arXiv:1103.3141v1 [math.DG] 16 Mar 2011

INVARIANT PROLONGATION OF
OVERDETERMINED PDE’S IN PROJECTIVE,
CONFORMAL AND GRASSMANNIAN GEOMETRY

M. HAMMERL, P. SOMBERG, V. SOUCEK, J. SILHAN

ABSTRACT. This is the second in a series of papers on natural
modification of the normal tractor connection in a parabolic ge-
ometry, which naturally prolongs an underlying overdetermined
system of invariant differential equations. We give a short review
of the general procedure developed in [5] and then compute the
prolongation covariant derivatives for a number of interesting ex-
amples in projective, conformal and Grassmannian geometries.

1. INTRODUCTION

In this paper we study certain overdetermined linear systems of
PDE’s that have geometric origin and satisfy strong invariance prop-
erties. The goal is to rewrite these systems in a closed form, which for
our purposes means to find an extended system described by a covari-
ant derivative in such a way that parallel sections with respect to this
covariant derivative are in one to one correspondence with solutions of
the original equation. The main advantage of such a prolongation is
clear - one immediately obtains a bound on the dimension of the solu-
tion space and the curvature of this covariant derivative obstructs the
existence of a solution. Moreover, there is a neat relationship between
geometry of the underlying manifold and the extended prolongation
system, see e.g. [2],[5] and the references therein.

The equations we study appear naturally for parabolic geometries
like projective, conformal or Grassmannian structures and include as
a special instances the equations describing the infinitesimal symme-
tries of geometric structures. Special examples of overdetermined linear
systems of invariant equations coming from parabolic geometries are
discussed in e.g., [2], [13], [7], [10], [18].

In fact, the invariant equations in question appear in the Bernstein-
Gelfand-Gelfand (BGG for short) sequences, which are the source of
overdetermined invariant operators resp. their prolonged systems in
question. The prolongation of the first operator in the BGG sequence
is realized by certain commutative square related to BGG operators
in the sequence. We are constructing also examples of commutative
squares for all operators in the BGG sequence.
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1.1. The BGG-sequence. Let GG be a semi-simple Lie group and
P C G a parabolic subgroup. A parabolic geometry on a manifold
M consists of a P-principal bundle G — M together with a Cartan
connection 1-form w € Q'(G,g), [9. Here g denotes the Lie algebra
of G. A major development in the construction of differential invari-
ants of parabolic structure was done in [4], and the construction was
subsequently simplified in [3].

Let V be a finite dimensional G-representation. It is well known that
the associated tractor bundle V = G x p V carries the canonical tractor
covariant derivative V induced by the Cartan connection form w, see
e.g. [I]. The connection uniquely extends to an exterior covariant
derivative on the spaces E¥(V) := QF(M,V) of k-forms with values
in the vector bundle V', denoted dV : E¥(V) — E¥1(V). The lowest
homogenoues part of d¥ is the Gy-equivariant Lie algebraic differential
O : EF(V) — EFYV) termed the Kostant differential, [19]. Here Gy
denotes the Levi part of P. Its adjoint, the Kostant codifferential 0 is
P-equivariant and gives rise to a complex

o
EM (V) B ERV), 0500, = 0.

There are Lie algebra cohomology bundles H, = ker 9;/im 0}, ; due to
the P-equivariant projection

Iy : ker 9;, — Hj,.

The basic ingredient of the BGG-machinery are the differential BGG-
splitting operators

Lk : Hk — kerﬁz,

defined uniquely by the property that for every smooth section o €
['(Hy) one has

i1 (dY (Li(0)) = 0.
In particular, one can form the BGG-operators

D, : H, — Hk‘-i-l) D = Hk-i—l Odv o Ly.

It will be usually clear from the context what is the appropriate value
for homogeneity k of the form which is acted upon by any of operators,
i.e. we usually omit this subscript from the notation.

Let us briefly review the invariant prolongation procedure obtained
in [5]:

1.2. Prolongation of the first BGG operator D,. The first BGG-
operator Dy associated to V is overdetermined, and our aim is the
construction of invariant prolongation of the corresponding systems
Doo = 0 on o € I'(Hyp). Let us recall that the approach of [5] starts
by introducing certain class of linear connections on V' which are mod-
ifications of tractor covariant derivative VY. The first condition on a
modification map ® € £(End V) is that it is homogeneous of degree
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> 1 with respect to the natural filtrations on 7'M and V, for which
we write ® € (£1(End V))!. This ensures that basic constructions of
the BGG-machinery still work. The next condition is that for any sec-
tion s € T'(V) we have that ®s € £(V) has values in im9*. As a
consequence, the modified covariant derivative is in a suitable sense
compatible with the underlying first BGG-operator Dy. The latter
condition can be rewritten as ® € Im(d}, ® idy~), thus we arrive at a
class of admissible covariant derivatives

C={V=V+aloem @ eidy.)n(E EndV)'}.

Here 0}, denotes 0* acting on £'(V) (and not on E'(End V')) and the
same applies for 0§, acting on E*(V).
The main theorem of [5] is then

Theorem 1.1. There exists a unique covariant derivative V € C char-
acterized by the property

where Q is the curvature of V.
This implies V o Ly = L; o Dy, which in turn yields

Corollary 1.2. Consider a tractor bundle V' and the covariant de-
rivative V in Theorem [I1. Then ¥V gives a prolongation of the first
BGG operator Dy in the sense that the restriction of the projection
Iy : V — Hy to V-parallel sections is an isomorphism with the kernel
of Dy acting on smooth sections I'(Hy) and inverted by the differential
splitting operator Ly : Hy — V.

We therefore say that V is the prolongation covariant derivative.

1.3. Commutativity for all Dy. In [5] the authors also obtained the
analogue of V on £¥(V). Here dV gives rise to the class

Crh:={d,=d"+®|®c A Im® C Imd*}

where A := Hom/(EX(V),EFY(V)) and Al denotes homomorphisms
homogeneous of the degree > 1. Then it turns out there is a unique
dy, € Cy, such that 0y o dY o dk = 0. This then implies

dy o Ly, = Lii1 0 Dy

and Il and Ly restrict to inverse isomorphisms between Ker (ZkﬂKer o*
and Ker D;,.

1.4. The guideline for computing examples. Here is the manual
for treating particular examples, which can be used to derive the ex-
plicit form of the prolongation covariant derivative. In practice, the
normalization procedure for canonical tractor covariant derivative can
be summarized as an algorithm based on the following list of steps:
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Choose a parabolic geometry (G, P, M,w), where G — M is
a principal P-bundle on M and w € Q'(G,g). Choose also a
finite dimensional G-module V and its associated vector bundle
V termed tractor bundle. Let us fix the two consecutive vector
bundles of k resp. (k + 1)-forms twisted by V.

Decompose both spaces of k resp. (k + 1)-forms twisted by V'
with respect to G, the Levi factor of the parabolic subgroup P.
Then compute the value of the Laplace-Kostant algebraic op-
erator [J associated to * on each irreducible Gy-summand (i.e.
Go-graded components associated to P-equivariant filtration)
either by evaluating the action of Casimir operator or from the
definition [J = 0*0 4 00*.

Choose a Weyl structure, so that there is a well defined split-
ting of the filtered bundle V into a direct sum of homogeneous
components.

Now the procedure splits into two cases:

e The computation of the prolongation covariant derivative.
Check, if (0§ ®idy+)(Q2), where Q is the curvature of V, is
trivial. In positive case, the procedure ends and we have
computed the prolongation covariant derivative.

