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Abstract

We propose integral representations of the Whittaker functions for the classical Lie
algebras sp2ℓ, so2ℓ and so2ℓ+1. These integral representations generalize the integral
representation of glℓ+1-Whittaker functions first introduced by Givental. One of the
salient features of the Givental representation is its recursive structure with respect
to the rank ℓ of the Lie algebra glℓ+1. The proposed generalization of the Givental
representation to the classical Lie algebras retains this property. It was shown else-
where that the integral recursion operator for glℓ+1-Whittaker function in the Givental

representation coincides with a degeneration of the Baxter Q-operator for ĝlℓ+1-Toda
chains. We construct Q-operator for affine Lie algebras ŝo2ℓ, ŝo2ℓ+1 and a twisted form
of ĝl2ℓ. We demonstrate that the relation between recursion integral operators of the
generalized Givental representation and degenerate Q-operators remains valid for all
classical Lie algebras.
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1 Introduction

A remarkable integral representation for common eigenfunctions of glℓ+1-Toda chain Hamilto-
nian operators was proposed by A. Givental [Gi] (see also [JK]). The integral representation
appears naturally in a construction of a mirror dual of the theory of Type A topological
closed strings on glℓ+1-flag manifolds. The Givental integral representation has many inter-
esting properties. It has an explicit recursive structure over the rank ℓ of the corresponding
Lie algebra glℓ+1. The integrand in the integral representation allows for purely combinato-
rial description in terms of a simple graph. This graph captures a flat degenerations of flag
manifolds to Gorenstein toric Fano varieties (torification) [Ba], [BCFKS].

In [GKLO], the Givental integral representation was reconsidered in the framework of
the representation theory approach to quantum integrable systems. According to B. Kostant
[Ko1],[Ko2] the common eigenfunctions of g-Toda chain Hamiltonian operators are given by
generalizations of classical Whittaker functions and can be expressed in terms of the matrix
elements of infinite-dimensional representations of the universal enveloping algebra U(g). It
was demonstrated in [GKLO] that the Givental representation of glℓ+1-Toda eigenfunctions
coincides with an integral representation of the relevant matrix elements obtained by using a
particular parametrization of an open part of the glℓ+1-flag manifold. A conceptual explana-
tion for the particular choice of coordinates on flag manifolds was proposed using a relation
with the Baxter Q-operator formalism. It was noticed that the Givental integral representa-
tion has a recursive structure connecting the glℓ - and glℓ+1-Whittaker functions by simple
integral transformations. The corresponding integral operator coincides with a particular
degeneration of the Baxter Q-operator for ĝlℓ+1-Toda chain [PG]. It is well-known that
Q-operators realise the quantum Bäcklund transformations in quantum integrable systems.
On the other hand, in the classical limit, the formalism of Q-operators allows us to define
special coordinate system on the phase space. Thus degenerate Q-operators define particu-
lar coordinates on an open part of flag manifolds and therefore lead to the Givental integral
representation of glℓ+1-Whittaker function.

Until now a generalization of the Givental integral representation of glℓ+1-Whittaker
functions to Lie algebras other then glℓ+1 was not known. The only known generalization
[BCFKS], [Ri] of the Givental construction is an integral representation for common eigen-
functions of certain degenerations glℓ+1-Toda chains [STS]. It is based on flat degenerations
of partial flag manifolds G/P for G = GL(ℓ + 1,C), P being a parabolic subgroup of G
[BCFKS]. In this paper we propose a generalization of the Givental construction for classi-
cal Lie algebras sp2ℓ, so2ℓ and so2ℓ+1. Our construction possesses all characteristic properties
of the original Givental integral representation. The integral representations for the classical
Lie algebras have recursive structure. The integrands of the integral representations have
combinatorial descriptions in terms of graphs. The proposed generalization to the classical
Lie algebras is based on a modification of a well-known factorized representation of generic
elements of maximal unipotent subgroups of the corresponding Lie groups [Lu] (see also [FZ],
[BZ]). The construction of the modified factorized representation essentially uses the realiza-
tion of maximal unipotent subgroups of classical Lie groups as explicitly described subgroups
of upper-triangular matrices (see e.g. [DS]). We define Baxter Q-operators associated with

the classical affine Lie algebras ŝo2ℓ, ŝo2ℓ+1 and a twisted form of ĝl2ℓ. We demonstrate that
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the relation between recursion integral operators of the generalized Givental representation
and degenerate Q-operators remains valid for all classical Lie algebras.

The novel feature of the constructed integral representation is that, in contrast with the
glℓ+1 case (where the kernel of the recursion operator is a simple function), the integral
kernels of the recursion operators for all other classical Lie groups are given by non-trivial
integrals. This suggests that the recursion operators can be obtained as a composition of ele-
mentary operators. Indeed, for zero eigenvalues, recursion operators relating the Toda chain
eigenfunctions of the Lie algebras with adjacent ranks can be represented as compositions of
elementary recursion operators relating the Toda chain eigenfunctions of different classical
series. This might not be so surprising due to the fact that we essentially use a realisation
of all classical Lie groups as subgroups of general Lie groups of large enough rank.

Let us stress that the construction of integral representations of g-Whittaker functions
presented in this paper also has a natural interpretation in terms of torification of flag
manifolds associated with classical Lie groups. The graph encoding the integrand of the
Givental representation for a classical Lie group allows us to describe toric degeneration of
the corresponding flag manifold explicitly (thus generalizing the results of [BCFKS] to all
classical Lie groups).

One of the interesting applications of the Givental integral representation of g-Whittaker
functions for classical Lie algebras might be a construction of mirror duals for closed strings
on flag spaces associated with classical Lie groups G, g = Lie(G). According to Givental
[Gi] the mirror dual to Type A topological string theories on flag manifolds associated with
Lie groups G should be Landau-Ginzburg models associated with Langlands dual Lie groups
G∨ such that the generating function of the genus zero correlators is a g∨-Whittaker func-
tion, g∨ = Lie(G∨). In the case of g = glℓ+1 Givental provides a description of the dual
Landau-Ginzburg model in terms of the integrand of the integral representation of the corre-
sponding Whittaker function. Moreover the interpretation of the integral representation of a
g-Whittaker function in terms of a torification of flag manifolds [Ba], [BCFKS] allows us to
construct the mirror map explicitly. Thus using the same reasoning, the generalization of the
Givental integral representation for classical Lie groups allows us to infer the superpotential
of the corresponding Landau-Ginzburg model from the integrand. Moreover, similar to the
case of g = glℓ+1, the interpretation of the integrand in terms of a toric degeneration of
the flag manifold provides an explicit construction of the mirror map. We will discuss this
construction elsewhere.

Finally, note that some of the results presented in this paper was announced previously
in [GLO], [GLO1].

The plan of this paper is as follows. In Part I we formulate the results for the classical
Lie algebras sp2ℓ, so2ℓ and so2ℓ+1. The main results are formulated in the Theorems 2.3, 2.6,
2.10, 2.14 respectively. In Part II we collect the proofs of the results presented in Part I.

Acknowledgments: The authors are grateful to S. Kharchev for discussions at the initial
stage of this project. The research of the first author was partly supported by the Enterprise
Ireland Basic Research Grant. The second author is grateful to School of Mathematics,
Trinity College Dublin and Max-Planck-Institut für Mathematik for hospitality. The third
author thanks to Max-Planck-Institut für Mathematik for hospitality. The research of the
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third author been partly supported by the RF President Grant MK-134.2007.1.

2 Part I: Results

2.1 Toda chain eigenfunctions as matrix elements

Eigenfunctions of g-Toda chain are given by particular matrix elements of infinite-dimensional
representations of Lie algebra g [Ko1], [Ko2] (for detailed exposition see e.g. [Et]). In this
section we provide integral representations of these matrix elements with integrands being
expressed in terms of matrix elements of finite-dimensional representations of g. In the
following sections we derive explicit expressions for the relevant matrix elements of finite-
dimensional representations and thus obtain integral representations of g-Toda chain eigen-
functions generalizing the results of Givental for g = glℓ+1. The construction will be given
for all classical Lie algebras. We start with standard definitions in the theory of Lie algebras
mostly following [K] (for a discussion of root data of reductive groups see e.g. [S]).

2.1.1 Root data for reductive groups

Root datum is a quadruple (X,Φ, X∨,Φ∨) where X is a lattice of a finite rank, X∨ is a dual
lattice, Φ and Φ∨ are subsets of X and X∨ supplied with a bijection α 7→ α∨ of Φ onto Φ∨

and the following conditions hold. One has 〈α, α∨〉 = 2 for any α ∈ Φ. Subsets Φ and Φ∨

should be stable with respect to any automorphisms sα, sα∨ :

sα(x) = x− 〈x, α∨〉α, sα∨(y) = y − 〈y, α〉α∨, x ∈ X, y ∈ X∨, α ∈ Φ.

Let Q ⊂ X be a sublattice generated by elements of Φ, and P be a lattice defined as

P = {x ∈ X ⊗Q| 〈x, α∨〉 ∈ Z, α ∈ Φ}.

One has Q ⊂ P and P/Q is a finite group. Let X0 ⊂ X be sublattice defined as

X0 = {x ∈ X| 〈x, y〉 = 0, y ∈ Φ∨}.

With any reductive Lie group one can associate root datum. Let G be a connected
reductive complex Lie group and H ⊂ G be a maximal torus. We associate to a pair
(G,H) a root datum (X,Φ, X∨,Φ∨) as follows. Here X is a free abelian finite rank group
of Q-characters of H , X∨ = Hom(C∗, H) is a dual group of one-parameter multiplicative
subgroups of H . The pairing 〈 , 〉 : X ×X∨ → Z is defined as

λ(u(t)) = t〈λ, u〉, λ ∈ X, u ∈ X∨, t ∈ C∗.

Then Φ and Φ∨ are finite subsets of X and X∨ respectively, and there is a bijection α 7→ α∨

of Φ onto Φ∨.

Adjoint action of H on a Lie algebra g = Lie(G) defines a decomposition

g = h⊕
∑

α∈Φ

Ceα, h = Lie(H),

4



and thus defines a subset Φ ⊂ X. Let B be Borel subgroup containing H . There is a unique
ordering > of Φ such that b = Lie(B) is generated by h = Lie(H) and eα with α > 0. One
fixes a basis Π = {αi} of Φ compatible with the ordering of Φ associated to B.

There is a decomposition G = Z0 ·G
′ where Z0 is the identity component of the center Z

of G and G′ is a semisimple group (derived group of G). We have H = Z0 ·H
′ where H ′ is

a maximal torus of G′. The root datum associated with (G′, H ′) is (X/X0,Φ, Q
∨,Φ∨), with

Q ⊂ X/X0. Given a basis {α∨
i }, i ∈ I in Q∨ and a basis {ωj} j ∈ J in X, one can choose a

basis of representatives of the form {ω′
i = ωi +X0}, i ∈ I ⊂ J in X/X0 such that {ω′

i}, i ∈ I
form a basis dual to {α∨

i }, i ∈ I.

From now on if not explicitly mentioned g be a semisimple Lie algebra. Let h ⊂ g

be a Cartan subalgebra and b± be a pair of opposite Borel subalgebras of g containing
h. We have a decomposition g = n− ⊕ h ⊕ n+ where n± ⊂ b± is a nilpotent radical.
Denote by Γ the set of vertexes of Dynkin graph associated with the root system of g. Let
Π = {αi ∈ h∗, i ∈ Γ} be the set of simple roots, {ωi ∈ h∗, i ∈ Γ} be the set of fundamental
weights and Π∨{α∨

i ∈ h, i ∈ Γ} with be the set of the co-roots defined by 〈α∨
i , ωj〉 = δij. Let

A = ‖aij‖, i, j = 1, . . . , ℓ be the Cartan matrix of g defined by aij = 〈α∨
i , αj〉. Denote R+ the

set of positive roots of g and let ρ be a half of the sum of the positive roots ρ = 1
2

∑
α∈R+

α.
There exist co-prime positive rational numbers d1, . . . , dℓ such that the matrix ‖bij‖ = ‖diaij‖
is symmetric. Define a symmetric bilinear form on h∗ by (αi, αj) = bij . This form defines a
non-degenerate pairing ν : h→̃h∗ given by ν(α∨

i ) = d−1
i αi.

Let W be a Weyl group of root system associated with Lie algebra g. It is generated by
simple reflections s1, . . . , sℓ acting by linear transformations in h∗:

si(λ) = λ− 〈λ, α∨
i 〉αi, λ ∈ h∗. (2.1)

Defining relations can be represented as:

s2
i = 1, (sisj)

mij = 1, i, j = 1, . . . , ℓ, (2.2)

where mij are equal to
mij = 2, , 3, 4, 6, ∞,

for
aijaji = 0, 1, 2, 3, ≥ 4,

respectively. For any w ∈ W a reduced word is a sequence of indexes Iw = (i1, . . . , il(w)),
ik ∈ Γ, of shortest possible length such that w = si1si2 · · · sil(w)

. The integer l(w) is called
the length of w. Denote by w0 the unique element of maximal length in Weyl group and let
m = l(w0). In the following we fix a lift ẇ ∈ G, g = Lie(G) of an element w ∈W such that
w(u) = Adẇu, u ∈ g. For simple reflections si we define

ṡi = eeie−fieei ,

and for w = si1si2 · · · sil(w)
we take ẇ = ṡi1 ṡi2 · · · ṡil(w)

. Thus defined ẇ does not depend on
the decomposition into the product of simple reflections (see e.g. [K], Lemma 3.8).
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Denote by ei, fi, hi, i = 1, . . . , ℓ the set of standard generators of a semisimple Lie algebra
g satisfying the following relations:

[hi, hj ] = 0, (2.3)

[hi, ej] = aijej , [hi, fj ] = −aijfj , [ei, fj ] = δijhi, (2.4)

(ad ei)
1−aijej = 0, (ad fi)

1−aijfj = 0, for i 6= j. (2.5)

The invariant symmetric bilinear form on g is given by

(hi, hj) = bijd
−1
i d−1

j , (ei, fj) = δijd
−1
i , (ei, hj) = (fi, hj) = 0.

The only example of a non-semisimple reductive Lie algebra that will be considered in
this paper is the reductive Lie algebra glℓ+1. In this case we explicitly define Lie algebra by
generators and relations as follows. Introduce the set of generators

{ei,i±1, i = 1, . . . , ℓ; ek,k, k = 1, . . . , ℓ+ 1},

of glℓ+1. They satisfy the following relations

[ei,i, ej,j] = 0, [ei,i+1, ei+1,i] = ei,i − ei+1,i+1,

[ei,i, ei,i+1] = ei,i+1, [ei+1,i+1, ei,i+1] = −ei,i+1,

[ei,i, ei+1,i] = −ei+1,i, [ei+1,i+1, ei+1,i] = ei+1,i, (2.6)

(adei,i+1
)2ej,j+1 = 0, (adei+1,i

)2ej+1,j = 0, |i− j| = 1.

2.1.2 Whittaker model of principal series representations

Let U(g) be a universal enveloping of g and V , V ′ be U(g)-modules. Modules V and V ′

are called dual if there exists a non-degenerate pairing 〈. , .〉 : V ′ × V → C such that
〈v′, Xv〉 = −〈Xv′, v〉 for all v ∈ V , v′ ∈ V ′ and X ∈ g. We will assume that the action of
the Cartan subalgebra on V , V ′ is integrated to the action of the Cartan torus.

Let B− = N−H and B+ = HN+ be a pair of opposed Borel subgroups where H is
a maximal torus, and N± are opposite maximal unipotent subgroups of G. Characters of
n± = Lie(N±) are defined by their values on simple root generators. Let χ± : n±→ C be the
characters of n± defined by χ+(ei) := −1 and χ−(fi) := −1 for all i = 1, . . . , ℓ. A vector
ψR ∈ V is called a Whittaker vector with respect to χ+ if

eiψR = −ψR , (i = 1, . . . , ℓ), (2.7)

and a vector ψL ∈ V
′ is called a Whittaker vector with respect to χ− if

fiψL = −ψL , (i = 1, . . . , ℓ). (2.8)
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A Whittaker vector ψ is called cyclic in V if U(g)ψ = V , and U(g)-module V is a
Whittaker module if it contains a cyclic Whittaker vector. The Whittaker U(g)-module V
admits an infinitesimal character ξ i.e. there exists a homomorphism of the center Z(g) ⊂
U(g) ξ : Z(g)→ C such that zv = ξ(z)v for all z ∈ Z(g) and v ∈ V .

Consider the principal series representation IndG
B−
χµ of G, induced from the character

χµ of B− = HN− trivial on N−. It is realized in the space of functions f ∈ L2(G) satisfying

f(bg) = χµ(b)f(g). (2.9)

The action of G is given by the right action (g1 · f)(g2) = f(g2g1). We will be interested

in the infinitesimal form Ind
U(g)
U(b−) χµ of this representation. The action of the Lie algebra

g = Lie(G) is given by the infinitesimal form of the right action

(Xf)(g) =
d

dǫ
f(geǫX)|ǫ→0 . (2.10)

Denote Vµ the corresponding U(g)-module.

Let G(R) be a totally split real form of a reductive Lie group G, gR = Lie(G(R)) be
a corresponding Lie algebra and N(R)+ ⊂ N+ ∩ G(R) be a nilpotent subalgebra of G(R).
Let dµG(R) be a bi-invariant (Haar) measure on G(R). We have the Bruhat decomposition
G(R) =

∐
w∈W B−(R)wB+(R). Let G0(R) = B−(R)N+(R) be a w = 1 component in this

decomposition. Restriction of the measure dµG(R) on G0(R) up to normalization has the
following form [He]:

dµG(R)(g) = δB+(R)(b) dµB+(R)(b) ∧ dµN+(R)(x). (2.11)

Here δB+(R) is the modular function on B+(R). For any b = ng0 ∈ N+(R)H it is equal to
δB+(R)(b) = exp 2〈ρ, ln g0〉.

Let µ = iλ− ρ. Consider the following non-degenerate pairing Vµ × Vµ → C:

〈f1, f2〉 =

∫

N+(R)

dµN+(R)(x) f1(x) f2(x),

where dµN+(R) is a restriction of (2.11) on N+(R). It defines on Vµ a structure of a unitary
representation πλ of U(gR) and we have 〈f1, Xf2〉 = −〈Xf1, f2〉 for any X ∈ gR.

We shall consider a slightly more general pairing defined as follows. Note that N+(R) ⊂
N+ is a real non-compact middle dimension subspace. One has a natural holomorphic
structure on a Lie algebra g = gR ⊗ C which induces the holomorphic structure on N+.
Consider the space of holomorphic functions on N+. It is a module with respect to the
holomorphic action of a corresponding holomorphic subalgebra of g. The right-invariant
measure dµN+(R) can be extended to a holomorphic top-dimensional form dµhol

N+
on N+.

Let C ⊂ N+ be an arbitrary non-compact middle-dimensional submanifold. Consider the
following pairing

〈f1, f2〉C =

∫

C

dµhol
N+

(x) f1(x) f2(x),

on the space Shol
C (N+) of holomorphic functions on N+ exponentially decreasing with all its

derivatives when restricted to C. This pairing satisfies 〈f1, Xf2〉C = −〈Xf1, f2〉C for any
holomorphic X ∈ g.
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2.1.3 Whittaker function as Toda wave function

According to B. Kostant [Ko1],[Ko2] eigenfunctions of g-Toda chain can be written in terms
of the invariant pairing on Whittaker modules as follows

Ψg
λ(x) = e−〈ρ,x〉〈ψL , πλ(e

−hx)ψR〉, x ∈ h, (2.12)

where hx :=
ℓ∑

i=1

〈ωi, x〉 hi. In the special case of g = sl2 the function Ψg

λ(x), x ∈ R coincides

with the classical Whittaker function. In the following we will use the term g-Whittaker
function for (2.12) ( see e.g. [Et]). A slightly different notion of the Whittaker functions was
used in [Ja], [Ha].

One can introduce a set of commuting differential operators Hk ∈ Diff(h), k = 1, · · · , ℓ
corresponding to a set {ck} of generators of the center Z ⊂ U(g) as follows:

HkΨ
g

λ(x) = e−〈ρ,x〉〈ψL , πλ(e
−hx) ck ψR〉. (2.13)

Operators Hk provide a complete set of commuting Hamiltonians of g-Toda chain [Ko1].
Connection with Toda chains can be seen as follows. Quadratic generator of the center Z(g)
(Casimir element) is given by

c2 =
1

2

ℓ∑

i,j=1

cijhihj +
1

2

∑

α∈R+

(eαfα + fαeα), (2.14)

where the matrix ‖cij‖ = ‖didj(b
−1)ij‖ is inverse to the matrix ‖(α∨

i , α
∨
j )‖. Let {ǫi} be an

orthogonal bases (ǫi, ǫj) = δij in h and x =
∑ℓ

i=1 xiǫi be a decomposition of x ∈ h in this
bases. Then the projection (2.13) of (2.14) gives the well-known Hamiltonian operator of
g-Toda chain [STS]

Hg
2 = −

1

2

ℓ∑

i=1

∂2

∂xi
2 +

ℓ∑

i=1

die
〈αi,x〉. (2.15)

The eigenfunctions (2.12) of g-Toda chain are written in an abstract form. To get ex-
plicit integral representations we start with representations of matrix elements (2.12) of
infinite-dimensional representations in terms of matrix elements of finite-dimensional rep-
resentations of U(g). Let πi be a set of fundamental representations corresponding to all

fundamental weights ωi of g and ξ
+/−
ωi be highest/lowest vectors in these representations

such that 〈ξ−ωi
|ξ+

ωi
〉 = 1. For highest weight vector ξ+

ωi
in a fundamental representation Vωi

we
have ṡ−1

i ξ+
ωi

= fiξ
+
ωi

. Consider following matrix elements in fundamental finite-dimensional
representations

∆ωi,ẇ(g) = 〈ξ−ωi
| πi(g)πi(ẇ)| ξ+

ωi
〉, w ∈W, g ∈ G. (2.16)

Lemma 2.1 The left/right Whittaker vectors defined by (2.7) and (2.8) are given by:

ψR(v) = exp
{
−

ℓ∑

i=1

∆ωi,ṡ
−1
i

(v)

∆ωi,1(v)

}
, (2.17)

8



ψL(v) =

ℓ∏

i=1

(∆ωi,ẇ
−1
0

(v))ı〈λ,α∨

i 〉−1 × exp
{ ℓ∑

i=1

∆ωi,ẇ
−1
0 ṡ−1

i
(v)

∆ωi,ẇ
−1
0

(v)

}
, (2.18)

The proof in given in Part II, Section 3.2.

Proposition 2.1 Common eigenfunctions (2.12) of g-Toda chain can be represented in the
following integral form:

Ψg

λ(x) = eı〈λ,x〉

∫

C

dµhol
N+

(v)
ℓ∏

i=1

(∆ωi,ẇ
−1
0

(v))ı〈λ,α∨

i 〉−1 × (2.19)

× exp
{ ℓ∑

i=1

(
∆ωi,ẇ

−1
0 ṡ−1

i
(v)

∆ωi,ẇ
−1
0

(v)
− e〈αi,x〉

∆ωi,ṡ
−1
i

(v)

∆ωi,1(v)

)}
.

Here C ⊂ N+ is a middle-dimensional non-compact cycle such that the integrand decreases
exponentially at the boundaries and infinities. The measure of the integration is the restric-
tion on C of the holomorphic continuation dµhol

N+
of the right-invariant measure dµN+(R) on

N+(R).

The first example of this type of integral representation for gln-Whittaker function was
considered in [GKMMMO]. Its generalization given above is straightforward. The proof of
the Proposition is given in Part II, Section 3.2.

The expression (2.19) for a Whittaker function is much more detailed then (2.12) but does
not yet provide explicit integral representation. To obtain explicit integral representations
of Whittaker functions one should choose a parameterization of N+ (or an open part of it)
and express the measure dµhol

N+
and various matrix elements entering (2.19) in terms of the

coordinates on N+. Natural choice would be a factorized representation of the elements of
an open part of a maximal unipotent subgroup of an arbitrary Lie group [Lu] (see also [BZ],
[FZ]). For each i = 1, . . . , ℓ let Xi(t) = exp{tei} be a one-parameter subgroup in N+. Pick
a decomposition of the longest element w0 in the Weyl group W corresponding to a reduced
word Iw0 = (i1, . . . , im), l(w0) = m = dimN+. Then the following map

Cm −→ N
(0)
+ , (t1, . . . , tm) 7−→ v(t1, · · · , tm) = Xi1(t1) · · ·Xim(tm), (2.20)

is a birational isomorphism. This provides a parametrization of an open part N
(0)
+ of N+.

Parametrizations corresponding to different choices of the reduced word Iw0 are related
by birational transformations described explicitly by G. Lustzig [Lu]. The right-invariant
measure has the following description in the factorized representation.

Lemma 2.2 The right-invariant measure dµhol
N+

in the factorized parametrization is given
by:

dµhol
N+

(v) =

ℓ∏

i=1

∆ωi,ẇ
−1
0

(v)

m∧

k=1

dtk
tk
. (2.21)
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The proof is given in Part II, Section 3.1.

Thus the problem of finding explicit integral representations of Whittaker functions in
the factorized parametrization (2.20) is reduced to a calculation of the matrix elements of
finite-dimensional representations of g in this parametrization. In the following we provide
explicit expressions for finite-dimensional matrix elements for classical Lie groups and give
corresponding integral representations of Whittaker functions. Let us stress however that
thus obtained integral representation for g = glℓ+1 does not coincide with Givental represen-
tation [Gi]. Note that for classical series of Lie algebras the factorized parametrization (2.20)
has a recursive structure over the rank ℓ reflecting the recursive structure of the reduced de-
composition of w0 ∈ W . This recursive structure is not translated, however, into a simple
recursive structure of the infinite-dimensional matrix element in the factorized parametriza-
tion and does not reproduce the recursive structure of the Givental integral representation.

In [GKLO] a modification of the factorized parametrization (2.20) for g = glℓ+1 was
proposed and it was shown that the integral representation (2.19) in this parametrization
exactly reproduces the Givental integral representation of glℓ+1-Whittaker functions. In
particular for this parametrization the recursive structure of the reduced decomposition of
w0 ∈ W directly translates into the recursive structure of the integral representation of the
corresponding Whittaker function.

Below we generalize the results of [GKLO] to all classical series of Lie algebras. We
propose a modification of factorized parametrization (2.20) based on a particular realiza-
tion of maximal unipotent subgroups N+ ⊂ G of classical Lie groups as explicitly defined
subgroups of the maximal unipotent subgroups of general linear groups. For any classical
simple Lie group, the maximal unipotent subgroup can be realized as a subgroup of a group
of upper-triangular matrices of appropriate size with units on diagonal (see e.g. [DS]). The
corresponding subset of upper-triangular matrices for classical Lie group can be describe
explicitly. We define a parametrization of maximal unipotent subgroups of classical Lie
groups by constructing a particular form of the parametrization of the corresponding subset
of upper-triangular matrices. Using this parametrization we derive explicit integral repre-
sentations of Whittaker functions associated with all classical groups and demonstrate that
these integral representations have all characteristic properties of the Givental integral rep-
resentation for glℓ+1-Whittaker functions. In particular the recursive structure of Whittaker
functions is explicit in this new parametrization.

2.2 Integral representations of glℓ+1- and slℓ+1-Toda chain eigen-

functions

In this section we recall the construction of integral representations of glℓ+1- and slℓ+1-
Toda eigenfuctions using factorized parametrization (2.20) of a maximal unipotent subgroup
N+ ⊂ GL(ℓ + 1) and its modification introduced in [GKLO]. The second parametrization
leads to an integral representation obtained earlier by Givental [Gi] using different approach.
In the following these constructions will be generalized to g-Toda theory for arbitrary classical
Lie algebras g.

We start with the case of the reductive Lie algebra glℓ+1. Let (ǫ1, . . . , ǫℓ+1) be an or-
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thogonal basis in Rℓ+1, (ǫi, ǫj) = δij. Roots and fundamental wights of glℓ+1 considered as
vectors in Rℓ+1 are given by:

αi = ǫi+1 − ǫi, i = 1, . . . , ℓ, ωj = ǫj , j = 1, . . . , (ℓ+ 1). (2.22)

Coroots α∨
i can be identified with the corresponding roots αi with respect to the pairing

in Rℓ+1. To this root/weight system one associates glℓ+1-Toda quantum integrable system
having a set of (ℓ+1) mutually commuting functionally independent quantum Hamiltonians

H
glℓ+1

k , k = 1, · · · , (ℓ + 1). We are interested in the explicit integral representations for
common eigenfunctions of the full set of quantum Hamiltonian operators for glℓ+1. For
instance linear and quadratic quantum Hamiltonians of glℓ+1-Toda chain are given by

H
glℓ+1

1 = −ı

ℓ+1∑

i=1

∂

∂xi
, (2.23)

H
glℓ+1

2 = −
1

2

ℓ+1∑

i=1

∂2

∂xi
2 +

ℓ∑

i=1

exi+1−xi, (2.24)

and the eigenfunction should satisfy the following equation

H
glℓ+1

1 (x) Ψ
glℓ+1

λ1,··· ,λℓ+1
(x1, . . . , xℓ+1) =

ℓ+1∑

i=1

λi Ψ
glℓ+1

λ1,··· ,λℓ+1
(x1, . . . , xℓ+1), (2.25)

H
glℓ+1

2 (x) Ψ
glℓ+1

λ1,··· ,λℓ+1
(x1, . . . , xℓ+1) =

1

2

ℓ+1∑

i=1

λ2
i Ψ

glℓ+1

λ1,··· ,λℓ+1
(x1, . . . , xℓ+1). (2.26)

Common eigenfunction of the quantum Hamiltonians has the following representation as
a matrix element

Ψ
glℓ+1

λ (x) = e−
P

xiρi〈ψL , πλ(e
−

P

xiEi,i)ψR〉, (2.27)

where ρi = 1
2
(ℓ− 2i+ 2) are the components of ρ in the standard basis {ǫi} in Rℓ+1.

The construction for the semisimple Lie algebra slℓ+1 is quite similar to that for reductive
Lie algebra glℓ+1. The roots and fundamental wights for semisimple Lie algebra slℓ+1 can be
written in the following form (see [Bou]):

αi = ǫi+1 − ǫi, ωi = −(ǫ1 + . . .+ ǫi) +
i

ℓ+ 1
(ǫ1 + . . .+ ǫℓ+1), (2.28)

for i = 1, . . . , ℓ. This representation of the Aℓ root/weight system can be obtained from the
root/weight system of the reductive Lie algebra glℓ+1 as follows. Let us pick an orthogonal
basis of fundamental weights of glℓ+1:

ω′
i = −ǫ1 − . . .− ǫi,

such that 〈ω′
i, α

∨
j 〉 = δij for i, j = 1, . . . ℓ, and 〈ω′

ℓ+1, α
∨
j 〉 = 0 for j = 1, . . . ℓ. Then ω′

ℓ+1 can
be identified as a generator of X0. Introducing

ωi = ω′
i −

i

ℓ+ 1
ω′

ℓ+1,
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one readily obtains the set (2.28) of fundamental weights for slℓ+1.

To this root/weight system one associates slℓ+1-Toda quantum integrable system pos-

sessing a set of ℓ mutually commuting functionally independent Hamiltonians H
slℓ+1

k , k =
1, · · · , ℓ. It is convenient however to consider slℓ+1-Toda chain Hamiltonians as a subset

H
glℓ+1

k , k = 2, · · · , (ℓ+1) of glℓ+1-Toda chain Hamiltonians acting on the kernel of the linear

Hamiltonian H
glℓ+1

1 . For instance the eigenfunction of a quadratic quantum Hamiltonian of
slℓ+1-Toda chain should satisfy the equation

H
slℓ+1

2 Ψ
slℓ+1

λ1,··· ,λℓ+1
(x1, . . . , xℓ+1) =

= (−
1

2

ℓ+1∑

i=1

∂2

∂xi
2 +

ℓ∑

i=1

exi+1−xi))Ψ
slℓ+1

λ1,··· ,λℓ+1
(x1, . . . , xℓ+1) = (2.29)

=
1

2

ℓ+1∑

i=1

λ2
i Ψ

slℓ+1

λ1,··· ,λℓ+1
(x1, . . . , xℓ+1),

with an additional constraint λ1 + . . . + λℓ+1 = 0. The eigenfunctions for slℓ+1-Toda chain
can be also written using a reduced set of variable

Ψslℓ+1
ν1,...,νℓ

(y1, . . . , yℓ) ≡ Ψ
slℓ+1

λ1,...,λℓ+1
(x1, . . . , xℓ+1) νi = λi+1 − λi, yi = xi+1 − xi (2.30)

Note that without imposing the constraint λ1 + . . . + λℓ+1 = 0, the eigenfunctions of slℓ+1-
Toda chain can be expressed through eigenfunctions of glℓ+1-Toda theory in the following
simple way

Ψslℓ+1
ν1,...,νℓ

(y1, . . . , yℓ) = exp
{
−

ı

ℓ+ 1

ℓ+1∑

i=1

λi ·
ℓ+1∑

i=1

xi

}
·Ψ

glℓ+1

λ1,...,λℓ+1
(x1, . . . , xℓ+1), (2.31)

where we use notations (2.30). In the following we will consider mostly glℓ+1-Toda chain
eigenfunctions making comments on the corresponding modifications for slℓ+1 case (we will

mostly use the non-reduced form Ψ
slℓ+1

λ (x)).

