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THREE EMBEDDINGS OF THE KLEIN SIMPLE GROUP

INTO THE CREMONA GROUP OF RANK THREE

IVAN CHELTSOV AND CONSTANTIN SHRAMOV

Abstract. We study the action of the Klein simple group PSL2(F7) consisting
of 168 elements on two rational threefolds: the three-dimensional projective space
and a smooth Fano threefold X of anticanonical degree 22 and index 1. We show
that the Cremona group of rank three has at least three non-conjugate subgroups
isomorphic to PSL2(F7). As a by-product, we prove that X admits a Kähler–
Einstein metric, and we construct a smooth polarized K3 surface of degree 22
with an action of the group PSL2(F7).

Unless explicitly stated otherwise, varieties are assumed to be projective, nor-
mal and complex.

1. Introduction

The Cremona group of rank n, usually denoted by Crn(C), is the group of bi-
rational automorphisms of the complex projective space Pn. It is well-known that
Cr1(C) = Aut(P1) ∼= PGL2(C). For n > 2, the structure of the group Crn(C) is
much more complicated than of its subgroup Aut(Pn). So one possible way to study
the Cremona groups of high rank is by analyzing their finite subgroups.

Finite subgroups in Cr1(C) ∼= PGL2(C) are cyclic, Z2×Z2, dihedral, A4, and A5.
Two finite subgroups in Cr1(C) are conjugate if and only if they are isomorphic.
Finite subgroups in Cr2(C) have been almost completely classified in [12]. This is
an important and still active research direction originating in the works of Kantor,
Bertini, and Wiman.

Example 1.1 ([5, Theorem B.2]). Let G be a finite simple non-abelian subgroup.
Then Cr2(C) has a subgroup isomorphic to G if and only if G is one of the following
groups: A5, PSL2(F7) or A6. The group Cr2(C) has exactly 3, 2 and 1 non-conjugate
subgroups isomorphic to A5, PSL2(F7) and A6, respectively.

Much less is known about finite subgroups in Cr3(C). In fact, they were so poorly
understood until recently that Serre asked the following

Question 1.2 ([38, Question 6.0]). Does there exist a finite group which is not
embeddable in Cr3(C)?

Inspired by Question 1.2 and using methods of modern three-dimensional bira-
tional geometry, Prokhorov proved the following

Theorem 1.3 ([35, Theorem 1.3]). Suppose that G is a finite simple non-abelian
subgroup. Then Cr3(C) has a subgroup isomorphic to G if and only if G is one of
the following groups: A5, PSL2(F7), A6, A7, PSL2(F8) or PSU4(F2).
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The technique introduced in [35] allows one to handle finite subgroups in Cr3(C)
in a similar way to ones in Cr2(C). Moreover, the proof of Theorem 1.3 gives us
much more than just a classification. For instance, one can easily use this proof to
obtain the following

Theorem 1.4 ([8, Corollary 1.23], [1]). Up to conjugation the group Cr3(C) contains
exactly one subgroup isomorphic to PSL2(F8), exactly one subgroup isomorphic
to A7 and exactly two subgroups isomorphic to PSU4(F2).

Unfortunately, the proof of Theorem 1.3 can not be applied to study the con-
jugacy classes in Cr3(C) of the subgroups A5, PSL2(F7), and A6, mostly because
these subgroups are rather small and Cr3(C) contains many non-conjugate embed-
dings of these groups. For example, nothing is known so far about the number of
non-conjugate subgroups in Cr3(C) that are isomorphic to the group A5. As for
the group A6, we have the following

Theorem 1.5 ([8]). The group Cr3(C) has at least 5 non-conjugate subgroups
isomorphic to A6.

The main purpose of this paper is to prove the following

Theorem 1.6. The group Cr3(C) has at least 3 non-conjugate subgroups isomorphic
to PSL2(F7).

From now on we denote the group PSL2(F7) by G. Any embedding G →֒ Cr3(C)
arises from some rational threefold X admitting a faithful action of the group G (for
details see [12], [35]), and the first examples of such embeddings come from represen-
tation theory. Moreover, the normalizer of the groups G in Cr3(C) is isomorphic to
the normalizer of the group G in Bir(X). The latter group coincides with the group
of G-equivariant birational self-maps of X, which we denote by BirG(X). Note that
the group of G-equivariant biregular self-maps of X coincides with the normalizer
of G in Aut(X), which we denote by AutG(X).

Example 1.7. Up to conjugation, the group Aut(P3) has two subgroups isomorphic
to PSL2(F7). The first subgroup (we will call it a subgroup of type (I)) arises from
a faithful reducible four-dimensional representation of the group PSL2(F7), which
splits as a sum of an irreducible three-dimensional representation and a trivial one.
The second subgroup (we will call it a subgroup of type (II)) arises from a faithful
irreducible four-dimensional representation of the group SL2(F7) (see [9]). Note that
the subgroup of type (I) fixes a point in P3, while the subgroup of type (II) does
not fix any point in P3.

The next example of an embedding G →֒ Cr3(C) comes from the celebrated Klein
quartic curve — the unique genus 3 curve with an action of the group PSL2(F7)
(see [24]).

Example 1.8 ([26], [18], [28], [27]). Let C be the quartic curve in P2 that is given
by

xy3 + yz3 + zx3 = 0 ⊂ P2 ∼= Proj
(

C
[

x, y, z
]

)

,

put X = VSP(C, 6) (see Definition A.3). Then X is a rational smooth Fano three-
fold such that

Aut
(

X
) ∼= Aut

(

C
) ∼= PSL2(F7),

the group Pic(X) is generated by −KX , and −K3
X = 22 (see Section 4, Appendix A

and [19]). One can show that X is a compactification of the moduli space of (1, 7)-
polarized abelian surfaces (see [26], [18] and [28] for details).
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In Sections 5 and 6, we prove the following

Theorem 1.9. Let G be a subgroup in Aut(P3) such that G ∼= PSL2(F7) is of
type (II) in the notation of Example 1.7. Then the variety P3 is G-birationally
rigid (see [8, Definition 1.9]), and there is a G-equivariant birational non-biregular
involution τ ∈ Cr3(C) such that

BirG
(

P3
)

=
〈

G, τ
〉 ∼= PSL2

(

F7

)

× Z2.

Theorem 1.10. Let X be the threefold constructed in Example 1.8. Moreover,
BirG(X) = AutG(X) = G ∼= PSL2(F7) and the threefold X is G-birationally super-
rigid (see [8, Definition 1.10]).

It should be pointed out that Theorems 1.10 and 1.9 imply Theorem 1.6. More-
over, Theorem 1.10 also implies the following

Corollary 1.11. Let G and G′ be subgroups in Aut(P3) such that G ∼= G′ ∼=
PSL2(F7). Then G and G′ are conjugate in Cr3(C) if and only if G and G′ are
conjugate in Aut(P3).

As a by-product of the proof of Theorem 1.10, in Section 6 we prove the following

Theorem 1.12. Let X be a threefold constructed in Example 1.8, and let R be an
effective G-invariant Q-divisor such that R ∼Q −KX . Then the pair (X,R) is log
canonical.

Applying [40, Theorem 2.1], [6, Theorem A.3] and Theorem 1.12, we immediately
obtain the following

Corollary 1.13. Let X be a threefold constructed in Example 1.8. Then X has a
G-invariant Kähler–Einstein metric.

Note that the threefold constructed in Example 1.8 admits both Kähler–Einstein
and non-Kähler–Einstein smooth deformations (see [41, Corollary 1.3] and [14,
§5.3]). However, there was only one previously known explicit example of a Kähler–
Einstein threefold in this deformation family, which is the famous Mukai–Umemura
threefold (see [14, Theorem 5.4.3]).

Remark 1.14. Let Ĝ be a subgroup in SL4(C) such that Ĝ ∼= SL2(F7) is of type (II)

in the notation of Example 1.7. Then the quotient singularity C4/Ĝ is weakly-
exceptional (see [33, Definition 4.1]) by [7, Theorem 3.16] and [7, Theorem 4.3],
which implies that an assertion similar to Theorem 1.12 holds for P3. Namely,
let G be a subgroup in Aut(P3) such that G ∼= PSL2(F7) is of type (II) in the
notation of Example 1.7, and let R be an effective G-invariant Q-divisor on P3 such
that R ∼Q −KP3 . Then the pair (P3, R) is log canonical by [7, Theorem 3.16].
In particular, it follows from [4, Theorem 6.4] that one can apply Theorems 1.10
and 1.9 to construct non-conjugate embeddings Gn →֒ Cr3n(C) for n > 2.

As an another by-product of the proof of Theorem 1.10, we give an example
of a smooth K3 surface admitting a faithful action of the group PSL2(F7) (see
Lemma 4.10). This might be a new example (at least we were not able to find it in
the literature).

Remark 1.15. There are other known examples of smooth K3 surfaces that admit
faithful actions of the group PSL2(F7). The Edge quartic surface in P3 (see [15]),
the cyclic cover of degree 4 of the plane branched along the Klein quartic curve C

(see [29]), the double cover of the plane branched over the Hessian H of the curve C
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(see [29]), and the variety of sum of powers VSP(10,H) (see [36]). We do not know
whether or not the surface provided by Lemma 4.10 is isomorphic as a non-polarized
smooth K3 surface to one these smooth K3 surfaces.

Let us sketch the proof of Theorem 1.9 (the proof of Theorem 1.10 is similar and
simpler). Let G be a subgroup in Aut(P3) such that G ∼= PSL2(F7) is of type (II) in
the notation of Example 1.7. Then P3 is not G-birationally superrigid, since there
are non-biregular G-equivariant birational selfmaps of P3. Indeed, it is well-known
that there exists a unique smooth G-invariant curve C6 ⊂ P3 of degree 6 and genus
3 (see [15]). Blowing up the curve C6, and contracting the proper transform of the
surface in P3 spanned by three-secants of the curve C6, we obtain a non-biregular
G-equivariant birational involution τ : P3 99K P3 which is not defined along the curve
C6 (see Lemma 3.8, [11, Remark 6.8]).

To prove that P3 is G-birationally rigid and BirG(P3) = 〈G, τ〉, it is enough to
prove the following statement: for every G-invariant linear system M without fixed
components on P3, either the log pair (P3, λM) has non-canonical singularities, or
the log pair (P3, λ′τ(M)) has non-canonical singularities, where λ and λ′ are positive
rational numbers such that λM ∼Q λ

′τ(M) ∼Q −KP3 . In fact, the latter property

is equivalent to G-birational rigidity of P3 and BirG(P3) = 〈G, τ〉 (see [5]).
Applying τ , we may assume that either multC6

(M) 6 1/λ or
multC6

(τ(M)) 6 1/λ′ (this is usually called “untwisting of maximal singulari-
ties”). Thus, without loss of generality, we may assume that multC6

(M) 6 1/λ,
which simply means that (P3, λM) is canonical in a general point of the curve C6.
Now we have to prove that (P3, λM) has non-canonical singularities. In [8], we
proposed a new approach to prove assertions of the latter type, which we call the
“multiplication by two trick”. Namely, we simply observed that the singularities of
the log pair (P3, 2λM) must be worse than log canonical if the singularities of the
log pair (P3, λM) are worse than canonical (see Lemma 2.8, cf. [8, Corollary 2.3]).
Although the former condition is much weaker than the latter one, we are in a
position to apply the machinery of multiplier ideal sheaves to the log pair (P3, 2λM)
if the singularities (P3, λM) are not canonical.

Using the “multiplication by two trick”, we proved in [8] that P3 is A6-birationally
rigid (recall that there is a unique subgroup in Aut(P3) that is isomorphic to A6

up to conjugation). However, in the present case, we meet two new problems. The
first problem is that sometimes we are just unable to prove that (P3, 2λM) is log
canonical in a general point of some subvariety of P3 even though we believe that this
is true. For example, we do not know how to prove that (P3, 2λM) is log canonical
in a general point of the curve C6 despite the fact that we know that (P3, λM) is
canonical in a general point of the curve C6. The second problem is worse: even if
(P3, λM) is canonical, the log pair (P3, 2λM) may still be not log canonical. One
can easily construct such examples (see Example 3.11). To solve both problems, we
introduce a new technique, which we call localization and isolation of log canonical

centers. Let us describe this technique.
Suppose that the singularities of the log pair (P3, λM) are not canonical. Let us

seek for a contradiction. Take µ < 2λ such that the log pair (P3, µM) is strictly
log canonical (see Section 2), and pick up a minimal center S of log canonical sin-
gularities of (P3, µM) (see [20], [21], [7, Definition 2.8]). The minimality of the
center S implies that the G-orbit of S is either a finite set, or a disjoint union of
irreducible curves. We use Lemma 2.13 to observe that one may assume that every
center of log canonical singularities of the log pair (P3, µM) is g(S) for some g ∈ Ḡ.
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Then applying the Nadel–Shokurov vanishing theorem (see Theorem 2.2, [23, The-
orem 9.4.8]) we obtain an upper bound on the number of irreducible components
of the G-orbit of S with some additional information (for example, if S is a point,
then the points in its G-orbit must impose independent linear conditions on sections
in H0(OP3(4))). If S is a curve, then the Kawamata subadjunction theorem (see
Theorem 2.10, [21, Theorem 1]) implies that S is smooth, and we can proceed with
applying the Nadel–Shokurov vanishing theorem, the Riemann–Roch theorem, the
Castelnuovo bound (see Theorem 2.14, [17, Theorem 6.4]), and the Corti inequality
(see Theorem 2.5, [10, Theorem 3.1]), to prove that S = C6. If S is a point, then
analyzing small G-orbits in P3, we see that the G-orbit of the point S consists of
either 8 or 28 points (see Lemmas 3.2 and 5.12). Note that there is a unique G-orbit
in P3 consisting of 8 points, and there are exactly two G-orbits in P3 consisting of
28 points (see Lemma 3.2). Thus, all potentially dangerous (for the proof of Theo-
rem 1.9) G-invariant subvarieties in P3 are explicitly described. This is localization
of log canonical centers.

Let us denote by Σ the union of the curve C6, the G-orbit consisting of eight
points, and both G-orbits consisting of 28 points. Now we can use brute force to
prove that (P3, λM) is canonical along Σ keeping in mind that multC6(M) 6 1/λ.
Then we conclude that (P3, 2λM) is not log canonical outside of the subset Σ. Thus,
there exists µ′ < 2λ such that (P3, µ′M) is strictly log canonical outside of Σ. Let S′

be a minimal center of log canonical singularities of the log pair (P3, µ′M) that is
not contained in Σ. Note that S′ exists by construction. If S′ is a point, then we
can proceed as before and easily obtain a contradiction with the Nadel–Shokurov
vanishing theorem. Thus, we conclude that S′ is a curve. If S′ and Σ are disjoint,
then we also can proceed as before and obtain a contradiction with the Kawamata
subadjunction theorem, the Nadel–Shokurov vanishing theorem, the Riemann–Roch
theorem, the Castelnuovo bound, the Corti inequality, etc. This is isolation of log

canonical centers.
If S′ is a curve and S′∩Σ 6= ∅, then we have a problem. Indeed, we can not apply

the Kawamata subadjunction theorem to S′, because the log pair (P3, µ′M) may no
longer be log canonical in the points of the finite set S′ ∩Σ if µ′ > µ. Recall that µ
is a rational number such that (P3, µM) is strictly log canonical, i.e. log canonical
and not Kawamata log terminal. To solve this new problem, we have to isolate and
localize new log canonical centers again, i.e. to repeat the previous arguments to
the union of Σ and new potentially dangerous curves in P3. And then there is a
chance that we have to repeat this process again and again. So all together this
looks messy. And the proof of Theorem 1.9 is messy. To simplify it, we describe
all potentially dangerous log canonical centers before the proof, and then we try to
localize and isolate them together at once.

We organize this paper in the following way. In Section 2, we recall several
well-known preliminary results. In Section 3, we collect results about the action
of the group PSL2(F7) on P3. In Section 4, we collect results about the three-
fold constructed in Example 1.8. In Section 5, we prove Theorem 1.9 using results
obtained in Section 3. In Section 6, we prove Theorems 1.10 and 1.12 using re-
sults obtained in Section 4. In Appendix A, we describe Mukai’s construction of
Fano threefolds of degree 22. In Appendix B, we collect elementary results about
the groups PSL2(F7) and SL2(F7). Throughout the paper we use standard notation
for cyclic, dihedral, symmetric and alternating groups. For a group Γ we denote
by 2.Γ a (non-trivial) central extension of Γ by the central subgroup Z2.
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2. Preliminaries

Throughout the paper we use the standard language of the singularities of pairs
(see [22]). By strictly log canonical singularities we mean log canonical singularities
that are not Kawamata log terminal.

Let X be a variety that has at most log terminal singularities, and let BX be
a formal Q-linear combination of prime divisors and mobile linear systems BX =
∑r

i=1
aiBi +

∑s
j=1

cjMj, where Bi and Mj are a prime Weil divisor and a linear
system on the variety X that has no fixed components, respectively, and ai and cj
are non-negative rational numbers. Note that we can consider BX as a Weil divisor.
Suppose that BX is a Q-Cartier divisor.

Definition 2.1. We say that BX and (X,BX) are mobile if a1 = a2 = . . . = ar = 0.

