isomorphic complexes are quasi-isomorphic and filtrations on com-
plexes induce filtrations on their (graded symmetric) tensor products, we have

(3.7) = supertrace of yJ
l
0 on H

(
∞⊗

n=1

Ŝymqn
(
Ω1,0(M)⊕ T 1,0(M)

)
, LQ

)

= supertrace of yJ
l
0 on H

(
∞⊗

n=1

ŜymqnΩ
0,∗(M ;E′ ⊕ E′′), ∂̄

)

= sdim H

(
Ω0,∗

(
M ;∧−yE

∨ ⊗

∞⊗

n=1

Ŝymqn
(
TM ⊕ TM∨ ⊕ (−y−1)E ⊕ (−y)E∨

))
, ∂̄

)

= sdim H

(
Ω0,∗

(
M ;

∞⊗

n=1

Symqn(TM ⊕ TM∨)⊗

∞⊗

n=1

∧−y−1qnE ⊗

∞⊗

n=0

∧−yqnE
∨

)
, ∂̄

)

Notice that the graded symmetric tensor products in the second expression are taken over Ω0,∗(M ;∧∗E∨).
To finish the proof, apply the Hirzebruch-Riemann-Roch Theorem.

Remark. In terms of the Chern roots x1, . . . , xd of TM and xE
1 , . . . , x

E
r of E, we may write the integrand

in (3.6) as follows

d
∏

i=1

(

xi

1− e−xi

∞
∏

n=1

1

(1− qnexi)(1 − qne−xi)

)

·

r
∏

j=1

(

(1 − e−xE
j )

∞
∏

n=1

(1− qnex
E
j )(1− qne−xE

j )

)

=
d
∏

i=1

(

xi/2

sinh(xi/2)

∞
∏

n=1

1

(1− qnexi)(1 − qne−xi)

)

·

r
∏

j=1

(

2 sinh
xE
j

2

∞
∏

n=1

(1 − qnex
E
j )(1 − qne−xE

j )

)

·
e

1
2
c1(TM)

e
1
2
c1(E)

If c1(TM) = c1(E), this expression lives in H4∗(M ;C) if r is even, or in H4∗+2(M ;C) if r is odd, so that
Str V (q

L0) = 0 whenever d+ r is odd.

Example 3.13. The case E = 0. By Theorem 3.3a and Proposition 3.5a, there exists a differential
vertex superalgebra

(
Dch

∇,H(M), Q0

)
, M = ΠTM

if and only if chhol
2 (TM) = 0; denote its cohomology by V . By Theorem 3.10

StrV (q
L0) =

∫

M

e
1
2
c1(TM) ·W (TMR) ·

( ∞∏

n=1

1

1− qn

)2d

where W (TMR) is the Witten class of the real tangent bundle of M . By Theorem 3.3b and Proposition
3.5b, if chol1 (TM) = 0 as well, V is conformal with central charge 2d. Then, writing q = e2πiτ , we have

charV = q−d/12 StrV (q
L0) =

W (M)

∆(τ)d/12
(3.8)

where W (M) is the Witten genus of M and

∆(τ) = q

∞∏

n=1

(1 − qn)24.

The condition c1(TM) = c2(TM) = 0 guarantees that W (M) is a modular form of weight d, while ∆(τ) is
a modular form of weight 12, both over SL(2,Z). The expression in (3.8) is the conjectured S1-equivariant
index of the Dirac operator on the free loop space LM . [Wit88]
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Example 3.14. The case E = TM . By Theorem 3.3 and Proposition 3.5, there always exists a differ-
ential conformal vertex superalgebra

(
Dch

∇,H(M), Q0

)
, M = Π(TM ⊕ TM)

with no central charge; denote its cohomology by V . By Theorem 3.10, we have

StrV (q
L0) = χ(M)

and, if detTM is flat, also have

y−d StrV (y
Jl
0qL0) = Elly,q(M)

namely the two-variable elliptic genus of M . [BL00] In particular, writing q = e2πiτ , we have the special
value

StrV ((−1)
Jl
0qL0) =

Och(M)

ǫ(τ)d/4
(3.9)

where Och(M) is the Ochanine elliptic genus of M and

ǫ(τ) =
1

16

∞∏

n=1

(
1− qn

1 + qn

)8

respectively a modular form of weight d and a modular form of weight 4 over Γ0(2) ⊂ SL(2,Z). The
expression in (3.9) is the S1-equivariant signature of LM . [HBJ92]

Example 3.15. The case E = detTM . Let c = c1(TM) and chol = chol1 (TM). By Theorem 3.3a and
Proposition 3.5a, there exists a differential vertex superalgebra

(
Dch

∇,H(M), Q0

)
, M = Π(TM ⊕ detTM)

if and only if

chhol
2 (TM)−

1

2
(chol)2 = 0; (3.10)

denote its cohomology by V . By Theorem 3.3b and Proposition 3.5b, V is always conformal with central
charge 2(d− 1). By Theorem 3.10 and the remark below its proof, we have

StrV (q
L0) = 2

∫

M

W (TMR) sinh
c

2

∞∏

n=1

(1− qnec)(1− qne−c)

(1− qn)2
·

( ∞∏

n=1

1

1− qn

)2(d−1)

(3.11)

which always vanishes if d is even. Now assume d is odd. This case provides a geometric interpretation
of the notions introduced in [CHZ10] for certain spinc manifolds of (real) dimension 2 mod 4. Firstly,
condition (3.10) implies that M is rationally stringc in the sense of loc. cit., namely

ch2(TM)−
1

2
c2 = 0 in H4(M ;C). (3.12)

In the case M is Kähler, (3.10) and (3.12) are equivalent, as remarked after the proof of Proposition 3.5.
Secondly, writing q = e2πiτ , we have

charV = q−(d−1)/12StrV (q
L0) =

2Wc(M)

∆(τ)(d−1)/12

where Wc(M) is the generalized Witten genus of M defined in loc. cit. 6 The stringc condition (3.12)
guarantees that Wc(M) is a modular form of weight d− 1 over SL(2,Z).

