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Abstract

We propose integral representations of the Whittaker functions for the classical Lie
algebras spyy, 509y and s09¢41. These integral representations generalize the integral
representation of gl,, ;-Whittaker functions first introduced by Givental. One of the
salient features of the Givental representation is its recursive structure with respect
to the rank ¢ of the Lie algebra gl,, ;. The proposed generalization of the Givental
representation to the classical Lie algebras retains this property. It was shown else-
where that the integral recursion operator for gl,, ;-Whittaker function in the Givental
representation coincides with a degeneration of the Baxter Q-operator for 3[5 11-Toda
chains. We construct Q-operator for affine Lie algebras 09/, 502011 and a twisted form
of 5[25. We demonstrate that the relation between recursion integral operators of the
generalized Givental representation and degenerate Q-operators remains valid for all
classical Lie algebras.
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1 Introduction

A remarkable integral representation for common eigenfunctions of gl,, ;-Toda chain Hamilto-
nian operators was proposed by A. Givental [Gi] (see also [JK]). The integral representation
appears naturally in a construction of a mirror dual of the theory of Type A topological
closed strings on gl,, ;-flag manifolds. The Givental integral representation has many inter-
esting properties. It has an explicit recursive structure over the rank ¢ of the corresponding
Lie algebra gl, ;. The integrand in the integral representation allows for purely combinato-
rial description in terms of a simple graph. This graph captures a flat degenerations of flag
manifolds to Gorenstein toric Fano varieties (torification) [Bal, [BCFKS].

In [GKLO], the Givental integral representation was reconsidered in the framework of
the representation theory approach to quantum integrable systems. According to B. Kostant
[Kol],[Ko2] the common eigenfunctions of g-Toda chain Hamiltonian operators are given by
generalizations of classical Whittaker functions and can be expressed in terms of the matrix
elements of infinite-dimensional representations of the universal enveloping algebra U(g). It
was demonstrated in [GKLO] that the Givental representation of gl,, ;-Toda eigenfunctions
coincides with an integral representation of the relevant matrix elements obtained by using a
particular parametrization of an open part of the gl,, ,-flag manifold. A conceptual explana-
tion for the particular choice of coordinates on flag manifolds was proposed using a relation
with the Baxter Q-operator formalism. It was noticed that the Givental integral representa-
tion has a recursive structure connecting the gl, - and gl,, ;-Whittaker functions by simple
integral transformations. The corresponding integral operator coincides with a particular
degeneration of the Baxter Q-operator for gl,,,-Toda chain [PG]. It is well-known that
Q-operators realise the quantum Bécklund transformations in quantum integrable systems.
On the other hand, in the classical limit, the formalism of Q-operators allows us to define
special coordinate system on the phase space. Thus degenerate Q-operators define particu-
lar coordinates on an open part of flag manifolds and therefore lead to the Givental integral
representation of gl,, ;-Whittaker function.

Until now a generalization of the Givental integral representation of gl,, ,-Whittaker
functions to Lie algebras other then gl,,; was not known. The only known generalization
[BCFKS], |Ri] of the Givental construction is an integral representation for common eigen-
functions of certain degenerations gl,,,-Toda chains [STS]. It is based on flat degenerations
of partial flag manifolds G/P for G = GL({ + 1,C), P being a parabolic subgroup of G
[BCFKS]. In this paper we propose a generalization of the Givental construction for classi-
cal Lie algebras sp,,, 509, and s04¢41. Our construction possesses all characteristic properties
of the original Givental integral representation. The integral representations for the classical
Lie algebras have recursive structure. The integrands of the integral representations have
combinatorial descriptions in terms of graphs. The proposed generalization to the classical
Lie algebras is based on a modification of a well-known factorized representation of generic
elements of maximal unipotent subgroups of the corresponding Lie groups [Lu] (see also [FZ],
[BZ]). The construction of the modified factorized representation essentially uses the realiza-
tion of maximal unipotent subgroups of classical Lie groups as explicitly described subgroups
of upper-triangular matrices (see e.g. [DS]). We define Baxter Q-operators associated with
the classical affine Lie algebras §04/, 5091 and a twisted form of 5[25. We demonstrate that



the relation between recursion integral operators of the generalized Givental representation
and degenerate Q-operators remains valid for all classical Lie algebras.

The novel feature of the constructed integral representation is that, in contrast with the
gl,., case (where the kernel of the recursion operator is a simple function), the integral
kernels of the recursion operators for all other classical Lie groups are given by non-trivial
integrals. This suggests that the recursion operators can be obtained as a composition of ele-
mentary operators. Indeed, for zero eigenvalues, recursion operators relating the Toda chain
eigenfunctions of the Lie algebras with adjacent ranks can be represented as compositions of
elementary recursion operators relating the Toda chain eigenfunctions of different classical
series. This might not be so surprising due to the fact that we essentially use a realisation
of all classical Lie groups as subgroups of general Lie groups of large enough rank.

Let us stress that the construction of integral representations of g-Whittaker functions
presented in this paper also has a natural interpretation in terms of torification of flag
manifolds associated with classical Lie groups. The graph encoding the integrand of the
Givental representation for a classical Lie group allows us to describe toric degeneration of
the corresponding flag manifold explicitly (thus generalizing the results of [BCFKS]| to all
classical Lie groups).

One of the interesting applications of the Givental integral representation of g-Whittaker
functions for classical Lie algebras might be a construction of mirror duals for closed strings
on flag spaces associated with classical Lie groups G, g = Lie(G). According to Givental
|Gi] the mirror dual to Type A topological string theories on flag manifolds associated with
Lie groups G should be Landau-Ginzburg models associated with Langlands dual Lie groups
GV such that the generating function of the genus zero correlators is a g¥-Whittaker func-
tion, g¥ = Lie(G"). In the case of g = gl,,,; Givental provides a description of the dual
Landau-Ginzburg model in terms of the integrand of the integral representation of the corre-
sponding Whittaker function. Moreover the interpretation of the integral representation of a
g-Whittaker function in terms of a torification of flag manifolds [Bal], [BCFKS] allows us to
construct the mirror map explicitly. Thus using the same reasoning, the generalization of the
Givental integral representation for classical Lie groups allows us to infer the superpotential
of the corresponding Landau-Ginzburg model from the integrand. Moreover, similar to the
case of g = gl, |, the interpretation of the integrand in terms of a toric degeneration of
the flag manifold provides an explicit construction of the mirror map. We will discuss this
construction elsewhere.

Finally, note that some of the results presented in this paper was announced previously
in [GLO|, [GLOT].

The plan of this paper is as follows. In Part I we formulate the results for the classical
Lie algebras spo,, 5090 and 5094, 1. The main results are formulated in the Theorems 2.3] 2.6
2.10, .14 respectively. In Part II we collect the proofs of the results presented in Part I.
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2 Part I: Results

2.1 Toda chain eigenfunctions as matrix elements

Eigenfunctions of g-Toda chain are given by particular matrix elements of infinite-dimensional
representations of Lie algebra g [Kol], [Ko2] (for detailed exposition see e.g. [Et]). In this
section we provide integral representations of these matrix elements with integrands being
expressed in terms of matrix elements of finite-dimensional representations of g. In the
following sections we derive explicit expressions for the relevant matrix elements of finite-
dimensional representations and thus obtain integral representations of g-Toda chain eigen-
functions generalizing the results of Givental for g = gl,, ;. The construction will be given
for all classical Lie algebras. We start with standard definitions in the theory of Lie algebras
mostly following [K] (for a discussion of root data of reductive groups see e.g. [9]).

2.1.1 Root data for reductive groups

Root datum is a quadruple (X, ®, XV, ®¥) where X is a lattice of a finite rank, XV is a dual
lattice, ® and ®" are subsets of X and XV supplied with a bijection o — a" of ® onto ®V
and the following conditions hold. One has {(«,a¥) = 2 for any « € ®. Subsets ® and P
should be stable with respect to any automorphisms s,, Sqv:

so(r) =2 — (2,001, sav(y) =y — (y,a)a”, reX, ye XV, aed.
Let @ C X be a sublattice generated by elements of ®, and P be a lattice defined as
P={zeX®Q|(x,a") € Z, o € ®}.
One has @ C P and P/Q is a finite group. Let Xy C X be sublattice defined as
Xo={r € X[(z,y) =0,y € 2'}.
With any reductive Lie group one can associate root datum. Let G be a connected
reductive complex Lie group and H C G be a maximal torus. We associate to a pair
(G, H) a root datum (X, ®, XV, &) as follows. Here X is a free abelian finite rank group

of Q-characters of H, XV = Hom(C*, H) is a dual group of one-parameter multiplicative
subgroups of H. The pairing (, ) : X x XV — Z is defined as

AMu(t)) = thw, NeX, ueXV, tecC

Then ® and ®V are finite subsets of X and XV respectively, and there is a bijection a — "
of ® onto ®V.

Adjoint action of H on a Lie algebra g = Lie(G) defines a decomposition
g=b®) Ce,,  b=Lie(H),

aced



and thus defines a subset ® C X. Let B be Borel subgroup containing H. There is a unique
ordering > of ® such that b = Lie(B) is generated by h = Lie(H) and e, with a > 0. One
fixes a basis II = {a;} of ® compatible with the ordering of ® associated to B.

There is a decomposition G = Z - G' where Z; is the identity component of the center Z
of G and G’ is a semisimple group (derived group of G). We have H = Z, - H' where H' is
a maximal torus of G'. The root datum associated with (G’, H') is (X/Xo, ®,QY, ®"), with
Q) C X/Xy. Given a basis {a;'}, i € I in Q¥ and a basis {w;} j € J in X, one can choose a
basis of representatives of the form {w] = w; + Xy}, i € I C J in X/Xj such that {w]}, i € I
form a basis dual to {a}'}, i € I.

From now on if not explicitly mentioned g be a semisimple Lie algebra. Let h C g
be a Cartan subalgebra and by be a pair of opposite Borel subalgebras of g containing
h. We have a decomposition g = n_ & b & n,. where no C by is a nilpotent radical.
Denote by I' the set of vertexes of Dynkin graph associated with the root system of g. Let
IT = {a; € b*, i € I'} be the set of simple roots, {w; € h*, i € I'} be the set of fundamental
weights and IIV{c;” € b, i € '} with be the set of the co-roots defined by (o, w;) = d;;. Let
A = |la;||, i,j =1,...,¢be the Cartan matrix of g defined by a;; = (¢, ;). Denote R the
set of positive roots of g and let p be a half of the sum of the positive roots p = % Za6R+ Q.
There exist co-prime positive rational numbers dj, . . ., d; such that the matrix ||b;;|| = ||d;a;;|
is symmetric. Define a symmetric bilinear form on h* by (o, ;) = b;;. This form defines a
non-degenerate pairing v : h=—h* given by v(a)) = d; ‘.

Let W be a Weyl group of root system associated with Lie algebra g. It is generated by
simple reflections sy, ..., s, acting by linear transformations in bh*:

si(A) =X — (N, oYy, X €D (2.1)
Defining relations can be represented as:

st=1, (sis;))™ =1, i,5=1,...,4, (2.2)
where m;; are equal to
mzy = 27737 47 67 o0,

for
aija'ji :Oa 1a 2a 3> Z4a

respectively. For any w € W a reduced word is a sequence of indexes I, = (i1, ..., %)),
i, € I', of shortest possible length such that w = s, s, - - s;,,,. The integer [(w) is called
the length of w. Denote by wy the unique element of maximal length in Weyl group and let
m = l(wp). In the following we fix a lift w € G, g = Lie(G) of an element w € W such that
w(u) = Adyu, u € g. For simple reflections s; we define

$; = eeie_fieei’

and for w = s;,s;, - - “ Sy W€ take w = $;,8;, - - 'éiz(w)- Thus defined w does not depend on
the decomposition into the product of simple reflections (see e.g. [K], Lemma 3.8).



Denote by e;, fi, h;, @ =1,..., ¢ the set of standard generators of a semisimple Lie algebra
g satisfying the following relations:

[hi, e5] = aije;, [hi, 5] = —aij fi. les, f] = 6ijha, (2.4)
(ad ei)l_“”'ej = 0, (ad fi)l_aijfj = 0, fOT ) % j (25)

The invariant symmetric bilinear form on g is given by
(hiy hy) = bigd; dy, (es, f3) = 0yyd Y, (eq, hy) = (fi, hy) = 0.

The only example of a non-semisimple reductive Lie algebra that will be considered in
this paper is the reductive Lie algebra gl,, ;. In this case we explicitly define Lie algebra by
generators and relations as follows. Introduce the set of generators

{6i7ii1,’l’:1,...,f; 6k7k,k‘:1,...,€—|—1},

of gl,. ;. They satisfy the following relations

[€i,i, ej,j] =0, [ez’,z'+1> 6i+1,i] = €ii — €Cit1,i+1,
[61',1', 6i,z'+1] = €ii+1, [€i+l,i+l> ei,i-',-l] = —€ii+1,
[ei,i, 6i+1,i] = —€i+1,4, [€i+1,i+17 ei—l—l,i] = €i+1,, (2-6)
(a’dei,i+l)2ej7j+1 = 0’ (ad6¢+1,i)2ej+l,j = 0’ |Z - ]| =L

2.1.2 Whittaker model of principal series representations

Let U(g) be a universal enveloping of g and V, V' be U(g)-modules. Modules V' and V'
are called dual if there exists a non-degenerate pairing (.,.) : V' x V — C such that
(v, Xv) = —(Xv',v) forall v € V, v/ € V' and X € g. We will assume that the action of
the Cartan subalgebra on V', V' is integrated to the action of the Cartan torus.

Let BL. = N_H and By = HN, be a pair of opposed Borel subgroups where H is
a maximal torus, and N1 are opposite maximal unipotent subgroups of G. Characters of
ny = Lie(IVy) are defined by their values on simple root generators. Let x4 : nio— C be the

characters of ny defined by x,(e;) := —1 and x_(f;) :== —1 for all : = 1,...,¢. A vector
g € V is called a Whittaker vector with respect to y if

eir = =Yg, (1=1,...,0), (2.7)
and a vector ¢y, € V' is called a Whittaker vector with respect to x_ if

favr = —r,, (1=1,...,0). (2.8)
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A Whittaker vector v is called cyclic in V if U(g)yy = V, and U(g)-module V is a
Whittaker module if it contains a cyclic Whittaker vector. The Whittaker U(g)-module V'
admits an infinitesimal character ¢ i.e. there exists a homomorphism of the center Z(g) C
U(g) £: Z(g) — C such that zo = £(z)v for all z € Z(g) and v € V.

Consider the principal series representation Indgf X of G, induced from the character
Xu of B_ = HN_ trivial on N_. It is realized in the space of functions f € L*(G) satisfying

f(bg) = xu(b)f(g)- (2.9)

The action of G is given by the right action (g1 - f)(g2) = f(g291). We will be interested

g{) X of this representation. The action of the Lie algebra

g = Lie(G) is given by the infinitesimal form of the right action

in the infinitesimal form Indgg

(Xf)(g) = %f(geﬁx)lﬁo : (2.10)

Denote V,, the corresponding U(g)-module.

Let G(R) be a totally split real form of a reductive Lie group G, gr = Lie(G(R)) be
a corresponding Lie algebra and N(R), € Ni N G(R) be a nilpotent subalgebra of G(R).
Let duc ) be a bi-invariant (Haar) measure on G(R). We have the Bruhat decomposition
GR) = [[yew B-(R)wB(R). Let Go(R) = B_(R)N,(R) be a w = 1 component in this
decomposition. Restriction of the measure djugr) on Go(R) up to normalization has the
following form [He]:

dpcm) (9) = 08, ®)(b) dup, @) (b) A dun, @) (z). (2.11)
Here p, (r) is the modular function on B (R). For any b = ngy € N, (R) H it is equal to
05, ®)(b) = exp 2(p,In go).
Let po =i\ — p. Consider the following non-degenerate pairing V, x V,, — C:

(o fa) = /N o e @) @) T,

where djuy, () is a restriction of (2.I1)) on Ny (R). It defines on V), a structure of a unitary
representation 7y of U(ggr) and we have (fi, X fo) = —(X f1, fo) for any X € gg.

We shall consider a slightly more general pairing defined as follows. Note that N, (R) C
N, is a real non-compact middle dimension subspace. Omne has a natural holomorphic
structure on a Lie algebra g = gr ® C which induces the holomorphic structure on N,.
Consider the space of holomorphic functions on N,. It is a module with respect to the
holomorphic action of a corresponding holomorphic subalgebra of g. The right-invariant
measure djiy, r) can be extended to a holomorphic top-dimensional form d,u}]{}ll on N,.
Let C' C N, be an arbitrary non-compact middle-dimensional submanifold. Consider the

following pairing

i, fa)e = /C 4y (2) £ () TolE),

on the space S (V;) of holomorphic functions on N, exponentially decreasing with all its
derivatives when restricted to C. This pairing satisfies (fi, X fo)o = —(X f1, f2)c for any
holomorphic X € g.



2.1.3 Whittaker function as Toda wave function

According to B. Kostant [Kol],[Ko2] eigenfunctions of g-Toda chain can be written in terms
of the invariant pairing on Whittaker modules as follows

U (x) = e~ (gr , ma(e™") Yr), z e, (2.12)

¢
where h, := > (w;, z) h;. In the special case of g = sly the function ¥U§(z), z € R coincides
i=1
with the classical Whittaker function. In the following we will use the term g-Whittaker
function for (Z12) ( see e.g. [Et]). A slightly different notion of the Whittaker functions was

used in [Ja], [Ha).

One can introduce a set of commuting differential operators H; € Diff(h), k =1,--- ¢
corresponding to a set {cj} of generators of the center Z C U(g) as follows:
HeW(x) = e (gr, ma(e™) ek Pg). (2.13)

Operators Hj, provide a complete set of commuting Hamiltonians of g-Toda chain [Kol].
Connection with Toda chains can be seen as follows. Quadratic generator of the center Z(g)
(Casimir element) is given by

¢
1 1
Co = 5 Z Cijhihj + 5 Z (eafa + faea>7 (214)
ij=1 a€R;
where the matrix [|c;j| = [did;(b~");;|| is inverse to the matrix [|(oy, o). Let {¢} be an

orthogonal bases (¢;,€¢;) = d;; in h and x = Zle x;€; be a decomposition of z € h in this
bases. Then the projection (2.I3) of (2.14]) gives the well-known Hamiltonian operator of
g-Toda chain [STS]

0 l
2 0 2 o,
=1 v =1

The eigenfunctions ([2.12]) of g-Toda chain are written in an abstract form. To get ex-
plicit integral representations we start with representations of matrix elements ([2I2) of
infinite-dimensional representations in terms of matrix elements of finite-dimensional rep-
resentations of U(g). Let m; be a set of fundamental representations corresponding to all

N~

fundamental weights w; of g and 5:2/ ~ be highest/lowest vectors in these representations
such that (£ |f) = 1. For highest weight vector £ in a fundamental representation V,,, we
have s, 15;: = flfjjl . Consider following matrix elements in fundamental finite-dimensional
representations

Aui(g) = (&l milg)mi(w)| &), weW, g€G. (2.16)

Lemma 2.1 The left/right Whittaker vectors defined by (2.7) and (2.8) are given by:

vr(v) = exp{ =3 A—()} (2.17)



¢ v ¢ Aw_ w1 U
Y v) = [J(Ay e (@)D x exp { 3 —()} (2.18)

i=1 i—1 Awi,wgl(v)
The proof in given in Part II, Section 3.2

Proposition 2.1 Common eigenfunctions (2.12) of g-Toda chain can be represented in the
following integral form.:

Td(z) = ' / N (0) TT(A e (0) 207 x (2.19)

i=1

X exp { i w _ e@q,x)M }
=1 Awi’w(;l (U) Awi,l(v) .

Here C' C Ny is a middle-dimensional non-compact cycle such that the integrand decreases
exponentially at the boundaries and infinities. The measure of the integration is the restric-
tion on C of the holomorphic continuation d,uhoz of the right-invariant measure dpy, ®) on
N, (R).

~

The first example of this type of integral representation for gl -Whittaker function was
considered in [GKMMMO]. Its generalization given above is straightforward. The proof of
the Proposition is given in Part II, Section [3.21

The expression (2.19) for a Whittaker function is much more detailed then (2.12]) but does
not yet provide explicit integral representation. To obtain explicit integral representations
of Whittaker functions one should choose a parameterization of N, (or an open part of it)
and express the measure du?' and various matrix elements entering (2.19) in terms of the
coordinates on N,. Natural choice would be a factorized representation of the elements of
an open part of a maximal unipotent subgroup of an arbitrary Lie group [Lu| (see also [BZ],
[EZ]). For each i = 1,...,¢ let X;(t) = exp{te;} be a one-parameter subgroup in N,. Pick
a decomposition of the longest element wq in the Weyl group W corresponding to a reduced
word Iy, = (11, .. ,im), l(wg) = m = dim N;. Then the following map

cm — N9, (tr, . otm) — Ot b)) = Xy (81) - Xy, (Bn),  (2.20)

is a birational isomorphism. This provides a parametrization of an open part NJ(FO) of N,.
Parametrizations corresponding to different choices of the reduced word I,, are related
by birational transformations described explicitly by G. Lustzig [Lu]. The right-invariant
measure has the following description in the factorized representation.

hol in the factorized parametrization is given

Lemma 2.2 The right-invariant measure dpy,
by:

14

e (0) =[] A e /\t— (2.21)

=1



The proof is given in Part II, Section 3.1l

Thus the problem of finding explicit integral representations of Whittaker functions in
the factorized parametrization ([220) is reduced to a calculation of the matrix elements of
finite-dimensional representations of g in this parametrization. In the following we provide
explicit expressions for finite-dimensional matrix elements for classical Lie groups and give
corresponding integral representations of Whittaker functions. Let us stress however that
thus obtained integral representation for g = gl,,; does not coincide with Givental represen-
tation [Gi]. Note that for classical series of Lie algebras the factorized parametrization (220
has a recursive structure over the rank ¢ reflecting the recursive structure of the reduced de-
composition of wy € W. This recursive structure is not translated, however, into a simple
recursive structure of the infinite-dimensional matrix element in the factorized parametriza-
tion and does not reproduce the recursive structure of the Givental integral representation.

In [GKLO] a modification of the factorized parametrization ([2.20) for g = gl,,; was
proposed and it was shown that the integral representation (2.I9) in this parametrization
exactly reproduces the Givental integral representation of gl, ;-Whittaker functions. In
particular for this parametrization the recursive structure of the reduced decomposition of
wo € W directly translates into the recursive structure of the integral representation of the
corresponding Whittaker function.

Below we generalize the results of [GKLO] to all classical series of Lie algebras. We
propose a modification of factorized parametrization (2.20]) based on a particular realiza-
tion of maximal unipotent subgroups N, C G of classical Lie groups as explicitly defined
subgroups of the maximal unipotent subgroups of general linear groups. For any classical
simple Lie group, the maximal unipotent subgroup can be realized as a subgroup of a group
of upper-triangular matrices of appropriate size with units on diagonal (see e.g. [DS]). The
corresponding subset of upper-triangular matrices for classical Lie group can be describe
explicitly. We define a parametrization of maximal unipotent subgroups of classical Lie
groups by constructing a particular form of the parametrization of the corresponding subset
of upper-triangular matrices. Using this parametrization we derive explicit integral repre-
sentations of Whittaker functions associated with all classical groups and demonstrate that
these integral representations have all characteristic properties of the Givental integral rep-
resentation for gl,,,-Whittaker functions. In particular the recursive structure of Whittaker
functions is explicit in this new parametrization.

2.2  Integral representations of gl, - and sl,;;-Toda chain eigen-
functions

In this section we recall the construction of integral representations of gl,, - and sl ;-
Toda eigenfuctions using factorized parametrization (2.20]) of a maximal unipotent subgroup
N, C GL(¢ + 1) and its modification introduced in |[GKLO]. The second parametrization
leads to an integral representation obtained earlier by Givental [Gi] using different approach.
In the following these constructions will be generalized to g-Toda theory for arbitrary classical
Lie algebras g.

We start with the case of the reductive Lie algebra gl,,,. Let (e1,...,€e41) be an or-
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thogonal basis in R“*!, (€;,¢;) = ;5. Roots and fundamental wights of gl,,, considered as
vectors in R are given by:

o =¢€41— €, 1=1,...,0, wj=¢€, j=1...,(0+1). (2.22)

Coroots «; can be identified with the corresponding roots «; with respect to the pairing
in R, To this root/weight system one associates gl, ,-Toda quantum integrable system
having a set of (£+ 1) mutually commuting functionally independent quantum Hamiltonians
H,Sr“l, k=1,---,({ +1). We are interested in the explicit integral representations for
common eigenfunctions of the full set of quantum Hamiltonian operators for gl, ;. For
instance linear and quadratic quantum Hamiltonians of gl, ;-Toda chain are given by

HO = —z% 0 (2.23)
1 i=1 O;’ '
/41 J4
i1 1 0? o
Hy = = —ag;-2+ze T (2.24)
=1 v =1

and the eigenfunction should satisfy the following equation

{+1
[ [ [
HY () WS, () = Y N U (@ ), (2.25)
i=1
[ [ 1 l+1 [
Hy () UYL (@) = §ZA§ WS @), (2:26)
i=1

Common eigenfunction of the quantum Hamiltonians has the following representation as
a matrix element

WL (2) = e 2T gy my (67 27 ) ), (2.27)

where p; = (¢ — 2i + 2) are the components of p in the standard basis {¢;} in R“™.