2.2.1 glℓ+1-Whittaker function: factorized parametrization

To make the integral representation (2.19) for glℓ+1-Whitaker functions explicit one should
pick a particular parametrization of N+ ⊂ GL(ℓ + 1). Let w0 be an element of maximal
length of the Weyl group W = Sℓ+1 of glℓ+1. Consider the reduced decomposition of w0

corresponding to the following reduced word Iℓ

Iℓ = (i1, i2, . . . , im) := (1, 21, 321, . . . , (ℓ . . . 321)).

The reduced word Iℓ has an obvious recursive structure: Iℓ+1 = Iℓ⊔ (ℓ+1 . . . 321). Thus the

corresponding parametrization of unipotent elements v(ℓ) in an open part N
(0)
+ of N+ can be

written in a recursive form:

v(ℓ) = v(ℓ−1) · Xℓ
ℓ−1, (2.32)
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where

X
Aℓ

Aℓ−1
= Xℓ(yℓ,1) · · ·X2(y2,ℓ−1)X1(y1,ℓ), (2.33)

and Xi(y) = exp(yei). Parameters yik of one-parametric subgroups will be called factoriza-
tion parameters. The action of Lie algebra glℓ+1 on G/B− considered at the beginning of the
previous section defines an action of the Lie algebra on the space of functions Vµ restricted

to N
(0)
+ .

Proposition 2.2 The following differential operators define a realization of the representa-
tion πλ of U(glℓ+1) in Vµ in terms of factorized parametrization (2.32), (2.33):

Ei,i = µi −
ℓ+1−i∑

l=1

yi,l
∂

∂yi,l

+
ℓ+2−i∑

l=1

yi−1,l
∂

∂yi−1,l

,

Ei,i+1 =
i−1∑

k=0

k∏

s=0

yi−s,ℓ+2−i

yi+1−s,ℓ+1−i

∂

∂yi−k,ℓ+1−i
−

k∏

s=0

yi−(s+1),ℓ+2−i

yi−s,ℓ+1−i

∂

∂yi−(k+1),ℓ+2−i

, (2.34)

Ei+1,i =
ℓ∑

k=1

[
(µi+1 − µi)yi,k+1−i − yi,k+1−i

(
yi,k+1−i

∂

∂yi,k+1−i
− yi+1,k−i

∂

∂yi+1,k−i

)
+

+ yi,k+1−i

k−1∑

s=1

(
yi−1,s+2−i

∂

∂yi−1,s+2−i
− 2yi,s+1−i

∂

∂yi,s+1−i
+ yi+1,s−i

∂

∂yi+1,s−i

)]
,

where Ei,j = πλ(ei,j), µk = ıλk − ρk and ρk = 1
2
(ℓ− 2k + 2).

Proof. The proof is given in Part II, Section 3.4.1.

The calculation of matrix elements entering the integral (2.19) in the factorized parametriza-
tion (2.32), (2.33) can be done following [BZ] and [FZ] (see Section 3.3 for details). Another,
more straightforward approach is to find left and right Whittaker vectors solving the equa-
tions (2.7)-(2.8) directly. In the following we will use the convention:

∑j
i=k = 0, when k > j

and
∏j

i=k = 1, when k > j.

Lemma 2.3 The following expressions for the left/right Whittaker vectors in terms of fac-
torization parameters hold:

ψR(y) = exp
{
−

ℓ∑

i=1

ℓ+1−i∑

n=1

yi,n

}
, (2.35)

ψL(y) =

ℓ∏

i=1

( i∏

k=1

ℓ∏

n=i+1−k

yk,n

)(µi+1−µi)

× (2.36)

× exp
{
−

ℓ∑

k=1

1

yℓ+1−k,k

(
1 +

ℓ−k∑

n=1

n∏

i=1

yℓ+1−k−i,k+1

yℓ+1−k−i,k

)}
.
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Using (2.21) we have the following expression for glℓ+1-Whittaker function in the factor-
ized parametrization.

Theorem 2.1 Eigenfunctions of the glℓ+1-Toda chain (2.27) admit the integral representa-
tion:

Ψ
glℓ+1

λ1,...,λℓ+1
(x1, . . . , xℓ+1) = eı

Pℓ+1
k=1 λkxk

∫

C

ℓ∧

i=1

ℓ+1−i∧

n=1

dyi,n

yi,n

ℓ∏

i=1

( i∏

k=1

ℓ∏

n=i+1−k

yk,n

)ı(λi+1−λi)

exp
{
−
( ℓ∑

k=1

1

yℓ+1−k,k

(
1 +

ℓ−k∑

n=1

n∏

i=1

yℓ+1−k−i,k+1

yℓ+1−k−i,k

)
+

ℓ∑

i=1

exi+1−xi

ℓ+1−i∑

n=1

yi,n

) }
. (2.37)

Here C ⊂ N+ is a middle-dimensional non-compact submanifold such that the integrand
decreases exponentially at the boundaries and infinities. In particular one can take C =
R

ℓ(ℓ+1)/2
+ .

The proof is given in Part II, Section 3.3.1.

2.2.2 glℓ+1-Whittaker function: modified factorized parametrization

Now we consider a modification of the factorized parametrization (2.32), (2.33) leading
to the Givental integral representation of glℓ+1-Whittaker function. This modified factor-
ized parametrization was first introduced in [GKLO]. There is an important difference
between factorized and modified factorized parametrizations. Note that the parametrization
(2.32), (2.33) is defined in terms of group elements of N+. To define a modified factorized
parametrization of N+ we shall consider the image of a group element in a faithful finite-
dimensional representation of G. In the case of glℓ+1 and slℓ+1 we use a tautological represen-
tation πℓ+1 : glℓ+1 → End(Cℓ+1). Let ǫi,j be a set of elementary (ℓ+1)×(ℓ+1)-matrices with
units at (i, j)-places and zeros, otherwise. Consider the following set of diagonal matrices

Uk =
k∑

i=1

e−xk,iǫi,i +
N∑

i=k+1

ǫi,i.

Define the following upper-triangular deformation of Uk

Ũk =
k∑

i=1

e−xk,iǫi,i +
N∑

i=k+1

ǫi,i +
k−1∑

i=1

e−xk−1,iǫi,i+1. (2.38)

The modified factorized parametrization of N+ is then defined as follows.

Theorem 2.2 i) The image of any generic unipotent element v ∈ N+ in the tautological
representation πℓ+1 : glℓ+1 → End(Cℓ+1) can be represented in the form

πℓ+1(v) = Ũ2U
−1
2 Ũ3U

−1
3 · · · ŨN−1U

−1
N−1ŨN , (2.39)

where we assume that xℓ+1,i = 0, i = 1, . . . , ℓ+ 1.

ii) This defines a parametrization of an open part N
(0)
+ of N+.
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Proof. Let v(y) be elements of N+ parametrized according to (2.32), (2.33). Let us now
change the variables in the following way:

yi,n = exn+i,i+1−xn+i−1,i , (2.40)

where xℓ+1,n = 0, n = 1, . . . , ℓ+1 are assumed. By elementary operations it is easy to check
that after the change of variables, the image πℓ+1(v) of v defined by (2.32), (2.33) transforms
into (2.39). Taking into account that the change of variables (2.40) is invertible we get a

parametrization of N
(0)
+ ⊂ N+ �

Considering the image of the factorized group element (2.32), (2.33) in the tautological
representation πℓ+1 we obtain the following relations between factorization and modified
factorization parameters:

yi,n = exn+i,i+1−xn+i−1,i , (2.41)

where xℓ+1,n = 0, n = 1, . . . , ℓ + 1 are assumed. Applying the change of variables (2.41)
to the expressions in Proposition 2.2 one obtains the realization in the modified factorized
parametrization.

Proposition 2.3 The following differential operators define a realization of representation
πλ of glℓ+1 in Vµ in terms of modified factorized parametrization (2.39), (2.41) of N+:

Ei,i = µi −

i−1∑

k=1

∂

∂xℓ+1+k−i,k
+

ℓ∑

k=i

∂

∂xk,i
,

Ei,i+1 = −

i∑

k=1

(
i∑

s=k

exℓ+1+s−i,s−xℓ+s−i,s

)(
∂

∂xℓ+k−i,k
−

∂

∂xℓ+k−i,k−1

)
, (2.42)

Ei+1,i = −
ℓ∑

k=1

e(xk,i−xk+1,i+1)

(
µi − µi+1 +

k∑

s=1

(
∂

∂xs,i+1

−
∂

∂xs,i

))
,

where Ei,j = πλ(ei,j), µk = ıλk − ρk, and ρk = 1
2
(ℓ + 2k − 2). We let xℓ+1,k = 0, (k =

1, . . . , ℓ+ 1).

This realization of the principal series representation of glℓ+1 by differential operators is
based on a particular parametrization of the maximal unipotent subgroup N+ entering the
Gauss decomposition of the group G and was inspired by the Givental integral formula. In
[GKLO] we coined the term Gauss-Givental representation for this realization of the principal
series representation. Applying the change of variables (2.41) to the expressions in Lemma
2.3 one obtains Whitaker vectors in the modified factorized parametrization.

Lemma 2.4 The following expressions for the left/right Whittaker vectors hold:

ψR(x) = exp
{
−

ℓ∑

i=1

ℓ+1−i∑

n=1

exn+i,i+1−xn+i−1,i

}
, (2.43)

ψL(x) = exp
{ ℓ∑

k=1

k∑

i=1

(µk+1 − µk)xk,i

}
exp

{
−

ℓ∑

i=1

ℓ+1−i∑

k=1

exk+i−1,k−xk+i,k

}
,
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where we set xℓ+1,i = 0, i = 1, . . . , ℓ+ 1.

Now we are ready to write down the integral representation of the pairing (2.12) using
the modified factorized representation. Going from (2.12) to (2.19), (2.37) we chose to act
by an element of the Cartan torus to the right in (2.12). Different choice (for example the
action to the left) leads to the integrand that differs by total derivative. The choice made in
(2.19), (2.37) is not the most symmetric one. One of the special features of Gauss-Givental
representation is that up to a simple exponential term in ψL(x) the left and right Whittaker
vectors are very similar (compare in this respect with the case of factorized parameterization
(2.17), (2.18)). We would like to maintain this symmetry in the integrand of the integral
representation. Let us represent the Cartan group element in the following way:

eH = eHLeHR ,

where

eH = e−
P

xiEi,i = exp
{ ℓ∑

i=1

xℓ+1,i

(
µi −

i−1∑

k=1

∂

∂xℓ+1+k−i,k
+

ℓ∑

k=i

∂

∂xk,i

)}
, (2.44)

eHL = exp
{ ℓ+1∑

i=1

xℓ+1,i

ℓ∑

k=i

∂

∂xk,i

}, (2.45)

eHR = exp{
ℓ+1∑

i=1

xℓ+1,iµi −
ℓ+1∑

i=1

xℓ+1,i

i−1∑

k=1

∂

∂xℓ+1+k−i,k
}. (2.46)

In the calculation of the matrix element we will chose the differential operator HL acting on
the left vector and HR acting on the right vector in (2.12). This way we obtain the following
integral formula for eigenfunctions of the glℓ+1-Toda chain.

Theorem 2.3 Eigenfunctions of the glℓ+1-Toda chain (2.27) admit the integral representa-
tion:

Ψ
glℓ+1

λ1,...,λℓ+1
(x1, . . . , xℓ+1) =

∫

C

ℓ∧

k=1

k∧

i=1

dxk,i e
Fglℓ+1(x), (2.47)

where the function Fglℓ+1(x) is given by

Fglℓ+1(x) = ı

ℓ+1∑

k=1

λk

( k∑

i=1

xk,i −

k−1∑

i=1

xk−1,i

)
−

ℓ∑

k=1

k−1∑

i=1

(
exk−1,i−xk,i + exk,i+1−xk−1,i

)
. (2.48)

Here xi = −xℓ+1,i, i = 1, . . . , ℓ+ 1 and C ⊂ N+ is a middle-dimensional non-compact sub-
manifold such that the integrand decreases exponentially at the boundaries and at infinities.

In particular C can be chosen to be C =R
(ℓ+1)ℓ

2 .
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Corollary 2.1 The slℓ+1-Whittaker function has the following integral representation:

Ψ
slℓ+1

λ2−λ1,...,λℓ+1−λℓ
(x2 − x1, . . . , xℓ+1 − xℓ) = (2.49)

= exp
{ ı

ℓ + 1

ℓ+1∑

i=1

xi

(
ℓλi −

∑

j 6=i

λj

) } ∫

C

ℓ∧

k=1

k∧

i=1

dxk,i e
Fslℓ+1 (x),

where

Fslℓ+1(x) = ı

ℓ∑

k=1

(λk+1 − λk)

k∑

i=1

(xk − xk,i) − (2.50)

−
ℓ∑

k=1

k−1∑

i=1

(
exk−1,i−xk,i + exk,i+1−xk−1,i

)
.

This integral representation of the glℓ+1-Toda chain eigenfunctions was first obtained by
A. Givental in his study of quantum cohomology of the glℓ+1 flag manifold [Gi] (see also
[JK]). The description of the Givental integral formula in terms of the matrix element (2.27)
was first obtained in [GKLO].

The function Fglℓ+1(x) allows simple description in terms of the following diagram intro-
duced by A. Givental

xℓ,1

��

xℓ−1,1

��

// xℓ,2

��

...

��

. . .
. . .

x21

��

// . . .

��

. . .
// xℓ,ℓ−1

��

x11 // x22 // . . . // xℓ−1,ℓ−1 // xℓ,ℓ

(2.51)

We assign variables xk,i to vertexes (k, i) and functions ey−x to arrows (x −→ y) of the
diagram (2.51). Then the potential function Fglℓ+1(x) (2.48) at zero spectrum λi = 0 is given
by the sum of the functions assigned to all arrows.
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As it was demonstrated in the Theorem 2.2 variables {xk,i} provide a parametrization

of an open part N
(0)
+ of the flag manifold X = SL(ℓ + 1,C)/B. The non-compact manifold

N
(0)
+ has a natural action of the torus T l(w0) and can be compactified to a (singular) toric

variety. The set of the monomial relations defining this compactification can be described
as follows. Introduce new variables

ak,i = exk,i−xk+1,i, bk,i = exk+1,i+1−xk,i, 1 ≤ k ≤ ℓ, 1 ≤ i ≤ k,

assigned to arrows of the diagram (2.51). Then the following defining relations hold

ak,i · bk,i = bk+1,i · ak+1,i+1, 1 ≤ k < ℓ, 1 ≤ i ≤ k,

aℓ,i · bℓ,i = exℓ,i+1−xℓ,i.
(2.52)

They can be interpreted as relations between various compositions of elementary paths
having the same initial and final vertexes. The set of relations between more general paths
(following from (2.52)) provides a toric embedding of the degeneration of flag manifold (see
[BCFKS] for details).

2.2.3 Relation with ĝlℓ+1-Toda chain Baxter Q-operator

Integral representation (2.47), (2.48) of glℓ+1-Whittaker function has a recursive structure
over the rank ℓ of the Lie algebra. Indeed the integral representation can be rewritten in the
following form

Ψ
glℓ+1

λ1,...,λℓ+1
(xℓ+1) =

∫

C

ℓ∧

k=1

k∧

i=1

dxk,i

ℓ+1∏

k=1

Q
glk
glk−1

(xk; xk−1;λk), (2.53)

where

Q
glk+1

glk
(xk+1; xk;λk+1) = (2.54)

= exp

{
ıλk+1

( k+1∑

i=1

xk+1,i −
k∑

i=1

xk,i

)
−

k∑

i=1

(
exk,i−xk+1,i + exk+1,i+1−xk,i

)}
.

Here we denote xk = (xk,1, . . . , xk,k) and assume that Q
gl1
gl0

= eıλ1x1,1 .

Let us chose linear coordinates xk = (xk,1, . . . , xk,k) in Ck. Let Ck be a non-compact
middle-dimensional submanifold in Ck such that (2.54) as a function of xk decreases expo-
nentially at possible boundaries and infinities of Ck. Consider the following integral operator

(Q
glk+1

glk
f)(xk) =

∫

Ck

Q
glk+1

glk
(xk+1; xk;λk+1)f(xk)dxk.

acting on functions not growing too fast at possible boundaries and infinities of Ck. Integral

operators Q
glk+1

glk
provide a recursive construction of glℓ+1-Whittaker functions:

Ψ
glℓ+1

λ1,...,λℓ+1
(xℓ+1) =

∫

C

ℓ∧

i=1

dxℓ,i Q
glℓ+1

glℓ
(xℓ+1; xℓ;λℓ+1)Ψ

glℓ
λ1,...,λℓ

(xℓ). (2.55)
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There is a natural oriented path in the diagram (2.51), which can be associated with the

recursive operator Q
glℓ+1

glℓ
:

xℓ,1

��6
66

66
66

66
66

66
66

6

xℓ,2

��3
33

33
33

33
33

33
33

3

. . . xℓ,ℓ

xℓ−1,1

DD����������������
. . . xℓ−1,ℓ−1

CC����������������

(2.56)

Diagram (2.51) can be considered as a collection of the oriented pathes (2.56) and thus
the recursive construction of the integral representation is encoded in the diagram (2.51) in
an obvious way.

As a consequence of (2.55), integral operatorsQ
glk+1

glk
with the kernels Q

glk+1

glk
(xk+1, xk;λk+1)

satisfy braiding relations with the Quantum Toda chain Hamiltonians. For example the fol-

lowing relation between quadratic Hamiltonians H
glk+1

2 (xk+1) and H
glk
2 (xk), holds

H
glk+1

2 (xk+1)Q
glk+1

glk
(xk+1, xk;λk+1) = Q

glk+1

glk
(xk+1, xk;λk+1)H

glk
2 (xk) +

1

2
λ2

k+1. (2.57)

We shall assume that in the relation above and similar ones, Hamiltonian operators on l.h.s.
act to the right and Hamiltonians on r.h.s. act to the left. Similar braiding relations hold
for higher quantum Hamiltonian operators (see [GKLO] for details).

The recursion operatorsQ
glk+1

glk
appear to be related with an important object in the theory

of Quantum Integrable Systems, Q-operator. Q-operator was introduced by R. Baxter [B]
for certain statistical models as a tool to solve quantum integrable models explicitly. In the
case of ĝlℓ+1-Toda chain, with the quadratic Hamiltonian

H
bglℓ+1

2 = −
1

2

ℓ+1∑

i=1

∂2

∂x2
i

+
ℓ∑

i=1

exi+1−xi + gex1−xℓ+1 , (2.58)

where g is an arbitrary coupling constant, the Q-operator has the following integral kernel

Q
bglℓ+1(x(ℓ+1), y(ℓ+1);λ) = exp

{
ıλ

ℓ+1∑

i=1

(xi − yi)− (2.59)

−
( ℓ∑

i=1

(
exi−yi + eyi+1−xi

)
+ exℓ+1−yℓ+1 + gey1−xℓ+1

)}
.

Here we use notations x(ℓ+1) = (x1, . . . , xℓ+1) and y(ℓ+1) = (y1, . . . , yℓ+1). This Q-operator

was first constructed in [PG]. It commutes with all Hamiltonians of ĝlℓ+1-Toda chain and
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generates quantum Bäcklund transformations [PG]. For instance, for the quadratic Hamil-
tonians we have:

H
bglℓ+1

2 (x(ℓ+1))Q
bglℓ+1(x(ℓ+1), y(ℓ+1), λ) = Q

bglℓ+1(x(ℓ+1), y(ℓ+1), λ)H
bglℓ+1

2 (y(ℓ+1)). (2.60)

To establish a relation between Baxter Q-operator for ĝlk+1-Toda theory and a recursion
operator for glk+1-Toda theory it is useful to introduce a slightly modified recursion operator

Q
glk+1

glk⊕gl1
with the kernel:

Q
glk+1

glk⊕gl1
(x(k+1), y(k+1), λ) = exp {ıλ yk+1} Q

glk+1

glk
(x(k+1), y(k), λ) = (2.61)

exp

{
ıλ
( k+1∑

i=1

xi −
k∑

i=1

yi

)
−

k∑

i=1

(
eyi−xi + exi+1−yi

)}
,

where x(k+1) = (x1, . . . , xk+1), y
(k) = (y1, . . . , yk) and y(k+1) = (y1, . . . , yk, yk+1).

This modified operator intertwines Hamiltonian operators of glk+1- and glk ⊕ gl1-Toda
chains (the new variable yk+1 enters only gl1-Toda chain). Thus for quadratic Hamiltonian
operators we have

H
glk+1

2 (x(k+1))Q
glk+1

glk⊕gl1
(x(k+1), y(k+1), λ) = Q

glk+1

glk⊕gl1
(x(k+1), y(k+1), λ)(H

glk
2 (y(k)) +H

gl1
2 (yk+1)),

where H
gl1
2 (yk+1) = −1

2
∂2

∂y2
k+1

. Obviously the projection of the above relation on the subspace

of functions F (y, yk+1) = exp(ıλ yk+1) f(x) leads to (2.57).

Now consider a one-parameter family of integral operators

Q
bglℓ+1(x(k+1), y(k+1);λ; ε) = εıλ exp

{
ıλ

ℓ+1∑

i=1

(xi − yi)− (2.62)

−
( ℓ∑

i=1

(
exi−yi + eyi+1−xi

)
+ ε exℓ+1−yℓ+1 + ε−1gey1−xℓ+1

)}
.

obtained from (2.59) by a shift of the variable xℓ+1 → xℓ+1 + ln ε. The limiting behavior of
(2.62) when ε→ 0, gǫ−1 → 0 can be described as follows

Q
glk⊕gl1
glk+1

(x(k+1), y(k+1), λ) = lim
ε→0, gε−1→0

ε−ıλQ
bglk+1(x(k+1), y(k+1), λ, ε). (2.63)

This provides a relation between the Baxter Q-operator and the (modified) recursion oper-
ator.
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2.3 Integral representations of so2ℓ+1-Toda chain eigenfunctions

In this subsection we provide a generalization of the Givental integral representation of
glℓ+1-Whittaker functions to the case of so2ℓ+1. We start with a derivation of the integral
representation of so2ℓ+1-Whittaker functions using the factorized representation. Then we
consider a modification of the factorized representation that directly leads to a Givental type
integral representation.

Consider Bℓ type root system corresponding to Lie algebra so2ℓ+1. Let (ǫ1, . . . , ǫℓ) be an
orthogonal basis in Rℓ. We realize Bℓ roots, coroots and fundamental weights as vectors in
Rℓ in the following way:

α1 = ǫ1,
α2 = ǫ2 − ǫ1,
. . .
αℓ = ǫℓ − ǫℓ−1,

α∨
1 = 2ǫ1,
α∨

2 = ǫ2 − ǫ1,
. . .
α∨

ℓ = ǫℓ − ǫℓ−1,

ω1 = 1
2
(ǫ1 + . . .+ ǫℓ),

ω2 = ǫ2 + . . .+ ǫℓ,
. . .
ωℓ = ǫℓ.

(2.64)

The Cartan matrix is then given by aij = 〈α∨
i , αj〉 and positive rational numbers d1 = 1

2
, d2 =

1, . . . , dℓ = 1 are such that the matrix ‖bij‖ = ‖diaij‖ is symmetric. One associates with
these data a Quantum Toda chain with a quadratic Hamiltonian

HBℓ

2 = −
1

2

ℓ∑

i=1

∂2

∂xi
2 +

1

2
ex1 +

ℓ−1∑

i=1

exi+1−xi. (2.65)

One can complete (2.65) to a full set of ℓ mutually commuting functionally independent
Hamiltonians HBℓ

k of the so2ℓ+1-Toda chain. We are looking for common eigenfunction inte-
gral representations of the commuting set of the Hamiltonians. Corresponding eigenfunction
problem for the quadratic Hamiltonian can be written in the following form

HBℓ

2 (x) ΨBℓ

λ1,··· ,λℓ
(x1, . . . , xℓ) =

1

2

ℓ∑

i=1

λ2
i ΨBℓ

λ1,··· ,λℓ
(x1, . . . , xℓ). (2.66)

2.3.1 so2ℓ+1-Whittaker function: factorized parametrization

The reduced word for the element w0 of maximal length in the Weyl group of Bℓ-type can
be represented in the recursive form:

I = (i1, i2, . . . , im) := (1, 212, 32123, . . . , (ℓ . . . 212 . . . ℓ)),

where indexes ik correspond to elementary reflections with respect to roots αk. Let N+ ⊂ G
be a maximal unipotent subgroup of G = SO(2ℓ+1). One associates with the reduced word
I the following recursive parametrization of a generic unipotent element vBℓ ∈ N+:

vBℓ = vBℓ−1 X
Bℓ

Bℓ−1
, (2.67)
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where

X
Bℓ

Bℓ−1
= Xℓ(yℓ,1) · · ·Xk(yk,2(ℓ+1−k)−1) · · ·X2(y2,2ℓ−3)× (2.68)

×X1(y1,ℓ)X2(y2,2ℓ−2) · · ·Xk(yk,2(ℓ+1−k)) ·Xℓ(yℓ,2).

Here Xi(y) = eyei and ei ≡ eαi
are simple root generators. The subset N

(0)
+ of elements

allowing the representation is an open part of N+. The action of the Lie algebra so2ℓ+1 on
N+ (2.10) considered at the beginning of the previous section defines an action of the Lie

algebra on N
(0)
+ . The following proposition explicitly describes this action on the space Vµ

considered as a space of functions on N
(0)
+ .

Proposition 2.4 The following differential operators define a realization of a principal se-
ries representation πλ of U(so2ℓ+1) in terms of factorized parametrization of N

(0)
+ :

E1 =
∂

∂y1,ℓ

+
ℓ−1∑

n=1

{( ∂

∂y1,n

−
∂

∂y1,n+1

) ℓ−1∏

j=n

y2,2i

y2,2i−1

+

+ 2

(
∂

∂y2,2n−1
−

∂

∂y2,2n

)
y2,2(n−1)

y1,n

ℓ−1∏

i=n+1

y2,2i

y2,2i−1

}
,

Ek =
∂

∂yk,2(ℓ+1−k)

+
n−k∑

n=1

{( ∂

∂yk,2n

−
∂

∂yk,2n+1

) ℓ−k∏

i=n

yk+1,2i

yk+1,2i−1

yk,2(i+1)−1

yk,2(i+1)

+ (2.69)

+

(
∂

∂yk+1,2n−1
−

∂

∂yk+1,2n

)
yk+1,2n

yk,2(n+1)

ℓ−k∏

i=n+1

yk+1,2i

yk+1,2i−1

yk,2(i+1)−1

yk,2(i+1)

}
, 1 < k < ℓ,

Eℓ =
∂

∂yℓ,2

,

Hk = 〈µ , α∨
k 〉 +

ℓ∑

i=1

ak,i

ni∑

j=1

yi,j
∂

∂yi,j
, 1 ≤ k ≤ ℓ, (2.70)
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F1 =

ℓ∑

n=1

y1,n

(
〈µ, α∨

1 〉+

2(n−1)−1∑

j=1

2y2,j
∂

∂y2,j
− 2

n−1∑

j=1

y1,j
∂

∂y1,j
− y1,n

∂

∂y1,n

)
,

F2 =

2(ℓ−1)∑

n=1

y2,n

(
〈µ, α∨

2 〉+ 2

[n/2]+1∑

j=1

y1,j
∂

∂y1,j

− 2
n−1∑

j=1

y2,j
∂

∂y2,j

+

+

2[(n+1)/2]−3∑

j=1

y3,j
∂

∂y3,j

− y2,n
∂

∂y2,n

)
, (2.71)

Fk =

2(ℓ+1−k)∑

n=1

yk,n

(
〈µ, α∨

k 〉+

2[n/2]+1∑

j=1

yk−1,j
∂

∂yk−1,j

− 2
n−1∑

j=1

yk,j
∂

∂yk,j

+

+

2[(n+1)/2]−3∑

j=1

yk+1,j
∂

∂yk+1,j
− yk,n

∂

∂yk,n

)
, 2 < k < ℓ,

Fℓ = (yℓ,1 + yℓ,2)

(
〈µ, α∨

ℓ 〉+ yℓ−1,1
∂

∂yℓ−1,1

+ yℓ−1,2
∂

∂yℓ−1,2

)
+

+yℓ,2

(
yℓ−1,3

∂

∂yℓ−1,3
+ yℓ−1,4

∂

∂yℓ−1,4

)
−

(
y2

ℓ,1

∂

∂yℓ,1
+ 2yℓ,1yℓ,2

∂

∂yℓ,1
+ y2

ℓ,2

∂

∂yℓ,2

)
,

where πλ(ei) = Ei, πλ(fi) = Fi, πλ(hi) = Hi i = 1, . . . , ℓ, n1 = ℓ, nk = 2(ℓ + 1 − k) for
1 < k ≤ ℓ, aij is a Cartan matrix and we assume that the terms containing yi,j with the
indexes not in the set {1 ≤ i, j ≤ ℓ} should be omitted.

For the proof see Part II, Section 3.4.2.

Left/right Whittaker vectors in the factorized parametrization have the following expres-
sions.
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Lemma 2.5 The following expressions for the left/right Whittaker vectors hold:

ψR(y) = exp
{
−
( ℓ∑

n=1

y1,n +

ℓ∑

k=2

nk∑

n=1

yk,n

)}
,

ψL(y) =
( ℓ∏

n=1

y1,n

ℓ∏

i=2

ni/2∏

n=1

yi,2n−1

)〈µ,α∨

1 〉

×

×

ℓ∏

k=2

( ℓ∏

n=2

y2
1,n

ℓ∏

i=k+1

ni/2∏

n=1

y2
i,2n−1

k∏

i=2

ni/2∏

n=1

yi,2n−1yi,2n

)〈µ,α∨

k
〉

× (2.72)

× exp
{
−
( ℓ∑

n=1

1

y1,n

(
1 +

y2,2(n−1)

y2,2(n−1)−1

) ℓ∏

i=n+1

y2,2(i−1)

y2,2(i−1)−1
+

+
ℓ∑

k=2

nk/2∑

n=1

1

yk,2n

(
1 +

yk+1,2(n−1)

yk+1,2(n−1)−1

) nk/2∏

i=n+1

yk+1,2(i−1)

yk+1,2(−1)−1

yk,2i−1

yk,2i

)}
,

where n1 = ℓ and nk = 2(ℓ+ 1− k), k = 2, . . . , ℓ.

For the proof see Part II, Section 3.3.2.

Using (2.12) and (2.21) we obtain an integral representation of so2ℓ+1-Whittaker functions
in the factorized parametrization.

Theorem 2.4 The eigenfunctions of the so2ℓ+1-Toda chain (2.12) admit the following inte-
gral representation:

ΨBℓ

λ1,...,λℓ
(x1, . . . , xℓ) = eıλ1x1+...+ıλℓxℓ

∫

C

ℓ∧

i=1

ni∧

k=1

dyi,k

yi,k

( ℓ∏

n=1

y1,n

ℓ∏

i=2

ni/2∏

n=1

yi,2n−1

)2ıλ1

×

×

ℓ∏

k=2

( ℓ∏

n=2

y2
1,n

ℓ∏

i=k+1

ni/2∏

n=1

y2
i,2n−1

k∏

i=2

ni/2∏

n=1

yi,2n−1yi,2n

)ı(λk−λk−1)

×

× exp
{
−
( ℓ∑

n=1

1

y1,n

(
1 +

y2,2(n−1)

y2,2(n−1)−1

) ℓ∏

i=n+1

y2,2(i−1)

y2,2(i−1)−1

+ (2.73)

+
ℓ∑

k=2

nk/2∑

n=1

1

yk,2n

(
1 +

yk+1,2(n−1)

yk+1,2(n−1)−1

) nk/2∏

i=n+1

yk+1,2(i−1)

yk+1,2(−1)−1

yk,2i−1

yk,2i
+

+ex1

ℓ∑

n=1

y1,n +

ℓ∑

k=2

exk−xk−1

nk∑

n=1

yk,n

)}
,

where n1 = ℓ, nk = 2(ℓ + 1 − k), k = 2, . . . , ℓ and C ⊂ N+ is a middle-dimensional non-
compact submanifold such the integrand decays exponentially at the boundaries and infinities.
In particular one can chose C = Rℓ2

+ .
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The proof is given in Part II, Section 3.3.2.

Example 2.1 Let ℓ = 2. In this case, the general formula (2.73) acquirs the form

ΨB2
λ1,λ2

(x1, x2) = eıλ1x1+ıλ2x2

∫

C

2∧

i=1

2∧

k=1

dyi,k

yi,k

(y11y21y12)
2ıλ1(y21y

2
12y22)

ıλ2−ıλ1 · (2.74)

exp
{
−
({ 1

y12

+
y22

y21

( 1

y11

+
1

y12

)}
+

1

y22

+ ex1(y11 + y12) + ex2−x1(y21 + y22)
)}
,

where one can chose C = R4
+.

2.3.2 so2ℓ+1-Whittaker function: modified factorized parametrization

In this part we introduce a modified factorized parametrization ofN+. We use this parametriza-
tion to construct the integral representations for so2ℓ+1-Whittaker functions. In contrast with
the integral representations described above these integral representations have a simple re-
cursive structure over the rank ℓ and can be described in purely combinatorial terms using
suitable graphs. Thus these representations can be considered as a generalization of Givental
integral representations to so2ℓ+1.