Let π : X̄ → X be a log resolution for the log pair (X,BX ), let B̄i and M̄j be
the proper transforms of the divisor Bi and the linear system Mj on the variety X̄,
respectively. Then

KX̄ +

r
∑

i=1

aiB̄i +

s
∑

j=1

cjM̄j ∼Q π
∗
(

KX +BX

)

+

m
∑

i=1

diEi,

where Ei is an exceptional divisor of the morphism π, and di is a rational number.
Put

I
(

X,BX

)

= π∗

(

OX̄

(

m
∑

i=1

⌈di⌉Ei −
r
∑

i=1

⌊ai⌋Bi
)

)

,

and recall that I(X,BX) is known as the multiplier ideal sheaf (see [23, Section 9.2]).

Theorem 2.2 ([23, Theorem 9.4.8]). Let H be a nef and big Q-divisor on X such
that KX + BX + H ∼Q D for some Cartier divisor D on the variety X. Then
H i(I(X,BX)⊗D) = 0 for every i > 1.

Let L(X,BX) be a subscheme given by the ideal sheaf I(X,BX). Put
LCS(X,BX ) = Supp(L(X,BX )).

Remark 2.3. If the log pair (X,BX ) is log canonical, then the subscheme L(X,BX)
is reduced.

Let Z be an irreducible subvariety of the variety X.

Definition 2.4 ([20, Definition 1.3]). The subvariety Z is said to be a center of log
canonical singularities (non-log canonical singularities, respectively) of the log pair
(X,BX ) if

• either ai > 1 (ai > 1, respectively) and Z = Bi for some i ∈ {1, . . . , r},
• or di 6 −1 (di < −1, respectively) and Z = π(Ei) for some i ∈ {1, . . . ,m}
and some π.

Let LCS(X,BX ) and NLCS(X,BX ) be the sets of centers of log canonical
and non-log canonical singularities of the log pair (X,BX), respectively. Then
NLCS(X,BX) ⊆ LCS(X,BX ).

Theorem 2.5 ([10, Theorem 3.1]). Suppose that dim(X) = 2, the set NLCS(X,BX )
contains a point P ∈ X \ Sing(X), the boundary BX is mobile and s = 1. Then

multP

(

M1 ·M ′
1

)

> 4/c21,

where M1 and M ′
1 are general curves in the linear system M1.
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Let us denote by NLCS(X,BX) the proper subset of the variety X that is a union
of all centers in NLCS(X,BX).

Definition 2.6 ([6, Definition 2.2]). The subvariety Z is said to be a center of canon-
ical singularities (non-canonical singularities, respectively) of the log pair (X,BX )
if Z = π(Ei) and di 6 0 (di < 0, respectively) for some i ∈ {1, . . . ,m} and some
choice of the morphism π.

Let CS(X,BX ) and NCS(X,BX ) be the sets of centers of canonical and non-
canonical singularities of the log pair (X,BX), respectively. Then NCS(X,BX ) ⊆
CS(X,BX ).

Theorem 2.7 ([10, Corollary 3.4]). Suppose that dim(X) = 3, the set NCS(X,BX )
contains a point P ∈ X \ Sing(X), the boundary BX is mobile and s = 1. Then

multP

(

M1 ·M ′
1

)

> 4/c21,

where M1 and M ′
1 are general surfaces in the linear system M1.

Let us denote by NCS(X,BX ) the proper subset of the variety X that is a union
of all centers in NCS(X,BX ).

Lemma 2.8. Suppose that X is smooth at a general point of the subvariety Z.
Then CS(X,BX) ⊆ LCS(X, 2BX) and NCS(X,BX) ⊆ NLCS(X, 2BX ).

Proof. This is obvious, because X is smooth at a general point of Z. �

Suppose that Z ∈ LCS(X,BX) and (X,BX) is log canonical along Z.

Lemma 2.9 ([20, Proposition 1.5]). Let Z ′ be a center in LCS(X,BX ) such that
Z ′ 6= Z. Then any irreducible component of the intersection Z ∩Z ′ is an element in
LCS(X,BX).

Suppose that Z is a minimal center in LCS(X,BX) (see [20], [21], [7, Defini-
tion 2.8]).

Theorem 2.10 ([21, Theorem 1]). The variety Z is normal and has at most rational
singularities. If ∆ is an ampleQ-Cartier Q-divisor onX, then there exists an effective
Q-divisor BZ on the variety Z such that

(

KX +BX +∆
)∣

∣

∣

Z
∼Q KZ +BZ ,

and (Z,BZ) has Kawamata log terminal singularities.

Let G be a finite subgroup of the group Aut(X).

Lemma 2.11. Let P , C and S be a point, curve and surface in X, respectively.
Suppose that Sing(X) 6∋ P ∈ C ⊂ S and dim(X) = 3. Suppose that P and C
are G-invariant, and either G ∼= A4 or G ∼= Z7 ⋊ Z3. Then multP (C) > 3 and
the surface S is singular at the point P ∈ X.

Proof. Let γ : U → X be a blow up of the threefold X at the point P , let E be
the γ-exceptional divisor, and let C̄ be the proper transforms of the curve C on
the threefold U . Then multP (C) > |C̄ ∩E|.

The group G naturally acts on E ∼= P2. This action comes from a faithfull
three-dimensional representation of the group G, which must be irreducible, be-
cause the group G does not have two-dimensional irreducible representations and
the group G is not abelian. Thus |C̄∩E| > 3, and the points of the set C̄∩E are not
contained in a single line in E ∼= P2, which immediately implies that the surface S
must be singular at the point P ∈ X. �
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Suppose that BX is G-invariant. Recall that (X,BX ) is log canonical.

Remark 2.12. Let g be an elements in G. Then g(Z) ∈ LCS(X,BX). By Lemma 2.9,
we have Z ∩ g(Z) 6= ∅ ⇐⇒ Z = g(Z).

Suppose that BX is ample. Take an arbitrary rational number ǫ > 1.

Lemma 2.13. There is a G-invariant linear system B on the variety X that has no
fixed components, and there are rational numbers ǫ1 and ǫ2 such that 1 > ǫ1 ≫ 0
and 1 ≫ ǫ2 > 0 and

LCS
(

X, ǫ1BX + ǫ2B
)

=

(

⊔

g∈G

{

g
(

Z
)

}

)

⊔

NLCS
(

X, ǫ1BX + ǫ2B
)

,

the log pair (X, ǫ1BX + ǫ2B) is log canonical along g(Z) for every g ∈ G, the equiv-
alence ǫ1BX + ǫ2B ∼Q ǫBX holds, and NLCS(X, ǫ1BX + ǫ2B) = NLCS(X,BX ).

Proof. See the proofs of [20, Theorem 1.10] and [21, Theorem 1]. �

Let C be a smooth irreducible curve in P3 of genus g and degree d.

Theorem 2.14 ([17, Theorem 6.4]). If C is not contained in a hyperplane in P3,
then

g 6















(d− 2)2

4
if d is even,

(d− 1)(d − 3)

4
if d is odd.

Suppose, in addition, that G ∼= PSL2(F7) and C admits a faithful action of the
group G.

Lemma 2.15. Let Σ be a G-orbit of a point in C. Then |Σ| ∈ {24, 42, 56, 84, 168}.
Proof. This follows from Lemma B.1, since stabilizer subgroups of all points in X
are cyclic. �

Lemma 2.16. Suppose that g 6 30. Then g ∈ {3, 8, 10, 15, 17, 19, 22, 24, 29}, and
the number of G-orbits in C consisting of 24, 42, 56, 84 points can be described as
follows:

genus g 24 points 42 points 56 points 84 points

3 1 0 1 1

8 0 1 2 0

10 1 1 0 1

15 0 2 1 0

15 0 0 1 3

17 1 0 2 0

19 2 0 0 1

22 0 3 0 0

22 0 1 0 3

24 1 1 1 0

29 0 0 2 2

Proof. It follows from the classification of finite subgroups of the group PGL2(C)
that g 6= 0, and it follows from the non-solvability of the group G that g 6= 1.

Let Γ ⊂ G be a stabilizer of a point in C. Then Γ ∼= Zk for k ∈ {1, 2, 3, 4, 7} by
Lemma B.1.
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Put C̄ = C/G. Then C̄ is a smooth curve of genus ḡ. The Riemann–Hurwitz
formula gives

2g − 2 = 168
(

2ḡ − 2
)

+ 84a2 + 112a3 + 126a4 + 144a7,

where ak is the number of G-orbits in C with a stabilizer of a point isomorphic to Zk.
Since ak > 0, one has ḡ = 0, and 2g − 2 = −336 + 84a2 + 112a3 + 126a4 + 144a7,

which easily implies the required assertions. �

Remark 2.17. We do not claim that every case listed in Lemma 2.16 is realized.

Let L be a G-invariant line bundle on the curve C (see [11, §1]).
Lemma 2.18. If deg(L) 6 23 and L is a G-linearizable line bundle (see [11, §1]),
then h0(OC(L)) 6∈ {1, 2, 4, 5}.
Proof. If L is G-linearized, then there is a natural linear action of the group G on
H0(OC(L)), and the required assertion follows from Lemma 2.15 and Appendix B.

�

Theorem 2.19 ([11, Theorem 2.4],[28, Lemma 2.10]). If g = 3, then C ∼= C and
there is θ ∈ Pic(C) such that 2θ ∼ KC and PicG(C) = 〈θ〉.

Thus, if g = 3, then deg(L) is even by Theorem 2.19, because we assume that L
is G-invariant.

Lemma 2.20. Suppose that g = 8 and L is G-linearizable. Then 7 | deg(L).
Proof. Suppose that 7 ∤ deg(L). Then there are integers a and b such that
14a+ bdeg(L) = 8. Put D = aKC + bL. Then deg(D) = 8 and D is a G-linearizable
line bundle.

By the Riemann–Roch theorem, the Clifford theorem (see [17, Theo-
rem 5.4]) and Lemma 2.18, we have h0(OC(D)) = 3. Then h0(OC(KC − D)) = 2,
which contradicts Lemma 2.18. �

Lemma 2.21. Suppose that g = 10 and L is G-linearizable. Then 3 | deg(L).
Proof. It follows from [11, page 6] that there exists G-linearizable line bundle γ on
C of degree 6 that generates the group of all G-linearizable line bundles on C. Then
it follows from [11, Proposition 2.2] that 3 | deg(L). �

3. Projective space

Let ζ be a primitive seventh root of unity, let Ĝ be a subgroup in SL4(C) such
that

Ĝ =

〈









1 0 0 0
0 ζ 0 0
0 0 ζ4 0
0 0 0 ζ2









,
1√
−1









1 2 2 2
1 ζ + ζ6 ζ2 + ζ5 ζ3 + ζ4

1 ζ2 + ζ5 ζ3 + ζ4 ζ + ζ6

1 ζ3 + ζ4 ζ + ζ6 ζ2 + ζ5









〉

,

and let us denote by the symbol U4 the corresponding faithful four-dimensional
representation of the group Ĝ (cf. Appendix B). Then Ĝ ∼= SL2(F7) and U4 is
irreducible (see [25], [9]).

Let φ : SL4(C) → Aut(P3) be a natural projection. Put G = φ(Ĝ). Then
G ∼= PSL2(F7) is of type (II) in the notation of Example 1.7.

Remark 3.1. It follows from [3, Chapter VII] that AutG(P3) = G.

9



Lemma 3.2. Let P be a point in P3, and let Σ be its G-orbit. Suppose that
|Σ| 6 41. Then either |Σ| = 8 and the orbit Σ is unique, or |Σ| = 24 and the orbit Σ
is unique, or |Σ| = 28 and there are exactly two possibilities for the orbit Σ.

Proof. It follows from Corollary B.2 that |Σ| ∈ {7, 8, 14, 21, 24, 28}, because the rep-
resentation U4 is irreducible (so that |Σ| 6= 1). Let GP be a stabilizer subgroup in G

of the point P , and let ĜP be the preimage of the subgroup GP under φ. If |Σ| = 21,

then ĜP ∼= 2.D4, which is impossible by Lemma B.9. If |Σ| ∈ {7, 14}, then ĜP has
a subgroup isomorphic to 2.A4, which is also impossible by Lemma B.9. Thus, we
see that |Σ| ∈ {8, 24, 28}.

Suppose that |Σ| = 8. Then it follows from Lemmas B.1 and B.7 that
GP ∼= Z7 ⋊ Z3, the orbit Σ does exist, the point P is the unique GP -invariant point
in P3, and Σ is unique, since all subgroups of the group G that are isomorphic to
Z7 ⋊ Z3 are conjugate by Lemma B.1.

Suppose that |Σ| = 24. Then GP ∼= Z7 and ĜP ∼= Z14. Take any g ∈ ĜP such

that ĜP = 〈g〉, and let Rn be a one-dimensional representation of the group ĜP
such that g acts on Rn by multiplication by −ζn. For a suitable choice of g, we
have isomorphism of ĜP -representations U4

∼= R0 ⊕ R1 ⊕ R2 ⊕ R4, which implies
that P3 contains exactly 3 different points besides P ∈ P3, say P1, P2 and P3,
that are fixed by the group GP . There is a unique subgroup H ⊂ G such that
Z7 ⋊ Z3

∼= H ⊃ GP , and we may assume that the point P1 is H-invariant (that is,
corresponds to the subrepresentation R0). Then its G-orbit consists of eight points.
Thus, we see that {P,P2, P3} is a H-orbit, which implies that the orbit Σ exists and
it is unique.

Suppose that |Σ| = 28. Then GP ∼= S3. The action of GP on P3 is induced by a
four-dimensional representation of 2.S3. By Lemma B.9, this representation splits
as a sum of an irreducible two-dimensional representation and two non-isomorphic
one-dimensional representations. Thus, there is a unique point P ′ ∈ P3 such that
P 6= P ′ and P ′ is fixed by GP . On the other hand, the group G contains exactly 28
subgroups isomorphic to S3. Moreover, it easily follows from Lemma B.9 that two
different subgroups in G isomorphic to S3 generates either a subgroup isomorphic
to S4 or the whole group G. Thus, it follows from Lemma B.9 that no two of these
28 subgroups isomorphic to S3 can fix one point in P3. Thus, there are exactly two
G-orbits in P3 consisting of 28 points. �

Let Σ8, Σ24 and Σ28 6= Σ′
28 be G-orbits in P3 consisting of 8, 24 and 28 points,

respectively.
The group Ĝ naturally acts on C[x1, x2, x3, x4]. Put

a = x2x3x4, b = x32x3+x
3
3x4+x

3
4x2, c = x22x

3
3+x

2
3x

3
4+x

2
4x

3
2, d = a2+x2x

5
3+x3x

5
4+x4x

5
2,

and e = 7ab+ x72 + x73 + x74. Furthermore, put Φ4 = 2x41 + 6ax1 + b and

Φ6 = 8x61 − 20ax31 − 10bx21 − 10cx1 − 14a2 − d,

Φ8 = x81 − 2ax51 + bx41 + 2cx31 + (6a2 + d)x21 + 2abx1 + ac,

Φ′
8 = x81 + 14ax51 − 7bx41 + 14cx31 − 7dx21 + ex1,

Φ14 = 48x141 + 168ax111 + 308bx101 − 1596cx91 + 126
(

42a2 + 11d
)

x81−
−8
(

37e+ 490ab
)

x71 + 196
(

12ac+ 5b2
)

x61 + 196
(

15ad − 13bc
)

x51+

+14
(

182c2 − 86ae− 7bd
)

x41 + 28
(

11be− 42cd
)

x31 + 14
(

21d2 − 16ce
)

x21 + 14dex1 − e2.
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Theorem 3.3 ([15], [25, Theorem 1]). The forms Φ4, Φ6, Φ8, Φ′
8 and Φ14 are

Ĝ-invariant.

Remark 3.4. There are no Ĝ-invariant two-dimensional vector subspaces in
C[x1, x2, x3, x4] that consist of linear, quadratic, cubic, quartic, quintic or sextic
forms (see [11, Appendix 1]).

Let Fi be a surface in P3 that is given by the equation

Φi
(

x1, x2, x3, x4
)

= 0 ⊂ P3 ∼= Proj
(

C
[

x1, x2, x3, x4
]

)

,

and let F ′
8
be a surface in P3 that is given by Φ′

8
(x1, x2, x3, x4) = 0.

Theorem 3.5 ([25, Theorem 1]). There are no G-invariant odd degree surfaces
in P3, there are no G-invariant quadric surfaces in P3, and the only G-invariant
quartic surface in P3 is the surface F4.

One can check that the surface F4 is smooth.

Lemma 3.6 (cf. [25, Theorem 1]). The sets F4 ∩ F6 ∩ F ′
8, F4 ∩ F6 ∩ F14,

and F4 ∩ F ′
8 ∩ F14 are finite.

Proof. This follows from explicit computations. We used the Magma software [2] to
carry them out. �

There is a G-invariant irreducible smooth curve C6 ⊂ P3 of genus 3 and degree 6
such that Σ24 = C6 ∩ F4, and C6 is an intersection of cubic surfaces in P3 (see [15,
page 154], [11, Example 2.8]).

Lemma 3.7. Let C be a G-invariant curve in P3 such that deg(C) 6 6. Then
C = C6.

Proof. By Corollary B.2, we may assume that the curve C is irreducible. If
the curve C is singular, then |Sing(C)| > 8 by Lemma 3.2, which easily leads to
a contradiction by applying Lemma 2.15 to the normalization of the curve C. Then
C is smooth. Since U4 is an irreducible representation of the group Ĝ, the curve C
is not contained in a plane in P3. Then C is a curve of genus 3 and degree 6 by
Theorem 2.14 and Lemma 2.16. By Theorem 2.19, there is a unique G-invariant line
bundle of degree 6 on the curve C, which implies that the embedding C →֒ P3 is
unique up to the action of the group AutG(P3). But AutG(P3) = G by Remark 3.1,
which implies that C = C6. �

Note that C6 ∩ Σ8 = ∅ by Lemma 2.15.