The construction for the semisimple Lie algebra sl,.; is quite similar to that for reductive
Lie algebra gl,, ;. The roots and fundamental wights for semisimple Lie algebra sl,,; can be
written in the following form (see [Boul):

1
Q; = €41 — €, W; = —(61+...—|—€i)+“—1(€1—|—...—|—€g+1), (228)
fori =1,...,¢. This representation of the A, root/weight system can be obtained from the

root/weight system of the reductive Lie algebra gl, , as follows. Let us pick an orthogonal
basis of fundamental weights of gl,_ ;:

I
W; = —€ — ... — €,

such that (wj, /) = &;; for 4,5 =1,...¢, and (wy,, af) =0 for j =1,...¢. Then w;,, can
be identified as a generator of X,. Introducing
i

o /
Wi = W; — g_'_lwf—l—lv

11



one readily obtains the set (2.28) of fundamental weights for s, ;.

To this root/weight system one associates sl,1-Toda quantum integrable system pos-

sessing a set of ¢ mutually commuting functionally independent Hamiltonians Hzr“l, k =
1,---,¢. It is convenient however to consider sl,.;-Toda chain Hamiltonians as a subset

Hi”“, k=2---,({+1) of gl,, ;-Toda chain Hamiltonians acting on the kernel of the linear

Hamiltonian Hfr”l. For instance the eigenfunction of a quadratic quantum Hamiltonian of
sly1-Toda chain should satisfy the equation

[ [
H; Hl‘I’iff.l. ,)\Hl(xla s Teg1) =
1 +1 82 l o
= (52 gz H 2T TN () = (2.29)
i=1 i=1

/41

1
_ § : 2 sl
= 5 )‘z \If)\17...7)\e+1($1,...,LL’[_H),
i=1

with an additional constraint A\; + ...+ Ayr; = 0. The eigenfunctions for sl,.,-Toda chain
can be also written using a reduced set of variable

sl — \[ySte+1 _ _
ot W, ye) =T (@ T Vi=Nig1— Ny, Yi=Tip—x (2.30)

Note that without imposing the constraint A\; + ...+ Apr1 = 0, the eigenfunctions of sl ;-
Toda chain can be expressed through eigenfunctions of gl,,;-Toda theory in the following
simple way

041 041
1 [
\If,ﬁ?ﬂw(yl, .o, Yg) = exp { ~Tr1 Z Ai - le} . \I/?\ff_l_v/\ul(xl, e Tert), (2.31)
i=1

i=1

where we use notations (2.30). In the following we will consider mostly gl,,,-Toda chain

eigenfunctions making comments on the corresponding modifications for sl,;; case (we will

mostly use the non-reduced form \Ifil”l(:c)).

2.2.1  gl, ;-Whittaker function: factorized parametrization

To make the integral representation ([2.19) for gl,,,-Whitaker functions explicit one should
pick a particular parametrization of Ny C GL(¢ + 1). Let wy be an element of maximal
length of the Weyl group W = Syi; of gl,, ;. Consider the reduced decomposition of wy
corresponding to the following reduced word I,

Iy = (v, ia, - yig) = (1,21,321, ..., (¢...321)).

The reduced word I, has an obvious recursive structure: ;41 = I,L1(¢+1...321). Thus the
corresponding parametrization of unipotent elements v(® in an open part NJ(FO) of N, can be
written in a recursive form:

v® =V xf (2.32)

12



where

er L= Xe(yea) - Xo(y2,-1) X1 (y10), (2.33)

and X;(y) = exp(ye;). Parameters y;;, of one-parametric subgroups will be called factoriza-
tion parameters. The action of Lie algebra gl,,; on GG/ B_ considered at the beginning of the
previous section defines an action of the Lie algebra on the space of functions V), restricted
to NJ(FO).

Proposition 2.2 The following differential operators define a realization of the representa-
tion m\ of U(glyy,) in 'V, in terms of factorized parametrization (2.32), (2.33):

l+1—1i 0+2—1i

Ei; = Z yzl + Z Yi— P

i Vi1,
i-1 k Yies o ) b Yi—(s+1),04+2—i 0
B = ;H Yir1—s,041-i OYike41-i _s=0 Yimsbri-i OYic(er)er2—i’ .
¢ 9 0
Eipi = kz:; {(:ui-i-l — i) Yikt1—i — Yikt+1—i (yi,k—i-l—im - yi-ﬁ-l,k—im) +
k-1 9
+  Yik+1—i ; <yi—1,s+2—im — 2yi,s+1—im + yi+17s_i78yi+1,s—i>

where E; ; = mx(€e;;), th = 1tA\x — pr and py, = %(ﬁ —2k+2).

Proof. The proof is given in Part II, Section B.4.1]

The calculation of matrix elements entering the integral (2.19) in the factorized parametriza-
tion (2.32), (2.33]) can be done following [BZ] and [EZ] (see Section 3.3 for details). Another,
more straightforward approach is to find left and right Whittaker vectors solving the equa-
tions (2.7)-(2.8) directly. In the following we will use the convention: Y J_, =0, when k > j
and Hf:k =1, when k > j.

Lemma 2.3 The following expressions for the left/right Whittaker vectors in terms of fac-
torization parameters hold:

Unly) = exp { - i y} (2.35)

ﬁ(H H ykn)(‘”“ . (2.36)

i=1 k=ln=i+l1—-k

¢ -k n
Yor1—k—ik+1
xexp{— (l—l— )}
;ye—i—l k.k ;H Yor1—k—ik

13



Using (2.21)) we have the following expression for gl,, ;-Whittaker function in the factor-
ized parametrization.

Theorem 2.1 FEigenfunctions of the gl, ,-Toda chain ([2.27) admit the integral representa-
tion:
€ f+1—i ¢

\Ililllj.l.,)\g+1(x1, . ,S(,’g+1) = 6225;11 AT / /\ /\ dyz n H (H H e n) 1(Aip1—Ai)

zlnlyznzlklnz-‘rlk

¢ ¢ L+1—i
_ Yot+1—k—ik+1 T .
exp{ <Zye+1 kk( +Zl} Ve ik ) + ;:1 i+l n§:1 yw) } (2.37)

Here C' C Ny s a middle-dimensional non-compact submanifold such that the integrand

defrecgies exponentially at the boundaries and infinities. In particular one can take C' =
]Rﬁ t+1)/2.

The proof is given in Part II, Section [3.3.11

2.2.2  gl, ,-Whittaker function: modified factorized parametrization

Now we consider a modification of the factorized parametrization ([2.32), ([2.33]) leading
to the Givental integral representation of gl,,;-Whittaker function. This modified factor-
ized parametrization was first introduced in [GKLO]. There is an important difference
between factorized and modified factorized parametrizations. Note that the parametrization
[232)), (2.33)) is defined in terms of group elements of N,. To define a modified factorized
parametrization of N, we shall consider the image of a group element in a faithful finite-
dimensional representation of G. In the case of gl,,; and sl,;; we use a tautological represen-
tation i1 @ gl — End(C*Y). Let € ; be a set of elementary (€4 1) x (£+1)-matrices with
units at (7, j)-places and zeros, otherwise. Consider the following set of diagonal matrices

k N
U = E e e + g €iyi-
i=1

1=k+1

Define the following upper-triangular deformation of Uy

k N k—1
Uk = E €_mk’i€i7i -+ E €ii -+ E €_mk71’i€i’i+1. (238)
i=1 i=k+1 i=1

The modified factorized parametrization of N, is then defined as follows.

Theorem 2.2 i) The image of any generic unipotent element v € N, in the tautological
representation myq ¢ gl — End(Cyiq) can be represented in the form

71'(.,_1(’11) = UQU{lﬁgUg_l tee ﬁN_lUﬁl_lﬁN, (239)
where we assume that vp41, =0, i=1,..., 0+ 1.

it) This defines a parametrization of an open part NJ(FO) of Ny.
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Proof. Let v(y) be elements of N, parametrized according to (2.32)), (2.33)). Let us now
change the variables in the following way:

y’iﬂl — exn+i,i+1_xn+i71,i’ (240)

where 2411, =0, n=1,...,/+1 are assumed. By elementary operations it is easy to check
that after the change of variables, the image 7,11 (v) of v defined by (232]), (2.33]) transforms
into (239). Taking into account that the change of variables (2.40]) is invertible we get a

parametrization of NJ(FO) c N, U

Considering the image of the factorized group element (2.32), (Z33) in the tautological
representation m,,; we obtain the following relations between factorization and modified
factorization parameters:

yi,n — exn+i,i+1_xn+i—1,i’ (241)

where 2p11, =0, n=1,...,0 + 1 are assumed. Applying the change of variables (2.41))
to the expressions in Proposition one obtains the realization in the modified factorized
parametrization.

Proposition 2.3 The following differential operators define a realization of representation
s of glpq in V), in terms of modified factorized parametrization (2.39), (241) of Ny:

' 0 0
Big = = 2:: Oyt ik * ; 0xy;’

i i P P
Eiiv1 = — <Z€W+1+Si's_x”3i’s> ( — ) ) (2.42)

k=1 \ s=k Oork—i  OTopr—ik—1

4

Ei, = — Tk i—Thi1,i41) Ni_ﬂi—i—l"i‘zk:( 0 B 0 ) |
| 1 — 0xsiv1  Oxgy

k=

where E;; = ma(ei;), e = A\ — pg, and py = %(ﬁ + 2k — 2). We let xpr1p = 0, (k =
S0+ 1).

This realization of the principal series representation of gl,,, by differential operators is
based on a particular parametrization of the maximal unipotent subgroup N, entering the
Gauss decomposition of the group G and was inspired by the Givental integral formula. In
[GKLO]| we coined the term Gauss-Givental representation for this realization of the principal
series representation. Applying the change of variables (241]) to the expressions in Lemma
one obtains Whitaker vectors in the modified factorized parametrization.

Lemma 2.4 The following expressions for the left/right Whittaker vectors hold:

£ f+1—

Yr(z) = eXp{ -y > em"“’i“‘x”“*’i}, (2.43)
i=1 n=1
Lk £ f41—i
Vile) = e 323 neer — s} exp {3037 el
k=1 i=1 i=1 k=1
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where we set vy, =0, i=1,..., 0+ 1.

Now we are ready to write down the integral representation of the pairing (2I2)) using
the modified factorized representation. Going from (2.12)) to (2.19), (Z37) we chose to act
by an element of the Cartan torus to the right in (2.12)). Different choice (for example the
action to the left) leads to the integrand that differs by total derivative. The choice made in
(2.19), (2317) is not the most symmetric one. One of the special features of Gauss-Givental
representation is that up to a simple exponential term in ¢;(z) the left and right Whittaker
vectors are very similar (compare in this respect with the case of factorized parameterization
217), 218)). We would like to maintain this symmetry in the integrand of the integral
representation. Let us represent the Cartan group element in the following way:

efl = eflLelln,

where

)
sy
|
\g
&
I
|
@
”
ol
—
(-
S
~
£
s
=
|
M
o))
&
~
£
Q
5
_I_
g
= |
N—
R
o
I~
N

=1 k=1 =1 ’
. 41 ¢ 9
e = exp Zx@ruz&v } (2.45)
i=1 k=i v

l+1 l+1 i—1

0
Hp _
e = eXP{E Topriti — ) Tey1i ) 5 (2.46)
i—1 i ; i ;8$e+1+k—i,k

In the calculation of the matrix element we will chose the differential operator Hy, acting on
the left vector and Hy acting on the right vector in (Z12]). This way we obtain the following
integral formula for eigenfunctions of the gl,, ;-Toda chain.

Theorem 2.3 Eigenfunctions of the gl, ,-Toda chain ([2.27) admit the integral representa-
tion:

0k
9[2+1 ]:9‘2+1 z
U (@1 o) = /\ /\dl”k,i € @, (2.47)
Cg=1i=1

where the function F%+1(x) is given by

k—1

Z <€xk,1,i—mk,i + erk,wl—wkflvi)_ (2.48)

+1 l
k=1 =1

k k—1
Folei (r) =1 Z Ak < Z Thi — Z SL’k—l,i) —
i=1 =1

k=1

Here x; = —x¢114, 1 =1,...,0+1 and C C Ny is a middle-dimensional non-compact sub-
manifold such that the integrand decreases exponentially at the boundaries and at infinities.

In particular C' can be chosen to be C —RE
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Corollary 2.1 The sly - Whittaker function has the following integral representation:

I
\:[]§25+1>\1, 7)\e+1—>\e( - xl? AR 7IZ+1 - xf) = (249)
= {77 % 1CEDY //\/\dx F @)
0+ 14 o ki
i=1 J#i k=1i=1
where
4 k
Flr(m) =0 (Aepr — M) D (k — 7hi) — (2.50)
k=1 i=1
¢ k-1
k=1 i=1

This integral representation of the gl,, ;-Toda chain eigenfunctions was first obtained by
A. Givental in his study of quantum cohomology of the gl,,, flag manifold [Gi] (see also
[JK]). The description of the Givental integral formula in terms of the matrix element (2.27))
was first obtained in [GKLO].

The function F®+1(x) allows simple description in terms of the following diagram intro-
duced by A. Givental

Ty (2.51)

Tp—11 ——= Typ2

Trog ———> -, -, —— Ty
T11 —— T2 Top—10-1 —— Ty

We assign variables zy; to vertexes (k,7) and functions e¥~* to arrows (x — y) of the
diagram (2.51). Then the potential function F&+1(z) (248 at zero spectrum \; = 0 is given
by the sum of the functions assigned to all arrows.

17



As it was demonstrated in the Theorem variables {xj;} provide a parametrization
of an open part NJ(FO) of the flag manifold X = SL(¢ + 1,C)/B. The non-compact manifold
NJ(FO) has a natural action of the torus 7%“0) and can be compactified to a (singular) toric
variety. The set of the monomial relations defining this compactification can be described
as follows. Introduce new variables

Qg = 7RI = T T 1< B <l 1< i<k,

) )

assigned to arrows of the diagram (2.51]). Then the following defining relations hold

i bri = bkt Gttt 1<k</( 1<i<k, (2.52)

Qg - by = "t

They can be interpreted as relations between various compositions of elementary paths
having the same initial and final vertexes. The set of relations between more general paths
(following from (2.52))) provides a toric embedding of the degeneration of flag manifold (see
[BCFKS] for details).

2.2.3 Relation with g[éJrl—Toda chain Baxter O-operator

Integral representation (2.47), (2.48) of gl,,,-Whittaker function has a recursive structure
over the rank ¢ of the Lie algebra. Indeed the integral representation can be rewritten in the
following form

l+1

9Q+1
Wt = [ A Ao TT0% om0 259
k=11i=1
where
Olt1 e _
Qg (pr; Zps A1) = (2.54)
k+1 k
= exp Z)\k—l—l(E Th+1,i — E Ikz) - E (e e k) )
i=1
[
Here we denote z;, = (2,1, ..., Tk x) and assume that le = M1
Let us chose linear coordinates z;, = (zg1,...,Tkk) in CF. Let Cj be a non-compact

middle-dimensional submanifold in C* such that ([Z54) as a function of z; decreases expo-
nentially at possible boundaries and infinities of Cj. Consider the following integral operator

[ [ Y
(Qﬁizﬂf iy /ng+ (Zpr1; g Ayr) f () dy,.

acting on functions not growing too fast at possible boundaries and infinities of . Integral

operators Qg "+ provide a recursive construction of gl,,,-Whittaker functions:

glot1 QQ R gl
‘I’Al, SAeg (Ze11) //\d:)s“ Ie+1v£ev)\é+1)‘I’A1,.._,AZ(ZE)- (2.55)
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There is a natural oriented path in the diagram (2.51]), which can be associated with the

gl
recursive operator Q. o

N\ /

Ty-11 .- To—14—1

(2.56)

Diagram (2.51) can be considered as a collection of the oriented pathes (2.56]) and thus
the recursive construction of the integral representation is encoded in the diagram (2.51) in
an obvious way.

As a consequence of (Z.55)), integral operators Qg "1 with the kernels Qg S (Zgr1s Ty A1)
satisfy braiding relations with the Quantum Toda chaln Hamiltonians. For example the fol-

lowing relation between quadratic Hamiltonians ng’““@k +1) and HE (z,), holds

[ [ [ [ 1
Hg i k+1)Q§r2H(£k+1a Ty; Aby1) = Qﬁrz+1(£k+1’ 25 Ay ) M3 (2) + 5)‘2“- (2.57)

We shall assume that in the relation above and similar ones, Hamiltonian operators on l.h.s.
act to the right and Hamiltonians on r.h.s. act to the left. Similar braiding relations hold
for higher quantum Hamiltonian operators (see [GKLO]| for details).

The recursion operators Qg M1 appear to be related with an important object in the theory

of Quantum Integrable Systems Q-operator. Q-operator was introduced by R. Baxter [B]
for certain statistical models as a tool to solve quantum integrable models explicitly. In the
case of gl,,,-Toda chain, with the quadratic Hamiltonian

€+1

R l
M= )Y S 259

i=1
where ¢ is an arbitrary coupling constant, the Q-operator has the following integral kernel

/41

QE[Z+1( £+1)’ y(z+1); A) = exp { I\ Z(gjz — i) — (2.59)

~

_ ( Z (ewi—yi + eyiJrl—iEi) 4 Ty gey1—rz+1) }

i=1

Here we use notations z*Y) = (z,,..., 2,.,) and g(z“) = (y1,...,Yes1). This Q-operator

was first constructed in [PG]. It commutes with all Hamiltonians of gAIZ +1-Toda chain and
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generates quantum Bécklund transformations [PG]. For instance, for the quadratic Hamil-
tonians we have:

Hg[l+1( £+1))Q§[H1(£(£+1)7 y(5+1)’ >\) — QE;IZH(&(Z—I—I)’ y (4+1) )H9[Z+1( £+1))' (2.60)

To establish a relation between Baxter Q-operator for gA[k 4+1-Toda theory and a recursion
operator for gl ;-Toda theory it is useful to introduce a slightly modified recursion operator

Qg[’““ with the kernel:

ol ®al
L [
Qﬁr:ggtl @(Hl),g(kﬂ), A) =exp {tAygpi1} Qg k+1( (k+1)7y(k)’ A) = (2.61)
k+1 k
exp {M( Z Ti — Z Z) — Z (eyi_mi + e%‘ﬂ—yi) } :
i=1 i=1
where ") = (21, ..., 2pp1), ¥y = (y1, ... yk) and y&Y = (1, Yk, i)

This modified operator intertwines Hamiltonian operators of gl - and gl, @© gl;-Toda
chains (the new variable y;.; enters only gl,-Toda chain). Thus for quadratic Hamiltonian
operators we have

[ [ [ [ [
Hy" ' (2 '““))Qﬂ[i&xl( )y N) = Qaltgr, (@Y, g™V N (RS (™) + 15 (yas)),

where Hg[l (Yps1) = ; ay . Obviously the projection of the above relation on the subspace

of functions F(y, yx41) = exp(z)\ Yr+1) f(2) leads to (Z57).
Now consider a one-parameter family of integral operators

A (+1
QUlert (gD y(FH: Nre) = e exp { ) Z(:Bi —Yi) — (2.62)

i=1

~

_< E (eri—yi 4 eyiﬂ—wi) 4 g BT 5—1g€y1—$e+1) }

i=1

obtained from (2.59) by a shift of the variable zy,; — x, 1 + Ine. The limiting behavior of
([262) when ¢ — 0, ge~* — 0 can be described as follows

Qg[kEBgll (_ k+1)’ y(k—i-l) )\) _ lim gt Qg[kﬂ (z(k"‘l) (k+1) A 5) (2.63)

olky1 e—0, ge— 10

This provides a relation between the Baxter Q-operator and the (modified) recursion oper-
ator.
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2.3 Integral representations of soy,1-Toda chain eigenfunctions

In this subsection we provide a generalization of the Givental integral representation of
gl, ;-Whittaker functions to the case of s050;. We start with a derivation of the integral
representation of s09..1-Whittaker functions using the factorized representation. Then we
consider a modification of the factorized representation that directly leads to a Givental type
integral representation.

Consider By type root system corresponding to Lie algebra so09,y1. Let (€1,...,¢) be an
orthogonal basis in Rf. We realize B, roots, coroots and fundamental weights as vectors in
R’ in the following way:

— Vo __ _ 1

a1 = €, ay = 2¢, w1 = zler+ ... +e),
— vV __ —

Qg = €9 — €7, Gy = €2 — €1, CU2—€2—|—...+€E, (264)
_ Vo —

Oy = €y €r—1, &, =€ €r—1, Wy = €y.

The Cartan matrix is then given by a;; = (o, ;) and positive rational numbers d; = %, dy =
1,...,dy = 1 are such that the matrix ||b;;|| = ||d;a;;|| is symmetric. One associates with
these data a Quantum Toda chain with a quadratic Hamiltonian

¢

By 1 0 1 x1 Tip1—T;
Hg = —= Z W + 56 + (& . (265)

i=1 i=1

One can complete ([2.68) to a full set of ¢ mutually commuting functionally independent
Hamiltonians H. ,f ¢ of the s09s,1-Toda chain. We are looking for common eigenfunction inte-
gral representations of the commuting set of the Hamiltonians. Corresponding eigenfunction
problem for the quadratic Hamiltonian can be written in the following form

4
1
HY (x) W (@, ) = 5 SN Y (@), (2.66)
=1

2.3.1 soy;-Whittaker function: factorized parametrization

The reduced word for the element wy of maximal length in the Weyl group of B,-type can
be represented in the recursive form:

[ = (i1, in, ... ip) :=(1,212,32123,...,(¢...212...0)),

where indexes 7 correspond to elementary reflections with respect to roots . Let N, C G
be a maximal unipotent subgroup of G = SO(2¢+1). One associates with the reduced word
I the following recursive parametrization of a generic unipotent element v? € N,

R T (2.67)

0—1"
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where

%gﬁfl = Xo(Ye1) - XUk 20e41-k)—1) - Xo(Y2,20-3) X (2.68)
XXl(yl,é)X2(y2,2é—2) e 'Xk(yk,2(z+1—k)) : Xz(yé,z)-

Here X;(y) = e¥® and e; = e,, are simple root generators. The subset NJ(FO) of elements
allowing the representation is an open part of N,.. The action of the Lie algebra so04,1 on
N, (2.10) considered at the beginning of the previous section defines an action of the Lie

)

algebra on NJ(r0 . The following proposition explicitly describes this action on the space V,

. . 0
considered as a space of functions on NJ(F).

Proposition 2.4 The following differential operators define a realization of a (pm'ncipal se-
ries representation 7y of U(s09011) in terms of factorized parametrization of N+0) :

{—1

0 ) ) Yoo
E = 8y1,e+;{( )H—+

Oin  OY1nt1 i Y221

i 2( 0 0 )y2,2(n—1) ﬁ yz,%}

Oyson_1 O 1)
Y2,2n—1 Y2,2n Yin i1 Y2,2i—1

0 0\ i Uka(isn)
< )H Yk+1,2i Yk,2(i+1)—1 n (2.69)

a n—k
PR R
Yk, 2(0+1—k) ; OWron  OYkgn+1) i Yr1,2i-1 Yk2(+1)

i

P P Lk . .
+ ( . ) Yk+1,2n H Yk+1,2i yk,2(z+1)—1}’ l<k<t
ayk+l,2n—l ayk+1,2n Yk, 2(n+1) i1 Yk+1,2i-1 Yk2(i+1)
0
EZ = )
ayé,2
14 n; a
H, = (u,a)) + Zak,izyi,jw, 1<k<, (2.70)
i=1 j=1 J
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V4 2(n—1)— n—1 a a
Fl = Z yl,n(<lu“a al Z 2?/2,]8 -2 Z yl,j% - yl,n—)>
n=1 j=1 »J

ayl,n

2(£-1) [n/2]+1

F2 - Z y2n<,uaa2 +2 Z yl,j8 ZyQJ

2[(n+1)/2]-3

0 0
+ Yy J ) n )7 271
; 3Jay3,j ? 6‘y2,n ( )
2(0+1—Fk) 2[n/2 +1
Fy = Z ykn< 1, o) Z Yk 1,_]8 Zyk,]a
2[(n+1)/2]—3
0 0
+ — — n—), 2< k<,
; Ykt OYkt1,5 Y Ykn

0 0
Fr = (y&l + ?/é,2) <<M> 042/> + Ye-11 + Yo-1,2 ) +
ayz-m 8yz—1,2

n 0 N 0 0 + 5 0 n 0
Yoo \ Ye-1.3 ayg_l,g Yo—1,4 3yz_1,4 yg 1 6 Ye,1Ye, 26@/ yg 8yg ;
where 7T)\(€Z') = EZ', 7T)\(fi) = Fi7 7T)\(hi) = Hz 1 = 1, c. .,6, ny = g, ne = 2(£+ 1-— ]{7) fOT’
1 <k <4, ay is a Cartan matriz and we assume that the terms containing vy; ; with the
indexes not in the set {1 <1i,j < {} should be omitted.