There exists a realization of a tautological representation π2ℓ+1 : so2ℓ+1 → End(C2ℓ+1)
such that Weyl generators corresponding to Borel (Cartan) subalgebra of so2ℓ+1 are realized
by upper triangular (diagonal) matrices. This defines an embedding so2ℓ+1 ⊂ gl2ℓ+1 such that
Borel (Cartan) subalgebra maps into Borel (Cartan) subalgebra (see e.g. [DS]). To define
the corresponding embedding of the groups consider the following involution on GL(2ℓ+1):

g 7−→ g∗ := ẇ0 · (g
−1)t · ẇ−1

0 , (2.75)

where at is induced by the standard transposition of the matrix a and ẇ0 is a lift of the
maximal length element w0 of the Weyl group of gl2ℓ+1. In a matrix form it can be written
as

ẇ0 = S · J,

where S = diag(1,−1, . . . ,−1, 1) and J = ‖Ji,j‖ = ‖δi+j,2ℓ+2‖. The orthogonal group
G = SO(2ℓ+ 1) then can be defined as a following subgroup of GL(2ℓ+ 1)

SO(2ℓ+ 1) = {g ∈ GL(2ℓ+ 1) : g∗ = g}.

Let ǫi,j be elementary (2ℓ+1)× (2ℓ+1) matrices with units at the (i, j) place and zeros,

otherwise. For any n = 2, . . . , ℓ introduce matrices Un, Ũn and Vn, Ṽn :

Un =
ℓ−n∑

i=1

(ǫi,i + ǫ2ℓ+2−i,2ℓ+2−i) +
n∑

i=1

ǫℓ−n+i,ℓ−n+i + e−zn,1ǫℓ+1,ℓ+1 + (2.76)

+ezn,1ǫℓ+2,ℓ+2 +

n−1∑

i=1

e−zℓ,ℓ+1−iǫℓ+n+2−i,ℓ+n+2−i,
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Ũn =
ℓ−n∑

i=1

(ǫi,i + ǫ2ℓ+2−i,2ℓ+2−i) +
n∑

i=1

ǫℓ−n+i,ℓ−n+i + e−zn,1ǫℓ+1,ℓ+1 + ezn,1ǫℓ+2,ℓ+2 + (2.77)

+
n−1∑

i=1

e−zℓ,ℓ+1−iǫℓ+n+2−i,ℓ+n+2−i + exn−1,1ǫℓ+1,ℓ+2 +
n−2∑

i=2

e−xn−1,iǫℓ+i,ℓ+i+1,

and

Vn =
ℓ−n∑

i=1

(ǫi,i + ǫ2ℓ+2−i,2ℓ+2−i) + (2.78)

+
n∑

i=1

exn,n+1−iǫℓ−n+i,ℓ−n+i + e−xn,1ǫℓ+1,ℓ+1 +
n∑

i=1

ǫℓ+i+1,ℓ+i+1,

Ṽn =
ℓ−n∑

i=1

(ǫi,i + ǫ2ℓ+2−i,2ℓ+2−i) +
n∑

i=1

exn,n+1−iǫℓ−n+i,ℓ−n+i + e−xn,1ǫℓ+1,ℓ+1 + (2.79)

+

n∑

i=1

ǫℓ+i+1,ℓ+i+1 +

n−1∑

i=1

ezn,n+1−iǫℓ−n+i,ℓ−n+i+1 + e−zn,1ǫℓ,ℓ+1,

U1 =
ℓ−1∑

i=1

ǫi,i + e−z11ǫℓ,ℓ + e+z11ǫℓ+1,ℓ+1 +
2ℓ+1∑

i=ℓ+2

ǫi,i, (2.80)

Ũ1 =
ℓ−1∑

i=1

ǫi,i + e−z11ǫℓ,ℓ + ez11ǫℓ+1,ℓ+1 +
2ℓ+1∑

i=ℓ+2

ǫi,i + ex11ǫℓ,ℓ+1, (2.81)

V1 =
ℓ∑

i=1

ǫi,i + e−z11ǫℓ+1,ℓ+1 + ez11ǫℓ+2,ℓ+2 +
2ℓ+1∑

i=ℓ+3

ǫi,i, (2.82)

Ṽ1 = U∗
1 =

ℓ∑

i=1

ǫi,i + e−z11ǫℓ+1,ℓ+1 + ez11ǫℓ+2,ℓ+2 +

2ℓ+1∑

i=ℓ+3

ǫi,i + ex11ǫℓ+1,ℓ+2, (2.83)

where xℓ,k = 0, k = 1, . . . , ℓ are assumed. Note that Ṽi, Ũi can be considered as off-
diagonal deformations of Vi, Ui. Now we can define a modified factorized representation for
N+ ⊂ SO(2ℓ+ 1).
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Theorem 2.5 i) The image of any generic unipotent element vBℓ ∈ N+ in the tautological
representation π2ℓ+1 : so2ℓ+1 → End(C2ℓ+1) can be represented in the form

π2ℓ+1(v
Bℓ) = X1X2 · · ·Xℓ, (2.84)

where

X1 = Ũ1U
−1
1 Ṽ1V

−1
1 , (2.85)

Xn = ŨnU
−1
n [ŨnU

−1
n ]∗ṼnV

−1
n [ṼnV

−1
n ]∗, n = 2, . . . , ℓ

and xℓ,k = 0 for k = 1, . . . ℓ are assumed.

ii) This defines a parametrization of an open part N
(0)
+ of N+.

Proof. Let vBℓ(y) be a parametrization of an open part of N+ according to (2.67)-
(2.68). Let X̃i(y) = eyei,i+1 be a one-parametric unipotent subgroup in GL(2ℓ + 1), then
X̃i(y)

∗ = X̃2ℓ+1−i(y). Embed an elementary unipotent element Xi(y) of SO(2ℓ + 1) into
GL(2ℓ+ 1) as follows:

Xi(y) = X̃i(y)
∗ · X̃i(y).

This maps an arbitrary regular unipotent element vBℓ into unipotent subgroup of GL(2ℓ+1).
Let us now change the variables in the following way:

y11 = ex11−z11 , y1,k =
(
exk−1,1−zk,1 + exk,1−zk,1

)
, (2.86)

yk,2r−1 = ezk+r−1,k−xk+r−2,k−1, k = 2, . . . , ℓ,

yk,2r = ezk+r−1,k−xk+r−1,k−1, r = 1, . . . , ℓ+ 1− k,

where the conditions xℓ,k = 0, k = 1, . . . ℓ are assumed. By elementary operations it is easy
to check that after the change of variables, the image π2ℓ+1(v

Bℓ) of vBℓ defined by (2.67)-
(2.68) transforms into the (2.84). Taking into account that the change of variables (2.86) is

invertible we get a parametrization of N
(0)
+ ⊂ N+ �

The modified factorized parameterization of a unipotent group N+ ⊂ SO(2ℓ + 1) de-
fines a particular realization of a principal series representation of U(so2ℓ+1) by differential
operators. It can be obtained using the change of variables (2.86) applied to the representa-
tion given in Proposition 2.4. We shall use the term Gauss-Givental representation for this
realization.

Proposition 2.5 The following differential operators define a representation πλ of so2ℓ+1

in Vµ in terms of the modified factorized parametrization:

E1 = −2

ℓ∑

n=1

ezn,1

(
1

2

∂

∂zn,1
+

exn,1

exn−1,1 + exn,1

∂

∂zn,2
+ (2.87)

+
ℓ−1∑

n=1

( ∂

∂zℓ,1

+
∂

∂zℓ,2

+
∂

∂xℓ,1

))
,
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E2 =

(
∂

∂z11
+

∂

∂x11

)(
ex22−z22 +

ℓ∑

k=3

exk−1,2−zk,2 + exk,2−zk,2

)
+ (2.88)

+

ℓ∑

n=2

∂

∂ zn,1

(
exn−1,1−zn,1

exn−1,2−zn,2 + exn,2−zn,2

exn−1,1−zn,1 + exn,1−zn,1
+

ℓ∑

k=n+1

exk−1,2−zk,2 + exk,2−zk,2

)
+

+

ℓ∑

n=2

(
∂

∂zn,2
−

∂

∂zn,3

)(
exn,2−zn,2 +

ℓ∑

k=n+1

exk−1,2−zk,2 + exk,2−zk,2

)
+

+
ℓ∑

n=2

(
∂

∂xn,1

−
∂

∂xn,2

) ℓ∑

k=n+1

(
exk−1,2−zk,2 + exk,2−zk,2

)
,

Ek =

ℓ−1∑

n=k−1

(
∂

∂xn,k−1
−

∂

∂xn,k

) ℓ∑

i=n+1

(
exi−1,k−zi,k + exi,k−zi,k

)
+ (2.89)

+

ℓ∑

n=k

(
∂

∂zn,k
−

∂

∂zn,k+1

)(
exn,k−zn,k +

ℓ∑

i=n+1

exi−1,k−zi,k + exi,k−zi,k

)
, 3 ≤ k ≤ ℓ,

Hk = 〈µ, α∨
k 〉+

ℓ∑

n=1

ak,n

ℓ∑

i=n

∂

∂zi,n
, 1 ≤ k ≤ ℓ, (2.90)

F1 = 〈µ, α∨
1 〉
(
ex11−z11 +

ℓ∑

k=2

exk−1,1−zk,1 + exk,1−zk,1

)
+ (2.91)

+

ℓ∑

n=1

(
exn,1−zn,1 − exn−1,1−zn,1

) ∂

∂zn,1
−

+2
ℓ∑

n=1

∂

∂ xn,1

ℓ∑

k=n+1

(
exk−1,1−zk,1 + exk,1−zk,1

)
,

F2 =

(
〈µ, α∨

2 〉+
∂

∂x11

) ℓ∑

k=2

(
ezk,2−xk−1,1 + ezk,2−xk,1

)
− (2.92)

−

ℓ∑

n=2

∂

∂ zn,2

(
ezn,2−xn,1 +

ℓ∑

k=n+1

ezk,2−xk−1,1 + ezk,2−xk,1

)
+

+
ℓ∑

n=2

(
∂

∂ xn,1

−
∂

∂ xn,2

) ℓ∑

k=n+1

(
ezk,2−xk−1,1 + ezk,2−xk,1

)
,
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Fk =
(
〈µ, α∨

k 〉+
∂

∂xk−1,k−1

+
∂

∂zk−1,k−1

) ℓ∑

n=k

(
ezn,k−xn−1,k−1 + ezn,k−xn,k−1

)
−

−

ℓ∑

n=k

(
∂

∂zn,k
−

∂

∂zn,k−1

)(
ezn,k−xn,k−1 +

ℓ∑

i=n+1

ezi,k−xi−1,k−1 + ezi,k−xi,k−1

)
+

+
ℓ∑

n=k

(
∂

∂xn,k−1

−
∂

∂xn,k

) ℓ∑

i=n+1

(
ezi,k−xi−1,k−1 + ezi,k−xi,k−1

)
, 3 ≤ k ≤ ℓ,

where Ei = πλ(ei), Fi = πλ(fi), Hi = πλ(hi), xℓ,k = 0, k = 1, . . . , ℓ are assumed and the
derivatives over xi,k, zi,k, i < k, xℓ,n, n = 1, . . . , ℓ are omitted.

We are going to write down the matrix element (2.12) explicitly in Gauss-Givental rep-
resentation. Whittaker vectors ψR and ψL in this representation satisfy the system of differ-
ential

EiψR(x) = −ψR(x), FiψL(x) = −ψL(x), 1 ≤ i ≤ ℓ. (2.93)

Its solution has the following form.

Lemma 2.6 The functions

ψL(x, z) = e2µ1x1,1

ℓ∏

n=2

(
exn,1 + exn−1,1

)2µn

× (2.94)

×

ℓ∏

n=1

exp
{
− µn

( n∑

i=1

xn,i + 2zn,1 − 2

n∑

i=2

zn,i +

n−1∑

i=1

xn−1,i

)}
×

× exp
{
−
( ℓ∑

k=1

ezk,1 +
ℓ∑

k=2

exk,k−zk,k +
ℓ∑

k=2

ℓ∑

n=k+1

(
exn−1,k−zn,k + exn,k−zn,k

))}
,

ψR(x, z) = exp
{
−
(
ex11−z11 +

ℓ∑

n=2

(
exn−1,1−zn,1 + exn,1−zn,1

))
+ (2.95)

+
ℓ∑

k=2

ℓ∑

n=k

(
ezn,k−xn−1,k−1 + ezn,k−xn,k−1

)}
,

are solutions of the linear differential equations (2.93). We let xℓ,k = 0 for k = 1, . . . , ℓ,
and µk = ıλk − ρk, where ρk = 2k−1

2
.
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Now we are ready to find the integral representation of the pairing (2.12) in terms of
modified factorization parameters. To get explicit expression for the integrand, one uses the
same type of a Cartan element decomposition as in the case of glℓ+1:

e−Hx = πλ(exp(−
ℓ∑

i=1

〈ωi, x〉hi)) = eHLeHR,

where

−Hx = HL +HR = −

ℓ∑

i=1

〈ωi, x〉〈µ, α
∨
i 〉+ (2.96)

+xℓ,1

ℓ∑

n=1

∂

∂zn,1
+

ℓ−1∑

k=1

(xℓ,i − xℓ,i+1)
ℓ∑

n=k

∂

∂zn,k
,

with

HL =

ℓ−1∑

k=1

k∑

n=1

xℓ,n
∂

∂xk,n
+

ℓ∑

k=2

k∑

n=2

xℓ,n
∂

∂zk,n
, (2.97)

HR = −Hx −HL. (2.98)

We imply that the differential operator HL acts on the left vector, and HR acts on the right
vector in (2.12). Taking into account the results of the Proposition 2.6 one obtains the
following theorem.

Theorem 2.6 The eigenfunctions of so2ℓ+1-Toda chain (2.12) admit the integral represen-
tation:

ΨBℓ

λ1,...,λℓ
(xℓ,1, . . . , xℓ,ℓ) =

∫

C

ℓ−1∧

k=1

k∧

i=1

dxk,i

ℓ∧

k=1

k∧

i=1

dzk,i e
FBℓ ,

where

FBℓ = −ıλ1(−x1,1 + 2z1,1)−

−ı
ℓ∑

n=2

λn

( n∑

i=1

xn,i + 2zn,1 − 2
n∑

i=2

zn,i +
n−1∑

i=1

xn−1,i − 2 ln(exn,1 + exn−1,1)
)
− (2.99)

−
{ ℓ∑

n=1

ezn,1 +

ℓ∑

k=2

ℓ∑

n=k+1

(
exn−1,k−zn,k + exn,k−zn,k

)
+

+
ℓ∑

n=k

(
ezn,k−xn−1,k−1 + ezn,k−xn,k−1

)
+

ℓ∑

n=1

exn,n−zn,n

}
,

where we set xi := xℓ,i, 1 ≤ i ≤ ℓ. Here C ⊂ N+ is a middle-dimensional non-compact sub-
manifold such that the integrand decreases exponentially at the boundaries and at infinities.
In particular the domain of integration can be chosen to be C =Rm, where m = l(w0).

30



Example 2.2 For ℓ = 2 the general formula (2.99) has the following form:

ΨB2
λ1,λ2

(x2,1, x2,2) =

∫

C

dz1,1 ∧ dx1,1 ∧ dz2,1 ∧ dz2,2 × (2.100)

×e−ıλ1(−x1,1+2z1,1)−ıλ2(2z2,1−2z2,2+x1,1+x2,1+x22)
(
ex2,1 + ex1,1

)2ıλ2

×

× exp
{
−
(
ez1,1 + ez2,1 + ex2,2−z2,2 + ex1,1−z1,1 + ex1,1−z2,1 +

+ex2,1−z2,1 + ez2,2−x1,1 + ez2,2−x2,1

)}
,

where we set x1 = x21, x2 = x22 and the contour of integration C = R4
+.

There is a simple combinatorial description of the potential FBℓ for zero spectrum {λi =
0}. Namely, it can be presented as the sum over all the arrows in the following diagram.
The diagram for Bℓ reads

◦

��

◦ // zℓ,1

��

// xℓ,1

��

◦

��

. . . xℓ−1,1 // zℓ,2

��

// . . .

◦

��

// z21

��

// . . .

��

. . .
. . .

. . .

��

// xℓ,ℓ−1

��

◦ // z11 // x11 // z22 // . . . . . . // xℓ−1,ℓ−1 // zℓ,ℓ // xℓ,ℓ

Here we use the same rules for assigning variables to the arrows of the diagram as in Aℓ

case. In addition we assign functions ex to the arrows ◦ −→ x.

Note that the diagram for Bℓ can be obtained by a factorization of the diagram (2.51)
for A2ℓ. Consider the following involution

ι : X 7−→ ẇ−1
0 X tẇ0, (2.101)

where ẇ0 is the longest element of A2ℓ Weyl group andX t denotes the standard transposition.
Corresponding action on the modified factorization parameters is given by

w0 : xk,i ←→ −xk,k+1−i. (2.102)
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This defines a factorization of A2ℓ-diagram that gives the diagram for Bℓ.

An analog of glℓ+1-monomial relations (2.52) can be described as follows. Associate
variables ak,i, bk,i, ck,i, dk,i to the arrows of the Givental diagram as

ak,i = ezk,i−xk−1,i−1 , bk,i = ezk,i−xk,i−1, ck,i = ezk,i−xk,i, dl,j = exl,j−zl+1,j ,

1 ≤ k ≤ ℓ, 1 ≤ i ≤ k, 1 ≤ l ≤ ℓ− 1, 1 ≤ j ≤ l.
(2.103)

Then the following relations hold:

ak,1 = bk,1, 1 ≤ k ≤ ℓ,

dk,i · ak+1,i+1 = ck+1,i · bk+1,i+1, 1 ≤ k < ℓ− 1, 1 ≤ i ≤ k, (2.104)

bk,i · ck,i = ak+1,i · dk,i, 1 ≤ k < ℓ− 1, 1 ≤ i ≤ k,

bℓ,i · cℓ,i = exℓ,i−xℓ,i−1.

The above relations can be considered as relations between elementary paths on the Givental
diagram. Using a set of relations for more general paths that follows from (2.104) one
can define a toric degeneration of the so2ℓ+1 flag manifolds thus generalizing the results in
[BCFKS].

2.3.3 Recursion for so2ℓ+1-Whittaker functions and Q-operator for

B
(1)
ℓ -Toda chain

The integral representation (2.99) of so2ℓ+1-Whittaker functions possesses a remarkable re-
cursive structure over the rank ℓ. Let us introduce integral operators QBn

Bn−1
, n = 2, . . . , ℓ

with the kernels QBn

Bn−1
(xn; xn−1;λn) defined as follows

QBn

Bn−1
(xn; xn−1;λn) =

∫ n∧

i=1

dzn,i

(
exn,1 + exn−1,1

)2ıλn

× (2.105)

× exp
{
− ıλn

( n∑

i=1

xn,i + 2zn,1 − 2
n∑

i=2

zn,i +
n−1∑

i=1

xn−1,i

)}
×

×QBn

BCn
(xn; zn) QBCn

Bn−1
(zn; xn−1),

where

QBCn

Bn−1
(zn; xn−1) = exp

{
−
(1

2
ezn,1 +

n−1∑

i=1

(
exn−1,i−zn,i + ezn,i+1−xn−1,i

))}
, (2.106)

QBn

BCn
(xn; zn) =

= exp
{
−
(1

2
ezn,1 +

n−1∑

i=1

(
exn,i−zn,i + ezn,i+1−xn,i

)
+ exn,n−zn,n

)}
.

(2.107)
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We set for n = 1

QB1
B0

(x1,1;λ1) =

∫
dz1,1e

ıλ1x1,1−2ıλ1z1,1 exp
{
−
(
ez1,1 + ex1,1−z1,1

)}
.

Using integral operators QBn

Bn−1
the integral representation (2.99) can be written in a recursive

form.

Theorem 2.7 The eigenfunction of Bℓ-Toda chain can be written as

ΨBℓ

λ1,...,λℓ
(x1, . . . , xℓ) =

∫

C

ℓ−1∧

k=1

k∧

i=1

dxk,i

ℓ∏

k=1

QBk

Bk−1
(xk; xk−1;λk),

or equivalently

ΨBℓ

λ1,...,λℓ
(x1, . . . , xℓ) =

∫

C

ℓ−1∧

i=1

dxℓ−1,iQ
Bℓ

Bℓ−1
(xℓ; xℓ−1;λℓ)Ψ

Bℓ−1

λ1,...,λℓ−1
(xℓ−1), (2.108)

where we assume xn := xℓ,n, 1 ≤ n ≤ ℓ and C ⊂ N+ is a middle-dimensional non-compact
submanifold such that the integrand decreases exponentially at possible boundaries and at
infinities. In particular as the domain of integration one can chose C =Rm, where m = l(w0).

Let us note that in contrast with the case of glℓ+1 integral representations, kernels of QBn

Bn−1
,

n = 1, . . . , ℓ have more complicated form. Curious new structure appeares if we consider
the Whittaker functions for zero spectrum3 {λi = 0}. As it is clear from (2.105) the kernel
of QBn

Bn−1
is given by a convolution of two kernels QBn

BCn
(xn; zn) and QBCn

Bn−1
(zn; xn−1). Corre-

sponding integral operators QBn

BCn
, QBCn

Bn−1
can be regarded as elementary intertwiners relating

Toda chains for Bn, BCn and BCn, Bn−1 root systems. BCℓ-Toda chain4 is defined in terms
of the non-reduced root system BCℓ in a standrad fashion. Let us recall the construction of
the non-reduced root system BCℓ. Root system of BCℓ type can be realized in terms of an
orthogonal bases {ǫi} in Rℓ as

α0 = 2ǫ1, α1 = ǫ1, αi+1 = ǫi+1 − ǫi, 1 ≤ i ≤ ℓ− 1, (2.109)

and the corresponding Dynkin diagram is

α0

α1
ks +3 α2 . . . αℓ−1 αℓ

where the first vertex from the left is a doubled vertex corresponding to a reduced α1 = ǫ1
and non-reduced α0 = 2ǫ1 roots. Then for example the quadratic Hamiltonian operator of
BCℓ-Toda chain is given by

HBCℓ

2 (x(ℓ)) = −
1

2

ℓ∑

i=1

∂2

∂x2
i

+
1

4

(
ex1 +

1

2
e2x1

)
+

ℓ−1∑

i=1

exi+1−xi. (2.110)

3 Note that the zero spectrum Whittaker functions are directly related to the quntum cohomology of flag
manifolds in Givental description.

4 BCℓ-Toda chain can be also considered as a most general form of Cℓ-Toda chain (see e.g. [RSTS],
Remark p.61). In the following we will use the term BCℓ-Toda chain to distinguish it from a more standard
Cℓ-Toda chain that will be consider below.
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Integral operatorsQBn

BCn
andQBCn

Bn−1
intertwine Hamitonian operators of different Toda chains.

Thus for quadratic Hamiltonians one can directly check the following relations.

Proposition 2.6 1. The operators QBn

BCn
and QBCn

Bn−1
defined by the kernels (2.106), (2.107)

intertwine quadratic Hamiltonians of B and BC Toda chains:

HBCn

2 (zn)QBCn

Bn−1
(zn, xn−1) = QBCn

Bn−1
(zn, xn−1)H

Bn−1

2 (xn−1), (2.111)

HBn

2 (xn)QBn

BCn
(xn, zn) = QBn

BCn
(xn, zn)HBCn

2 (zn). (2.112)

2. Integral operator QBn

Bn−1
at λn = 0 intertwines Hamiltonians HBn

2 and H
Bn−1

2 :

HBn

2 (xn)QBn

Bn−1
(xn, xn−1;λn = 0) = QBn

Bn−1
(xn, xn−1;λn = 0)H

Bn−1

2 (xn−1). (2.113)

The kernel QBn

Bn−1
(xn, xn−1;λn = 0): can be succinctly encoded into the following sub-

diagramm of so2ℓ+1 Givental diagram

◦

��

◦ // zn,1

��

// xn,1

��
xn−1,1 // zn,2

��

// . . .

. . .
. . .

��

// xn,n−1

��
xn−1,n−1 // zn,n // xn,n

(2.114)

Here the upper and lower descending paths of the oriented diagram correspond to the
kernels of elementary intertwiners QBn

BCn
and QBCn

Bn−1
respectively. The convolution of the

kernels QBn

BCn
and QBCn

Bn−1
in (2.105) at λn = 0 corresponds to the integration over the variables

zn,i associated with the inner vertexes of the subdiagram (2.114).

Similarly to the case of glℓ+1, recursion operators QBn

Bn−1
can be considered as particular

degenerations of Baxter Q-operators for affine B
(1)
ℓ -Toda chains. Below we provide the

integral representations for these Q-operator. Let us stress that up to now Q-operators
were known only for ĝlℓ+1-case. We will not present here the complete set of properties
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characterizing the introduced Q-operators and only consider the commutation relations with
quadratic affine Toda chain Hamiltonians. The detailed account will be given elsewhere.

We start with a description of B
(1)
ℓ -Toda chain. The set of simple roots of the affine root

system B
(1)
ℓ can be represented in the following form:

α1 = ǫ1, αi+1 = ǫi+1 − ǫi, 1 ≤ i ≤ ℓ− 1 αℓ+1 = −ǫℓ − ǫℓ−1. (2.115)

The corresponding Dynkin diagram is

αℓ

α1 α2ks . . . αℓ−1

wwwwwwwww

GGGGGGGG

αℓ+1

These root data allows to define affine B
(1)
ℓ -Toda chain with a quadratic Hamiltonian

given by

H
B

(1)
ℓ

2 = −
1

2

ℓ+1∑

i=1

∂2

∂x2
i

+
1

2
ex1 +

ℓ−1∑

i=1

exi+1−xi + ge−xℓ−xℓ−1 . (2.116)

Here g is an arbitrary coupling constant.

Define the Baxter Q-operator of B
(1)
ℓ -Toda chain as an integral operator with the follow-

ing kernel

QB
(1)
ℓ (x(ℓ), y(ℓ) , λ) =

∫ ℓ∧

i=1

dzi

(
ex1 + ey1

)2ıλ(
e−xℓ + e−yℓ

)−2ıλ

× (2.117)

× exp
{
− ıλ

( ℓ∑

i=1

xi + 2z1 − 2

ℓ∑

i=2

zi +

ℓ∑

i=1

yi

)}
Q

B
(1)
ℓ

BC
(1)
ℓ

(xi; zi) Q
BC

(1)
ℓ

B
(1)
ℓ

(zi; yi),

where

Q
BC

(1)
ℓ

B
(1)
ℓ

(zi, yi) =

= exp
{
−
( 1

2
ez1 +

ℓ−1∑

i=1

(
eyi−zi + ezi+1−yi

)
+ eyℓ−zℓ + ge−yℓ−zℓ

)}
,

(2.118)

and

Q B
(1)
n

BC
(1)
n

(xi, zi) = Q BC
(1)
n

B
(1)
n

(zi, xi). (2.119)

Here we denote x(ℓ) = (x1, . . . , xℓ), and y(ℓ) = (y1, . . . , yℓ).

The following Proposition can be proved by a direct check.
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Proposition 2.7 The Q-operator (2.117) commutes with quadratic Hamiltonian of the B
(1)
ℓ

Toda chain, that is the kernel intertwines the Hamiltonians H
B

(1)
ℓ

2

H
B

(1)
ℓ

2 (x(ℓ))Q
B

(1)
ℓ (x(ℓ) ; y(ℓ) , λ) = Q

B
(1)
ℓ (x(ℓ) , y(ℓ) ; λ)H

B
(1)
ℓ

2 (y(ℓ)). (2.120)

Now we will demonstrate that recursion operator QBℓ

Bℓ−1
can be considered as a degeneration

of Baxter Q-operators for B
(1)
ℓ . Let us introduce a slightly modified recursion operator

QBℓ

Bℓ−1⊕B1
with the kernel:

QBℓ

Bℓ−1⊕B1
(x(ℓ) , y(ℓ) , λ) := eıλyℓ QBℓ

Bℓ−1
(x(ℓ) , y(ℓ−1) , λ), (2.121)

where y(ℓ−1) = (y1, . . . , yℓ−1). Operator (2.121) intertwines Hamiltonians of so2ℓ+1- and
so2ℓ−1 ⊕ so2-Toda chains. Thus for quadratic Hamiltonians we have

HBℓ

2 (x(ℓ))QBℓ

Bℓ−1⊕B1
(x(ℓ) , y(ℓ), λ) = QBℓ

Bℓ−1⊕B1
(x(ℓ) , y(ℓ), λ)

(
H

Bℓ−1

2 (y(ℓ−1)) +HB1
2 (yℓ)

)
,

where HB1
2 (yℓ) = −1

2

(
∂2/∂y2

ℓ

)
. Obviously the projection of the above relation on the sub-

space of functions F (y(ℓ), yℓ) = exp(ıλyℓ)f(y(ℓ−1)) recovers the genuine recursion operator
satisfying:

HBℓ

2 (x(ℓ))QBℓ

Bℓ−1
(x(ℓ) , y(ℓ) ; λ) = QBℓ

Bℓ−1
(x(ℓ) , y(ℓ−1) , λ)

(
H

Bℓ−1

2 (y(ℓ−1)) +
1

2
λ2
)
. (2.122)

Let us introduce a one-parameter family of the kernels

Q
B

(1)
ℓ (x(ℓ), y(ℓ);λ; ε) = εıλeıλyℓ

∫ ℓ∧

i=1

dzi

(
ex1 + ey1

)2ıλ(
εeyℓ−xℓ + 1

)−2ıλ

×

× exp
{
− ıλ

( ℓ∑

i=1

xi + 2z1 − 2
ℓ∑

i=2

zi +
ℓ−1∑

i=1

yi

)}
Q

B
(1)
ℓ

BC
(1)
ℓ

(xi; zi) Q
BC

(1)
ℓ

B
(1)
ℓ

(zi; yi; ε), (2.123)

where

Q
BC

(1)
ℓ

B
(1)
ℓ

(zℓ, yℓ
; ε) = exp

{
−
( 1

2
ez1 +

ℓ−1∑

i=1

(
eyi−zi + ezi+1−yi

)
+

+εeyℓ−zℓ + ε−1ge−yℓ−zℓ

)}
,

obtained from the kernel of the operator QB
(1)
ℓ by the change of the variable yℓ = yℓ +

ln ε. Consider limiting behavior of (2.124) when ε → 0, gε−1 → 0. Then the following

relation between Q-operator forB
(1)
ℓ -Toda chain and (modified) recursion operator for so2ℓ+1-

Whittaker function holds

QBℓ

Bℓ−1⊕B1
(x(ℓ), y(ℓ);λ) = lim

ε→0, gǫ−1→0
ε−ıλQ

B
(1)
ℓ (x(ℓ), y(ℓ);λ; ε). (2.124)
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2.4 Integral representations of sp2ℓ-Toda chain eigenfunctions

In this subsection we provide an analog of the Givental integral representation of Whittaker
functions for sp2ℓ Lie algebras. As in the case of so2ℓ+1, we start with a derivation of
the integral representation of sp2ℓ-Whittaker functions using the factorized parametrization.
Then we consider a modification of the factorized parametrization leading to a Givental type
integral representation of sp2ℓ-Whittaker functions.

Consider Cℓ type root system corresponding to a Lie algebra sp2ℓ. Let (ǫ1, . . . , ǫℓ) be
an orthogonal basis in Rℓ. We use the following realization of simple roots, coroots and
fundamental weights as vectors in Rℓ:

α1 = 2ǫ1,
α2 = ǫ2 − ǫ1,
. . .
αℓ = ǫℓ − ǫℓ−1,

α∨
1 = ǫ1,
α∨

2 = ǫ2 − ǫ1,
. . .
α∨

ℓ = ǫℓ − ǫℓ−1,

ω1 = ǫ1 + . . .+ ǫℓ
ω2 = ǫ2 + . . .+ ǫℓ,
. . .
ωℓ = ǫℓ.

(2.125)

Cartan matrix ‖aij‖ = ‖〈α∨
i , αj〉‖ can be made symmetric ‖bij‖ = ‖diaij‖ with d1 = 2,

di = 1, i = 2, . . . , ℓ. One associates with these root data a sp2ℓ-Toda chain with a quadratic
Hamiltonian given by

HCℓ

2 = −
1

2

ℓ∑

i=1

∂2

∂zi
2 + 2e2z1 +

ℓ−1∑

i=1

ezi+1−zi. (2.126)

One can complete (2.126) to a full set of ℓ mutually commuting operators HCℓ

k of Cℓ-Toda
chain. We are looking for integral representations of common eigenfunctions of the full
commuting set of Hamiltonians. The corresponding eigenfunction problem for quadratic
Hamiltonian can be written in the following form

HCℓ

2 ΨCℓ

λ1,··· ,λℓ
(z1, . . . , zℓ) =

1

2

ℓ∑

i=1

λ2
i ΨCℓ

λ1,··· ,λℓ
(z1, . . . , zℓ). (2.127)

2.4.1 sp2ℓ-Whittaker function: factorized parametrization

The reduced word for the maximal length element w0 in the Weyl group of sp2ℓ can be
represented in the recursive form:

I = (i1, i2, . . . , im) := (1, 212, 32123, . . . , (ℓ . . . 212 . . . ℓ)),

where indexes ik correspond to elementary reflections with respect to the roots αk. Let
N+ ⊂ G be a maximal unipotent subgroup of G = Sp(2ℓ). One associates with the reduced
word I the following recursive parametrization of a generic element vCℓ ∈ N+:

vCℓ = vCℓ−1 · XCℓ

Cℓ−1
, (2.128)

where

X
Cℓ

Cℓ−1
= Xℓ(yℓ,1)Xk(yk,2(ℓ+1−k)−1)X2(y2,2ℓ−3)× (2.129)

×X1(y1,ℓ)X2(y2,2ℓ−2)Xk(yk,2(ℓ+1−k)) ·Xℓ(yℓ,2).