Lemma 3.8. There is a non-biregular involution τ ∈ BirG(P3) such that the diagram

(3.9) V
α

~~⑦⑦
⑦⑦
⑦⑦
⑦⑦ β

  
❅❅

❅❅
❅❅

❅❅

P3

τ
//❴❴❴❴❴❴❴ P3

commutes and 〈G, τ〉 ∼= G× Z2, where α and β are blow ups of the curve C6.

Proof. The existence of the commutative diagram (3.9) is well-known (see [11, Re-
mark 6.8]), the isomorphism 〈G, τ〉 ∼= PSL2(F7)×Z2 follows from the last three lines
of the proof of [11, Lemma 6.4]. �

Let us introduce a G-invariant curve in P3, which has never been mentioned in
the literature.

11



Lemma 3.10. There is a G-invariant irreducible curve C14 ⊂ P3 of degree 14 such
that Σ8 ⊂ C14.

Proof. Let C be the genus 3 curve introduced in Example 1.8. Then Aut(C) ∼= G,
which implies that C admits a natural action of the group G. It follows from The-
orem 2.19 that PicG(C) = 〈θ〉, where θ is a G-invariant line bundle of degree 2. By
[11, Lemma 6.4], there exists an isomorphism H0(OC(7θ)) ∼= U4 ⊕ U8, where U8 is

an irreducible eight-dimensional representation of the group Ĝ (see Appendix B).
The linear system |7θ| gives a G-equivariant embedding ρ : C →֒ P11 such that

there exist unique G-invariant linear subspaces Π3 and Π7 in P11 of dimensions 3
and 7, respectively. Then ρ(C) ∩ Π7 = ∅ by Lemma 2.15. Let ι : P11 99K Π3 be
a G-equivariant projection from Π7, put C14 = ι◦ρ

(

C
)

, and identify Π3 with our P3.

Then C14 ⊂ P3 is an irreducible G-invariant curve of degree 14.
Let H be subgroup in G such that H ∼= Z7 ⋊ Z3. Then there is a H-invariant

subset Σ3 ⊂ C such that |Σ3| = 3. Note that Σ3 is a subset of the G-orbit of
length 24, which implies that Σ8 ⊂ C14 if and only if |ι ◦ ρ(Σ3)| = 1 by Lemma 3.2.
Let us show that ι ◦ ρ(Σ3) consists of a single point.

Let T be a vector subspace in H0(OC(7θ)) that consists of sections vanishing at

the subset Σ3, and let Li be a Ĝ-subrepresentation in H0(OC(7θ)) such that Li ∼= Ui
for i ∈ {4, 8}. Then |ι◦ρ(Σ3)| = 1 if and only if dim(L4∩T ) = 3 by the construction
of the map ι ◦ ρ. Let us show that dim(L4 ∩ T ) = 3.

Take a subgroup Ĥ ⊂ Ĝ such that φ(Ĥ) = H. Then it follows from
Lemma B.7 that L8

∼= V3 ⊕ V ′
3 ⊕ V ′

1 ⊕ V ′′
1 and L4

∼= V3 ⊕ V1 as representations

of the group Ĥ, where V3, V
′
3 , V1, V

′
1 , V

′′
1 are different irreducible representations of

dimensions 3, 3, 1, 1, 1, respectively. Thus, there is an isomorphism T ∼= V3⊕V3⊕V ′
3 ,

because T does not contain one-dimensional Ĥ-subrepresentations, since the curve C
does not contain H-invariant subsets consisting of deg(7θ) − 3 = 11 points. Hence
L4 ∩ T ∼= V3. �

Let us denote the points in Σ8 by O1, O2, . . . , O8, and let us denote by Q the linear
system of quadric surfaces in P3 that pass through Σ8.

Example 3.11. The log pair (P3, 2Q) is canonical. But NLCS(P3, 4Q) = Σ8.

Let π : U → P3 be the blow up of the subset Σ8, let Ei be the exceptional divisor
of the birational morphism π such that π(Ei) = Oi for every i. Then there is
a commutative diagram

(3.12) U

π

��⑦⑦
⑦⑦
⑦⑦
⑦⑦ η

  
❆❆

❆❆
❆❆

❆❆

P3

ψ
//❴❴❴❴❴❴❴ P2,

where ψ is a rational map that is given by Q, and η is an elliptic fibration.

Lemma 3.13. The curve C14 has an ordinary triple point at every point of
the set Σ8, the proper transform of the curve C14 on the threefold U is smooth,
the curve C14 is smooth outside of the points of the set Σ8, the map ψ : P3 99K P2

induces a birational map C14 99K ψ(C14), the curve ψ(C14) is a smooth curve of
genus 3 and degree 4, the intersection C6 ∩C14 is empty.

Proof. Let C̄14 and Q̄ be the proper transforms of the curve C14 and a general
surface in Q on the threefold U , respectively. Then multOi

(C14) > |C̄14 ∩ Ei| > 3
12



by Lemma 2.11. Thus

4 > 28−8
∣

∣C̄14∩Ei
∣

∣ > 2deg
(

C14

)

−
8
∑

i=1

Ei ·C̄14 =
(

π∗
(

H
)

−
8
∑

i=1

Ei

)

C̄14 = Q̄·C̄14 > 0,

which implies that C̄14 has an ordinary triple point at every point of the set Σ8.
Since 4 = 2deg(C14)− 24 = Q̄ · C̄14, we see that η(C̄14) is a smooth curve of genus 3
and degree 4 by Lemma B.5. Therefore C̄14

∼= η(C̄14), which implies that C14 is
smooth outside of the points of the set Σ8.

Let us show that C6∩C14 = ∅. Suppose that C6∩C14 6= ∅. Then |C6∩C14| > 56
by Lemma 2.16, since Σ8 6⊂ C6. Let S be a general cubic surface in P3 such that
C6 ⊂ S. Then

42 = S · C14 >
∑

O∈C6∩C14

multO
(

S
)

multO
(

C14

)

> 56,

because C14 6⊂ S. Thus, the intersection C6 ∩ C14 is empty. �

Lemma 3.14. Let C be a G-invariant curve such that deg(C) 6 15 and Σ8 ⊂ C.
Then C = C14.

Proof. Let C̄ and Q̄ be the proper transforms of the curve C and a general surface
inQ on the threefold U , respectively. Then multOi

(C) > |C̄∩Ei| > 3 by Lemma 2.11.
Then

6 > 30− 8
∣

∣C̄ ∩ Ei
∣

∣ > 2deg
(

C
)

−
8
∑

i=1

Ei · C̄ =
(

π∗
(

H
)

−
8
∑

i=1

Ei

)

C̄ = Q̄ · C̄ > 0,

which implies that Ei · C̄ = |C̄ ∩ Ei| = 3.
We may assume that C is a G-orbit of an irreducible curve Γ ⊂ P3. Then

6 > 2deg
(

C
)

− 24 = Q̄ · C̄ = δdeg
(

η
(

C̄
)

)

for some positive integer δ. We may assume that δ = 1 if C̄ is contracted by η. Thus,
we have deg(C) ∈ {12, 13, 14, 15}, which implies that either deg(Γ) 6 2 or Γ = C
(see Corollary B.2).

By Lemma B.5, we have deg(ψ(C)) 6∈ {1, 2, 3}. Then deg(C) ∈ {12, 14, 15}
and δ = 1. But

(3.15) 6 > 2deg
(

C
)

− 24 = deg
(

η
(

C̄
)

)

,

which implies that deg
(

η(C̄)
)

∈ {0, 4, 6} by Lemma B.5.

Recall that G-invariant quartic curve and sextic curve in P2 are irreducible
(see Lemma B.5), which easily implies using (3.15) that either deg(Γ) = 1 and
deg(C) = 12, or Γ = C.

If deg(Γ) = 1 and deg(C) = 12, then it follows from (3.15) that |η(C̄)| 6 12,
which is impossible, since G-orbit of every point in P2 consists of at least 21 points
by Lemma B.6.

We see that Γ = C. Then C̄ is not contracted by η, since there is no G-invariant
point in P2.

Suppose that deg(C) = 15. Then C̄ ∼= ψ(C) and deg(ψ(C)) = 6, which immedi-
ately implies that ψ(C) is a smooth curve of genus 10 by Lemma B.5. Then there
is a natural monomorphism

U4
∼= H0

(

OU

(

π∗
(

H
)

)

)

→֒ H0

(

OC̄ ⊗OU

(

π∗
(

H
)

)

)

∼= C6,
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which contradicts Lemma 2.15, since SL2(F7) has no irreducible two-dimensional
representations.

We see that deg(C) = 14. Thus C̄ ∼= ψ(C), which implies that C̄ is a smooth
curve of genus 3. Arguing as in the proof of Lemma 3.10, we see that C = σ(C14)
for some σ ∈ AutG(P3). But AutG(P3) = G by Remark 3.1. Hence, we must have
C = C14, since the curve C14 is G-invariant. �

Lemma 3.16. Let D be the linear system consisting of all quintic surfaces in P3 that
contain C14. Then D is not empty and does not have fixed components, a general
surface in D has a double point in every point of the set Σ8, all curves contained in
the base locus of the linear system D are disjoint from C14, a general surface in D
is smooth in a general point of the curve C14, any two general surfaces in D are not
tangent to each other along the curve C14.

Proof. Let C̄14 be the proper transform of the curve C14 on the threefold U , and
let I be the ideal sheaf of the curve C̄14. Put R = π∗(5H) −∑8

i=1
Ei. Then

h0
(

OU

(

R
)

⊗I
)

> h0
(

OU

(

R
))

−h0
(

OC̄14
⊗OU

(

R
)

)

= 48−h0
(

OC̄14
⊗OU

(

R
)

)

= 4,

which implies that dim(D) > 3.
Let D be a general surface in D. Then D is irreducible, because the linear

system D does not have fixed components by Theorem 3.5 and D is not composed
of a pencil by Remark 3.4.

Let D̄ be its proper transform of the surface D on the threefold U , and let Γ be
a general fiber of the elliptic fibration η. Then

20− 8multO1

(

D
)

=
(

π∗
(

5H
)

−
8
∑

i=1

multOi

(

D
)

Ei

)

· Γ = D̄ · Γ > 0

which implies that multO1
(D) 6 2. Thus multO1

(D) = 2 by Lemma 2.11.
Let D′ be a general surface in D such that D 6= D′. Hence there is µ ∈ Z>0

such that D ·D′ = µC14+B+Z, where Z is a curve not contained in the base locus
of the linear system D, and B is a curve contained in the base locus of the linear
system D such that C14 6⊆ Supp(B). Then

25 = deg
(

D ·D′
)

= 14µ + deg
(

B
)

+ deg
(

Z
)

> 20 + deg
(

Z
)

by Lemma 3.7. Thus, we see that µ = 1 and deg(B) + deg(Z) 6 11, which implies,
in particular, that the surfaces D and D′ are not tangent to each other along C14,
since µ = 1.

Note that B is G-invariant, because D is G-invariant. Therefore deg(B) > 6 by
Lemma 3.7.

If the base locus of the linear system D consists of the curve C14, then C14 is
a scheme-theoretic intersection of surfaces in D outside some finite subset of the
curve C14, because µ = 1.

Let Z̄ and B̄ be the proper transforms of the curves Z and B on the threefold U ,
respectively, and let Q̄ be a proper transform of a general quadric surface in Q on
the threefold U . Then

0 6 Q̄ · B̄ = 2deg
(

B
)

−
8
∑

i=1

Ei · B̄ 6

6 22− 8
∣

∣

∣
Supp

(

B̄
)

∩ Ei
∣

∣

∣
6 22 − 8×

{

3 if Oi ∈ Supp
(

B
)

,

0 if Oi 6∈ Supp
(

B
)

,

14



which implies that Σ8 ∩ Supp(B) = ∅. But

3 + multOi

(

Z
)

= multOi

(

C14

)

+multOi

(

B
)

+multOi

(

Z
)

= multOi

(

D1 ·D2

)

> 4,

which implies that Σ8 ⊂ Supp(Z). Hence

2deg
(

Z
)

− 8 > 2deg
(

Z
)

−
8
∑

i=1

Ei · Z̄ = Q̄ · Z̄ > 0,

which implies that deg(Z) > 4, and deg(Z) = 4 if and only if Z̄ is contracted by η.
But 10 6 6+deg(Z) 6 deg(B)+deg(Z) 6 11, which implies that either deg(B) = 7
and deg(Z) = 4, or deg(B) = 6 and deg(Z) = 5.

If deg(Z) = 4, then D̄ is contracted by the morphism η to a curve of degree d, then

D̄ ∼ d(π∗(2H)−∑8

i=1
Ei), which is a contradiction. Thus, we see that deg(B) = 6

and deg(Z) = 5.
By Lemma 3.7, we have B = C6. Therefore C6 ∩C14 = ∅ by Lemma 3.13. �

Let us study some properties of the subset Σ28 ⊂ P3, which also hold for Σ′
28
.

Lemma 3.17. Let Z be a G-invariant curve in P3 that contains Σ28.
Then deg(Z) > 16 if the set Σ28 imposes independent linear conditions on quar-
tic surfaces in P3.

Proof. Suppose that the set Σ28 imposes independent linear conditions on quartic
surfaces in P3, and suppose that deg(Z) 6 15. Let us derive a contradiction.

Without loss of generality, we may assume that Z is a G-orbit of an irreducible
curve Z1.

Put Z =
∑r

i=1
Zi, where Zi is an irreducible curve in P3 and r ∈ Z>0. Then

deg(Z) = rdeg(Zi) 6 15, which implies that r ∈ {1, 7, 8, 14} by Corollary B.2.
Thus, if r 6= 1, then deg(Zi) ∈ {1, 2}.

If deg(Z1) = 2 and r 6= 1, then r = 7, which contradicts Lemma 3.2. Hence Z1 is
a line if r 6= 1.

Let Γ be the stabilizer subgroup in G of the curve Z1. If r = 7, then Γ ∼= S4,
which implies that |Z1∩Σ28| > 6, which is impossible, since Σ28 impose independent
linear conditions on quartic surfaces.

Let Γ̂ be the smallest subgroup of the group Ĝ such that φ(Γ̂) = Γ. Then

• if r = 8, then Γ̂ ∼= 2.(Z7 ⋊ Z3), which contradicts Lemma B.7.

• if r = 14, then Γ̂ ∼= 2.A4, which contradicts Lemma B.9.

Thus, we see that the curve Z is irreducible.
By Lemma 2.15, the curve Z must be singular at every point of the set Σ28, which

implies that Z 6= C14 by Lemma 3.13. Hence Σ8 6⊂ Z by Lemma 3.14.
Let A be a point in Σ28. Then there exists a quartic surface S ⊂ P3 such that S

contain all points of the set Σ28\{A} and the surface S does not contain the point A.
Therefore

4deg
(

Z
)

= S · Z >
∑

O∈Σ28\{A}

multO
(

Z
)

>
∑

O∈Σ28\{A}

2 > 54,

which implies that deg(Z) > 14. Thus, either deg(Z) = 14 or deg(Z) = 15.
If deg(Z) = 15, then Z ⊂ F4 ∩ F6 ∩ F ′

8
by Lemma 2.15, since 60, 90 and 120 are

not equal to 24n1 + 42n2 + 56n3 + 84n4 + 168n5 for any non-negative integers n1,
n2, n3, n4 and n5. Then deg(Z) = 14 by Lemma 3.6.
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Let Z̄ be the normalization of the curve Z, and let g be the genus of the curve Z̄.
Then

(3.18) g 6 66−
∣

∣Sing
(

Z
)∣

∣ 6 38,

because the projection from a general points of the curve Z gives us a birational
isomorphism between Z and a plane curve of degree 13 with at least |Sing(Z)|
singular points.

Note that G naturally acts on both curves Z and Z̄. Let us show that Z \Σ28 is
smooth.

Suppose that Sing(Z) 6= Σ28. Let Λ be a G-orbit of a point in Sing(Z)\Σ28. Then
|Λ| 6 66 − |Σ28| = 38 by (3.18), and |Λ| ∈ {24, 28} by Lemma 3.2. If Λ = C6 ∩ F4,
then

42 = S · Z >
∑

O∈Λ

multO
(

S
)

multO
(

Z
)

> 48,

where S is a general cubic surface such that C6 ⊂ S. Thus, we see that |Λ| 6= 24
by Lemma 3.2, which implies that |Λ| = 28. Therefore, it follows from (3.18) and
Lemma 2.16 that g ∈ {3, 8, 10} and the points of the set Λ ∪ Σ28 must be singular
points of the curve Z of multiplicity two, which implies that Z̄ has at least two
G-orbits consisting of 56 points, which contradicts Lemma 2.16.

Thus, we see that Z is smooth outside of the set Σ28.
Let B be a sufficiently general point of the curve Z, let M be a linear system

consisting of all quartic surfaces in P3 that contain the set Σ28 ∪ B. Then one has
dim(M) > 35− 29 = 6.

Let M be a general surface in M. If Z 6⊂M , then

56 =M · Z > multB
(

M
)

multB
(

Z
)

+
∑

O∈Σ28

multO
(

M
)

multO
(

Z
)

> 57,

which is a contradiction. Thus, the curve Z is contained in the base locus of the linear
system M, which implies that the linear system M is G-invariant, because Z is
G-invariant.

The linear system M does not have fixed components by Theorem 3.5 and M is
not composed of a pencil by Remark 3.4. This implies, in particular, that the surface
M is irreducible.