6 To recover the expression for Wc(M) in [CHZ10], notice that they write q = eπiτ , and the factor sinh(c/2) in (3.11)
may be replaced by ec/2 since d = dimC M is odd.
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Example 3.16. The case E = (det TM)⊗2 − detTM . 7 Let c = c1(TM) and chol = chol1 (TM). By
Theorem 3.3a and Proposition 3.5a, there exists a differential vertex superalgebra

(
Dch

∇,H(M), Q0

)
, M = “Π

(
TM ⊕ ((detTM)⊗2 − detTM)

)
”

if and only if

chhol
2 (TM)−

3

2
(chol)2 = 0; (3.13)

denote its cohomology by V . By Theorem 3.3b and Proposition 3.5b, V is always conformal with central
charge 2d. By Theorem 3.10 and the remark below its proof, we have

StrV (q
L0) = 2

∫

M

W (TMR) cosh
c

2

∞∏

n=1

(1− qne2c)(1 − qne−2c)

(1− qnec)(1 − qne−c)
·

( ∞∏

n=1

1

1− qn

)2d

= 2

∫

M

W (TMR) cosh
c

2

∞∏

n=1

[
(1− qn−

1
2 ec)(1 + qn−

1
2 ec)(1 + qnec)

· (1 − qn−
1
2 e−c)(1 + qn−

1
2 e−c)(1 + qne−c)

]
·

( ∞∏

n=1

1

1− qn

)2d

(3.14)

which always vanishes if d is odd. Now assume d is even. This case provides a geometric interpretation of
the notions introduced in [CHZ10] for certain spinc manifolds of (real) dimension divisible by 4. Firstly,
condition (3.13) implies that M is rationally stringc in the sense of loc. cit., namely

ch2(TM)−
3

2
c2 = 0 in H4(M ;C). (3.15)

In the case M is Kähler, (3.13) and (3.15) are equivalent, as remarked after the proof of Proposition 3.5.
Secondly, writing q = e2πiτ , we have

charV = q−d/12StrV (q
L0) =

2Wc(M)

∆(τ)d/12

where Wc(M) is the generalized Witten genus of M defined in loc. cit. 8 The stringc condition (3.15)
guarantees that Wc(M) is a modular form of weight d over SL(2,Z).

7 The results obtained above may be formally applied to a virtual holomorphic vector bundle E = E1−E2. This amounts
to using “C∞(M)”:= Γ(∧∗E∨

1 ⊗ Sym∗E∨
2 ) in the construction of “Dch

∇,H (M).”
8 To recover the expression for Wc(M) in [CHZ10], notice that they write q = eπiτ , and the factor cosh(c/2) in (3.14)

may be replaced by ec/2 since d = dimC M is even.
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Appendix §A. Vertex Algebroids

The notion of a vertex algebroid, introduced in [GMS04], captures the part of structure of a vertex algebra
involving only the two lowest weights. In this appendix, we review the category of vertex algebroids, the
forgetful functor from vertex algebras to vertex algebroids, and its adjoint functor. Some examples are
given, including the construction of local smooth CDOs.

Definition A.1. An extended Lie algebroid (A,Ω, T ) consists of
· a commutative, associative C-algebra with unit (A,1)
· two A-modules Ω and T
· an A-derivation d : A→ Ω whose image generates Ω as an A-module
· a Lie bracket [ ] on T
· an A-linear homomorphism of Lie algebras T → EndA, denoted X 7→ X
· a C-linear homomorphism of Lie algebras T → EndΩ, denoted X 7→ LX

· an A-bilinear pairing Ω× T → A, denoted (α,X) 7→ α(X)
Furthermore, we require that
· the T -actions on A and Ω commute with d
· the T -actions on A,Ω and T (via [ ]) satisfy the Leibniz rule w.r.t. A-multiplication
· df(X) = Xf for f ∈ A, X ∈ T

Definition A.2. A morphism of extended Lie algebroids ϕ : (A,Ω, T ) → (A′,Ω′, T ′) is a map of triples
that respects the extended Lie algebroid structures. Composition of morphisms is defined in the obvious
way.

Definition A.3. A vertex algebroid (A,Ω, T , ∗, { }, { }Ω) consists of an extended Lie algebroid (A,Ω, T )
and three C-bilinear maps

∗ : A× T → Ω, { } : T × T → A, { }Ω : T × T → Ω

that satisfy the following identities

· {X,Y } = {Y,X}

· d{X,Y } = {X,Y }Ω + {Y,X}Ω
· (fg) ∗X − f ∗ (gX)− f(g ∗X) = −(Xf)dg − (Xg)df

· {X, fY } − f{X,Y } = −(f ∗ Y )(X)− Y Xf

· {X, fY }Ω − f{X,Y }Ω = −LX(f ∗ Y ) + (Xf) ∗ Y + f ∗ [X,Y ]

· X{Y, Z} − {[X,Y ], Z} − {Y, [X,Z]} = {X,Y }Ω(Z) + {X,Z}Ω(Y )

· LX{Y, Z}Ω − LY {X,Z}Ω + LZ{X,Y }Ω + {X, [Y, Z]}Ω − {Y, [X,Z]}Ω − {[X,Y ], Z}Ω
= d
(
{X,Y }Ω(Z)

)

for f, g ∈ A and X,Y, Z ∈ T .

Remark. This definition is slightly different from but equivalent to the original one in [GMS04]. What
we denote by ∗, { }, { }Ω equal respectively −γ, 〈 〉,−c+ 1

2d ◦ 〈 〉 in their notations.