37



Here Xi(y) = eyei and ei ≡ eαi
are simple root generators. The subset N

(0)
+ allowing

representation (2.128), (2.129) is an open part of N+. The action of the Lie algebra sp2ℓ

on N+ given by (2.10) defines an action on the space of functions on N
(0)
+ . The following

proposition explicitly describes the action on the space Vµ of (twisted) functions on N
(0)
+ .

Proposition 2.8 The following differential operators define a realization of the representa-
tion πλ of U(sp2ℓ) in Vµ in terms of factorized parametrization of N

(0)
+ :

E1 =
ℓ∑

n=1

(
∂

∂y1,n

−
∂

∂y1,n+1

) ℓ−1∏

j=n

( y2,2j

y2,2j−1

)2

+

+

ℓ−1∑

n=1

(
∂

∂y2,2n−1
−

∂

∂y2,2n

)
y2,2n

y1,n

(
1 +

y2,2n

y2,2n−1

) ℓ−1∏

j=n+1

( y2,2j

y2,2j−1

)2

, (2.130)

Ek =
ℓ+1−k∑

n=1

(
∂

∂yk,2n
−

∂

∂yk,2n+1

) ℓ−k∏

i=n

yk+1,2j

yk+1,2j−1

yk,2(j+1)−1

yk,2(j+1)

+

+

ℓ−k∑

n=1

(
∂

∂yk+1,2n−1
−

∂

∂yk+1,2n

)
yk+1,2n

yk,2(n−1)

ℓ−k∏

i=n

yk+1,2j

yk+1,2j−1

yk,2(j+1)−1

yk,2(j+1)
, 1 < k < ℓ,

Eℓ =
∂

∂yℓ,2
,

Hk = 〈µ , α∨
k 〉 +

ℓ∑

i=1

ak,i

ni∑

j=1

yi,j
∂

∂yi,j
, (2.131)

F1 =

ℓ∑

n=1

y1,n

(
− 〈µ, α∨

1 〉+

2(n−1)−1∑

j=1

y2,j
∂

∂y2,j
− 2

n−1∑

j=1

y1,j
∂

∂y1,j
− y1,n

∂

∂y1,n

)
,

F2 =

2(ℓ−1)∑

n=1

y2,n

(
〈µ, α∨

2 〉+ 2

[n/2]+1∑

j=1

y1,j
∂

∂y1,j

− 2
n−1∑

j=1

y2,j
∂

∂y2,j

+

+

2[(n+1)/2]−3∑

j=1

y3,j
∂

∂y3,j

− y2,n
∂

∂y2,n

)
,

Fk =

2(ℓ+1−k)∑

n=1

yk,n

(
〈µ, α∨

k 〉+ 2

2[n/2]+1∑

j=1

yk−1,j
∂

∂yk−1,j
− 2

n−1∑

j=1

yk,j
∂

∂yk,j
+ (2.132)

+

2[(n+1)/2]−3∑

j=1

yk+1,j
∂

∂yk+1,j
− yk,n

∂

∂yk,n

)
,
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for 2 < k < ℓ

Fℓ = (yℓ,1 + yℓ,2)

(
−〈µ, α∨

ℓ 〉+ yℓ−1,1
∂

∂yℓ−1,1

+ yℓ−1,2
∂

∂yℓ−1,2

)
+ (2.133)

+yℓ,2

(
yℓ−1,3

∂

∂yℓ−1,3
+ yℓ−1,4

∂

∂yℓ−1,4

)
−

(
y2

ℓ,1

∂

∂yℓ,1
+ 2yℓ,1yℓ,2

∂

∂yℓ,1
+ y2

ℓ,2

∂

∂yℓ,2

)
,

where Ei = πλ(ei), Hi = πλ(hi), Fi = πλ(fi), i = 1, . . . , ℓ. and n1 = ℓ, nk = 2(ℓ + 1− k) for
1 < k ≤ ℓ.

The proof is given in Part II, Section 3.4.3.

For left/right Whittaker vectors in the factorized parametrization we have the following
expressions.

Lemma 2.7 Left/right Whittaker vectors in the factorized parametrization are given by:

ψR(y) = exp
{
−
( ℓ∑

n=1

y1,n +

ℓ∑

k=2

nk∑

n=1

yk,n

)}
,

ψL(y) =

ℓ∏

i=1

( ℓ∏

n=1

y1,n ×

i∏

k=2

2(ℓ+1−k)∏

n=1

yk,n ×

ℓ∏

k=i+1

ℓ+1−k∏

n=1

y2
k,2n−1

)〈µ,α∨

i 〉

× (2.134)

× exp
{
−
( ℓ∑

n=1

1

y1,n

(
1 +

y2,2(n−1)

y2,2(n−1)−1

)2
ℓ∏

i=n+1

( y2,2(i−1)

y2,2(i−1)−1

)2

+

+
ℓ∑

k=2

nk/2∑

n=1

1

yk,2n

(
1 +

yk+1,2(n−1)

yk+1,2(n−1)−1

) nk/2∏

i=n+1

yk+1,2(i−1)

yk+1,2(−1)−1

yk,2i−1

yk,2i

)}
,

where n1 = ℓ and nk = 2(ℓ+ 1− k), for k = 2, . . . , ℓ.

Proof is given in Part II, Section 3.3.3.

Using the expressions (2.134) for the left/right Whittaker vectors we obtain the integral
representation of sp2ℓ-Whittaker function in terms of factorized parametrization.
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Theorem 2.8 The eigenfunctions of the sp2ℓ-Toda chain admit the integral representation:

ΨCℓ

λ1,...,λℓ
(z1, . . . , zℓ) = eıλ1z1+...+ıλℓzℓ

∫

C

ℓ∧

i=1

ni∧

k=1

dyi,k

yi,k

( ℓ∏

n=1

y1,n

ℓ∏

k=2

nk/2∏

n=1

y2
k,2n−1

)ıλ1

×

×

ℓ∏

i=2

( ℓ∏

n=1

y1,n

i∏

k=2

nk∏

n=1

yk,n

ℓ∏

k=i+1

nk/2∏

n=1

y2
k,2n−1

)ı(λi−λi−1)

×

× exp
{
−
( ℓ∑

n=1

1

y1,n

(
1 +

y2,2(n−1)

y2,2(n−1)−1

)2
ℓ∏

i=n+1

( y2,2(i−1)

y2,2(i−1)−1

)2

+ (2.135)

+
ℓ∑

k=2

nk/2∑

n=1

1

yk,2n

(
1 +

yk+1,2(n−1)

yk+1,2(n−1)−1

) nk/2∏

i=n+1

yk+1,2(i−1)

yk+1,2(−1)−1

yk,2i−1

yk,2i

+

+e2z1

ℓ∑

n=1

y1,n +

ℓ∑

k=2

ezk−zk−1

nk∑

n=1

yk,n

)}
,

where n1 = ℓ and nk = 2(ℓ+1−k), for k = 2, . . . , ℓ. The domain of integration C ⊂ N+ is a
middle-dimensional non-compact submanifold such that the integrand decreases exponentially
at the boundaries and infinities. In particular one can chose C = Rℓ2

+ .

The proof is given in Part II, Section 3.3.3.

Example 2.3 For ℓ = 2 the general formula (2.135) acquires the form

ΨC2
λ1,λ2

(z1, z2) = eıλ1z1+ıλ2z2

∫

C

2∧

i,k=1

dyi,k

yi,k

(y1,1y
2
2,1y1,2)

ıλ1(y2,1y1,2y2,2)
ıλ2−ıλ1 × (2.136)

× exp
{
−
( 1

y1,1

(y2,2

y2,1

)2

+
1

y1,2

(y2,2

y2,1

+ 1
)2

+
1

y2,2

+

+e2z1(y1,1 + y1,2) + ez2−z1(y2,1 + y2,2)
}
,

with one can take C = R4.

2.4.2 sp2ℓ-Whittaker function: modified factorized parametrization

In this part we introduce a modified factorized parametrization of an open part of N+ ⊂
Sp(2ℓ). We use this parametrization to construct integral representations for sp2ℓ-Whittaker
functions. Similar to integral representation of so2ℓ+1-Whittaker functions considered above
these integral representations have a simple recursive structure over the rank ℓ and can be
describe in purely combinatorial terms using suitable graphs. These representations can be
considered as a generalization of Givental integral representations to the case of g = sp2ℓ.
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We follow the same approach that was used in the description of modified factorized
representation for so2ℓ+1. There exists a realization of a tautological representation π2ℓ :
sp2ℓ → End(C2ℓ) such that Weyl generators corresponding to Borel (Cartan) subalgebra
of sp2ℓ are realized by upper triangular (diagonal) matrices. This defines an embedding
sp2ℓ ⊂ gl2ℓ such that Borel (Cartan) subalgebra maps into Borel (Cartan) subalgebra (see
e.g. [DS]). To define the corresponding embedding of the groups consider the following
involution on GL(2ℓ):

g 7−→ g∗ := ẇ0 · (g
−1)t · ẇ−1

0 , (2.137)

where a→ at is induced by the standard transposition matrices and ẇ0 is a lift of the longest
element of the Weyl group of gl2ℓ. In the matrix form it can be written as

π2ℓ(ẇ0) = S · J,

where S = diag(1,−1, . . . ,−1, 1) and J = ‖Ji,j‖ = ‖δi+j,2ℓ+2‖. The symplectic group G =
Sp(2ℓ) then can be defined as a following subgroup of GL(2ℓ) (see i.e. [DS]):

Sp(2ℓ) = {g ∈ GL(2ℓ) : g∗ = g}.

Let ǫi,j stands for an elementary (2ℓ × 2ℓ) matrix with a unit at (i, j) place and zeros
otherwise. Introduce the following (2ℓ× 2ℓ) matrices:

Un =

ℓ∑

i=1

ǫi,i + e−zn−1,1ǫℓ+1,ℓ+1 +

n−1∑

i=1

ezn−1,iǫℓ+1−i,ℓ+1+i , (2.138)

Ũn =
ℓ∑

i=1

ǫi,i + e−zn−1,1ǫℓ+1,ℓ+1 +
n−1∑

i=1

ezn−1,iǫℓ+1−i,ℓ+1+i + (2.139)

+

n∑

i=2

exn,iǫℓ+i−1,ℓ+i +

ℓ−n∑

i=1

ǫℓ+n+i,ℓ+n+i ,

Ũ ′
n =

ℓ∑

i=1

ǫi,i + e−zn−1,1ǫℓ+1,ℓ+1 +
n−1∑

i=1

ezn−1,iǫℓ+1−i,ℓ+1+i + (2.140)

+

n∑

i=1

exn,iǫℓ+i−1,ℓ+i +

ℓ−n∑

i=1

ǫℓ+n+i,ℓ+n+i ,

Vn =

ℓ−1∑

i=1

ǫi,i + e−zn,1ǫℓ,ℓ +

n∑

i=1

ezn,iǫℓ+i,ℓ+i . (2.141)
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Ṽn =

ℓ−1∑

i=1

ǫi,i + e−zn,1ǫℓ,ℓ +

n∑

i=1

ezn,iǫℓ+i,ℓ+i + (2.142)

+

n∑

i=2

exn,iǫℓ+i−1,ℓ+i +

ℓ−n∑

i=1

ǫℓ+n+i,ℓ+n+i ,

Ṽ ′
n =

ℓ−1∑

i=1

ǫi,i + e−zn,1ǫℓ,ℓ +

n∑

i=1

ezn,iǫℓ+i,ℓ+i + (2.143)

+
n∑

i=1

exn,iǫℓ+i−1,ℓ+i +
ℓ−n∑

i=1

ǫℓ+n+i,ℓ+n+i ,

We can define a modified factorized parametrization as follows.

Theorem 2.9 i) The image of any generic unipotent element vCℓ ∈ N+ in the tautological
representation π2ℓ : sp2ℓ → End(C2ℓ) can be presented in the form

π2ℓ(v
Cℓ) = X1X2 · · ·Xℓ, (2.144)

where

X1 = 1 + ex11+z11ǫℓ−1,ℓ ,

Xn = [ŨnU
−1
n ]∗Ũ ′

n(U ′
n)−1[(V ′

n)−1Ṽ ′
n]∗V −1

n Ṽn, n = 2, . . . , ℓ, (2.145)

and zℓ,k = 0, k = 1, . . . ℓ are assumed.

ii) This defines a parametrization of an open part N
(0)
+ in N+.

Proof. Let vCℓ(y) be parametrization of an open part of N+ according to (2.128)-(2.129).
Let X̃i(y) = eyei,i+1 be a one-parametric unipotent subgroup in GL(2ℓ). Then we have
X̃i(y)

∗ = X̃2ℓ+1−i(y). Embed elementary unipotent subgroups Xi(y) of Sp(2ℓ) into GL(2ℓ)
as follows:

Xi(y) = X̃i(y)
∗ X̃i(y).

This maps an arbitrary regular unipotent element vCℓ into unipotent subgroup of GL(2ℓ).
Let us now change the variables in the following way:

y11 = ex11+z11 , y1,k =
(
ezk−1,1+xk,1 + ezk,1+xk,1

)
,

yk,2r−1 = exk+r−1,k−zk+r−2,k−1, k = 2, . . . , ℓ, (2.146)

yk,2r = exk+r−1,k−zk+r−1,k−1, r = 1, . . . , ℓ+ 1− k.

Here zℓ,k = 0 for k = 1, . . . ℓ are assumed.
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By elementary manipulations it is easy to check that after the change of variables (2.146),
the image π2ℓ(v

Cℓ) of vCℓ defined by (2.128)-(2.129) transforms into the (2.144) -(??). Taking
into account that the change of variables (2.146) is invertible we get a parametrization of

N
(0)
+ ⊂ N+ �

The modified factorized parametrization of a unipotent group N+ defines a particular
realization of a principal series representation of U(sp2ℓ) by differential operators. It can be
obtained using the change of variables (2.146) applied to the realization given in Proposition
2.8. We shall use the term Gauss-Givental representation for this realization of representation
of U(sp2ℓ).

Proposition 2.9 The following differential operators define a representation πλ of U(sp2ℓ)
in Vµ in terms of the modified factorized parametrization:

E1 =

ℓ∑

n=1

(
∂

∂xn,1
−

∂

∂xn+1,1

)(
ezn,1−xn,1 +

ℓ∑

i=n+1

(
ezi−1,1−xi,1 + ezi,1−xi,1

))
− (2.147)

−
ℓ−1∑

n=1

∂

∂zn,1

ℓ∑

i=n+1

(
ezi−1,1−xi,1 + ezi,1−xi,1

)
,

E2 =

(
∂

∂z11
−

∂

∂x11

)(
ez22−x22 +

ℓ∑

i=3

ezi−1,2−xi,2 + ezi,2−xi,2

)
+ (2.148)

+
ℓ∑

n=2

(
∂

∂xn,2

−
∂

∂xn,3

)(
ezn,2−xn,2 +

ℓ∑

i=n+1

ezi−1,2−xi,2 + ezi,2−xi,2

)
+

+

ℓ∑

n=2

(
∂

∂zn,1
−

∂

∂zn,2

) ℓ∑

i=n+1

(
ezi−1,2−xi,2 + ezi,2−xi,2

)
−

−
ℓ∑

n=2

∂

∂xn,1

(
ezn−1,1+xn,1

ezn−1,2−xn,2 + ezn,2−xn,2

ezn−1,1+xn,1 + ezn,1+xn,1
+

ℓ∑

i=n+1

ezi−1,2−xi,2 + ezi,2−xi,2

)
,

Ek =

(
∂

∂zk−1,k−1
+

∂

∂xk,k

)(
ezk,k−xk,k +

ℓ∑

i=k+1

ezi−1,k−xi,k + ezi,k−xi,k

)
+ (2.149)

+
ℓ∑

n=k

(
∂

∂zn,k−1

−
∂

∂zn,k

) ℓ∑

i=n+1

(
ezi−1,k−xi,k + ezi,k−xi,k

)
+

+
ℓ∑

n=k+1

(
∂

∂xn,k

−
∂

∂xn,k+1

)(
ezn,k−xn,k +

ℓ∑

i=n+1

ezi−1,k−xi,k + ezi,k−xi,k

)
, 2 < k < ℓ,
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Eℓ = e−xℓ,ℓ

(
∂

∂zk−1,k−1
+

∂

∂xk,k

)
, (2.150)

Hk = 〈µ, α∨
k 〉+

ℓ∑

n=1

ak,n

ℓ∑

i=n

∂

∂xi,n
, (2.151)

F1 = −
(
ez11+x11 +

ℓ∑

i=2

ezi−1,1+xi,1 + ezi,1+xi,1

)(
〈µ, α∨

1 〉+
∂

∂x11

)
− (2.152)

−
ℓ∑

n=2

∂

∂xn,1

(
ezn,1+xn,1 +

ℓ∑

i=n+1

ezi−1,1+xi,1 + ezi,1+xi,1

)
−

−

ℓ∑

n=2

∂

∂zn,1

ℓ∑

i=n+1

(
ezi−1,1+xi,1 + ezi,1+xi,1

)
,

F2 = −

(
〈µ, α∨

2 〉 −
∂

∂x11

−
∂

∂z11

) ℓ∑

i=2

(
exi,2−zi−1,1 + exi,2−zi,1

)
+ (2.153)

+

ℓ∑

n=2

(
∂

∂xn,1
−

∂

∂xn,2

)(
exn,2−zn,1 +

ℓ∑

i=n+1

exi,2−zi−1,1 + exi,2−zi,1

)
+

+
ℓ∑

n=2

(
∂

∂zn,1

−
∂

∂zn,2

) ℓ∑

i=n+1

(
exi,2−zi−1,1 + exi,2−zi,1

)
,

Fk = −

(
〈µ, α∨

k 〉 −
∂

∂xk−1,k−1
−

∂

∂zk−1,k−1

) ℓ∑

i=k

(
exi,k−zi−1,k−1 + exi,k−zi,k−1

)
+ (2.154)

+

ℓ∑

n=k

(
∂

∂xn,k−1
−

∂

∂xn,k

)(
exn,k−zn,k−1 +

ℓ∑

i=n+1

exi,k−zi−1,k−1 + exi,k−zi,k−1

)
+

+
ℓ∑

n=k

(
∂

∂zn,k−1

−
∂

∂zn,k

) ℓ∑

i=n+1

(
exi,k−zi−1,k−1 + exi,k−zi,k−1

)
, 2 < k < ℓ,

Fℓ =
(
exℓ,ℓ−zℓ−1,ℓ−1 + exℓ,ℓ

)(
−〈µ, α∨

ℓ 〉+
∂

∂xk−1,k−1

+
∂

∂zk−1,k−1

)
+ (2.155)

+exℓ,ℓ

(
∂

∂xℓ,ℓ−1
−

∂

∂xℓ,ℓ

)
,
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where zℓ,k = 0, k = 1, . . . , ℓ are assumed and the derivatives over xi,k, zi,k, i < k are
omitted. Here we denote Ei = πλ(ei), Fi = πλ(fi), Hi = πλ(hi) i = 1, . . . , ℓ.

We are going to write down matrix element (2.12) explicitly using Gauss-Givental rep-
resentation defined above. Whittaker vectors ψR and ψL in this representation satisfiy the
system of differential equations

EiψR(x) = −ψR(x), FiψL(x) = −ψL(x), 1 ≤ i ≤ ℓ. (2.156)

Its solution has the following form. Using the explicit change of the variables (2.146) we
obtain the expressions for Whittaker vectors in modified factorized parametrization.

Lemma 2.8 The following expressions for left/right Whittaker vectors hold:

ψR = exp
{
−
(
ex11+z11 +

ℓ∑

n=2

(
ezn−1,1−xn,1 + ezn,1−xn,1

))
− (2.157)

−
ℓ∑

k=2

ℓ∑

n=k

(
exn,k−zn−1,k−1 + exn,k−zn,k−1

)}
,

ψL = eµ1z1,1

ℓ∏

n=2

(
ezn,1 + ezn−1,1

)µn

× (2.158)

×
ℓ∏

n=1

exp
{
− µn

( n∑

i=1

zn,i − xn,1 − 2
n∑

i=2

xn,i +
n−1∑

i=1

zn−1,i

)}
×

× exp
{
−

ℓ∑

k=1

(
ezk,k−xk,k +

ℓ∑

n=k+1

ezn−1,k−xn,k + ezn,k−xn,k

)}
,

where zℓ,k = 0 and µk = ıλk − ρk, ρk = k for k = 1, . . . , ℓ.

Now we are ready to find an integral representation of the pairing (2.12) for g = sp2ℓ. To
get an explicit expression for the integrand, one uses the same type of decomposition of the
Cartan element as for glℓ+1 and sp2ℓ before:

e−Hz = πλ(exp(−
ℓ∑

i=1

〈ωi, z〉hi)) = eHLeHR ,

where

−Hz = HL +HR = −〈µ, zℓ〉 − 2zℓ,1

ℓ∑

n=1

∂

∂xn,1
+

ℓ−1∑

k=1

(zℓ,i − zℓ,i+1)

ℓ∑

n=k

∂

∂xn,k
, (2.159)

with

45



HL =
ℓ∑

k=1

zℓ,k

( ℓ−1∑

n=k

∂

∂zn,k

+
ℓ∑

n=k

∂

∂xn,k

)
, (2.160)

HR = −〈µ, zℓ〉 −

ℓ−1∑

k=1

zℓ,k

( ℓ∑

n=k

∂

∂xn,k
−

ℓ−1∑

n=k

∂

∂zn,k
−

ℓ∑

n=k+1

∂

∂xn,k+1

)
. (2.161)

We imply that HL acts on the left vector and HR acts on the right vector in (2.12). Taking
into account Lemma 2.8 one obtains the following theorem.

Theorem 2.10 The eigenfunctions of sp2ℓ-Toda chain (2.12) admit the integral representa-
tion

ΨCℓ

λ1,...,λℓ
(zℓ,1, . . . , zℓ,ℓ) =

∫

C

ℓ−1∧

k=1

k∧

i=1

dzk,i

ℓ∧

k=1

k∧

i=1

dxk,i e
FCℓ , (2.162)

where

FCℓ = ıλ1z1,1 −

ℓ∑

n=2

ıλn

( n∑

i=1

zn,i − xn,1 − 2

n∑

i=2

xn,i +

n−1∑

i=1

zn−1,i − ln(ezn,1 + ezn−1,1)
)
−

−
{ ℓ∑

k=1

(
ezk,k−xk,k +

ℓ∑

n=k+1

ezn−1,k−xn,k + ezn,k−xn,k

)
+ ex11+z11 + (2.163)

+

ℓ∑

n=2

(
ezn−1,1−xn,1 + ezn,1−xn,1

)
+

ℓ∑

k=2

ℓ∑

n=k

(
exn,k−zn−1,k−1 + exn,k−zn,k−1

)}
,

where we set zi := zℓ,i, 1 ≤ i ≤ ℓ. Here C ⊂ N+ is a middle-dimensional non-compact
submanifold such that the integrand decays exponentially at the boundaries and at infinities.
In particular the domain of integration can be chosen to be C = Rm, where m = l(w0).

Example 2.4 For ℓ = 2 the general expression (2.202) acquires the form

ΨC2
λ1,λ2

(z1, zℓ) =

∫

C

dx11 ∧ x11 ∧ dx21 ∧ dx22 ∧ dz11 ×

× exp
{
ıλ1x11 − ıλ2

(
z21 + z22 − x21 − 2x22 + z11 − log(ez21 + ez11)

)
− (2.164)

−
(
ez11−x11 + ez22−x22 + ex11+z11 + ez11−x21 + ez21−x21 + ex22−z11 + ex22−z21

)}
,

where z1 = z2,1, z2 = z2,2. In particular one can chose C = R4.
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There is a simple combinatorial description of the potential FCℓ for zero spectrum {λi =
0}. Namely, it can be presented as the sum over all arrows in the following diagram.

zℓ,1

×

zℓ−1,1

×

× xℓ,1

��

// zℓ,1

. . .

×

. . . zℓ−1,1 . . .
. . .

��

z11

×

× x21

��

// . . .

��

. . .
. . .

// xℓ,ℓ−1

��

// zℓ,ℓ−1

��

x11 // z11 // x22 // . . . . . . zℓ−1,ℓ−1 // xℓ,ℓ // zℓ,ℓ

We use the same rule to assign variables to the arrows of the diagram as for Aℓ. In

addition we assign to the symbol z × x the exponent e−z−x.

Note that the diagram for Cℓ can be obtained by a factorization of the diagram for A2ℓ−1.
Consider the following involution

ι : X 7−→ ẇ−1
0 X tẇ0, (2.165)

where ẇ0 is a lift the longest element of A2ℓ−1 Weyl group and X t denotes the standard
transposition. Corresponding action on the modified factorization parameters is given by

ẇ0 : xk,i ←→ −xk,k+1−i. (2.166)

This defines a factorization of A2ℓ−1-diagram that produces the diagram for Cℓ.

One can easily write down Cℓ-analog of Aℓ-monomial relations (2.52). Let us introduce
the variables

ak,1 = exk,1+zk−1,1 , ak,i = exk,i−zk−1,i−1 ,

bk,1 = exk,1+zk,1, bk,i = ezk,i−xk,i−1 , (2.167)

ck,i = ezk,i−xk,i, dk,i = ezk,i−xk+1,i.

Then the following relations hold

ck,i · bk,i = dk,i · ak+1,i, ak,i · dk−1,i−1 = bk,i · ck,i−1,

bℓ,1cℓ,1 = e2zℓ,1, cℓ,i · bℓ,i = ezℓ,i−zℓ,i−1. (2.168)

The above relations can be considered as relations between elementary paths on the Givental
diagram. Using relations for more general paths that follows from (2.168) one can define a
toric degeneration of the Cℓ-flag manifolds thus generalizing results of [BCFKS].
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2.4.3 Recursion for sp2ℓ-Whittaker functions and Q-operator

for A
(2)
2ℓ−1-Toda chain

The integral representation (2.162), (2.163) of sp2ℓ-Whittaker functions possesses a recursive
structure over the rank ℓ. For any n = 2, . . . , ℓ let us introduce integral operators QCn

Cn−1

with the integral kernels

QCn

Cn−1
(zn; zn−1;λn) =

∫ n∧

i=1

dxn,i

(
ezn,1 + ezn−1,1

)ıλn

×

× exp
{
− ıλn

( n∑

i=1

zn,i − xn,1 − 2

n∑

i=2

xn,i +

n−1∑

i=1

zn−1,i

)}
× (2.169)

×QCn

Dn
(zn; xn) QDn

Cn−1
(xn; zn−1),

where

QDn

Cn−1
(xn; zn−1) =

= exp
{
−
(
exn,1+zn−1,1 +

n−1∑

i=1

(
ezn−1,i−xn,i + exn,i+1−zn−1,i

))}
,

(2.170)

QCn

Dn
(zn; xn) =

= exp
{
−
(
exn,1+zn,1 +

n−1∑

i=1

(
ezn,i−xn,i + exn,i+1−zn,i

)
+ ezn,n−xn,n

)}
.

(2.171)

For n = 1 we define

QC1
C0

=

∫
dx11e

ıλ1x11 exp
{
−
(
ex11+z11 + ez11−x11

)}

Using integral operators QCn

Cn−1
, the integral representation for sp2ℓ-Whittaker function can

be written in the recursive form.

Theorem 2.11 The integral representations of sp2ℓ-Toda chain eigenfunctions (2.162) can
be written as

ΨCℓ

λ1,...,λℓ
(z1, . . . , zℓ) =

∫

C

ℓ−1∧

k=1

k∧

i=1

dzk,i

ℓ∏

n=1

QCn

Cn−1
(zn; zn;λn), (2.172)

or equivalently

ΨCℓ

λ1,...,λℓ
(zℓ,1, . . . , zℓ,ℓ) =

∫

Cℓ

ℓ−1∧

i=1

dzℓ−1,i × (2.173)

×QCℓ

Cℓ−1
(zℓ; zℓ−1;λℓ)Ψ

Cℓ−1

λ1,...,λℓ−1
(zℓ−1,1, . . . , zℓ−1,ℓ−1).
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Here zn := zℓ,n, 1 ≤ n ≤ ℓ and C ⊂ N+ is a middle-dimensional non-compact submani-
fold such that the integrand decreases exponentially at the boundaries and at infinities. In
particular as a domain of integration one can chose C =Rℓ2.

This recursive form of the integral representation is similar to the case of so2ℓ+1. Its
recursive kernel QCn

Cn−1
is given by a nontrivial integral in contrast with glℓ+1-case (2.54).

Similar to so2ℓ+1-Whittaker function new structure appears if we consider the Whittaker
function for zero spectrum {λi = 0}. As it is clear from (2.169) the kernels QCn

Cn−1
at

λn = 0 are given by convolutions of the kernels QCn

Dn
(zn, xn) and QDn

Cn−1
(xn, zn−1). The

corresponding integral operators QCn

Dn
, QDn

Cn−1
can be regarded as elementary intertwiners

relating Hamiltonians of Toda chains for Cn, Dn and Dn, Cn−1 root systems correspondingly.
For example it is easy to check directly intertwinig realtions with quadratic Hamiltonians.
Indeed, Dℓ-Toda chain (for more detailed discussion see Subsection 2.5.3) has the following
quadratic Hamiltonians

HDℓ

2 (x(ℓ)) = −
1

2

ℓ∑

i=1

∂2

∂x2
i

+ ex1+x2 +
ℓ−1∑

i=1

exi+1−xi. (2.174)

Proposition 2.10 The integral operators QCn

Cn−1
, QCn

Dn
and QDn

Cn−1
satisfy the following rela-

tions.

1. Operators QCn

Dn
and QDn

Cn−1
intertwine quadratic Hamiltonians of C- and D-Toda chains:

HDn

2 (xn)QDn

Cn−1
(xn, zn−1) = QDn

Cn−1
(xn, zn−1)H

Cn−1

2 (xn−1), (2.175)

HCn

2 (zn)QCn

Dn
(zn, xn) = QCn

Dn
(zn, xn)HDn

2 (xn). (2.176)

2. The operator QCn

Cn−1
at λn = 0 intertwines the Hamiltonians HCn

2 and H
Cn−1

2 :

HCn

2 (zn)QCn

Cn−1
(zn, zn−1) = QCn

Cn−1
(zn, zn−1)H

Cn−1

2 (zn−1). (2.177)

The integral kernel of QCn

Cn−1
can be succinctly encoded into the following diagram
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zn,1

×

zn−1,1 × xn,1

��

// zn,1

zn−1,1 // xn,2

��

// . . .

. . .
. . .

��

// zn,n−1

��
zn−1,n−1 // xn,n // zn,n

Here the upper (lower) boundary of the oriented diagram corresponds to the kernels of
elementary intertwiner QCn

Dn
(QDn

Cn−1
) and the convolution of the two kernel is given by the

integration over variables xn,1, . . . , xn,n on the diagonal of the diagram.

Similarly to the cases of glℓ+1 and sp2ℓ recursion operators QCn

Cn−1
can be considered as

degenerations of a Baxter Q-operators for twisted affine A
(2)
2ℓ−1-Toda chain introduced below.

Let us stress that up to now Q-operators for A
(2)
2ℓ−1 were not known. We will not present

here a complete set of the characteristic properties of the introduced Q-operators and only
consider commutation relations with quadratic affine Toda chain Hamiltonians. The detailed
account will be given elsewhere.

We start with a description of A
(2)
2ℓ−1-Toda chains. The set of simple roots of the affine

root system A
(2)
2ℓ−1 can be represented in terms of the orthogonal bases {ǫi}, i = 1, . . . , ℓ in

Rℓ as follows:

α1 = 2ǫ1, αi+1 = ǫi+1 − ǫi, 1 ≤ i ≤ ℓ− 1, αℓ+1 = −ǫℓ − ǫℓ−1, (2.178)

and corresponding Dynkin diagram is given by

αℓ+1

α1 +3 α2 . . . αℓ−1

xxxxxxxx

GG
GG

GG
GG

G

αℓ
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These root data allows to define affine A
(2)
2ℓ−1-Toda chain with the quadratic Hamiltonian

given by

H
A

(2)
2ℓ−1

2 (z(ℓ)) = −
1

2

ℓ∑

i=1

∂2

∂z2
i

+ 2e2z1 +
ℓ−1∑

i=1

ezi+1−zi + ge−zℓ−1−zℓ , (2.179)

where g is an arbitrary parameter.

Define the Baxter Q-operator of A
(2)
2ℓ−1-Toda chain as an integral operator with the fol-

lowing integral kernel:

Q
A

(2)
2ℓ−1

(z(ℓ) , y(ℓ), λ) =

∫ ℓ+1∧

i=1

dxi

(
ez1 + ey1

)ıλ(
e−zℓ + e−yℓ

)−2ıλ

× (2.180)

× exp
{
− ıλ

( ℓ∑

i=1

zi − x1 − 2

ℓ∑

i=2

xi +

ℓ∑

i=1

yi

)}
×

×Q
A

(2)
2ℓ−1

A
(2)
2ℓ−1

(z1, . . . , zℓ ; x1, . . . , xℓ+1) Q
A

(2)
2ℓ−1

A
(2)
2ℓ−1

(x1, . . . , xℓ+1 ; y1, . . . , yℓ),

where

Q
A

(2)
2ℓ−1

A
(2)
2ℓ−1

(z1, . . . , zℓ ; x1, . . . , xℓ+1) = (2.181)

= exp
{
−
(
ez1+x1 +

ℓ−1∑

i=1

(
ezi−xi + exi+1−zi

)
+ ezℓ−xℓ + ge−zℓ−xℓ

)}
,

and

Q
A

(2)
2ℓ−1

A
(2)
2ℓ−1

(x1, . . . , xℓ+1 ; y1, . . . , yℓ) = (2.182)

= exp
{
−
(
ey1+x1 +

ℓ−1∑

i=1

(
eyi−xi + exi+1−yi

)
+ eyℓ−xℓ + ge−yℓ−xℓ

)}
.

