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ALGEBRAIC GROUPS OVER THE FIELD WITH ONE ELEMENT

OLIVER LORSCHEID

ABSTRACT. Remarks in a paper by Jacques Tits from 1956 led to a philosophy how a
theory of split reductive groups overF1, the so-called field with one element, should look
like. Namely, every split reductive group overZ should descend toF1, and its group of
F1-rational points should be its Weyl group. We connect the notion of a torified variety
to the notion ofF1-schemes as introduced by Connes and Consani. This yields models
of toric varieties, Schubert varieties and split reductivegroups asF1-schemes. We endow
the class ofF1-schemes with two classes of morphisms, one leading to a satisfying notion
of F1-rational points, the other leading to the notion of an algebraic group overF1 such
that every split reductive group is defined as an algebraic group overF1. Furthermore, we
show that certain combinatorics that are expected from parabolic subgroups ofGL(n) and
Grassmann varieties are realized in this theory.

INTRODUCTION

The development ofF1-geometry plays a key rôle in the program of translating Weil’s
proof of the Riemann hypothesis as shaped by Kurokawa ([10]), Deninger ([7], [8], [9]),
Manin ([13]) and others in the early 1990s. But the first mention of the “field with one
element” appeared in Jacques Tits’ paper [16] from 1956 and his ideas are a main inspira-
tion in the development ofF1-geometry. Tits’ remarks gave rise to a philosophy of groups
and group actions overF1, which was first seriously treated by Connes and Consani in [1].
For a further discussion of their results, see [11, section 6.1]. We will give an idea of this
philosophy in the present introduction and show how to realize it in the following sections.

While there are now general different frameworks forF1-geometry, a common theme is
thatF1 should be an object lying below the integers. this means thatanF1-geometry should
be a categorySchF1

with a terminal object∗F1
= SpecF1

F1 and a base extension functor
− ⊗F1

Z from SchF1
to the categorySchZ of schemes such that∗F1

⊗F1
Z is isomorphic

to ∗Z = Spec Z. Given a candidate forSchF1
, it is natural to ask: which schemes have

a model overF1, i.e. for which schemesX does exist an objectX in SchF1
such that

XZ := X ⊗F1
Z is isomorphic toX?

The viewpoint originating from Tits’ paper is the following. A wide class of schemes of
finite type overZ admit a polynomialN(q) with integer coefficients as acounting function,
that is,N(q) equals the number ofFq-points of the scheme for every prime powerq. First
examples include affine spaces, projective spaces and Grassmannians:

#A
n(Fq) = qn, #P

n−1(Fq) = [n]q, and #Gr(k, n)(Fq) =

[

n
k

]

q

where[n]q = qn−1 + · · · + q + 1 is the Gauss number,[n]q! =
∏n
i=1[i]q is the Gauss

factorial and[nk]q =
[n]q!

[k]q ![n−k]q ! is the Gauss binomial. Evaluating these polynomials at

q = 1 leads to interesting numbers, which should be thought of as the number#X(F1) of
“F1-rational points” of the schemeX . Comparing cardinalities, we see that

#A
n(F1) = 1 = #∗, #P

n−1(F1) = n = #Mn, #Gr(k, n)(F1) =

(

n

k

)

= #Mk,n

where∗ is the one point set,Mn = {0, . . . , n − 1} andMk,n is the set of subsets of
cardinalityk in Mn. We formulate a first problem.
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Problem A. We seek a categorySchF1
with a terminal object∗F1

and a functor−⊗F1
Z :

SchF1
→ SchZ that contains objectsAn

F1
, P

n−1
F1

andGr(k, n)F1
(for n ≥ 1 and0 ≤ k ≤ n)

such that

A
n
F1

⊗F1
Z ≃ A

n and A
n
F1

(F1) ≃ ∗,

P
n−1
F1

⊗F1
Z ≃ P

n−1 and P
n−1
F1

(F1) ≃Mn,

Gr(k, n)F1
⊗F1

Z ≃ Gr(k, n) and Gr(k, n)F1
(F1) ≃Mk,n .