LetM ′ be another general surface in the linear system M. PutM ·M ′ = µZ+Υ,
where µ ∈ Z>0, and Υ is an effective one-cycle such that Z 6⊂ Supp(Υ). Then

16 = deg
(

M ·M ′
)

= 14µ + deg
(

Υ
)

,

which implies that µ = 1, and the base locus of the linear system M contain no
curves except Z, because there are no G-invariant lines or conics in P3. Thus
multZ(M) = 1 and deg(Υ) = 2, which implies, in particular, that the surface
M is uniruled.

Let M ′′ be another general surface in the linear system M. Then the intersection
M∩M ′∩M ′′ consists of the curve C and the intersection Υ∩M ′′, which immediately
implies that the base locus of the linear system M consists of at most 8 points
outside of the curve Z. Thus, it follows from Lemma 3.2 that either the base locus
of the linear system M consists of the curve Z, or the base locus of the linear
system M consists of the curve Z and the set Σ8.
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Let Q be a general surface in the linear system Q. If Σ8 ⊂M ∩M ′, then

32 = Q ·M ·M ′ = Q · Z +
∑

O∈Σ8

multO
(

Q
)

multO
(

Υ
)

=

= 28 +
∑

O∈Σ8

multO
(

Q
)

multO
(

Υ
)

> 36,

which implies that Σ8 6⊂M ∩M ′. Hence Z is the base locus of the linear system M.
By adjunction formula, we see that the singularities of the surface M are not

canonical, which implies that (P3,M) is not canonical by [22, Theorems 4.8.1
and 7.9] (cf. [22, Theorem 7.5]). But Z 6∈ NCS(P3,M), because multZ(M) = 1.
Thus, the set NCS(P3,M) contains a point P ∈ Z. Thus

multP
(

Υ
)

> 4−multP
(

Z
)

=

{

2 if P ∈ Σ28,

3 if P 6∈ Σ28,

since multP (M) > 2. Let Θ be the G-orbit of the point P . Then |Θ| > 28 by
Lemma 3.2, and

8 =M ·M ′ ·M ′′ −M ′′ · Z =M ′′ ·Υ >
∑

O∈Θ

multO
(

M ′′
)

multO
(

Υ
)

> 56,

which is a contradiction. �

Let R be a linear system consisting of all quartic surfaces in P3 that pass
through Σ28.

Lemma 3.19. If the set Σ28 imposes independent linear conditions on quartic sur-
faces in P3, then every curve in the base locus of the linear system R contains no
points of the set Σ28.

Proof. Let C be an irreducible curve in P3 such that C is contained in the base locus
of the linear system R, let Z be the G-orbit of the curve C, let R1 and R2 be general
surfaces in R. Put R1 ·R2 = µZ+Υ, where µ ∈ Z>0, and Υ is an effective one-cycle
such that C 6⊂ Supp(Υ). Then 16 = deg(R1 ·R2) = µdeg(Z)+deg(Υ), which implies
that deg(Z) 6 15 by Remark 3.4. Now it follows from Lemma 3.17 that Σ28 6⊂ Z
and C ∩ Σ28 = ∅ if the points of the set Σ28 impose independent linear conditions
on quartic surfaces in P3. �

We do not know whether or not Σ28 imposes independent linear conditions on
quartic surfaces.

4. Compactified moduli space of (1, 7)-polarized abelian surfaces

Let C be a curve in P2 that is given by the equation

(4.1) x4 + y4 + z4 + 3ǫ
(

x2y2 + x2z2 + y2z2
)

= 0 ⊂ P2 ∼= Proj
(

C
[

x, y, z
]

)

,

where ǫ = −1/2 +
√
−7/2. Then C is isomorphic to the curve described in Exam-

ple 1.8 (see [24, page 55]).

Remark 4.2. The Hessian curve of the curve C is a smooth sextic curve (see [13,
Example 6.1.1]).

Remark 4.3. The quartic C is not degenerate (see [13, Definition 2.8]). To see this
apply [13, Theorem 6.12.2] (keeping in mind [13, Definition 6.12.1]) and use [13,
Corollary 6.6.3], [13, Example 6.7] and Remark 4.2 above.
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Put ǭ = −1/2 −
√
−7/2. Let ψ : SL3(C) → Aut(P2) ∼= PGL3(C) be a natural

projection. Put

A =





−1 0 0
0 0 −1
0 −1 0



 , B =





0 1 0
0 0 1
1 0 0



 ,

C =





0 1 0
1 0 0
0 0 −1



 , D =
1

2





−1 1 ǭ
ǫ ǫ 0
−1 1 −ǭ



 ,

put G = ψ(〈A,B,C,D〉), and let X = VSP(C, 6) (see Definition A.3). By [24, p. 55],
we have Aut(C) ∼= G ∼= 〈A,B,C,D〉 ∼= PSL2(F7).

Theorem 4.4 ([26, Theorem 4.4]). The threefold X is a smooth Fano threefold
such that Pic(X) = Z[−KX ] and (−KX)

3 = 22.

The action of the group G on the plane P2 induces its natural action on the three-
fold X. Therefore, the vector space H0(OX(−KX)) has a natural structure of a 14-
dimensional representation of the group G.

Theorem 4.5. In the notation of Appendix B, one has

H0(OX (−KX)) ∼= I ⊕W6 ⊕W7.

Proof. We may assume that W ∼=W3. By Theorem A.5, one has

U7
∼= Sym3

(

W∨
3

)/

W3
∼=W7

∼= U∨
7 ,

where all isomorphisms are isomorphisms of G-representations. Hence, we have

U14
∼= Λ3

(

U7

)

/(

W∨
3 ⊗ U∨

7

)

∼= Λ3
(

W7

)

/(

W∨
3 ⊗W7

)

∼= U∨
14,

which implies the required assertion by Corollary B.4. �

Corollary 4.6. There is a unique G-invariant surface in | −KX |.
Let us identify X with its anticanonical image in P13 (see Appendix A).

Lemma 4.7. Let Q ⊂ X be a surface swept out by the lines contained in X. Then
Q ∼ −2KX , and Q is irreducible.

Proof. By [34], the surface Q is reduced and Q ∼ −2KX . Suppose that Q is re-
ducible. Then Q = Q1 ∪ Q2, where Q1 and Q2 are irreducible surfaces such that
Q1 6= Q2. Then Q1 ∼ Q2 ∼ −KX , and both Q1 and Q2 must be G-invariant. On
the other hand, there is a unique G-invariant surface in | −KX | is by Lemma 4.5,
which is a contradiction. �

In the remaining part of this section we are going to prove the following result.

Theorem 4.8. Let Σ be a G-orbit of a point in X such that |Σ| 6 20. Then
|Σ| ∈ {8, 14}, and if |Σ| = 8, then Σ is unique.

Remark 4.9. There exist finitely many points in X whose G-orbits consist of 14
points.

Before proving Theorem 4.8, let us use Theorem 4.8 to prove the following result.

Lemma 4.10. Let F be the unique G-invariant surface in | − KX |. Then F is
smooth.
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Proof. The minimal resolution of the surface F admits a faithful action of the group
PSL2(F7), which implies that F is smooth by [32, Claim 2.1] if it has at most
canonical singularities. Let us show that F has at most canonical singularities (Du
Val singularities). It is well-known that F has canonical singularities if and only if
the surface F has rational singularities (see [22, Theorem 1.11]). By Theorem 1.12,
the log pair (X,F ) is log canonical.

Suppose that F has worse than canonical singularities. Let S be a minimal center
in LCS(X,F ). Then S 6= F by Theorem 2.10, because F has worse than canonical
singularities. Hence, either S is a curve or a point by Theorem 2.10. Let Z be
the G-orbit of the subvariety S. Then Z ⊂ F .

Choose any ǫ ∈ Q such that 2 ≫ ǫ > 1. Then arguing as in the proof of [20,
Theorem 1.10], we can find a G-invariant Q-divisor D such that D ∼Q ǫF , the log
pair (X,D) is log canonical, and every minimal center in LCS(X,D) is an irreducible
component of the subvariety Z (see Lemma 2.13).

Let H be a sufficiently general hyperplane section of the threefold X, and
let IZ be the ideal sheaf of the subvariety Z. Then there is an exact sequence
of G-representations

0 → H0

(

OX

(

H
)

⊗ IZ
)

→ H0

(

OX

(

H
)

)

→ H0

(

OZ ⊗OX

(

H
)

)

→ 0

by Theorem 2.2. Put q = h0(OX(H)⊗ IZ). One has

(4.11) h0
(

OZ ⊗OX

(

H
)

)

= 14− q ∈
{

6, 7, 13
}

,

because q ∈ {1, 7, 8} by Theorem 4.5, since Z ⊂ F . Hence S is not a point by
Theorem 4.8.

We see that S is a curve. Moreover, S is a smooth curve of genus g such that
−KX · S = deg(S) > 2g − 1 by Theorem 2.10. By Remark 2.12, the curve Z is
a disjoint union of smooth irreducible curves. Let r be the number of connected
components of the curve Z. Put d = deg(S). Then

(4.12) g 6 d− g + 1 6 r
(

d− g + 1
)

= 14− q ∈
{

6, 7, 13
}

by (4.11), which implies that d 6 13 + g 6 27.
Let us show that r = 1. Suppose that r > 2. Then r > 7 and r 6= 13 by

Corollary B.2. Thus r = 7 and d − g + 1 = 1 by (4.12), which implies that d = g.
But d > 2g − 1, so that d = g = 1, which is absurd.

We see that r = 1. There is a natural faithful action of the group G on the curve S.
But d = 13 + g − q > 2g − 1, by (4.12), which implies that g 6 14 − q. Hence
g ∈ {3, 8, 10} by Lemma 2.16.

Let us show that g = 3. Suppose that g 6= 3. Then g ∈ {8, 10}. It fol-
lows from (4.12) that q 6 14 − g 6 6, which implies that q = 1, because
q ∈ {1, 7, 8}. Hence, it follows from (4.12) that d ∈ {20, 22}, which is impossible
by Lemmas 2.20 and 2.21.

Thus, we have g = 3, so that d = 16 − q by (4.12), where q ∈ {1, 7, 8}. By
Theorem 2.19, there is a G-invariant line bundle θ ∈ Pic(S) of degree 2 such that
PicG(S) = 〈θ〉, which implies that q = 8 and H|S ∼ 2KS , because d = 16− q. Thus
d = 8.

Let Q be a surface in X that is spanned by lines. Then Q is G-invariant. If
S 6⊂ Q, then |Q∩S| 6 2deg(S) = 16, which is impossible by Lemma 2.15. Thus, we
see that S ⊂ Q ∩ F . By Lemma 4.7, the surface Q is irreducible, and Q ∼ −2KX .
Let P be a general point in S. There exists a line L ⊂ X such that P ∈ L. If L 6⊂ F ,
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then
1 = deg

(

L
)

= F · L > multP
(

F
)

multP
(

L
)

> multS
(

F
)

> 2,

which simply means L ⊂ F . Since g 6= 0, the generality of the point P ∈ S implies
that the surface F is swept out by lines, which is impossible since Q 6⊂ F . �

Remark 4.13. Let Σ be a G-invariant subset of the threefold X such that we have
|Σ| ∈ {8, 14}, and let F be the unique G-invariant surface in | − KX |. Then F is
smooth by Lemma 4.10. Since G acts symplectically on F , it follows from [42] that
Σ ∩ F = ∅.

Now we are going to prove Theorem 4.8. Put

� = X
∖

{

Γ ∈ Hilb6

(

P̌2

) ∣

∣

∣ Γ is polar to the curve C

}

⊂ Hilb6

(

P̌2

)

.

Lemma 4.14. Let Σ be a G-orbit in � such that |Σ| 6 20. Then |Σ| = 8
and Σ is unique.

Proof. It follows from [28, § 2.3] that there exists an effective one-cycle

m1L1 + . . .+mrLr ∼ OP2(6)

on P2 that corresponds to a point in Σ, where Li are lines in P2 and mi are positive
integers.

Without loss of generality, we may assume that m1 > . . . > mr. Then
(

m1, . . . ,mr

)

∈
{

(

2, 1, 1, 1, 1
)

,
(

3, 1, 1, 1
)

,
(

2, 2, 1, 1
)

,
(

2, 2, 2
)

,
(

4, 2
)

}

by [28, Theorem 1.1] (cf. [27, Theorem A]). Thus, it follows from |Σ| 6 20 that
(m1, . . . ,mr) = (2, 2, 2), because the smallest G-invariant subset in P2 has at least 21
points by Lemma B.6.

Let us consider the lines L1, L2, L3 as points in the dual projective plane P̌2 with
a natural action of the group G, and let Ĉ be the unique G-invariant quartic curve
in P̌2. Then Ĉ∩{L1, L2, L3} 6= ∅ by [28, Proposition 3.13], which easily implies that
|Σ| = 8 and Σ is unique by Lemma 2.16. �

Therefore, to prove Theorem 4.8 it is enough to consider only G-orbits of points
in X \�, which are points in X that can be represented by polar hexagons to
the curve C.

Suppose that the assertion of Theorem 4.8 is false. Let us derive a contradiction.
By Lemmas 4.14 and B.1, there are six lines L1, . . . , L6 on P2 such that

(4.15) F
(

x, y, z
)

= L4
1

(

x, y, z
)

+ · · · + L4
6

(

x, y, z
)

,

where Li(x, y, z) is a linear form such that Li is given by Li(x, y, z) = 0, and the sta-

bilizer subgroup of the hexagon
∑

6

i=1
Li in the groupG is isomorphic either to Z7⋊Z3

or to S4.

Remark 4.16. The lines L1, . . . , L6 are distinct since the quartic C is not degenerate
(see Remark 4.3).

Lemma 4.17. Let g ∈ G be an element of order 7. Then
∑

6

i=1
Li is not g-invariant.

Proof. Suppose that
∑

6

i=1
Li is g-invariant. Then g(Li) = Li for every i ∈ {1, . . . , 6}.

Take M ∈ SL3(C) such that ψ(M) = g−1 and M7 = 1. Then Li((x, y, z)M) =
λiLi(x, y, z) for some λi ∈ C for every i ∈ {1, . . . , 6}, i. e. λ1, . . . , λ6 are eigenvalues
of the matrix M .
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Since g has order 7, we have λ71 = . . . = λ76 = 1. We may assume that

λ1 = λ2 = λ3 = λ4 = λ5,

since L1, . . . , L6 are different lines. Then λ6 6= λ1 by (4.15). Thus one obtains
|L1 ∩ L2 ∩ L3 ∩ L4 ∩ L5| = 1 and L1 ∩ L2 ∩ L3 ∩ L4 ∩ L5 6∈ L6. Therefore

6
∑

i=1

L4
i

(

x, y, z
)

= F
(

(

x, y, z
)

M
)

= λ46L
4
6

(

x, y, z
)

+ λ41

5
∑

i=1

L4
i

(

x, y, z
)

,

by (4.15), which easily implies that λ41 = λ46 = 1. Hence λ1 = λ6 = 1, which is
a contradiction. �

Let Γ be a stabilizer subgroup in G of the hexagon
∑

6

i=1
Li. Then Γ ∼= S4

by Lemma 4.17. We may assume that Γ = 〈ψ(A), ψ(B), ψ(C)〉, because G has
two subgroups isomorphic to S4 up to a conjugation (see Lemma B.1), which are
switched by an outer automorphism in Aut(G) that can be realized as a complex
conjugation in appropriate coordinates.

Lemma 4.18. The group Γ acts transitively on the lines L1, L2, L3, L4, L5, L6.

Proof. Since the action of the group Γ on P2 comes from an irreducible three-
dimensional representation of the group Γ, the Γ-orbit of every line in P2 contains at
least 3 lines. But the only Γ-invariant 3-tuple of lines in P2 is given by xyz = 0. �

Let Ω be a stabilizer subgroup in Γ of the line L1. Then either Ω ∼= Z2 × Z2

or Ω ∼= Z4.

Lemma 4.19. The group Ω is not isomorphic to Z4.

Proof. Suppose that Ω ∼= Z4. Then we may assume that Ω is generated ψ(CB).
One has

CB =





0 0 1
0 1 0
−1 0 0



 ,

and the eigenvalues of the matrix CB are 1 and ±
√
−1.

Note that (0, 1, 0) is the eigenvector of the matrix CB that corresponds to
the eigenvalue 1, and (∓

√
−1, 0, 1) is its eigenvector that corresponds to the eigen-

value ±
√
−1. Thus L1(x, y, z) = µ(x ±

√
−1z), where µ is a non-zero complex

number. The hexagon
∑

6

i=1
Li is given by

(

x−
√
−1z

)(

x+
√
−1z

)(

y +
√
−1x

)(

y −
√
−1x

)(

z +
√
−1y

)(

z −
√
−1y

)

= 0,

which implies that the quartic form x4+ y4+ z4+3ǫ(x2y2+x2z2+ y2z2) is equal to

µ1

(

x−
√
−1z

)4

+ µ2

(

x+
√
−1z

)4

+ µ3

(

y +
√
−1x

)4

+

+ µ4

(

y −
√
−1x

)4

+ µ5

(

z +
√
−1y

)4

+ µ6

(

z −
√
−1y

)4

for some (µ1, µ2, µ3, µ4, µ5, µ6) ∈ C6. In particular, we obtain a system of linear
equations























4µ3 + 4µ4 = 1−
√
−7,

4µ1 + 4µ2 = 1−
√
−7,

4µ5 + 4µ6 = 1−
√
−7,

µ1 + µ2 + µ3 + µ4 = 1,
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which is inconsistent. �

Thus, we see that Ω ∼= Z2 × Z2.