If o := (0) ®idy+)(2) # 0, take the lowest nontrivial
homogeneous part «; of o and define

¢=-0O"a; V=V+0

Then repeat the procedure with V replaced by V’. By con-
struction, the lowest nontrivial component of « in the next
step will have degree higher then in the previous step, hence
the procedure will terminate in a finite number of steps
(bounded by the length of the grading of V).

e The case of the whole sequence of commuting squares.
Here we use another procedure based on the following al-
gorithm. Consider two consecutive squares containing the
exterior covariant derivatives dY : E8(V) w EFL(V) and
dy,, : EFTHV) = EFP2(V). First check, if

0y @ idy-)(dy, o dY)

is trivial. If not, the first step is the same as for the con-
struction of prolongation covariant derivative above. Con-
sider o := (0" ® idy+)(d),, o dY) # 0, take the lowest
nontrivial homogeneous part a; of o and define

®=-0"'a;; d,=dy + 9.

If o/ := (0 ®idy~)(dyY o d}) is trivial, the procedure ter-
minates and we define d;, = d. If not, take the lowest
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nontrivial homogeneous part oz;, of o/ and define
O = -0 df =d + 9.

By construction, the degree j” will be bigger than j, hence
the procedure will terminate in a finite number of steps
(bounded again by the length of the grading of V). Note
that iterations ¢ here are, in general, differential operators
and their order rises (in general) by one with each iteration.

The panorama of examples presented in this article follows criterions
to be useful, nonelementary, going beyond the examples scattered in
the references and at the same time computable by hand while demon-
strating the powerful machine developed in [5]. The interested reader
will easily recognize the complexity of the computation both in general
and specific situations of interest.

2. NOTATION

In this section we review the basic notation and conventions related
to the results of our article.

2.1. Forms, tensors and tensorial actions. In order to be explicit
and efficient in calculations involving bundles of possibly high rank it
is necessary to introduce some further abstract index notation. In the
usual abstract index conventions one would write ... (Where there
are implicitly k-indices skewed over) for the space £F. To simplify
subsequent expressions we use the following conventions. Firstly indices
labeled with sequential superscripts which are at the same level (i.e.
all contravariant or all covariant) indicate a completely skew set of
indices. Formally we set a'---a* = [a'---a*] and so, for example,
E.1..4x is an alternative notation for £* while &,1..x-1 and &,2..,« both
denote €871, Next we abbreviate this notation via multi-indices: We
will use the form indices

a¥:=a'--df=[a'--d"], k>0,
abi=a? . .d"=[a®--d¥], k>1,
ak=a3..db=[d®--d¥], k>2,
" =at - d"=[a*--d"], k>3

If, for example, k = 1 then a* simply means the index is absent, whereas
if & = 1 then a means the term containing the index a is absent.
For example, a 3—form ¢ can have the following possible equivalent
structures of indices:

Pala2a3 = Plala2a3] = Pa3 = Palad = Plalad] = Pala?a3 € 5a3 = 53-

Note the exterior derivative d on a k-form f, can be written as (df )40 =
Vo fa for any torsion—free affine connection V.
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Later on we define the standard tractor bundle denoted by £4 and
its dual €. The form index notation developed above will be used also
for skew symmetric powers of these bundles. For example, the bundle
of tractor k-forms E 1.4y Will be denoted by E41..4x Or Epx.

The bundle of endomorphisms of €4 (or £4), £FF, clearly injects
EEr C End(T) for any tractor bundle 7 C (Q £4)R(QR) Ep). Consider
vEp € EFpand f € T. The endomorphism v acts on 7 and we denote
this action by §. That is, v4f € 7. Using the abstract tractor indices,
is given by the usual tensorial action, i.e. (y#f)* = y4pfF for f4 € £4
and (vif)a = —yFafp for f4 € E4. One then computes £ on the tensor
products of £4 and £ using the Leibniz rule. We further put 74 to
be zero on £, &, and density bundles (which we introduce later) and,
using the Leibniz rule, extend 4 to the tensor products of 7 with latter
three bundles. Finally note the action f is denoted e in [9].

2.2. The adjoint tractor bundle and the Laplace-Kostant oper-
ator. The bundle A = G x p g is called the adjoint tractor bundle. By
definition, A C £4p and more generally A — End(7) for any tractor
bundle 7. We shall use f to denote the action of sections of A on T as
introduced above. Note the curvature of the normal tractor covariant
derivative V is the section of £, ® A and the curvature action is
2(dVV favar = 2V o Var f = (Qf)aoar € Eay) @ T for each f € T.

We have identifications & 2 G xpg_and £~ A/ A" A =G xpp,
which allow to define inclusions ¢ : &, — A and 7 : £* — A/ A’. (The
latter is just the identity.) We extend these inclusions to

b
1:E = ERA and 1:&, 5a—o> Egn’ = Ea @ AJA.
Recall that here and below, we use a chosen Weyl structure and the
corresponding splittings.

Our aim is to use these tools to express Kostant’s differential 0,
codifferential 9* and in particular the Laplace-Kostant operator (1 [19]
in a form suitable for computations in abstract indices. Defined on
E,® T, a=a” for any tractor bundle 7, they have the form

a:ga®T‘i>5a0a®A/A/®Ti>5aoa®T7

O E T B EQART 5 &, T and
O, =00 +00:6.0T — E.T.

Note 0* is invariant but 0 (thus also [J;) depends on the choice of
splitting of the tractor bundles in question. However, [ is invariant
on completely reducible subquotients of £, ® T and acts by a scalar
multiple on each irreducible component of such subquotients. That is,
we choose a splitting of the tractor bundle £, ® T to compute [J, but
the value of [, on a given completely reducible subquotient alone is
independent of this choice.
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The symbol & denotes the composition P-module structure of rep-
resentations or vector bundles.

Finally note one can compute [y from highest weight of bundles
concerned, see [19]. We shall use this (less explicit) approach in cases
when the abstract index computation is getting too complicated.

Now we are ready to discuss specific geometries. In each case, we
first summarize the tractor calculus. We shall particularly need the
normal tractor covariant derivative V and the Kostant’s differential
and codifferential 0 and 0", respectively. Using these we compute the
prolongation covariant derivative V and/or d on certain bundles.

3. PROJECTIVE GEOMETRY

We follow the notation from [I] here. The projective structure on a
smooth manifold M is given by a class [V] of projectively equivalent

torsion free connections. That is, connections V € [V] are parametrised
by one forms Y, € &, = I'(T* M) and have the form

~

VaSO = VaSO + wTa907 NS £<w)7
(1) Vaft = Vaft + Toft +Tofo88, fe&b
@awb = VOLWb - Tawb - waau We € 5OL-

The curvature tensor R,,%; of a torsion free V is defined by (V,V, —
VVa) ¢ = Ry, fP and it decomposes

Rapa = Wap a + 201°Pyja + Bavda;  Bap = —2Pay).-

Here W, is projectively invariant (and irreducible) Weyl tensor, P is
the Schouten tensor, P =Pu—V,Tp+ T, and Bab = Bap+2V [ Ty.
We put Agpe = 2V[4Py.. Then the Bianchi identity V[aRbc]de =0
implies

chabcd = (n — 2)Aabd and V[aﬁcd} =0.

The cohomology class [3] € H*(M,R) is a global invariant of the pro-
jective structure. Moreover, (V,V, — Vi, Vo) = wlhue for ¢ € E(w).