Definition A.4. A morphism of vertex algebroids

(ϕ,∆) : (A,Ω, T , ∗, { }, { }Ω)→ (A′,Ω′, T ′, ∗′, { }′, { }′Ω)

consists of a morphism of extended Lie algebroids ϕ : (A,Ω, T ) → (A′,Ω′, T ′) and a C-linear map ∆ :
T → Ω′ such that

· ϕf ∗′ ϕX − ϕ(f ∗X) = ∆(fX)− (ϕf)∆(X)

· {ϕX,ϕY }′ − ϕ{X,Y } = −∆(X)(ϕY )−∆(Y )(ϕX)

· {ϕX,ϕY }′Ω − ϕ{X,Y }Ω = −LϕX∆(Y ) + LϕY ∆(X)− d
(
∆(X)(ϕY )

)
+∆([X,Y ])

for f ∈ A and X,Y ∈ T . Composition of morphisms is given by

(ϕ′,∆′) ◦ (ϕ,∆) = (ϕ′ϕ, ϕ′∆+∆′ϕ|T ).
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§A.5. The vertex algebroid associated to a vertex algebra (and a “splitting”). Given a vertex
algebra (V,1, T, Y ), let

A := V0, Ω := A(−1)(TA), T := V1/Ω.

Choose a splitting s : T → V1 of the quotient map to obtain an identification of vector spaces

Ω⊕ T ∼= V1, (α,X) 7→ α+ s(X). (A.1)

The vertex algebra structure on V involving only the two lowest weights consists of an element 1 ∈ V0, a
linear map T : V0 → V1, and eight bilinear maps

(i+j−k−1) : Vi × Vj → Vk, i, j, k = 0, 1

satisfying a set of (Borcherds) identities. These data, when rephrased in terms of the identification (A.1),
are equivalent to a vertex algebroid (A,Ω, T , ∗, { }, { }Ω). The extended Lie algebroid (A,Ω, T ) consists
of precisely those data that are independent of the choice of s, namely

fg := f(−1)g fα := f(−1)α fX := f(−1)s(X) mod Ω

Xf := s(X)(0)f LXα := s(X)(0)α [X,Y ] := s(X)(0)s(Y ) mod Ω

df := Tf α(X) := α(1)s(X)

(A.2)

9 for f, g ∈ A, α ∈ Ω and X,Y ∈ T ; on the other hand

f ∗X := f(−1)s(X)− s(fX)

{X,Y } := s(X)(1)s(Y ) (A.3)

{X,Y }Ω := s(X)(0)s(Y )− s([X,Y ])

for f ∈ A and X,Y ∈ T .

§A.6. The induced morphism of vertex algebroids. Consider a homomorphism of vertex algebras
Φ : V → V ′. Let (A,Ω, T , ∗, { }, { }Ω), (A′,Ω′, T ′, ∗′, { }′, { }′Ω) be the vertex algebroids associated to V ,
V ′ and some splittings s : T → V1, s

′ : T ′ → V ′
1 . The part of data of Φ involving only the two lowest

weights, when rephrased in terms of identifications like (A.1), are equivalent to a morphism (ϕ,∆) between
the two vertex algebroids. It consists of the obvious map of triples ϕ : (A,Ω, T )→ (A′,Ω′, T ′) induced by
Φ, and a map ∆ : T → Ω′ given by

∆(X) = Φs(X)− s′(ϕX), X ∈ T .

§ A.7. The vertex algebra freely generated by a vertex algebroid. Let (A,Ω, T , ∗, { }, { }Ω) be
a vertex algebroid. Throughout this discussion, we always have f, g ∈ A, α, β ∈ Ω, X,Y ∈ T . Define an
associative C-algebra W with generators of the form fn, αn, Xn, n ∈ Z and the following relations

(cf)n = cfn (cα)n = cαn (cX)n = cXn

1n = δn,0 (df)n = −nfn [fn, gm] = [fn, αm] = [αn, βm] = 0

[Xn, fm] = (Xf)n+m [Xn, αm] = (LXα)n+m + nα(X)n+m

[Xn, Ym] = [X,Y ]n+m + ({X,Y }Ω)n+m + n({X,Y })n+m

(A.4)

where c ∈ C, n,m ∈ Z. The subalgebra W+ ⊂ W generated by fn, n > 0 and αn, Xn, n ≥ 0 admits a

trivial action on C. Let Ṽ := W ⊗W+
C be the induced W-module and V := Ṽ / ∼ the quotient module

obtained by imposing the following relations for v ∈ Ṽ :

(fg)nv ∼
∑

k∈Z
fkgn−kv

(fα)nv ∼
∑

k∈Z
fkαn−kv

(fX)nv ∼
∑

k≤0 fkXn−kv +
∑

k>0 Xn−kfkv − (f ∗X)nv

(A.5)

9 For example, the definition of Xf is indeed independent of s because α(0)f = 0 for f ∈ A and α ∈ Ω.
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Notice that the summations are always finite. It is a consequence of the axioms of a vertex algebroid that
(A.4)–(A.5) are consistent. 10 Define a vertex algebra structure on V as follows. The vacuum 1 ∈ V is

given by the coset of 1 ⊗ 1 ∈ Ṽ . The infinitesimal translation T and weight operator L0 are determined
by the requirements

T1 = 0 [T, fn] = (1− n)fn−1 [T, αn] = −nαn−1 [T,Xn] = −nXn−1

L01 = 0 [L0, fn] = −nfn [L0, αn] = −nαn [L0, Xn] = −nXn

which are consistent with (A.4)–(A.5); notice that actions of fn, αn, Xn change weights by −n. Identify
f, α, X with f01, α−11, X−11 and associate to them the following fields

∑
n fnz

−n ,
∑

n αnz
−n−1 ,

∑
n Xnz

−n−1

which are mutually local by (A.4); notice that f(n) = fn+1, α(n) = αn, X(n) = Xn. Now apply the Strong
Reconstruction Theorem [FB04].

Suppose (A,Ω, T , ∗, { }, { }Ω) is the vertex algebroid associated with a vertex algebra V ′ and a splitting
s : T → V ′

1 . There is a canonical homomorphism of vertex algebras Φ : V → V ′, determined by Φf = f ,
Φα = α and ΦX = s(X). If Φ is an isomorphism, V ′ is said to be freely generated by a vertex algebroid.