For the proof see Part II, Section [3.4.2]

Left /right Whittaker vectors in the factorized parametrization have the following expres-
sions.
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Lemma 2.5 The following expressions for the left/right Whittaker vectors hold:

Vr(Y) :exp{ (ZyanrZZykn)}

k=2 n=1
¢ n;/2 (oY)
<Hy1nHHyz2n 1) X
=2 n=1
¢ ni/2 k mni/2 u,ak>
H(Hyln H Hyz2n 1HHy22n 1y22n) X (272)
i=k+1 n=1 =2 n=1

¢ ¢
1 n— i—
% exp{ _ (Z (1 I Y2,2(n—1) ) H Y2,2(i—1) n

— Yin Y2,2(n—1)—1 1 Y2.2(i-1)-1

£ ng/2 ny /2

+Z Z ( Yk+1,2(n—1) ) ﬁ Yk41,2(i—1) .%,2;‘—1)}7

2 n—1 Jkz2n Yk+1,2(n—1)—1 1 Yk+1,2(-1)-1 Yk,2i

whereny =L and ny, =2(0+1—k), k=2,... L.

For the proof see Part II, Section [3.3.2]

Using (2.12)) and (2.21)) we obtain an integral representation of §04s,1-Whittaker functions
in the factorized parametrization.

Theorem 2.4 The eigenfunctions of the $09,1-Toda chain (2.13) admit the following inte-
gral representation:

L ng/2

21\
By _ z)\x-‘,- A+ dylk
\Il)q,...,)\g(xla-“)xf) - r ‘ Z/ /\ /\ Yin Yion—1 X
i=1k=1 ylk n=1 i=2 n=1
4 4 ¢ ni/2 k ni/2
9 / / 1A —Ap—1)
< TT(TTvtn TT TT vt TTTT whn i) x
k=2 n=2 i=k+1 n=1 i=2 n=1

¢

¢
1 n— i—
X exp{ - (Z (1 4 P22AnD) ) H Lt N (2.73)

1 Yin Y22(n-1)-17 2 7 Y2,2(i-1)-1
4 Z Z ( +1,2(n—1) ) H +1,2(i—1) Yk, 2i—1 X
2 no1 Jk2n Yk+1,2(n—1)—-1 i—na1 Yk+1,2(-1)—1 Yk,2i

l l ng
S+ e 30
n=1 k=2 n=1

where ny =€, np, =2+ 1—k), k=2,...,0 and C C N, is a middle-dimensional non-
compact submanifold such the integrand decays exponentially at the boundaries and infinities.
In particular one can chose C' = ]Rf.
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The proof is given in Part II, Section [3.3.2

Example 2.1 Let { = 2. In this case, the general formula (2.73) acquirs the form

By _ 2>\1$1+2>\29E2
W, (21, 22) = //\ /\

i=1 k=1 yi’k

1 Y22 1 1 1 o1 To—z1
exp{—({—+—(—+—>}+—+e (y11+y12)+e (y21+y22))},
Y12 Y21 \Y11 Y12 Y22

B 11y 912) M (Y1 y2ayan) 2~ - (2.74)

where one can chose C' = RY.

2.3.2  s09.1-Whittaker function: modified factorized parametrization

In this part we introduce a modified factorized parametrization of N,. We use this parametriza-
tion to construct the integral representations for so09,,1-Whittaker functions. In contrast with
the integral representations described above these integral representations have a simple re-
cursive structure over the rank ¢ and can be described in purely combinatorial terms using
suitable graphs. Thus these representations can be considered as a generalization of Givental
integral representations to s09p.1.

There exists a realization of a tautological representation mosi1 : 509011 — End(Copiq)
such that Weyl generators corresponding to Borel (Cartan) subalgebra of s04.,1 are realized
by upper triangular (diagonal) matrices. This defines an embedding s04¢41 C gly,,; such that
Borel (Cartan) subalgebra maps into Borel (Cartan) subalgebra (see e.g. [DS]). To define
the corresponding embedding of the groups consider the following involution on GL(2¢+ 1):

gr— g =g (g7") g, (2.75)

where a' is induced by the standard transposition of the matrix a and 1y is a lift of the
maximal length element w, of the Weyl group of gl,,, ;. In a matrix form it can be written
as

Wo = S - J,

where S = diag(1,—1,...,—1,1) and J = ||J;;|| = |/di+j2e+2]|. The orthogonal group
G = SO(20+ 1) then can be defined as a following subgroup of GL(2¢ + 1)

SO(20+1)={ge GL(2(+1):g" =g}.

Let €, ; be elementary (204 1) x (2¢+ 1) matrices with units at the (4, j) place and zeros,

otherwise. For any n = 2,.... ¢ introduce matrices U, U and V,, V
l—n
Up=Y (€i+ €ptraiznio—i)+ Zﬁe neif—nti +€ ey op + (2.76)
=1 =1
n—1
+e a0 + Z e T e o pnt2—is
i=1
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l—n n
—Z Z
Uy=) (€i+ €uro_izeto—i) + 5 €0mntif—nti T € “lepior1 + € €ppa 0 + (2.77)
i=1 i=1
n—1 n—2
—Z —i Tn— —Tn—1.4
+ E e T ey o nyo—i T €T € 040 E e e pyit,
i—1 i=2
and
l—n
Vo = Z(Gu + €2049-i2042-i) + (2.78)
i=1

n

n
X —q —X
+ E e ey i fempi € €1 041 T+ E E04it1,04+i41,

i=1 i=1
f—n n
x”! —1 . . _xn7
Vo= (€i+ €xproiznio—i)+ E O A T AR WA (2.79)
i=1 i=1
n n—1
Zn,n —1 —2Zn,
+ g €04it1,04it1 T g e ey i benitl T € €041,
i1 i=1
-1 20+1
U, = E €+ 6_2116475 + 6+211€g+17g+1 + E €iis (280)
i=1 i=0+2
-1 20+1
U, = E €+ e Mep e e + E € +e™Mer iy, (2.81)
i=1 1=0+2
¢ 20+1
—Z z
i = E €+ € e e e 0 + E €iis (2.82)
i=1 i=0+3
¢ 20+1
* —z z T
i = Uf= E €ii e e+ e e + E €ii + e ey 2, (2.83)
i=1 i=0+3
where 2y, = 0, k = 1,...,¢ are assumed. Note that V;, U; can be considered as off-

diagonal deformations of V;, U;. Now we can define a modified factorized representation for
N C SO(20+1).
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Theorem 2.5 i) The image of any generic unipotent element vP¢ € N, in the tautological
representation mopyq : $02011 — End(Copyq1) can be represented in the form

7T2(+1(UBZ) = %1%2 tee %g, (284)
where

X, = U7 v (2.85)

X, = U U U U VLV VLV, n=2,..,0
and 2o, =0 for k=1,...0 are assumed.

i1) This defines a parametrization of an open part NJ(FO) of Ny.

Proof. Let vP¢(y) be a parametrization of an open part of N, according to (2.67)-
[268). Let Xi(y) = e¥**+! be a one-parametric unipotent subgroup in GL(2¢ + 1), then
X;(y)* = Xop1—i(y). Embed an elementary unipotent element X;(y) of SO(2¢ 4 1) into
GL(20+ 1) as follows: ) 3

Xi(y) = Xi(y)" - Xi(y).
This maps an arbitrary regular unipotent element v into unipotent subgroup of GL(2(+1).
Let us now change the variables in the following way:

x —Zz T — —Z x —Zz
Y1 = e 11 11’ yl,k — (6 k—1,1—%k,1 +e k,1 k,1>’ (286)
Ybor 1 = 6zk+r71,k_xk+r—2,k71’ k= 2’ L ,f,
Yror = ezk+r71,k—$k+r71,k71’ r = 17 o / + 1— ]{7,

where the conditions zy, = 0, k= 1,...¢ are assumed. By elementary operations it is easy
to check that after the change of variables, the image mpy1(v5?) of vP¢ defined by (2.67)-
(2.68) transforms into the (2.84]). Taking into account that the change of variables (2.80)) is

invertible we get a parametrization of NJ(FO) C N, U

The modified factorized parameterization of a unipotent group N, C SO(2¢ + 1) de-
fines a particular realization of a principal series representation of U(s09..1) by differential
operators. It can be obtained using the change of variables (2.86]) applied to the representa-
tion given in Proposition 2.4l We shall use the term Gauss-Givental representation for this
realization.

Proposition 2.5 The following differential operators define a representation my of $0941
in 'V, in terms of the modified factorized parametrization:

exn,l 8
Er==2) ™ |3 2.
S e (ot s 280
-1 5 5
+ < + ) ’
= \0z, 8Ze,2 Oxg 1 )
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l
0 0
E2 — ( + ) <6x22—222 + Z eTk—1,27%k,2 + 6%,2-%,2) —+ (288)
k=3

0211 81’11

Tn—1,2"%n,2 + exn,Z_Zn,Z ¢

l
+ Z 9 efn—1,1"2n,1 € + E eFR=127%k2 | oTR27FR2 ) |
8Zn 1 emnflyl—zn,l + ewn,l_zn,l

n=2 k=n+1
14 V4
0 0
_ Tn,2—2n,2 Tk—1,2—2k,2 Tk,2—2k,2
+ ; (8%,2 8zn,3) (e + k;rl e +e ) +
14 )4
0 0
_ Tk—1,2"%k,2 Tk 22k, 2
S ag) X (o),
n=2 ) ) k=n-+1
/-1 D) D) /l
B, = _ ( Ti—1,k—%i,k xzk_zzk> 2.89
g Z <8Ink—l aznk) Z ‘ e * ( )
n=k—1 ) ) i=n+1
/l 9 9 Y4
_ Tn,k—2n,k Ti—1,k— i,k Tik—Zik I< k< E’
/l /l D)
Hy = (o)) + > arn 5 1<k<¢ (2.90)
n=1 i=n nn
Y4
F={u, O‘Y) <6x11—Z11 + Z eTR—117 21 | el’k,l_zk,l> + (2.91)
k=2
14
0
+ < Tn,1—2n,1 __ exnfl,l_zn,l) _
> (e 5o

V4
123050 3 (e o),

¢
n=1 = "™l g

Z (ezkﬂ_l’kfl,l + ezk,2—~’0k,1> _ (2.92)

a /
Fy = ({03 +—)
2 <<u )+ o) 2

14 9 4
. } : 5 <ezn,z—rn,1 4 E PR 2T Th=1,1 4 ezk,z—ka) +
Zn,2

n=2 k=n+1
¢ ¢
a 8 2k, 27 TE—1,1 2k,27 %k, 1
2. a3 2 (e e,
x x
2 n,1 n:2/ k=n+1
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l
0
Fk — <<M> a\k/> _|_ 8Zk o 1) Z ( Zn,k—Tpn—1,k—1 ‘|‘ 6zn,k_xn,k:—1) _

3$k—1,k—1 ok

¢

B B ¢
_ _ ezn,k—wn,kﬂ_'_ ezi,k—miﬂ,kq _i_ezi,k_mi,k—l) +
> (50 ) >

n=k k-1 i=n+1

¢

V4
0 0
+ . ( Zi k—%i—1,k—1 + Zi,k_xi,k—l)’ 3 S k S ﬁ’
; (axn,k—l axn,k) ZZ ‘ ‘

=n+1

where E; = m\(e;), F; = ma(fi), Hi = ma(hy), zex = 0,k = 1,...,¢ are assumed and the
derivatives over T, Zik, <k, Ton, n=1,...,0 are omitted.

We are going to write down the matrix element (ZI2]) explicitly in Gauss-Givental rep-
resentation. Whittaker vectors ¢/ and 11 in this representation satisfy the system of differ-
ential

Eipr(r) = —¢r(2), Fipp(r) = =¢(x),  1<i<t (2.93)

Its solution has the following form.

Lemma 2.6 The functions

¢

2Lin
U (z, 2) = eHmt H (exnvl + e“*l’l) X (2.94)

n=2

)4 n n n—1
X H CeXp { — Mn < Z L + 2271,1 —2 Z Zn,i + Z xn—l,i) } X
n=1 i=1 i=2 i=1
X exp { (Z g%kl J Z P N Z Z < Tn-1k~Znk | 6xn,k—zn,k)> }’

k=2 n=k+1

¢

@bR(f, Z) _ exp{ _ <e:c11—z11 + Z <6xn71,1—zn,1 + e:cn,1—zn,1)> + (2‘95)

n=2
l l
+ E E <ezn,k_xn71,k:71 _I_ 6zn,k_xn,kfl>}
7
k=2 n=k

are solutions of the linear differential equations (2.93). We let xpy, =0 fork =1,....,¢,

and pg = 1\ — pg, where pp = %
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Now we are ready to find the integral representation of the pairing (2.12) in terms of
modified factorization parameters. To get explicit expression for the integrand, one uses the
same type of a Cartan element decomposition as in the case of gl, ;:

¢
e e = eXp Z wz, Z = eHLeHR,
i=1
where
¢
— Hy = Hy+ Hy == (i, 2) o) + (2.96)
i=1
¢ -1 ¢
+mghm+;n,%ﬂg&m
with
-1 k 9 ¢k 9
TP b DFILANNE, o o I, (2.97)
k=1 n=1 Ogn k=2 n=2 92
Hrp=-H,— Hj. (2.98)

We imply that the differential operator H; acts on the left vector, and Hg acts on the right
vector in (2.I2)). Taking into account the results of the Proposition one obtains the
following theorem.

Theorem 2.6 The eigenfunctions of $09.,1-Toda chain (2.12) admit the integral represen-
tation:
-1 k

U (o) = /AAMM Aoy

k=11i=1 k=11i=1

where

fBl = —Z)\l(—LL’Ll + 221’1) —

12 n n n—1
—1 Z )\n ( Z T + 2Zn,l -2 Z Zn,i + Z Tp—1, — 2 ln(exml + €In71,1)> - (299)
n=2 =1 =2 =1
4 4 4
_{ R (emnfl,k—zn,k i emn,k—zn,k) n

n=1 k=2 n=k+1

0 4
E Zn,k = Tn—1,k— Zn,k = Tn,k— E Tn,n=%n,
+ <6n n—1 l_l_en n 1)_|_ 6nn nn}’
n=k n=1

where we set x; = x4,;, 1 <1 <{. Here C' C Ny is a middle-dimensional non-compact sub-
manifold such that the integrand decreases exponentially at the boundaries and at infinities.
In particular the domain of integration can be chosen to be C' =R™, where m = l(wy).
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Example 2.2 For { = 2 the general formula (2.99) has the following form:

\I]fi)\z (x271’ 25272) = / le,l N dl’l’l A ng’l N d2272 X (2100)
C

A 2 A2 (22012 2h
xe 1(=z1,14+221,1) =2 2(222,1 22,2+1‘1,1+1‘2,1+x22)(61‘2,1 + 6961,1) %

X eXp{ _ (621,1 4Pl 22722 | pTLITALL | oTLITE2L
+6x2,1—22,1 + 72,2711 + 622,2—:(32,1) }’
where we set x1 = XTo1, T = T9o and the contour of integration C' = ]Ri.
There is a simple combinatorial description of the potential F5¢ for zero spectrum {\; =

0}. Namely, it can be presented as the sum over all the arrows in the following diagram.
The diagram for By reads

0 — 21 — Ty

o Te—1,1 20,2
O — 221 —> -, . . . —— Top-1
o0 —— 211 —— T11 299 B v ———= Typ—10-1 2o

Here we use the same rules for assigning variables to the arrows of the diagram as in A,
case. In addition we assign functions e* to the arrows o — x.

Note that the diagram for By can be obtained by a factorization of the diagram (Z.51)
for Asp. Consider the following involution

L X by P X Mg, (2.101)

where 10 is the longest element of Ay, Weyl group and X! denotes the standard transposition.
Corresponding action on the modified factorization parameters is given by

wo : Tgi ¢ —Lh o 1—i- (2.102)
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This defines a factorization of A,,-diagram that gives the diagram for By.
An analog of gl,,;-monomial relations (2Z52)) can be described as follows. Associate
variables ay;, by, Ck.i, di; to the arrows of the Givental diagram as

C— Rk Thk—1,i—1 — PRk Tk i—1 — oRk,i— Tk C— TR,
ap; =€ , bri=e , Cri=¢€ , dyj = e 7,

) )

(2.103)
1<k<( 1<i<k 1<I<(-1,1<j<L
Then the following relations hold:
agy1 = ber, 1<k<¢,
i Qhy1,i01 = Chelyi* Okgtigts 1<k<l-1 1<i<k, (2.104)
bri* Cri = Qryic i, 1<k<l(—-1 1<i<k,
bei-coi = e

The above relations can be considered as relations between elementary paths on the Givental
diagram. Using a set of relations for more general paths that follows from (2.104) one

can define a toric degeneration of the so,,,; flag manifolds thus generalizing the results in
[BCFKS].

2.3.3 Recursion for soy.,;-Whittaker functions and Q-operator for
BY_Toda chain
¢

The integral representation (2.99) of s09,,1-Whittaker functions possesses a remarkable re-
cursive structure over the rank ¢. Let us introduce integral operators ngqv n=2....,0

with the kernels Qg:fl(x i T,_1; A\n) defined as follows

Lny L

" 21 \n,
Qp" (T Ty 15 An) = //\ dzn (6%’1 + 6%’1'1) X (2.105)
i=1

n n n—1
X exp { - Z)\n<Zatm~ + 22,1 — 2 Z Zni + Z:En_u) } X
i=1 i=2 i=1

C,
XQpe (20 2,) QB (25 Tpy),

where
BC 121 — Tp—1i—Z2n.i Znit1—Tn—1.4
G (i z,) =exp { = (Gt + ) (e o) )b (2.106)
i=1
B%Cn (£n7 gn) =
A (2.107)

1
= exp { _ <§6Zn,1 + Z (emn,i—zmi + eznypﬁl—mn’i) + emn,n—zn,n ) }
1=1
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We set forn =1
B1 . _ 1IA121,1— 21 21, 21, T11—21,
QBO($1,17A1)—/d21716 1oL, ”1exp{—<e“+ell 11)},

Using integral operators Qg:fl the integral representation (2.99) can be written in a recursive
form.

Theorem 2.7 The eigenfunction of By-Toda chain can be written as

-1 k

\Ifff’m’/\z(:cl, . //\ /\dzk, HQ B Ik, T 15 \k),

k=11=1

or equivalently
B A B Bo_
‘I’Af,...,xz(ifla o Tp) = //\dxé—l,iQBl“(%5 lé—ﬁ)‘é)‘l’xf,.f,xz,l(le—1)> (2.108)
i=1

where we assume T, ‘= Ty, 1 <n <L and C' C Ny is a middle-dimensional non-compact
submanifold such that the integrand decreases exponentially at possible boundaries and at
infinities. In particular as the domain of integration one can chose C' =R™ where m = l(wy).

Let us note that in contrast with the case of gl,,, integral representations, kernels of Q"

n = 1,...,¢ have more complicated form. Curious new structure appeares if we COHSldeI‘
the Whlttaker functions for zero spectrum {\; = 0} As it is clear from (2.I05]) the kernel
of Q" is given by a convolution of two kernels Qpe (2,5 z,) and QB On (2 2,,_1). Corre-

spondlng integral operators Q2 BC, QB On can be regarded as elementary intertwiners relating

Toda chains for B,,, BC,, and BC,, Bn 1 root systems. BCy-Toda cham@ is defined in terms
of the non-reduced root system BCj in a standrad fashion. Let us recall the construction of
the non-reduced root system BCY. Root system of BC, type can be realized in terms of an
orthogonal bases {¢;} in R as

Qp — 261, Q] = €71, Qi1 = €41 — €, 1 S 1 S {— 1, (2109)
and the corresponding Dynkin diagram is

@Q

o0 L g

< Q9 Qy

where the first vertex from the left is a doubled vertex corresponding to a reduced a; = €
and non-reduced oy = 2¢; roots. Then for example the quadratic Hamiltonian operator of
BCy-Toda chain is given by

se 1 &2 1
HEC (z0) = —2 Za2+ (“+ e? >+Ze%+l =i, (2.110)

3 Note that the zero spectrum Whittaker functions are directly related to the quntum cohomology of flag
manifolds in Givental description.

4 BCy-Toda chain can be also considered as a most general form of Cy-Toda chain (see e.g. [RSTS],
Remark p.61). In the following we will use the term BCy-Toda chain to distinguish it from a more standard
Cy-Toda chain that will be consider below.
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Integral operators Q22 pe, and QB O intertwine Hamitonian operators of different Toda chains.

Thus for quadratic Hamiltonians one can directly check the following relations.

Proposition 2.6 1. The operators Qe and QpC", defined by the kernels (Z100), (2-107)
intertwine quadratic Hamiltonians of B and BC Toda chains:

HBcn (— ) gffl (gn’ gn—l) = gfﬁl (gn’ gn—l)anil(gn—l% (2111)

My (2,)Q56, (Tns 24) = QB (L 2,)HY " (2,). (2.112)

2. Integral operator Q" at A\, = 0 intertwines Hamiltonians Hy" and HB” L

HE (2,)Q5" (L, ;A = 0) = QE" (2, 2 13 A = OVHy" ' (2,_y).  (2.113)

The kernel Q3" (z,, 2, ;A\, = 0): can be succinctly encoded into the following sub-

diagramm of s09,1 Givental diagram

o (2.114)

0 ——> Zp1 —> Tp1

Tp—11 —> Zn2 —> -

—— Tpn-1

xn—l,n—l ——> Znn ———> $n,n

Here the upper and lower descending paths of the oriented diagram correspond to the
kernels of elementary intertwiners QB” and QF C”l respectively. The convolution of the

kernels QB" and QB On in (2.107]) at A,, = 0 corresponds to the integration over the variables
Zni associated with the inner vertexes of the subdiagram (2.114]).

Similarly to the case of gl,,, recursion operators ngq can be considered as particular

degenerations of Baxter Q-operators for affine Bél)—Toda chains. Below we provide the
integral representations for these Q-operator. Let us stress that up to now Q-operators
were known only for gl,, -case. We will not present here the complete set of properties
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characterizing the introduced Q-operators and only consider the commutation relations with
quadratic affine Toda chain Hamiltonians. The detailed account will be given elsewhere.

We start with a description of Bél)—Toda chain. The set of simple roots of the affine root

system Bél)

can be represented in the following form:
ap = €1, Qi1 = €11 — €, 1<e<l-1 Qpy1 = —€p — €p_1. (2.115)
The corresponding Dynkin diagram is

Oy

e
AN

] <—— Q9 ce Qy_1

Qpt1

These root data allows to define affine Bél)—Toda chain with a quadratic Hamiltonian
given by

£+1 {—1

(1)
B _ Z 1’1 +Zexz+l T; —‘—96_:” Te—1 . (2116)

=1
Here g is an arbitrary coupling constant.

Define the Baxter Q-operator of Bél)—Toda chain as an integral operator with the follow-
ing kernel

B © . () ¢ . 2\ . _ —21\
Q% (2%, Y, N) = /\dzi (e 14+ eyl> (e ‘+e ye) X (2.117)
i=1

¢ ¢
BW BcW

xexp{ —Z)\<Z$Z+221_2222+Zy1)} BC(I) zi) Q (1) (255 ¥i),

where
BoW
QBLEU ‘ (sz yl) =
-1 (2.118)
_ eXp{ <1ez1 +Z <eyz i | eFiH1™ Zh) 4 Ve o geVeT Zz) }
2 )
and
@ ©)
QB?ED (l’i, Zz) = QBg)Cn (Zi, ZIZ'Z) (2119)
Here we denote z¥) = (z1,..., (), and ¥y = (y1,..., v).