Lemma 4.20. The subgroup Ω is not contained in a subgroup of the group G
isomorphic to A4.

Proof. Suppose that Ω is contained in a subgroup of the group G that is isomorphic
to A4. Then

Ω =











1 0 0
0 1 0
0 0 1



 ,





1 0 0
0 −1 0
0 0 −1



 ,





−1 0 0
0 −1 0
0 0 1



 ,





−1 0 0
0 1 0
0 0 −1











,

which implies that the G-orbit of the line L1 is the curve that is given by xyz = 0,
which is impossible by Lemma 4.18. �

By Lemma 4.20, we may assume that Ω is generated by ψ(AB) and ψ(C). There-
fore

Ω =











1 0 0
0 1 0
0 0 1



 ,





0 −1 0
−1 0 0
0 0 −1



 ,





0 1 0
1 0 0
0 0 −1



 ,





−1 0 0
0 −1 0
0 0 1











,

and the equation of the hexagon
∑

6

i=1
Li is (x

2−z2)(y2−x2)(z2−y2) = 0. Arguing
as in the proof of Lemma 4.19, we obtain a contradiction.

The assertion of Theorem 4.8 is proved.

5. Proof of Theorem 1.9

Throughout this section we use the assumptions and notation of Section 3. Sup-
pose that Theorem 1.9 is false. Let us derive a contradiction.

Lemma 5.1. There is a G-invariant linear system M without fixed components
on P3 such that NCS(P3, λM) 6= ∅ and NCS(P3, λ′τ(M)) 6= ∅, where λ and λ′ are
positive rational numbers such that λM ∼Q λ

′τ(M) ∼Q OP3(4).

Proof. The required assertion is well-known (see [10], [5, Theorem A.16], [5, Corol-
lary A.22]). �

The assertion of Lemma 5.1 is known as the Noether–Fano inequality.

Lemma 5.2. Either multC6
(M) 6 1/λ or multC6

(τ(M)) 6 1/λ′.

Proof. This is easy (cf. the proof of [5, Lemma B.15]). �

Without loss of generality, we may assume that multC6
(M) 6 1/λ. Then

C6 6∈ NCS(P3, λM). Note that the set NLCS(P3, 2λM) contains every center in
NCS(P3, λM) by Lemma 2.8. However the set NLCS(P3, 2λM) may be non-empty
even if NCS(P3, λM) = ∅ (see Example 3.11).

Lemma 5.3. Let Λ be a union of all curves contained in NLCS(P3, 2λM). Then
deg(Λ) 6 15.

Proof. Let M1 and M2 be general surfaces in M, and let H be a sufficiently general
hyperplane in P3. Then

16
/

λ2 = H ·M1 ·M2 >
∑

P∈Λ∩H

multP

(

M1 ·M2

)

> deg
(

Λ
)/

λ2

by Theorem 2.5, which implies that deg(Λ) 6 15. �
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Lemma 5.4. The set NCS(P3, λM) does not contain any point in Σ8 ⊔ C6.

Proof. Let M1 and M2 be general surfaces in M, and let Q be a general surface
in Q. Then

32
/

λ2 = Q ·M1 ·M2 >
∑

Oi∈Σ8

multOi

(

M1 ·M2

)

= 8multOi

(

M1 ·M2

)

,

which implies that NCS(P3, λM) does not contain any point in Σ8 by Theorem 2.7.
Suppose that NCS(P3, λM) contains a point P ∈ C6. Put M1 ·M2 = νC6 +Υ,

where µ is a non-negative integer, and Υ is an effective one-cycle such that
C6 6⊂ Supp(Υ). Then multP (νC14+Υ) > 4/λ2 by Theorem 2.7. Let Θ be theG-orbit
of the point P . Then |Θ| > 24 by Lemma 2.15.

Let S be a general cubic surface in P3 such that C6 ⊂ S. Then

48
/

λ2 − 18ν = S ·Υ >
∑

O∈Θ

multO
(

Υ
)

=
∣

∣Θ
∣

∣multO
(

Υ
)

> 24
(

4
/

λ2 − ν
)

,

because C6 is a scheme-theoretic intersection of cubic surfaces in P3. Thus ν > 8/λ2.
Let H be a sufficiently general hyperplane in P3. Then

16
/

λ2 = H ·M1 ·M2 = νH · C6 +H ·Υ > νH · C6 = 6µ,

which implies that ν 6 8/(3λ2), which is a contradiction, since ν > 8/λ2. �

Lemma 5.5. The set NCS(P3, λM) does not contain the curve C14.

Proof. Suppose that C14 ∈ NCS(P3, λM). Let us put µ = multC14
(M) and

m = multO1
(M). Then µ > 1/λ because C14 ∈ NCS(P3, λM).

Let us find an upper bound for µ. Let M1 and M2 be general surfaces in M, and
let H be a sufficiently general hyperplane in P3. Then

16
/

λ2 = H ·M1 ·M2 >
∑

P∈C14∩H

multC14

(

M1 ·M2

)

> 14µ2,

which implies that µ 6
√

8/7/λ. Thus, we have 1/λ < µ 6
√

8/7/λ.
Let us find a lower and an upper bound for m.
Let C̄14 and M̄ be the proper transforms of the curve C14 and the linear systemM

on the threefold U , respectively, let C be a general conic in E1
∼= P2 such that

C̄14 ∩ E1 ⊂ C. Then |C̄14 ∩ E1| = 3 and the points of the set C̄14 ∩ E1 are non-
coplanar (see the proof of Lemma 2.11), which implies that the conic C is not
contained in the base locus of the linear system M̄. Hence

2m = C · M̄ >
∑

P∈C̄14∩E1

multP
(

M̄
)

>
∑

P∈C̄14∩E1

multC̄14

(

M̄
)

= 3µ,

which implies that m > 3µ/2. Thus, we see that m > 3/(2λ), since µ > 1/λ.
Let us find an upper bound for m (a trivial upper bound m 6 2/λ follows by

Lemma 5.4).
Let M̄1 and M̄2 be the proper transforms on U of the surfaces M1 and M2,

respectively, and let Q̄ be the proper transform of a general surface in the linear
system Q. Then

32
/

λ2 − 8m2 = Q̄ · M̄1 · M̄2 >
∑

P∈C̄14∩Q̄

multC̄14

(

M̄1 · M̄2

)

=

= 4multC̄14

(

M̄1 · M̄2

)

> 4µ2 > 4
/

λ2,
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which implies that m 6
√

7/2/λ. Thus, we have 3/(2λ) < m 6
√

7/2/λ.
Let υ : W → U be the blow up of the smooth curve C̄14, let F be the υ-exceptional

divisor, let M̂ and D̂ be the proper transforms of M and D (see Lemma 3.16) onW ,
respectively. Then

(5.6)



























M̂ ∼Q

(

π ◦ υ
)∗

(

4

λ
H

)

−m

8
∑

i=1

υ∗
(

Ei
)

− µF,

D̂ ∼Q

(

π ◦ υ
)∗
(

5H
)

− 2

8
∑

i=1

υ∗
(

Ei
)

− F.

Let D̂ be a general surface in D̂. Then D̂ is nef by Lemma 3.16 and (5.6).

Let M̂1 and M̂2 be the proper transforms on W of the surfaces M1 and M2,
respectively. Then

80
/

λ2 − 2
(

17µ2 + 4m2 + 56µ
/

λ− 24mµ
)

= D̂ · M̂1 · M̂2 > 0,

because D̂ is nef and F 3 = −12. Put µ̄ = µλ and m̄ = mλ. One has

17µ̄2 + 4m̄2 + 56µ̄ − 24m̄µ̄ > 40, 1 < µ̄ 6

√

8

7
,

3

2
< m̄ 6

√

7

2
,

which easily leads to a contradiction. �

Lemma 5.7. The set NCS(P3, λM) does not contain any point in C14.

Proof. Suppose that NCS(P3, λM) contains a point P ∈ C14. By Lemma 5.4,
we have P 6∈ Σ8, which implies that P is a smooth point of the curve C14, by
Lemma 3.13.

Choose M1 and M2 to be general surfaces in the linear system M. Put
M1 ·M2 = µC14 +Υ+ Ξ, where µ is a non-negative integer, and Υ and Ξ are effec-
tive one-cycles such that C14 6⊂ Supp(Υ), every irreducible component of the curve
Supp(Υ) intersects the curve C14 by a non-empty set, and none of the irreducible
components of the curve Supp(Ξ) intersects C14. Then multP (µC14 +Υ) > 4/λ2 by
Theorem 2.7.

Let H be a sufficiently general hyperplane in P3. Then

16
/

λ2 = H ·M1 ·M2 = µH · C14 +H ·
(

Υ+Ξ
)

> µH · C14 = 14µ,

which implies that µ 6 8/(7λ2).
Let Θ be the G-orbit of the point P . Then |Θ| > 42 by Lemma 2.15.
Let D be a general quintic surface in the linear system D (see Lemma 3.16). Then

80
/

λ2 − 70µ > 80
/

λ2 − 70µ −D · Ξ = D ·Υ >
∑

O∈Θ

multO
(

Υ
)

=

=
∣

∣Θ
∣

∣multO
(

Υ
)

> 42
(

4
/

λ2 − µ
)

,

which immediately leads to a contradiction. �

Thus, the set NLCS(P3, 2λM) contains a center that is not contained in C14⊔C6.

Lemma 5.8. Suppose that NLCS(P3, 2λM) contains a curve C different from
both C6 and C14. Then C14 6∈ NLCS(P3, 2λM), and if C6 ∈ NLCS(P3, λM), then
one has C6 ∩C = ∅ and deg(C) 6 9.
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Proof. Let Z be a G-orbit of the curve C. If C14 ∈ NLCS(P3, 2λM), then
deg(Z) + 14 = deg(Z) + deg(C14) 6 15 by Lemma 5.3, which is a contradiction, be-
cause there are no G-invariant lines in P3.

Suppose that C6 ∈ NLCS(P3, λM). Then deg(C) 6 deg(Z) 6 9 by Lemma 5.3.
Thus, to complete the proof, we must show that C6 ∩ Z = ∅.

Suppose that C6∩Z 6= ∅. Then |C6∩Z| > 24 by Lemma 2.15. Let Z̄ be a proper
transform of the curve Z on the threefold V (see (3.9)), and let S̄ be a proper
transform on V of a general cubic surface in P3 that passes through the curve C6.
Then

3 > 3deg
(

Z
)

−
∣

∣C6 ∩ Z
∣

∣ > S̄ · Z̄ = deg
(

β
(

Z̄
)

)

,

which implies that Z̄ is contracted by β by Lemma 3.7, since β(Z̄) is G-invariant.
The only curves contracted by the morphism β are proper transforms of the lines

in P3 that are trisecants of the curve C6. Then β(Z̄) ⊂ C6, the subset β(Z̄) is
G-invariant and |β(Z̄)| 6 9, which is impossible by Lemma 2.15. �

It follows from Lemmas 5.4, 5.5 and 5.7 that the set NLCS(P3, 2λM) contains
an irreducible subvariety that is not contained in C6∪C14. In fact, we can say a little
bit more than this.

Lemma 5.9. There are µ ∈ Q and S ∈ LCS(P3, µM) such that

• the inequalities 0 < µ < 2λ holds,
• the log pair (P3, µM) is log canonical along S,
• the subvariety S is a minimal center in LCS(P3, µM),
• the subvariety S is not a point of the set Σ8,
• the subvariety S is neither the curve C6 nor the curve C14,
• exactly one of the following six cases is possible:
(A) the log pair (P3, µM) has log canonical singularities,
(B) NCS(P3, µM) = C14 and S is a point such that S 6∈ C14,
(C) NCS(P3, µM) = Σ8 and S ∩ Σ8 = ∅,
(D) NCS(P3, µM) = C6 and S is a curve such that S ∩ C6 = ∅ and

deg(S) 6 9,
(E) NCS(P3, µM) = C6 and S is a point such that S 6∈ Σ8,
(F) NCS(P3, µM) = C6 ∪ Σ8 and S is a curve such that one has

S ∩ (C6 ∪ Σ8) = ∅ and deg(S) 6 9,
(G) NCS(P3, µM) = C6 ∪ Σ8 and S is a point such that S 6∈ C6 ∪Σ8.

Proof. Let us show how to find µ and S in several steps. Put

µ1 = sup
{

ǫ ∈ Q
∣

∣

∣ the log pair
(

P3, ǫM
)

is log canonical
}

,

and let S1 be a minimal center in LCS(P3, µ1M). Then µ1 < 2λ.
If S1 is a curve, then S1 ∩ Σ8 = ∅ by Lemmas 3.14 and 5.3, since S1 is smooth

by Theorem 2.10. If S1 ∩ Σ8 = ∅ and S1 6= C6, then we have the case (A) by
putting µ = µ1 and S = S1. Thus, to complete the proof, we may assume that
either S1 ∩ Σ8 6= ∅ or S1 = C6.

Let us consider the mutually excluding cases S1∩Σ8 6= ∅ and S1 = C6 separately.
Suppose that S1 = C6. Put

µ2 = sup
{

ǫ ∈ Q
∣

∣

∣
the log pair

(

P3, ǫM
)

is log canonical outside C6

}

< 2λ,

let T2 be a center in the set LCS(P3, µ2M) such that T2 6= C6, and let S2 be
a minimal center in the set LCS(P3, µ2M) such that S2 ⊆ T2. If T2 is a curve,
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then deg(T2) 6 9 and T2 ∩ Σ8 = T2 ∩ C6 = ∅ by Lemmas 3.14, 5.3 and 5.8, since
C14 ∩ C6 = ∅ by Lemma 3.13 and C6 ∈ NLCS(P3, 2λM).

If T2 is a curve and S2 = T2, then we have the case (D) by putting µ = µ2 and
S = S2. If T2 is a curve and S2 is a point, then we have the case (E) by putting
µ = µ2 and S = S2. If T2 = S2 is a point not in Σ8, then we have the case (E) by
putting µ = µ2 and S = S2. Thus, to finish the case S1 = C6, we may assume that
S2 = T2 is a point in Σ8. Put

µ3 = sup
{

ǫ ∈ Q
∣

∣

∣ the log pair
(

P3, ǫM
)

is log canonical outside C6 ∪ Σ8

}

< 2λ,

let T3 be a center in the set LCS(P3, µ3M) such that T3 6⊂ C6 ∪ Σ8, and let S3
be a minimal center in the set LCS(P3, µ3M) such that S3 ⊆ T3. If T3 is a curve,
then deg(T3) 6 9 and T3 ∩ Σ8 = T3 ∩ C6 = ∅ by Lemmas 3.14, 5.3 and 5.8, since
C14 ∩ C6 = ∅ by Lemma 3.13 and C6 ∈ NLCS(P3, 2λM).

If T3 is a curve and S3 = T3, then we have the case (F) by putting µ = µ2 and
S = S2. If T2 is a curve and S2 is a point, then we have the case (G) by putting
µ = µ2 and S = S2. If T2 = S2 is a point, then we have the case (G) by putting
µ = µ2 and S = S2. Therefore, the case S1 = C6 is done, and we may assume that
S1 ∩Σ8 6= ∅, which implies that the subvariety S1 is a point in Σ8 by Theorem 2.10
and Lemmas 3.14 and 5.3. Put

µ′2 = sup
{

ǫ ∈ Q
∣

∣

∣
the log pair

(

P3, ǫM
)

is log canonical outside Σ8

}

< 2λ,

let T ′
2 be a center in the set LCS(P3, µ′2M) such that T ′

2 6⊂ Σ8, and let S′
2 be

a minimal center in the set LCS(P3, µ′2M) such that S′
2 ⊆ T ′

2. Note that if S′
2

is a point in Σ8, then T ′
2 6= S′

2 which implies that T ′
2 must be the curve C14 by

Lemmas 3.14 and 5.3.
If T ′

2 is a point, then S′
2 = T ′

2, and we have the case (C) by putting µ = µ′2
and S = S′

2. So, to complete the proof, we may assume that T ′
2 is an irreducible

curve.
If S′

2 = T ′
2, then S

′
2 is a smooth curve such that deg(S′

2) 6 15 by Theorem 2.10
and Lemma 5.3, which immediately implies that T ′

2 ∩ Σ8 = ∅ by Lemma 3.14. If
S′
2 = T ′

2 6= C6, then we have the case (C) by putting µ = µ′2 and S = S′
2. If S′

2 is
a point not in Σ8, then we have the case (C) by putting µ = µ′

2
and S = S′

2
. Hence,

to complete the proof, we may assume that either S′
2
is a point of the set Σ8 and

T ′
2
= C14, or we have S′

2
= T ′

2
= C6. Let us consider these cases separately.