Here we use the following notations z(ℓ) = (z1, . . . , zℓ), y
(ℓ) = (y1, . . . , yℓ).

The following statement can be verified straightforwardly.

Proposition 2.11 The Q-operator (2.180) commutes with the quadratic Hamiltonian of

A
(2)
2ℓ−1-Toda chain:

HA
(2)
2ℓ−1(z(ℓ))Q

A
(2)
2ℓ−1

(z(ℓ), y(ℓ)) = Q
A

(2)
2ℓ−1

(z(ℓ), y(ℓ))H
A

(2)
2ℓ−1

(y(ℓ)). (2.183)

Now we will demonstrate that the recursion operatorQCℓ

Cℓ−1
can be obtained by a degeneration

of the Baxter Q-operator for A
(2)
2ℓ−1. Consider a slightly modified recursion operator QCℓ

Cℓ−1⊕C1

with the kernel given by

QCℓ

Cℓ−1⊕C1
(z(ℓ) , y(ℓ) , λ) := eıλyℓ QCℓ

Cℓ−1
(z(ℓ) , y(ℓ−1) , λ),
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where y(ℓ−1) = (y1, . . . , yℓ−1). Thus defined operator intertwines Hamiltonians of sp2ℓ- and
sp2ℓ−2 ⊕ sp2-Toda chains. Thus for quadratic Hamiltonians we have

HCℓ

2 (z(ℓ))QCℓ

Cℓ−1⊕C1
(z(ℓ) , y(ℓ), λ) = QCℓ

Cℓ−1⊕C1
(z(ℓ) , y(ℓ) , λ)

(
HCℓ

2 (y(ℓ−1)) +HC1
2 (yℓ)

)
,

where HC1
2 (yℓ) = −1

2

(
∂2/∂y2

ℓ

)
. Obviously the projection of above equation on the subspace

of functions F (y(ℓ)) = exp(ıλyℓ)f(y(ℓ−1)) recovers the genuine recursion operator satisfying:

HCℓ

2 (z(ℓ))QCℓ

Cℓ−1
(z(ℓ) , y(ℓ−1) , λ) = QCℓ

Cℓ−1
(z(ℓ) , y(ℓ−1) , λ)

(
HCℓ

2 (y(ℓ−1)) +
1

2
λ2)
)
. (2.184)

Consider a one-parameter family of the kernels:

Q
A

(2)
2ℓ−1

(z(ℓ), y(ℓ), λ, ε) = εıλeıλyℓ

∫ ℓ+1∧

i=1

dxi

(
ez1 + ey1

)ıλ(
εeyℓ−zℓ + 1

)−2ıλ

× (2.185)

× exp
{
− ıλ

( ℓ∑

i=1

zi − x1 − 2
ℓ∑

i=2

xi +
ℓ−1∑

i=1

yi

)}
×

×Q
A

(2)
2ℓ−1

A
(2)
2ℓ−1

(z1, . . . , zℓ ; x1, . . . , xℓ+1) Q
A

(2)
2ℓ−1

A
(2)
2ℓ−1

(x1, . . . , xℓ+1 ; y1, . . . , yℓ; ε),

where

Q
A

(2)
2ℓ−1

A
(2)
2ℓ−1

(x1, . . . , xℓ+1 ; y1, . . . , yℓ; ε) = exp
{
−
(
ey1+x1 +

ℓ−1∑

i=1

(
eyi−xi + exi+1−yi

)
+ (2.186)

+εeyℓ−xℓ + ε−1ge−yℓ−xℓ

)}
,

is obtained by shifting the variable yℓ = yℓ + ln ε in (2.180). Then the following relation

between Q-operator for A
(2)
2ℓ−1-Toda chain and recursive operator for the sp2ℓ-Whittaker

function holds

QCℓ

Cℓ−1⊕C1
(z(ℓ) , y(ℓ), λ) = lim

ε→0,ε−1g→0
ε−ıλQ

A
(2)
2ℓ−1

(z(ℓ) , y(ℓ), λ; ε). (2.187)
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2.5 Integral representations of so2ℓ-Toda chain eigenfunctions

In this subsection we provide an analog of the Givental integral representation of Whit-
taker functions for so2ℓ Lie algebras. As in the previously considered cases, we start with
a derivation of an integral representation of so2ℓ-Whittaker functions using the factorized
representation. Then we consider a modification of the factorized representation leading to
a Givental type integral representation of so2ℓ-Whittaker functions.

Consider Dℓ root system corresponding to Lie algebra so2ℓ. Let (ǫ1, . . . , ǫℓ) be an orthog-
onal basis in Rℓ. We realize Dℓ simple root and fundamental weights as the following vectors
in Rℓ:

α1 = ǫ2 − ǫ1,
α2 = ǫ2 + ǫ1,
α3 = ǫ3 − ǫ2,
. . .
αn = ǫℓ − ǫℓ−1,

ω1 = (−ǫ1 + ǫ2 + . . .+ ǫℓ)/2,
ω2 = (ǫ1 + ǫ2 + . . .+ ǫℓ)/2,
ω3 = ǫ3 + . . .+ ǫℓ,
. . .
ωℓ = ǫℓ.

(2.188)

Coroots α∨
i can be identified with the corresponding roots αi using the scalar product in Rℓ.

One associates with these root data so2ℓ-Toda chain with a quadratic Hamiltonian given by

HDℓ

2 = −
1

2

ℓ∑

i=1

∂2

∂xi
2 + ex1+x2 +

ℓ−1∑

i=1

exi+1−xi. (2.189)

One can complete (2.189) to a full set of ℓ mutually commuting functionally independent
Hamiltonians HDℓ

k of the so2ℓ-Toda chain. We are looking for integral representations of
common eigenfunctions of the full set of the Hamiltonians. Corresponding eigenfunction
problem for the quadratic Hamiltonian can be written in the following form

HDℓ

2 ΨDℓ

λ1,··· ,λℓ
(x1, . . . , xℓ) =

1

2

ℓ∑

i=1

λ2
i ΨDℓ

λ1,··· ,λℓ
(x1, . . . , xℓ). (2.190)

2.5.1 so2ℓ-Whittaker function: factorized parametrization

The reduced word for the maximal length element w0 in the Weyl group of so2ℓ can be
represented in the following recursive way:

I = (i1, i2, . . . , im) := (12, 3123, . . . , (ℓ . . . 3123 . . . ℓ)),

where index ik corresponds to an elementary reflection with respect to the root αk. Let
N+ ⊂ G be a maximal unipotent subgroup of G = SO(2ℓ). One associates with the reduced
word I the following recursive parametrization of a generic element vDℓ ∈ N+:

vDℓ = vDℓ−1 · XDℓ

Dℓ−1
, (2.191)

where

X
Dℓ

Dℓ−1
= Xℓ(yℓ,1) · · ·Xk(yk,2(ℓ+1−k)−1) · · ·X3(y3,2ℓ−5)X1(y1,ℓ−1) · (2.192)

X2(y2,ℓ−1)X3(y3,2ℓ−4) · · ·Xk(yk,2(ℓ+1−k)) · · ·Xℓ(yℓ,2).
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Here Xi(y) = eyei and ei ≡ eαi
are simple root generators. The subset N

(0)
+ of the elements

allowing representation (2.191), (2.192) is an open part of N+. The action of the Lie algebra

so2ℓ on N+ (2.10) defines an action on the space of functions onN
(0)
+ . The explicit description

of the action on the space Vµ of (twisted) functions on N
(0)
+ is given below.

Proposition 2.12 The following differential operators define a realization of a principal
series representation πλ of U(so2ℓ) in Vµ in terms of factorized parametrization of N

(0)
+ :

E1 =
∂

∂y1,ℓ−1
+

[ℓ/2]∑

n=1

( ∂

∂y2,ℓ−n−1
−

∂

∂y2,ℓ−n

) 2n−1∏

k=1

(y1,ℓ−k

y2,ℓ−k

)(−1)k y3,2(ℓ−1−k)

y3,2(ℓ−1−k)−1

+ (2.193)

+

[ℓ/2]∑

n=2

( ∂

∂y1,ℓ−n−1

−
∂

∂y1,ℓ−n

) 2(n−1)∏

k=1

(y1,ℓ−k

y2,ℓ−k

)(−1)k y3,2(ℓ−1−k)

y3,2(ℓ−1−k)−1

+

+

[ ℓ−1
2

]∑

n=1

( ∂

∂y3,2(2n−1)−1

−
∂

∂y3,2(2n−1)

)y3,2(2n−1)

y1,2n

ℓ−2n−1∏

k=1

(y1,ℓ−k

y2,ℓ−k

)(−1)k y3,2(ℓ−1−k)

y3,2(ℓ−1−k)−1

+

+

[ ℓ−2
2

]∑

n=1

( ∂

∂y3,4n−1
−

∂

∂y3,4n

) y3,4n

y2,2n+1

ℓ−2(n+1)∏

k=1

(y1,ℓ−k

y2,ℓ−k

)(−1)k y3,2(ℓ−1−k)

y3,2(ℓ−1−k)−1

,

E2 =
∂

∂y2,ℓ−1
+

[ℓ/2]∑

n=2

( ∂

∂y2,ℓ−n−1
−

∂

∂y2,ℓ−n

) 2(n−1)∏

k=1

(y2,ℓ−k

y1,ℓ−k

)(−1)k y3,2(ℓ−1−k)

y3,2(ℓ−1−k)−1

+ (2.194)

+

[ℓ/2]∑

n=1

( ∂

∂y1,ℓ−n−1

−
∂

∂y1,ℓ−n

) 2n−1∏

k=1

(y2,ℓ−k

y1,ℓ−k

)(−1)k y3,2(ℓ−1−k)

y3,2(ℓ−1−k)−1

+

+

[ ℓ−2
2

]∑

n=1

( ∂

∂y3,4n−1
−

∂

∂y3,4n

) y3,4n

y1,2n+1

ℓ−2(n+1)∏

k=1

(y2,ℓ−k

y1,ℓ−k

)(−1)k y3,2(ℓ−1−k)

y3,2(ℓ−1−k)−1

+

+

[ ℓ−1
2

]∑

n=1

( ∂

∂y3,2(2n−1)−1

−
∂

∂y3,2(2n−1)

)y3,2(2n−1)

y1,2n

ℓ−2n−1∏

k=1

(y2,ℓ−k

y1,ℓ−k

)(−1)k y3,2(ℓ−1−k)

y3,2(ℓ−1−k)−1

,

Ek =
∂

∂yk,2(ℓ+1−k)
+

ℓ−k∑

n=1

( ∂

∂yk,2n
−

∂

∂yk,2n+1

) ℓ+1−n−k∏

i=1

yk,2(i+1)−1

yk,2(k+1)

yk+1,2i

yk+1,2i−1
+ (2.195)

+

ℓ−k∑

n=1

( ∂

∂yk+1,2n−1
−

∂

∂yk+1,2n

) yk+1,2n

yk,2(n+1)

ℓ+1−n−k∏

i=2

yk,2(i+1)−1

yk,2(k+1)

yk+1,2i

yk+1,2i−1
, 2 < k < ℓ,
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Eℓ =
∂

∂yℓ,2
, (2.196)

Hi = 〈µ, α∨
i 〉+

ℓ∑

k=1

ai,k

nk∑

j=1

yk,j
∂

∂yk,j
, (2.197)

Fi = −〈µ, α∨
i 〉

ℓ−1∑

n=1

yi,n −
ℓ−1∑

n=1

(
y2

i,n

∂

∂yi,n

+ 2
ℓ−1∑

k=n+1

yi,kyi,n
∂

∂ yi,n

)
+ (2.198)

+

2(ℓ−2)−1∑

n=1

∑

k=[n/2]+2

yi,ky3,n
∂

∂ y3,n

, i = 1, 2,

Fk = −〈µ, α∨
k 〉

2(ℓ+1−k)∑

n=1

yk,n −

2(ℓ+1−k)∑

n=1

(
y2

k,n

∂

∂ yk,n
+ 2

2(ℓ+1−k)∑

i=n+1

yk,iyk,n
∂

∂ yk,n

)
+ (2.199)

+

ℓ+2−k∑

n=1

2(ℓ+1−k)∑

i=2(n−1)

yk,i

(
yk−1,2n−1

∂

∂ yk−1,2n−1
+ yk−1,2n

∂

∂ yk−1,2n

)
+

+

2(ℓ−k)−1∑

n=1

∑

i=2[n/2]+3

yk,iyk+1,n
∂

∂ yk+1,n
, 3 ≤ k ≤ ℓ,

where n1 = n2 = ℓ− 1, nk = 2(ℓ+ 1− k), for 2 < k ≤ ℓ.

The proof is given in Part II, Section 3.4.4.

The left/right Whittaker vectors in the factorized parametrization can be found explicitly.

Lemma 2.9 The following expressions for the left/right Whittaker vectors hold:

ψR(y) = exp
{
−
( ℓ−1∑

n=1

y1,n +
ℓ−1∑

n=1

y2,n +
ℓ∑

k=3

2(ℓ+1−k)∑

n=1

yk,n

)}
, (2.200)
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ψL(y) =
( ℓ/2∏

n=1

y1,2n−1

ℓ−1
2∏

n=1

y2,2n

ℓ∏

n=3

n∏

i=3

yi,2(n+1−i)−1

)〈µ,α∨

1 〉

× (2.201)

×
( ℓ/2∏

n=1

y2,2n−1

ℓ−1
2∏

n=1

y1,2n

ℓ∏

n=3

n∏

i=3

yi,2(n+1−i)−1

)〈µ,α∨

2 〉

×

×

ℓ∏

k=3

( k∏

i=1

ni∏

n=1

yi,n

ℓ∏

i=k+1

ni/2∏

n=1

y2
i,2n−1

)〈µ,α∨

k
〉

×

× exp
{
−
( ℓ−1∑

n=1

[ 1

y1,ℓ−1

n−1∏

k=1

( y1,ℓ−k

y1,ℓ−k−1

)pk−1
( y2,ℓ−k

y2,ℓ−k−1

)pk

+

+
1

y2,ℓ−1

n−1∏

k=1

( y1,ℓ−k

y1,ℓ−k−1

)pk
( y2,ℓ−k

y2,ℓ−k−1

)pk+1
]
×

×
(
1 +

y3,2(ℓ−n−1)

y3,2(ℓ−n−1)−1

) n−1∏

k=1

y3,2(ℓ−k−1)

y3,2(ℓ−k−1)−1

+

ℓ∑

k=3

1

yk,2(ℓ+1−k)

)}
,

where n1 = n2 = ℓ− 1 and nk = 2(ℓ+ 1− k), k > 2, and pk = (1− (−1)k) is the parity of k.

The proof is given in Part II, Section 3.3.4.

Using (2.17) and (2.18) it is easy to obtain the integral representations of so2ℓ-Whittaker
function in the factorized parametrization.

Theorem 2.12 The eigenfunctions of so2ℓ-Toda chain admit the following integral repre-
sentation:

ΨDℓ

λ1,...,λℓ
(x1, . . . , xℓ) = eıλ1x1+...+ıλℓxℓ

∫

C

ℓ∧

i=1

ni∧

k=1

dyi,k

yi,k
× (2.202)

×
( ℓ/2∏

n=1

y1,2n−1

ℓ−1
2∏

n=1

y2,2n

ℓ∏

n=3

n∏

i=3

yi,2(n+1−i)−1

)ı(λ2−λ1)

×

×
( ℓ/2∏

n=1

y2,2n−1

ℓ−1
2∏

n=1

y1,2n

ℓ∏

n=3

n∏

i=3

yi,2(n+1−i)−1

)ı(λ1+λ2)

×

×

ℓ∏

k=3

( k∏

i=1

ni∏

n=1

yi,n

ℓ∏

i=k+1

ni/2∏

n=1

y2
i,2n−1

)ı(λk−λk−1)

×
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× exp
{
−
( ℓ−1∑

n=1

[ 1

y1,ℓ−1

n−1∏

k=1

( y1,ℓ−k

y1,ℓ−k−1

)pk−1
( y2,ℓ−k

y2,ℓ−k−1

)pk

+

+
1

y2,ℓ−1

n−1∏

k=1

( y1,ℓ−k

y1,ℓ−k−1

)pk
( y2,ℓ−k

y2,ℓ−k−1

)pk+1
]
×

×
(
1 +

y3,2(ℓ−n−1)

y3,2(ℓ−n−1)−1

) n−1∏

k=1

y3,2(ℓ−k−1)

y3,2(ℓ−k−1)−1

+

ℓ∑

k=3

1

yk,2(ℓ+1−k)

+

+ex2−x1

ℓ−1∑

n=1

y1,n + ex1+x2

ℓ−1∑

n=1

y2,n +

ℓ∑

k=3

exk−xk−1

2(ℓ+1−k)∑

n=1

yk,n

)}
.

Here we assume x1 = xℓ,1, . . . , xℓ,ℓ, pk = (1− (−1)k)/2, n1 = n2 = ℓ− 1 and nk = 2(ℓ+ 1−
k), k > 2. Domain of integration C ⊂ N+ is a middle-dimensional non-compact submanifold
such that the integrand decreases exponentially at the possible boundaries and infinities. In
particular one can chose C = Rm

+ , where m = l(w0).

The proof is given in Part II, Section 3.3.4.

Example 2.5 For ℓ = 3 the general formula (2.202) acquires the following form

ΨD3

λ1, λ2, λ3
(x31, x32, x33) =

∫

C

3∧

i=1

2∧

k=1

dyi,k

yi,k
× (2.203)

×(y11y31y22)
ı(λ2−λ1)(y21y31y12)

ı(λ2+λ1)(y31y12y22y32)
ı(λ3−λ2) ×

× exp
{ 1

y12

(
1 +

y32

y31

)
+

1

y12

y22

y21

y32

y31

+
1

y22

(
1 +

y32

y31

)
+

1

y22

y12

y11

y32

y31

+
1

y32

+

+ex32−x31(y11 + y12) + ex32+x31(y21 + y22) + ex33−x32(y31 + y32)
}
.

For the domain of integration one can chose C = R6.

2.5.2 so2ℓ-Whittaker function: modified factorized parametrization

In this part we introduce a modified factorized parametrization of an open part N
(0)
+ of

maximal unipotent subgroup N+ ⊂ SO(2ℓ). We use this parametrization to construct
integral representations for so2ℓ-Whittaker functions. Similar to other series of classical Lie
algebras these integral representations for so2ℓ-Whittaker functions have a simple recursive
structure over the rank ℓ and can be describe in purely combinatorial terms using suitable
graphs. These representations can be considered as a generalization of Givental integral
representations to g = so2ℓ.

We follow the same approach that was used in the description of modified factorized
representation for other classical groups. There exists a realization of a tautological repre-
sentation π2ℓ : so2ℓ → End(C2ℓ) such that Weyl generators corresponding to Borel (Cartan)
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subalgebra of so2ℓ are realized by upper triangular (diagonal) matrices. This defines an
embedding so2ℓ ⊂ gl2ℓ such that Borel (Cartan) subalgebra maps into Borel (Cartan) sub-
algebra (see e.g. [DS]). To define the corresponding embedding of the groups consider the
following involution on GL(2ℓ):

g 7−→ g∗ := ẇ0 · (g
−1)t · ẇ−1

0 , (2.204)

where at is induced by the standard transposition of the matrix a and ẇ0 is a lift of the
longest element of the Weyl group of gl2ℓ. In the matrix form it can be written as

π2ℓ(ẇ0) = S · J,

where S = diag(1,−1, . . . ,−1, 1) and J = ‖Ji,j‖ = ‖δi+j,2ℓ+2‖. The orthogonal group
G = SO(2ℓ) then can be defined as a following subgroup of GL(2ℓ) (see i.e. [DS]):

SO(2ℓ) = {g ∈ GL(2ℓ) : g∗ = g}.

Let ǫi,j be elementary (2ℓ× 2ℓ) matrices with unites at (i, j) place and zeroes otherwise.
Introduce the following matrices

Un =

n∑

i=1

ǫℓ−n+i,ℓ−n+i + e−xn−1,1ǫℓ+1,ℓ+1 +

n−1∑

i=1

exn−1,iǫℓ+i+1,ℓ+i+1 + (2.205)

+ezn−1,1ǫℓ,ℓ+1 +
n−1∑

i=1

ezn−1,iǫℓ+i,ℓ+i+1 +
ℓ−n∑

i=1

(ǫi,i + ǫ2ℓ+1−i,2ℓ+1−i),

Ũ ′
n =

n+2∑

i=1

ǫℓ−n+i,ℓ−n+i +
n−1∑

i=2

exn−1,iǫℓ+i+1,ℓ+i+1 +
n−1∑

i=2

ezn−1,iǫℓ+i,ℓ+i+1 + (2.206)

+

ℓ−n∑

i=1

(ǫi,i + ǫ2ℓ+1−i,2ℓ+1−i),

Ũ ′′
n =

n∑

i=1

ǫℓ−n+i,ℓ−n+i + e−xn−1,1ǫℓ+1,ℓ+1 + exn−1,1ǫℓ+2,ℓ+2 + (2.207)

+ezn−1,1(ǫℓ,ℓ+1 + ǫℓ+1,ℓ+2) +

n∑

i=3

ǫℓ+i,ℓ+i +

ℓ−n∑

i=1

(ǫi,i + ǫ2ℓ+1−i,2ℓ+1−i),

Ũn = Ũ ′
nŨ

′′
n =

n∑

i=1

ǫℓ−n+i,ℓ−n+i + e−xn−1,1ǫℓ+1,ℓ+1 +
n−1∑

i=1

exn−1,iǫℓ+i+1,ℓ+i+1 + (2.208)

+ezn−1,1ǫℓ,ℓ+1 +

n−1∑

i=1

ezn−1,iǫℓ+i,ℓ+i+1,
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Vn =
n∑

i=1

exn,n+1−iǫℓ−n+i,ℓ−n+i + e−xn,1ǫℓ+1,ℓ+1 +
n∑

i=2

ǫℓ+i,ℓ+i + (2.209)

+

ℓ−n∑

i=1

(ǫi,i + ǫ2ℓ+1−i,2ℓ+1−i),

Ṽ ′
n =

n−1∑

i=1

exn,n+1−iǫℓ−n+i,ℓ−n+i +

n∑

i=−1

ǫℓ+i,ℓ+i + +

n−2∑

i=1

ezn−1,n−iǫℓ−n+i,ℓ−n+i+1 + (2.210)

+
ℓ−n∑

i=1

(ǫi,i + ǫ2ℓ+1−i,2ℓ+1−i),

Ṽ ′′
n = exn,1ǫℓ,ℓ + e−xn,1ǫℓ+1,ℓ+1 + ezn−1,1(ǫℓ−1,ℓ + ǫℓ,ℓ+1) + (2.211)

+
ℓ−n∑

i=1

(ǫi,i + ǫ2ℓ+1−i,2ℓ+1−i),

Ṽn = Ṽ ′′
n Ṽ

′
n =

n∑

i=1

exn,n+1−iǫℓ−n+i,ℓ−n+i + e−xn,1ǫℓ+1,ℓ+1 +
n∑

i=2

ǫℓ+i,ℓ+i + (2.212)

+

n−1∑

i=1

ezn−1,n−iǫℓ−n+i,ℓ−n+i+1 + ezn−1,1ǫℓ,ℓ+1 +

ℓ−n∑

i=1

(ǫi,i + ǫ2ℓ+1−i,2ℓ+1−i).

Theorem 2.13 i) The image of a generic unipotent element vDℓ ∈ N+ in the tautological
representation π2ℓ : so2ℓ → End(C2ℓ) can be presented in the form

vDℓ = X2X3 · · ·Xℓ, (2.213)

with

X2 = S1Ũ2U
−1
2 S1 · S3(Ũ2U

−1
2 )∗S3 · S1(Ṽ2V

−1
2 )∗S1 · S3Ṽ2V

−1
2 S3

Xn = (Ũ ′
n(U ′

n)−1)∗ · Sn−1ŨnU
−1
n Sn−1 · Sn+1(Ũ

′′
n(U ′′

n)−1)∗Sn+1 · (2.214)

·Sn−1(Ṽ
′′
n (V ′′

n )−1)∗Sn−1 · Sn+1ṼnV
−1
n Sn+1 · (Ṽ

′
n(V ′

n)
−1)∗,

where xℓ,k = 0, k = 1, . . . ℓ is assumed and Si is defined as follows:

Si =
i−1∑

k=1

ǫk,k + ǫi,i+1 + ǫi+1,i +
2ℓ∑

k=i+2

ǫk,k. (2.215)

ii) This defines a parametrization of an open part N
(0)
+ of N+.
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Proof. Let vDℓ(y) be a parametrization of N+ according to (2.191)-(2.192). Let X̃i(y) =
eyei,i+1 be a one-parametric unipotent subgroup in GL(2ℓ), then X̃i(y)

∗ = X̃2ℓ+1−i(y). Embed
elementary unipotent subgroups Xi(y) of SO(2ℓ) into GL(2ℓ) as follows:

Xi(y) = X̃i(y)
∗ · X̃i(y).

This defines a map of an arbitrary regular unipotent element vDℓ into unipotent subgroup
of GL(2ℓ). Let us change the variables in the following way:

y1,n =
(
ezn,1−xn,1 + ezn,1−xn+1,1

)
, n = 1, . . . , ℓ− 1,

y2,n =
(
ezn,1+xn,1 + ezn,1+xn+1,1

)
, n = 1, . . . , ℓ− 1, (2.216)

yk,2r−1 = ezk+r−2,k−1−xk+r−2,k−1, k = 3, . . . , ℓ,

yk,2r = ezk+r−2,k−1−xk+r−1,k−1, r = 1, . . . , ℓ+ 1− k.

Here the conditions xℓ,k = 0, k = 1, . . . , ℓ are implied. By elementary manipulations it is
easy to check that after the change of variables (2.216), the image π2ℓ(v

Dℓ) of vDℓ defined by
(2.191)-(2.192) transforms into the (2.213) -(2.214). Taking into account that the change of

variables (3.63) is invertible we obtain a parametrization of N
(0)
+ ⊂ N+ �

The modified factorized parametrization of a unipotent group N+ defines a particular
realization of a principal series representation of U(so2ℓ) by differential operators. It can be
obtained using the change of variables (3.63) applied to a realization given in Proposition
2.12. We shall use the term Gauss-Givental representation for this realization of representa-
tion of U(so2ℓ).

Proposition 2.13 The following differential operators define a representation πλ of U(so2ℓ)

in Vµ in terms of modified factorized parametrization of N
(0)
+ :

E1 = ex22−z11
ex11

ex11 + ex21

(
−

∂

∂x11
−

ex11

ex11 + ex21

∂

∂z11

)
+ (2.217)

+

ℓ−1∑

k=2

{ pke
xk,1 + pk+1e

xk+1,1

exk,1 + exk+1,1

(
exk,2−zk,1 + exk+1,2−zk,1

)
×

×

(
−

∂

∂x11

−
ex21 − ex11

ex11 + ex21

∂

∂z11
+

∂

∂x21

−
∂

∂x22

+

+
k∑

i=3

(−1)i ∂

∂xi,1
−

∂

∂xi,2
+ (−1)i−1 e

xi,1 − exi−1,1

exi,1 + exi−1,1

∂

∂zi−1,1
−

∂

∂zi−1,2

)
+

+

(
exk+1,2+(−1)kxk+1,1

1

ezk,1+xk,1 + ezk,1+xk+1,1

pke
xk,1 + pk+1e

xk+1,1

exk,1 + exk+1,1
−

−exk,2+(−1)k−1xk,1
1

ezk,1−xk,1 + ezk,1−xk+1,1

pk−1e
xk,1 + pke

xk+1,1

exk,1 + exk+1,1

)
∂

∂zk,1

−

−exk+1,2−zk,1 −
pke

xk,1 + pk+1e
xk+1,1

exk,1 + exk+1,1

∂

∂zk,2

}
,
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E2 = ex22−z11
ex21

ex11 + ex21

( ∂

∂x11
+

ex21

ex11 + ex21

∂

∂z11

)
+ (2.218)

+

ℓ−1∑

k=2

{ pk−1e
xk,1 + pke

xk+1,1

exk,1 + exk+1,1

(
exk,2−zk,1 + exk+1,2−zk,1

)
×

×

(
∂

∂x11

+
ex21 − ex11

ex11 + ex21

∂

∂z11
−

∂

∂x21

−
∂

∂x22

+

+
k∑

i=3

(−1)i−1 ∂

∂xi,1

−
∂

∂xi,2

+ (−1)i e
xi,1 − exi−1,1

exi,1 + exi−1,1

∂

∂zi−1,1

−
∂

∂zi−1,2

)
+

+

(
exk+1,2+(−1)k−1xk+1,1

1

ezk,1+xk,1 + ezk,1+xk+1,1

pk−1e
xk,1 + pke

xk+1,1

exk,1 + exk+1,1
−

−exk,2+(−1)kxk,1
1

ezk,1−xk,1 + ezk,1−xk+1,1

pke
xk,1 + pk+1e

xk+1,1

exk,1 + exk+1,1

)
∂

∂zk,1

−

−exk+1,2−zk,1 −
pk−1e

xk,1 + pke
xk+1,1

exk,1 + exk+1,1

∂

∂zk,2

}
.

Here pk = (1− (−1)k)/2 is the parity of k.

Ek =
( ∂

∂zk−1,k−1
−

∂

∂xk−1,k−1

)(
exk,k−zk−1,k−1 +

ℓ−1∑

n=k

exn,k−zn,k−1 + exn+1,k−zn,k

)
+ (2.219)

+

ℓ−1∑

i=k

( ∂

∂xi,k−1
−

∂

∂ xi,k

) ℓ−1∑

n=i

(
exn,k−zn,k−1 + exn+1,k−zn,k−1

)
+

+

ℓ−1∑

i=k

( ∂

∂zi,k−1
−

∂

∂ zi,k

)(
exi+1,k−zi,k−1 +

ℓ−1∑

n=i+1

exn,k−zn,k−1 + exn+1,k−zn,k−1

)
,

where 2 < k < ℓ and

Eℓ = e−zℓ−1,ℓ−1

( ∂

∂ zℓ−1,ℓ−1
+

∂

∂ xℓ−1,ℓ−1

)
, (2.220)

H1 = 〈µ, α∨
1 〉) + 2

(
−

∂

∂xℓ−1,1

−
∂

∂x11

+ (2.221)

+

ℓ−1∑

n=1

pne
xn,1 + pn+1e

xn+1,1

exn,1 + exn+1,1

∂

∂zn,1

)
−

ℓ−1∑

k=2

∂

∂zk,2
,
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H2 = 〈µ, α∨
2 〉+ 2

( ∂

∂xℓ−1,1
+

∂

∂x11
+ (2.222)

+

ℓ−1∑

n=1

pn−1e
xn,1 + pne

xn+1,1

exn,1 + exn+1,1

∂

∂zn,1

)
−

ℓ−1∑

k=2

∂

∂zk,2
,

where pk = (1− (−1)k)/2.

Hi = 〈µ, α∨
i 〉+

ℓ∑

k=2

ai,k

ℓ−1∑

j=k−1

∂

∂zj,k−1
, 2 < i ≤ ℓ, (2.223)

F1 = −
ℓ−1∑

n=1

(
ezn,1−xn+1,1 + ezn,1−xn+1,1

)[
〈µ, α∨

1 〉 −
∂

∂x11

+ (2.224)

+
ex11

ex11 + ex21

∂

∂z11

]
− exℓ,1−xℓ,2

ℓ−1∑

k=2

[
−

∂

∂xk,1
+

∂

∂xk,2
+

+
exk,1

exk,1 + exk+1,1

∂

∂zk,1
+

exk,1

exk−1,1 + exk,1

∂

∂zk−1,1

] ℓ−1∑

n=k

(
ezn,1−xn+1,1 + ezn,1−xn+1,1

)
,

F2 = −

ℓ−1∑

n=1

(
ezn,1+xn+1,1 + ezn,1+xn+1,1

)[
〈µ, α∨

2 〉+
∂

∂x11
+ (2.225)

+
ex21

ex11 + ex21

∂

∂z11

]
−

ℓ−1∑

k=2

[ ∂

∂xk,1
+

∂

∂xk,2
+

+
exk+1,1

exk,1 + exk+1,1

∂

∂zk,1

+
exk−1,1

exk−1,1 + exk,1

∂

∂zk−1,1

] ℓ−1∑

n=k

(
ezn,1+xn+1,1 + ezn,1+xn+1,1

)
,
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Fk =
(
− 〈µ, αk〉+ (2.226)

+
∂

∂xk−1,k−1
+

∂

∂zk−2,k−2

) ℓ−1∑

n=k−1

(
ezn,k−1−xn,k−1 + ezn,k−1−xn+1,k−1

)
−

−
ℓ−1∑

i=k−1

(
∂

∂zi,k−1

−
∂

∂zi,k−2

)(
ezi,k−1−xi+1,k−1 +

+
ℓ−1∑

j=i+1

ezj,k−1−xj,k−1 + ezj,k−1−xj+1,k−1

)
−

−

ℓ−1∑

i=k

(
∂

∂xi,k−1
−

∂

∂xi,k−2

) ℓ−1∑

j=i+1

(
ezj,k−1−xj,k−1 + ezj,k−1−xj+1,k−1

)
,

where 3 ≤ k ≤ ℓ and xℓ,k = 0 is assumed.

We are going to write down the matrix element (2.12) for g = so2ℓ explicitly using Gauss-
Givental representation defined above. Whittaker vectors ψR and ψL in this representation
should satisfiy the system of differential equations

EiψR(x) = −ψR(x), FiψL(x) = −ψL(x), 1 ≤ i ≤ ℓ. (2.227)

Its solution has the following form.