The following Proposition can be proved by a direct check.
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Proposition 2.7 The Q-operator (2.117) commutes with quadratic Hamiltonian of the Bél)
B
Toda chain, that is the kernel intertwines the Hamiltonians H2

(1) B
Hy' (@DQ" (2990, ) =07 (9,49 WHy (y9). (2.120)

. . B . .
Now we will demonstrate that recursion operator )’ can be considered as a degeneration

of Baxter Q-operators for Bél). Let us introduce a slightly modified recursion operator
Qgﬁ,l@Bl with the kernel:

Qp_op @9,y N) =™ QF (29, 4V, W), (2.121)

where g“_l) = (y1,-.-,Y-1). Operator (ZI2I) intertwines Hamiltonians of s09,,1- and
509¢_1 D 50o-Toda chains. Thus for quadratic Hamiltonians we have

M (@ )QFom @O 10N = QB op @ v N (15 (1) + 1 ) ).

where H3' (yo) = —1 <02 / 0y§). Obviously the projection of the above relation on the sub-

space of functions F(y“),y,) = exp(eAye)f(y"“~") recovers the genuine recursion operator
satisfying:

1
HY (@)Qp @Y,y N =@y (2" g“_l),A)(Hf’“’*l(g“‘l))Jrg)\z). (2.122)

Let us introduce a one-parameter family of the kernels

—21A

21\
Q 14 ( (Z )\ 5 ’L)\ Z)\yg//\dzz 61‘1 _I_ 6y1) <Eey€_IZ _I_ 1) X

(1)

xexp{ —M(Zx,+2z1 _2ZZZ+Z?/’)} BC(l) (xi; %) Q" (1) (23 vis€), (2.123)

where

(’\

-1
B 1

QBgl) £ (gz, QWE) = eXp{ — ( 2621 + (eyi_Zi + ezi+1—yi>+

7

1
eeV T 4 e geT Ve Z‘)}

obtained from the kernel of the operator QB?) by the change of the variable y, = y, +
Ine. Consider limiting behavior of (ZI24) when ¢ — 0, ge=! — 0. Then the following

relation between Q-operator for B él)—Toda chain and (modified) recursion operator for 09, 1-
Whittaker function holds

(1)
QF 5@y N = lim eQ" (29, y O xe). (2.124)

e—0, ge=1—0
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2.4 Integral representations of sp,,-Toda chain eigenfunctions

In this subsection we provide an analog of the Givental integral representation of Whittaker
functions for sp,, Lie algebras. As in the case of s090,1, we start with a derivation of
the integral representation of sp,,-Whittaker functions using the factorized parametrization.
Then we consider a modification of the factorized parametrization leading to a Givental type
integral representation of spy,-Whittaker functions.

Consider Cy type root system corresponding to a Lie algebra sp,,. Let (e1,...,€,) be
an orthogonal basis in R’. We use the following realization of simple roots, coroots and
fundamental weights as vectors in R*:

oy = 2e€q, ay = e, wi=¢€+...+¢

ay = € — €1, oy =€y — €, we=ext.ten 995

Qp = €p — €p—1, 052/ =€ — €1, Wy = €.
Cartan matrix ||a;;]| = [|[{a), @;)|| can be made symmetric ||b;;|| = ||d;a;;|| with dy = 2,
di=1,i=2,... 0. One associates with these root data a sp,,-Toda chain with a quadratic
Hamiltonian given by

-1
HY = —2 Z s 2T 4 Y et (2.126)

One can complete (2120 to a full set of ¢ mutually commuting operators H kc ¢ of Cp-Toda
chain. We are looking for integral representations of common eigenfunctions of the full
commuting set of Hamiltonians. The corresponding eigenfunction problem for quadratic
Hamiltonian can be written in the following form

H2C‘ \I/ff7,,.7/\e(z1,..., Z)\z \I/ff A (21,5 20)- (2.127)

2.4.1 sp,~-Whittaker function: factorized parametrization

The reduced word for the maximal length element wy in the Weyl group of sp,, can be
represented in the recursive form:

I = (i1,ia, ... im) = (1,212,32123,...,(€...212...0)),

where indexes iy correspond to elementary reflections with respect to the roots ay. Let
N, C G be a maximal unipotent subgroup of G = Sp(2¢). One associates with the reduced
word I the following recursive parametrization of a generic element v“* € N_:

O R . 92 (2.128)
where
%C’e = Xe(Wen) Xe(Yr2r1-1)-1) Xa(y2,20-3) ¥ (2.129)
X X1 (y1,0) X2 (Y2,20-2) Xi(Ur2041-1)) - Xe(ye,2)-
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Here X;(y) = e¥* and e; = e,, are simple root generators. The subset NJ(FO) allowing
representation (2.128), (Z129) is an open part of N,. The action of the Lie algebra sp,,
on N, given by (2I0) defines an action on the space of functions on NJ(FO). The following
proposition explicitly describes the action on the space V), of (twisted) functions on NJ(FO).

Proposition 2.8 The following differential operators define a realization of the representa-
tion mx of U(spy,) in V), in terms of factorized parametrization of NJ(FO)

B, = ﬁ:( 0o __9 )ﬁ(M)QJr
n=1 j=n

ayl,n ayl,n-l—l Y2251

— 0 0 Y2,2n Y2,2n g Y225 \2
+ ;( _8y2,2n) (1+ ) IT (-2 (2.130)

8y272n_1 Y,n Y2.2n—1 et Y2,25—1
1k b=k
0 0 Ye+1,2) Yk2(i+1)-1
Ek = - +
= OYkon  OYkont1 = YR+1,2j-1 Yk 2(j+1)

l—k 8 a Y
n ( B ) Yk+1,2n H Yk+1,25 Yk2(+1)— o l<k<t,
1 ayk+1,2n—1 8?Jk+1,2n

e Yk,2(n— 1 yk+1 ,27—1 YE2(5+1)
0
E, =
‘ 89@,2’
l n; a
Hi = (o)) + 3 aki ) vijz — (2.131)
i=1 j=1 Yij
2(n—1)—1 5
Fl = Zy1n< :U’aal + Z y2,ja Zyld& ylnayl >
2(6—1) [n/2]+1 P n—1 9
F, = Z y2n(,u7042 ) +2 Z yl,ja 2Zy2’j8—+
. 2[(n—|i)/2}—3y P ) 5 >
35— — Yoeng— )
j=1 ’ ay37j 8y2,n
2(64+1—Fk) 2[n/2]+1
Fo= Y yk,n(<u,aﬁ>+2 > e 1’]8y Zyk’jﬁ (2.132)
n=1 j=1 -
2[(n+1)/2]-3 9 9
n S
; ykﬂ’]aykﬂ,j Yk OYkn
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for2 <k</

0
OYe—11

)

Fo = (yo1 + Ye2) <_<:U’7 o)) + Y11

n ( 0 n 0 ) ( , 0 ) 0 4o 0 )
Yoo | Ye—1, Yo, |\ Y173 — YoaYeon— TY )
? b OYe—13 e OYr—1,4 o OYe1 e OYe1 62 Yoo

)

where E; = my(e;), H; = mx(hy), F; =1\ (f:), i=1,.... 0. andny =€, npy =2({ +1 —k) for
1<k <V

The proof is given in Part II, Section [3.4.3]

For left /right Whittaker vectors in the factorized parametrization we have the following
expressions.

Lemma 2.7 Left/right Whittaker vectors in the factorized parametrization are given by:

Vr(y) :exp{ (Zyln + ZZ?JM)}

k=2 n=1
i 2 é-i-l k‘ 0+1—k u o >
:H<Hy1”XH H Yk X H H yk2n 1) x (2.134)
=1 k=i+1 n=1
~ 1 Yo2n-) \2 T Yo o(i—1) \ 2
Xexp{ _ (Z_(Hﬂ> I1 (#) n
o1 J1m Y2,2(n—1)—1 imna1 Y2,2(i-1)—1

ny/2

]- n— 11— 71—
(1+ Yk+1,2(n—1) H Yk+1,2(i-1) Yk, 2i 1)}7
Ye+12(n-1)-17 2 ") Yk+1,2(-1)-1 Yk2i

where ny =L and ny, =2(0+1—k), fork=2,...,¢.
Proof is given in Part II, Section [3.3.3

Using the expressions (2.134]) for the left /right Whittaker vectors we obtain the integral
representation of sp,,-Whittaker function in terms of factorized parametrization.
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Theorem 2.8 The eigenfunctions of the sp,,-Toda chain admait the integral representation:

0 ng/2
WAL Z W2, dyzk
VL oz =t [\ B Hymnnym )
i=1 k=1 ik k=2 n=1
¢ ¢ i ¢ ng/2 imho)
XH( ylnHHykn H Hyk2n 1) X
i=2 n=1 k=2n=1 k=i+1 n=1
1 Y2,2(n—1) \2 ‘ Y2,2(i—1) \ 2
con{ (S (e T (22 o
1 Yin Y22(n-1)-17 2 7 NY2.2(i-1)-1
ng/2 ng/2

Yret12(n-1)-17 2 ") Yk+1,2(-1)-1 Yk2i

1 n— i— i—
(1+ Yk+1,2(n—1) H Yk+1,2(i—1) Yk,2i—1

+

l 14 ng
2z 2k —Zk_
+e=41 E Yin + E ek k-1 E yk,n>}7
n=1 k=2 n=1

where ny = € and ny, = 2(0+1—k), fork =2,...,L. The domain of integration C C Ny is a
middle-dimensional non-compact submanifold such that the integrand decreases exponentially

at the boundaries and infinities. In particular one can chose C' = ]Rf.
The proof is given in Part II, Section 3.3.3l

Example 2.3 For { =2 the general formula (2133) acquires the form

2
tA121+H1A22 dylk A2 —1
U2, (21, 29) = et 2/ /\ (Y1.195191.2)™ (Y2191.2022) ™2 "N X

i,k

o k=1

1 2 1 2 1
xexp{—<—<%> —l——<%+1) +—+
Y11 \Y2.1 Y12 \Y2,1 Y22
+e (Y11 + y12) + €27 (Y21 + Y2.2) }>

with one can take C = R*.

2.4.2  sp,~-Whittaker function: modified factorized parametrization

(2.136)

In this part we introduce a modified factorized parametrization of an open part of N, C
Sp(2¢). We use this parametrization to construct integral representations for sp,,- Whittaker
functions. Similar to integral representation of s04,,1-Whittaker functions considered above
these integral representations have a simple recursive structure over the rank ¢ and can be
describe in purely combinatorial terms using suitable graphs. These representations can be
considered as a generalization of Givental integral representations to the case of g = sp,,.
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We follow the same approach that was used in the description of modified factorized
representation for sog, 1. There exists a realization of a tautological representation o, :
spyy — FEnd(Cyy) such that Weyl generators corresponding to Borel (Cartan) subalgebra
of sp,, are realized by upper triangular (diagonal) matrices. This defines an embedding
spy, C gly, such that Borel (Cartan) subalgebra maps into Borel (Cartan) subalgebra (see
e.g. [DS]). To define the corresponding embedding of the groups consider the following
involution on GL(2/):

gr— g =1 (g7")" g, (2.137)

where a — a' is induced by the standard transposition matrices and 1y is a lift of the longest
element of the Weyl group of gl,,. In the matrix form it can be written as

ng(wo) = S . J,

where S = diag(1,—1,...,—1,1) and J = ||J; ;|| = ||0i+j2042||. The symplectic group G =
Sp(20) then can be defined as a following subgroup of GL(2¢) (see i.e. [DS]):

Sp(20) = {g € GL(2() : g* = g}.

Let € ; stands for an elementary (2¢ x 2¢) matrix with a unit at (4, j) place and zeros
otherwise. Introduce the following (2¢ x 2¢) matrices:

4 n—1
—Zn— Zn—1,i
Up = g €t e e+ E € € g1 (2.138)
i=1 i=1
J4 n—1
o P
Up = E €, te Ylepi e E eV e i1 T (2.139)
i=1 i=1
n l—n
Tn,i
+ E e epi 1,040+ E €0tntifinti s
i=2 i=1
V4 n—1
7! —Zn— Zn—1.i
U, = E €i e Yleprt e T E e e o1 + (2.140)
i=1 i=1
n l—n
Tn,i
+ E e €pi 1,040+ E E0tntifinti s
i=1 i=1
-1 n
V, = g €i+e e+ g et - (2.141)
i=1 i=1
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/-1 n
V= Z €i+e e+ Z €™ €pri i + (2.142)
i=1 i=1

n l—n
.
+ E e €pqi—1, 04 T E €Eltntiflinti
i=2 i=1

/-1 n
VT: = Z Eiﬂ; + €_Zn’1€g,g + Z 62"'i€g+i7g+i + (2143)
i=1 =1

l—n

n
.
+ E €M €pri1,04i + E €0tntifdnti s

i=1 i=1

We can define a modified factorized parametrization as follows.

Theorem 2.9 i) The image of any generic unipotent element v°¢ € N, in the tautological
representation Ty : 5Py, — End(C*) can be presented in the form

Toe(v9) = X1 %o -+ Xy, (2.144)
where
X, = l+4eutang .,
X, = [GUTULU) (VY WVIVWVL, =2 (2.145)

and zp, =0, k=1,...0 are assumed.

i1) This defines a parametrization of an open part NJ(FO)

in N;.

Proof. Let v“(y) be parametrization of an open part of N according to (2.128)-(Z129).
Let Xi(y) = e¥*+ be a one-parametric unipotent subgroup in GL(2¢). Then we have
Xi(y)* = Xaprs1-i(y). Embed elementary unipotent subgroups X;(y) of Sp(2¢) into GL(2¢)
as follows: ) )

Xi(y) = Xi(y)" Xi(y)-
This maps an arbitrary regular unipotent element v“* into unipotent subgroup of GL(2/).
Let us now change the variables in the following way:

_ ,T11+2 _ Zk—1.1+Tk Zk 1t+x)
Y1 =e 11’ g = (6 k=11F%k,1 4 oZk,1 k,1>’
Yk,or—1 = 6xk+r71’k_2k+ri2'k71a k= 2,... 7& (2146)
Yor = ewk+r71,k—2k+r71,k71’ r = 17 e g + 1—k.

Here 2y, = 0 for k =1, .../ are assumed.
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By elementary manipulations it is easy to check that after the change of variables (2.144]),
the image o, (v°*) of v*¢ defined by (Z128)-([2.129) transforms into the (ZI44) -(??). Taking
into account that the change of variables (2.140]) is invertible we get a parametrization of
NY c N, O

The modified factorized parametrization of a unipotent group N, defines a particular
realization of a principal series representation of U(sp,,) by differential operators. It can be
obtained using the change of variables (2.146]) applied to the realization given in Proposition
2.8. We shall use the term Gauss-Givental representation for this realization of representation

of U(spy).

Proposition 2.9 The following differential operators define a representation my of U(spyy,)
in 'V, in terms of the modified factorized parametrization:

l l
0 0
E :E _ eFn1=Tn1 4 § <62¢71,1—mi,1 +€Zi,1—:vi,1) _ 2.147

i=n+1

/—1 8 l
_ E 8 E <ezi—1,1—1‘z‘,1 _l_ezz‘,l—l‘z‘,l) ,
Zn,1
n=1

" og=n41

¢
0 0

B, — . < 222 —T22 2i—1,2—T;2 Zi,Q_xi,Z) 2.148

2 (—0211 —59311) e +;e +e + ( )

_‘_i 9 _ 9 <6zn,2—xn,2+ i ezi—1,2_xi,2_|_6zi,2_xi,2) +
85(7n,2 85(77%3

n=2 i=n+1
J4 ¢
E : 9 0 E 2i—1,2—%;,2 2,22
_I_ 8 — 8 e 1—1, 2 + e 2 , —
n=2 Zn,l Zn’2 i=n-+1

6Zn71,2_$n,2 + ezn,Z—fEn,Q ¢

9
Zn—1,112%n,1 E Z2i—1,2—T4,2 2§,2—%;2
— (e n s 5 e s y _|_ ev s
8:1; 1 < eznfl,l‘i‘wn,l _|_ 627L,1+-’En,1 + ’
n=2 n, i=n+1

l
0 0
E, = ( + ) <€Zk,k—xk,k + Z eFi— 1k~ Tik _'_ezi,k_xi,k) + (2.149)

2k 1k T
Ozk—1k-1  Oxpy Rl

! l
+Zk(aza 0 ) Z <ezi71,k_$i,k_‘_ezi’k—xi’k)_l_

4 0z
n,k—1 n,k im—nt1

Z Z
0 0
. Zn k=T k § Zi—1,k—%ik ezi,k_l’i,k>’ 2< k< E’
+ Z (&cn,k 8xn,k+1) <e i ‘ "
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Eg:e_x”( o __ 9o ) , (2.150)

3Zk—1,k—1 al’k,k

V4 l
0
_ \Y
Hy, = (p, o) + ;ak,n ; FE (2.151)
- 0
F, = _<6211+w11 + 2621'71,1—1-%,1 + 62¢,1+mi,1> <</~L705:\L/> + ) _ (2'152>
i=2 Oz
Zn 1+Zn,1 Zi—1, 1+$z 1 Z3, 1+24,1
- + +e ) —
Yo (e 3
V4 a 14
2i—1,11+%;, zi,1+%;,
S 3 (),
n=2 " i=n+1

L

81’11 i

14
Z( 0 0 )(696"2 o Z e¥i2TF—11 4 o%i2T ZH).|.

0y 1 093” 2

i=n+1
Y l
5 ) B S (ememons 4 e
+ a P a e 1y 1—1, _'_ e 1, 1y ,
n=2 “n,1 “n,2 i=n+1

) ) -
Fk — _ (<,u’ Oz,\g/> _ _ ) Z (61‘""6_%’1”“*1 + el’i,k_zi,k—1> + (2.154)

Orp-1p-1 OZp—14-1) =

+i 8 _ 8 6-'En,k_zn,k71_'_ i exi,k_zifl,k—l +€5Bi,k_zi,k—1 +
or

— X
n—k nk=1 OTnp i=n+1

— zZ
- n,k—1 0 n,k i=n+1

l 8 a l
+ Z (az o ) Z <6xi,k_zi—1,k71 + el‘i,k—zi,kq), 2< k<,

0 0
R T [ e h ) L

+€wl’z( a - a ) )
81’5’5_1 axé,f
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where 2z, = 0,k = 1,...,0 are assumed and the derivatives over z;r, zp, © < k are
omitted. Here we denote E; = my(e;), F;y=m\(f;), Hi=m\(h;) i=1,..., (.

We are going to write down matrix element (2.12) explicitly using Gauss-Givental rep-
resentation defined above. Whittaker vectors ¥z and 17, in this representation satisfiy the
system of differential equations

Eipr(r) = —¢r(z),  Fr(e) = —¢r(z), 1<i<L (2.156)

Its solution has the following form. Using the explicit change of the variables (2.146]) we
obtain the expressions for Whittaker vectors in modified factorized parametrization.

Lemma 2.8 The following expressions for left/right Whittaker vectors hold:

4
¢R — exp{ _ <6x11+211 + Z (ezn71,1—xn,1 + ezn,l—xn,1>) _ (2‘157)
n=2
4 4
_ Z <6xn,k_z'n71,k71 + el‘n,k—zn,k71> }’
k=2 n=k

14

ppm e [[ (e b o) (@ass)

n=2

¢ n n n—1
X HeXP{ - Mn(zzn,i — Tp1 — Qan,i + Zzn—l,i>} X
n=1 i=2 i=1

i=1
l

¢
X eXp { _ E (ezk,k_xk:,k _I_ E eznfl,k_xn,k + ez'rL,k_xn,k) }’

k=1 n=k+1

where zp, = 0 and p, = 1\ — pr, pp =k fork=1,... L.

Now we are ready to find an integral representation of the pairing (Z12]) for g = sp,,. To
get an explicit expression for the integrand, one uses the same type of decomposition of the
Cartan element as for gl,,, and sp,, before:

¢
e Hs =y (exp(— Z(wi, 2)h;)) = eHretr,
i=1
where

‘
— H.=Hp+Hp=—(p,2) — 221 Y

n=1

~

-1

l
0
) (i — i) Y (2.159)

0Tt
1 n=~k .k

0

al'ml

B
Il

with
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l /—1 8
_ Zz&k<2 5ot Z (%:nk) (2.160)

k=1 = n=k

-1 ¢
Hp ==, 2) ZZ“<Z 0Ty 1 _Zﬁznk :Zk: 0:)3nk+1) (2.161)

We imply that Hj, acts on the left vector and Hp acts on the right vector in ([2.12]). Taking
into account Lemma [2.§ one obtains the following theorem.

Theorem 2.10 The eigenfunctions of $py,-Toda chain (2.12) admit the integral representa-
tion

-1 k
‘I’Af, BUCARRNE7Y) //\ /\dzkz /\ /\dl’m ) (2.162)
k=1i=1 k=1i=1
where
¢
fcl:Z)\IZLl_ZZ)\ <Zzn2 xnl_Qanz—i_Zzn 14 — Z"l,l +€Zn71'1>)_
n=2 i=1
¢ ¢
_ {Z <€Zk,k—mk,k + Z eznfl,k_xn,k + ezn,k—wn,k) + e$11+211 + (2163)
k=1 n=k+1
¢
+Z < Zn—1,1—%n,1 +€Zn1 T, 1) +ZZ <6xn,k_z'n71,k71 _'_exn,k_z’rl,kfl)} ,
k=2 n=k
where we set z; == zp;, 1 < i < {. Here C C Ny is a middle-dimensional non-compact

submanifold such that the integrand decays exponentially at the boundaries and at infinities.
In particular the domain of integration can be chosen to be C'=R™, where m = l(wy).

Example 2.4 For ( =2 the general expression (Z.208) acquires the form

\1’5127)\2 (21, Zg) = /d.ﬁ(]ll AN ARIVAN dl‘gl N de’QQ A dZH X
C

X exp {Z)\lxll — Z)\g <2’21 + 299 — X9 — 2113'22 + 211 — log(ezm + €le)> — (2.164)
— <€Z11_5511 + 6222_7522 _I_ 61'11"1‘211 + ezll_x21 _I_ 6221_5521 + 6x22_zll _I_ 6x22_221> }’
where 21 = 291, 22 = 229. In particular one can chose C' = R*.
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There is a simple combinatorial description of the potential F for zero spectrum {\; =
0}. Namely, it can be presented as the sum over all arrows in the following diagram.

201
i
Z20—11 —x— L1 — 241
P
|
25_171
|
211 —x— L1 ——> . o D1 —— -1
I A
T11 211 o9 — > - -- Z20—10-1 — Typ ——> 2y

We use the same rule to assign variables to the arrows of the diagram as for A,. In

—2Z—X

addition we assign to the symbol z —x— x the exponent e

Note that the diagram for C, can be obtained by a factorization of the diagram for Agy_;.
Consider the following involution

L X by P X Mg, (2.165)

where g is a lift the longest element of Ay_; Weyl group and X! denotes the standard
transposition. Corresponding action on the modified factorization parameters is given by

wo . g < Tk k+1—i- (2166)
This defines a factorization of Ag,_;-diagram that produces the diagram for CY.

One can easily write down Cp-analog of A,-monomial relations (2.52)). Let us introduce
the variables

a1 = el‘k,1+2kf1,1’ Qi = el‘k,i—zka,z‘q’
by = €"k1 TR by = ki~ Thi=1 (2.167)
Cri = ezk,z‘_xk,i’ dk,i — ki T Tht1,

Then the following relations hold
Chyi bk = dii - apg14, Qg dp—1,—1 = bpi - Chji—1,
beiceq = €701, Cpi - by = e (2.168)

The above relations can be considered as relations between elementary paths on the Givental
diagram. Using relations for more general paths that follows from (2.I68) one can define a
toric degeneration of the Cy-flag manifolds thus generalizing results of [BCFKS].

47



2.4.3 Recursion for sp,,-Whittaker functions and Q-operator
for Agi)_l—Toda chain

The integral representation (2.I62), (ZI63) of spy,- Whittaker functions possesses a recursive
structure over the rank ¢. For any n = 2,...,/ let us introduce integral operators Q¢" |
with the integral kernels

1An
an (na Zn— 17 //\d:pnz Zn1+ezn11) >
n n n—1
XD { ~ A ( D i = =2 Tnit ) Zn—l,i) } X (2.169)
=1 i=2 i=1

XQ%Z(é “n ) QC (—nﬂ Zn— 1)

where

Dg' _ (£n7 gn—l) =

-1 (2.170)

= exp{ _ ( Tn,1t2Zn—1,1 E ( Zn—1,i—Tn,i + e:cn,iﬂ—zn,l,z—) >}’

QY% (2, x,) =

n—1
= eXp{ _ (e:cn,l-i-zn,l + E (ez'n,z‘_SCn,i + 61‘n,i+1_2n,i> + 62"'"_96”’") }
i=1

For n = 1 we define

(2.171)

ch _ /dxllel)\lwu exp{ _ <€w11+211 4 6211—9011)}

Using integral operators ngil, the integral representation for sp,,-Whittaker function can
be written in the recursive form.

Theorem 2.11 The integral representations of spo,-Toda chain eigenfunctions (2.162) can
be written as

-1 k
\Ilfll,...,)\l(zla ) / /\ /\ dzk ) an _ (_n7 Zns )a (2172)
k=11i=1 n= 1
or equivalently

-1
VR (e 20 = //\ dzg_1; X (2.173)

o i=1

XQCZ 1(Z€’ 17)\5)\1105 1)\5 1(25 117"'725—1,6—1)'
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Here zp, = zp,,, 1 <n < and C C Ny is a middle-dimensional non-compact submani-
fold such that the integrand decreases exponentially at the boundaries and at infinities. In
particular as a domain of integration one can chose C =R% .

This recursive form of the integral representation is similar to the case of so09,y1. Its
recursive kernel ngﬂ is given by a nontrivial integral in contrast with gl, -case (2.54]).
Similar to so9..1-Whittaker function new structure appears if we consider the Whittaker
function for zero spectrum {)\; = 0}. As it is clear from (Z2.I69) the kernels ngil at

A, = 0 are given by convolutions of the kernels Q% " (2p, 2,) and QC (7,2, 1). The

corresponding integral operators QDn, g:ﬁl can be regarded as elementary intertwiners

relating Hamiltonians of Toda chains for C),, D,, and D,,, C},_1 root systems correspondingly.
For example it is easy to check directly intertwinig realtions with quadratic Hamiltonians.
Indeed, Dy-Toda chain (for more detailed discussion see Subsection 2.5.3) has the following
quadratic Hamiltonians

L {—1
1 Tr1+x Tip1—T;
HY (z _—55_ —+e1 2+§._e+1 : (2.174)

Proposition 2.10 The integral operators QC” o QDn and Q¢ satisfy the following rela-
tions.