There are already several approaches that give partial solutions to this problem. All
suggestions forSchF1

in literature contain models of toric varieties, which includeAn and
P
n−1. As we will see in the course of this text,Gr(k, n) has a model in the notion ofF1-

scheme as suggested by Connes and Consani in [2]. However, inmost categories, the set
Hom(SpecF1

F1,X ) is not equal to what we expect asX (F1). Note thatPn−1 = Gr(1, n),
so part (i) follows from part (iii) of Problem A. In the present paper, we will introduce
morphisms betweenF1-schemes as defined in [2] and show that Problem A can be solved.

Another interesting source of examples are split reductivegroupsG with maximal split
torusT ≃ Gr

m, wherer is the rank ofG. LetN be the normalizer ofT in G andW =
N(Z)/T (Z) the Weyl group ofG. Let B be a Borel subgroup ofG containingT . The
Bruhat decomposition ofG (w.r.t. T andB) is the natural morphism

∐

w∈W

BwB −→ G.

This morphism induces a bijection
∐

BwB(k) ≃ G(k) of k-rational points for every field
k. SinceBwB ≃ Gr

m × Adw for certaindw ≥ 0, the Bruhat decomposition shows thatG
admits a polynomial counting function

#G(Fq) =
∑

w∈W

(q − 1)rqdw .

However, if the rankr of G is positive, then the value of this polynomial atq = 1 is
zero. A more interesting number of the counting polynomialN(q) is

lim
q→1

N(q)

(q − 1)ρ

whereρ is the order of vanishing ofN(q) in q = 1, i.e. the lowest non-vanishing coefficient
in the development ofN(q) in q − 1. Note that in the previous cases ofAn, Pn−1 and
Gr(k, n), we haveρ = 0 and nothing changes regarding Problem A. In the case of a split
reductive groupG, we haveρ = r and

(1) lim
q→1

∑

w∈W (q − 1)rqdw

(q − 1)r
= lim

q→1

∑

w∈W

qdw = #W.

It was indeed Tits’ suggestion to interpret the Weyl group ofa split reductive group as its
set ofF1-points. In the framework as above, this means that we shouldask for a concept of
“algebraic groups overF1” such that split reductive groups are defined as algebraic groups
overF1 and such that theirF1-points are isomorphic to their Weyl group. More precisely,
consider the following problem.

Problem B. We seek a categorySchF1
with finite products and a terminal object∗F1

to-
gether with a functor− ⊗F1

Z : SchF1
→ SchZ that respects finite products and the ter-

minal object such that for every split reductive groupG with group lawm : G×G→ G,
there is a group objectG in SchF1

with group lawµ : G × G → G (in SchF1
) satisfying the

following properties.



ALGEBRAIC GROUPS OVER THE FIELD WITH ONE ELEMENT 3

(i) GZ ≃ G as algebraic groups, i.e. there is an isomorphismϕ : GZ → G such that

GZ × GZ

µZ
//

(ϕ,ϕ)

��

GZ

ϕ

��
G×G

m // G

commutes.
(ii) G(F1) := HomF1

(∗F1
,G) together with the induced group structure is isomor-

phic toW as a group such that the limit in(1) is respected, i.e. the morphism

σ : N(Z)/T (Z) = W
∼
−→ G(F1)

−⊗F1
Z

−→ GZ(Z)
ϕ

−→ G(Z)
(∗F1

→ G) 7−→ (∗Z → GZ)

maps each cosetnT (Z) in N(Z)/T (Z) to an element ofnT (Z) ⊂ G(Z).

For the following reason, this problem cannot be solved in general. Note thatσ is a
group homomorphism, since it is a composition of group homomorphisms (for the fact
that the base extension is a group homomorphism, see Proposition 1.6). Then the fact that
σ(nT (Z)) ⊂ nT (Z), shows thatσ splits the short exact sequence of groups

(2) 1 // T (Z) // N(Z) // W //

σ
uu O

TZ_dj

1.

This, however, is not possible for every split algebraic group as the example ofSL(2)
shows.

In [1], Connes and Consani circumvent the lifting problem byusing Tits’ construction
from [17], which shows that a certain extension of (2) splitsfor every split reductive group.
In this way, the normalizerN becomes a group object that is defined over “F12”, but the
group law ofG fails to be defined overF12 in general, cf. [11, section 6.1]. In this text, we
will use a different method that allows us to define every split reductive group as a group
object defined overF1 such that it has the expected group ofF1-points. Namely, we will
use the framework ofF1-scheme given by Connes and Consani in [2], and introduce two
different classes of morphisms betweenF1-schemes, one leading to a satisfying notion of
F1-rational points, the other allowing models of all split reductive groups overF1.