§A.8. The induced homomorphism of vertex algebras. A morphism of vertex algebroids

(ϕ,∆) : (A,Ω, T , ∗, { }, { }Ω)→ (A′,Ω′, T ′, ∗′, { }′, { }′Ω)

induces a homomorphism Φ : V → V ′ between the freely generated vertex algebras by the equations

Φf = ϕf Φα = ϕα ΦX = ϕX +∆(X)

Φ ◦ fn = (Φf)n ◦ Φ Φ ◦ αn = (Φα)n ◦ Φ Φ ◦Xn = (ΦX)n ◦ Φ

for f ∈ A, α ∈ Ω, X ∈ T , n ∈ Z. Indeed, these equations are consistent with (A.4)–(A.5).

§ A.9. More details on the constructions in §A.7 and §A.8. Given a possibly empty sequence of
negative integers n = {n1 ≤ · · · ≤ ns < 0}, we write

|n| = n1 + · · ·+ ns (0 if n = {}), n(i) = number of times i appears in n

and regard n as a partition of |n|. For k ≥ 0, let Ik be the set of pairs (n,m) of such sequences with
−|n| − |m| = k. Define a partial ordering on Ik such that (n,m) ≺ (n′,m′) if and only if

−|n| < −|n′| or |n| = |n′| and n′ is a proper subpartition of n

or n = n′ and m is a proper subpartition of m′

For example, ({}, {−2,−2,−1})≺ ({}, {−3,−2}) ≺ ({−4}, {−1}) ≺ ({−3,−1}, {−1}) in I5.
Consider the vertex algebra V constructed in §A.7. Associate to each n = {n1 ≤ · · · ≤ ns < 0} and

s-tuples α = (α1, . . . , αs) ∈ Ωs, X = (X1, . . . , Xs) ∈ T
s the following operators on V

αn := α1,n1
· · ·αs,ns

, Xn := X1,n1
· · ·Xs,ns

(both 1 if n = {})

For k > 0, we have Vk = span {Xnαm1 | (n,m) ∈ Ik}; for (n,m) ∈ Ik, define the subspaces

F�(n,m) := span {Xn′αm′1 | (n′,m′) ∈ Ik, (n
′,m′) � (n,m)} ⊂ Vk

F≺(n,m) := span {Xn′αm′1 | (n′,m′) ∈ Ik, (n
′,m′) ≺ (n,m)} ⊂ Vk

10 For example, [Xn, (fY )m] can be computed by either taking the commutator first or expanding (fY )m first. The
resulting identity is already implied by the vertex algebroid axioms and does not lead to a new relation.
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The bilinear operation A×Vk → Vk given by (f, v) 7→ f0v does not make Vk an A-module, but it preserves
F�(n,m), F≺(n,m) and induces an A-module structure on their quotient. In fact,

F�(n,m)/F≺(n,m)
∼=

(
−∞⊗

i=−1

Sym
n(i)
A T

)
⊗




−∞⊗

j=−1

Sym
m(j)
A Ω




as A-modules. This allows us to compute the “associated graded space” 11

A⊕

∞⊕

k=1


qk

⊕

(n,m)∈Ik

F�(n,m)/F≺(n,m)


 ∼=

∞⊗

ℓ=1

Symqℓ(T ⊕ Ω)

where q is a formal variable and Symt(·) =
∑∞

t=0 t
nSymn

A(·). The subspaces F�(n,m), F≺(n,m) and the
isomorphisms stated here are natural, i.e. respected by the homomorphism Φ constructed in §A.8.

The omitted proofs of the following lemmas are straightforward (though somewhat tedious).

Lemma A.10. Given the following data:

· a vertex algebroid (A,Ω, T , ∗, { }, { }Ω)

· an isomorphism of extended Lie algebroids ϕ : (A,Ω, T )→ (A′,Ω′, T ′)

· a C-linear map ∆ : T → Ω′

if we define maps

∗′ : A′ × T ′ → Ω′, { }′ : T ′ × T ′ → A′, { }′Ω : T ′ × T ′ → Ω′

by the equations in Definition A.4, then (A′,Ω′, T ′, ∗′, { }′, { }′Ω) is a vertex algebroid and (ϕ,∆) is by
construction an isomorphism between the two vertex algebroids.

Lemma A.11. Given the following data:

· two vertex algebroids (A,Ω, T , ∗, { }, { }Ω) and (A′,Ω′, T ′, ∗′, { }′, { }′Ω)

· a morphism of extended Lie algebroids ϕ : (A,Ω, T )→ (A′,Ω′, T ′)

· a C-linear map ∆ : T → Ω′

· a subset S ⊂ T that is closed under [ ] and spans T as an A-module

if (ϕ,∆) satisfies the equations in Definition A.4 for (f,X, Y ) ∈ A× S2, then it also does for (f,X, Y ) ∈
A× T 2 and hence is a morphism between the two given vertex algebroids.

§ A.12. Super version. There is no difficulty in generalizing the discussions in this appendix to define
extended Lie superalgebroids, vertex superalgebroids, and relate them to vertex superalgebras.

Example A.13. The vertex algebroids associated to a Lie algebra. Consider a Lie algebra g over
C and a vertex algebroid of the form (C, 0, g, 0, λ, 0) with g acting trivially on C. The second, fourth and
last components are trivial by necessity. The conditions on λ : g× g→ C are

λ(X,Y ) = λ(Y,X), λ([X,Y ], Z) + λ(Y, [X,Z]) = 0

i.e. it is a symmetric invariant bilinear form on g. Let

Vλ(g) = the vertex algebra freely generated by (C, 0, g, 0, λ, 0).