3.1. Projective tractors. We shall write sections of the standard
projective tractor bundle £4 = £9[—1] & E[—1], resp. its dual €4 =
E[1] & &,[1] using the injectors Y4, X4 resp. Y4, X4 as

<U ) = YA + X4pc €4 resp. (V
p Il

a

) = YAV—l—Xj,ua €&y

Such splittings of £4 and €4 are parametrised by choices of projective
connections and we call them projective splittings. The change of the
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splitting under change of the connection parametrised by Y, € &, is

14 14 . " a >a a

That is, X4 € E4[1], X4 € £4[—1] are invariant and YA € EA[1], Y4 €
Ea|—1] depend on the choice of the projective scale. We assume the
normalisation of these such that Yo X + XGVP = 6,8 ie Yo X9 =1
and X&Y,C = §%,

The normal covariant derivative is given by

V()= (S ) e v () = (o Th) e
VYA = —XP,, VXA =YA and V, Y4 = X%P., V. X = -Y452
and its €2 curvature has the form

Qur = YEXIWa s — XEXL Ay € Eay @ A.

That is, A = trace-free(€¥ 1) is the projective adjoint tractor bundle
where “trace-free” denotes the trace—free part. Hence the curvature
action on Ec is (VoVy =V Vo) Fo = (UF)we = — QP Fp. We shall
often write Qg F¢ instead of (QfF) e to simplify the notation.

Using the notation developed above, the inclusions ¢ and ¢ defined
in have the form YﬁYF D Ea = Ealr and XEXI%1 2 Ea = EFF.
Thus

0:Ea®@T 3 fars YEVifa =5 E0a®T  and
0 Ea®T 3 fars XOXE fo - 800 T

and we can easily compute [, on £ ® T using the action f as demon-
strated by the following example.

Example 3.1. We shall compute the case 7 = £¢ in details. Then
E.C = £.°[1] G Ea[—1], where &, is irreducible and £,° has two irrre-
ducible components (the trace and trace—free parts). We shall compute
[, separately for all three irreducible components.

We start with (not necessarily irreducible) section 0,¢ € E,°[—1].
Then 9 on f,¢ = Y%,¢ is zero and XFPX% 4y %0, ¢ = XCo,sP =
(0 £)aC. Thus 0" f = 0 for tracefree section 0,¢. Assume 0,° = €10y
Then fou© = Y56y, (0% f)a® = = X5, thus (Oxf)a® = (00" f)a =
VS5, Finally if fa¢ = X%pa then (0*f)a¢ = 0, (9f)a® = Y$p, and
(Dkf)ac = (a*af)ac = Z—chpa

Summarizing, [J;, acts by zero on the trace—free part of £,°[—1] =

EaC/Ea[—1], by Z=tL on the trace part, i.e. on E[—1] C £,.°/E[—1]
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and by Z—j on E[—1] C &Y. Note the inclusion &,[—1] — & is
realized by X : E,[—1] — £,°.

3.2. Skew symmetric tractors and tractor forms. The notation
for the standard tractor bundle £¢ developed above can be easily gener-
alised to the products A\ EC = £C = £9(—¢) & E¢(—), where C = C’.
Note /\Z EC ~ /\"4le Ep, hence these products are isomorphic to trac-
tor forms. We put

vo=v9 vl eeSw), x¢=xvS . vleeS),
and write the sections of £€ as
<Z¢) =Y{0® +XGp* €9, 0% € E(—1), p° -0

where ¢ = ¢’. The change of the projective rescaling parametrised by
T, is

¢ o€ . o 5

(pé) = (pé B wclac) ,de YO =Y +07aXE, XC=x¢

and the normal tractor covariant derivative has the form

o€ Vo + po,° .
Vs (pé) = (Vbbp s E'}’chfac) , e VYT = —( PuX¢, V,XE = Y
Example 3.2. We shall compute the sequence for the tractor bun-

dle €, C = C’, ie. &€ .t E.»C. Since the filtration of £€
has level 2, it follows immediately from the construction of d that
(dF)qoa = (A F)402C 4 (Opy1) (05 dVdY F) 0, € for every F,C € £,°.
(In particular, the difference between d¥ and dis algebraic in this case.)

Let us compute d in details. Assume Fo© = YS0,¢ 4+ XSpa¢. Then

1 1 :
(d¥dY F)a-1402C = §Qa,1a0uFaC = §ma71a001pFaPC =
1

= 5£y€w@71a00pgapé + Xgﬁaﬂaoaé
for some section p which we shall not need explicitly. Therefore
e 2 .
* gV gV C C r P|C C r ¢
(0°dYd" F)qoa :EX XQQ[raO[Q\Plpa]| = gxéw[mo[ Ip|Oa] Iple] =
¢ c? rC r ¢
:2(k? + Q)XE [_(E - 1)WP7” 002" + kWaom parap }

It remains to apply (Og41)~". Note the map 9*dVdY : £,C — E0a°
has values in the (completely reducible) subbundle £,0,¢(—¢) C €04,
cf. the precious display. Irreducible components of this subbundle are
bundles tf[Ei2-9"](—€), 1 < i < min{l, k + 2} where the notation
tf[..] denotes the trace—free part of the enclosed bundle. The Laplace-

Kostant operator [y, on tf[€,:9'](—£) acts by AL(¢) := —ln—s—t+
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1+ (I—t)(n—s)]. Note the computation is rather simple if we consider
tf[Ep=4'](—F) as the irreducible invariant subbundle of EP (F1-Fi-1) and
then follow Bl Also note AL(¢) is always nonzero. This of course

follows by general means but can be verified directly since tf[gbsdt] +
{0} if and only if s +t < n.

Proposition 3.3. The operator d : £.C — E,0,C in the projective
geometry has the form
9 min{¢,k+2}

~ 14 1
(dF)0aC = (Y F)g0,C—— —————Proji b XEWaol |y 0”1
2 ; A£+2 z(g) rr2e
where 0,6 = X&F,C, X& = Xél. Xcz and Proj’, : gas+iCt+i<€) —
tfl€as)(0), i > 0 is the projection. O

The operator d simplifies in special Cases ¢ =1and k = 0. First
assume £ = 1. Then (0*dVdY)ga" = 2(k+2 XCWao 1",0,5P has values
in the irreducible subbundle E,o,(—F) of £,0,°. We computed [y

acts by = ki;rl) on this subbundle. Inverting this scalar, we obtain the
result
~ k .
(dF)aoaC = (dvF)aoaC + mXCWaoal parap'
Now assume k& = 0. Then (9*dVdYF),C = —Z(ZZI)XEWWCQQUP”é

has values in the trace—free (thus irreducible) part of the subbundle
( ¢). Since g4 acts on the tracefree part of £,¢(—¢) C &,€ by

T> the resulting formula is

0(e—1)
2(n—10)
We claim d actually coicides with the prolongation covariant derivative
V. To verify this, first observe (V—=V)F),C € ITmo* by the constru-
tion of d = V. Thus it remains to verify (dVVF),-1,0C € Ker 8*. But
since (dVVF)q-1,0€ € Ker * (agam by the constrution of d = V) and

v —dv Eo — kerd* C &,-1,0C, cf. the last term in the previous
display, the claim follows. Using the matrix notation, V = d has the

form (-1
~ (o° o€ — 0
% () = %) 5= (e

Finally note £€ = &p (using the tractor volume form) for C = C*
and D = D" "1 The case £ = n — 1 (i.e. D = D?) was solved
n [12], where the prolongation of the corresponding BGG operator
Ea(2) = Eapy (explicitly f, — V(o fy)) is constructed. They construct
the prolongation as the tractor covariant derivative D, : Ep2 — E.p2,
cf. [5]. Since D, — V, : Ep2 — im 0" (this follows from the formula
for D, in p. 9, [12] after a short computation) and the curvature of