Suppose that S′
2
is a point of the set Σ8 and T ′

2
= C14. Put

µ′3 = sup
{

ǫ ∈ Q
∣

∣

∣
the log pair

(

P3, ǫM
)

is log canonical outside C14

}

< 2λ,

let T ′
3 be a center in the set LCS(P3, µ′3M) such that T ′

3 6⊂ C14. Then T3 is a point by
Lemma 5.8, which implies that we have the case (B) by putting µ = µ′3 and S = T ′

3.
To complete the proof, we may assume that S′

2 = T ′
2 = C6. Put

µ′′3 = sup
{

ǫ ∈ Q
∣

∣

∣
the log pair

(

P3, ǫM
)

is log canonical outside C6 ∪ Σ8

}

< 2λ,

let T ′
3 be a center in the set LCS(P3, µ′′3M) such that T ′′

3 6⊂ C6 ∩ Σ8, and let S′′
3

be a minimal center in the set LCS(P3, µ′′
3
M) such that S′′

3
⊆ T ′′

3
. Note that

C14 6∈ LCS(P3, 2λM) by Lemma 5.8.
If T ′′

3 is a point, then S′′
3 = T ′′

3 , and we have the case (G) by putting µ = µ′′3
and S = S′′

3 . Thus, we may assume that T ′′
3 is a curve. Then one

has deg(T ′′
3 ) 6 9 and T ′′

3 ∩ C6 = T ′′
3 ∩ Σ8 = ∅ by Lemmas 3.14, 5.3 and 5.8,

since C6 ∈ LCS(P3, 2λM) 6∋ C14. Finally, we put µ = µ′′3 and S = S′′
3 . Then we
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have the case (G) if the center S′′
3 is a point, and we have the case (F) if the center

S′′
3 is a curve, which completes the proof. �

Let ǫ be any rational number such that µ < ǫµ < 2λ. Then it follows from
Lemma 2.13 that there is a G-invariant linear system B on P3 such that B does not
have fixed components, and there are positive rational numbers ǫ1 and ǫ2 such that
1 > ǫ1 ≫ ǫ2 > 0 and

LCS
(

P3, ǫ1µM+ ǫ2B
)

=

(

⊔

g∈G

{

g
(

S
)

}

)

⊔

NLCS
(

P3, µM
)

,

the log pair (P3, ǫ1µM+ǫ2B) is log canonical at every point of g(Z) for every g ∈ G,
and ǫ1µM+ ǫ2B ∼Q ǫµM. Let Z be the G-orbit of the subvariety S. Then one of
the following cases is possible:

(A) LCS(P3, ǫ1µM+ ǫ2B) = Z,
(B) LCS(P3, ǫ1µM+ ǫ2B) = Z ⊔ C14 and Z is finite set,
(C) LCS(P3, ǫ1µM+ ǫ2B) = Z ⊔ Σ8,
(D) LCS(P3, ǫ1µM+ ǫ2B) = Z ⊔ C6 and Z is a curve such that deg(Z) 6 9,
(E) LCS(P3, ǫ1µM+ ǫ2B) = Z ⊔ C6 and Z is a finite set such that Z 6= Σ8,
(F) LCS(P3, ǫ1µM+ ǫ2B) = Z ⊔C6 ⊔Σ8 and Z is a curve such that deg(Z) 6 9,
(G) LCS(P3, ǫ1µM+ ǫ2B) = Z ⊔ C6 ⊔Σ8 and Z is a finite set.

Put D = ǫ1µM+ ǫ2B. Let L be the union of all connected components of the log
canonical singularity subscheme L(P3,D) whose supports contains no components
of the subvariety Z. Then

Supp
(

L
)

=































∅ in the case (A),

C14 in the case (B),

Σ8 in the case (C),

C6 in the cases (D) and (E),

C6 ⊔ Σ8 in the cases (F) and (G),

Let I(P3,D) be the multiplier ideal sheaf of the log pair (P3,D). Then

(5.10) h0
(

OL ⊗OP3

(

4
)

)

+h0
(

OZ ⊗OP3

(

4
)

)

= 35−h0
(

OP3

(

4
)

⊗I
(

P3,D
)

)

6 35

by Theorem 2.2.

Corollary 5.11. Suppose that Z is a finite set. Then Z contains at most 35 points,
and Z imposes independent linear conditions on quartic surfaces in P3.

Lemma 5.12. Suppose that S is a point. Then |Z| 6= 24.

Proof. Suppose that |Z| = 24. Then Z = Σ24 by Lemma 3.2, and there is a hyper-
surface F of degree 4 in P3 such that Z \S ⊂ F and S 6⊂ F by Corollary 5.11. Thus,
there is a unique point P ∈ C6 such that P 6= S and F |C6

= P +Z \S ∼ F4|C6
= Z,

which implies that P ∼ S on C6, which is impossible, since C6 is a smooth curve of
genus 3. �

Lemma 5.13. The subvariety S is a curve.

Proof. Suppose that S is a point. By Lemmas 3.2 and 5.12 and Corollary 5.11, we
have |Z| = 28, because Z 6= Σ8. Without loss of generality, we may assume that
Z = Σ28.

Let M1 and M2 be general surfaces in M. Put M1 ·M1 = Ξ + Λ, where Ξ and
Λ are effective cycles such that Supp(Ξ) ∩ Supp(Λ) consists of finitely many points,
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and Supp(Ξ) ⊃ Σ28 6⊂ Supp(Λ). If S ∈ NCS(P3, λM), then multS(Ξ) > 4/λ2 by
Theorem 2.7.

Let R be a general surface in R (see Lemma 3.19). Then Supp(Ξ) ∩ R consists
of at most finitely many points by Lemma 3.19 and Corollary 5.11. Thus, we must
have

64
/

λ2 > 64
/

λ2 −R · Λ = R · Ξ >
∑

P∈Σ28

multP
(

Ξ
)

= 28multS
(

Ξ
)

,

which implies that multS(Ξ) 6 16/(7λ2). So g(S) 6∈ NCS(P3, λM) for every g ∈ G.
Note that Σ28 6⊂ C6⊔C14 by Lemma 2.15, since C6 is smooth and Sing(C14) = Σ8.
It follows from Lemmas 5.4, 5.5 and 5.7 that the set NLCS(P3, 2λM) contains

an irreducible subvariety that is not contained in C6 ∪ C14 ∪Σ28. Put

µ̄ = sup
{

ǫ ∈ Q
∣

∣

∣ the log pair
(

P3, ǫM
)

is log canonical outside C6 ∪ C14 ∪ Σ28

}

.

The set LCS(P3, µ̄M) contains every point in Σ28. If µ̄ > µ, then
NLCS(P3, µ̄M) also contains every points in Σ28. It follows from Lemma 2.8 that
µ̄ < 2λ. Note that µ̄ > µ.

Let Ω be a center LCS(P3, µ̄M) such that Ω 6⊂ C6 ∪C14 ∪Σ28. Note that Ω does
exist. Let us choose a center Γ ∈ LCS(P3, µ̄M) in the following way:

• if Ω is a point, then we put Γ = Ω,
• if Ω is a curve that is a minimal center in LCS(P3, µ̄M), then we put Γ = Ω,
• if Ω is a curve that is not a minimal center in LCS(P3, µ̄M),
then let Γ be a point in Ω that is also a center in LCS(P3, µ̄M).

Let ∆ be a G-orbit of the center Γ. Then ∆ ∩ Σ8 = ∆ ∩ Σ28 = ∅ by Lem-
mas 3.14, 3.17, 5.8, 5.3.

Let ǭ be a rational number such that µ̄ < ǭµ̄ < 2λ. Arguing as in the proof of
Lemma 2.13, we obtain a G-invariant linear system B′ on P3 such that B′ does not
have fixed components. Moreover, we can choose positive rational numbers ǭ1 and ǭ2
such that 1 > ǭ1 ≫ ǭ2 > 0 and

LCS
(

P3, ǭ1µ̄M+ ǭ2B′
)

=

(

⊔

g∈G

{

g
(

Γ
)

}

)

⊔

(

⊔

P∈Σ28

{

P
}

)

⊔

NLCS
(

P3, µ̄M
)

if µ̄ = µ, or

LCS
(

P3, ǭ1µ̄M+ ǭ2B′
)

=

(

⊔

g∈G

{

g
(

Γ
)

}

)

⊔

NLCS
(

P3, µ̄M
)

if µ̄ > µ.
Put D̄ = ǭ1µ̄M + ǭ2B′. Then Γ is a connected component of the subscheme

L(P3, D̄). Let L̄ be the union of all connected components of the subscheme
L(P3, D̄) whose supports contain no components of the subvariety ∆. Then
h0(OL̄ ⊗OP3(4)) > 28, since Σ28 ⊆ Supp(L̄).

Let I(P3, D̄) be the multiplier ideal sheaf of the log pair (P3, D̄). Then

h0
(

O∆ ⊗OP3

(

4
)

)

= 35− h0
(

OP3

(

4
)

⊗ I
(

P3, D̄
)

)

− h0
(

OL̄ ⊗OP3

(

4
)

)

6 7

by Theorem 2.2, which implies that Γ is not a point by Lemma 3.2. We see that ∆
is a curve. By Theorem 2.10, the curve ∆ is a smooth curve in P3 of degree d and
genus g 6 2d. Then

deg
(

∆
)

deg
(

Γ
)

(

2d+ 1
)

6
deg
(

∆
)

deg
(

Γ
)

(

4d− g + 1
)

6 7,
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which gives d 6 3. Thus, we have ∆ 6= Γ, so that deg(∆) > 7deg(Γ) by Corollary B.2.
We have

21 6 7
(

2d+ 1
)

6

(

2d+ 1
)deg

(

∆
)

deg
(

Γ
)

(

2d+ 1
)

6
deg
(

∆
)

deg
(

Γ
)

(

4d− g + 1
)

6 7,

which is a contradiction. �

By Theorem 2.10, the curve S is a smooth curve of degree d and genus g such that
g 6 2d, which implies, in particular, that the case (B) is not possible by Lemma 5.8.

Let GS be the stabilizer subgroup in G of the subvariety S. Put
p = h0(L ⊗OP3(4)), put q = h0(OP3(4) ⊗ I(P3,D)), and let r be the number of
irreducible components of the curve Z. Then

(5.14) r
(

4d− g + 1
)

= 35− q − p

by (5.10), the Riemann–Roch theorem and Remark 2.12.

Lemma 5.15. The equality r = 1 holds.

Proof. Suppose that r 6= 1. Then r > 7 by Corollary B.2, which implies that

4d− g + 1 =
35− q − p

r
6 5

by (5.14). But g 6 2d. Then 4d − g + 1 6 5, which implies that g = p = q = 0,
d = 1 and r = 7.

The induced action of the group GS ∼= S4 on the line S is faithful, which implies
that S ⊂ F4, since GS-invariant subsets in S have at least 6 points. Then Z ⊂ F4,
which contradicts q = 0. �

Therefore, we see that Z = S.

Remark 5.16. Let I be the trivial representation of the group G. By Lemma B.8 we
have

H0

(

OP3

(

4
)

)

∼= I ⊕W6 ⊕W6 ⊕W7 ⊕W7 ⊕W8,

whereWi is an irreducible representation of the group G ∼= PSL2(F7) of dimension i.
Then p + q 6∈ {2, 3, 4, 5, 10, 11, 17}, because p is divisible by 8. If S ⊂ F4, then
p+ q 6∈ {0, 2, 3, 4, 5, 6, 10, 11, 12, 17}.

Note that there is a natural faithful action of the group G on the curve S.

Lemma 5.17. We have g ∈ {3, 8, 10, 15, 17, 22, 24, 29}.

Proof. This follows from Lemmas 2.16 and 3.2, since g 6 2d 6 30 by Lemma 5.3. �

Lemma 5.18. Suppose that d 6= 6 and d 6= 12. Then S ⊂ F4.

Proof. Suppose that S 6⊂ F4. Then F4 ∩ S is union of some G-orbits Λ1, . . . ,Λs.
Thus

∑s
i=1

ni|Λi| = 4d for some positive integers n1, n2, . . . , ns. Using Lemma 2.16,
we obtain that d = 14, s = 1, n1 = 1 and |Λ1| = 56. Then g = 22+ q+ p 6 2d = 28,
which implies that g = 22 by Lemma 5.17 and Remark 5.16. By Lemma 2.16, we
have |Λ1| 6= 56, which is a contradiction. �

Note that d ∈ {6, 7, 8, 9} in the cases (D), (E), (F), (G).

Lemma 5.19. The equality d = 6 is impossible.
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Proof. Suppose that d = 6. Then it follows from Lemma 5.17 that

3 6 g = q + p− 10 6 2d = 12,

which implies that g ∈ {3, 8, 10}. But g 6 4 by Theorem 2.14. Hence S = C6 by
Lemma 3.7, which is a contradiction, because S 6= C6 by the choice of the center
S ∈ LCS(P3, µM). �

Lemma 5.20. The equality d = 7 is impossible.

Proof. Suppose that d = 7. Then g 6 7 by Theorem 2.14 and g = 3 by Lemma 5.17.
By Lemma 5.18, we see that S ⊂ F4. Arguing as in the proof of Lemma 5.17, we

see that the curve S is contained in the intersection F4∩F6∩F14, which is impossible
by Lemma 3.6. �

Lemma 5.21. The equality d = 8 is impossible.

Proof. Suppose that d = 8. Then g 6 9 by Theorem 2.14 and g ∈ {3, 8} by
Lemma 5.17. By Lemma 5.18, we see that S ⊂ F4. Arguing as in the proof of
Lemma 5.17, we see that the curve S is contained in F4 ∩ F6 ∩ F ′

8 if g = 8. Thus
g = 3 by Lemma 3.6. Then OP3(1)|S ∼ 2KS by Theorem 2.19, which is impossible,
since the vector space H0(OS(2KS)) is an irreducible six-dimensional representation
of the group G ∼= PSL2(F7) by Lemma B.4. �

Lemma 5.22. The equality d = 9 is impossible.

Proof. Suppose that d = 9. Then g 6 12 by Theorem 2.14 and g ∈ {3, 8, 10}
by Lemma 5.17. By Lemma 5.18, we have S ⊂ F4. Arguing as in the proof
of Lemma 5.17, we see that S ⊂ F4 ∩ F6 ∩ F ′

8
if g = 8. Similarly, we see that

S ⊂ F4 ∩ F6 ∩ F14 if g = 3. Thus g = 10 by Lemma 3.6. Then S is a complete in-
tersection of two cubic surfaces in P3 (see [17, Example 6.4.3]), which is impossible,
because there are no G-invariant pencils of cubic surfaces by Remark 3.4. �

Thus, the cases (D), (E), (F), (G) are not possible.

Lemma 5.23. The equality d = 10 is impossible.

Proof. Suppose that d = 10. Then p + q 6∈ {2, 4, 11} by Lemma 5.18 and Re-
mark 5.16. But g = 6 + q + p 6 2d = 20, which implies that g ∈ {8, 10, 15, 17} by
Lemma 5.17. Thus, we see that g = 15 and p + q = 9. By Lemma 5.18, we see
that S ⊂ F4. Arguing as in the proof of Lemma 5.17, we see that the curve S is
contained in the intersection F4 ∩ F6 ∩ F ′

8, which is impossible by Lemma 3.6. �

Lemma 5.24. The equality d = 11 is impossible.

Proof. Suppose that d = 11. Then p + q 6∈ {0, 5, 12} by Lemma 5.18 and Re-
mark 5.16. But g = 10 + q + p 6 2d = 22, which implies that g ∈ {10, 15, 17, 22}
by Lemma 5.17. Thus, we see that g = 17 and p + q = 7. By Lemma 5.18, we see
that S ⊂ F4. Arguing as in the proof of Lemma 5.17, we see that the curve S is
contained in the intersection F4 ∩ F6 ∩ F ′

8
, which is impossible by Lemma 3.6. �

Lemma 5.25. The equality d = 12 is impossible.

Proof. Suppose that d = 12. Then p + q 6∈ {3, 5, 10} by Remark 5.16. But
g = 14 + q + p 6 2d = 24, which implies that g ∈ {15, 17, 22, 24} by Lemma 5.17.
Thus either g = 15 or g = 22. Arguing as in the proof of Lemma 5.17 and using
Lemma 2.16, we see that S ⊂ F4 ∩ F6 ∩ F ′

8, which is impossible by Lemma 3.6. �

Lemma 5.26. The equality d = 13 is impossible.
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Proof. Suppose that d = 13. Then p + q 6∈ {4, 6} by Lemma 5.18 and Re-
mark 5.16. But g = 18 + q + p 6 2d = 26, which implies that g ∈ {22, 24} by
Lemma 5.17. Thus p+ q ∈ {4, 6}, which is a contradiction. �

Lemma 5.27. The equality d = 14 is impossible.

Proof. Suppose that d = 14. Then p+ q 6= 0 by Lemma 5.18 and Remark 5.16. But
g = 22+q+p 6 2d = 28, which implies that g = 22 by Lemma 5.17. Thus p = q = 0,
which is a contradiction. �

By Lemmas 5.19, 5.20, 5.21, 5.22, 5.23, 5.24, 5.25, 5.26, 5.27 and Theo-
rem 2.14, one has d > 15, which implies that d = 15 by Lemma 5.3. Then p+ q 6= 3
by Lemma 5.18 and Remark 5.16. But g = 26+ q+ p 6 2d = 30, which implies that
g = 29 by Lemma 5.17. Thus, we have p+ q = 3, which is a contradiction.

The assertion of Theorem 1.9 is proved.

6. Proof of Theorem 1.10

Throughout this section we use assumptions and notation of Theorem 1.10, and
we identify the threefold X with its anticanonical image in P13 (cf. Theorem 4.5).
Suppose that Theorem 1.10 is false. Let us derive a contradiction.

Lemma 6.1. There is a G-invariant linear system M without fixed components
on X such that NCS(X,λM) 6= ∅, where λ is a positive rational number such that
−KX ∼Q λM.

Proof. The required assertion is well-known (see [10], [5, Corollary A.18]). �

Lemma 6.2. Let Λ be a union of all curves in NLCS(X, 2λM). Then deg(Λ) 6 21.