In the case g is simple, finite-dimensional and λ equals k times the normalized Killing form, this is the
vertex algebra defined on the level-k vacuum representation of the affine Kac-Moody algebra ĝ. [FB04]

11 More precisely, the coefficient of qk is the associated graded space of a certain filtration on Vk.
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Example A.14. Polynomial CDOs. Given nonnegative integers p and q, let W be the associative
C-superalgebra generated by elements of the form

bin, ai,n, n ∈ Z, i = 1, . . . , p+ q, |bin| = |ai,n| =

{
0̄, i = 1, . . . , p

1̄, i = p+ 1, . . . , p+ q

(| · | = parity) satisfying the following relations

[bin, b
j
m] = 0 = [ai,n, aj,m], [ai,n, b

j
m] = δji δn,−m

where [ ] is the supercommutator. The subalgebra W+ ⊂ W generated by bin, n > 0 and ai,n, n ≥ 0 is
supercommutative and admits a (purely even) trivial representation C. The induced W-module

Dch(Ap|q) :=W ⊗W+
C

has the structure of a vertex superalgebra. The vacuum is given by 1 = 1⊗1. The infinitesimal translation
T and weight operator L0 are determined by

T1 = 0 [T, bin] = (1− n)bin−1 [T, ai,n] = −nai,n−1

L01 = 0 [L0, b
i
n] = −nb

i
n [L0, ai,n] = −nai,n

The vertex operators of bi01 and ai,−11 are given respectively by the fields

∑
n b

i
nz

−n,
∑

n ai,nz
−n−1

while the other vertex operators follow from the Reconstruction Theorem [FB04]. 12

The vertex superalgebra Dch(Ap|q) is freely generated by the associated vertex superalgebroid. To
describe the latter, consider the algebraic supermanifold

Ap|q := Spec
(
C[b1, · · · , bd]⊗

∧
(bp+1, · · · , bp+q)

)

and identify its functions, 1-forms and vector fields with the following subquotients of Dch(Ap|q):

· O(Ap|q) = Dch(Ap|q)0 via bi = bi01, b
ibj = bi0b

j
01, etc.

· Ω1(Ap|q) ⊂ Dch(Ap|q)1 via dbi = bi−11

· T (Ap|q) = Dch(Ap|q)1/Ω
1(Ap|q) via ∂i = ∂/∂bi = coset of ai,−11

13 Then “the” vertex superalgebroid associated to Dch(Ap|q) is of the form
(
O(Ap|q),Ω1(Ap|q), T (Ap|q), ∗c, { }c, { }cΩ

)
.

The extended Lie superalgebroid structure consists of the usual differential on functions, Lie bracket on
vector fields, Lie derivations by vector fields on functions and 1-forms, and pairing between 1-forms and
vector fields. Let ǫi := (−1)|b

i|. If we use the splitting

s : T (Ap|q)→ Dch(Ap|q)1, X = X i∂i 7→ ǫ
1+|X|
i ai,−1X

i

the rest of the vertex superalgebroid structure, as given by (A.3), reads

f ∗c X = −(ǫiǫj)
1+|f |+|X|(∂j∂if)X

idbj

{X,Y }c = −ǫ
1+|X|+|Y |
j (∂jX

i)(∂iY
j) (A.6)

{X,Y }cΩ = −(ǫjǫk)
1+|X|+|Y |(∂k∂jX

i)(∂iY
j)dbk

The superscript c refers to the dependence on coordinates.

12 This vertex superalgebra is the tensor product of p copies of the βγ-system and q copies of the bc-system.
13 From another point of view, making these identifications dictates our (sign) conventions for calculus on Ap|q (or Rp|q).

For example, it follows from α(X) := α(1)s(X) in (A.2) that dbi(∂j) = ǫjδij .
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Example A.15. Local smooth CDOs. Let b1, . . . , bp and bp+1, . . . , bp+q be respectively the real, even
and odd coordinates of Rp|q, regarded as a smooth cs-manifold, namely

C∞(Rp|q) = C∞(Rp)⊗
∧
(bp+1, . . . , bp+q)⊗ C.

Let W be the restriction of Rp|q to an open set in Rp. Motivated by Example A.14, we define a vertex
superalgebra Dch(W) as follows. The functions, 1-forms and vector fields on W form an extended Lie
superalgebroid as in Example A.14, and formulae (A.6) again yield a vertex superalgebroid

(
C∞(W),Ω1(W), T (W), ∗c, { }c, { }cΩ

)
;

then take the freely generated vertex superalgebra.

§ A.16. The Wess-Zumino form of a diffeomorphism. Suppose ϕ : W →W′ is a diffeomorphism
between restrictions of Rp|q (as a cs-manifold) to open sets. The following notations will be used:

| · | = parity, ǫi = (−1)|b
i|, ǫij = (−1)|b

i||bj |, i, j = 1, . . . , p+ q

Let gϕ : W→ GL(p|q) be the map of cs-manifolds whose components (gϕ)
i
j are given by

ϕ∗dbi = (gϕ)
i
jdb

j ⇔ (gϕ)
i
j = ǫjǫij∂jϕ

i

where ϕi = ϕ∗bi. 14 Define the following differential forms

θϕ := g−1
ϕ
· dgϕ ∈ Ω1(W)⊗ gl(p|q), WZϕ :=

1

3
Str (θϕ ∧ θϕ ∧ θϕ) ∈ Ω3(W).

It follows from dθϕ = −θϕ ∧ θϕ that WZϕ is closed.

Theorem A.17. Let W,W′,W′′ be restrictions of Rp|q (as a cs-manifold) to open sets in R
p.