(CZF)GC — (dVF)aC XCWprc e ré.
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(DyDy — DyD,) : Ep2 — Ker 0* (this is obvious form the formula for
D,Dy — DyD, on Ep2 on the same page) we conclude D, = V,, cf. [T

Example 3.4. Here we discuss the bundle £A48) = £(40)(-2) ¢ £4(—2) G-£(-2).
Consider a section F,B¢ € &£,(BY) expanded in the basis of injectors
as F,80 = YPvOote + XBY ) pe + XBXCy,. Then

1
(dvdvF>a_1a0aBC = éQa—laoﬂFaBC = Qa—lao(BPFaC)P =

1
= VY OWar10®0a™ + XOYO [TWorianapa® = Au1a0,00] + XPXp
for some section v. Applying 0* we obtain

(a*dvdvF)aoaBC ZQX(BYCC) W [Tao(r|p|0'a]c)p
1
C r r
+XPX [5Wira el = Apraoipi o]

The filtration degree of £AP) is 3 and so the construction of d will re-
quire (at most) 2 steps. In the first step we put d’ := d¥+(0;);) 19*dVdY :
EaPY — E£,027¢ where O, denotes [y4q restricted to the subquo-

tient £,6(—2) of £,PY) which corresponds to the injector X By
Eaf(—2) — E.BY) . Note this subquotient has two irreducible com-
ponents but we need only the trace—free part since W[mo(r|p|0a]c)p is
trace—free. A short computation reveals 9*0 = [J; acts on the corre-
sponding subquotient of &,(%) by "—_k. Hence

k+2

(d'F)a0,7C = V0 F,5¢ — — —— 2XPY W00 o0 P

2) ek
+ XX (S Wa p1pa” = Apaoiploa” )]

Further computation reveals

k+2
n—k

1
+ 2X PV (45001 Wi pipal” = Gt Afradipial””

(A¥d' F)a-100aPC = (¥ F)g-140a € — [zy“-”‘ YO W0 o

4+ V- 1W[m0 ‘p‘O'} ):| +XBXC’7a 1404

for some section Y,-1404 € E4-140a(—2) and

1
(074 F)aoa™ = = —— XPXC |29, Wipoo o™

n —

1 T r
+(n =k = 2) (W pipa)” = Apaoppial” )]-

The previous displays shows that (9*dVd'F) 40, is the section of the
subbundle E,0,(—2) C E0aP¢. Since (i1 acts on this sunbundle by

2(",;f;1), we obtain the result d := d’ — k+2 a*dvd’
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Proposition 3.5. The operator d : E,BC) — £,0,BC) in the projective
geometry has the form

. 2
(dF)10,BC =V,0F,PC — P12 [2X<BYC>W[MO<T|,,|oa]C>p
n—k ¢
1 C r s
R 1)XBX 2V Wiao T 007
1 T T
= (0= R) (G Wirao iPal” = Apaoppial” )H :
where 0,"¢ = XgX(‘;FaBC and py® = 2X§YCFaBC. O

We shall discuss the case k¥ = 0 in more details. Then the formula
in Proposition simplifies to

2

(dF), "¢ =V, FP¢ — ZXBYOW, 0™
n

FXPXC (24,007 4 W', V07].

This means d is not a covariant derivative on £B°) as the term I/Vm pVs0o'?
is not algebraic in FBC, ie. d + V in this case. To compute v explic-
itly, assume k = 0 and put V' := d’ (this is a covariant derivative
on EPBY)). That is, V,FPC = V,FBY — 2(VF),BC where the ho-
momorphism ¥, : £ — £, (BC) ig given by the formula (2), i.e.
(VF),PC = X(BYCC)WMCPU”” — XBXCA, 0. Extending W, to an
endomorphism &E,1 B — £,0,1B)  an easy computation shows

(UV' F)p0P¢ = XBY D [W, 0% V10 — W0 pp”] + XPXD

3
2
for some v € £(—2). Therefore (9*UV'F)B¢ = 1XBXCWmchccrrp
and we finally obtain (8*d¥'V'F),?¢ = (0*dVV'F),?—2(9*UV'F) B¢ =
0. Since the left hand side is the curvature of V’ (apphed to FBC), this
curvature is a map £P¢) — Kerd*. Thus we verified V=V , cf.
Theorem [Tl Rewritting V in the matrix notation, we obtain

N O.bc O.bc 5 0
Va pc =V, pc - g Wracpo-pr
v v — Ay gpo®”

Note V, provides the prolongation of the corresponding (first or-
der) BGG operator from £®9°(—2) to the totally tracefree part of
E,%9(—2). The same problem was solved in [I3] in terms of the con-
nection defined by (3.6) or the left hand side of (5.2) there. Let us
denote this connection on £FY) by D,. Note the formula for D, differs
from V, in the middle term of the last matrix in the previous display:
this term is ——Wm €poP" for V whereas le ¢poP" in the case of D,,
cf. [13] (3.6)]. The reason is purely notatlonal specifically in the choice
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of the projectors. If one replaces X (B yY by — 1X By _ which means
e.g B0 =Y PyIobe 4 (—LxBYD)pe 4 XPXCy — both terms will
coincide. Note also that formulas for V, and the normal covariant de-
rivative defined in the display preceding to [I3| Theorem 5.1] coincide
after the change of projectors. This confirms the results here coincide
with those in [13].

4. CONFORMAL GEOMETRY

4.1. Conformal geometry and tractor calculus. We summarise
here some notation and background. Further details may be found
n [I5]. Let M be a smooth manifold of dimension n > 3. Recall
that a conformal structure of signature (p,q) on M is a smooth ray
subbundle @ C S?T*M whose fiber over x consists of conformally
related signature-(p, ¢) metrics at the point x. Sections of Q are metrics
g on M. So we may equivalently view the conformal structure as the
equivalence class [g] of these conformally related metrics. The principal
bundle 7 : @ — M has structure group R, and so each representation
R, 3>z +— 27%/2 € End(R) induces a natural line bundle on (M, [g])
that we term the conformal density bundle E[w]. We shall write &[w]
for the space of sections of this bundle. We write £ for the space of
sections of the tangent bundle 7'M and &, for the space of sections of
T*M. The indices here are abstract in the sense of [6] and we follow
the usual conventions from that source. So for example &, is the space
of sections of ®*T*M. Here and throughout, sections, tensors, and
functions are always smooth. When no confusion is likely to arise, we
will use the same notation for a bundle and its section space.

We write g for the conformal metric, that is the tautological section
of S*T*M @ E[2] determined by the conformal structure. This is used
to identify TM with T*M|2]. For many calculations we employ ab-
stract indices in an obvious way. Given a choice of metric g from [g],
we write V for the corresponding Levi-Civita connection. With these
conventions the Laplacian A is given by A = g®*V,V, = V*V, . Here
we are raising indices and contracting using the (inverse) conformal
metric. Indices will be raised and lowered in this way without further
comment. Note F[w]| is trivialised by a choice of metric g from the
conformal class, and we also write V for the connection corresponding
to this trivialisation. The coupled V, preserves the conformal metric.