Lemma 2.10 The following expressions for the left/right Whittaker vectors hold:

ψR = exp
{
−

ℓ−1∑

n=1

(
ezn,1−xn,1 + ezn,1−xn+1,1 + ezn,1+xn,1 + ezn,1+xn+1,1

)
− (2.228)

−

ℓ∑

k=3

ℓ+1−k∑

n=1

(
ezk+n−2,k−1−xk+n−2,k−1 + ezk+n−2,k−1−xk+n−1,k−1

)}
,

ψL = e2µ1x1,1

ℓ∏

n=2

(
exn,1 + exn−1,1

)2µn

× (2.229)

×

ℓ∏

n=1

exp
{
− µn

( n∑

i=1

xn,i − 2

n−1∑

i=1

zn−1,i +

n−1∑

i=1

xn−1,i

)}
×

× exp
{
−

ℓ−1∑

k=1

(
exk+1,k+1−zk,k +

ℓ−1∑

i=k+1

exi,k+1−zi,k + exi+1,k+1−zi,k

)}
,

where we set xℓ,k = 0, k = 1, . . . , ℓ and µn = ıλn−ρn, ρ1 = 0 and ρn = n−1 for 1 < n ≤ ℓ.
(
∑j

i = 0 when j < i).
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Now we are ready to find the integral representation of the pairing (2.12) for g = so2ℓ.
To get an explicit expression for the integrand, one uses the same type of decomposition of
the Cartan element as for other classical groups in the previous subsections:

e−Hx = πλ(exp(−

ℓ∑

i=1

〈ωi, x〉hi)) = eHLeHR,

where

−Hx = HL +HR =

ℓ∑

i=1

µixℓ,i +

ℓ∑

k=3

(xℓ,k − xℓ,k−1)

ℓ−1∑

i=k−1

∂

∂zi,k−1
+ xℓ,2

ℓ−1∑

i=1

∂

∂zi,1
+ (2.230)

+xℓ,1

( ∂

∂xℓ−1,1
+

∂

∂x1,1
−

ℓ−1∑

k=1

(−1)k e
xk+1,1 − exk,1

exk,1 + exk+1,1

∂

∂zk,1

)
,

with

HL =

ℓ∑

k=1

xℓ,k

( ℓ−1∑

i=k

∂

∂xi,k
+

ℓ−1∑

i=k−1

∂

∂zi,k−1

)
, (2.231)

HR = −Hx −HL. (2.232)

We imply that HL acts on the left vector and HR acts on the right vector in (2.12). Taking
into account Proposition 2.10 one obtains the following theorem.

Theorem 2.14 The eigenfunctions of so2ℓ-Toda chain (2.12) admit the integral representa-
tion:

ΨDℓ

λ1,...,λℓ
(xℓ,1, . . . , xℓ,ℓ) =

∫

C

ℓ−1∧

k=1

k∧

i=1

dxk,i ∧ dzk,i eF
Dℓ ,

where

FDℓ = ıλ1x1,1 −
ℓ∑

n=2

ıλn

( n∑

i=1

xn,i − (2.233)

−2
n−1∑

i=1

zn−1,i +
n−1∑

i=1

xn−1,i − 2 ln (exn,1 + exn−1,1)
)
−

−

ℓ−1∑

k=1

(
exk+1,k+1−zk,k +

ℓ−1∑

i=k+1

exi,k+1−zi,k + exi+1,k+1−zi,k

)
−

−

ℓ−1∑

n=1

(
ezn,1−xn,1 + ezn,1−xn+1,1 + ezn,1+xn,1 + ezn,1+xn+1,1

)
−

−
ℓ∑

k=3

ℓ+1−k∑

n=1

(
ezk+n−2,k−1−xk+n−2,k−1 + ezk+n−2,k−1−xk+n−1,k−1

)
,
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where xi := xℓ,i, 1 ≤ i ≤ ℓ and C ⊂ N+ is a middle-dimensional non-compact submani-
fold such that the integrand decreases exponentially at the boundaries and at infinities. In
particular one can take C = Rm, m = l(w0) as a domain of integration.

Example 2.6 For ℓ = 2 the general expression (2.233) acquires the following form

ΨD2
λ1, λ2

(x21, x22) =

∫

C

dx11dz11

(
e−x22 + e−x11

)2ıλ2

× (2.234)

× exp
{
ıλ2(x21 + x22 − 2z11 + x11)− ıλ1x11

}
×

× exp
{
−
(
ez11−x21 + ex22−z11 + e−x22−z11 + ex11−z11 + e−x11−z11

)}
.

One can chose C = R2 as an integration domain.

There is a simple combinatorial description of the potential FDℓ for zero spectrum {λi =
0}. Namely, it can be presented as a sum over arrows in the following diagram.

zℓ−1,1

×

× xℓ,1

��
... × xℓ−1,1

��

// zℓ−1,1

��

// xℓ,2

��

z11

×

× ...

��

. . . . . . . . .

��

. . .

��

x11 // z11 // . . . . . . // xℓ−1,ℓ−1 // zℓ−1,ℓ−1 // xℓ,ℓ

Note that the diagram for Dℓ can be obtained by a factorization of the diagram for A2ℓ−1.
Consider the following involution:

ι : X 7−→ ẇ−1
0 X tẇ0, (2.235)

where ẇ0 is a lift the longest element of A2ℓ−1 Weyl group and X t denotes the standard
transposition. Corresponding action on the modified factorization parameters is given by

ẇ0 : xk,i ←→ −xk,k+1−i (2.236)

This defines a factorization of A2ℓ−1-diagram that produce the diagram for Dℓ. Note that
diagram for Dℓ can be also obtained by erasing the last row of vertexes and arrows on the
right slope from the diagram for Cℓ
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An analog of the monomial relations (2.52) is as follows. Introduce variables ai,k, bi,k,
ci,k, di,k associated with the arrows of the diagram

ak,1 = exk,1+zk−1,1 , ak,i = ezk−1,i−1−xk,i,

bk,1 = exk,1+zk,1 , bk,i = exk,i−zk,i−1 ,

ck,i = ezk,i−xk,i, dk,i = ezk,i−xk+1,i.

(2.237)

Then the following relations hold

bk,ick,i = ak+1,idk,i, ak+1,i+1dk,i = bk+1,i+1ck+1,i, (2.238)

aℓ,1aℓ,2 = exℓ,1+xℓ,2, aℓ,idℓ−1,i−1 = exℓ,i−xℓ,i−1 . (2.239)

2.5.3 Recursion for so2ℓ-Whittaker functions and Q-operator for D
(1)
ℓ -Toda chain

The integral representation (2.233) of so2ℓ-Whittaker functions possesses a recursive struc-
ture over the rank ℓ. For any n = 2, . . . , ℓ let us introduce integral operators QDn

Dn−1
with the

kernels QDn

Dn−1
(xn; xn−1;λn) defined as follows

QDn

Dn−1
(xn; xn−1;λn) =

∫ n−1∧

i=1

dzn,i

(
exn−1,1 + exn,1

)2ıλn

×

× exp
{
− ıλn

( n∑

i=1

xn,i − 2

n−1∑

i=1

zn−1,i +

n−1∑

i=1

xn−1,i

)}
×

×QDn

Cn−1
(xn; zn−1) Q

Cn−1

Dn−1
(zn−1; xn−1),

where

QDn

Cn−1
(xn; zn−1) = exp

{
−
(
exn,1+zn−1,1 +

n−1∑

i=1

(
ezn−1,i−xn,i + exn,i+1−zn−1,i

))}
, (2.240)

Q
Cn−1

Dn−1
(zn−1; xn−1) = exp

{
−
(
exn−1,1+zn−1,1+

+
n−2∑

i=1

(
ezn−1,i−xn−1,i + exn−1,i+1−zn−1,i

)
+ ezn−1,n−1−xn−1,n−1

)}
,

and for n = 1 we define
QD1

D0
(x1,1;λ1) = eıλ1x1,1 .

Using QDn

Dn−1
, n = 1, . . . , ℓ the integral representation (2.233) can be written in the recursive

form.
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Theorem 2.15 The eigenfunction for so2ℓ-Toda chain can be written in the following re-
cursive form:

ΨDℓ

λ1,...,λℓ
(x1, . . . , xℓ) =

∫

C

ℓ−1∧

k=1

k∧

i=1

dxk,i

ℓ∏

k=1

QDk

Dk−1(xk; xk−1;λk), (2.241)

or equivalently

ΨDℓ

λ1,...,λℓ
(xℓ,1, . . . , xℓ,ℓ) =

∫

Cℓ

ℓ−1∧

i=1

dxℓ−1,iQ
Dℓ

Dℓ−1
(xℓ; xℓ−1;λℓ)Ψ

Dℓ−1

λ1,...,λℓ−1
(xℓ−1,1, . . . , xℓ−1,ℓ−1),

where we assume xn := xℓ,n, 1 ≤ n ≤ ℓ. Here C ⊂ N+ is a middle-dimensional non-
compact submanifold such that the integrand decreases exponentially at the boundaries and
at infinities. In particular the domain of integration can be chosen to be C =Rm, where
m = l(w0).

As for other classical Lie algebras, different from glℓ+1, the specailization to zero spectrum
{λn = 0} revieals a more refined recursive structure. In this case the kernel of the operator

QDn

Dn−1
is reduced to a convolution of two kernels QDn

Cn−1
(xn; zn−1) and Q

Cn−1

Dn−1
(zn−1; xn−1).

The corresponding integral operators QDn

Cn−1
, Q

Cn−1

Dn−1
can be regarded as elementary inter-

twiners relating Toda chains for Dn, Cn−1 and Cn−1, Dn−1 root systems. Thus for quadratic
Hamiltonians one can directly check the following relations

Lemma 2.11 The operators QDn

Dn−1
, QDn

Cn−1
and Q

Cn−1

Dn−1
satisfy the following intertwining re-

lations with quadratic Toda Hamiltonians.

1. Operators QDn

Cn−1
and Q

Cn−1

Dn−1
intertwine quadratic Hamiltonians of C- and D-Toda

chains:

HDn

2 (xn)QDn

Cn−1
(xn, zn−1) = QDn

Cn−1
(xn, zn−1)H

Cn−1

2 (xn−1), (2.242)

HCn

2 (zn)QCn

Dn
(zn, xn) = QCn

Dn
(zn, xn)HDn

2 (xn). (2.243)

2. Operator QDn

Dn−1
for λn = 0 intertwines Hamiltonians HDn

2 and H
Dn−1

2 :

HDn

2 (xn)QDn

Dn−1
(xn; xn−1;λn = 0) = QDn

Dn−1
(xn; xn−1;λn = 0)H

Dn−1

2 (xn−1), (2.244)

where

HCn

2 = −
1

2

n∑

i=1

∂2

∂z2
i

+ 2e2z1 +

n−2∑

i=1

ezi+1−zi , (2.245)

HDn

2 = −
1

2

n∑

i=1

∂2

∂x2
i

+ ex1+x2 +

n−1∑

i=1

exi+1−xi. (2.246)
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The integral kernel of the operator QDn

Dn−1
(xn; xn−1) at λn = 0 can be succinctly encoded

into the following diagram

zn−1,1

×

× xn,1

��
xn−1,1 // zn−1,1

��

// xn,2

��

xn−1,2 // zn−1,2

��

// . . .

. . .
. . .

��

// xn,n−1

��

xn−1,n−1 // zn−1,n−1 // xn,n

(2.247)

Here the upper and lower descending paths of the oriented diagram correspond to the
kernels of elementary intertwiners QDn

Cn−1
and QCn

Dn−1
respectively. The convolution of the

kernels QDn

Cn
and Q

Cn−1

Dn−1
corresponds to the integration over the variables zn−1,i associated

with the inner vertexes of the sub-diagram (2.247.)

Similarly to the cases of other classical series of Lie algebras recursion operators QDn

Dn−1

can be considered as degenerations of Baxter Q-operators for affine D
(1)
ℓ -Toda chains. Let us

recall the root data for D
(1)
ℓ . Simple roots of the affine root system D

(1)
ℓ can be represented

as vectors in Rℓ in the following way

α1 = ǫ1 + ǫ2, αi+1 = ǫi+1 − ǫi, 1 ≤ i ≤ ℓ− 1,

αℓ+1 = −ǫℓ − ǫℓ−1,

and Dynkin diagram is given by

α1

BB
BB

BB
BB

αℓ

α3 . . . αℓ−1

wwwwwwwww

GGGGGGGG

α2

||||||||

αℓ+1
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The corresponding D
(1)
ℓ -Toda chain quadratic Hamiltonian is defined by

H
D

(1)
ℓ

2 = −
1

2

ℓ∑

i=1

∂2

∂x2
i

+ ex1+x2 +

ℓ−2∑

i=1

exi+1−xi + gexℓ−xℓ−1 + ge−xℓ−xℓ−1. (2.248)

Define the Baxter Q-operator of D
(1)
ℓ -Toda chain as an integral operator with the following

integral kernel

Q
D

(1)
ℓ (x(ℓ), y(ℓ), λ) =

∫ ℓ−1∧

i=1

dzi

(
ex1 + ey1

)2ıλ(
e−xℓ + e−yℓ

)−2ıλ

×

× exp
{
− ıλ

( ℓ∑

i=1

xi − 2
ℓ−1∑

i=1

zi +
ℓ∑

i=1

yi

)}
× (2.249)

×Q
D

(1)
ℓ

C
(1)
ℓ−1

(x1, . . . , xℓ ; z1, . . . , zℓ−1) Q
C

(1)
ℓ−1

D
(1)
ℓ

(z1, . . . , zℓ−1 ; y1, . . . , yℓ),

where

Q
D

(1)
ℓ

C
(1)
ℓ−1

(x1, . . . , xℓ ; z1, . . . , zℓ−1) = (2.250)

= exp
{
ez1+x1 +

ℓ−1∑

i=1

(
ezi−xi + exi+1−zi

)
+ ge−xℓ−zℓ−1

}
,

and

Q
D

(1)
ℓ

C
(1)
ℓ−1

(x1, . . . , xℓ; z1, . . . , zℓ) = Q
C

(1)
ℓ−1

D
(1)
ℓ

(z1, . . . , zℓ; x1, . . . , xℓ). (2.251)

Here we use the following notations x(ℓ) = (x1, . . . , xℓ), y
(ℓ) = (y1, . . . , yℓ).

Proposition 2.14 The Q-operator (2.249) commutes with quadratic Hamiltonian of the

D
(1)
ℓ -Toda chain:

HD
(1)
ℓ (x(ℓ))Q

D
(1)
ℓ (x(ℓ), y(ℓ)) = Q

D
(1)
ℓ (x(ℓ), y(ℓ))H

D
(1)
ℓ (y(ℓ)). (2.252)

Now we will demonstrate that recursion operator QDℓ

Dℓ−1
can be considered as a degeneration

of Baxter Q-operators for D
(1)
ℓ . Let us introduce a slightly modified recursion operator with

the kernel: QDℓ

Dℓ−1⊕D1
:

QDℓ

Dℓ−1⊕D1
(x(ℓ) , y(ℓ), λ) = eıλyℓQDℓ

Dℓ−1
(x(ℓ) , y(ℓ−1) , λ), (2.253)

where we use the notations y(ℓ−1) = (y1, . . . , yℓ−1). This operator intertwines Hamiltonians
of so2ℓ- and so2ℓ−2 ⊕ so2-Toda chains. For instance we have for quadratic Hamiltonians

HDℓ

2 (x(ℓ))QDℓ

Dℓ−1⊕D1
(x(ℓ) , y(ℓ), λ) = QDℓ

Dℓ−1⊕D1
(x(ℓ) , y(ℓ), λ)

(
H

Dℓ−1

2 (y(ℓ−1)) +HD1
2 (yℓ)

)
,
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where HD1
2 (yℓ) = −1

2

(
∂2/∂y2

ℓ

)
. Obviously the projection of the above relation on the sub-

space of functions F (y(ℓ)) = exp(ıλyℓ)f(y(ℓ−1)) recovers the genuine recursion operator sat-
isfying:

HDℓ

2 (x(ℓ))QDℓ

Dℓ−1
(x(ℓ) , y(ℓ−1) , λ) = QDℓ

Dℓ−1
(x(ℓ) , y(ℓ−1) , λ)

(
H

Dℓ−1

2 (y(ℓ−1)) +
1

2
λ2
)
. (2.254)

Let us introduce a one-parameter family of the operators with the kernels

Q
D

(1)
ℓ (x(ℓ), y(ℓ), λ; ε) := εıλeıλyℓ

∫ ℓ−1∧

i=1

dzi

(
ex1 + ey1

)2ıλ(
εe−xℓ+yℓ + 1

)−2ıλ

× (2.255)

× exp
{
− ıλ

( ℓ∑

i=1

xi − 2

ℓ−1∑

i=1

zi +

ℓ−1∑

i=1

yi

)}
×

×Q
D

(1)
ℓ

C
(1)
ℓ−1

(x1, . . . , xℓ ; z1, . . . , zℓ−1) Q
C

(1)
ℓ−1

D
(1)
ℓ

(z1, . . . , zℓ−1 ; y1, . . . , yℓ; ε),

where

Q
D

(1)
ℓ

C
(1)
ℓ−1

(x1, . . . , xℓ ; z1, . . . , zℓ−1) = (2.256)

= exp
{
ez1+x1 +

ℓ−1∑

i=1

(
ezi−xi + exi+1−zi

)
+ ge−xℓ−zℓ−1

}
,

and

Q
C

(1)
ℓ−1

D
(1)
ℓ

(z1, . . . , zℓ−1 , y1, . . . , yℓ; ε) =

= exp
{
−
(
ez1+y1 +

ℓ−2∑

i=1

(
ezi−yi + eyi+1−zi + ezℓ−1−yℓ−1

)
+ (2.257)

+εeyℓ−zℓ−1 + ε−1ge−xℓ−zℓ−1

)}
.

These operators are obtained by a shift of the variable yℓ = yℓ + ln ε in (2.240). Then the

following relation between Q-operator for D
(1)
ℓ -Toda chain and (modified) recursion operator

for so2ℓ-Whittaker function holds

QDℓ

Dℓ−1⊕D1
(x(ℓ) , y(ℓ), λ) = lim

ε→0 ε−1g→0
ε−ıλQ

D
(1)
ℓ (x(ℓ) , y(ℓ) , λ ; ε). (2.258)
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3 Part II. Proofs

Let G be a complex connected simply-connected semisimple Lie group of finite rank ℓ, g =
Lie(G) be the corresponding semisimple Lie algebra with the Chevalley generators fi, hi, ei.
Let us fix a Borel subgroup B+ and let T be the maximal torus T ⊂ B+. This defines a
pair N+, N− of opposite unipotent subgroups in G, N+ ⊂ B+. Let Γ be the set of vertices
of Dynkin graph of g, {αi, i ∈ Γ} be the set of simple roots, {γk, k = 1, . . . , 1

2
(dim g/h)} be

the set of all positive roots and {α∨
i , i ∈ Γ} be the set of simple coroots. For every i ∈ Γ

there is a group homomorphism

ϕi : SL2 −→ G, (3.1)

defined as follows. Introduce a set of one-parameter subgroups etei = Xi(t) ⊂ N+, etfi =
Yi(t) ⊂ N− and ethi = α∨

i (t) ⊂ T . Homomorphisms (3.1) are defined as

ϕi(e
te) = etei , ϕi(e

tf ) = etfi , ϕi(e
th) = α∨

i (t), (3.2)

where e, f, h are standard generators of sl2. Let us fix the lifts ṡi ⊂ G, ṡ ⊂ SL(2) of the
generators si of the Weyl group of G and the generator of the Weyl group of SL(2)

ṡ = eee−fee, ṡi = eeie−fieei. (3.3)

Thus defined lifts of Weyl group generators are obviously compatible ϕi(ṡ) = ṡi with homo-
morphisms (3.1). We have the following relations

ṡ−1 f ṡ = −e, ṡ−1
i fi ṡi = −ei. (3.4)

The action w0(αi) = −αi∗ of the maximal length element w0 of the Weyl group on simple
roots defines an involution i 7→ i∗. The corresponding action of ẇ0 is given by

ẇ−1
0 fi ẇ0 = −ei∗ . (3.5)

Remark 3.1 For classical Lie groups one has i∗ = ℓ + 1− i for G = SL(ℓ + 1), i∗ = i for
G = SO(2ℓ+ 1) and for G = Sp(2ℓ). In the case G = SO(2ℓ) (for ℓ ≥ 2) the action of the
involution ∗ is as follows:

∗ : 1 7−→

{
1 , ℓ even
2 , ℓ odd

2 7−→

{
2 , ℓ even
1 , ℓ odd

(3.6)

k∗ = k , 2 < k ≤ ℓ,

where the enumeration of roots of SO(2ℓ) is given by (2.188).

In the following we will be considering matrix elements of finite-dimensional representa-
tions Vωi

of g corresponding to the fundamental weights ωi, i ∈ Γ. Let ξ+
ωi

and ξ−ωi
be highest
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and lowest vectors in Vωi
such that 〈ξ−ωi

|ξ+
ωi
〉 = 1. For the lift (3.3) of the elements of the

Weyl group we have (see e.g. [K] Lemma 3.8, [FZ] eq. (2.29))

ẇ−1
0 ξ+

ωi
= ξ−ωi

, ṡ−1
i ξ+

ωi
= fiξ

+
ωi
. (3.7)

Consider the following parametrization of a generic group element g ∈ G

g = g(−) g(0) g(+) = exp(
∑

α∈∆+

u−αfα) exp(

ℓ∑

i=1

uihi) exp(
∑

α∈∆+

uαeα). (3.8)

For coordinates ui corresponding to Cartan generators hi and for coordinates u±αi
corre-

sponding to simple root generators eαi
, fαi

there exits simple expressions in terms of matrix
elements of fundamental representations Vωi

:

uαi
(g) =

〈ξ−ωi
|πi(g)πi(fi)|ξ

+
ωi
〉

〈ξ−ωi
|πi(g)|ξ+

ωi
〉

, u−αi
(g) =

〈ξ−ωi
|πi(g)πi(ei)|ξ

+
ωi
〉

〈ξ−ωi
|πi(g)|ξ+

ωi
〉

, (3.9)

ui(g) = 〈ξ−ωi
|πi(g)|ξ

+
ωi
〉,

where πi ≡ πωi
is a fundamental representation in Vωi

. Define generalized twisted minors as

∆ωi,ẇ(g) = 〈ξ−ωi
|πωi

(g)πωi
(ẇ)|ξ+

ωi
〉, g ∈ G. (3.10)

Then coordinate ui and uαi
of a twisted unipotent element vẇ−1

0 ∈ G (where v ∈ N+) can
be expressed in terms of twisted minors (3.10) as follows

eui(vẇ−1
0 ) = ∆ωi,ẇ

−1
0

(v),

uαi
(vẇ−1

0 ) =
〈ξ−i |πi(vẇ

−1
0 )πi(fi)|ξ

+
i 〉

〈ξ−i |πi(vẇ
−1
0 )|ξ+

i 〉
=
〈ξ−i |πi(v)πi(ẇ

−1
0 )πi(ṡ

−1
i )|ξ+

ωi
〉

〈ξ−i |πi(vẇ
−1
0 )|ξ+

ωi
〉

= (3.11)

= −
〈ξ−ωi
|πi(v)πi(ei∗)πi(ẇ

−1
0 )|ξ+

ωi
〉

〈ξ−i |πi(vẇ
−1
0 )|ξ+

i 〉
=

∆ωi,ẇ
−1
0 ṡ−1

i
(v)

∆ωi,ẇ
−1
0

(v)
.

In the following we will use the shorthand notations

∆′
i(v) : = 〈ξ−ωi

|πi(vei∗ẇ
−1
0 )ξ+

ωi
〉 = −∆ωi,ẇ

−1
0 ṡ−1

i
(v) , (3.12)

∆i(v) : = ∆ωi,ẇ
−1
0

(v).

3.1 Measure on N+: Proof of Lemma 2.2

In this part we derive an explicit expression (2.21) for a measure dµN+(x) on a unipotent
subgroup N+ ⊂ G of any classical Lie group using a factorized parametrization (2.20) of
N+. Recall that for a reduced word Iℓ = (i1, . . . , imℓ

) of w0 there is a birational isomorphism
Cmℓ → N+. Particularly, given an unipotent element v ∈ N+ the following factorized
representation holds.

v(t) = Xi1(t1)Xi2(t2) · . . . ·Xim(tmℓ
), (3.13)

where Xi(t) = etei . The variables ti are called factorization parameters of v.
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Proposition 3.1 Let v(t) ∈ N
(0)
+ be a factorized parametrization (3.13) corresponding to a

reduced word I = (i1, . . . , imℓ
). Then

dµN+(v(t)) =
ℓ∏

k=1

mℓ∏

i=1

(ti)
〈ωk ,γi〉 ·

mℓ∧

i=1

dti
ti
, (3.14)

is a restriction of the right-invariant measure dµN+ to N
(0)
+ , that is

dµN+(v(t)) = dµN+(v(t) ·Xj(τ)), j = 1, . . . , ℓ. (3.15)

Proof. To prove the Proposition consider a dependence on a choice of a reduced word
I = (i1, . . . , im) explicitly. Let tI = (tI1, . . . , t

I
mℓ

) be factorization parameters corresponding
to a reduced word I. According to [BZ] (Theorem 4.3) one has the following expressions for
matrix elements

∆k(t
I) := ∆k(x(t

I)w−1
0 ) =

mℓ∏

i=1

(tIi )
〈ωk,γi〉 (3.16)

Two parameterizations x(tI) and x(tI
′

) of N
(0)
+ corresponding to reduced words I and I ′ are

related by a birational transformation.

Lemma 3.1 For any reduced decompositions of w0 corresponding to reduced words I and I ′

the following relations hold

1.

∆k(t
I) = ∆k(t

I′), 1 ≦ k ≦ ℓ. (3.17)

2.

mℓ∧

j=1

dtIj
tIj

=

mℓ∧

j=1

dtI
′

j

tI
′

j

. (3.18)

Proof of Lemma. It is shown in [Lu] that birational transformations RI′

I of N+ cor-
responding to any two reduced words I and I ′ can be represented as a composition of
elementary transformations (so-called 3- and 4-moves). Therefore to prove (3.17), (3.18)
one should check these identities for the elementary moves only in the following In the case
of classical Lie groups it is enough to consider the following two birational transformations
RI′

I : tI → tI
′

1. Xi(t1)Xj(t2)Xi(t3) = Xj(t
′
1)Xi(t

′
2)Xj(t

′
3) for aij = aji − 1,

2. Xj(t1)Xi(t2)Xj(t3)Xi(t4) = Xi(t
′
1)Xj(t

′
2)Xi(t

′
3)Xj(t

′
4) for aij = −1 and aji = −2,
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where we denote t = tI and t′ = tI
′

.

The proof of the identity (3.17) for elementary 3- and 4-moves follows straightforwardly
from the results in [BZ]. Thus we consider only the proof of (3.18) below.

1) In the case aij = aji = −1 we should consider the birational transformation between
the parametrizations associated with reduced words I = (. . . iji . . .) and I ′ = (. . . jij . . .).
We have the following relation between parameters

v = Xi(t1)Xj(t2)Xi(t3) = Xj(t
′
1)Xi(t

′
2)Xj(t

′
3),

where

t′1 =
t2t3
t1 + t3

, t′2 = t1 + t3, t′3 =
t1t2
t1 + t3

.

Direct check gives

d log t′1 ∧ d log t′2 ∧ d log t′3 = d log t1 ∧ d log t2 ∧ d log t3 . (3.19)

2) In the case aij = −1, aji = −2 we should consider the birational transformation
between the parameterizations associated with reduced words I = (. . . jiji . . .) and I ′ =
(. . . ijij . . .). Thus we have the following relation between parameters

X = Xj(t1)Xi(t2)Xj(t3)Xi(t4) = Xi(t
′
1)Xj(t

′
2)Xi(t

′
3)Xj(t

′
4),

with

t′1 =
t2t

2
3t4

t21t2 + (t1 + t3)2t4
, t′2 =

t21t2 + (t1 + t3)
2t4

t1t2 + (t1 + t3)t4
, (3.20)

t′3 =

(
t1t2 + (t1 + t3)t4

)2

t21t2 + (t1 + t3)2t4
, t′4 =

t1t2t3
t1t2 + (t1 + t3)t4

.

One can readily verify the following identity:

d log t′1 ∧ d log t′2 ∧ d log t′3 ∧ d log t′4 = d log t1 ∧ d log t2 ∧ d log t3 ∧ d log t4.

This completes the proof of the Lemma.

Now we can complete the proof of the Proposition 3.1. To establish the right-invariance
of measure dµN+(v) we use (3.17), (3.18). For any simple root αi one can find a reduced
word I(αi) = (j1, . . . , jm) with m = mℓ such that jm = i. Then identities (3.17), (3.18)
imply that

dµN+(v(tI(αi))) = dµN+(v(tIℓ)).

In this way we obtain

v(tI(αi)) ·Xi(τ) = Xj1(t1) · . . . ·Xjm−1(tm−1)Xi(tm + τ) (3.21)

By construction the factorization parameter tm enters only in the (monomial) expression for
∆j(v(t)) as a homogeneous factor of degree one. In this way, the factorization parameter
tm appears in the measure dµN+ only in the αj-component ∆j(v(t))d ln tm, and hence, the
measure dµN+ is invariant under the shift tm → tm + τ . Thus the measure is right-invariant
with respect to the action of Xj(τ) for any j = 1, . . . , ℓ, and eventually it is right-invariant
with respect to the whole N+. This completes the proof of Lemma 2.2.
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3.2 Whittaker vectors for classical Lie groups:

Proof of Lemma 2.1 and Proposition 2.1

In this subsection we derive expressions for left and right g-Whittaker vectors in terms of
the matrix elements of finite-dimensional representations g. The Whittaker vectors satisfy
the following equations

eiψR = −ψR , fiψL = −ψL , i = 1, . . . , ℓ. (3.22)

Integrating actions of the nilpotent Lie subalgebras n± ⊂ g to actions of the nilpotent Lie
subgroups N± ⊂ G, equations on g-Whittaker can be written in terms of one-parameter
subgroups Xi(t) ⊂ N+, Yi(t) ⊂ N− as follows

πλ(Xi(t))ψR(v) = e−tψR(v), πλ(Yi(t))ψL(v) = e−tψL(v), i = 1, . . . , ℓ, v ∈ N+.

Equivalently one has for any z± ∈ N±

πλ(z+)ψR(v) = exp
{
−

ℓ∑

i=1

(z+)i

}
ψR(v), πλ(z−)ψL(v) = exp

{
−

ℓ∑

i=1

(z−)i

}
ψL(v), (3.23)

where (z±)i := u±αi
(z±). Construction of the right Whittaker vector is pretty straightfor-

ward. Note that we have a simple identity

uαi
(v1 v2) = uαi

(v1) + uαi
(v2), v1, v2 ∈ N+.

Then from (3.23) we infer that the right Whittaker vector is given by a multiplicative char-
acter of the maximal unipotent subgroup N+

ψR(v) = exp
{
−

ℓ∑

i=1

vi

}
= exp

{
−

∆ωi,ṡ
−1
i

(v)

∆ωi,1(v)

}
, v ∈ N+. (3.24)

where vi := uαi
(v) and we use (3.9) to express vi in terms of matrix elements.

To construct the left Whittaker vector in terms of matrix elements we use an inner auto-
morphism of G, acting on z ∈ G as zτ = ẇ−1

0 zẇ0. Taking into account that ẇ−1
0 Xi∗(−t)ẇ0 =

Yi(t) we have ẇ−1
0 N+ẇ0 = N−. Now the equation for the left Whittaker

πλ(Yi(t))ψL(v) = e−tψL(v), i = 1, . . . , ℓ

can be written in the following form

πλ(z
τ )ψL(v) = exp

{
−

ℓ∑

i=1

zi

}
ψL(v), z ∈ N+, (3.25)

The left Whittaker vector can be obtained by the twist of the right vector

ψL(v) = ψR(vẇ−1
0 )
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where the function ψR is considered as a B−-equivariant function on G (see (2.9) for the
precise definition). Using Gauss decomposition and the parametrization (3.8), (3.9) we get
for the left Whittaker vector

ψL(v) = e〈ıλ−ρ,
Pℓ

i=1 ui(vẇ−1
0 )hi〉 e

P

i uαi
(vẇ−1

0 ).

In terms of the matrix elements of finite-dimensional representations we have the following
representation

ψL(v) =

ℓ∏

i=1

∆ωi,ẇ
−1
0

(v)〈ıλ−ρ,α∨

i 〉 · exp
{∆ωi,ẇ

−1
0 ṡ−1

i
(v)

∆ωi,ẇ
−1
0

(v)

}
=

=
ℓ∏

i=1

∆i(v)
〈ıλ−ρ,α∨

i 〉 exp
{
−

∆′
i(v)

∆i(v)

}
.

(3.26)

This completes the proof of Lemma 2.1. The proof of the Proposition 2.1 is then obtained
by combining the expressions for right Whittaker vector and left Whittaker vector twisted
by the action of Cartan generator exp hx = exp−(

∑ℓ
i=1〈ωi, x〉hi).