Once we have established split reductive groups as group objects overF1, we can inves-
tigate group actions and ask whether a quotient exists. In the case of a standard parabolic
subgroupP of GL(n) of type(k, n− k) acting onGL(n) by multiplication from the left,
the quotient isGr(k, n). SinceP is isomorphic toGL(k) × GL(n − k) × Ak(n−k) as
a variety, it has a polynomial counting function, namelyNP (q) = qk(n−k) · NGL(k)(q) ·

NGL(n−k)(q), whereNGL(r)(q) =
∑

w∈W (q− 1)rqdw is the counting function ofGL(r),
where the Weyl groupW of GL(r) is isomorphic toSr for r ∈ {k, n− k}. The order of
vanishing ofNP (q) at q = 1 is k + (n− k) = n and the number ofF1-rational points is

#P (F1) = lim
q→1

qk(n−k)
(
∑

α∈Sk
(q − 1)kqdα

)(
∑

β∈Sn−k
(q − 1)n−kqdβ

)

(q − 1)n

= lim
q→1

qk(n−k)
(

∑

α∈Sk

qdα
)(

∑

β∈Sn−k

qdβ
)

= #(Sk × Sn−k)

The quotient of the actionl : P × G → G is the GrassmannianGr(k, n − k) and the
quotient of the actionl′ : (Sk × Sn−k) × Sn → Sn is Mk,n. There is a natural action
t : GL(n) × Gr(k, n) → Gr(k, n) and a natural actiont′ : Sn ×Mk,n → Mk,n. This
leads to the following problem.

Problem C. We seek a categorySchF1
with finite products and a terminal object∗F1

to-
gether with a functor− ⊗F1

Z : SchF1
→ SchZ that respects finite products and the
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terminal object such that there exist group objectsG andP , a group actionλ : P×G → G
and a quotientQ of λ with the following properties.

(i) There are isomorphismsf : PZ ≃ P andg : GZ ≃ GL(n) of algebraic groups
such thatλZ : PZ × GZ → GZ is compatible withl : P × GL(n) → GL(n), i.e.

PZ × GZ

(f,g)

��

λZ // GZ

g

��
P × GL(n)

l // GL(n)

commutes. There are bijectionsP(F1) ≃ Sk × Sn−k andG(F1) ≃ Sn such that
λ(F1) : P(F1)×G(F1) → G(F1) is compatible withl′ : (Sk×Sn−k)×Sn → Sn.

(ii) Letτ : G×Q → Q be the natural action on the quotient. There is an isomorphism
QZ ≃ Gr(k, n) of varieties such thatτZ : GZ × QZ → QZ is compatible with
t : GL(n)×Gr(k, n) → Gr(k, n). There is a bijectionQ(F1) ≃Mk,n such that
τ(F1) : G(F1) ×Q(F1) → Q(F1) is compatible witht′ : Sn ×Mk,n →Mk,n.

We will show that Problem C can be solved within the frameworkof this paper.
The text is organized as follows. In section 1, we recall the basic facts about group

objects in an arbitrary category with finite products and a terminal object. In section 2, we
introduce the notion of anF1-scheme as defined by Connes and Consani in [2] and show
that toric varieties descend toF1. In section 3, we introduce the notion of a torified variety
as defined by López Peǹa and the author in [11]. The important property is that every
torified variety descends toF1. We recall from [11] that toric varieties, Schubert varieties
and split reductive groups are torified varieties and are thus defined overF1.

In section 4, we define the notion of a strong morphism betweenF1-schemes. With
relation to this class of morphisms, the setsX (F1) = Homstr

F1
(SpecF1

F1,X ) return forX
being theF1-schemes from Problems A and B the expected sets ofF1-points. In particular,
we solve Problem A. In section 5, we define the notion of a weak morphism betweenF1-
schemes. In section 6, we introduce certain functors that allow us to pass group objects
from one category to another.