Proof. Let M1 and M2 be general surfaces in M, and let H be a general surface in
the linear system | −KX |. By Theorem 2.5, we have

22
/

λ2 = H ·M1 ·M2 >
∑

P∈Λ∩H

multP

(

M1 ·M2

)

>
(

H · Λ
)

/

λ2 = deg
(

Λ
)/

λ2,

which implies that deg(Λ) 6 21. �

By Lemma 2.8, the set NLCS(X, 2λM) contains every center in NCS(X,λM).
Put

µ̂ = sup
{

ǫ ∈ Q
∣

∣

∣
the log pair

(

X, ǫM
)

is log canonical
}

< 2λ,

let Σ8 be the unique G-invariant subset of the threefold X consisting of 8 points
(see Lemma 6.3), and let F be the unique G-invariant surface in the linear system
| −KX | (see Corollary 4.6).

Lemma 6.3. Suppose that Σ8 ⊂ LCS(X, µ̂M). Then Σ8 6⊂ NCS(X,λM), and
the set NLCS(X, 2λM) does not contain curves that pass through a point in Σ8.

Proof. Take ǫ̂ ∈ Q such that µ̂ < ǫ̂µ̂ < 2λ. By Lemma 2.13, there is a G-invariant
linear system without fixed components B̂ on X, and there are ǫ̂1 ∈ Q ∋ ǫ̂2 such
that 1 > ǫ̂1 ≫ ǫ̂2 > 0 and LCS(X, ǫ̂1µ̂M+ ǫ̂2B̂) = Σ8, the log pair (X, ǫ̂1µ̂M+ ǫ̂2B)
is log canonical, and ǫ̂1µ̂M+ ǫ̂2B ∼Q ǫ̂µ̂M. Put D̂ = ǫ̂1µ̂M+ ǫ̂2B.

Let I(X, D̂) is the multiplier ideal sheaf of the log pair (X, D̂), and let H be
a general surface in the linear system | −KX |. The sequence of groups

0 → H0

(

OX

(

H
)

⊗ I
(

X, D̂
)

)

→ H0

(

OX

(

H
)

)

→ H0
(

OΣ8

)

→ 0
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is exact by Theorem 2.2. Then Σ8 imposes independent linear conditions on surfaces
in | −KX |.

Let D be a linear subsystem of the linear system |−KX | that consists of all surfaces
passing through Σ8. Then it follows from Theorem 4.5 that D is the unique five-
dimensional G-invariant linear subsystem of the linear system | −KX | and F 6∈ D.
It is clear that the base locus of the linear system D does not contain surfaces.

Suppose that the base locus of the linear system D does not contain any curve that
passes through a point in Σ8. Let us show that this assumption implies everything
we have to prove.

LetM1 andM2 be general surfaces in the linear system M. PutM1 ·M1 = Ξ+Λ,
where Ξ and Λ are effective one-cycles such that Σ8 ⊂ Supp(Ξ), Σ8 6⊂ Supp(Λ) and
Supp(Ξ) ∩ Supp(Λ) consists of at most finitely many points. Let D be a general
surface in the linear system D. Since |Supp(Ξ) ∩D| < +∞, one has

22
/

λ2 > 22
/

λ2 −D · Λ = D · Ξ >
∑

P∈Σ8

multP
(

Ξ
)

= 8multP
(

Ξ
)

,

for every point P ∈ Σ8. Then NCS(X,λM) contains no points in Σ8 by Theorem 2.7.
Let Z be a G-orbit of an irreducible curve in X such that Σ8 ⊂ Z. Then

deg
(

Z
)

= D · Z >
∑

P∈Σ8

multP
(

D
)

multP
(

Z
)

>
∑

P∈Σ8

multP
(

Z
)

> 24

by Lemma 2.11. Hence NLCS(X, 2λM) contains no components of the curve Z
by Lemma 6.2, which implies that NLCS(X, 2λM) does not contain curves that
pass through a point in Σ8.

To complete the proof, we must show that the base locus of the linear system D
contains no curves that contain a point in Σ8. Suppose that this is not true. Let us
derive a contradiction.

The base locus of the linear system D contains a curve C that is a G-orbit
of an irreducible curve such that Σ8 ⊂ C. Then multP (C) > 3 for every
P ∈ Σ8 by Lemma 2.11.

Let Q1, Q2, Q3 and Q4 be general points in X, and let H be a linear subsystem
in | −KX | that consists of all surfaces that contain the set {Q1, Q2, Q3, Q4}. Then
H ∩D is a pencil, and the base locus of the linear system H contains no curves.

Let H be a general surface in H, and choose D1 and D2 to be general surfaces in
the pencil H ∩D. Then

22 = H ·D2 ·D2 >

4
∑

i=1

multQi

(

H
)

multQi

(

D1

)

multQi

(

D2

)

+
∣

∣H ∩C
∣

∣ > 4 + deg
(

C
)

,

since deg(C) = |H ∩ C|. Thus, we see that deg(C) 6 18.
Note that C 6⊂ F , since Σ8 6⊂ F . Therefore, we have

∑

P∈F∩C

multP
(

C
)

6
∣

∣F ∩ C
∣

∣ 6 F · C = deg
(

C
)

6 18,

because C 6⊂ F . Applying Theorem 4.8, we see that deg(C) = F ·C = |F ∩C| = 14
and C is smooth at every point of the set F ∩C. Then C is reducible by Lemma 2.15.

Put C =
∑r

i=1
Ci, where Ci is an irreducible curve and r ∈ Z>0. Then one has

r = 14/deg(C1). By Corollary B.2, either deg(C1) = 1 or deg(C1) = 2. On the other
hand, we know that deg(C1) + 1 > |C1 ∩ Σ8|, since Σ8 imposes independent linear
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conditions on surfaces in | −KX |. Hence, we must have

14

deg
(

C1

) = r >
8 · 3

∣

∣C1 ∩ Σ8

∣

∣

,

because multP (C) > 3 for every point P ∈ Σ8. Therefore |C1 ∩ Σ8| = 1 + deg(C1).
Note that deg(C1) 6= 1. Indeed, if deg(C1) = 1, then |C1 ∩ Σ8| = 2 and r = 28,

because the group G acts doubly transitive on the set Σ8 (see [15, p. 173]), which is
a contradiction.

Thus, we see that C1 is an irreducible conic and r = 7, so that |Ci ∩Σ8| = 3.
Let Π1 be a plane in P13 such that C1 ⊂ Π1. Then Π1 contains 3 lines L1

1
,

L2
1 and L3

1 such that |L1
1 ∩ Σ8| = |L2

1 ∩ Σ8| = |L3
1 ∩ Σ8| = 2, and the G-orbit of

the line L1
1
consists of 28 different lines, since G acts doubly transitive on Σ8.

Now one can easily see that the G-orbit of the plane Π1 consists of at least
28/3 > 9 planes, which is impossible since the G-orbit of Π1 consists of at most
r = 7 planes. �

By Lemma 6.3, the set NLCS(X, 2λM) contains a center that is not contained
in Σ8. Put

µ = sup
{

ǫ ∈ Q
∣

∣

∣ the log pair
(

X, ǫM
)

is log canonical outside of the subset Σ8

}

in the case when Σ8 ⊂ LCS(X, µ̂M). If Σ8 6⊂ LCS(X, µ̂M), then put µ = µ̂.

Lemma 6.4. There exist a minimal center in LCS(X,µM) that is not a point of
the set Σ8.

Proof. This immediately follows from Lemma 6.3. �

Let S be a minimal center in LCS(X,µM) such that S 6⊂ Σ8, and let Z be its
G-orbit.

Remark 6.5. If Z = S and S is a curve, then Z ∩ Σ8 = ∅ by Theorem 2.10 and
Lemma 2.15.

Let ǫ be any rational number such that µ < ǫµ < 2λ. Then it follows from
Lemma 2.13 that there exists a G-invariant linear system B on X such that B does
not have fixed components, and there exist positive rational numbers ǫ1 and ǫ2 such
that 1 > ǫ1 ≫ ǫ2 > 0 and

LCS
(

X, ǫ1µM+ ǫ2B
)

=

(

⊔

g∈G

{

g
(

S
)

}

)

⊔

NLCS
(

X,µM
)

,

the log pair (X, ǫ1µM + ǫ2B) is log canonical at every point of the subvariety Z,
and ǫ1µM + ǫ2B ∼Q ǫµM. Put D = ǫ1µM + ǫ2B. By Lemma 6.4, we may have
the following cases:

(A) LCS(X,D) = Z and the log pair (X,D) is log canonical,
(B) LCS(X,D) = Z ⊔ Σ8 and Z is a finite set,
(C) LCS(X,D) = Z ⊔ Σ8 and Z is a curve.

Let L be the union of all connected components of the subscheme L(X,D) whose
supports do not contains any component of the subvariety Z. Then

Supp
(

L
)

=

{

∅ in the case (A),

Σ8 in the cases (B) and (C).
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Let I(X,D) be the multiplier ideal sheaf of the log pair (X,D), and let H be
a general surface in the linear system | −KX |. Then

(6.6) h0
(

OZ ⊗OX

(

H
)

)

= 14− h0
(

OX

(

H
)

⊗ I
(

X,D
)

)

− h0
(

OL

)

6 14

by Theorem 2.2, since L is at most a zero-dimensional subscheme. We have
h0(OL) ∈ {0, 8}.

Corollary 6.7. If Z is a finite set, then |Z| 6 14 and the points of Z impose
independent linear conditions on surfaces in | −KX |.

Lemma 6.8. The subvariety S is a curve.

Proof. Suppose that S is not a curve. Then |Z| = 14 by Theorem 4.8 and Corol-
lary 6.7, because we know that Z 6= Σ8. Note that Z is not contained in any surface
in |−KX | by Corollary 6.7. Let R be a linear subsystem of the linear system |−2KX |
that consists of all surfaces in | − 2KX | that pass through the set Z. Then its base
locus consists of the set Z by [16, Theorem 2].

LetM1 andM2 be general surfaces in the linear system M. PutM1 ·M1 = Ξ+Λ,
where Ξ and Λ are effective one-cycles such that Z ⊂ Supp(Ξ) and Z 6⊂ Supp(Λ) and
Supp(Ξ) ∩ Supp(Λ) consists of at most finitely many points. If S ∈ NCS(X,λM),
then multS(Ξ) > 4/λ2 by Theorem 2.7. Let R be a general surface in the linear
system R. Then

44
/

λ2 > 44
/

λ2 −R · Λ = R · Ξ >
∑

P∈Z

multP
(

Ξ
)

= 14multS
(

Ξ
)

,

which implies that g(S) 6∈ NCS(X,λM) for every g ∈ G.
By Lemma 6.3, the set NLCS(X, 2λM) contains a center not contained in Σ8∪Z.

Put

µ̄ = sup
{

ǫ ∈ Q
∣

∣

∣
the log pair

(

X, ǫM
)

is log canonical outside of the set Σ8 ∪ Z
}

.

Note that µ̄ > µ and S ∈ LCS(X, µ̄M). Moreover, if µ̄ > µ, then S ∈
NLCS(X, µ̄M), because S ∈ LCS(X,µM). It follows from Lemma 2.8 that µ̄ < 2λ.

Let Γ be a center in LCS(X, µ̄M) such that Γ 6⊂ Σ8 ⊔ Z, and let ∆ be its G-
orbit. Then ∆ ∩ Σ8 = ∅ by Lemma 6.3. Note that ∆ ∩ Z = ∅ if Γ is a point and
Γ ∈ NLCS(X, 2λM).

Suppose that the set NLCS(X, 2λM) does not contain curves in X that have
a non-empty intersection with the set Z. Let us use this assumption to derive
a contradiction.

Let ǭ be a rational number such that µ̄ < ǭµ̄ < 2λ. Arguing as in the proof of
Lemma 2.13, we obtain a G-invariant linear system B′ on X such that B′ does not
have fixed components. Moreover, we can choose positive rational numbers ǭ1 and ǭ2
such that 1 > ǭ1 ≫ ǭ2 > 0 and

LCS
(

X, ǭ1µ̄M+ ǭ2B′
)

=

(

⊔

g∈G

{

g
(

Γ
)

}

)

⊔

(

⊔

g∈G

{

g
(

S
)

}

)

⊔

NLCS
(

X, µ̄M
)

if µ̄ = µ, or

LCS
(

X, ǭ1µ̄M+ ǭ2B′
)

=

(

⊔

g∈G

{

g
(

Γ
)

}

)

⊔

NLCS
(

X, µ̄M
)

if µ̄ > µ.
34



Put D̄ = ǭ1µ̄M + ǭ2B′. Then Γ is a connected component of the sub-
scheme L(X, D̄). Let L̄ be the union of all connected components of the subscheme
L(X, D̄) whose supports do not contains any component of the subvariety ∆. Then
Z ⊆ Supp(L̄), which implies that h0(OL̄ ⊗ OX(H)) > 14, because NLCS(X, 2λM)
does not contain curves that have a non-empty intersection with Z.

Let I(X, D̄) be the multiplier ideal sheaf of the log pair (X, D̄). Then

0 6 h0
(

O∆ ⊗OX

(

H
)

)

= 14− h0
(

OX

(

H
)

⊗ I
(

X, D̄
)

)

− h0
(

OL̄ ⊗OX

(

H
)

)

6 0,

by Theorem 2.2. Thus, we have h0(O∆ ⊗OX(H)) = 0, which implies that Γ is not
a point. It follows from Theorem 2.10 that Γ is a smooth curve of genus g such that
H · Γ > 2g − 1. By Remark 2.12, the curve ∆ is a disjoint union of smooth curves
isomorphic to Γ. Then

0 = h0
(

O∆ ⊗OX

(

H
)

)

> H · Γ− g + 1 > 0,

which is a contradiction.
Thus, there is a curve C1 ∈ NLCS(X, 2λM) such that C1 ∩Z 6= ∅. Let C be the

G-orbit of the curve C1. Then NLCS(X, 2λM) contains every irreducible component
of the curve C, which implies that deg(C) 6 21. Hence, we have Z ⊂ C. But
multP (C) > 3 for every P ∈ Σ8 by Lemma 2.11. Thus, we have

42 > 2deg
(

C
)

= R · C >
∑

P∈Z

multP
(

R
)

multP
(

C
)

> 42,

where R is a general surface in R. Therefore deg(C) = 21 and multP (C) = 3 for
every P ∈ Σ8. Note that C 6⊂ F , since Z 6⊂ F . Thus

multP
(

C
)∣

∣F ∩ C
∣

∣ 6 multP

(

F · C
)

∣

∣F ∩C
∣

∣ = F · C = deg
(

C
)

= 21,

for every point P ∈ Z. So the curve C is smooth at every point of the set F ∩C by
Theorem 4.8, which immediately implies that C is reducible by Lemma 2.15.

Put C =
∑r

i=1
Ci, where Ci is an irreducible curve and r ∈ Z>0. Then

deg(C1) ∈ {1, 3}. But deg(C1) + 1 > |C1 ∩ Z|, because the points of Z impose
independent linear conditions on surfaces in | −KX |. We have

21

deg
(

C1

) = r >
14 · 3
∣

∣C1 ∩ Z
∣

∣

,

because multP (C) > 3 for every point P ∈ Z. Thus deg(C1) = 1, r = 21 and
|C1∩Z| = 2. Since irreducible components of the curve C are lines and multP (C) = 3
for every point P ∈ Z, we can easily see that each connected component of the curve
C must have at least 4 components, so that C has at most 6 connected components.
Then C is connected by Corollary B.2.

Let P be a point in Z, let GP be its stabilizer subgroup in G. Then GP ∼= A4

by Lemma B.1, and there are exactly 3 irreducible components of the curve C
containing P , since multP (C) = 3. Without loss of generality, we may assume that
P = C1 ∩ C2 ∩ C3. The group GP naturally acts on the set {C1, C2, C3}, which
implies that there is a subgroup G′

P ⊂ GP ∼= A4 such that G′
P acts trivially on

{C1, C2, C3} and G′
P
∼= Z2 × Z2. Note that C1 is G′

P -invariant. Let P̄ be the point
in Z ∩ C1 such that P̄ 6= P , let GP̄ be its stabilizer subgroup in G. Then

Z2 × Z2
∼= G′

P ⊂ GP̄
∼= A4,

because Z ∩ C1 = {P, P̄}. But the group GP̄ contains a unique subgroup that is
isomorphic to G′

P , which very easily (almost immediately) implies that every point
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of the set Z is G′
P -invariant, which is impossible, since the group G acts faithfully

on Z, because the group G is simple. �

By Theorem 2.10, the curve S is a smooth curve of genus g such that
deg(S) > 2g − 1. By Remark 2.12, the curve Z is a disjoint union of smooth curves
isomorphic to S. Let r be the number of connected components of the curve Z. Put
d = deg(S). Then

(6.9) r
(

d− g + 1
)

= 14− h0
(

OX

(

H
)

⊗ I
(

X,D
)

)

− h0
(

OL

)

by (6.6). Note that h0(OL) = 0 if and only if L(X,D) = Z. Finally, put
q = h0(OX(H)⊗ I(X,D)).

Lemma 6.10. One has L(X,D) = Z.

Proof. Suppose that Z ( L(X,D). Then h0(OL) = 8. It follows from (6.9) that
r(d − g + 1) = 6 − q 6 6, since h0(OL) 6= 0. But d− g + 1 > 1, which implies that
r = 1. Therefore g 6 d−g+1 = 6−q 6 6, which implies that g = 3 by Lemma 2.16.
If S 6⊂ F , then |F ∩ S| 6 21 by Lemma 6.2, which contradicts Lemma 2.15. We see
that S ⊂ F . But q 6 6, so that q = 1 by Lemmas 4.5. Thus d = 7. There is a natural
faithful action of the group G on the curve S such that every G-invariant divisor on
S has even degree by Theorem 2.19. Hence d is even, which is a contradiction. �

In particular, we see that the cases (B) and (C) are impossible.