(a) Suppose ϕ : W→W′ is a diffeomorphism. There is a one-to-one correspondence:

{
isomorphisms of vertex superalgebras Dch(W′)→ Dch(W)
whose weight-zero components are ϕ∗ : C∞(W′)→ C∞(W)

}
∼
←→

{
ξ ∈ Ω2(W), even
and dξ = WZϕ

}

Given ξ as above, the corresponding isomorphism, denoted by ϕ∗
ξ , is induced by an isomorphism between

the associated vertex superalgebroids

(ϕ∗,∆ϕ,ξ) :
(
C∞(W′),Ω1(W′), T (W′), ∗c, { }c, { }cΩ

)
→
(
C∞(W),Ω1(W), T (W), ∗c, { }c, { }cΩ

)

where ∆ϕ,ξ : T (W
′)→ Ω1(W) is given by

∆ϕ,ξ(X) = −ǫiǫijǫ
1+|X|
j ∂j(ϕ

∗X)i(θϕ)
j
i −

1

2
ιϕ∗XStr (θϕ ⊗ θϕ)−

1

2
ιϕ∗Xξ

for homogeneous elements.
(b) Suppose ϕ′ : W′ →W′′ is another diffeomorphism, ξ′ ∈ Ω2(W′) is even, and dξ′ = WZϕ′ . Then

we have the composition

ϕ∗
ξ ◦ϕ

′∗
ξ′ = (ϕ′ϕ)∗η, η = ξ +ϕ∗ξ′ + σϕ′,ϕ

where σϕ′,ϕ := Str (θϕ ∧ g−1
ϕ
· ϕ∗θϕ′ · gϕ).

Remarks. (i) This is a reformulation of a result in [GMS00] in the smooth case. (ii) As a consistency
check, it follows from θϕ′ϕ = θϕ + g−1

ϕ
· ϕ∗θϕ′ · gϕ that WZϕ′ϕ = WZϕ +ϕ∗WZϕ′ + dσϕ′,ϕ.

14 In this notation, the chain rule reads gϕ′ϕ = (ϕ∗gϕ′ ) · gϕ.
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Proof of Theorem A.17. (a) Any morphism between the extended Lie superalgebroids associated to W
and W′ is induced by a map of cs-manifolds, which is ϕ in this case. Consider a morphism of vertex
superalgebroids of the form

(ϕ∗,∆) :
(
C∞(W′),Ω1(W′), T (W′), ∗c, { }c, { }cΩ

)
→
(
C∞(W),Ω1(W), T (W), ∗c, { }c, { }cΩ

)

and write ∆ = ∆0 ◦ϕ
∗|T (W′) in terms of an even map ∆0 : T (W)→ Ω1(W). Applying Lemma A.11 with

S = {ϕ∗∂i}
p+q
i=1 and using (A.6), we obtain a complete set of equations for ∆0, namely

∆0(f∂i)− f∆0(∂i) = −ǫiǫ
1+|f |
j (∂jf)(θϕ)

j
i

∆0(∂i)(∂j) + ǫij∆0(∂j)(∂i) = −Str (θϕ ⊗ θϕ)(∂i ⊗ ∂j)

∂i
(
∆0(∂j)(∂k)

)
− ǫij∂j

(
∆0(∂i)(∂k)

)
+ ǫikǫjk∂k

(
∆0(∂i)(∂j)

)

= −ǫrǫjkǫkrǫks ∂i
(
(θϕ)

r
s(∂k)

)
· (θϕ)

s
r(∂j)

The first equation implies that for any X ∈ T (W)

∆0(X) = −ǫiǫijǫ
1+|X|
j (∂jX

i)(θϕ)
j
i +X i∆0(∂i) ;

the second equation allows us to write

∆0(∂i)(∂j) = −
1

2
Str (θϕ ⊗ θϕ)(∂i ⊗ ∂j)−

1

2
ξij , ξji = −ǫijξij ;

then it follows from dθϕ = −θϕ ∧ θϕ that the third equation is equivalent to

dξ = WZϕ =
1

3
Str (θϕ ∧ θϕ ∧ θϕ)

where ξ is the even 2-form with ξ(∂i, ∂j) = ξij . Since D
ch(W) and Dch(W′) are freely generated by vertex

superalgebroids, an isomorphism between them is equivalent to an isomorphism between the associated
vertex superalgebroids. This completes the proof of (a).

(b) By part (a), the composition in question must be of the form (ϕ′ϕ)∗η for some η ∈ Ω2(W). At the
level of vertex superalgebroids, we have

(ϕ∗ϕ′∗,∆ϕ′ϕ,η) = (ϕ∗,∆ϕ,ξ) ◦ (ϕ
′∗,∆ϕ′,ξ′)

⇔ ∆ϕ′ϕ,η = ϕ∗∆ϕ′,ξ′ +∆ϕ,ξϕ
′∗.

Evaluation at e.g. ϕ′
∗ϕ∗∂k then yields the desired formula for η.
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Appendix §B. Affine Connections on CS-Manifolds

Consider a smooth manifold M and a smooth C-vector bundle E → M . In this appendix, we construct
an affine connection on the smooth cs-manifold M = ΠE and obtain a number of formulae used in the
computations of CDOs on M.

§B.1. Functions on M. Let d = dimM and r = rankE. There is a canonical identification

C∞(M) ∼= Γ(∧∗E∨). (B.1)

In particular, a set of local coordinates (x1, · · · , xd) on M and a local frame (ε1, · · · , εr) of E∨ together
determine a set of local coordinates (x1, · · · , xd, ε1, · · · , εr) on M.

§ B.2. Vector fields on M. Choose a connection ∇E on E and use the same notation for the induced
connection on ∧∗E∨. Let (ε1, · · · , εr) be the local frame of E dual to (ε1, · · · , εr). Let X,Y ∈ T (M) and
σ, τ ∈ Γ(E). Under the identification (B.1), vector fields on M correspond to derivations on sections of
∧∗E∨. In particular, denote by




DX

Iσ
J





the vector fields on M
corresponding to the





covariant differentiation ∇E
X

contraction with σ
exterior degree



 (B.2)

The vector fields DX and Iσ span T (M) over C∞(M). The super Lie brackets of (B.2) are given by

[DX ,DY ] = D[X,Y ] − εkIRE
X,Y

εk , [DX , Iσ] = I∇E
X
σ, [Iσ, Iτ ] = 0 = [J,DX ], [J, Iσ] = −Iσ (B.3)

where RE is the curvature of ∇E .