3.3 Explicit evaluation of matrix elements

To construct integral representations of Whittaker functions one should express various ma-
trix elements entering the integral formulas (2.19) using factorized and modified factorized
parametrizations of group elements. This can be done rather straightforwardly using results
of [BZ], [?]. Below we shall use a recursive structure of reduced word I corresponding to
a maximal length element w0 of Weyl group of classical Lie algebras. This recursive struc-
ture translates into recursive formulas for the relevant ratios of matrix elements. Resolving
recursive equations we find explicit expressions of ψL and ψR in a (modified) factorized
parametrization. This provides corresponding integral representations for Whittaker func-
tions of classical Lie groups. In the case of the modified factorized parametrization we obtain
a generalization of Givental integral representation for g = glℓ+1.

3.3.1 Expressions for glℓ+1-matrix elements:

Proofs of Theorem 2.1 and Theorem 2.3

In this subsection we introduce expressions for matrix elements relevant for the construction
of integral representations of glℓ+1-Whittaker functions using factorized parametrization of
an open part of N+ ⊂ GL(ℓ + 1). This provides a proof of the integral representations of
glℓ+1-Whittaker functions presented in Part I.

The eigenfunctions of glℓ+1 and slℓ+1 Toda chains differ by a simple factor (2.31), and
the Whittaker vectors ψL, ψR are the same for both Lie algebras. Thus we use the slℓ+1

root data for calculations of the matrix elements ∆ωi,ẇ
−1
0

(v), ∆ωi,ẇ
−1
0 ṡ−1

i
(v), i = 1, . . . , ℓ in

the fundamental representations of slℓ+1 and set in addition ∆ω
ℓ+1,ẇ

−1
0

(v) = 1. The slℓ+1

root data given by (2.28). Reduced decomposition w0 = si1si2 · · · sim of the maximal length
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element w0 ∈W corresponding to a reduced word Iℓ = (i1, . . . , im) withm = mℓ = ℓ(ℓ+1)/2,
provides a total ordering of positive co-roots by R∨

+ = {γk = si1 · · · sik−1
α∨

k } of slℓ+1. We
consider a decomposition of w0 described by the following reduced word

Iℓ = (1, 21, . . . , (ℓ . . . 21)).

Corresponding ordering of positive co-roots is given by:

γ∨1 = α∨
1 ,

γ∨2 = α∨
1 + α∨

2 ,
γ∨3 = α∨

2 ,
. . .

γ∨mℓ−1+1 = α∨
1 + . . .+ α∨

ℓ ,
...
γ∨mℓ

= α∨
ℓ .

(3.27)

Recursive parametrization of an open part N
(0)
+ of N+ corresponding to a reduced word Iℓ

is as follows. Given vAℓ ∈ N
(0)
+ we have

vAℓ(y) = X1(y)X2(y) · . . . ·Xℓ(y) , (3.28)

where
Xk(y) = Xk(yk,nk,k

) · . . . ·X2(y2,nk,2
)X1(y1,nk,1

),

and X1 = X1(y11). Here we adopt the following notations. Let |Iℓ| = mℓ be the length of
w0. For the root system of type Aℓ one has mℓ = ℓ(ℓ + 1)/2. Then for any k ∈ {1, . . . , ℓ}
consider a subword

Ik = (i1, . . . , ik) ⊂ Iℓ = (i1, . . . , ik, ik+1, . . . , iℓ),

with |Ik| = mk = k(k + 1)/2. Let Ak be a corresponding root subsystem in R+ and
vCk = X1 · · ·Xk be a factorized parametrization of the corresponding subgroup. Factorization
parameters for vAk(y) can be naturally enumerated as {yi,n} with 1 ≤ i ≤ k, 1 ≤ n ≤ nk,i

and

nk,i = k + 1− i , 1 ≤ i ≤ ℓ. (3.29)

We are interested in explicit expressions for the following matrix elements in terms of
factorization parameters {yi,n}

∆i(v) := 〈ξ−ωi
|πi(vẇ

−1
0 ) |ξ+

ωi
〉, ∆′

i(v) := 〈ξ−ωi
|πi(vei∗ẇ

−1
0 ) |ξ+

ωi
〉,

where πi = πωi
is a fundamental representation with the highest weight ωi, ξ

+
ωi

and ξ−ωi

are the highest and lowest weight vectors in the representation πi such that 〈ξ+
ωi
| ξ−ωi
〉 = 1.

Note that for Lie algebra slℓ+1 according to (3.5) we have i∗ = ℓ + 1 − i. The proof of the
following statement is obtained by an iterative evaluation of the matrix elements taking into
account Serre relations and defining ideals of the fundamental representations and using the
technique of [BZ].

Lemma 3.2

∆i(v)
Aℓ =

( i∏

k=1

yℓ+1−k,i

)
∆i(v)

Aℓ, i = 1, . . . , ℓ,
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(∆′
i(v)

∆i(v)

)Aℓ

= exℓ,ℓ−i+1−xℓ+1,ℓ−i+1 +
exℓ,ℓ−i+1−xℓ,ℓ−i

exℓ+1,ℓ−i+1−xℓ+1,ℓ−i

(∆′
i(v)

∆i(v)

)Aℓ−1

, i = 1, . . . ℓ− 1, (3.30)

(∆′
ℓ(v)

∆ℓ(v)

)Aℓ

=
1

y1,ℓ
,

for k = 2, . . . , ℓ− 1.

The matrix elements then can be found by resolving the recursive relations (3.30).

Lemma 3.3 Let v be defined by (2.32) and (2.33). The following relations for matrix ele-
ments of v in terms of the variables yi,k hold:

(
∆ωi,ṡi

(v)
)Aℓ

=
ℓ∑

n=i

yi,n, i = 1, . . . , ℓ,

(
∆ωi,ẇ

−1
0

(v)
)Aℓ

=

ℓ∏

k=i

i∏

n=1

yk+1−n,n, (3.31)

(∆′
k(v)

∆k(v)

)Aℓ

=
1

yℓ+1−k,k

(
1 +

ℓ−k∑

n=1

n∏

i=1

yℓ+1−k−i,k+1

yℓ+1−k−i,k

)
,

(∆′
ℓ(v)

∆ℓ(v)

)Aℓ

=
1

y1,ℓ
, k = 2, . . . , ℓ− 1.

Combining these expressions with the expression (2.21) for the invariant measure on N+ and
substituting into (2.17), (2.18) and (2.19) one completes the proof of Theorem 2.1.

Now consider an integral representation for glℓ+1-Whittaker function in a modified fac-
torized parametrization (2.40). We start with an analog of the recursive relations (3.30) for
matrix elements in the modified factorized parametrization. To simplify the formulation of
the recursive relations it turns out to be useful to consider a twisted version

yi,n = exℓ+1,i−xℓ+1,i+1exn+i,i+1−xn+i−1,i , (3.32)

of the modified parametrization (2.40) by taking into account the action of the part HR of
the Cartan generators (2.46). The simple change of variables (3.32) applied to (3.30) gives
the following.

Lemma 3.4 1. In the modified factorized parametrization (3.32) recursive relations (3.30)
are given by

(∆′
i(v)

∆i(v)

)Aℓ

= exℓ,ℓ−i+1−xℓ+1,ℓ−i+1 +
exℓ,ℓ−i+1−xℓ,ℓ−i

exℓ+1,ℓ−i+1−xℓ+1,ℓ−i

(∆′
i(v)

∆i(v)

)Aℓ−1

. (3.33)
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2. Solution of the recursive equations read as

(∆′
i(v)

∆i(v)

)Aℓ

=
ℓ+1−i∑

n=1

exn+i−1,n−xn+i,n , i = 1, . . . , ℓ, (3.34)

(
∆ωi,ẇ

−1
0

(v)
)Aℓ

= exp
{ i∑

n=1

(xℓ+1,n − xi,n)
}
, 1 ≤ i ≤ ℓ, (3.35)

( ∆i(v)

∆i+1(v)

)Aℓ

= e−xℓ+1,i+1 exp
{ i+1∑

k=1

xi+1,k −
i∑

k=1

xi,k

}
,

where ∆ℓ+1(v) = 1 is assumed.

Now substitute (3.34), (3.35) into (2.17), (2.18) we obtain Whittaker vectors in the parametriza-
tion (3.32). Taking {xℓ,k = 0} we recover the expressions for Whittaker vectors given in
Lemma 2.4. To prove the Theorem 2.3 one remains to take into account the measure dµN+

in the modified factorized parametrization. This completes the proofs of the Theorem 2.3.

3.3.2 Expressions for so2ℓ+1-matrix elements:

Proofs of Theorem 2.4 and Theorem 2.6

In this subsection we introduce expressions for matrix elements relevant for the construction
of integral representations of so2ℓ+1-Whittaker functions using factorized parametrization of
an open part of N+ ⊂ SO(2ℓ+ 1). This provides a proof of the integral representations of
so2ℓ+1-Whittaker functions presented in Part I.

We are using the root data given by (2.64). Reduced decomposition w0 = si1si2 · · · simℓ

of the maximal length element w0 ∈ W corresponding to a reduced word Iℓ = (i1, . . . , imℓ
)

with mℓ = ℓ2 provides a total ordering of positive coroots by R∨
+ = {γk = si1 · · · sik−1

α∨
k } of

so2ℓ+1. We consider a decomposition of w0 described by the following reduced word

Iℓ = (1, 212, . . . , (ℓ . . . 212 . . . ℓ)).

Corresponding ordering of positive co-roots is given by:

γ∨1 = α∨
1 ,

γ∨2 = α∨
1 + α∨

2 ,
γ∨3 = α∨

1 + 2α∨
2 ,

γ∨4 = α∨
2 ,

. . . (3.36)

γ∨(ℓ−1)2+1 = α∨
1 + 2(α∨

2 + . . .+ α∨
ℓ−1) + α∨

ℓ ,

γ∨(ℓ−1)2+2 = α∨
1 + 2(α∨

2 + . . .+ α∨
ℓ−2) + α∨

ℓ−1 + α∨
ℓ ,

...
γ∨ℓ(ℓ−1) = α∨

1 + α∨
2 + . . .+ α∨

ℓ ,

γ∨ℓ(ℓ−1)+1 = α∨
1 + 2(α∨

2 + . . .+ α∨
ℓ ),

γ∨ℓ(ℓ−1)+2 = α∨
2 + . . .+ α∨

ℓ ,
...
γ∨ℓ2 = α∨

ℓ .
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Recursive parametrization of an open part N
(0)
+ of N+ corresponding to a reduced word Iℓ

is as follows. Given vBℓ ∈ N
(0)
+ we have

vBℓ(y) = X1(y)X2(y) · . . . · Xℓ(y) , (3.37)

where

Xk(y) = Xk(yk,nk,k−1) · . . . ·X2(y2,nk,2−1)X1(y1,nk,1
)X2(y2,nk,2

) · . . . ·Xk(yk,nk,k
),

and X1 = X1(y11). Here we adopt the following notations. Let |Iℓ| = mℓ be the length of
w0. For the root system of type Bℓ one has mℓ = ℓ2. Then for any k ∈ {1, . . . , ℓ} consider a
sub-word

Ik = (i1, . . . , ik) ⊂ Iℓ = (i1, . . . , ik, ik+1, . . . , iℓ),

with |Ik| = mk = k2. Let Bk be a corresponding root subsystem in R+ and vBk = X1 · · ·Xk

be a factorized parametrization of the corresponding subgroup. Factorization parameters for
vBk(y) can be naturally enumerated as {yi,n} with 1 ≤ i ≤ k, 1 ≤ n ≤ nk,i and

nk,1 = k , nk,i = 2(k + 1− i), 1 < i ≤ ℓ. (3.38)

We also use the notation ni := nℓ,i.

We are interested in explicit expressions for the following matrix elements in terms of
factorization parameters {yi,n}

∆i(v) := 〈ξ−ωi
|πi(vẇ

−1
0 ) |ξ+

ωi
〉, ∆′

i(v) := 〈ξ−ωi
|πi(vei∗ẇ

−1
0 ) |ξ+

ωi
〉,

where πi = πωi
is a fundamental representation with the highest weight ωi, ξ

+
ωi

and ξ−ωi
are

the highest and lowest weight vectors in the representation πi such that 〈ξ+
ωi
| ξ−ωi
〉 = 1. Note

that for Lie algebra so2ℓ+1 we have i → i∗ for the involution defined by (3.5). The proof of
the following statement is obtained by an iterative evaluation of the matrix elements taking
into account Serre relations and defining ideals of the fundamental representations and using
the technique of [BZ].

Lemma 3.5 Let v := vBℓ be defined by (3.37). The following recursive equations hold:

∆1(v)
Bℓ =

( ℓ∏

k=1

yk,nk−1

)
·∆1(v

Bℓ−1),

∆i(v)
Bℓ =

(
y2

1,ℓ

i∏

k=2

yk,nk−1yk,nk

ℓ∏

k=i+1

y2
k,nk−1

)
·∆i(v

Bℓ−1), 1 < i < ℓ,
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(∆′
1(v)

∆1(v)

)Bℓ

=
1

y1,ℓ

(
1 +

y2,2(ℓ−1)

y2,2(ℓ−1)−1

)
+

y2,2(ℓ−1)

y2,2(ℓ−1)−1

(∆′
1(v)

∆1(v)

)Bℓ−1

,

(∆′
k(v)

∆k(v)

)Bℓ

=
1

yk,2(ℓ+1−k)

(
1 +

yk+1,2(ℓ−k)

yk+1,2(ℓ−k)−1

)
+ (3.39)

+
yk,2(ℓ+1−k)−1

yk,2(ℓ+1−k)

yk+1,2(ℓ−k)

yk+1,2(ℓ−k)−1

(∆′
k(v)

∆k(v)

)Bℓ−1

,

(∆′
ℓ(v)

∆ℓ(v)

)Bℓ

=
1

yℓ,2

, k = 2, . . . , ℓ− 1.

Now matrix elements can be found by resolving recursive relations given above.

Lemma 3.6 Let v is defined by (2.67) and (2.68.) The following expressions of matrix
elements of v in terms of the variables yi,k hold:

(
∆ωi,si

(v)
)Bℓ

=
ℓ∑

n=i

yi,n, (3.40)

(
∆1(v)

)Bℓ

=

ℓ∏

n=1

y1,n ×

ℓ∏

k=2

ℓ+1−k∏

n=1

yk,2n−1, (3.41)

(
∆k(v)

)Bℓ

=
ℓ∏

n=2

y2
1,n ×

ℓ∏

i=k+1

ℓ+1−i∏

n=1

y2
i,2n−1 ×

k∏

i=2

ℓ+1−i∏

n=1

yi,2n−1yi,2n, (3.42)

i = 1, . . . , ℓ, k = 2, . . . , ℓ.

(∆′
1(v)

∆1(v)

)Bℓ

=
ℓ∑

n=1

1

y1,n

(
1 +

y2,2(n−1)

y2,2(n−1)−1

) ℓ∏

i=n+1

y2,2(i−1)

y2,2(i−1)−1

, (3.43)

(∆′
k(v)

∆k(v)

)Bℓ

=

nk/2∑

n=1

1

yk,2n

(
1 +

yk+1,2(n−1)

yk+1,2(n−1)−1

) nk/2∏

i=n+1

yk+1,2(i−1)

yk+1,2(−1)−1

yk,2i−1

yk,2i
, (3.44)

k = 2, . . . , ℓ, (3.45)

where n1 = ℓ and nk = 2(ℓ+ 1− k).

Now consider an integral representation for so2ℓ+1-Whittaker function in a modified fac-
torized parametrization (2.86), (2.87). We start with an analog of the recursive relations
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(3.39) for the matrix elements in the modified factorized parametrization. To simplify the
formulation of the recursive relations it turns out to be useful to consider a twisted version

y1,1 = e−xℓ,1ex11−z11 , y1,k = e−xℓ,1

(
exk−1,1−zk,1 + exk,1−zk,1

)
,

yk,2r−1 = exℓ,k−1−xℓ,kezk+r−1,k−xk+r−2,k−1, (3.46)

yk,2r = exℓ,k−1−xℓ,kezk+r−1,k−xk+r−1,k−1

for k = 2, . . . , ℓ and r = 1, . . . , ℓ + 1 − k. of the modified parametrization (2.86) by taking
into account the action of the part HR of the Cartan generators (2.96).

Lemma 3.7 Choose an unipotent element v ∈ N+. The following expressions for the matrix
elements of v in variables xk,i, zk,i defined by (3.46) hold:

1.

∆k(v)

∆k+1(v)
= exp

{
−

k∑

i=1

xk,i − 2zk,1 + 2
k∑

i=2

zk,i −
k−1∑

i=1

xk−1,i

}(
exk−1,1 + exk,1

)2

,

∆2
1(v)

∆2(v)
= ex11−2z11 , k = 2, . . . , ℓ, (3.47)

and ∆ℓ+1(v) = 1 is assumed.

2.

∆′
1(v)

∆1(v)
=

ℓ∑

k=1

ezk,1 (3.48)

∆′
k(v)

∆k(v)
= exk,k−zk,k +

ℓ∑

n=k+1

(
exn−1,k−zn,k + exn,k−zn,k

)
, k = 2, . . . , ℓ.

Here we let xℓ,k = 0, k = 1, . . . , ℓ. We assume, that the terms like ezℓ+1,i in (3.48) are
deleted and as usual we suppose that

∑j
n=i = 0 whenever i > j.

Now substitute (3.34), (3.35) into (2.17), (2.18) we obtain Whittaker vectors in the
parametrization (3.46). Taking {xℓ,k = 0} we recover the expressions for Whittaker vectors
given in Lemma 2.6. To prove the Theorem 2.6 one remains to take into account the measure
dµN+ in the modified factorized parametrization. This completes the proofs of the Theorem
2.6.

3.3.3 Expressions for sp2ℓ-matrix elements:

Proofs of Theorem 2.8 and Theorem 2.10

In this subsection we introduce expressions for matrix elements relevant for the construction
of integral representations of sp2ℓ-Whittaker functions using the factorized parametrization
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of an open part of N+ ⊂ Sp(2ℓ). This provides proof of the integral representations of
sp2ℓ-Whittaker functions presented in Part I.

We are using the root data for g = sp2ℓ given by (2.125). Reduced decomposition
w0 = si1si2 · · · sim of the maximal length element w0 ∈ W corresponding to a reduced word
Iℓ = (i1, . . . , im) provides a total ordering of positive coroots by R∨

+ = {γk = si1 · · · sik−1
α∨

k }.
We consider a decomposition of w0 described by the following reduced word

Iℓ = (1, 212, . . . , (ℓ . . . 212 . . . ℓ)).

Corresponding ordering of positive coroots is given by:

γ∨1 = α∨
1

γ∨2 = 2α∨
1 + α∨

2 ,
γ∨3 = α∨

1 + α∨
2 ,

γ∨4 = α∨
2 ,

. . .

γ∨(ℓ−1)2+1 = 2α∨
1 + . . .+ 2α∨

ℓ−1 + α∨
ℓ ,

...
γ∨ℓ(ℓ−1) = 2α∨

1 + α∨
2 . . .+ α∨

ℓ ,

γ∨(ℓ−1)2+ℓ = α∨
1 + . . .+ α∨

ℓ ,
...

γ∨ℓ2 = α∨
ℓ .

(3.49)

Recursive parametrization of an open part N
(0)
+ of N+ defined by the reduced word Iℓ is as

follows. Given vCℓ ∈ N
(0)
+ we have

vCℓ(y) = X1(y)X2(y) · . . . · Xℓ(y) , (3.50)

where

Xk(y) = Xk(yk,nk,k−1) · . . . ·X2(y2,nk,2−1)X1(y1,nk,1
)X2(y2,nk,2

) · . . . ·Xk(yk,nk,k
),

and X1 = X1(y11). Here we adopt the following notations. Let |Iℓ| = mℓ be the length of
w0. For the root system of type Cℓ one has mℓ = ℓ2. Then for any k ∈ {1, . . . , ℓ} consider a
subword

Ik = (i1, . . . , ik) ⊂ Iℓ = (i1, . . . , ik, ik+1, . . . , iℓ)

with |Ik| = mk = k2. Let Ck be a corresponding root subsystem in R+ and vCk = X1 · · ·Xk

be a factorized parametrization of the corresponding subgroup. Factorization parameters for
vCk(y) can be naturally enumerated as {yi,n} with 1 ≤ i ≤ k, 1 ≤ n ≤ nk,i and

nk,1 = k , nk,i = 2(k + 1− i), 1 < i ≤ ℓ. (3.51)

Denote also ni := nℓ,i.

We are interested in explicit expressions for the following matrix elements in terms of
factorization parameters {yi,n}

∆i(v) := 〈ξ−ωi
|πi(vẇ

−1
0 ) |ξ+

ωi
〉, ∆′

i(v) := 〈ξ−ωi
|πi(vei∗ẇ

−1
0 ) |ξ+

ωi
〉,

where πi = πωi
is a fundamental representation with the highest weight ωi, ξ

+
ωi

and ξ−ωi
are

the highest and lowest weight vectors in the representation πi such that 〈ξ+
ωi
| ξ−ωi
〉 = 1. Note

that for Lie algebra sp2ℓ the involution i→ i∗ defined by (3.5) is trivial i∗ = i. The proof of
the following statement is obtained by an iterative evaluation of the matrix elements taking
into account Serre relations and defining ideals of the fundamental representations and using
the technique of [BZ].
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Lemma 3.8

∆i(v)
Cℓ =

(
y1,n1

i∏

k=2

yk,nk−1 yk,nk

ℓ∏

k=i+1

y2
k,nk−1

)
∆i(v)

Cℓ−1 , i = 1, . . . ℓ,

(∆′
1(v)

∆1(v)

)Cℓ

=
1

y1,ℓ

(
1 +

y2,2(ℓ−1)

y2,2(ℓ−1)−1

)2

+
( y2,2(ℓ−1)

y2,2(ℓ−1)−1

)2(∆′
1(v)

∆1(v)

)Cℓ−1

,

(∆′
k(v)

∆k(v)

)Cℓ

=
1

yk,2(ℓ+1−k)

(
1 +

yk+1,2(ℓ−k)

yk+1,2(ℓ−k)−1

)
+ (3.52)

+
yk,2(ℓ+1−k)−1

yk,2(ℓ+1−k)

yk+1,2(ℓ−k)

yk+1,2(ℓ−k)−1

(∆′
k(v)

∆k(v)

)Cℓ−1

,

(∆′
ℓ(v)

∆ℓ(v)

)Cℓ

=
1

yℓ,2
,

for k = 2, . . . , ℓ− 1.

Now matrix elements can be found by resolving recursive relations (3.52).

Lemma 3.9 Let v be defined by (2.128) and (2.129). The following relations for matrix
elements of v in terms of the variables yi,k hold:

(
∆ωi,ṡi

(v)
)Cℓ

=

ℓ∑

n=i

yi,n, i = 1, . . . , ℓ,

(
∆ωi,ẇ

−1
0

(v)
)Cℓ

=

ℓ∏

n=1

y1,n ×

i∏

k=2

2(ℓ+1−k)∏

n=1

yk,n ×

ℓ∏

k=i+1

ℓ+1−k∏

n=1

y2
k,2n−1, (3.53)

(∆′
1(v)

∆1(v)

)Cℓ

=
ℓ∑

n=1

1

y1,n

(
1 +

y2,2(n−1)

y2,2(n−1)−1

)2
ℓ∏

i=n+1

( y2,2(i−1)

y2,2(i−1)−1

)2

,

(∆′
k(v)

∆k(v)

)Cℓ

=

ℓ+1−k∑

n=1

1

yk,2n

(
1 +

yk+1,2(n−1)

yk+1,2(n−1)−1

) ℓ+1−k∏

i=n+1

yk+1,2(i−1)

yk+1,2(−1)−1

yk,2i−1

yk,2i
,

(∆′
ℓ(v)

∆ℓ(v)

)Cℓ

=
1

yℓ,2
,

for k = 2, . . . , ℓ− 1.

Combining these expressions with the expression (2.21) for the invariant measure on N+ and
substituting into (2.17), (2.18), (2.19) one completes the proof of Theorem 2.8.
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Now consider an integral representation for sp2ℓ-Whittaker function in a modified fac-
torized parametrization (2.144)-(2.145). We start with an analog of the recursive relations
(3.52) for the matrix elements in the modified factorized parametrization. To simplify the
formulation of the recursive relations it turns out to be useful to consider a twisted version
of the modified parametrization (2.146) by taking into account the action of the part HR of
the Cartan generators (2.159). Thus we consider the following change of the variables:

y11 = e−2zℓ,1ex11+z11 , y1,k = e−2zℓ,1

(
ezk−1,1+xk,1 + ezk,1+xk,1

)
,

yk,2r−1 = ezℓ,k−1−zℓ,kexk+r−1,k−zk+r−2,k−1,

yk,2r = ezℓ,k−1−zℓ,kexk+r−1,k−zk+r−1,k−1, r = 1, . . . , ℓ+ 1− k.

Here k = 2, . . . , ℓ.

Lemma 3.10 1. In a modified factorized parametrization recursive relations (3.52) are
given by

(∆′
k

∆k

)Cn

= ezn−1,k−xn,k + ezn,k−xn,k +
e〈αk , zn−1〉

e〈αk , zn〉

(∆′
k

∆k

)Cn−1

, 1 ≤ k < n < ℓ,

with the solution

(∆′
k(v)

∆k(v)

)Cn

= ezk,k−xk,k +
ℓ∑

n=k+1

(
ezn−1,k−xn,k + ezn,k−xn,k

)
, k = 1, . . . , ℓ, (3.54)

where zn = (zn,1, . . . , zn,n) and we define: 〈αk , zn〉 = zn,k+1 − zn,k, 〈αk , zn−1〉 =
zn−1,k+1 − zn−1,k.

2. The following expressions for ∆k(v) in terms of variables xk,i, zk,i hold:

(∆1(v)

∆2(v)

)Cn

= e−zℓ,1ex11 , (3.55)

( ∆k(v)

∆k+1(v)

)Cn

= e−zℓ,k

(
ezk,1 + ezk−1,1

)
exp

{
−

k∑

i=1

zk,i + xk,1 + 2

k∑

i=2

xk,i −

k−1∑

i=1

zk−1,i

}
,

where k = 2, . . . , ℓ and ∆ℓ+1 = 1 is assumed.

Now substitute (3.54),(3.55) into (2.17), (2.18) we obtain the left/right Whittaker vectors
in a twisted parametrization (3.54). Taking {zℓ,k = 0} we recover the formulas for Whittaker
vectors given in Lemma 2.8. To prove the Theorem 2.10 one remains to take into account
the measure dµN+ in the modified factorized parametrization. This completes the proofs of
the Theorem 2.10.
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3.3.4 Expressions for so2ℓ-matrix elements:

Proofs of Theorem 2.12 and Theorem 2.14

In this subsection we introduce expressions for matrix elements relevant for the construction
of integral representations of so2ℓ-Whittaker functions using the factorized parametrization
of an open part of N+ ⊂ SO(2ℓ). This provides a proof of the integral representations of
so2ℓ-Whittaker functions presented in Part I.

We are using the root data given by (2.188). Reduced decomposition w0 = si1si2 · · · simℓ
of

the maximal length element w0 ∈W corresponding to a reduced word Iℓ = (i1, . . . , imℓ
) with

mℓ = ℓ(ℓ − 1) provides a total ordering of positive co-roots by R∨
+ = {γk = si1 · · · sik−1

α∨
k }

of sp2ℓ. We consider a decomposition of w0 described by the following reduced word

Iℓ = (12, 3123, . . . , (ℓ . . . 3123 . . . ℓ)).

Corresponding ordering of positive coroots is given by:

γ∨1 = α∨
1 ,

γ∨2 = α∨
2 ,

γ∨3 = α∨
1 + α∨

2 + α∨
3 ,

γ∨4 = α∨
2 + α∨

3 ,
γ∨5 = α∨

2 + α∨
3 ,

γ∨6 = α∨
3 ,

. . . (3.56)

γ∨mℓ−1+1 = α∨
1 + α∨

2 + 2(α∨
3 + . . .+ α∨

ℓ−1) + α∨
ℓ ,

γ∨mℓ−1+2 = α∨
1 + α∨

2 + 2(α∨
3 + . . .+ α∨

ℓ−2) + α∨
ℓ−1 + α∨

ℓ ,
...
γ∨mℓ−1+ℓ−2 = α∨

1 + α∨
2 + α∨

3 + . . .+ α∨
ℓ ,

γ∨mℓ−1+ℓ−1 = pℓ−1α
∨
1 + pℓα

∨
2 + α∨

3 + . . .+ α∨
ℓ ,

γ∨mℓ−1+ℓ = pℓα
∨
1 + pℓ+1α

∨
2 + α∨

3 + . . .+ α∨
ℓ ,

γ∨mℓ−1+ℓ+1 = α∨
3 + . . .+ α∨

ℓ ,
...
γ∨mℓ

= α∨
ℓ .

Recursive parametrization of an open part N
(0)
+ of N+ corresponding to a reduced word Iℓ

is as follows. Given vDℓ ∈ N
(0)
+ we have

vDℓ(y) = X2(y)X2(y) · . . . · Xℓ(y) , (3.57)

where

Xk(y) = Xk(yk,nk,k−1) · . . . ·X3(y2,nk,3−1)X1(y1,nk,1
)X2(y1,nk,2

)X3(y2,nk,3
) · . . . ·Xk(yk,nk,k

),

and X2 = X1(y11)X2(y21). Here we adopt the following notations. Let |Iℓ| = mℓ be the length
of w0. For the root system of type Dℓ one has mℓ = ℓ(ℓ − 1). Then for any k ∈ {1, . . . , ℓ}
consider a subword

Ik = (i1, . . . , ik) ⊂ Iℓ = (i1, . . . , ik, ik+1, . . . , iℓ),
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with |Ik| = mk = k(k − 1). Let Dk be a corresponding root subsystem in R+ and
vDk = X2 · · ·Xk be a factorized parametrization of the corresponding subgroup. Factoriza-
tion parameters for vDk(y) can be naturally enumerated as {yi,n} with 1 ≤ i ≤ k, 1 ≤ n ≤ nk,i

and

nk,1 = nk,2 = k − 1 , nk,i = 2(k + 1− i), 2 < i ≤ ℓ (3.58)

We also denote ni = nℓ,i.

We are interested in explicit expressions for the following matrix elements in terms of
factorization parameters {yi,n}

∆i(v) := 〈ξ−ωi
|πi(vẇ

−1
0 ) |ξ+

ωi
〉, ∆′

i(v) := 〈ξ−ωi
|πi(vei∗ẇ

−1
0 ) |ξ+

ωi
〉,

where πi = πωi
is a fundamental representation with the highest weight ωi, ξ

+
ωi

and ξ−ωi
are

the highest and lowest weight vectors in the representation πi such that 〈ξ+
ωi
| ξ−ωi
〉 = 1. Note

that for Lie algebra so2ℓ the we have i→ i∗ for the involution defined by (3.5). The proof of
the following statement is obtained by an iterative evaluation of the matrix elements taking
into account Serre relations and defining ideals of the fundamental representations and using
the technique of [BZ].

Lemma 3.11 The following recursive relations hold.

∆1(v)
Dℓ =

(
(y1,n1)

pℓ−1(y2,n2)
pℓ

ℓ∏

k=3

yk,nk−1

)
∆1(v)

Dℓ−1,

∆2(v)
Dℓ =

(
(y1,n1)

pℓ(y2,n2)
pℓ+1

ℓ∏

k=3

yk,nk−1

)
∆2(v)

Dℓ−1,

∆i(v)
Dℓ =

(
y1,n1y2,n2

i∏

k=3

yk,nk−1yk,nk

ℓ∏

k=i+1

y2
k,nk−1

)
∆i(v)

Dℓ−1, 2 < i < ℓ,

(∆′
1

∆1

)D2r

=
1

y1,2r−1

(
1 +

y3,2(2r−2)

y3,2(2r−2)−1

)
+
y2,2r−1

y1,2r−1

y3,2(2r−2)

y3,2(2r−2)−1

(∆′
1

∆1

)D2r−1

,

(∆′
1

∆1

)D2r+1

=
1

y1,2r

(
1 +

y3,2(2r−1)

y3,2(2r−1)−1

)
+
y1,2r

y2,2r

y3,2(2r−1)

y3,2(2r−1)−1

(∆′
1

∆1

)D2r

, (3.59)

(∆′
2

∆2

)D2r

=
1

y1,2r−1

(
1 +

y3,4(r−1)

y3,4(r−1)−1

)
+
y1,2r−1

y1,2r−1

y3,4(r−1)

y3,4(r−1)−1

(∆′
2

∆2

)D2r−1

,

(∆′
2

∆2

)D2r+1

=
1

y1,2r−1

(
1 +

y3,2(2r−1)

y3,2(2r−1)−1

)
+
y2,2r

y1,2r

y3,2(2r−1)

y3,2(2r−1)−1

(∆′
2

∆2

)D2r

.
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The matrix elements can be evaluated by resolving recursion equations and the results
of calculation are presented in the following lemma.

Lemma 3.12 Let v be defined by (3.57). The following expressions of matrix elements of v
in terms of the variables yi,k hold:

∆1(v) =

ℓ/2∏

n=1

y1,2n−1

ℓ−1
2∏

n=1

y2,2n

ℓ∏

n=3

n∏

i=3

yi,2(n+1−i)−1,

∆2(v) =

ℓ/2∏

n=1

y2,2n−1

ℓ−1
2∏

n=1

y1,2n

ℓ∏

n=3

n∏

i=3

yi,2(n+1−i)−1, (3.60)

∆k(v) =
k∏

i=1

ni∏

n=1

yi,n

ℓ∏

i=k+1

ni/2∏

n=1

y2
i,2n−1,

where n1 = n2 = ℓ− 1 and nk = 2(ℓ+ 1− k), 2 < k ≤ ℓ.