Lemma 6.11. Suppose that deg(S) = 1. Then r 6= 7.

Proof. Suppose that r = 7. Then q = 0 by (6.9). In particular, we have S 6⊂ F .
Then |F ∩ Z| 6 F · Z = 7, which contradicts Theorem 4.8, because F ∩ Z is
G-invariant. �

Lemma 6.12. The equality r = 1 holds.

Proof. Suppose that r > 2. Then r > 7 by Corollary B.2. If r > 8, then d−g+1 = 1
by (6.9), which implies that g = d > 2g − 1, which leads to a contradiction.

We see that r = 7, so that 1 6 d − g + 1 6 2 by (6.9). Hence d − g + 1 = 2,
since the equality d − g + 1 = 1 leads to a contradiction. Therefore, we have
g = d− 1 > 2g − 2, which gives g 6 2 and d 6 3. Therefore g = 0 and d = 1, which
is impossible by Lemma 6.11. �

Thus, there is a natural faithful action of the group G on the curve S. We have
d = 13 + g − q > 2g − 1, which implies that q 6 14− g. Note that g 6 14− q 6 14.
Then g ∈ {3, 8, 10} by Lemma 2.16.

Lemma 6.13. The curve S is contained in the surface F .

Proof. If S 6⊂ F , then |F ∩ S| 6 21 by Lemma 6.2, which is impossible by
Lemma 2.15. �

Applying Lemmas 4.5 and 6.13, we see that q ∈ {1, 7, 8}.
Lemma 6.14. The equality g = 3 holds.

Proof. Suppose that g 6= 3. Then g ∈ {8, 10}. It follows from (6.9) that
q 6 14− g 6 6, which implies that q = 1. Then d ∈ {20, 22}, which is impossi-
ble by Lemmas 2.20 and 2.21. �

Thus, we have d = 16− q, where q ∈ {1, 7, 8}.
Lemma 6.15. The equality d = 8 holds.
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Proof. By Theorem 2.19, there is a G-invariant line bundle θ ∈ Pic(S) of degree 2
such that PicG(S) is generated by θ. In particular, we see that d is even. But
d = 16− q and q ∈ {1, 7, 8}, so that d = 8. �

Let Q be a surface in the threefold X that is swept out by lines. Then Q ∼ −2KX

and the surface Q is irreducible by Lemma 4.7. Note that Q is G-invariant.

Lemma 6.16. The curve S is contained in Q ∩ F .
Proof. By Lemma 6.13, we have S ⊂ F . If S 6⊂ Q, then |Q ∩ S| 6 2deg(S) = 16
which is impossible by Lemma 2.15. Thus, we see that S ⊂ Q ∩ F . �

The surface F is a smooth K3 surface by Lemma 4.10. Then S · S = 0 on
the surface X. Put Q

∣

∣

F
= mS + ∆, where m ∈ Z>0, and ∆ is curve such that

S 6⊂ Supp(∆). Then

(6.17) 16 = 2deg
(

S
)

=
(

mS +∆
)

· S = mS · S +∆ · S = 4m+∆ · S,

which implies that |∆ ∩ S| 6 12. Hence, it follows from Lemma 2.15 that
Supp(∆) ∩ S = ∅, since ∆ is G-invariant. Then ∆ = ∅, because Supp

(

∆
)

∪ S
is connected (see [17, Corollary 7.9]). Now it follows from (6.17) that m = 4, which
immediately leads to a contradiction, since 44 = Q · F ·H = 4H · S = 32, where H
is a general surface in | −KX |. The obtained contradiction completes the proof of
Theorem 1.10.

Proof of Theorem 1.12. Suppose that the pair (X,R) is not log canonical. Put

µ = sup
{

ǫ ∈ Q
∣

∣

∣
the log pair

(

X, ǫR
)

is log canonical
}

< 1.

Let S be a minimal center of log canonical singularities of the log pair (X,µR) (see
[21], [7]), and let Z be the G-orbit of the subvariety S. Then dim(S) 6 1 since −KX

generates the group Pic(X).
Take ǫ ∈ Q such that 1 > ǫ ≫ 0. By Lemma 2.13, there is a G-invariant

Q-divisor D such that D ∼Q ǫR, the singularities of the log pair (X,D) are log
canonical, and every minimal center of log canonical singularities of the log pair
(X,D) is an irreducible component of the subvariety Z.

Let I(X,D) be the multiplier ideal sheaf of the log pair (X,D). Then the sequence

0 → H0

(

OX ⊗ I
(

X,D
)

)

→ H0
(

OX

)

→ H0
(

OZ

)

→ 0

is exact by Theorem 2.2. In particular, we see that Z is connected. By Lemma 2.9,
the subvariety Z is irreducible. Hence, we must have Z = S.

The variety X does not contain G-invariant points by Theorem 4.8. Thus, we
see that S must be a curve. Then S is a smooth and rational curve Theorem 2.10,
which is impossible, because the group G cannot act non-trivially on P1. �

Appendix A. Prime Fano threefolds of degree 22

In this section we describe Mukai’s constructions of prime Fano threefolds of
degree 22. Let F (x, y, z) be a quartic form, let C be a curve in P2 defined by

F
(

x, y, z
)

= 0 ⊂ P2 ∼= Proj
(

C
[

x, y, z
]

)

,

and let L1, L2, L3, L4, L5, L6 be six different lines in P2.

Definition A.1. We say that
∑

6

i=1
Li is a hexagon in P2.
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Let li(x, y, z) is a linear form such that the line Li is given by li(x, y, z) = 0.

Definition A.2 ([13, Definition 4.1]). The hexagon
∑

6

i=1
Li is polar to the curve

C if F (x, y, z) =
∑

6

i=1
l4i (x, y, z).

Consider
∑

6

i=1
Li as an element of the Hilbert scheme of points in the dual

plane P̌2.

Definition A.3 ([30], [31], [37]). The variety of polar hexagons to the curve C is

VSP
(

C, 6
)

=

{

Γ ∈ Hilb6

(

P̌2

) ∣

∣

∣ Γ is polar to the curve C

}

⊂ Hilb6

(

P̌2

)

.

Put X = VSP(C, 6). Note that X is a smooth Fano threefold of anticanonical
degree 22 provided that C is general (see [30, Theorem 5], [31, Theorem 11]). Below
we will assume that X is smooth.

Put W = Spec(C[x, y, z]) ∼= C3. Then F (x, y, z) ∈ Sym4(W∨) and the partial
derivatives of the form F (x, y, z) give an embedding φ : W → Sym3(W∨).

Suppose that C is not degenerate (see [13, Definition 2.8]). Then every hexagon
Γ ∈ X defines a six-dimensional subspace WΓ ⊂ Sym3(W∨) such that φ(W ) ⊂WΓ.
This gives a rational map X 99K Gr(3, U7), where U7

∼= Sym3(W∨)/W . The
constructed rational map X 99K Gr(3, U7) can be extended to an embedding
X →֒ Gr(3, U7). This gives an embedding X →֒ P(Λ3(U7)).

There is a natural sequence of maps

Λ2(W )⊗ Sym4
(

W
) α−→

(

W ⊗W
)

⊗
(

Sym2
(

W
)

⊗ Sym2
(

W
)

)

β−→
β−→ Sym3

(

W
)

⊗ Sym3
(

W
) γ−→ Λ2

(

Sym3
(

W
)

)

,

and it follows from [13, Section 2.3] that the quartic form F (x, y, z) defines a nat-
ural map δF : Sym2(W ) → Sym2(W∨). Since the quartic C is not degenerate,
the map δF is invertible. Therefore, there is a natural choice of a non-zero element
ξδ−1

F ∈ Sym4(W ) via the natural map

Hom
(

Sym2
(

W∨
)

,Sym2
(

W
)

)

∼= Sym2
(

W
)

⊗ Sym2
(

W
) ξ−→ Sym4

(

W
)

,

which implies that the composition γ ◦β◦α gives a map ζ : Λ2(W ) → Λ2(Sym3(W )),
where Λ2(W ) ∼=W∨.

Lemma A.4. Let ω be an element in im(ζ) considered as a skew form on Sym3(W∨),
and let Π ⊂ Sym3(W∨) be the kernel of the form ω. Then im(φ) ⊂ Π.

Proof. This is a straightforward computation. �

By Lemma A.4, the map ζ gives us a map W∨ → Λ2(U∨
7
). Therefore, one has

W∨ ⊗ U∨
7

σ→ Λ2(U∨
7 )⊗ U∨

7

υ→ Λ3(U∨
7 )

so that υ ◦σ is a monomorphism. Put U14 = Λ3(U7)/(W
∨⊗U∨

7 )
∼= C14 and consider

im(υ◦σ) as a 21-dimensional linear system of hyperplanes in P(Λ3(U7)) vanishing on
the image of the threefold X. This gives us a natural embedding X →֒ P(U14).

Theorem A.5 (cf. [30], [31], [37]). The embeddingX →֒ P(U14) is the anticanonical
embedding.
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Appendix B. Representation theory

In this section we collect some facts about the groups PSL2(F7) and SL2(F7).

Lemma B.1 ([9]). Let Γ be a maximal subgroup in PSL2(F7). Then

• either Γ ∼= Z7 ⋊ Z3 and Γ is unique up to conjugation,
• or Γ ∼= S4 and PSL2(F7) contains two subgroups isomorphic to Γ up to
conjugation.

Corollary B.2. If PSL2(F7) acts transitively on a finite set Σ such that |Σ| 6 41,
then |Σ| ∈ {1, 7, 8, 14, 21, 24, 28}.

The group PSL2(F7) has exactly six non-isomorphic irreducible representa-
tions (see [9]), which we denote by I, W3, W

∨
3 , W6, W7, W8. The values of their

characters are listed in the table:

id (2) (3) (4) (7) (7′)

♯ 1 21 56 42 24 24

I 1 1 1 1 1 1

W3 3 −1 0 1 ǫ ǭ

W∨
3

3 −1 0 1 ǭ ǫ

W6 6 2 0 0 −1 −1

W7 7 −1 1 −1 0 0

W8 8 0 −1 0 1 1

We use the following notation. The first row represents the conjugacy classes
in PSL2(F7): the symbol id denotes the identity element, the symbol (n) denotes
a class of elements of order n, the symbols (7) and (7′) denote two different conju-
gacy classes of elements of order 7; note that if g ∈ (7), then g2 ∈ (7) and g4 ∈ (7),
while g3 ∈ (7′), g5 ∈ (7′) and g6 ∈ (7′). The second row lists the number of elements
in each conjugacy class. The next six rows list the values of the characters of irre-
ducible representations. By ǫ we denote the complex number −1/2 +

√
−7/2, and

by ǭ its complex conjugate.
Looking at the above table, one easily obtains the following corollaries.

Corollary B.3. Let Γ be a subgroup of the group PSL2(F7) such that Γ ∼= A4.
Then W3 is an irreducible Γ-representation, and W6 is a sum of two irreducible
three-dimensional Γ-representations.

Corollary B.4. The following isomorphisms of the representations of the group
PSL2(F7) hold:

Sym2(W3) ∼=W6
∼= Sym2(W∨

3 ), Λ
2(W∨

3 )
∼=W3, Sym

3(W∨
3 )

∼=W7 ⊕W3,

Λ4(W7) ∼= Λ3(W7)
∨ ∼= Λ3(W7), W7 ⊗W∨

3
∼=W6 ⊕W7 ⊕W8,

Λ3
(

W7

) ∼= I ⊕W6 ⊕W6 ⊕W7 ⊕W7 ⊕W8.

Let Ĝ be a subgroup in SL3(C) that is isomorphic to PSL2(F7), and let

φ : SL3(C) → Aut(P2) be a natural projection. Put G = φ(Ĝ). Then G ∼= Ĝ.

Lemma B.5 ([43, Section 2.10]). There are no G-invariant curves in P2 of degrees 1,
2, 3, and 5. There is unique G-invariant curve in P2 of degree 4, which is isomorphic
to the quartic curve described in Example 1.8. There is unique G-invariant curve
in P2 of degree 6, which is isomorphic to the Hessian curve of the quartic curve
described in Example 1.8.
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Lemma B.6. There are no G-invariant subsets in P2 consisting of at most 20 points.

Proof. Restricting W3 to subgroups of the group PSL2(F7), we obtain the required
assertion. �

Let Γ be a subgroup in SL2(F7), let π : SL2(F7) → PSL2(F7) be a natural epi-
morphism. Then Γ ∼= 2.π(Γ) if π(Γ) is isomorphic to PSL2(F7), S4, A4, Z7⋊Z3, D4,
or S3.

The following table contains the character values of one four-dimensional and one
eight-dimensional irreducible representations of the group SL2(7) and some infor-
mation about its subgroups:

id −id (3)3 (3)6 (7)7 (7)7 (7)14 (7)14 (2)4 (4)8 (4)8
G 1 1 56 56 24 24 24 24 42 42 42

2.S4 1 1 8 8 0 0 0 0 18 6 6

2.A4 1 1 8 8 0 0 0 0 6 0 0

2.(Z7 ⋊ Z3) 1 1 14 14 3 3 3 3 0 0 0

2.D4 1 1 0 0 0 0 0 0 10 2 2

2.S3 1 1 2 2 0 0 0 0 6 0 0

U4 4 −4 1 −1 ᾱ α −α −ᾱ 0 0 0

U8 8 −8 −1 1 1 1 −1 −1 0 0 0

We use the following notation. The first row represents the conjugacy classes in
SL2(F7): the symbol id denotes the identity element, the symbol −id denotes the el-
ement different from id such that −id ∈ ker(π), the symbol (n)k denotes a conjugacy
class that consists of elements of order k such that their images in PSL2(F7) have or-
der n. The next six rows list the number of elements in the corresponding conjugacy
classes in some subgroups of the group SL2(F7). The last two rows list the values of
the characters of two irreducible representations. The symbol α denotes the complex
number −(ζ3 + ζ5 + ζ6), where ζ is a primitive seventh root of unity, and ᾱ denotes
the complex conjugate of α.

Lemma B.7. Suppose that Γ ∼= 2.(Z7 ⋊ Z3). Then U4
∼= T ⊕ J and

U8
∼= T ⊕ T1 ⊕ J1 ⊕ J2

as representations of the group Γ, where J , J1 and J1 are pairwise non-isomorphic
one-dimensional representations, while T and T1 are irreducible three-dimensional
representations.

Proof. Let χ4 and χ8 be the characters of the representations U4 and U8, respec-
tively. Then 〈χ4, χ4〉 = 2, which immediately implies that U4

∼= J ⊕ T for some
one-dimensional representations J and some irreducible three-dimensional represen-
tation T of the group Γ, because irreducible representations of the group Γ are either
one-dimensional or three-dimensional. Similarly, we have 〈χ8, χ8〉 = 4, which implies
that U8

∼= J1 ⊕ J2 ⊕ T1 ⊕ T2 for some one-dimensional representations J1 6∼= J2 and
some irreducible three-dimensional representations T1 6∼= T2 of the group Γ.

We may assume that T2 ∼= T , because there exist exactly two three-dimensional
representations of the group Γ with a non-trivial action of its center. But
〈χ4, χ8〉 = 1, which implies that that neither J1 nor J2 is isomorphic to J . �

Note that we can consider PSL2(F7)-representations as SL2(F7)-representations.

Lemma B.8. One has Sym4(U4) ∼= I⊕W6⊕W6⊕W7⊕W7⊕W8 as representations
of the group PSL2(F7) or the group SL2(F7).
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Proof. This follows from elementary and explicit computations (see also [11, Appen-
dix 1]). �

Lemma B.9. As a representation of the group Γ, the representation U4 splits as
a sum of two irreducible two-dimensional subrepresentations if Γ ∼= 2.S4, a sum of
two irreducible two-dimensional subrepresentations if Γ ∼= 2.A4, a sum of two irre-
ducible two-dimensional subrepresentations if Γ ∼= 2.D4, a sum of an irreducible two-
dimensional and two non-isomorphic one-dimensional subrepresentations if Γ ∼= 2.S3.

Proof. Let χ4 be the character of the representations U4. If Γ ∼= 2.D4, then
〈χ4, χ4〉 = 2, which easily implies that U4 splits as a sum of two irreducible two-
dimensional subrepresentations, because 2.D4 has no odd-dimensional non-trivial
irreducible representations.

Since all irreducible representations of the group 2.A4 with a non-trivial action
of its center are two-dimensional, the representation U4 splits as a sum of two irre-
ducible two-dimensional subrepresentations of the group Γ if Γ ∼= 2.A4 or Γ ∼= 2.S4.

To complete the proof, we may assume that Γ ∼= 2.S3. Then there is an epi-
morphism Γ → Z4. Let U be the standard unitary two-dimensional irreducible
representation of the group Γ, let J and J1 be one-dimensional representations of
the group Γ that arise from the faithful non-isomorphic one-dimensional represen-
tations of the group Z4. Then U4

∼= U ⊕ J ⊕ J1 as can be seen from the following
table that lists the character values of these representations:

id −id (3)3 (3)6 (2)4
2.S3 1 1 2 2 6

U4 4 −4 1 −1 0

U 2 −2 −1 1 0

J 4 −4 1 −1
√
−1

J1 4 −4 1 −1 −
√
−1

where we used notation similar to the ones used in the table above. �
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