§ B.3. An affine connection on M. Choose also a connection ∇M on TM . Let X,Y, Z ∈ T (M) and
σ, τ ∈ Γ(E). Define a connection ∇ on TM by

∇DX
DY = D∇M

X
Y , ∇DX

Iσ = I∇E
X
σ, ∇Iσ

DX = ∇Iσ
Iτ = 0 (B.4)

and the Leibniz rule. Using (B.3), we compute the curvature of ∇ as follows

RDX ,DY
DZ = DRM

X,Y
Z , RDX ,DY

Iσ = IRE
X,Y

σ, RDX ,Iσ
= RIσ ,Iτ

= 0 (B.5)

where RM is the curvature of ∇M .

Lemma B.4. (a) The operator ∇tJ sends DX to 0, and Iσ to itself. (b) ∇(∇tJ) = 0.

Proof. Recall that ∇tJ := ∇J − [J, - ]. Using the fact that J = εkIεk , (a) follows readily from (B.3) and
(B.4). Then (b) is clear.

Lemma B.5. Regarding Ω∗(M) as a subalgebra of Ω∗(M), we have
(a) StrR = TrRM − TrRE,
(b) Str (R ∧R) = Tr (RM ∧RM )− Tr (RE ∧RE),
(c) Str (R · ∇tJ) = −TrRE.

Proof. All these statements follow easily from (B.5) and Lemma B.4a.

Example B.6. The de Rham cs-manifold. In the case E = TM ⊗ C, (B.1) can be rewritten as

C∞(M) ∼= Ω∗(M).
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Let εi = dxi and εi = ∂i = ∂/∂xi. Besides (B.2), consider also the odd vector field Q = εi∂i on M
corresponding to the de Rham operator d. Assume that ∇M is torsion-free. This implies the identity
d = dxi ∧ ∇M

∂i
, or equivalently

Q = εiD∂i
= DQ (B.6)

where the second equality should be understood as the definition of a new notation. Similar abuse of
notation will appear below without further comment. The super Lie brackets with Q are given by

[Q,DX ] = D∇M
Q

X − IRM
Q,X

Q, [Q, IX ] = I∇M
Q

X +DX , [J,Q] = Q, [Q,Q] = 0. (B.7)

Indeed, the first two equations follow from the following calculations

[Q,DX ] = [εiD∂i
,DX ] = εi[D∂i

,DX ]− (DXεi)D∂i
= εiD[∂i,X] − εiεjIRM

∂i,X
∂j

+ εiD∇M
X

∂i

= εiD∇M
∂i

X − IRM
Q,X

Q = D∇M
Q

X − IRM
Q,X

Q

[Q, IX ] = [εiD∂i
, IX ] = εi[D∂i

, IX ] + (IXεi)D∂i
= εiI∇M

∂i
X +DX = I∇M

Q
X +DX

where we have used (B.6), (B.3) and the torsion-free condition. By (B.4) and (B.6), covariant differentiation
with respect to Q is given by

∇QDX = D∇M
Q X , ∇QIX = I∇M

Q X . (B.8)

Lemma B.7. The operator ∇tQ and its covariant derivatives are computed as follows:
(a) ∇tQ sends DX to IRM

Q,XQ, and IX to −DX .

(b) ∇DX
(∇tQ) sends DY to I(∇M

X RM )Q,Y Q, and IY to 0.

(c) ∇IX
(∇tQ) sends DY to IRM

X,Q
Y , and IY to 0.

Proof. Recall that ∇tQ := ∇Q − [Q, - ]. (a) follows from (B.7) and (B.8). For (b) and (c) we compute

(
∇DX

(∇tQ)
)
DY = ∇DX

IRM
Q,Y Q − (∇tQ)D∇M

X Y = I∇M
X RM

Q,Y Q + (DXεiεj)IRM
∂i,Y

∂j
− IRM

Q,∇M
X

Y
Q

= I∇M
X RM

Q,Y Q − εiIRM

∇M
X

∂i,Y
Q − εiIRM

Q,Y ∇M
X ∂i
− IRM

Q,∇M
X

Y
Q = I(∇M

X RM )Q,Y Q

(
∇DX

(∇tQ)
)
IY = −∇DX

DY − (∇tQ)I∇M
X

Y = −D∇M
X

Y +D∇M
X

Y = 0
(
∇IX

(∇tQ)
)
DY = ∇IX

IRM
Q,Y Q = (IXεiεj)IRM

∂i,Y
∂j

= IRM
X,Y Q − IRM

Q,Y X = IRM
X,QY

(
∇IX

(∇tQ)
)
IY = −∇IX

DY = 0

where we have used (B.4) and the first Bianchi identity.

Lemma B.8. The operators ∇tQ, R · ∇tQ, R · ∇tQ · ∇tQ and ∇(∇tQ) ∧ ∇(∇tQ) all have supertrace
zero. It follows that the supertrace of ∇(∇tQ) · ∇tQ is closed.

Proof. The first three operators have no supertrace by Lemma B.7a and (B.5). For the third, notice that

(∇tQ)2DX = −DRM
Q,X

Q, (∇tQ)2IX = −IRM
Q,X

Q.

The fourth operator has no supertrace by Lemma B.7b and c. The remaining assertion follows from

dStr
(
∇(∇tQ) · ∇tQ

)
= 2Str (R · ∇tQ · ∇tQ)− Str

(
∇(∇tQ) ∧ ∇(∇tQ)

)
.
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Example B.9. Dolbeault cs-manifolds. Now we change our notations as follows: M is a complex
manifold, TM its holomorphic tangent bundle, E a holomorphic vector bundle overM , and M = Π(TM⊕
E) as a smooth cs-manifold. There is a canonical identification

C∞(M) ∼= Ω0,∗(M ;∧∗E∨). (B.9)

Given a set of local holomorphic coordinates (z1, · · · , zd) on M and a local holomorphic frame (ε1, · · · , εr)
of E∨, there is an associated set of local coordinates on M, namely