1. Operators Qg’; and Q" intertwine quadratic Hamiltonians of C- and D-Toda chains:

H2n(_n)Qc (_m Zpo1) = Qc (_m Zn —1)H2cn71@n—1)7 (2.175)

My (20) QD (20 2) = Q5 (20s L)Y () (2.176)

2. The operator Qg at A\, = 0 intertwines the Hamiltonians Hy" and HC" b

-1

HE (2,)Q5 (2o 201) = QS (2 20 1) Hy ™ (20y)- (2.177)

The integral kernel of ngil can be succinctly encoded into the following diagram
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271

n

%
Zn—1,1 —x— Tp1 —— 2Zn1
Zn—1,1 Tn,2

— Znn—1

[

Zn—1,n—1 Tnn Zn,n

Here the upper (lower) boundary of the oriented diagram corresponds to the kernels of
elementary intertwiner Qg’; (Q¢ ) and the convolution of the two kernel is given by the
integration over variables z,, 1, ..., %, , on the diagonal of the diagram.

Similarly to the cases of gl,,; and sp,, recursion operators ngil can be considered as

degenerations of a Baxter Q-operators for twisted affine Agi)_l—Toda chain introduced below.

Let us stress that up to now Q-operators for Agi)_l were not known. We will not present
here a complete set of the characteristic properties of the introduced Q-operators and only
consider commutation relations with quadratic affine Toda chain Hamiltonians. The detailed
account will be given elsewhere.

We start with a description of A;i)_l—Toda chains. The set of simple roots of the affine

root system Aéi)_l can be represented in terms of the orthogonal bases {¢;}, i =1,...,¢ in
R’ as follows:

oy = 2€q, Qif1 = €41 — €, 1<i</i-—1, Qi1 = —€— €1, (2.178)
and corresponding Dynkin diagram is given by

Qpi1

C]{l E—— a2 “ o aé_l

Qy
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These root data allows to define affine Agi)_l—Toda chain with the quadratic Hamiltonian
given by

L -1
) 1
Hize 1( _ _52 _'_2 221 +Z FHLTR | geTH-1TH (2.179)

i=1
where ¢ is an arbitrary parameter.

Define the Baxter Q-operator of A2e ,-Toda chain as an integral operator with the fol-
lowing integral kernel:

/41

Ag)—l 1A — 22\
Q (2 //\dx, et eyl> <e‘zf+e_y‘3> X (2.180)

¢

¢ ¢
xexp{ —M(Zzi—xl —2in+2yi>} X
=2 i=1

i=1
A nel
XQ A (Zla ey 20T, ..,I’Z-‘rl) QA(Z) (1’1, ey L1 5 Y1, - ..,yg),
22 1 201
where
A,
Q%o (21,0 2 @1, T = (2.181)
20—1
-1
:exp{ _ < 21+ZE1 _'_Z< 22—y _'_6I1+1 Zl) _'_eze Ty +g€ zZp— -'EZ)}
i=1
and
A,
Q " (@1, T Yoy Ye) = (2.182)
20—1
-1
= exp{ — (eyl-i-ml + Z (eyi—mi + €$i+1—yi> + eYe—Te + ge—yg—mg> }
i=1
Here we use the following notations z*) = (zy,.. ., z), g(f) = (y1,...,Y0).

The following statement can be verified straightforwardly.

Proposition 2.11 The Q-operator (2Z180) commutes with the quadratic Hamiltonian of
Agi)_l—Toda chain:

@ A® e

(2)
HA”* (g(Z))QAzefl (g(z)’ y(é)) _ Q 20—1 (g(z)’ y(é)),H 20—1 (y(z))‘ (2.183)

Now we will demonstrate that the recursion operator Qgﬁfl can be obtained by a degeneration

of the Baxter Q-operator for Azz ;- Consider a slightly modified recursion operator Qgﬁfl @y
with the kernel given by

ch 16901( ) ’ g(Z)J\) — e QCz 1(z(ﬁ) 7 g(£—1)7 A),
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where y(é_l) = (y1,...,Y—1). Thus defined operator intertwines Hamiltonians of sp,,- and
SPos_o B spy-Toda chains. Thus for quadratic Hamiltonians we have

HS () o0, (1 470 = QF o, (23 N (HE W) + HE ().

where HS" (y,) =

of functions F(y"“)) = exp(1hy,) f(y!*~") recovers the genuine recursion operator satisfying:

—% 02/ 8y§> Obviously the projection of above equation on the subspace

_ _ 1
My (2)Qe (2, ™, N = Qe (27, ¥, A)(H?ﬁ(g“ 1))+§>\2)>. (2.184)
Consider a one-parameter family of the kernels:

a2 41 —21\

(2
o) 20-1 (_(z )\ e —60‘61)‘”//\613}@ el €y1> <6eye—2z+1> X (2_185)

¢ ¢ -1
xexp{—zA(E Zi—xl—QE xi+§ yi>}><
i=1 1=2 1=1
G A
_ . -1 . .
XQ A2 (217"'7qux17"'7x5+1> QA(Z) ('Tl?"'vxf—i-luylw"vyfﬂ 8)7
201 20—1
where
-1
AR e e
O (anins s i) o — (o9 + 5 (i o)+ (a1
20—1 .
i=1

JeeYeTe E—lge—ye—xz> }’

is obtained by shifting the variable y, = y, + Ine in (ZI80). Then the following relation
between Q-operator for Agi)_l—Toda chain and recursive operator for the sp,,-Whittaker
function holds

A2
QY o290,y 0 = lim e Q (O 40\ e, (2.187)

e—0,e71g—0
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2.5 Integral representations of sos-Toda chain eigenfunctions

In this subsection we provide an analog of the Givental integral representation of Whit-
taker functions for so,, Lie algebras. As in the previously considered cases, we start with
a derivation of an integral representation of so9,-Whittaker functions using the factorized
representation. Then we consider a modification of the factorized representation leading to
a Givental type integral representation of s0,,-Whittaker functions.

Consider D, root system corresponding to Lie algebra so09.. Let (eq, ..., €) be an orthog-
onal basis in R?. We realize D, simple root and fundamental weights as the following vectors
in R%:

] = €9 — €7, wlz(—€1+€2+...+€z>/2,

g = € + €1, wy=(e1+€+...4+¢€)/2,

3 = €3 — €9, Wws = €3+ ... +€g, (2188)
Qn = € — €41, Wy = €.

Coroots  can be identified with the corresponding roots «; using the scalar product in R*.
One associates with these root data so9-Toda chain with a quadratic Hamiltonian given by

1 Vi 82 /-1
My = =3 g et e (2.189)
i=1 4 i=1

One can complete ([Z.I89) to a full set of ¢ mutually commuting functionally independent
Hamiltonians H kD ¢ of the soy-Toda chain. We are looking for integral representations of
common eigenfunctions of the full set of the Hamiltonians. Corresponding eigenfunction
problem for the quadratic Hamiltonian can be written in the following form

l
1
HY WL (@, 1) = §ZA$ U (@), (2.190)
=1

2.5.1 soy~-Whittaker function: factorized parametrization

The reduced word for the maximal length element w, in the Weyl group of soy, can be
represented in the following recursive way:

I = (i1,in, ... ip) i=(12,3123,...,(¢...3123...0)),

where index 7, corresponds to an elementary reflection with respect to the root aj. Let
N, C G be a maximal unipotent subgroup of G = SO(2¢). One associates with the reduced
word I the following recursive parametrization of a generic element v”¢ € N

vl =P X (2.191)
where
%gf;l = Xo(yen1) - XYk 20e41-k)-1) - X3(Y3,20-5) X1 (Y1,0-1) - (2.192)

Xz(y2,e—1)X3(y3,2z—4) e 'Xk(yk,2(é+1—k)) o 'Xe(yz,z)-
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Here X;(y) = e¥* and e; = e,, are simple root generators. The subset NJ(FO) of the elements
allowing representation (2.I91]), (Z192) is an open part of N,. The action of the Lie algebra
s09, on N (2I0) defines an action on the space of functions on NJ(FO). The explicit description
of the action on the space V), of (twisted) functions on NJ(FO) is given below.

Proposition 2.12 The following differential operators define a realization of a principal
series representation my of U(soqe) in V), in terms of factorized parametrization of NJ(FO)

[¢/2] 2n—1 &
0 0 0 Y-\ Y Ysoe-1-k)
B = +>( - VI (B2f) 7 22Dy (2008
' Oy1,0-1 nz::l OY2t—n-1  OY24-n kl:[l Yo,0—k Y3,2(0—1—k)—1 ( )
[¢/2] 2(n—1) K
0 0 AN 1
> ( - ) T (L) Moy
2 M1p—n-1  OY1o-n o1 Y2k Y3,2(0—1—k)—1
(552 £—2n—1 1)k
Z ( _ 0 >y3,2(2n—1) yl,Z—k)(_ " Y3 20—1-k) n
- 8y32 2n—1)—1 ay3,2(2n—1) Yi2n o1 Y2k Y3,2(6-1—k)—1
[£52] 0—2(n+1
i( 0 ) Y3.4n 1(—[ )(yl,é—k>(_1)k Y3,2(6—1—k)
1 8y3 4n—1 ay3,4n Y22n+1 T Yo, 0—k y3,2(€—1—k)—1’
[¢/2] (n— k
0 9 Yo,k \ TV Ys2—1-k)
fo. ( ) ( ) ’ v (2194
° ayu 1 nz ayu n—1 ayu n 1:[1 Y1,0—k Ys2(6-1—-k)—1 ( )

[£/2] 9

+Z (ayl

) ﬁ (y2é k) D" Y3 o00—1-k) n

l—n—1 aylZ n Y-k Ys2(6-1-k)—1

£—2(n+1)

(=]
i:( d ) Y3,4n H (y2,é—k>(_1)k Yspu1k)
! OY3 an—1

ay3,4n Yron+r 0 Y1,0—k Y3,2(0—1—k)—1

[£1)
2

Z( 0 >y3,2(2n 1) ﬁ (yzz k)( D Y3 000—1-k)

ay32 2n—1)—1 ay3,2(2n—1) Y1,2n o1 YLk Y3,2(0—1—k)—1

—k 9 €+1—n—ky ' '
E, = X ( H k,2(i+1)—1 Yk+1,2i X (2'195)
ayk2£+1 k) OYk,2n 8yk,2n+1 i1 Yk2(k+1) Yk+1,2i-1
—k 9 l41—n— ky
I ( ) Yk+1,2n H k,26i+1)—1 Yk+1,2i ’ 2< k<t
! ayk+1 o1 OYkiron’ Yro(nn) s Yk2(k+1) Yk+12i-1
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: (2.196)

H; = Zazk Zym&y (2.197)

-1

-1
)Y in— Z(yma =2 )+ (2.198)
n=1 n=1 k=n+1 Yin
2(0—2)—1 9
+ Z Z yi,ky&na—v 1= 17 27
n=1 k=[n/2]+2 Y3
2(0+1—k) 2(0+1—k) 2(0+1—k)
F=—(a)) Z e — > (y,.m8 +2 Y ity — )+ (2.199)
n=1 i=n+1 k,n

(+2—k 2(0+1-k)

+ Z Z ykz(yk 12n—15 ’ +yk—1,2ni)+

oy 0 Yp—
n=1  i=2(n—1) Yk—1,2n—1 Yk—1,2n

T Z Z Yk, iYk+1,n 0 ; 3< k<,

n=1 i=2[n/2]+3 OYksin

whereny =ng =0 —1,n, =200+ 1—k), for2 <k < /.

The proof is given in Part II, Section B.4.4l
The left /right Whittaker vectors in the factorized parametrization can be found explicitly.

Lemma 2.9 The following expressions for the left/right Whittaker vectors hold:

0 2(0+1—k)

Yr(y) —eXp{ (Zy1n+2yzn+z Z ykn)} (2.200)
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0/2

(Hyl 2n— 1Hy22nHHyz2n+l —i) )OWY> X (2.201)
n=1

n=3 =3

(Hy22n 1Hy12nHHyz2n+l —i) )<u,a¥> X

n=3 i=3

L ng/2

(T I )

i=1 n=1 i=k+1n=1
— 1 _ Ph— _ Pk
xexp{—( [ H(?lek) 1(?/2,@1@) n
Yre-1 5 “Ye—k-1 Y2,0—k—1
n—1
1 _ Pk _ Pk+1
4 H(?Juk)(yuk) ]x

Y2,0-1 5 “\Yre—k-1 Y2,0—k—1

¢
Y3,2(6—n—1) Y3,2(6—k—1)
><<1+ ) +§j )}
H Yk,2(0+1—F)

Y3,2(6—n—1)— 1 Y3,2(0—k—1)— —

where ny =ng =€ —1 and n, = 2( +1—k), k > 2, and py, = (1 — (=1)¥) is the parity of k.

The proof is given in Part II, Section B34l

Using (2.17) and (2.I8)) it is easy to obtain the integral representations of so,,-Whittaker
function in the factorized parametrization.

Theorem 2.12 The eigenfunctions of s09.-Toda chain admit the following integral repre-

W (@, mg) = et +W”/ /\ y (2.202)

Clicl k=1 70K

/2

(H?Jmn 1Hy22nHHyz2(n+1 ) >(/\2_/\1) X

n=3 i=3

/2

<Hy2 2n—1 Hyl 2nHHy2 2(n+1—1) ) ) X

n=3 i=3

L ng/2

TN e T1 TTotan) ™

k=3 i=1n=1 i=k+1n=1
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— o Yie—k \Pr=1( Yao—k Pk
e O | L A G
Y1,0—1 Y1,0—k—1 Y2,0—k—1

n=1 k=1
1 nol Pk Prt1
H ( Y1,0—k ) ( Y2,0—k ) ] y
Y2,0-1 5 “Y1e—k-1 Y2,0-k—1
y n—1 y 14
% (1 I 3,2(6—n—1) ) H 3,2(0—k—1) + Z
Y3,2(6—n—1)—1 1 Y3.2(0—k—1)— s Jk2(6+1-k)
-1 -1 ¢ 2(0+1—Fk)
o2 Z Yin + o112 Z Yo + Z Tk~ Th-1 Z yk,n> }
n=1 n=1 k=3 n=1
Here we assume 11 = 21, .., %ee, pp = (1= (=1)F)/2, ny =ny =0 —1 and nj, = 2({ + 1 —

k), k > 2. Domain of integration C C N, is a middle-dimensional non-compact submanifold
such that the integrand decreases exponentially at the possible boundaries and infinities. In
particular one can chose C' =R, where m = [(wy).

The proof is given in Part II, Section [3.3.4l

Example 2.5 For ¢ = 3 the general formula (2.203) acquires the following form

. dy;
W) = [ AADS o0

i=1 k=1 Jisk

z()\g-i-)q)( 3=A2) o

X (y11y31y22)l()‘2_/\1) (y21y31y12) y31y12y22y32)’(”

xexp{ ! (1+@> +i@@+i(1+@) Lty 1
Y12 Y31 Y12 Y21 Y31 Y22 Y31 Y22 Y11 Y31 Y32

+e"2TI (1) 4 y1g) + €72 (Y + yag) + €TF T2 (ygy + y32)}-

For the domain of integration one can chose C' = RS,

2.5.2  soy~-Whittaker function: modified factorized parametrization

In this part we introduce a modified factorized parametrization of an open part NJ(FO) of
maximal unipotent subgroup N, C SO(2¢). We use this parametrization to construct
integral representations for sos-Whittaker functions. Similar to other series of classical Lie
algebras these integral representations for so,-Whittaker functions have a simple recursive
structure over the rank ¢/ and can be describe in purely combinatorial terms using suitable
graphs. These representations can be considered as a generalization of Givental integral
representations to g = s09y.

We follow the same approach that was used in the description of modified factorized
representation for other classical groups. There exists a realization of a tautological repre-
sentation Ty : 5099 — End(C?) such that Weyl generators corresponding to Borel (Cartan)
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subalgebra of so0y, are realized by upper triangular (diagonal) matrices. This defines an
embedding s09, C gly, such that Borel (Cartan) subalgebra maps into Borel (Cartan) sub-
algebra (see e.g. [DS]). To define the corresponding embedding of the groups consider the
following involution on GL(2/):

gr— g* =g - (g_l)t . wo—l, (2.204)

where o' is induced by the standard transposition of the matrix a and 1wy is a lift of the
longest element of the Weyl group of gl,,. In the matrix form it can be written as

ng(wo) = S . J,

where S = diag(l,—1,...,—1,1) and J = ||Jij]| = [|di+j20+2||. The orthogonal group
G = SO(2() then can be defined as a following subgroup of GL(2¢) (see i.e. [DS]):

SO20) ={g € GL(20) : g* = g}.

Let €; ; be elementary (2¢ x 2¢) matrices with unites at (7, j) place and zeroes otherwise.
Introduce the following matrices

n n—1
e S
Up = E €0—ntif—mti T € "€ 041 + E € € it prit1 T+ (2.205)
i—1 i=1
n—1 l—n
Zn— Zn—1.
+e e + 5 e M ey i1 + 5 (€ + €2011-i2041-1),
i=1 i=1
n+2 n—1 n—1
1 Tp—14 Zn—1.i
U, = E €0—n+tif—nti T g e M e i et + E e e priv1 (2.206)
i—1 i—2 =2
f—n
+ E (€ii + €2041-i2041—1)5
i=1
n
T —ZTp— Ty
U, = E €0mntif—mti T € TP € 1 €T € g0 (2.207)
i=1

n {—n
Zn—1,
+e™ 1 (€41 + €041,042) + g €rtipri T E (€ii + €2041—i2041—i),
=3 i=1

n—1

n
r7 TR — Ly Tp—1.i
U, =U,U, = E €l—n+tifl—n+i T € Yleprt ey T E e e i et + (2.208)
i=1 i=1
n—1
Zn— Zn—1,i
+e b ep o + E €M €04 i1
i=1
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n

n
X —i —x
Vo = E €N e i bt €T € 04 T+ E €04i0ti T (2.209)

i=1 =2
l—n
+ § (€ii + €2041—i2041—i)
i=1
n—1 n n—2
T x i Zn—1.m—i
V, = E e gif—nti T E €rtipri ++ E €I € i p—ntitl T (2.210)
=1 i=—1 =1
l—n
+ E (€ii + €2041—i2041—1)5
i=1
T x —x Zp—
Vn =e "'16575 +e "’1654_1’54_1 + en-bt (65_1’5 -+ 65754_1) + (2211)
f—n
+ E (€5 + €2041—i2041—i)
=1
n n
7 YAV § : x i —x E
Vn = Vn Vn = ermntl ZEg_n_H-’g_n_H- +e "’1654_17@4_1 + €04i 0+i + (2212)
i=1 =2
n—1 l—n
Zn— —q Zn—
+ E e T e i f—mitl T €T € g1 + g (€ + €013 2041—1)-
i=1 i=1

Theorem 2.13 i) The image of a generic unipotent element vP¢ € N in the tautological
representation Ty, : 509, — End(C?*) can be presented in the form

P = X0X5 - Xy, (2.213)

with
Xy = S1U,U51S, - S5(UUy1)* S5 - S1(VaVy )% S, - S5VaVy 195
Xn = (ULU) ™)+ 8ot UnlUy " S - Suia (U(U7) ™) S (2.214)
St (VIV) ™ Snt - SuaVa Vi M S - (VI(V) Y,

where xp, = 0, k=1,...¢ is assumed and S; is defined as follows:
i—1 20

S; = E €k T €iit1 T €ig1, + E €l -

k=1 k=i+2

(2.215)

it) This defines a parametrization of an open part NJ(FO) of Ny.

99



Proof. Let v”*(y) be a parametrization of N according to (2.I91)-(2.I92). Let X;(y) =
e¥éiit1 he a one-parametric unipotent subgroup in GL(2¢), then X;(y)* = Xop11-i(y). Embed
elementary unipotent subgroups X;(y) of SO(2¢) into GL(2¢) as follows:

Xily) = Xi(y)" - Xi(y).

This defines a map of an arbitrary regular unipotent element v”¢ into unipotent subgroup
of GL(2¢). Let us change the variables in the following way:

Zn,1 —Tn Zn,1 —Tn+1, —
yl,n=<6 ATEL 4 eFnd *“), n=1,...,0—1,
= (ezmﬁx”*l + 62”’1”"“’1) n=1 (-1 (2.216)
y2,n ) P ; .
Yk,2r—1 = 62k+T727k71_xk+T727k717 k= 37 cee 767
— pRk+r— -1 r— — J—
Ypop = €RHT—2h-1"Thitr—1k-1 r=1,...,0+1—k.
Here the conditions zy, = 0, k = 1,...,¢ are implied. By elementary manipulations it is

easy to check that after the change of variables (Z.216]), the image 7 (v??) of vP¢ defined by
(Z191)-([Z192) transforms into the (Z2I3)) -(Z214)). Taking into account that the change of

variables (3.63)) is invertible we obtain a parametrization of NJ(FO) C N, O

The modified factorized parametrization of a unipotent group N, defines a particular
realization of a principal series representation of U (so0q.) by differential operators. It can be
obtained using the change of variables (8.63)) applied to a realization given in Proposition
2120 We shall use the term Gauss-Givental representation for this realization of representa-
tion of U(s09).

Proposition 2.13 The following differential operators define a representation wy of U(s09,)

in 'V, in terms of modified factorized parametrization of NJ(FO) :

eT11 0 e®1 0
R ( B _ ) 2.217
1 € emll _I_ 61521 axll 6x11 _I_ 6x21 8211 + ( )

/-1

eTk,1 4 eTk+1,1

x —Zz x —Z
<6 k2771 | oTht1,2 k,l) %

k=2
0 er — ™11 0 0 N
X J— J— J—
81’11 eril + et 0211 81’21 01'22
k . .
1 pTi—1,1
;0 0 et — et 0 0
+ > (-1) - + (1) — — - +
P Or;1  0xp eril 4 e%i-11 0z, 11 0%i_12
Tk,1 Thk+1,1
+ erk+1,2+(—1)k$k+1,1 1 pbre + Prs1€ .
€%k, 11Tk 1 + €%k 1T Th41,1 eTk1 4 eTk+1,1
T, Tht1,
_ewk,2+(—1)k’1rk,1 1 Dr—1€""" + pperrtit 9 _
€%k 17Tkl | %k, 17 Th+1,1 eTk1 4 eTh+1,1 5%1

_e$k+1,2—2k,1 _

pre™ + pppe™tt 9 }
ekl 4 eTht1,1 8zk,2 ’
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21 21
E2 — %2271 € ( 0 + € 0 >—|— (2.218)

er1l 4 ex21 axll er1l 4 et21 3211

~

-1
Tk,1 Th+1,1
+ Pr—1€ + pre eTk27%k,1 | pTh+1,27%k,1 ) ¢
€Tkl 4 eTh+1,1

k=2
" 0 e — ™11 g 0 0 N
01'11 e + et21 82’11 81’21 01'22
k
. 0 0 LeTil — eTi-1,1 i o
+) (-1t — + (-1) — +
zz:;( ) al'i,l al'i,2 ( ) eril 4 eTi-1,1 02,-_171 azi_m)

1 Pr—1€"F! + ppethin
€%k, 11Tk 1 + €%k 1T Th41,1 eTk1 4 eTk+1,1

+ <6$k+1,2+(—1)k19ﬂk+1,1

Tk,1 Tk+1,1
_emk,2+(—1)kmk,1 1 Dre + D1t 9
%k 17Tkl | %k, 1T Th1,1 e%k1 4 eTh+1,1 asz

_e$k+1,2—2k,1 _

pr—1€"! + ppe™iit 9 }
ekl 4 eTht1,1 82k,2 ’

Here pp, = (1 — (=1)¥)/2 is the parity of k.