The curvature R,y of the Levi-Civita connection (the Riemannian
curvature) is given by [V, ViJv¢ = Ryucqv? ([,¢] indicates the com-
mutator bracket). This can be decomposed into the totally trace-free
Weyl curvature C,pq and a remaining part described by the symmetric
Schouten tensor P, according to

(3) Rabed = Cabed + 290/aPoja + 29 43P aje
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where |- - -] indicates antisymmetrisation over the enclosed indices. The
Schouten tensor is a trace modification of the Ricci tensor Ricy, = R
and vice versa: Ricy, = (n—2)Pap+Jg,,, where we write J for the trace
P,* of P. The Cotton tensor is defined by Ag. := 2V[,Py.. Via the
Bianchi identity this is related to the divergence of the Weyl tensor as
follows:

(4) (’I’L — 3)Aabc = Vdcdcab-
Finally we put
(5) By, = V101410(117 + qucpaqb S g(ab)o [_2]

In the dimension n = 4, this is the conformally invariant Bach tensor.

Under a conformal transformation we replace a choice of metric g by
the metric § = e*Y¢, where T is a smooth function. We recall that, in
particular, the Weyl curvature is conformally invariant Cypeq = Caped-
With T, := V,T, the Schouten tensor transforms according to

(6) /Isab = Pab - Vatfrb + TaTb - %TcTcgab'

Explicit formula for the corresponding transformation of the Levi-
Civita connection and its curvatures are given in e.g. [, 15]. From
these, one can easily compute the transformation for a general valence
(i.e. rank) s section fye..q € Epe..q|w] using the Leibniz rule:

Vafsewd =Vafoewd + (0= 5)Yafoca = Vofacea - = Lafrc-a
+ Y fpewagua - + T focpGaa-

We next define the standard tractor bundle over (M, [g]). It is a
vector bundle of rank n + 2 defined, for each g € [g], by [€4], =
E @ &1 @ E[-1]. If § = e*Tg, we identify (o, p1q,7) € [E4], With
(Q, [, T) € [E4]5 by the transformation

(7)

a 1 0 0 «
(8) ﬁa = Ta (5ab 0 b
7 —lroe —1ho1) \ 7

It is straightforward to verify that these identifications are consistent
upon changing to a third metric from the conformal class, and so taking
the quotient by this equivalence relation defines the standard tractor
bundle £4 over the conformal manifold. On a conformal structure
of signature (p,q), the bundle £ admits an invariant metric hyp of
signature (p + 1,¢ + 1) and an invariant connection, which we shall
also denote by V,, preserving hsp. Up to an isomorphism this the
unique normal conformal tractor connection and so induces normal
connection on @ 4 that will be denoted V, and termed the (normal)
tractor connection. In a conformal scale g, the metric hyp and V, on
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E4 are given by

0 0 1 o Vaa — Il
(9) hap=10 g 0] and V, | iy | = | Vatw + g7 + Paprcr
1 0 0 T va7— - Pab,ub

It is readily verified that both of these are conformally well-defined, i.e.,
independent of the choice of a metric g € [g]. Note that hap defines a
section of 45 = €4 ® Ep, where £, is the dual bundle of £4. Hence
we may use hp and its inverse hZ to raise or lower indices of £4, £4
and their tensor products.

In computations, it is often useful to introduce the ‘projectors’ from
EA to the components &[1], &,[1] and E[—1] which are determined
by a choice of scale. They are respectively denoted by X4 € E4[1],
Zaa € Eagll] and Yy € E4[—1], where Eq[w] = €4 ® &, @ E[w], ete.
Using the metrics hap and g, to raise indices, we define X4, Z4¢ Y4,
Then we see that Yy X4 =1, Z4,Z24. = G, and all other quadratic
combinations that contract the tractor index vanish. In (8) note that
a = «a and hence X4 is conformally invariant. Reformulating (@), we
obtain

V,Yy=2%Py, V,7%=-Yy’ -~ XzP and V,X;= 2%,

Given a choice of g € [g], the tractor-D operator Da: Ep..g[w] —
Eap..e[w — 1] is defined by

(10) DAV :=(n+2w —2)wY,sV + (n+ 2w — 2)Z4,V*V — X0V,

where OV := AV + wJV. This is conformally invariant, as can be
checked directly using the formula above.

The curvature 2 of the tractor connection is defined on £ by [V,, V]V =
QuCpVE . Using @) and the formulae for the Riemannian curvature
yields

(11)  Qupr = 252} Cabey — 2X (521 Aas € Elaizr) = Ejay) ® A

where A = &pp) is the conformal adjoint tractor bundle. We shall
write QuiFo or (QUF) e for the curvature action (V,V,—V,V,)Fo =
—QuPcFp.

Using the notation developed above, the inclusions ¢ and ¢ defined
in have he form —2Y|pZpe0 : Ea N Eava[pr) and —2X[EX% A
Eapr). (The scalar —2 is used for the sake of compatibility of 0 and
V, cf. [9].) Thus

0:Ea®T S fars —2VpZpafa —+ Epa®T  and
O Ea®T 3 fars —2Xp 20 fa = Ea® T

and we can easily compute [J, on & ® T using the tensorial action f.
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Example 4.1. We shall compute d on forms twisted by Ec. Let a = a*
and consider Foo = Yo0a + Ziftca + XVa € Eac. Then
1 1
(dvdvp)a—laOaC = iQa—laOﬂFaC = éQa_laOCPFaP =
1
= 5 Cc’ [Caflaocp,uap + Aaflaoco-a] - XCAaflaopMap
hence (0*dVdY F)goac = —ﬁXc I:Ca()alrp},brap + Aaoalrara}. This is a

section of the subbundle E,0,[—1] C E,0ac and one easily computes [y,

acts on this (irreducible) subbundle by —”;Sl. Therefore (dF)y0ac =

VoFa — z(n—ikk—nXC [Caoalrp'l,trép + Aaoalro'ré] for 0 <k <n-—1and
d = d¥ for k > n — 1. Finally note that the prolongation covariant

derivative coincides with the normal one for £ =0, i.e. V =V on &c.

Example 4.2. The computation of the prolongation covariant deriv-
ative is getting rather technical for more complicated bundles. We
shall demonstrate it on the prolongation covariant derivative V on
EBc),- (Note Epey, and & (BC)o are isomorphic using the tractor met-
ric.) The computation consists of three steps: we start with V and
then define covariant derivatives V, V and V. Taking a section Fgo =
Y'(BYC)O' + Yv(BZCcy)pc + Z(bBZCc,)wbc + X(BYC)V + X(BZé)Mc + X(BXC)/{ we
get

1 1
(dVdY F)goqpo = 5 QwartFpe = 5s2;0a1BCPQFPQ =

C 1 (& 1
:Y(BZC) [§Caoalcppp + Aaoalca] + Z(%ZC) [Caoa1(bpwc)p + §Aa0a1(bpc)]

1 1 1
— §X(BYC)AaOa1ppp + X(BZé) [aCaoalc”,up - Aaoalpwcp + §Aa0alcl/]
1
— iXBXCAaOalp,U/p-
where Q5,79 = Qanal(B(PhC)Q). Applying 0* to the previous

display we obtain (0*dVdY F)apc = —2X5""Qpajc)?Fpg because
Quoaipr is 0*-closed (i.e. XpoPQpar = 0). We put Uupc? =
—QX(BP”Q‘TGHC)Q. Equivalently, ¥,15c"% can be obtained by applying
0* to the Epc-factor of Q;Oal(BC)PQ. This is exactly the operator 0}
from [5] since the notation therein means V = &pc),, V* = £F0 and
therefore Qo1 g7 9 € Eaoar @ End(V) is the curvature tensor of V,, on
V' = &pey,- We shall denote the operator 9y, by 0p¢ : Epaipct?® —
Enpct @ here. Thus we have U, 15,79 = %( oV )apet’?, explicitly