(Rez1, Imz1, · · · ,Rezd, Imzd, ζ̄1, · · · , ζ̄d, ε1, · · · , εr)

where ζ̄i correspond to dz̄i under (B.9). Let ∂̄i = ∂/∂z̄i and (ε1, · · · , εk) be the dual local frame of E.
Choose connections ∇M on TM and ∇E on E of type (1, 0); denote by ∇̄M the induced connection on

TM . Let X,Y, Z ∈ T (M), U, V ∈ T 0,1(M) and σ, τ ∈ Γ(E). Under the identification (B.9), vector fields
on M correspond to derivations of (0, ∗)-forms on M valued in ∧∗E∨. In particular, denote by





DX

IU , Iσ
Jr, Jℓ

Q





the vector fields on M
corresponding to the





covariant differentiation ∇̄M
X ⊗ 1 + 1⊗∇E

X

contractions with U, σ
exterior degrees in ∧∗ TM∨,∧∗E∨

Dolbeault operator ∂̄ ⊗ 1





(B.10)

The vector fields DX , IU and Iσ span T (M) over C∞(M). Adopt an abuse of notation similar to that in
Example B.6. The super Lie brackets among the first three types of vector fields in (B.10) are

[DX ,DY ] = D[X,Y ] − IR̄M
X,Y Q − εkIRE

X,Y εk , [DX , IU ] = I∇̄M
X U , [DX , Iσ] = I∇E

Xσ

[IU , IV ] = [IU , Iσ] = [Iσ, Iτ ] = 0 = [Jr,DX ] = [Jr, Iσ] = [Jℓ,DX ] = [Jℓ, IU ] = [Jr, Jℓ] (B.11)

[Jr, IU ] = −IU , [Jℓ, Iσ] = −Iσ

Assume that ∇M is torsion-free. 15 This implies the identity ∂̄ = dz̄i ∧ ∇̄M
∂̄i
, or equivalently

Q = ζ̄iD∂̄i
= DQ. (B.12)

Then the various super Lie brackets with Q are given by

[Q,DX ] = D∇M
Q

X1,0+∇̄M
Q

X0,1 − IR̄M
Q,X

Q + εkIRE
Q,X

εk , [Q, IU ] = I∇̄M
Q

U +DU

[Q, Iσ] = I∇E
Q
σ, [Jr, Q] = Q, [Jℓ, Q] = 0 = [Q,Q]

(B.13)

Indeed, the first two follow from (B.12) and calculations similar to those below (B.7).
Define a connection ∇ on TM as in §B.3. More explicitly, we define

∇DX
DY = D∇M

X
Y 1,0+∇̄M

X
Y 0,1 , ∇DX

IU = I∇̄M
X

U , ∇DX
Iσ = I∇E

X
σ

∇IU
DX = ∇IU

IV = ∇IU
Iσ = ∇Iσ

DX = ∇Iσ
IU = ∇Iσ

Iτ = 0
(B.14)

By (B.12), covariant differentiation with respect to Q is given by

∇QDX = D∇M
Q X1,0+∇̄M

Q X0,1 , ∇QIU = I∇̄M
Q U , ∇QIσ = I∇E

Qσ. (B.15)

Using (B.11), we compute the curvature of ∇ as follows

RDX ,DY
DZ = DRM

X,Y Z1,0+R̄M
X,Y Z0,1 , RDX ,DY

IU = IR̄M
X,Y U , RDX ,DY

Iσ = IRE
X,Y σ

RDX ,IU
= RDX ,Iσ

= RIU ,IV
= RIU ,Iσ

= RIσ,Iτ
= 0

(B.16)

15 If ∇M has a nontrivial torsion T , we can replace it with a new connection ∇′M defined by ∇′M
X = ∇M

X −
1
2
TX, - , which

is also of type (1, 0) and is torsion-free.
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The following statements and their proofs are similar to Lemmas B.4 and B.5.

Lemma B.10. (a) The operator ∇tJr sends DX , Iσ to 0, and IU to itself. (b) ∇(∇tJr) = 0.

Proof. Use (B.11), (B.14) and the fact that Jr = ζ̄iI∂̄i
.

Lemma B.11. (a) The operator ∇tJℓ sends DX , IU to 0, and Iσ to itself. (b) ∇(∇tJℓ) = 0.

Proof. Use (B.11), (B.14) and the fact that Jℓ = εkIεk .

Lemma B.12. Regarding Ω∗(M) as a subalgebra of Ω∗(M), we have
(a) StrR = TrRM − TrRE,
(b) Str (R ∧R) = Tr (RM ∧RM )− Tr (RE ∧RE),
(c) Str (R · ∇tJr) = −Tr R̄M and Str (R · ∇tJℓ) = −TrRE.

Proof. Use (B.16) and the previous two lemmas.

The following statements and their proofs are similar to Lemmas B.7 and B.8.

Lemma B.13. The operator ∇tQ and its covariant derivatives are computed as follows:
(a) ∇tQ sends DX to IR̄M

Q,XQ − εkIRE
Q,Xεk , IU to −DU , and Iσ to 0.

(b) ∇DX
(∇tQ) sends DY to I(∇̄M

X
R̄M )Q,Y Q − εkI(∇E

X
RE)Q,Y εk , and IU , Iσ to 0.

(c) ∇IU
(∇tQ) sends DX to IR̄M

U,Q
X + εkIRE

U,X
εk , and IV , Iσ to 0.

(d) ∇Iσ
(∇tQ) sends DX to −IRE

Q,Xσ, and IU , Iσ to 0.

Proof. Use (B.13), (B.14), (B.15) and the first Bianchi identity.

Lemma B.14. The operators ∇tQ, R · ∇tQ, R · ∇tQ · ∇tQ and ∇(∇tQ) ∧ ∇(∇tQ) all have supertrace
zero. It follows that the supertrace of ∇(∇tQ) · ∇tQ is closed.

Proof. Use (B.16) and the previous lemma. For the third operator, also notice that R̄M
Q,XQ = 1

2 R̄
M
Q,QX

0,1

by the first Bianchi identity, and RE
Q,U = 0 by our assumption on ∇E .
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