/-1

0 0
E. = ( o )( Tk k—2k—1,k—1 Tn,k—Zn,k—1 $n+1,k—zn,k> 2.219
g 3Zk—1,k—1 8$k—1,k—1 ‘ " ; ‘ e " ( )
-1 {—1
0 0
— Tn,k—2n,k—1 Tn41,k—2n,k—1
+ Zz:; (al’i,k_l al’%k) nzz:z (6 _l— € > +
-1 D) 9 -1
_ LTi41,k—Rik—1 Tn,k—2n,k—1 Tn+4+1,k—*n,k—1
_'_.Z(azik—l 8zik)<e + Z e +e )7
i=k s > n=1+1
where 2 < k < 0 and
0 0
B e—zlfl,pl( ) 2.220
¢ Ozp—10-1  OTy_101 ( )
0 0
Hy = (3,0 2( - - 2.221
1 <lu’ al >) _'_ axé—l,l 011711 + ( )

-1 -1
P ) - Y g
S et et Oz k=2 Ozpa’
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0 0

Hy = <u,a¥>+2(axé — ot
im0y & g
eTnl + eTn+1,1 azn 1 2 (92;972’
where p, = (1 — (—1)¥)/2
HZ:<M,OKZV>+ZCL1',I€ Z 02z ’ 2<Z<£7
k=2 k1 Bkl

eZn1 ™ Tnt1,1 + eZ1 ™ Tn+1,1 <M, a\/> a +
1
81’11

=
|
|
(]
N

e ]—em—mf[— o, 0

+
el 4 eT21 Jzyy = 81’]“1 82L’k72

{—1
( Zn,1 —Tn+1,1 _I_eznl Tn+1, 1)

eTk,1 a eTk,1 a }

+
e%k,1 + eTh+1,1 5Zk,1 eTk-1,1 4 eTk,1 azk 11
n—=

-1
F2 — E <62n,1+rn+1,1 + ezn,1+wn+1,1) [<M, Oé;/> + 8 +
! L11
e ] — [ 0 n
er + e%21 Oz pa 8LL’k 1 82L’k72
/-1
Th41,1 Tk—1,1
€ a € a } (ezn,l‘HBnJrl,l +€Zn,1+rn+1,1>
Y
Tkl 4 ePhill Oz g eThold 4 ekt Oz ] £
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(2.222)

(2.223)

(2.224)

(2.225)



Fp = (— (, ) + (2.226)

-1

0 0 )

( Znk—1"Tnk—1 + ezn,kfl_xnﬁ»l,kfl) _
8$k 1,k—1 azk 2,k—2

n=k—1

<« 8 8 z 1= Ti41,k—1
Zl<8z )(ek B

ik i,k—1 azzk 2

-1
+ E e*ik-17%jk=1 ezj,k,l—xﬁl,k,l) —
j=i+1

/—1 a a /—1
_ E _ E 6Zj,k71_xj,k—1 + 6Zj,k71—90j+1,k71
— 5$i,k—1 axi,k—2 ’

i j=i+1

where 3 < k < { and x4, = 0 is assumed.

We are going to write down the matrix element (2.12]) for g = s05, explicitly using Gauss-
Givental representation defined above. Whittaker vectors g and 1 in this representation
should satisfiy the system of differential equations

Eiyr(r) = —¢r(z),  Fpr(e) = —¢r(z), 1<i<L (2.227)

Its solution has the following form.

Lemma 2.10 The following expressions for the left/right Whittaker vectors hold:

-1
wR — exp{ _ E <€Zn,1—xn,1 + Pl TIn411 711 Tn,1 + ezn,1+1‘n+1,1) _ (2.228)
n=1
£ A+1-k
E Zhdn—2k-1—Tkin—2.k— z —2k—1—T “1k—
( k4+n—2,k—1 k+n—2,k 1+ek+n 2,k—1 k+n—1,k 1)}’
=3 n=1
9 ¢ 2pn
gr = e I (emr e )™ x (2.229)
n=2
¢ n n—1 n—1
X Hexp{ Mn( E Tn,i — 2 E “n—1,i + E xn—l,i)} X
i=1 =1 i=1
-1 -1
E Tht1,k 2K,k § Tik Zi,k Tit1,k Zik
Xexp{_ (e +1,k+1— _I_ e’ +1 =4, +ez+1 +1— 1)}’
k=1 i=k+1
where we set xy, =0, k= Sland gy, =1 N —pn, pr=0andp, =n—1 forl <n </.

(327 =0 when j < i).
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Now we are ready to find the integral representation of the pairing (2.12)) for g = s0o.
To get an explicit expression for the integrand, one uses the same type of decomposition of
the Cartan element as for other classical groups in the previous subsections:

¢

e = my(exp(— Y (wi, 2)hy)) = efrel®,

i=1
where
—H HL+HR—ZMZ$51+Z Lok — Lo k— 1 Z 82 —|—£L’ggzaz + (2230)
i—f—1 i,k—1 i,1
B S € e D
+IZ71<8I5_171 + 8.171,1 B ; (_ ) ekl 4 eTh+1,1 8Zk’1 )7
with
¢ “1og -1 P
Hy =3 e + Y ). (2.231)
k=1 = O 52 0%k
Hp=-H,— Hj. (2.232)

We imply that Hj, acts on the left vector and Hpg acts on the right vector in (2.12]). Taking
into account Proposition 2.10] one obtains the following theorem.

Theorem 2.14 The eigenfunctions of $09,-Toda chain (212) admit the integral representa-
tion:
-1 k

Dy FDe
\I/)\l” (l’gl,.. l’g( //\/\dl’]“/\dzkl (& s

k=11=1

where

¢ n
FP =y - Z A ( Z T — (2.233)
n=2 i=1
n—1 n—1
—2 Z Zn—1,i T Z Tn—1,4 — 21ln (ex”’l + em"*1»1)> _
i=1 i=1

-1 /—1
<€xk+1,k+1—zk,k + E el‘z‘,kJrl—Zi,k + el‘z‘+1,k+1—zi,k> _
1 i=k+1

M

~

-1
Zn,1—T Zn,1—T Zn,1+T Zn, 1+
_ <€ n,1 n,1 _I_ e n,1 n+1,1 _I_ e n,1 n,1 + e n,1 7L+1,1) _

3
Il
—_

l+1—k
( Zk4+n—2,k—1 " Tk4+n—2,k—1 _'_ezk+n72,k71_xk+nfl,k71>

MN

Y

b
Il

3 n=1
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where x; == x4, 1 <1 < L and C C Ny is a middle-dimensional non-compact submani-
fold such that the integrand decreases exponentially at the boundaries and at infinities. In
particular one can take C' = R™, m = l(wy) as a domain of integration.

Example 2.6 For ¢ = 2 the general expression (2.233) acquires the following form

D x —:E 212
\I])\f,)\g(x?l’x??) = [ dxndz (e ?+e “) X (2.234)

C

X exp {Mz(l"m + 290 — 2211 + 211) — z)\19311} X
X eXp{ _ <6zll_x21 + 61‘22—211 _l_ 6_5022_211 _l_ 6x11_zll + e_xll_zll>}
One can chose C' = R? as an integration domain.

There is a simple combinatorial description of the potential FP¢ for zero spectrum {\; =
0}. Namely, it can be presented as a sum over arrows in the following diagram.

Z20—1,1 —x— Ty

X

x— Tg—11 ——> 2p—11 —> Ty2

e

Ty — 211 —> - cee —= Tp_14-1 —— ZY-140-1 —— Loy

Note that the diagram for D, can be obtained by a factorization of the diagram for Agy_;.
Consider the following involution:

L X sy X i, (2.235)

where 1 is a lift the longest element of Ay,_; Weyl group and X! denotes the standard
transposition. Corresponding action on the modified factorization parameters is given by

wo . Tk < —Thk+1—i (2236)

This defines a factorization of A,,_;-diagram that produce the diagram for D,. Note that
diagram for D, can be also obtained by erasing the last row of vertexes and arrows on the
right slope from the diagram for Cj
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An analog of the monomial relations (2.52)) is as follows. Introduce variables a;, b;y,
Ciks d; ) associated with the arrows of the diagram

ap1 = el‘k,1+zk71,1’ Qi = ezk—l,z‘fl_l’k,i’
by = "1 tomn by = eri izt (2.237)
Cri = ezk,i_xk,i’ dk,i — ki k1,0
Then the following relations hold
biiCr,i = Qpt1,idg 4, Wht1,i+1Cki = Okt1,i4+1Ck+1,4 (2.238)
Qp1Gp2 = 6”’1—1—%2’2, a&idg_l’i_l = PiT i1 (2239)

2.5.3 Recursion for so,,-Whittaker functions and Q-operator for Dél)-Toda chain

The integral representation (2.233)) of s09,-Whittaker functions possesses a recursive struc-
ture over the rank ¢. For any n = 2, ...,/ let us introduce integral operators ngil with the

kernels Qp"  (z,; x,_1; An) defined as follows

QDn ( Ly 17 / /\ dznz ( Fn-11 + exn’l)m)\nx
n n—1 n—1

X €Xp { - ZAn(ZIn,i -2 Z Zn—1,i + Z xn—l,i) } X
=1 i=1 =1

XQCn (—nﬂ Zn— l) QDn 1( n—15 Ln —1)7

where

n—1

D (@0; 24m1) = exp { - (e""’”’”z”*’l + Z (eznfl»i‘xw‘ + e“»iﬂ‘znflvi) )} (2.240)

i=1

QCZ)nl 1(—n 1 Lp _1) = eXp{ — <6xn—1,1+2n—1,1+

n—2

§ Zn—1,i—Tn—1i Tpn—1,44+1—2n—1,i Zn—1,n—1—Tn—1,n—1
_I_ <6 n—1,1 n—1,7 +e n—1,i4+1 n 1,2) +e n m n ,n )}’

i=1

and for n = 1 we define
D1 . Ay,
QDO($1,17)\1) = e

Using Qp" , n=1,...,( the integral representation (2.233) can be written in the recursive
form.
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Theorem 2.15 The eigenfunction for sos-Toda chain can be written in the following re-
cursive form:

-1 k

D,
\I]Al,...,)\l(xb RERR //\ /\dkaHQ Dy—1 xkv H )‘k)’ (2'241)
k=11i=1
or equivalently
-1
D, _ Dy . . Dy—y
U oo (e, xe) = //\dIe—LiQD“(Ez, To ;M)W (Teenns e T ),
¢, =1
where we assume x, = Ty,, 1 < n < L. Here C C Ny is a middle-dimensional non-

compact submanifold such that the integrand decreases exponentially at the boundaries and
at infinities. In particular the domain of integration can be chosen to be C =R™, where

m = [(wyp).

As for other classical Lie algebras, different from g, ;, the specailization to zero spectrum
{A\n = 0} revieals a more refined recursive structure. In this case the kernel of the operator

Qp"_, is reduced to a convolution of two kernels QD” (z,; 2,,) and Q Do (215 Ty )

The corresponding integral operators Qg" f;;jl can be regarded as elementary inter-

twiners relating Toda chains for D,,, C,,_; and C,_1, D,,_1 root systems. Thus for quadratic
Hamiltonians one can directly check the following relations

Lemma 2.11 The operators Qp" g:f and Q) On— "~ satisfy the following intertwining re-

lations with quadratic Toda Hamiltonians.

1. Operators Q" | and Q " intertwine quadratic Hamiltonians of C- and D-Toda
chains:

H2 n(—n)QCn (-n? _n—l) - Qg:,l(grm gn—l)H§n71 (gn—l% (2242)

My (2,) QD (20 2) = Q5 (200 2)HY " (,)- (2.243)

2. Operator Qp"  for A, = 0 intertwines Hamiltonians Hy" and HD" b

HY (2,) Q5" (L0 Ty 00 = 0) = QD" (20 Zyy3 A = VML (), (2:244)
where

n—2

Hy" = Z— + 2% 4 Y erE, (2.245)
i=1
1o~ 82 =

n _ _ . r1t+x2 Ti41—Ti 294
H; 5 ; 922 +e + ;e ( 6)



The integral kernel of the operator QD]{)W1 (z,;; z,,_1) at A\, = 0 can be succinctly encoded

into the following diagram

Zn—1,1 —x— Tn1 (2247)
|

X

Tp-11 — Zn-11 —> Tp2

-, ————— Tpn-1
Tn—-1n-1 — Zn—1n—-1 — Tpn

Here the upper and lower descending paths of the oriented diagram correspond to the
kernels of elementary intertwiners Qg:ﬁl and ng;fl respectively. The convolution of the

kernels Qg: and Qg’::l corresponds to the integration over the variables z,_;; associated
with the inner vertexes of the sub-diagram (2.247)

Similarly to the cases of other classical series of Lie algebras recursion operators Qp"

can be considered as degenerations of Baxter Q-operators for affine Dél)-Toda chains. Let us

recall the root data for Dél). Simple roots of the affine root system Dél) can be represented

as vectors in R? in the following way
o =€+ €, =641 — 6, 1101,
Qpy1 = —€ — €1,

and Dynkin diagram is given by
(o751 Qy

Qo Qpt1
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The corresponding Dél)—Toda chain quadratic Hamiltonian is defined by

b 1 02 —
,H2 _ _55 :_2+€x1+x2_'_§ :€$i+1—xi _|_gewz—rzf1 —i—ge_w_wl’l. (2248)
o
1=1 v i=1

Define the Baxter Q-operator of Dél)—Toda chain as an integral operator with the following
integral kernel

(1) % 2\
i=1
¢ -1 ¢
xexp{—M(in—QZzi—i—Zyi)} X (2.249)
i1 i=1 i=1
D o)
XQC(1§ (xlv R RS PR Z@—l) Q D(l)(zlv ey R—15Y1, - - 7yf)7
-1 I
where
P
G (@1, e 2, 2m1) = (2.250)
Co4
-1
—GXp{ z1+x1 +Z< 2 —X; _'_em7,+1 Zz) +ge Tp—Z2p— 1}
i=1
and
DM o)
Q oy (@, ey 21, 2) = Q 0 (2,2 T, L T). (2.251)
Gy Dy
Here we use the following notations ) = (z1,...,2,), ¥ = (y1,..., w).

Proposition 2.14 The Q-operator (2.249) commutes with quadratic Hamiltonian of the
Dél)—Toda chain:

1 a
HP (2)Q ) =07 @9, yOYH T (y?). (2.252)

Now we will demonstrate that recursion operator Qgiil can be considered as a degeneration
of Baxter Q-operators for Dél). Let us introduce a slightly modified recursion operator with
the kernel: Qgﬁil@Dlz

2@y N) = eMQp (29, Y, N, (2.253)

QDe 1€BD1(

where we use the notations g(é_l) = (y1,---,Ye—1). This operator intertwines Hamiltonians
of 509/~ and s09s_5 @ s0o-Toda chains. For instance we have for quadratic Hamiltonians

HY (@ )QD e, (@ 50N = QD ap, (@ 3N (H (07) + 1D ()
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where H3 (ye) = —1 (82 / 8y§> Obviously the projection of the above relation on the sub-

space of functions F(y®) = exp(tAy,) f(y'“~)) recovers the genuine recursion operator sat-
isfying:

PAO)QB (@, 50 X) = @B @O,y W (HP ) 4 N (2250

Let us introduce a one-parameter family of the operators with the kernels

(D

=1 2\ -2\
Q" (2, Q(Z), A g) 1= gt / /\ dz; <ex1 + eyl> <5e_“+y‘f + 1) X (2.255)
i=1

1=
(1) o,
i . - . .
XQ (1) (zla"'7I€7zla"'7Z€—l) Q (1)(Zla"'azf—layla"'ayfag)>
szl D(
where
p{V
o) (X1, ooy T 2150 ey 2021) = (2.256)
-1
/-1
—QXp{ z1t+x1 + E < 2 —X; _'_em7,+1 Zz) +ge Tp—2p— 1}
=1
and
o7ied
Q D(l)(zlv"w'zZ—lv yla"'vyf;g) =
0
{—2
= eXp{ — <€Z1+y1 + E <62i—yi + e¥it1—% ezlfl_ylfl> + (2‘257)
=1

I A 6—196—12—%71) }
These operators are obtained by a shift of the variable y, = yy + Ine in (2240). Then the

following relation between Q-operator for Dél)-Toda chain and (modified) recursion operator
for s04,-Whittaker function holds

(1)
QY op @D, yO N = lim QT (2@, y?, A e). (2.258)

e—0e1g—0 -
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3 Part II. Proofs

Let G be a complex connected simply-connected semisimple Lie group of finite rank ¢, g =
Lie(G) be the corresponding semisimple Lie algebra with the Chevalley generators f;, h;, e;.
Let us fix a Borel subgroup B, and let 7" be the maximal torus 7" C B,. This defines a
pair N, N_ of opposite unipotent subgroups in G, N C B,. Let I' be the set of vertices
of Dynkin graph of g, {a;, i € I'} be the set of simple roots, {y, k=1,..., %(dim g/h)} be
the set of all positive roots and {«a;’, i € T'} be the set of simple coroots. For every i € T
there is a group homomorphism

v+ SLy — G, (3.1)

defined as follows. Introduce a set of one-parameter subgroups e’ = X;(t) C Ny, et/i =
Y;(t) C N_ and et = o (t) C T. Homomorphisms (3.1]) are defined as

pile)=e e =T i) =l (1), (3-2)

where e, f, h are standard generators of sly. Let us fix the lifts §; C G, § C SL(2) of the
generators s; of the Weyl group of G and the generator of the Weyl group of SL(2)

e

§=ee e, §; = e“iefied, (3.3)

Thus defined lifts of Weyl group generators are obviously compatible ;($) = $; with homo-
morphisms (3.I]). We have the following relations

§fs = —e, M fis = —ei (3.4)

The action wg(q;) = —a;« of the maximal length element wq of the Weyl group on simple
roots defines an involution ¢ — ¢*. The corresponding action of wy is given by

wo_l fz ’d)(] = —€*. (35)
Remark 3.1 For classical Lie groups one has i* = ¢+ 1 —1i for G = SL({ + 1), i* =1 for
G = SO(2( + 1) and for G = Sp(2(). In the case G = SO(2¢) (for { > 2) the action of the

inwvolution x is as follows:

1, ¢ even 2, [ even
* 1|—>{27 ¢ odd QH{l (3.6)

=k, 2<k<{,

where the enumeration of roots of SO(2() is given by (2.183).

In the following we will be considering matrix elements of finite-dimensional representa-
tions V,,, of g corresponding to the fundamental weights w;, i € I'. Let { and £ be highest
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and lowest vectors in V[, such that (7 [£F) = 1. For the lift (3.3) of the elements of the
Weyl group we have (see e.g. [K] Lemma 3.8, [ ] eq. (2.29))

Consider the following parametrization of a generic group element g € G

¢
g =97 ¢ ¢ = exp( Z U_ofa) exp(z u;h;) exp( Z Un€a)- (3.8)

OLEA+ =1 aEA+

For coordinates u; corresponding to Cartan generators h; and for coordinates u,, corre-
sponding to simple root generators e,,, f,, there exits simple expressions in terms of matrix
elements of fundamental representations V,,:

(o mi(g)mi( fi)l€X)

(€5 Imi(g)mi(ed)EX)

Uq,(9) = = ;o U—a(g) = = , (3.9)
(€ lmi(9)1€5,) (& Imi(9)I€5)
ui(g) = (€, mi(9)|€2,),
where m; = 7, is a fundamental representation in V,,. Define generalized twisted minors as
Auin(9) = (€ (9T, (W)IES), g€ G. (3.10)

Then coordinate u; and wu,, of a twisted unipotent element vy ' € G (where v € N,) can
be expressed in terms of twisted minors (B10) as follows

eui(vwgl) = Awi lb(;l ('U)a

(& mi(vig mi(fi)l€7) _ (& Imi)mi(uig mi(si DIEL)

Ug, (Vi ') = , = , 3.11
o) = e i i) (€ moiy DIES) 10
_ (&Glmio)mi(er )mi(ug )IES) Aw wgtsr (V)
(& |mi(vig )IE) A C)
In the following we will use the shorthand notations
A): = (€ Im(veiin )EL) = —A, 1,1 (0) | (3.12)
Ai(v): = Awi’wgl('l}).

3.1 Measure on N,: Proof of Lemma

In this part we derive an explicit expression (2.21I]) for a measure duy, () on a unipotent
subgroup N, C G of any classical Lie group using a factorized parametrization (Z20) of
N, . Recall that for a reduced word Iy = (i1, ..., in,) of wy there is a birational isomorphism
C™ — N,. Particularly, given an unipotent element v € N, the following factorized
representation holds.

where X;(t) = e'®. The variables t; are called factorization parameters of v.
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Proposition 3.1 Let v(t) € NJ(FO) be a factorized parametrization (3.13) corresponding to a
reduced word I = (iy,...,1m,). Then

L my my dt
dpn, (v HH ylwm \ == (3.14)

t;’
i=1 ¢

is a restriction of the right-invariant measure dpy, to NJ(FO), that is
dpn, (v(t)) = dpn, (v(t) - X;(7)), 7=1,...,L (3.15)

Proof. To prove the Proposition consider a dependence on a choice of a reduced word
I = (i1,...,ip) explicitly. Let ¢/ = (¢{,... t] ) be factorization parameters corresponding
to a reduced word I. According to [BZ] (Theorem 4.3) one has the following expressions for
matrix elements

my

AR(t') = Ap(x(twgt) = T hH (3.16)

i=1

Two parameterizations x(t!) and z(t") of NJ(FO) corresponding to reduced words I and I’ are
related by a birational transformation.

Lemma 3.1 For any reduced decompositions of wy corresponding to reduced words I and I’
the following relations hold

1.

At = A,  1Zk<0 (3.17)

e del me el

A = A na (3.18)

j=1 7 j=1 7

Proof of Lemma. It is shown in [Lu] that birational transformations R} of N, cor-
responding to any two reduced words I and I’ can be represented as a composition of
elementary transformations (so-called 3- and 4-moves). Therefore to prove ([B.17), (BI8))
one should check these identities for the elementary moves only in the following In the case
of classical Lie groups it is enough to consider the following two birational transformations
Rl — ¢l

Lo Xi(t) X(t2) Xi(ts) = X;(#1) Xa(t5) X (t5) for ay; = aji — 1,
2. X](tl)XZ(tQ)X](tg)XZ(t4) = Xz(t/l)X](té)XZ(té)X](tﬁl) for Aiy = —1 and Aj; = —2,
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where we denote t = ¢! and t' = ¢!,

The proof of the identity ([B.I7) for elementary 3- and 4-moves follows straightforwardly
from the results in [BZ]. Thus we consider only the proof of ([B.I8)) below.

1) In the case a;; = aj; = —1 we should consider the birational transformation between
the parametrizations associated with reduced words I = (...4ji...) and I' = (...jij...).
We have the following relation between parameters

v = X;(t1)X;(t2) Xi(ts) = X;(t) Xi(t5) X;(t5),

where - -
th=—22 =ttty =
Lt 2T STt 4t
Direct check gives
dlogt) Ndlogty, Adlogty = dlogt; Adlogts A dlogts. (3.19)
2) In the case a;; = —1, aj; = —2 we should consider the birational transformation

between the parameterizations associated with reduced words I = (...jiji...) and I’ =
(...47ij ...). Thus we have the following relation between parameters

X = X;(t) Xa(ta) X;(t3) Xi(ta) = Xa(t]) X;(5) Xi(t3) X;5(t)),

with
tot2t 12ty + (t; + t3)°t
P L — = A2 (t 3)4, (3.20)
tltg + (tl + tg) t4 t1to + (tl + tg)t4
2
<t1t2 + (tl + t3>t4> ti1tats
t1te + (t1 + t3) ta tito + (tl + tg)t4

One can readily verify the following identity:
dlogt) A dlogty Adlogty Adlogt) = dlogt; Adlogts A dlogts A dlogty.
This completes the proof of the Lemma.

Now we can complete the proof of the Proposition B.Il To establish the right-invariance
of measure dun, (v) we use (B.I7), [BI8). For any simple root a; one can find a reduced
word I(e;) = (j1,...,Jm) with m = my such that j,, = i¢. Then identities (B.17), (BI])
imply that

e, (0" @) = dpu, (0(t)).

In this way we obtain
U(tl(ai)) . XZ(T) = le (tl) et ij—l (tm—l)Xz(tm + T) (321)

By construction the factorization parameter ¢,, enters only in the (monomial) expression for
Aj(v(t)) as a homogeneous factor of degree one. In this way, the factorization parameter
t, appears in the measure duy, only in the coj-component A;(v(t))dInt,,, and hence, the
measure dyy, is invariant under the shift ¢,, — ¢,, + 7. Thus the measure is right-invariant
with respect to the action of X;(7) for any j = 1,...,¢, and eventually it is right-invariant
with respect to the whole N,. This completes the proof of Lemma 2.2
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3.2 Whittaker vectors for classical Lie groups:
Proof of Lemma [2.1] and Proposition [2.1]

In this subsection we derive expressions for left and right g-Whittaker vectors in terms of
the matrix elements of finite-dimensional representations g. The Whittaker vectors satisfy
the following equations

ein = _¢R ) fl¢L = _¢L ) 1= 17 s 76' (322)

Integrating actions of the nilpotent Lie subalgebras ni C g to actions of the nilpotent Lie
subgroups Ny C G, equations on g-Whittaker can be written in terms of one-parameter
subgroups X;(t) C Ny, Y;(t) C N_ as follows

mA(Xi()Yr(v) = e "Yr(v), m(Yi(t)Yr(v) =eYr(v), i=1,....4, ve N,
Equivalently one has for any z4 € N4
w2 (o) = exp { = D ()i fun(v), ma(ein() = exp{ = D o(=)ifinlv).  (3:23)

where (z4); 1= Utq,(2+). Construction of the right Whittaker vector is pretty straightfor-
ward. Note that we have a simple identity

Ug, (V1 V2) = Ug, (V1) + Uq, (Ve), vy, vy € Ny

Then from ([B:23]) we infer that the right Whittaker vector is given by a multiplicative char-
acter of the maximal unipotent subgroup N,

Yr(v) = exp{ - ZZ:UZ} = exp{ - AAwws*lZg)}’ v e N;. (3.24)

1=
where v; 1= u,, (v) and we use (39) to express v; in terms of matrix elements.