Vapc’™® == Z 26 [ X Z9C 0 hoyg + XTXV A (1))
(12) + X(5Z&) [ 2P ZV9C e + 2X P ZD9A 1]
+ XXy ZPP ZD1A, 0,
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Since %C’al(bc)p,op+Aa1(bc)cr is a section of the Cartan component of the
subquotient &1, QE. of E41(pey, and Uy acts on this subquotient by —+,
we put V,Fpo = VaFBc+§\I’aBCP QR o as the first “approximation” of
V. We need to know V0V ,1 507 to compute the curvature Quo,1 ot

of V. First, it easily follows from W, 5079 := —2X(57" Q) 01)? that
(VW) og1 5’ = Vo Waipe'@ = —zvaoX(BPTQ‘ml‘C Q—
0 1
= —2Z( Pe g\aOeOQela”C)Q +2W Q‘ao 1|C’) —X V‘TQGO 1‘C)Q

since V,-1Q0,109 = 0. Expanding the expressions in the previous
display we obtain

3
(dV W) g0 5’0 = —53QBZE~> [XPZDC 0010 + XTXD Agog,]

+ gX(BYC)X(PZQ)qAaoalq

+ Z(p 2 [_QZP(PZQ)qgao[bCp]alcq + %XPXQ (VpAaaic + Py Coogire)
+ X P Z9M(-2g,01,Agarc + 1VbC'aOalcq - gb[cA\aOal\q}):|

+ X2 | gyu’z@qcao teg = XPZD9(V ( Apogtig) + P Clavat i)

+ 7p(P 7Q)q (QQGO[CAp]alq — _VPCaOalcq + gp[cA|a0a1|q])]

3 1
+ XpXe [—55/ P2 A g + 52 20NV Aar + P Caoalsq)}

after some computation which uses the differential Bianchi identity, in
particular the relation [I8 (29)]. Now we need to apply O to the
previous display. This yields

3
(050 d¥ W) g15cT9 = 5Z(gzg) [(XPZDC 1 4eyg + XX A o]
1 1
+ X(BZE [§(n — 1) 2P Z9C 1 (e — §XPXQBG10
+ XPZ9((n — 4) Aggare) — 3Aa1(g0))]

1 1
+ XpXo[5(n - 1) 2P ZDUA 1) + 2X( Z9B,,].

We need to compute U, g9 = 1(950Q) 01 579 satistying U1 g Fpg =

(8*dvvF)ach. Since V,Fge =V, + %111 PQ we have

1—
ianalBC

1 2 4
"= 2 ;oalBCPQ + §(dv\1’)aoa13(;PQ + 5(\1} A \I’)aoalBCPQ
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where (U A U) 0018079 = Va0 pc W1 pgP?. Since %(8*309/)GIBCPQ =

U1 5079 by definition of ¥, applying % to the previous display yields
(13)

_ 1 _
\I’alBCPQ = 5(8Z;CQ)alBCPQ =
2 4

— \IIGIBCPQ + g( *BCdV\II)QIBCPQ + 5(6*(111 /\ \I/))alBCPQ —

1
=3 XBZE&[(n =427 Z299C 0 e + 2(n — DX FZVIA 1) — XTXOBy

1 4

+3XsXo [(n—4)ZP P ZDUA 1y + XTZ9B ] + 5 (O5c(¥ A U)) g1 9.
where
(14)

1
(50 (TAD)) 1 g T9 = 5XBXC [(XPZDIC PO, o+ XT X014,

Remark 4.3. The section (9*dY¥),pc"? is closely related to the con-
formally invariant curvature quantity

Wer =(n — 4)ZEZECop — 2(n — 4)ZEXL Aey
—2(n — 4)XEZE A, + 4XEX] B, 5,
cf. [I14] where all the form indices E, F, e, f have the valence 2.
In fact, one easily computes (9*d¥W),pc"? = —1ZEX pWe)F R,
Since (0*dV¥) s’ coincides with W,pe"? up to the terms involving

C ("S)qump and Cy (”S)qurs, cf. (I3)), conformal invariance of Wgp

verifies the invariance of the previous computations.

Looking at the form of @al ot QF P, we see that we need the action
of OJ; on the subquotient & 1., of &, e (corresponding to the injec-
tor X BZCC)). A short computation reveals this is —% hence the next

“approximation” of V will be the covariant derivative

_ 92__ 2 2
a = va + _\I,aBCPQ = va + _\I]aBCPQ + —
n 3 n

<

U,pc™@ : Epg) = Easoy-

Now we need the curvature Q0,1 ot @ of ¥, and then to apply 5. on

10041079, 1t follows from the definition of V,, that

(15)
1=

1- 2 — 4
_QaOaIBCPQ :_analBCPQ + _vaO\PaIBCPQ + _\I]aOBCRS\I]alRSPQ
2 2 n 3n
since EGOBCRSEGIRSPQ = \IIGOBQRSEGIRSPQ =0.

The next step is to compute W1 5079 = %(8%05)(113(;13@. We apply
o to the three terms on the right hand side of (IH). Firstly recall
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L(05c0) w59 = U, pet? by definition. Secondly, one gets

— 1
(dv\l,>a0a1BCPQ = gZ(gZCC’) [(n - 4)ZJD(PZQ)ngaLOC’al(pq)

+ 2( 4)X(PZQ Gba OA(I(G c) XPXngaOBalc]
1 3
+ gX(Bzg) [g(n — )Y P ZDUC 041, — 5(n —HXPYD A1,

+ ( 4)ZP(PZQ (VaoC L(pg)e T 2ga"(pAq)(a o T 29 0. A 1(pq))

+2XPZ9((n = )V Agare) — (n = 4) PP Cot e + 2G40 Byar
2

+ ggcao Ca1 (rs)pcqrsp)

4
+ XPXQ (_vaOBalc - 2(” - 4)Pa0qAQ(alc) + ggcaOCal (TS)pAp(TS))]
+ XpXcpa "2

for some @179 € £,17? after some computation. Using the last display,
it is not difficult to verify

— n— 2
(8gcdv\:[/)alBCPQ = —2\:[/ 1BC PQ - 5(71 - 2)(6;30(111 AN \I/))GIBCPQ.