(∆′
1

∆1
+

∆′
2

∆2

)Dℓ

=
ℓ−1∑

n=1

{ 1

y1,ℓ−1

n−1∏

k=1

( y1,ℓ−k

y1,ℓ−k−1

)pk−1
( y2,ℓ−k

y2,ℓ−k−1

)pk

+ (3.61)

1

y2,ℓ−1

n−1∏

k=1

( y1,ℓ−k

y1,ℓ−k−1

)pk
( y2,ℓ−k

y2,ℓ−k−1

)pk+1
}(

1 +
y3,2(ℓ−n−1)

y3,2(ℓ−n−1)−1

) n−1∏

k=1

y3,2(ℓ−k−1)

y3,2(ℓ−k−1)−1

where ps = (1 + (−1)s)/2.

(∆′
k(v)

∆k(v)

)Dℓ

=
1

yk,2(ℓ+1−k)

, (3.62)

for k = 3, . . . , ℓ.

Now consider an integral representation for so2ℓ-Whittaker function in a modified factor-
ized parametrization (2.216). We start with an analog of the recursive relations (3.59) for
the matrix elements in the modified factorized parametrization. To simplify the formulation
of the recursive relations it turns out to be useful to consider a twisted version of the modi-
fied parametrization (2.216) by taking into account the action of the part HR of the Cartan
generators (2.230). Thus we consider the following change of the variables:

y1,n = exℓ,1−xℓ,2

(
ezn,1−xn,1 + ezn,1−xn+1,1

)
, n = 1, . . . ℓ− 1,

y2,n = e−xℓ,1−xℓ,2

(
ezn,1+xn,1 + ezn,1+xn+1,1

)
, n = 1, . . . ℓ− 1, (3.63)

yk,2r−1 = exℓ,k−1−xℓ,kezk+r−2,k−1−xk+r−2,k−1,

yk,2r = exℓ,k−1−xℓ,kezk+r−2,k−1−xk+r−1,k−1,

for k = 3, . . . , ℓ and r = 1, . . . , ℓ+ 1− k.
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Lemma 3.13 The following recursive relations in the variables defined by (3.63) hold.

1.

(∆′
1

∆1

)Dn

+
(∆′

2

∆2

)Dn

= exn−1,2−zn−1,1 + exn,2−zn−1,1 + (3.64)

exn−1(α1)

exn(α1)

(∆′
1

∆1

)Dn−1

+
exn−1(α2)

exn(α2)

(∆′
2

∆2

)Dn−1

n = 2r − 1

2.

(∆′
1

∆1

)Dn

+
(∆′

2

∆2

)Dn

= exn−1,2−zn−1,1 + exn,2−zn−1,1 + (3.65)

exn−1(α2)

exn(α2)

(∆′
1

∆1

)Dn−1

+
exn−1(α1)

exn(α1)

(∆′
2

∆2

)Dn−1

n = 2r.

Resolving recursive equations one can easily obtains the following result.

Lemma 3.14 Given an unipotent element v ∈ N+, the following expressions for the matrix
elements of v in a modified parametrization hold:

∆′
1

∆1
+

∆′
2

∆2
=

n−1∑

k=1

(ezk,k−xk,k−1 + ezk,k−xk+1,k),

∆′
k

∆k

= ezn−1,n+1−k−xn,n+1−k , k = 3, . . . , n,

∆2

∆1
= e−xℓ,1ex11 ,

∆1∆2

∆3
= e−xℓ,2 exp

{
− (x21 + x22) + 2z11 − x11

}(
ex11 + ex21

)2

, (3.66)

∆k

∆k+1
= e−xℓ,k exp

{
−

k∑

i=1

xk,i +

+2
k−1∑

i=1

zk−1,i −
k−1∑

i=1

xk−1,i

}(
exk−1,1 + exk,1

)2

, k = 3, . . . , n,

and ∆n+1 = 1 is assumed.

Now substitute (3.66) into (2.17), (2.18) we obtain Whittaker vectors in a parametrization
(3.63. Taking {xℓ,k = 0} we recover the expressions for Whittaker vectors given in Lemma
2.10. To prove the Theorem 2.14 one remains to take into account the measure dµN+ in the
modified factorized parametrization. This completes the proofs of the Theorem 2.14.
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3.4 Realization of U(g) by differential operators

In this part we prove formulae for realization of classical Lie algebra generators by differ-
ential operators acting in the space of (twisted) functions on N+ supplied with the factor-
ize parametrization. The analogous formulae for realization of Lie algebra generators in
the modified factorized parametrization (Gauss-Givental representation) can be straightfor-
wardly obtained by a simple change of the variables discussed in Part I and will not be
considered in this section.

Let us outline the general strategy for the derivation of the realization of Lie algebra by
differential operators used below. Let Vµ be a space of equivariant functions on B−\G

f(bg) = χµ(b) f(g) , b ∈ B−, (3.67)

where χµ is a character of the Borel subgroup B− ⊂ G. Principle series representation of
U(g) in Vµ is defined as

(Xf)(v) =
∂

∂ε
f(veεX)|ε→0 , X ∈ g. (3.68)

Let I = (i1, . . . , im) be a reduced word corresponding to the reduced decomposition w0 =
si1 · · · sim of the longest Weyl group element w0. For classical Lie algebras one can chose
I having recursive structure with respect to the rank ℓ of the Lie algebra. Consider corre-
sponding recursive factorized parametrization of unipotent elements of a classical Lie group
G, g = Lie(G):

v(ℓ) = X2
1 · · ·X

ℓ
ℓ−1 = v(ℓ−1) ·Xℓ

ℓ−1. (3.69)

We will derive explicit formulae defining representations of U(g) in Vµ in two steps. At the
first step we use recursive structure (3.69) to construct recursive relations between classical
Lie algebra generators for Lie algebras of adjacent ranks. At the second step we resolve
recursion relations to get explicit formulae for Lie generators of all classical Lie algebra.

We start with a list of relevant relations between one-parameter subgroups in G (see e.g.
[Lu], [BZ]). Let ei, hi, fi be a Chevalley basis of g, and let A = ‖aij‖ be the Cartan matrix.
Let us introduce one-parameter subgroups:

Xi(y) = eyei , α∨
i (y) = eyhi , Yi(y) = eyfi . (3.70)

Then the following relations hold:

Xi(y)α
∨
j (1 + ε) = α∨

j (1 + ε)Xi(y − ajiεy) mod(ε2), (3.71)

Xi(y)Yi(ε) = Yi(ε)α
∨
i (1 + εy)Xi(y − εy

2) mod(ε2). (3.72)

For aij = aji = −1 we have

Xi(y1)Xj(y2)Xi(ε) = Xj

(
ε
y2

y1

)
Xi

(
y1 + ε

)
Xj

(
y2 − ε

y2

y1

)
mod(ε2). (3.73)
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For aij = −2 and aji = −1 we have

Xj(y1)Xi(y2)Xj(y3)Xi(ε) = (3.74)

= Xi

(
ε
y3

y1

)
Xj

(
y1 + 2ε

y3

y2

)
Xi

(
y2 + ε− ε

y3

y1

)
Xj

(
y3 − 2ε

y3

y2

)
mod(ε2).

For aji = −2 and aij = −1 we have

Xj(y1)Xi(y2)Xj(y3)Xi(ε) = (3.75)

= Xi

(
ε
y2

3

y2
1

)
Xj

(
y1 + ε

y1y3 + y2
3

y1y2

)
Xi

(
y2 + ε

y2
1 − y

2
3

y2
1

)
Xj

(
y3 − ε

y1y3 + y2
3

y1y2

)
mod(ε2).

The derivation of the recursive relation for the generators of Lie algebra is as follows. Con-
sider the right action of one-parameter subgroups (3.70) on the recursive factorized repre-
sentation (3.69) of an element vℓ ⊂ N+. One uses the relations (3.71)-(3.75) to move the
generators one step to the left. For example, in the case of the one-parameter subgroup
generated by ei we have:

v(ℓ)Xi(ε) = v(ℓ−1) Xℓ
ℓ−1(y)Xi(ε) = v(ℓ−1) Xi(ci(y)ε) Xℓ

ℓ−1(y
′(y)) mod(ε2). (3.76)

This leads to recursive relations expressing generators of rank ℓ classical Lie algebra in
terms of the generators of rank (ℓ − 1) classical Lie algebra and the differential operators
over yi,n parametrizing Xℓ

ℓ−1. At the final step of the reduction we use (3.67). In the following
subsections we provide recursive relations and resolved formulae for generators of all classical
Lie algebras without further comments.

3.4.1 Generators of glℓ+1: Proof of Proposition 2.2

Let E
(ℓ+1)
i,i+1 , E

(ℓ+1)
i,i , E

(ℓ+1)
i+1,i be Chevalley generators of glℓ+1. Below we present recursive rela-

tions and resolved expressions for these generators.

Recursive relations are given by:

E
(ℓ+1)
i,i+1 =

(
∂

∂yi,ℓ+1−i
+
yi−1,ℓ+2−i

yi,ℓ+1−i

(
E

(ℓ)
i−1,i −

∂

∂yi−1,ℓ+2−i

))
,

E
(ℓ+1)
i,i =

(
µ

(ℓ+1)
i − µ

(ℓ)
i + E

(ℓ)
i,i + yi−1,ℓ+2−i

∂

∂yi−1,ℓ+2−i
− yi,ℓ+1−i

∂

∂yi,ℓ+1−i

)
, i 6= ℓ+ 1,

E
(ℓ+1)
ℓ+1,ℓ+1 = (µ

(ℓ+1)
ℓ+1 + yℓ,1

∂

∂yℓ,1

), (3.77)
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E
(ℓ+1)
i+1,i =

(
E

(ℓ)
i+1,i + yi,ℓ+1−i

(
E

(ℓ)
i,i − E

(ℓ)
i+1,i+1

)
−

−yi,ℓ+1−i

(
yi,ℓ+1−i

∂

∂yi,ℓ+1−i
+ yi+1,ℓ−i

∂

∂yi+1,ℓ−i

))
.

Resolving the recursion we obtain:

E
(ℓ+1)
i,i+1 =

i−1∑

k=0

k∏

s=0

yi−s,ℓ+2−i

yi+1−s,ℓ+1−i

∂

∂yi−k,ℓ+1−i
−

k∏

s=0

yi−(s+1),ℓ+2−i

yi−s,ℓ+1−i

∂

∂yi−(k+1),ℓ+2−i
,

E
(ℓ+1)
i,i = µ

(ℓ+1)
i −

ℓ+1−i∑

l=1

yi,l
∂

∂yi,l
+

ℓ+2−i∑

l=1

yi−1,l
∂

∂yi−1,l
, (3.78)

E
(ℓ+1)
i+1,i =

ℓ∑

k=1

[
(µ

(ℓ+1)
i+1 − µ

(ℓ+1)
i )yi,k+1−i − yi,k+1−i

(
yi,k+1−i

∂

∂yi,k+1−i

− yi+1,k−i
∂

∂yi+1,k−i

)
+

+ yi,k+1−i

k−1∑

s=1

(
yi−1,s+2−i

∂

∂yi−1,s+2−i
− 2yi,s+1−i

∂

∂yi,s+1−i
+ yi+1,s−i

∂

∂yi+1,s−i

)]
.

This completes the proof of Proposition 2.2.

3.4.2 Generators of so2ℓ+1: Proof of Proposition 2.4

Let e
(ℓ)
i , h

(ℓ)
i , f

(ℓ)
i be Chevalley generators of so2ℓ+1. Below we present recursive relations and

resolved expressions for these generators.

Recursive relations are given by:

e
(ℓ)
1 =

∂

∂y1,ℓ

+
y2,2(ℓ−1)

y2,2(ℓ−1)−1

[
e
(ℓ−1)
1 −

∂

∂y1,ℓ

]
+ 2

y2,2(ℓ−1)

y1,ℓ

(
∂

∂y2,2(ℓ−1)−1

−
∂

∂y2,2(ℓ−1)

)
,

e
(ℓ)
k =

∂

∂yk,2(ℓ+1−k)
+
yk,2(ℓ+1−k)−1

yk,2(ℓ+1−k)

yk+1,2(ℓ−k)

yk+1,2(ℓ−k)−1

[
e
(ℓ−1)
k −

∂

∂yk,2(ℓ+1−k)−1

]
+

+
yk+1,2(ℓ−k)

yk,2(ℓ+1−k)

(
∂

∂yk+1,2(ℓ−k)−1

−
∂

∂yk+1,2(ℓ−k)

)
, 1 < k < ℓ,

f
(ℓ)
1 = f

(ℓ−1)
1 − y1,ℓh

(ℓ−1)
1 + 2y1,ℓy2,2(ℓ−1)−1

∂

∂y2,2(ℓ−1)−1

− y2
1,ℓ

∂

∂y1,ℓ

, (3.79)

f
(ℓ)
2 = f

(ℓ−1)
2 −

(
y2,2(ℓ−1)−1 + y2,2(ℓ−1)

)
h

(ℓ−1)
2 +
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+
(
y2,2(ℓ−1)−1 + y2,2(ℓ−1)

)
y3,2(ℓ−2)−1

∂

∂y3,2(ℓ−2)−1
+ 2y2,2(ℓ−1)y1,ℓ

∂

∂y1,ℓ
−

−

(
y2

2,2(ℓ−1)−1

∂

∂y2,2(ℓ−1)−1

+ 2y2,2(ℓ−1)y2,2(ℓ−1)−1
∂

∂y2,2(ℓ−1)−1

+ y2
2,2(ℓ−1)

∂

∂y2,2(ℓ−1)

)
,

f
(ℓ)
k = f

(ℓ−1)
k −

(
yk,2(ℓ+1−k)−1 + yk,2(ℓ+1−k)

)
h

(ℓ−1)
k +

+
(
yk,2(ℓ+1−k)−1 + yk,2(ℓ+1−k)

)
yk+1,2(ℓ−k)−1

∂

∂yk+1,2(ℓ−k)−1

+

+yk,2(ℓ+1−k)

(
yk−1,2(ℓ+2−k)−1

∂

∂yk−1,2(ℓ+2−k)−1

+ yk−1,2(ℓ+2−k)
∂

∂yk−1,2(ℓ+2−k)

)
−

−

(
y2

k,2(ℓ+1−k)−1

∂

∂yk,2(ℓ+1−k)−1

+ 2yk,2(ℓ+1−k)−1yk,2(ℓ+1−k)
∂

∂yk,2(ℓ+1−k)−1

+

+y2
k,2(ℓ+1−k)

∂

∂yk,2(ℓ+1−k)

)
.

We have for hi:

h
(ℓ)
k = 〈µ(ℓ) , α∨

k 〉 +
ℓ∑

i=1

ak,i

ni∑

j=1

yi,j
∂

∂yi,j

, (3.80)

where n1 = ℓ, nk = 2(ℓ+ 1− k) for 1 < k ≤ ℓ.

Resolving the recursion one obtains:

e
(ℓ)
1 =

∂

∂y1,ℓ

+
ℓ−1∑

n=1

(
∂

∂y1,n

−
∂

∂y1,n+1

) ℓ−1∏

i=n

y2,2i

y2,2i−1

+

+2

(
∂

∂y2,2n−1
−

∂

∂y2,2n

)
y2,2(n−1)

y1,n

ℓ−1∏

i=n+1

y2,2i

y2,2i−1
,

e
(ℓ)
k =

∂

∂yk,2(ℓ+1−k)

+

n−k∑

n=1

(
∂

∂yk,2n
−

∂

∂yk,2n+1

) ℓ−k∏

i=n

yk+1,2i

yk+1,2i−1

yk,2(i+1)−1

yk,2(i+1)

+ (3.81)

+

(
∂

∂yk+1,2n−1
−

∂

∂yk+1,2n

)
yk+1,2n

yk,2(n+1)

ℓ−k∏

i=n+1

yk+1,2i

yk+1,2i−1

yk,2(i+1)−1

yk,2(i+1)
,

e
(ℓ)
ℓ =

∂

∂yℓ,2
, (3.82)
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f
(ℓ)
1 =

ℓ∑

n=1

y1,n

(
〈µ, α∨

1 〉+

2(n−1)−1∑

j=1

2y2,j
∂

∂y2,j
− 2

n−1∑

j=1

y1,j
∂

∂y1,j
− y1,n

∂

∂y1,n

)
, (3.83)

f
(ℓ)
2 =

2(ℓ−1)∑

n=1

y2,n

(
〈µ, α∨

2 〉+ 2

[n/2]+1∑

j=1

y1,j
∂

∂y1,j
− 2

n−1∑

j=1

y2,j
∂

∂y2,j
+

+

2[(n+1)/2]−3∑

j=1

y3,j
∂

∂y3,j
− y2,n

∂

∂y2,n

)
,

f
(ℓ)
k =

2(ℓ+1−k)∑

n=1

yk,n

(
〈µ, α∨

k 〉+

2[n/2]+1∑

j=1

yk−1,j
∂

∂yk−1,j
− 2

n−1∑

j=1

yk,j
∂

∂yk,j
+

+

2[(n+1)/2]−3∑

j=1

yk+1,j
∂

∂yk+1,j
− yk,n

∂

∂yk,n

)
, 2 < k < ℓ,

f
(ℓ)
ℓ = (yℓ,1 + yℓ,2)

(
〈µ, α∨

ℓ 〉+ yℓ−1,1
∂

∂yℓ−1,1
+ yℓ−1,2

∂

∂yℓ−1,2

)
+

+yℓ,2

(
yℓ−1,3

∂

∂yℓ−1,3

+ yℓ−1,4
∂

∂yℓ−1,4

)
−

(
y2

ℓ,1

∂

∂yℓ,1

+ 2yℓ,1yℓ,2
∂

∂yℓ,1

+ y2
ℓ,2

∂

∂yℓ,2

)
.

This completes the proof of Proposition 2.4.

3.4.3 Generators of sp2ℓ: Proof of Proposition 2.8

Let e
(ℓ)
i , h

(ℓ)
i , f

(ℓ)
i be Chevalley generators of sp2ℓ. Below we present recursive relations and

resolved expressions for these generators.

Recursive relations are given by:

e
(ℓ)
1 =

∂

∂y1,ℓ

+
( y2,2(ℓ−1)

y2,2(ℓ−1)−1

)2
[
e
(ℓ−1)
1 −

∂

∂y1,ℓ

]
+

+
y2,2(ℓ−1)−1y2,2(ℓ−1) + y2

2,2(ℓ−1)

y1,ℓy2,2(ℓ−1)

(
∂

∂y2,2(ℓ−1)−1
−

∂

∂y2,2(ℓ−1)

)
,

e
(ℓ)
k =

∂

∂yk,2(ℓ+1−k)

+
yk,2(ℓ+1−k)−1

yk,2(ℓ+1−k)

yk+1,2(ℓ−k)

yk+1,2(ℓ−k)−1

[
e
(ℓ−1)
k −

∂

∂yk,2(ℓ+1−k)−1

]
+

+
yk+1,2(ℓ−k)

yk,2(ℓ+1−k)

(
∂

∂yk+1,2(ℓ−k)−1

−
∂

∂yk+1,2(ℓ−k)

)
, 1 < k < ℓ,
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e
(ℓ)
ℓ =

∂

∂yℓ,2
, (3.84)

f
(ℓ)
1 = f

(ℓ−1)
1 − y1,ℓh

(ℓ−1)
1 + y1,ℓy2,2(ℓ−1)−1

∂

∂y2,2(ℓ−1)−1

− y2
1,ℓ

∂

∂y1,ℓ
,

f
(ℓ)
2 = f

(ℓ−1)
2 −

(
y2,2(ℓ−1)−1 + y2,2(ℓ−1)

)
h

(ℓ−1)
2 + 2y2,2(ℓ−1)−1y1,ℓ

∂

∂y1,ℓ
+

+
(
y2,2(ℓ−1)−1 + y2,2(ℓ−1)

)
y3,2(ℓ−2)−1

∂

∂y3,2(ℓ−2)−1

−

(
y2

2,2(ℓ−1)−1

∂

∂y2,2(ℓ−1)−1

+

+ 2y2,2(ℓ−1)−1y2,2(ℓ−1)−1
∂

∂y2,2(ℓ−1)−1
+ y2

2,2(ℓ−1)

∂

∂y2,2(ℓ−1)

)
,

f
(ℓ)
k = f

(ℓ−1)
k −

(
yk,2(ℓ+1−k)−1 + yk,2(ℓ+1−k)

)
h

(ℓ−1)
k +

+
(
yk,2(ℓ+1−k)−1 + yk,2(ℓ+1−k)

)
yk+1,2(ℓ−k)−1

∂

∂yk+1,2(ℓ−k)−1

+

+yk,2(ℓ+1−k)

(
yk−1,2(ℓ+2−k)−1

∂

∂yk−1,2(ℓ+2−k)−1

+ yk−1,2(ℓ+2−k)
∂

∂yk−1,2(ℓ+2−k)

)
−

−

(
y2

k,2(ℓ+1−k)−1

∂

∂yk,2(ℓ+1−k)−1

+ 2yk,2(ℓ+1−k)−1yk,2(ℓ+1−k)
∂

∂yk,2(ℓ+1−k)−1

+

+ y2
k,2(ℓ+1−k)

∂

∂yk,2(ℓ+1−k)

)
, 2 < k < ℓ,

f
(ℓ)
ℓ = (yℓ,1 + yℓ,2)

(
−〈µ, α∨

ℓ 〉+ yℓ−1,1
∂

∂yℓ−1,1

+ yℓ−1,2
∂

∂yℓ−1,2

)
+

+yℓ,2

(
yℓ−1,3

∂

∂yℓ−1,3
+ yℓ−1,4

∂

∂yℓ−1,4

)
−

(
y2

ℓ,1

∂

∂yℓ,1
+ 2yℓ,1yℓ,2

∂

∂yℓ,1
+ y2

ℓ,2

∂

∂yℓ,2

)
.

For the Cartan generators hi we have:

h
(ℓ)
k = 〈µ , α∨

k 〉 +

ℓ∑

i=1

ak,i

ni∑

j=1

yi,j
∂

∂yi,j
, (3.85)

where n1 = ℓ and nk = 2(ℓ+ 1− k) for 1 < k ≤ ℓ.

Resolving the recursion we obtain:

e1 =
ℓ∑

n=1

(
∂

∂y1,n

−
∂

∂y1,n+1

) ℓ−1∏

j=n

( y2,2j

y2,2j−1

)2

+

+

ℓ−1∑

n=1

(
∂

∂y2,2n−1
−

∂

∂y2,2n

)
y2,2n

y1,n

(
1 +

y2,2n

y2,2n−1

) ℓ−1∏

j=n+1

( y2,2j

y2,2j−1

)2

,
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ek =

ℓ+1−k∑

n=1

(
∂

∂yk,2n
−

∂

∂yk,2n+1

) ℓ−k∏

i=n

yk+1,2j

yk+1,2j−1

yk,2(j+1)−1

yk,2(j+1)
+

+
ℓ−k∑

n=1

(
∂

∂yk+1,2n−1

−
∂

∂yk+1,2n

)
yk+1,2n

yk,2(n−1)

ℓ−k∏

i=n

yk+1,2j

yk+1,2j−1

yk,2(j+1)−1

yk,2(j+1)

, 1 < k < ℓ,

f1 =

ℓ∑

n=1

y1,n

(
− 〈µ, α∨

1 〉+

2(n−1)−1∑

j=1

y2,j
∂

∂y2,j
− 2

n−1∑

j=1

y1,j
∂

∂y1,j
− y1,n

∂

∂y1,n

)
,

f2 =

2(ℓ−1)∑

n=1

y2,n

(
〈µ, α∨

2 〉+ 2

[n/2]+1∑

j=1

y1,j
∂

∂y1,j
− 2

n−1∑

j=1

y2,j
∂

∂y2,j
+ (3.86)

+

2[(n+1)/2]−3∑

j=1

y3,j
∂

∂y3,j

− y2,n
∂

∂y2,n

)
,

fk =

2(ℓ+1−k)∑

n=1

yk,n

(
〈µ, α∨

k 〉+ 2

2[n/2]+1∑

j=1

yk−1,j
∂

∂yk−1,j
− 2

n−1∑

j=1

yk,j
∂

∂yk,j
+

+

2[(n+1)/2]−3∑

j=1

yk+1,j
∂

∂yk+1,j
− yk,n

∂

∂yk,n

)
, 2 < k < ℓ.

This completes the proof of Proposition 2.8.

3.4.4 Generators of so2ℓ: Proof of Proposition 2.12

Let e
(ℓ)
i , h

(ℓ)
i , f

(ℓ)
i be Chevalley generators of so2ℓ. Below we present recursive relations and

resolved expressions for these generators.

Recursive relations are given by:

e
(ℓ)
1 =

∂

∂y1,ℓ−1
+
y2,ℓ−1

y1,ℓ−1

y3,2(ℓ−2)

y3,2(ℓ−2)−1

(
e
(ℓ−1)
2 −

∂

∂y2,ℓ−1

)
+
y3,2(ℓ−2)

y1,ℓ−1

( ∂

∂ yy3,2(ℓ−2)−1

−
∂

∂ yy3,2(ℓ−2)

)
,

e
(ℓ)
2 =

∂

∂y2,ℓ−1
+
y1,ℓ−1

y2,ℓ−1

y3,2(ℓ−2)

y3,2(ℓ−2)−1

(
e
(ℓ−1)
1 −

∂

∂y1,ℓ−1

)
+
y3,2(ℓ−2)

y2,ℓ−1

( ∂

∂ yy3,2(ℓ−2)−1

−
∂

∂ yy3,2(ℓ−2)

)
,

e
(ℓ)
k =

∂

∂yk,2(ℓ+1−k)

+
yk,2(ℓ+1−k)−1

yk,2(ℓ+1−k)

yk+1,2(ℓ−k)

yk+1,2(ℓ−k)−1

(
e
(ℓ−1)
k −

∂

∂yk,2(ℓ+1−k)−1

)
+ (3.87)
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+
yk+1,2(ℓ−k)

yk,2(ℓ+1−k)

( ∂

∂ yyk,2(ℓ+1−k)−1

−
∂

∂ yyk,2(ℓ+1−k)

)
, 2 < k < ℓ,

eℓ =
∂

∂yℓ,2
, (3.88)

f
(ℓ)
i = f

(ℓ−1)
i − y2

i,ℓ−1

∂

∂yi,ℓ−1
+ yi,ℓ−1

(
h

(ℓ−1)
i + y3,2(ℓ−2)−1

∂

∂y3,2(ℓ−2)−1

)
, i = 1, 2,

f
(ℓ)
3 = f

(ℓ−1)
3 −

(
y2

3,2(ℓ−2)−1

∂

∂y3,2(ℓ−2)−1

+ y2
3,2(ℓ−2)

∂

∂y3,2(ℓ−2)

)
+

+(y3,2(ℓ−2)−1 + y3,2(ℓ−2))
(
h

(ℓ−1)
3 + y4,2(ℓ−3)−1

∂

∂y4,2(ℓ−3)−1

)
+

+y3,2(ℓ−2)

(
y1,ℓ−1

∂

∂y1,ℓ−1
+ y2,ℓ−1

∂

∂y2,ℓ−1

)
,

f
(ℓ)
k = f

(ℓ−1)
k −

(
y2

k,2(ℓ+1−k)−1

∂

∂yk,2(ℓ+1−k)−1

+ y2
k,2(ℓ+1−k)

∂

∂yk,2(ℓ+1−k)

)
+

+(yk,2(ℓ+1−k)−1 + yk,2(ℓ+1−k))
(
h

(ℓ−1)
k + yk+1,2(ℓ−k)−1

∂

∂yk+1,2(ℓ−k)−1

)
+

+ yk,2(ℓ+1−k)

(
yk−1,2(ℓ+2−k)−1

∂

∂yk−1,2(ℓ+2−k)−1

+ yk−1,2(ℓ+2−k)
∂

∂yk−1,2(ℓ+2−k)

)
, 3 < k ≤ ℓ.

For Cartan generators we have:

h
(ℓ)
i = 〈µ, α∨

i 〉+

ℓ∑

k=1

ai,k

nk∑

j=1

yk,j
∂

∂yk,j
, (3.89)

where n1 = n2 = ℓ− 1, nk = 2(ℓ+ 1− k) for 2 < k ≤ ℓ.

Resolving the recursion we obtain:

e
(ℓ)
1 =

∂

∂y1,ℓ−1

+

[ℓ/2]∑

n=1

( ∂

∂y2,ℓ−n−1

−
∂

∂y2,ℓ−n

) 2n−1∏

k=1

(y1,ℓ−k

y2,ℓ−k

)(−1)k y3,2(ℓ−1−k)

y3,2(ℓ−1−k)−1

+

+

[ℓ/2]∑

n=2

( ∂

∂y1,ℓ−n−1
−

∂

∂y1,ℓ−n

) 2(n−1)∏

k=1

(y1,ℓ−k

y2,ℓ−k

)(−1)k y3,2(ℓ−1−k)

y3,2(ℓ−1−k)−1
+

+

[ ℓ−1
2

]∑

n=1

( ∂

∂y3,2(2n−1)−1

−
∂

∂y3,2(2n−1)

)y3,2(2n−1)

y1,2n

ℓ−2n−1∏

k=1

(y1,ℓ−k

y2,ℓ−k

)(−1)k y3,2(ℓ−1−k)

y3,2(ℓ−1−k)−1

+

+

[ ℓ−2
2

]∑

n=1

( ∂

∂y3,4n−1

−
∂

∂y3,4n

) y3,4n

y2,2n+1

ℓ−2(n+1)∏

k=1

(y1,ℓ−k

y2,ℓ−k

)(−1)k y3,2(ℓ−1−k)

y3,2(ℓ−1−k)−1

,

97



e
(ℓ)
2 =

∂

∂y2,ℓ−1

+

[ℓ/2]∑

n=2

( ∂

∂y2,ℓ−n−1

−
∂

∂y2,ℓ−n

) 2(n−1)∏

k=1

(y2,ℓ−k

y1,ℓ−k

)(−1)k y3,2(ℓ−1−k)

y3,2(ℓ−1−k)−1

+ (3.90)

+

[ℓ/2]∑

n=1

( ∂

∂y1,ℓ−n−1
−

∂

∂y1,ℓ−n

) 2n−1∏

k=1

(y2,ℓ−k

y1,ℓ−k

)(−1)k y3,2(ℓ−1−k)

y3,2(ℓ−1−k)−1

+

+

[ ℓ−2
2

]∑

n=1

( ∂

∂y3,4n−1
−

∂

∂y3,4n

) y3,4n

y1,2n+1

ℓ−2(n+1)∏

k=1

(y2,ℓ−k

y1,ℓ−k

)(−1)k y3,2(ℓ−1−k)

y3,2(ℓ−1−k)−1

+

+

[ ℓ−1
2

]∑

n=1

( ∂

∂y3,2(2n−1)−1

−
∂

∂y3,2(2n−1)

)y3,2(2n−1)

y1,2n

ℓ−2n−1∏

k=1

(y2,ℓ−k

y1,ℓ−k

)(−1)k y3,2(ℓ−1−k)

y3,2(ℓ−1−k)−1

,

e
(ℓ)
k =

∂

∂yk,2(ℓ+1−k)

+
ℓ−k∑

n=1

( ∂

∂yk,2n

−
∂

∂yk,2n+1

) ℓ+1−n−k)∏

i=1

yk,2(i+1)−1

yk,2(k+1)

+
yk+1,2i

yk+1,2i−1

+

+

ℓ−k∑

n=1

( ∂

∂yk+1,2n−1
−

∂

∂yk+1,2n

) yk+1,2n

yk,2(n+1)

ℓ+1−n−k)∏

i=2

yk,2(i+1)−1

yk,2(k+1)

yk+1,2i

yk+1,2i−1
, 2 < k < ℓ,

f
(ℓ)
i = −〈µ, α∨

i 〉
ℓ−1∑

n=1

yi,n −
ℓ−1∑

n=1

(
y2

i,n

∂

∂yi,n

+ 2
ℓ−1∑

k=n+1

yi,kyi,n
∂

∂ yi,n

)
+

+

2(ℓ−2)−1∑

n=1

∑

k=[n/2]+2

yi,ky3,n
∂

∂ y3,n

, i = 1, 2,

f
(ℓ)
3 = −〈µ, α∨

3 〉

2(ℓ−2)∑

n=1

y3,n −

2(ℓ−2)∑

n=1

(
y2

3,n

∂

∂ y3,n
+ 2

2(ℓ−2)∑

k=n+1

y3,ky3,n
∂

∂ y3,n

)
+

+

ℓ−1∑

n=1

2(ℓ−2)∑

k=2(n−1)

y3,k

(
yi,n

∂

∂ y1,n
+ y2,n

∂

∂ yi,n

)
+

2(ℓ−3)−1∑

n=1

∑

k=2[n/2]+3

y3,ky4,n
∂

∂ y4,n
,

f
(ℓ)
k = −〈µ, α∨

k 〉

2(ℓ+1−k)∑

n=1

yk,n −

2(ℓ+1−k)∑

n=1

(
y2

k,n

∂

∂ yk,n

+ 2

2(ℓ+1−k)∑

i=n+1

yk,iyk,n
∂

∂ yk,n

)
+

+
ℓ+2−k∑

n=1

2(ℓ+1−k)∑

i=2(n−1)

yk,i

(
yk−1,2n−1

∂

∂ yk−1,2n−1
+ yk−1,2n

∂

∂ yk−1,2n

)
+
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+

2(ℓ−k)−1∑

n=1

∑

i=2[n/2]+3

yk,iyk+1,n
∂

∂ yk+1,n
, 3 < k ≤ ℓ.

This completes the proof of Proposition 2.12.
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