To construct the left Whittaker vector in terms of matrix elements we use an inner auto-
morphism of G, acting on z € G as 2™ = 1y ' z1. Taking into account that iy * X (—t)y =
Y;(t) we have 1y ' Ny1iy = N_. Now the equation for the left Whittaker

(Yt (v) = e (), i=1,...,¢

can be written in the following form

L
ML) =exp{ =Dz fvav),  ze N, (3.25)

i=1

The left Whittaker vector can be obtained by the twist of the right vector
b (v) = Yr(vig ')
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where the function i is considered as a B_-equivariant function on G (see (29) for the
precise definition). Using Gauss decomposition and the parametrization ([B.8), (3.9) we get
for the left Whittaker vector

Wi (v) = PP Tiz wilvig hi) 3, e (viig ™),

In terms of the matrix elements of finite-dimensional representations we have the following
representation

: A
0r(v) = [T Ayt (@) - exp {M} _

Pl Awi7wal(v>
Z v (3.26)
— E A, (v)A=ral) exp{ _ ﬁ(zﬁ)}

This completes the proof of Lemma 2.1l The proof of the Proposition 2.1] is then obtained
by combining the expressions for right Whittaker vector and left Whittaker vector twisted
by the action of Cartan generator exp h, = exp —(Zf:1<wi, x)h;).

3.3 Explicit evaluation of matrix elements

To construct integral representations of Whittaker functions one should express various ma-
trix elements entering the integral formulas (Z.19) using factorized and modified factorized
parametrizations of group elements. This can be done rather straightforwardly using results
of [BZ], [?]. Below we shall use a recursive structure of reduced word I corresponding to
a maximal length element wy of Weyl group of classical Lie algebras. This recursive struc-
ture translates into recursive formulas for the relevant ratios of matrix elements. Resolving
recursive equations we find explicit expressions of ¢, and g in a (modified) factorized
parametrization. This provides corresponding integral representations for Whittaker func-
tions of classical Lie groups. In the case of the modified factorized parametrization we obtain
a generalization of Givental integral representation for g = gl ;.

3.3.1 Expressions for gl,, ,-matrix elements:
Proofs of Theorem [2.1] and Theorem [2.3]

In this subsection we introduce expressions for matrix elements relevant for the construction
of integral representations of gl,, ;-Whittaker functions using factorized parametrization of
an open part of N, C GL({ + 1). This provides a proof of the integral representations of
gl, ;-Whittaker functions presented in Part L.

The eigenfunctions of gl,; and sl,.; Toda chains differ by a simple factor (2.31]), and
the Whittaker vectors vy, r are the same for both Lie algebras. Thus we use the sl;
root data for calculations of the matrix elements A, ,-1(v), A, ;-1-1(v), i = 1,..., 0 in

the fundamental representations of sl,,; and set in addition A“’eﬂ _,(v) = 1. The sy,
g

root data given by (2.28). Reduced decomposition wy = $;, 84, - - - 54, of the maximal length
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element wy € W corresponding to a reduced word Iy = (i1, .. ., 4,,) withm = m, = (({+1)/2,
provides a total ordering of positive co-roots by Ri = {vw = si, - si,_,al} of sl We
consider a decomposition of wy described by the following reduced word

I, =(1,21,...,(¢...21)).
Corresponding ordering of positive co-roots is given by:

v _ Vv v
v vy VYme_y+1 = Q1 T ay,
VoV V2 = +Qy,
71_051’ vV _ AV
73_0427

: (3.27)
fy’r\){l,g = O‘E/

Recursive parametrization of an open part NJ(FO) of N, corresponding to a reduced word I,
is as follows. Given v4¢ € NJ(FO) we have

v (y) = X1 (y) Xa(y) - ... - Xe(y), (3.28)

where
%k(y) = Xk(ykmk,k) et XQ(y2,nk,2>X1 (yl,nk,1>7

and X; = Xi(y11). Here we adopt the following notations. Let |I;| = m, be the length of
wp. For the root system of type A, one has m, = ¢(¢ + 1)/2. Then for any k£ € {1,...,¢}
consider a subword

[k = (Zl,,Zk) CIg: (’il,...,’ik, ’ik+1,...,’i5),

with |I| = my, = k(k + 1)/2. Let A be a corresponding root subsystem in R, and
vO = X, --- X}, be a factorized parametrization of the corresponding subgroup. Factorization
parameters for v (y) can be naturally enumerated as {y;,} with 1 <i <k, 1 <n < ny;
and

mes=k+1—1i, 1<i<t. (3.29)

We are interested in explicit expressions for the following matrix elements in terms of
factorization parameters {y;,}

Ai(v) = (&5, Im(vwg ) [65),  Aj(v) = (€ Imilvesag ') [€5),

where m; = 7, is a fundamental representation with the highest weight w;, £ and &
are the highest and lowest weight vectors in the representation m; such that ({7 [£;) = 1.
Note that for Lie algebra sl,,; according to (B.5) we have i* = £+ 1 — . The proof of the
following statement is obtained by an iterative evaluation of the matrix elements taking into
account Serre relations and defining ideals of the fundamental representations and using the
technique of [BZ].

Lemma 3.2
Ai(v)t = (Hym_k,i) A (v), i=1,...,¢
k=1
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/ To0—it1—Tp 0—i U _
(B0 e S BN

eTe+1,6—i+1—Te41,0—i

fork=2...0—1.
The matrix elements then can be found by resolving the recursive relations (B.30).

Lemma 3.3 Let v be defined by (2.33) and (2.33). The following relations for matriz ele-
ments of v in terms of the variables y; y, hold:

¢
A
(Awi,s-i(v)y = > Yim, i=1,...1,

( wi,wol(v)>Ae = HHyk-I—l n,mny (331)
k=i n=1
A (v) 4 _ — T~ Yor1—k—ik+1
<Ak(v)> Y- kk<1+;Z T Yer1—k—ik )’
Ajfo)4 1 - B
<AZ(U)> B Yie k=201

Combining these expressions with the expression (2.21]) for the invariant measure on N, and
substituting into (2.17)), (2.I8) and (ZI9) one completes the proof of Theorem 211

Now consider an integral representation for gl,, ;-Whittaker function in a modified fac-
torized parametrization (240). We start with an analog of the recursive relations (3.30) for
matrix elements in the modified factorized parametrization. To simplify the formulation of
the recursive relations it turns out to be useful to consider a twisted version

yim — exl+1,i_x£+1,i+1 6x7l+i,i+1_x7l+i71,i , (332)

of the modified parametrization (2.40) by taking into account the action of the part Hg of
the Cartan generators (2.40). The simple change of variables ([8.32) applied to ([8.30) gives
the following.

Lemma 3.4 1. In the modified factorized parametrization (3.39) recursive relations (3.30)
are given by

<A2(v)>Af:€m,em-xm,“ﬂJr et (AQ(“))A“. (3.33)

Ai(v) ETL+1,L—i+1 T Tl41,0—i Ai(v)
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2. Solution of the recursive equations read as

A;( ) A l+1—1i N »
<A,~(Z)> = D eI =1 (3.34)

n=1

Ay i _
(Awivwo—l(v)) = exp { ;(xeﬂm - xn)} 1<i<(,  (3.35)
i+1 i

R

where Ay 1(v) =1 is assumed.

Now substitute (8.34]), (8:33]) into (217), (2.I])) we obtain Whittaker vectors in the parametriza-
tion (3.32). Taking {z,x = 0} we recover the expressions for Whittaker vectors given in
Lemma 2.4l To prove the Theorem one remains to take into account the measure dpy,
in the modified factorized parametrization. This completes the proofs of the Theorem [2.3]

3.3.2 Expressions for soy,;-matrix elements:
Proofs of Theorem [2.4] and Theorem 2.6l

In this subsection we introduce expressions for matrix elements relevant for the construction
of integral representations of s04,,1-Whittaker functions using factorized parametrization of
an open part of Ny C SO(2¢ + 1). This provides a proof of the integral representations of
5090, 1- Whittaker functions presented in Part I.

We are using the root data given by (2.64). Reduced decomposition wo = s;,8;, * * - i,
of the maximal length element wy, € W corresponding to a reduced word Iy = (iy,...,0m,)
with m, = ¢ provides a total ordering of positive coroots by RY = {7y = s;, -+~ si,_,a} of
§09041. We consider a decomposition of wy described by the following reduced word

I, =(1,212,...,(¢...212...0)).
Corresponding ordering of positive co-roots is given by:

¥ = o +af,
v =af, v = o + 20, o (3.36)
V= ag,

Tinepr = f +2(af +.. + o) +af

7(\2_1)2+2 =a) +2(ay +...+al,) tal +aof,

Y-y = Tog +...+ay,
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Recursive parametrization of an open part NJ(FO) of N, corresponding to a reduced word I,

is as follows. Given vZ¢ € NJ(FO) we have
0P (y) = X1(y) Xa(y) - ... - Xe(y) (3.37)

where

Xk(y) = XeWempp—1) =+ XoWompo-1) X1 Wm0 ) XoWomps) - Xe(Whing i)

and X; = Xi(y;1). Here we adopt the following notations. Let |I;| = my, be the length of
wp. For the root system of type By one has my = (2. Then for any k € {1,...,{} consider a
sub-word

I, = (il,...,ik) cl,= ('él,...,’ék, ’ék+1,...,’ig),
with |I| = my = k%. Let By, be a corresponding root subsystem in R, and vB* = X;--- X,
be a factorized parametrization of the corresponding subgroup. Factorization parameters for
vP%(y) can be naturally enumerated as {y;,,} with 1 <7<k, 1 <n < ng; and

nNgi1 = ]{Z, Nk = 2(1{3 + 1-— Z), 1< S ‘. (338)

We also use the notation n; := ng;.

We are interested in explicit expressions for the following matrix elements in terms of
factorization parameters {y;,}

Ai(v) = (€ Imi(vig ) [65),  Al(v) = (&, Imi(veaag ') 1€5),

where 7; = 7, is a fundamental representation with the highest weight w;, £ and £ are
the highest and lowest weight vectors in the representation m; such that ({7 |, ) = 1. Note
that for Lie algebra s09,,1 we have ¢ — ¢* for the involution defined by (3.H). The proof of
the following statement is obtained by an iterative evaluation of the matrix elements taking
into account Serre relations and defining ideals of the fundamental representations and using

the technique of [BZ].

Lemma 3.5 Let v :=v5¢ be defined by ([3.37). The following recursive equations hold:

14
2@ = ([Tomme) - Aa(wP),
k=1

7 12
Ai(U)Be = <yi£ Hyk‘,nk—lyk)7nk H y]ink_l) : Ai(fUBeil)a 1<i< E,
k=2

k=i+1
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(Aﬁw>m _£(1+ Y2.2(0-1) >+ Y2.2(0-1) (AKW>&1’

Ay (v) Y1, Y2,2(6-1)—1 Y2,2(6-1)—1 Aq(v)
A B 1 _
( k(v)> e _ <1+ Yk+1,2(0—k) >+ (3.39)
Ay (v) Yk, 2(041—k) Yk+1,2(6—k)—1

L YRRt Yk 20k) (A%(@)Bm

Yk 26+1—k) Yk+1,2(—k)—1 NDp(v) ’

A B 1
( Aw>e = —  k=2...0-1
Ay(v) Ye,2

Now matrix elements can be found by resolving recursive relations given above.

Lemma 3.6 Let v is defined by (2.67) and (2.68.) The following expressions of matriz
elements of v in terms of the variables vy, hold:

(A ) E:mm (3.40)

¢ l+1-k
(3:0)" =L IT T s .41
k=2 n=1
l4+1—1 k (41—
< > Hylnx H H yz2n 1 X H H Yi2n—1Yi 2n, (342)
1=k+1 n=1 =2 n=1

i=1,....0, k=2,... 0

(A’ Z) i 1 < Y2,2(n—1) ) ﬁ Y2,2(i—1) 7 (3.43)

e YLn Y22(n-1)-17 ;2 7 Y2,2(i-1)-1
A (v)\Be A Yk+1,2(n—1) Yk+1,.2(i—-1) Yk,2i—1
(ALY SR Ly, wwsoen ) T e
Ag(v) “— Ykon Yrt12n-1)-17 20 Yk12(-1)-1 Yk 2i

k=20 (3.45)
where ny =€ and ny, =2(0+1—k).

Now consider an integral representation for soo,1-Whittaker function in a modified fac-
torized parametrization (2.80€]), (2.87). We start with an analog of the recursive relations
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B39) for the matrix elements in the modified factorized parametrization. To simplify the
formulation of the recursive relations it turns out to be useful to consider a twisted version

—X xX —Zz —T Tl — —Z xr —Z
Y11 =€ 01711 11’ Yrp=¢€ 21 <6 k=1,172k,1 4 oTk,1 k,l)’

yk,2r—1 — eml,kfl_xf,kezk+r71,k_$k+r72,k71 , (346)

— pTl k-1l k pRk+r—1,k—Lhk+tr—1,k—1
Ykor = € €

fork=2....0and r =1,..., £+ 1 — k. of the modified parametrization (2.80) by taking
into account the action of the part Hg of the Cartan generators (2.90]).

Lemma 3.7 Choose an unipotent element v € N.. The following expressions for the matrix
elements of v in variables xy ;, zr; defined by (3.40) hold:

1.
Ak (’U) k k k—1 9
7y & oXp { =D Tk — 221+ 2 )z — xk—l,i} (e””'l + 6”’1) :

(
2
1(”) r11—22
— emT¥u L9 3.47
A0) (3.47)

B

and Api1(v) =1 is assumed.

2.
M) _ ZZ: o7 (3.48)
A1(,U) k=1 |
— Thk— 2k, Tn—1,k—%n, Tn,k—2n, ]{,‘ =2 ... g
Ay (v) ’ . <6 T )’ o

n=k+1

Here we let mpp, =0, k=1,...,0. We assume, that the terms like e*+'¢ in (3.48) are
deleted and as usual we suppose that Y~) _. =0 whenever i > j.

Now substitute (3.34), (335) into (2.I7), ([ZI8) we obtain Whittaker vectors in the
parametrization (3.46]). Taking {x,, = 0} we recover the expressions for Whittaker vectors
given in Lemma[2.6l To prove the Theorem one remains to take into account the measure
dpy, in the modified factorized parametrization. This completes the proofs of the Theorem

2.6

3.3.3 Expressions for sp,,-matrix elements:
Proofs of Theorem 2.8 and Theorem [2.10]

In this subsection we introduce expressions for matrix elements relevant for the construction
of integral representations of sp,,-Whittaker functions using the factorized parametrization
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of an open part of N, C Sp(2¢). This provides proof of the integral representations of
sp,,- Whittaker functions presented in Part I.

We are using the root data for g = sp,, given by ([2I25). Reduced decomposition
Wy = Si, Si, - -+ i, of the maximal length element wy € W corresponding to a reduced word
Iy = (i1, ...,im) provides a total ordering of positive coroots by RY = {vx = s;, - - si, o/ }.
We consider a decomposition of wq described by the following reduced word

I =(1,212,...,(0...212...0)).
Corresponding ordering of positive coroots is given by:

Vieeryn =20 +.. 20 + o,

v —9qV Y% :
T2 ap T Ay, Vi) =204 +ag ...+,

V \ \Y \Y \
Y1 = Y3 = Qg + Qo \Vi .V \Y (349>
W= ay, Vie—1y240 = Q1 T+ ay,

v _ LV
’}/ZQ—OKE.

Recursive parametrization of an open part NJ(FO) of N, defined by the reduced word I, is as
follows. Given v € NJ(FO) we have

v (y) = X1 (y) Xaly) - .. .- Xu(y), (3.50)

where

Xk(y) = XeWemp—1) - Xo Wm0 1) X1 W) Xo Wi o) - Xe(Whing i)

and X; = Xi(y11). Here we adopt the following notations. Let |I;| = m, be the length of
wp. For the root system of type C, one has my = (2. Then for any k € {1,...,¢} consider a
subword

I, = (il,...,’ik) cl,= ('él,...,ik, ik+1,...,’ig)
with |I| = my = k2. Let C} be a corresponding root subsystem in R, and v% = X;--- X,
be a factorized parametrization of the corresponding subgroup. Factorization parameters for
v (y) can be naturally enumerated as {y;,,} with 1 <i <k, 1 <n <ny; and

ne1 =k, ni=2k+1—-1), 1<i<{. (3.51)
Denote also n; := ny;.

We are interested in explicit expressions for the following matrix elements in terms of
factorization parameters {y;,}

Ai(v) = (& Imvig ) [€5),  Aj(v) = (&,

where m; = 7, is a fundamental representation with the highest weight w;, £ and & are
the highest and lowest weight vectors in the representation m; such that ({7 |5 ) = 1. Note
that for Lie algebra sp,, the involution ¢ — i* defined by (B.3) is trivial * = i. The proof of
the following statement is obtained by an iterative evaluation of the matrix elements taking
into account Serre relations and defining ideals of the fundamental representations and using
the technique of [BZ].

7"'i('Uei*u‘}O_l) | ;Z)a
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Lemma 3.8

A (ylnlnyk‘nk 1yk2nk H yk;nk 1) )CZila Z:]qf,

k=i+1

(A'l(v)>0z _ L<1+M)2+< Ya.2(0-1) >2<A’1(U))c“’

A1(11) Yie Y2,2(0-1)—1 Y2,2(6-1)—1 A1(11)

A C 1 _

( k(v)> e (1 4 Yerr2-k) )+ (3.52)
Ag(v) Yk, 2(6+1—k) Yk41,2(0—k)—1

Yk2(041—k)—1  Yk+1,2(6—k) (AQ(U))C“
+ )
Ak(v)

Yk 2(04+1-k) Yk4+1,2(0—k)—

(A}(v))cz _ 1

Ay(v) Yoo

Y
fork=2...0—1.
Now matrix elements can be found by resolving recursive relations (B8.52)).

Lemma 3.9 Let v be defined by (2128) and (2129). The following relations for matriz
elements of v in terms of the variables vy, ;, hold:

0
C
(Awi,éi(v)) ¢ — Zyi,m 7, = 17 ceey g’

i 2(0+1—k) 1k

(Awi,wol(v))q Hyln X H H Ykn X H H yk2n 1 (3.53)

k=i+1 n=1

L)y Ce ‘ 22ne1) \2 T 2,2(i-1) \?2
B - S [ 2y

Y2,2(n—1)— i1 Y2,2(i—1)—

{+1-k 1-k

Ce 1 Yk+1,2(n—1) “ Yk+1,2(i-1) Yk,2i—1
) X ) I

Yk+1,2(n—1)—1 1 Ykr12(-1)-1 Yk2i

fork=2....0—1.

Combining these expressions with the expression (2.21]) for the invariant measure on N, and
substituting into (2.17), (2.18), (2.19) one completes the proof of Theorem 2.8

84



Now consider an integral representation for sp,,-Whittaker function in a modified fac-
torized parametrization (2.144)-(2.145). We start with an analog of the recursive relations
[B52) for the matrix elements in the modified factorized parametrization. To simplify the
formulation of the recursive relations it turns out to be useful to consider a twisted version
of the modified parametrization (2.146) by taking into account the action of the part Hp of
the Cartan generators (2.159). Thus we consider the following change of the variables:

Y11 = 6—225,169611-1—211’ Yip = e 2% <ezk71,1+xk,1 + ezk,1+~’vk,1>’

— pRlk—1"Rk pTk+r—1,k—Rk+r—2,k—1
Ykor—1 =€ € ;

Yror = ezl,k—l_Ze,kel'kJrr-—l,k_ZkJrr-—l,k—l’ r=1,... ’g +1— k.

Here k =2,..., /(.

Lemma 3.10 1. In a modified factorized parametrization recursive relations (3.53) are

given by
A;g Ch e(ak Zn_1) AL\ Cn-1
—_ Kk — eznfl,k_xn,k: _'_ ezn,k_xn,k: _'_ <_k) , 1 < k <n< 67
<Ak) €<ak 7§7L> Ak -

with the solution

¢

A%(U))Cﬂ _ _ —
= FkkTThk | <6zn71,k Tk | pPn.k xn,k>’ k=1,...,¢, (3‘54)
o 2

where 2, = (Zn1,...,2n0) and we define: (o, 2,) = Znkt1 — Znks (Vs Zn_1) =
Zn—1,k+1 — Zn—1,k-

2. The following expressions for Ag(v) in terms of variables xy ;, zy; hold:

(i;g;)c — e, (3.55)

Ap(v) \Or k k k-1
= =e k (ezk'l + 62’“*1'1) exp { =) Zhitap1t2) wp;— Zk—l,i}a
(zew) 2 22

where k =2,...,0 and Ay =1 is assumed.

Now substitute (3.54)),(3.55) into (Z.17), ([Z.18) we obtain the left /right Whittaker vectors
in a twisted parametrization (3.54]). Taking {2, = 0} we recover the formulas for Whittaker
vectors given in Lemma 2.8 To prove the Theorem 2.10] one remains to take into account
the measure dyuy, in the modified factorized parametrization. This completes the proofs of
the Theorem 210
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3.3.4 Expressions for soy-matrix elements:
Proofs of Theorem [2.72] and Theorem [2.14]

In this subsection we introduce expressions for matrix elements relevant for the construction
of integral representations of s0,,-Whittaker functions using the factorized parametrization
of an open part of N, C SO(2¢). This provides a proof of the integral representations of
5090- Whittaker functions presented in Part I.

We are using the root data given by (2.188). Reduced decomposition wy = s;, i, - - 8, of
the maximal length element wy € W corresponding to a reduced word Iy = (iy, ..., im,) With
mg = L(¢ — 1) provides a total ordering of positive co-roots by RY = {yx = si, - -~ 55, , 04}
of sp,,. We consider a decomposition of wy described by the following reduced word

I, = (12,3123,...,(¢...3123...0)).

Corresponding ordering of positive coroots is given by:

VvV \Y \Y \Y
V3 = Qi +ay +ag,

VoV VoV v
/71_0{17 74—0[24‘0(3’ (356)
VoV V—aV 4V .
Vo = Ay, V5 = Qg T O3,

VoV

Y6 = O3,

%HH =aof +ay +2(ay +...+ ) )+,
Yopya2 =0 g +2(af + ...+ af ) o +af,

v AV AV AV v
VYme_q4e—2 = 01 T O3 +ag +...+ oy,

m = peo10y + peay + oY + ..+ o
7m271+5_1 = Pr—104 DPeCy 3 Ce 0
v = v % % v
fym€,1+é - ngél +p£+1042 + Olg + . + O[é s
\Y _ vV \Vi
Vime_y+041 = O3 F - T ag,

v _ LV
Vmg_aé'

Recursive parametrization of an open part NJ(FO) of N, corresponding to a reduced word I,

is as follows. Given vP € NJ(FO) we have
VP (y) = Xa(y)Xa(y) - - - Xely) (3.57)
where
Xk(y) = XeWramgp-1) * - X3 W2inp5-1) X1 W10 ) X2 (Y1,000) X3 W2imis) < - - - XU )

and Xy = X (y11)X2(y21). Here we adopt the following notations. Let |I;| = m, be the length
of wg. For the root system of type D, one has m; = {(¢ — 1). Then for any k € {1,...,¢}
consider a subword

Ik = (Zl,,Zk) CIg: (’il,...,’ik, ’ik+1,...,’i5),
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with |[Ix|] = my = k(k — 1). Let Dy be a corresponding root subsystem in R, and
vPr = X5 --- X}, be a factorized parametrization of the corresponding subgroup. Factoriza-
tion parameters for v (y) can be naturally enumerated as {y; ,} with 1 <i <k, 1 <n < ny,
and

nm:nk,g:k—l, nk7lz2(k$+1—z), 2<Z§€ (358)

We also denote n; = ng,.

We are interested in explicit expressions for the following matrix elements in terms of
factorization parameters {y;,}

Ai(v) = (& Imi(vug ) [65),  Al(v) = (& Imi(veag ') 1€5),

where 7; = 7, is a fundamental representation with the highest weight w;, £ and & are
the highest and lowest weight vectors in the representation m; such that ({7 |7 ) = 1. Note
that for Lie algebra so0y, the we have ¢ — ¢* for the involution defined by (3.5]). The proof of
the following statement is obtained by an iterative evaluation of the matrix elements taking
into account Serre relations and defining ideals of the fundamental representations and using

the technique of [BZ].
Lemma 3.11 The following recursive relations hold.