Thirdly, one easily derives W0 5o 1 g7 = —”T_A‘\IIGOBCRS\IIG1RSPQ.
Hence we finally obtain

(16) Vg’ 5(8BCQ)GIBCPQ = —g—n(n—?))( o (WA g,

where —2-(n —3) = —g-(n — 2) — 5k(n — 4).
In the last step we need the action of (J; on the subbundle &,:[—2] C

Ea1(Boy, corresponding to the injector XpX¢. This is the scalar —(n—

1), so by adding —5 W1 579 to ¥, we obtain the resulting prolonga-
tion covariant derivative

2 2— 1 =
V,:=V,+ §‘I’chPQ + E‘I’chPQ + E‘I’chPQ - &) = EaBO)-

Proposition 4.4. The prolongation connection v 5(3() — EyBC) N
the conformal geometry has the form v oFrc=V FBC+ ‘I’ch QFPQ
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where

Vope"® = —ZpZ6, [X(PZQ)qCa(bc)q + XPXQAa(bc)}
n—4

4
+ Xp 26| =27 ZVC e + 2X T2V (At + ——Agtar)
1
——XPXQBM]
4 nP Q) L v Q) 4 (rs)
+XBXC[——ZP 29 Aty 2 X2V By + 5 Co PCorap)
n_
4
= _XPXQC,r g } .
+371(71—1) P
O

Example 4.5. The prolongation covariant derivative V on tractor
form bundles €404, A = A* was computed in [I1]. Consider a sec-

tion Flaop =Y 4080a+ k+1ZA0A/~La° +WA0iVé+XAQZpa € E40a. Then

k—1

1
V FAOA =V FAOA + 2ZA0A |:Cc a%10pa + —gcaocéllanqo-pqé}

mwAOA [( —2)Cop2P0pgs — (k — Q)CaQaSPchpqa}
a (k—1)(k —2)
+ X oa [_Acpal Opa — Sk Geat Coras™ Vi

n E—1
2(n—k

n — 2k
) ( on (VeCara2™)0pga + Gt A 2003

p p rq
—2Ac Opa — Agra2 Ocpa T Cear Hpga

n(n—k+1) -2k k
nk CcpalaQVpé - n ala? ,Ucpqa)]

cf. [T, Remark 4.2].

The prolongation covariant derivative v simplifies for £ = 2 in di-
mension n = 4. Then we have (at least locally) the conformal volume

form
2 3 4

(17)  €c € &[] such that €S, = 4!, ie. e = 4165 6% 0% 0% |
where ¢ = ¢, e = e*. Recall Ve = 0 for any connection V from the
conformal class. Then the Hodge—star operator * : Egp — Equr, k =
0,...,4 has the form (xf) = €™ " fu—r. The eigenvalues of « for k =
2 are £2. The induced tractor volume form Ecs = —30W(C;éec4 € Ecs
yields analogously the tractor Hodge—star operator x : Ege — Egs—t.
The eigenvalues of E for ¢ = 3 are £6.

Henceforth we assume k£ = 2 and n = 4 and *F = 6F. If not stated
otherwise, all form indices will have valence 2, e.g. A = A? or a = a’.
Our normalization of volume forms F and € means that

(18) xo =20, xu=-3v, *v=2u, *p=—2p,
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i.e. 0, is self-adjoint. Using this and (I7)) one easily verifies
(19) gcaoC’arar = —QCcpaO'pao, C’ar,ucr = —QCcalrMa2r.

Thus the prolongation covariant derivative V has the form
~ 1 1
VeFpoa =VeFpoa + 57 5020 a0 — W a0aCea 0

1
+ ZXAOX [—4Acpa1 Opa? + Geqt Af ooy, — 2Aw1p0pa2

- Aapacp + 2cyca1 l‘,anr + Ccpayp} )

The connection V simplifies considerably for half-flat structures, i.e.

when

(20) €2 Crp + € Car = 4)\Cab7 AE {—|—1, —1}

The self-adjoint structure A = 1 equivalently means C," f, = 0 for every
anti-self-adjoint two form f, and the anti-self-adjoint structure A = —1

analogously means CR* f, = 0 for every self-adjoint f,. It follows from
20), [@8) and (I7) that
(21) Clavy = ACa" oy

We shall discuss the anti-self dual case A = —1 in detail. A short
computation reveals

r r
Cafor =0, Ao, =0 and Ao, =24,7L0,2,,

where the second and the third equally follow by applying V*' and Vo,
respectively, to the first one and using V,0Car = 2g,0,1Aar2. (Note the
last equality says ApPog, = 0.) From the last display and (2I)) for
A = —1 we finally obtain the following:

Proposition 4.6. Consider an anti-self-dual conformal structure in
the dimension 4. Then the prolongation connection V : 5[:0A] —

EJAOA], A = A? on the bundle of self-dual tractor 3-forms S[ZOA} -

Eaoa) has the form
~ 1
VCFAOA = VCFAOA —+ XAOX [—QAC(pal)O'pa2 —+ §Ccpa1/p] .
for Faoa € S[J;‘OA] where o, = 3XAO§FA0A and v, = —6WAO‘Z‘FA0A.

Note a modification of V on £},, was also obtained in [I0, (2.27)]
where the spinorial notation is used.

5. ALMOST GRASSMANNIAN GEOMETRY

A complex almost Grassmannian (or AG-) structure on a smooth
manifold M is given by two auxiliary vector bundles €4 and £, and
the identification

(22) =yt =£4, Ner= Néa,
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where p is the rank of £4 and ¢ is the rank of £4. In fact, all results we
obtain hold for all real forms of a given complex geometry, [16]. Moti-
vated by the case p = ¢ = 2 when the structure is the spin conformal
structure, we shall term £4 and &4 spinor bundles.

Following [16] and equation (22]), we adopt the convention

E[-1] = Epa = EB”, E[] = EA" = &

for line bundles. This isomorphism is given explicitly by the tauto-
logical section €aq € Eaq[l] as E[—1] D f +— f€as € Eaa. A choice
of a scale £ € E[1] is equivalent to the choice of spinor volume forms
egAq ‘= {1 €pq € Epq, and analogously for £4”.

Our convention for the torsion 7,;,¢ and the curvature Rg%. of a
covariant derivative V, on T'M are given by the equation

QV[GVI,]UC = Tabdvdvc —+ Rabcdvd.

Summarizing [16, Theorem 2.1], for a scale £ € £[1] on an AG—structure
there are unique covariant derivatives on £4 and £, such that the tor-
sion F{'B'C, of the induced covariant derivative on T'M is totally trace-
free, the induced covariant derivative preserves (22)) and in addition, &
is parallel. We denote this class of covariant derivatives, parametrized
by sections of £[1], by [V]. Changing the scale £ — £ = e¥¢ € &[1]
with T a smooth function, the covariant derivative V changes to V in
a way that

VAU = Vi uC +05TauE,  for uC e 4,
VA Ucr = Vﬁluc/ + 5é:T§,uB/, for ugr € Ecr,
(23) VA vg = VAf‘IUB — Tg/vA, for vp € Ep.
@ﬁ,vB/ = VAE —YEWA | for vg € € and also
Vof = Vaof +wYof, for f e Ew]

where T, = V,T. We use hat sign to denote quantities corresponding

to the changed scale é = ¢¥¢ from now on without further notice.
Given V € [V], we denote all covariant derivatives on tensor products

of &4 ans £, also by V. The curvature on spinor bundles is given by

2V VT V) = RySv”, 2V Vy—Tw'Va)vp = —RySver.