)4
M) = (W) @) T seme) M),

k=3

l
AZ (U)De = ( (yl,nl )pl (y2,n2 )pl+1 H yk,nk—1> AZ (U)De_lv

k=3

i )4
Ai(U)DZ = (yl,n1y2,n2 Hyk,nk—lykmk H yz,nk—l)Ai(U>DZ7l7 2<i< 67

k=3 k=i+1
(A_/l)D” _ 1 (1_|_ Y3,2(2r—2) )_I_y2,2r—1 Y3,2(2r—2) (A_/l)DZTl’
AN Y1,2r—1 Y3,2(2r—2)—1 Y1,2r—1 Y3,2(2r—2)—1 AN
A"\ D2ry1 1 .- ” . A’ \ Dar
(_1> _ <1+ Y3,2(2r—1) >+y1,2 Y3,2(2r—1) (_1> 7 (3'59)
AN Yi,2r Y3 2(2r—1)—1 Y2,2r Y3,2(2r—1)—1 AN
<A_/2)D2* _ 1 <1+ Y3,4(r—1) >+y1,2r—1 Y3,4(r—1) <A_/2)D2T1
Ay Y1,2r—1 Y3,4(r—1)—-1 Y1,2r—1 Y3,4(r—1)—1 Ay 7
5\ D2r 1 r— r r— AYN Der
(_2) 2r+1 _ <1+ Y3,2(2r—1) )+y2’2 Y3,2(2r—1) (_2) 2.
Ay Y1,2r—1 Y3,2(2r—1)—1 Y1,2r Y3,2(2r—1)—-1 Ay
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The matrix elements can be evaluated by resolving recursion equations and the results
of calculation are presented in the following lemma.

Lemma 3.12 Let v be defined by (3.57). The following expressions of matriz elements of v
in terms of the variables y; j, hold:

/2 =8 £ n
Ay(v) = H Y1,2n—-1 H Y2,2n H Yi2(n+1-i)—15
n=1 n=1 n=3 i=3
/2 =8 £ n
Ay(v) = H Y2,2n—1 H Y1,2n H Yi2(n+1—i)—1, (3.60)
n=1 n=1 n=3 i=3

¢ n/2

k  n;
Ag(v) = H Hyzn H H yz’2,2n—1’

i=1 n=1 i=k+1 n=1

whereny =ng =0 —1andny =2(+1—k), 2 < k < /.

S Ry 1 (e e I

Yie—1 5 \Y1e—k-1 Y2,0—k—1

1 ﬁ( Y10k )pk< Y20k )pk+1}(1+ Y3,2(0-n-1) )i‘[ Y3,2(6-k-1)

Y201 iy Y10—k—1 Y2,0—k—1 Y3 2(6—n—1)—1 i} Y3 2(0—k—-1)—1

where ps = (14 (—1)%)/2.

(Az(v)f( _ (3.62)

a YE,2(04+1—K) ’

fork=3,... L.

Now consider an integral representation for so,,-Whittaker function in a modified factor-
ized parametrization (2Z216). We start with an analog of the recursive relations (8.59) for
the matrix elements in the modified factorized parametrization. To simplify the formulation
of the recursive relations it turns out to be useful to consider a twisted version of the modi-
fied parametrization (Z2I6) by taking into account the action of the part Hy of the Cartan
generators (Z230). Thus we consider the following change of the variables:

y17n — 61:2’1_:0['2 <6zn,1_1'n,1 + eZn,l_ZUn+1,1)’ n = 1’ L E _ 1’

Yo = € "o <ezml+x”’1 + ez”’”x"“’l), n=1,...0-1, (3.63)

_ Lo k—1"2lk pRk+r—2,k—1 " Lk4+r—2,k—1
Yk2r—1 = € € )

_ Lo k—1"2lk pRk+r—2,k—1 " Lk4+r—1,k—1
Yeor = € € )

fork=3,....0andr=1,... {+1—k.

88



Lemma 3.13 The following recursive relations in the variables defined by (3.63) hold.

1.
A\ Da AN Dn
(B s (@) s o
e®n—1(c1) A/l Dp_1  etn-1(a2) A/2 Dn_1
exn(al) <A_1) 61"”(062) <A_2) n:2r_1
2.
A\ Dn AN Dn
ern—1(az2) A’l Dy 1 eTn—1(a1) Alz Dp—1
exn(az) <A_1> eZn(a1) <A_2) n=2r.

Resolving recursive equations one can easily obtains the following result.

Lemma 3.14 Given an unipotent element v € N, the following expressions for the matriz
elements of v in a modified parametrization hold:

—_

/ ! n—
ﬁ ﬁ — Zk,k—Tk,k—1 Zk,k—Tk+1,k
+ e +e ,
A Ay p
/
ﬂ — 6zn71,n+17k_xn,n+17k’ k — 3’ . ’n’
Ay,
& = e 1t
Y
Ay
A1 Ay _ 2
A = e "2 exp{ — (w91 + x92) + 2211 — :Bll} (ex“ + 6“1) , (3.66)
3
k
Ak —Xy .k
= € "“fexpy — Tpi +
Ay Zi:l

k—1 k—1 9
+2 E Zk—1,i — E xk—l,i} (69%71’1 + €mk’1> s k= 3, Lo,
i=1 i=1

and A, =1 is assumed.

Now substitute (3.66]) into (Z.17), (2.I8)) we obtain Whittaker vectors in a parametrization
B.63 Taking {x,, = 0} we recover the expressions for Whittaker vectors given in Lemma
210, To prove the Theorem 2.14] one remains to take into account the measure duy, in the
modified factorized parametrization. This completes the proofs of the Theorem 2141
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3.4 Realization of U(g) by differential operators

In this part we prove formulae for realization of classical Lie algebra generators by differ-
ential operators acting in the space of (twisted) functions on N, supplied with the factor-
ize parametrization. The analogous formulae for realization of Lie algebra generators in
the modified factorized parametrization (Gauss-Givental representation) can be straightfor-
wardly obtained by a simple change of the variables discussed in Part I and will not be
considered in this section.

Let us outline the general strategy for the derivation of the realization of Lie algebra by
differential operators used below. Let V, be a space of equivariant functions on B_\G

f(bg) = x,(0) f(9), be B, (3.67)

where x, is a character of the Borel subgroup B_ C G. Principle series representation of
U(g) in V,, is defined as

(XF)(v) = %f(veex)k_@, X eg. (3.68)

Let I = (i1,...,%y,) be a reduced word corresponding to the reduced decomposition wy =
Siy - -+ 8;,, of the longest Weyl group element wy. For classical Lie algebras one can chose
I having recursive structure with respect to the rank ¢ of the Lie algebra. Consider corre-
sponding recursive factorized parametrization of unipotent elements of a classical Lie group

G, g = Lie(G):

v =% %l =0 %

(3.69)

We will derive explicit formulae defining representations of ¢(g) in V), in two steps. At the
first step we use recursive structure (B8.69) to construct recursive relations between classical
Lie algebra generators for Lie algebras of adjacent ranks. At the second step we resolve
recursion relations to get explicit formulae for Lie generators of all classical Lie algebra.

We start with a list of relevant relations between one-parameter subgroups in G (see e.g.
[Lul, [BZ]). Let e;, h;, f; be a Chevalley basis of g, and let A = ||a;;|| be the Cartan matrix.
Let us introduce one-parameter subgroups:

Xi(y)=e",  of(y) =€,  Yi(y) = e (3.70)

Then the following relations hold:

Xi(y)a)(14¢) = of (1 +e)Xi(y — ajiey) mod(e?), (3.71)
Xi(y)Yi(e) = Yi(e)ay (1 +ey) Xi(y — ey?)  mod(e?). (3.72)

For a;; = a;; = —1 we have
Xi(y) X, () Xi(e) = X, <5%) X; <y1 + 5) X, (y2 - g%) mod(s?). (3.73)
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For a;; = —2 and aj = —1 we have

Xi(y1) Xi(y2) X;(ys) Xi(e) = (3.74)
— x. () . ) x. B x (e — 0228 2
= ,<5yl>X] <y1+25y2)XZ<y2+5 5y1>X](y3 25y2> mod(e”).
For aj; = —2 and a;; = —1 we have
Xi(y1) Xi(y2) X;(ys) Xi(e) = (3.75)

2

2 2 .92 2
=X; <€y_32,> X; (yl AP TYS i y?’) X (yg +eh yg) X; (y BT il yg) mod(g?).
hn Y

Y1Yy2 3 Y1Yo2

The derivation of the recursive relation for the generators of Lie algebra is as follows. Con-
sider the right action of one-parameter subgroups (B.70) on the recursive factorized repre-
sentation (B.69) of an element v C N,. One uses the relations B.71)-(B.75) to move the
generators one step to the left. For example, in the case of the one-parameter subgroup
generated by e; we have:

v Xi(e) = oV X (y) Xi(e) =) Xilcily)e) Ximi (v (y)) mod(€?).  (3.76)

This leads to recursive relations expressing generators of rank ¢ classical Lie algebra in
terms of the generators of rank (¢ — 1) classical Lie algebra and the differential operators
over y; , parametrizing Xj_,. At the final step of the reduction we use (3.67)). In the following
subsections we provide recursive relations and resolved formulae for generators of all classical
Lie algebras without further comments.

3.4.1 Generators of gl,, ;: Proof of Proposition

Let El(l;ill) ,E}ﬁﬂ) ,El(ﬁll) be Chevalley generators of gl,, ;. Below we present recursive rela-
tions and resolved expressions for these generators.

Recursive relations are given by:

0 Yi—1,042—i [ 0
Ei(f-“):( p Ut (g0 C )
o OYip41-i Yif+1—i b OYi—1,0+2—i

0 o _
EZ-(ﬁ‘f‘l) = (,ul(f—i-l) _ M@(f) + EZ(,? + Vit i — yi,Z—i—l—ii), i# 0+ 1,
OYi—1,0+2-i OYii1—i
l+1 (+1
Ezg-:i,é)ﬂ = (,Ué++1 ) + Yo ) (3.77)

Oy

)
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041 ¢ ¢ ¢
Ez‘(ﬂ,z‘) = (Ez(+)1@ + Yioy1—i (Ez(z) - Ez'(+)1,z'+1) -

Yy (y 0 +y 0 ))
—Yi+1—i ill—iy i+l =iy .
i i OYi 41— " OYit1,0—i

Resolving the recursion we obtain:

i—1 k k
PG Z H Yis,042—i 0 YT Yis(srn) a2 0
”H et L Yirtos =i Wimkpri—i g Yimstioi OYim(ha)eba—i
" (@ l+1—1 0+2—1 a
B =yt i . , 3.78
1,0 Z Yi l 1221: Yy 17layi_1,l ( )
¢
[GRY (t+1) z+1) 0 0 )
By M Vi k1 yi,k+1—i<yi,k+1—i7 — Yit1h—im— |+
i ; { ! OYi o1 Y1 Jo—i
k-1
0 0 0
+ Yik+1-i (%—1,%247 —2Wisr1img—— + yi+1,s—i7> .
; OYi—1,5+2—i i 541~ OYiy1,5-i

This completes the proof of Proposition

3.4.2 Generators of s05,1: Proof of Proposition [2.4]

Let e@({) , hy) , fi(e) be Chevalley generators of s09,,1. Below we present recursive relations and
resolved expressions for these generators.

Recursive relations are given by:

0 _ _ 0 _ 0 0
0 _ L _Yeae-y legz n ] L g Y220 < B )’

e Yo22(0-1)—1 N, Y10 Oya200-1)—=1  OY2.2(0—1)
ez(f) _ 0 n Yk,2(041—k)—1  Yk+1,2(6—F) {6(4—1) B 9 ] I
ayk,2(é+1—k) Yk 2(64+1-k) Yk+1,2(6—k)—1 ayk,Z(Z-ﬁ-l—k)—
_ 0 0
L Yer120-h ( B ) ’ l<k<rt
Uk20t+1-k) \OYkt1200-k)—1  OYkt1.2(0—k)
o) (¢—1) (¢—1) 0 , 0
£ = — y1ch + 2y10y e Vg 3.79
! ! He bR 8y2 2(0-1)— uﬁyl,z ( )

) = fz(é_l) - <y2,2(z -1 T Y2.200— 1)>h(é R
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0
+ ( 200=1)—1 T Y2.200— ) S E— —i— 2
Y2,2(0-1)—-1 T Y2,2(¢-1) ) Y3,2(¢—2)— 8y3” N Y2,2(0— 1y1£8 m
A0 Y2,2(-1)-1 PACDIA) ayz 2(6-1)— 2’2(4_1)6?/2,2(5—1) ’

= fé“’ — (yk,2(£+1—k)—1 +yk,2(z+1_k))h,(f_l)+

0

+ (yk,z(é+1—k>—1 +ykv2<4+1—’f)>y’““ A s a1
+

+

9 0
TYk 20641k (yk +2—k)— +yk_’ fra—k —) N
2(t+1-k) e G a(erak) O Oy e

0

ayk,2(é+l—k)—1

5 0
FYko+1-y 7 |-

ik ayk,2(£+1—k)

- (yi,z(ul—k)— + 2Uk 2004 1— k)~ 1Yk, 2(64+1—k) +

! 8yk,2(€+1—k)—1

We have for h;:

l n;
y 0
h]g) = <,U(Z) ; a\k/> + Z 47°% Z yi,jwa (380)
i=1 ]:1 2,]

where ny =0, np =2(( +1—k) for 1 <k < /.

Resolving the recursion one obtains:

-1
Y2,2i
+
aylé — <ay1n Oy n+l) H W Y2,2i-1
+2< 0 _ 0 )y22(n 1) H Y2,2i
ayzzn—l a?/2,2n Y 2000 Y2.2i- .
o0 = D ) SIS (3381
8yk2£+1 B = \OWkan  Okani1) P Ykrr2ic1 Ykagi+n)
+< 0 . 0 ) Yk+1,2n H Yk+1,2i Yk,2(i+1)-1
Orsran—1 kw120 ) Yk2(n1) o) Ykal2ie1 Yk2(+1)
0 _ 0
e, = , 3.82
14 8yg,2 ( )
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2(n—1)— n—1

¢
0 0

— E (1, o) 2 —2 E Y1 - "—>’ 383

2 Y1, <<,u 1 Z y2,]a p Yi,5 aij Y1, ayl,n ( )

[n/2]+1

Z yzn(u,az +2 Z Yig— Zyz,ja

2(n+1)/2]—3

0 0
+ Y3 — — Y2 )
j; M0y " Oy
2(0+1—k) 2[n/2)+1
‘

f,g) = Z ykn<<uaak + Z I 1’38k Zyk’] '
n=1 - *
2[(n+1)/2]-3

) 0
+ Yk 7'7_yk,n—>, 2<k5<€,
; o OYrt1,5 Y
(0) 7 0 L
= + I + - + N +
fe (Y1 + Ye2) ((u o)+ ye 1’18y£—1,1 v 1’2896—1,2)

+y (y 0 +y 0 ) (y 0 +2y y 0 + i 9 )
02 | Yo, -1, 0,19, .
? b 3y£—1,3 ! 43%—1,4 SOy Oyq R Oye 1 62 8y£,2

)

This completes the proof of Proposition [2.4]

3.4.3 Generators of sp,,: Proof of Proposition [2.8

Let e ® h(z f-(g) be Chevalley generators of sp,,. Below we present recursive relations and
resolved expressions for these generators.

Recursive relations are given by:

0 1) 2| (- 0
eg@) _ 4 ( Y2,2(0-1) ) lege 1) _ ] 4

6’yu Y2,2(¢-1)—1 ayl,Z
+y2,2(5—1)—1y272(4—1) +y§72(g_1) ( 0 0 )
Y1,6Y2,2(0-1) ay2,2(e—1)—1 8?J2,2(z—1)
0 —k)— _ _ 0
e,(f) _ 4 Yk 20041-Kk) =1 Yk+1,2(0—k) [e(e 1) } X
ayk,2(é+1—k) Yk 2(64+1-k) Yk+1,2(6—k)—1 ayk,z(é+1—k)—1
_ 0 0
+yk+1,2(é k) ( _ ) ’ l<k<d,
Uk 2t+1-k) \OYk+1,20-k) =1 OYkt1,2(0—k)

94



0 _ 0

3.84
ez 8y5’2 ) ( )

) , 0

(6-1)
—f —yuh +y1£yzzz - 7—]; e
! ( 8y2 2(6—1)— l’gﬁyl,z

B 0
£ = gm0 (yz,z(e -1+ Y220~ 1))h( Y 4 2y, 2(0-1)-1Y1, Oy, . +
Y1

+<y2,2(5—1)—1 +y2,2(z_1))y3 2(6-2)- ﬁ (ygze 1) 1ﬁ+
+ 2y2.2(6-1)-1Y2,2(¢-1)— % + 3 2(@—1)L) ,
Y2,2(¢—1) ’ 0y2,2(0-1)
f,ig’ - ,ﬁ“) - (yk,2(€+1—k)—l +yk,2(e+1—k)>h;(f_1) +
+(yk,2(é+l—k)—1 + yk,2(é+l—k))yk+1 2(0—k)— 8# +
Yk+1,2(0—F)
+Yk2(6+1—k) (yk 1,2(6+2—k)— 0 + yk—1,2(z+2_k)L) —
Y1202 k) OYr—1,2(6+2—k)
5 0
- (yk,2(£+1—k)—1ayk72(£+1_k)_1 + 2yk,2(e+1—k)_1yk,2(z+1_k)m+

0
2
+ yk,2(£+1—k)M> ’ 2<k <t
o 0
(Z) = (Ye1 + Yo2) (‘(Ma a/)+ y£—1,18w o + Ye-1,2 e 2) +

N ( o 0 ) ( 9 s 0 ., 0 )
Ye2 | Ye—1, Yo, Yy Ye1Ye, Yoorq— | -
? b3 OYo—13 ' 48%—1,4 SOy, 2 0y, T 0Ye,2

)

For the Cartan generators h; we have:

14 n;
. 0
b =) + ) ang Zyi,jﬁ, (3.85)
i=1 j=1 b

where ny = ¢ and ny =2(0+1—k) for 1 <k <.

Resolving the recursion we obtain:

¢ 9 9 -1 Yoaj \2
el:;(&%,n ayln-i-l)l;[( 'jl) -

(-1 9 y y ¢ Yoo \2
I ( ) 2,2n <1+ 2,2n ) H ( 2,2j ) ’
1 Y2,2n-1 ay2,2n Yin Ya2n-17 2 Y2,2j-1

n
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{+1-k P P y Yk.o( .
k41,25 2(j+1
er = E — | | —|—
’ (3%,% ) Pl

=1 Yk 2n+1  Yk4+1,25-1 Yk2(j+1)

\’\

—k

_l_

n=1

(8yk+1 on1 OYkrion) U, 2(n—1) = Yk+12j-1 Yh2(j+1)

2(n—1)—

Z?ﬂn( ,U,Oél Z y2,ja Zyl,ja —UYinyg — 0

ayl n

2(¢-1) /241 -1

0 0
fo= yz,n(<u,av> +2 Yjm———2) Yo j— +
nZ:; ’ ; Oy ; gy
2[(n+1)/2]-3 P 9
PSS - )
; ! 0ys,5 Y2,n

2(£4+1—k) 2[n/2]+1

n—1
Je = Z ykn<</~b,04k ) +2 Z Yk— 1,;8%&_1].—22%48&
, p

n=1

2[(n+1)/2]—3 9 9
n 7 n—) 2< k<l
; Ykt OYk+1, - OYk.n

This completes the proof of Proposition 2.8

3.4.4 Generators of soy: Proof of Proposition [2.12]

0 ) Yk+1,2n H Yk+1,25 Yk2(j+1)-1 1<k</(

(3.86)

Let e h(e , fi(é) be Chevalley generators of soy,. Below we present recursive relations and

resolved expressions for these generators.

Recursive relations are given by:

0 _ _ _ 0 _ 0 0
655) _ X Y2,0—-1 Y3,2(0-2) (ege ) >+ Y3,2(¢ 2)( B
8y1,z—1 Y1,0-1 Y32(6-2)-1 8y2,e—1 Yi,0-1 8yy3’2(l,2),1 8yy372(572)
0 _ _ _ 0 _ 0 0
eg@) _ i Y1,0—1 Y3,2(0-2) (ég 1y >+ Y3,2(¢ 2)( B
Oae—1 Y201 Y3,2(4—2)—1 Oy1,0-1 Ya—1 \O Yys 200-2)-1 d Yysz 2002
0 —k)— _ _ 0
e](f) _ 4 Yk 2(04+1-k)—1  Yk+1,2(6—k) <e(z ) )+ (3.87)
OYr2(041-k) Yk 2(+1—k) Yh+1,2(0—k)—1 O, 2(0+1—k)—
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| Yrr120k) ( 9 _ 0 )7 2<k<{,

Yk,2(6+1—k) 8yyk,2(2+1—k)—1 ayyk,2(2+1—k)
0
€r = ; 3.88
aym ( )
0 (t—1) 0
I e (W papag———). =12,
= 18 Yir—1 ! S22 8932(5 2)—
_ 0 0
£O = pleon) (yz L Iy >+
3 3 3,2(6—2) 18y372(z_2)_1 3,2(0-2) Bysate—)
B 0
+(Y3,200-2)-1 + Y3,2(02)) + Ya,2(6-3)— 15 +
Y4,2(0-3)—
0 0
+Y3,2(0-2) <y1,z—1 Do + Yo 1 G ),
(0) _ =) ( 2 0 2 9 )
= — (Yasipy1 s + Yhopi g ) T
g g R2(HE) 1ayk,2(£+1—k)—1 ha(t+l k)ayk,2(£+1—k)
(¢-1) 9
F(Yr20041-k)—1 + Yn2@r1-1) (P F Yrr1,20—k)— R +
Yk+1,2(0—k)
0 0
+ Yk2(0+1—k) (yk 1,2(6+2—k)— + yk—l,2(€+2—k)—>a 3<k<UL
a?/k 1,2(042—k)— ayk—l,2(£+2—k)
For Cartan generators we have:
é ng a
MO = (o) Y @ik D i (3.89)
el ALY
where ng =ng =0 —1,n, =2 +1—k) for 2 < k < (.
Resolving the recursion we obtain:
[¢/2] 2n—
0_ 0 ( 0 ) (yu k)( D Y3 2(0-1-k)
e R
! 8y1z 1 nz OY2,0—n—1 ayu n 1:[ Y20k Y3,2(0—1—k)—1
[¢/2] 2(n—1) &
0 0 e\ (D 1
> ( _ ) T (L) taern
2 8?Jl,z—n—l 8y1,z—n o1 Y20k Y3,2(6—1—k)—1
ZT {—2n—1 k
Z ( _ 0 )?/3,2(2n—1) yl,é—k)(_l) Y3,2(6—1—k) n
— ys 2(2n—1)—1 8?J3,2(2n—1) Y1,2n Bl Yo2,0—k Y3 2(0—1—k)—1

{—2(n+1)

[£=2]
i:( 0 ) Y3,4n H (?/1,@—k>(_1)k Y3,2(0—1—k)
“— \OY3an—1 ’

ay3,4n Y22n+1 Y2,0—k Y3,2(0-1—k)—1
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2(n—

D) [¢/2] 9 k L
eg@) ;(aw ) H (yzz k) D% y3200-1-k) n (3.90)

02,01 —n—1 ayze n/ L Yk Y3,2(0—1—k)—1

[¢/2] 9 9 2n—1

y2,é—k)(_1)k Y3,2(0~1—k)
S VI (1) tan

L—n—1 ayu—n o1 YLk Y3,2(6—1—k)—1

£—2(n+1)

=
22:( d ) Y3,4n H (yu—k)(‘l)k Y3,2(—1—k) n
1 OY3,4n-1

a?/3,4n A Y1,0—k Y3,2(6—1—k)—1

(454

0 0 n— 2 (=1)* -
i Z ( _ >y3,2(2 1) H (yzz k)  Y3.2(0-1—k) ’
n=1

ay3,2(2n—1)—1 ay3,2(2n—1) Y1,2n i} Y1,0—k Y3,2(0—1—k)—1

—k 5 (+1—n—Fk)
o0 — 4 ( H Yk,2(i41)—1 n Yk+1,2i n
b 5.% 2oe+1-k) = \OYkon ko S k20D Yk+12i-1
—k 9 t+1-n—k) ‘ '
I ( ) Yk+1,2n H Yk2(i+1)—1 Yk+1,2 ’ 2< k<l
— ayk+1 1 OYkiron/ Ukainst) 15 Uk2(ktD) Ykblil
-1 -1 P
¢
n=1 n=1 Yin k=n+1 Yin
2(6—2)— 5
+ Z Z Yi,kYs, n ) i = ]'> 2’
=[n/2]+2 Y3,n
2(6—2)
o)
( —(p, ag) Zy3n_ Z <y3"8 +2 Z YskYan g — >+
n=1 ,n
-1 2(6-2) 5 2(6—3)— 5
+Z Z y3k(yzn +y2n ] )‘I' Z Z y3ky4na )
n=1 k=2(n—1) n=1  k=2[n/2]+3 Yan
2(6+1—k) 2(0+1—k) 8 2(64+1—Fk) 8
¢
n=1 i=n+1 L
42—k 2(0+1—F) 9
+ ykz(yk n— +yk— , n7)+
Z Z b2 18 k12n1 128 k—1,2n

=1 i=2(n—1)
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2(b—k)—

+ Z Z Yk,iYk+1,n

n=1 i=2[n/2]+3

, 3< k<UL
ak-l—ln

This completes the proof of Proposition 2.12]
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