The curvature of V is R,,? = R,,20%, — R85, where R,,5, and
R,,$ are trace—free on the spinor indices dlsplayed The relations
Rabg abD 5CPAIB, + 5 Pglgl7

! B/ A/ ! AI B !
RS =U,S +05PYS —sApPEC

a

together with the condition Uj’ gl B URE4 =0 (and the algebraic
Bianchi identity) determine U,%, U,% and the Rho-tensor Pg. In

a
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more details, the curvature on the (co)tangent bundle is
Ry = Uppiy + 68 5A QPR B — 00/ 0GPA D + 0560 PE R — 0008 PA Y

where U5 = U,,505 —U,5/85. In this form, tensors U are determined
by U, = USBE — U B4 = 0. (Note the previous display means
the decomposition U = R 4 0P where U is 0*-closed, cf. the theory of
Weyl structures in [9].) Furthermore,

(24) Upe = —Uy&r = 2Py and = 2(p + )Py = V. Tw*

a a

where the last identity follows from the algebraic Bianchi identity.
We will be mostly interested in the case p = 2 and ¢ > 2. In this case,
the only invariants are the trace—free part of T([ﬁg})

free part of U [’:ﬁg [16]. That is, if these two vanish, the geometry is

locally isomorphic to the homogenous model. Finally note that using
the algebraic Bianchi identity we obtain

¢, and the trace—

R/[A/ / [A/ R/(A/B/) - (A/B/)R/ .
U(AB)R’ UR(AB _U[AB]R’ —UR[AB} =0,
R(A'B) _ (ABYR L (Ae|B) r
(25) U(AB)R’ = UR(A B) — _Tr(A TB)e
R[A'B] _ ABIR _ 1 [A'le] nB'] T
Unpr =U

R[AB}__—q+4 ra L BJe -

5.1. Grassmannian tractor calculus. We follow [I6] here. The
standard tractor bundle is the (spinor tractor) bundle £¢ = £4 & &4
and we denote its dual by &, = E4 G E4. (That is, we use Greek let-
ters for spinor tractor abstract indices.) Using the injectors Y5 € £9,
X% € &% and YV € X XA € €4, sections of £ and &, are written
conveniently as

A
(ZA,) = Yo+ X5 pY € % resp. (Z’Z) =Y uu+ Xua € &,

Splittings of £* and &, are parametrised by choice of the scale £ € E[1].
The change of the splitting has the form

UA UA N , ~
(p”) B (pA/ _ rg’aB) e Y=Y+ XYY, X§ = X5 and

var Var . - Al Al BrA YA A
= / e Y& =YY" - X°T X=X
(NA) <MA + T4 VA’) M e “ o By e *

That is, the sections X¢, and X4 are invariant and Y and Y" depend
on the choice of the scale. They are normalized in such a way that
YEXB 4+ YPXE =6.° ie. XBY$ = 6,5 and X VP =647

The normal covariant tractor derivative is given by

’ B V O' + pPléA [ Vpr V VB/ — (SP/I,UA
VP o / — 4 ’ It d VP B = A 5 ’ .
A <pB ) <v NpP —PRE P ) A s ) T\ s+ P v
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That is,
! 4> /
VEYS = —Xx&PEE v XS = Yash and
P’y B BpP'B’ P’y B P’
VAYa :onPABv VAXa :_Ya 514'

Its curvature 2,3 is trace-free on the spinor tractor bundle and has
the explicit form

Qabg - — ngﬁc/Tabg/ + YgXé)U bD + XC’Yﬁ UabD/
+ Xg,XgQabg/ € Euns C Elay ® trace-free(EF)
where Qupe = —2V(oPye + Top°Pec € Ejapje and trace-free(£5) = A is

the adjoint tractor bundle. That is, (V,V, — V,V, — TV, ) f* =
Qab%‘fﬁ = (U™ = Quptt f* in our notation.

AO/

The inclusions ¢ and ¢ from [2.2] are of the form D Ea 5 E10a° 3
and le,Xﬁ Al e b E4%p, where we use the identlﬁcatlon Eo= 5‘2(?/

and £ = Al, Therefore

0 Ea®T 3 fars YV fa = Eoa® T and
0 Ea®T 3 fars XX fo 5 &0 T
for any subbundle 7 of ® £, ® ® £ @ E[w]. This does not cover all

tractor bundles but will be sufficient in the examples treated below.

Henceforth we assume p = 2, ¢ > 2. Note we have the decomposition
Qi = Q[élg o 5+ ig])g, where the component Q([’jg})g vanishes in
the torsion—free case.

5.2. Skew symmetric tractors and tractor forms. We shall also
need tractor bundles A" £% = £ with the notation for the multiindex
a = al. Since \'E* = N7 £, (we assume orientability here), these
are just tractor forms. Specifically, the case £ = g+ 1 is just the bundle
Es.

It follows from the structure of £* that

Ex=ErgePAg el A a=af, A=A 2<0<q

Of course we have the isomorphism EB'C1A = £A[_1] using the spinor
volume form €pcr € Epen[—1] but it turns out more convenient for
the computation to use the form as in the display.

We put
v =yl . vileez, wo, =xbye lees
A — Al - AL A ' — B’ A2 - - - B/A7
[al 2 3
X;’C’A - XB’ aC’Yi\S e e 5%’0’
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o . . o o .
where X7 ; Is invariant and Y§ and W7, are scale dependent. Fi-

nally, the normal tractor connection on these section is

VCYX =—AWZ c|A1}

B’[A
VWS, = Y2, 85 - (e —1)X5 4Pk, and
VX 4 =2Wg 465

Example 5.1. We shall demonstrate the prolongation covariant de-
rivative V for AG—geometries on tractor bundles corresponding to fun-
damental representations. These are bundles /\e E¥for1 <V <q+1.
Since the computation is getting very technical for 1 < ¢ < ¢+ 1, we
later restrict to torsion—free manifolds.

First we discuss the cases £ and £ = A\’ £, Considering F* €
£ and G € &g, a short computation gives

1 el
(*dVdVF).~ = 5 X X8, xXPsPC e and
1 :
(07dVdV G = -3 s XES0S G,
where

1 / ! 1 /
D’C’ R'A'B' __ 17A'B'R __ (A’le|nB') r [A’le|~B'] 7
S UABR’_URAB_gTr(A TB)e qu4T[A TB]e

Hence we need the action of the Kostant-Laplace operator [ on € g’cl =
EUC) < EBSUC) @1, The eigenvalues are, resgectively, +(g—1) and 3(qg+1).
Therefore the prolongation connection V has the form

CONFORMAL AND GRA

~ 1 Yali 1
V.F® =V .F* - X% XD [—5(35) - —S[Zg]} F* for F* € £°,
q J—

1 q+1

~ 1 1 1 ol
ViGy = V.G + X X5 [——5C5 + q_s[ggq G, for Gy € &p.

q—1 +1
It remains to consider the bundles £, = af for 2 <t <q
Consider the section F* = Yqo® + W&, 1 B A +X2., ApB/C/A, where

oA € EA, uB,A € EBA and pB,C,A € EBCIA A straightforward
computation shows that

1 1 S
(@VavF),> = 5 Qb = 3 Q! plolal —
1 a Al 7| A
2{\5{ [0, 4 @A 7, 14 A

+ W2

B'A

A2 1O A ’ A ’ /A
[(f - I)Ude[Q pl? A 4 deeS ot 4 Ude%'#Q A

_QTde[gfpm'QWA}] XS, SOB@A}
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B'C'A ¢ gB'C'A \We need to compute & of the previous

for a section ¢
display.

It turns out the computation is getting too technical in general 50 we
compute V in the torsion-free case only. That is, we assume 7] fc =0

(hence also S2'S" = 0) from now on. Then we obtain

(O ddVF). > =

1 : i
= 5= {eWi U o

C'[A* |B'QR|A C'B' _QRA C'B' | Q'RA
+XEICIA|:(€_2)UER[ ”I QRIA] _EQeRQ UQ UeRQ’ v }}
Since UAELD = U [&ﬁ ¢y in the torsion-free case, we conclude that

(0*dVdV F),® = 0. This yields the surprising result V = V on .
The same is obviously true also for £ = 1 and ¢ = ¢ + 1. Hence we
obtain

Proposition 5.2. The prolongation connection %c &Y= €Y a=
a for1 <0 < q+1 on torsion-free AG-manifolds is equal to the
normal tractor connection, i.e. V = V.
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