In section 7, we define the notion of a group scheme overF1 as a group object in the
category ofF1-schemes together with weak morphisms. An algebraic group over F1 is
a group scheme overF1 whose base extension toZ is an algebraic group. We show that
extensions of finite groups by split tori, split reductive groups and successive extensions
of the additive group schemeGa descend to algebraic groups overF1. In particular, this
solves a slight modification of Problem B. In section 8, we show that parabolic subgroups
of GL(n) can be defined as algebraic groups overF1. We solve Problem C.

Acknowledgements. The author thanks the Max Planck Institute for the inspiring
working environment. He thanks the organizers and the participants of the Nashville con-
ference onF1 from May 2009 for many interesting discussions. He thanks Javier Lòpez
Peña and Lisa Carbone for stimulating conservations. He thanks Ethan Cotterill for his
help with preparing the paper.

1. PRELIMINARIES ON GROUP OBJECTS

To begin with, we review the concept of a group object and provide some facts that we
will use later on. For more details, cf. [5, Exposé 1, section 2], [12, Section III.6] and [14,
§0.1].

In this text, we say that a categoryC is cartesianif it contains finite products and a
terminal object∗C. A cartesian categoryC comes with the following canonical morphisms
for all objectsA andB:

• an isomorphismpr1 : A× ∗C → A,
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• thediagonal∆ : A→ A×A,
• an isomorphismχ : A×B → B ×A.

A group objectin a cartesian categoryC is a pair(G,m), whereG is an object inC and
m : G×G→ G is a morphism inC such that the multiplication

m∗ : Hom(X,G) × Hom(X,G) −→ Hom(X,G)
(f, g) 7−→ m ◦ (f, g)

defines a group structure ofHom(X,G) for every objectX in C. We refer toG as the
group object, when the context is clear, and refer tom as itsgroup law.

There is an alternative characterization of group objects.

1.1.Proposition. LetG be an object andm : G×G → G be a morphism in a cartesian
categoryC with terminal object∗C . Then(G,m) is a group object if and only if there are
morphismsǫ : ∗C → G andι : G→ G such that the following diagrams commute:

(i) (associativity) G×G×G
(id,m)

//

(m,id)

��

G×G

m

��
G×G

m // G

,

(ii) (left (right) unit) G× ∗C
(id,ǫ)

//

pr
1

##GG
GG

GG
GG

G
G×G

m
||xx

xx
xx

xx
x

G

(resp. withm
replaced bym ◦ χ),

(iii) (left (right) inverse) G
∆ //

��

G×G
(id,ι)

// G×G

m

��
∗C

ǫ // G

, (resp. withm
replaced bym ◦ χ).

Moreover, if(G,m) is a group object, thenǫ and ι are unique with the property that the
diagrams(i)–(iii) commute. The unit element ofHom(X,G) for any objectX in C is the
morphismX → ∗C

ǫ
→ G.

We refer toǫ as theunit ofG and toι as theinversion ofG. We sometimes say that
a quadruple(G,m, ǫ, ι) is a group object, when we want to label the morphismsǫ andι
related to a group object(G,m) explicitly.

Proof. This proposition is standard. We give only a brief outline.
Let (G,m) be a group object. Ifǫ : ∗C → G is the unit of the groupHom(∗C , G) and

ι : G → G is the inverse ofid : G → G in the groupHom(G,G), then the diagrams
(i)–(iii) commute, and these choices forǫ andι are unique.

Conversely, assume that there are morphismsǫ and ι such that the diagrams (i)–(iii)
commute. Then for every objectX , the multiplication ofHom(X,G) is defined byϕ·ψ :=

m ◦ (ϕ, ψ) for all ϕ, ψ ∈ Hom(X,G), the mapX → ∗C
ǫ
→ G is the unit andι ◦ ϕ is the

inverse ofϕ ∈ Hom(X,G). �

A homomorphism of group objects(G1,m1) and(G2,m2) is a morphismϕ : G1 → G2

such that

G1 ×G1
m1 //

(ϕ,ϕ)

��

G1

ϕ

��
G2 ×G2

m2 // G2

commutes. If the context is clear, we will simply say thatϕ : G1 → G2 is a homomor-
phism of group objects.
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We collect some standard facts.

1.2.Lemma. Letϕ : G1 → G2 be a homomorphism of group objects.

(i) For every objectX , the mapϕ∗ : Hom(X,G1) → Hom(X,G2) is a group
homomorphism.

(ii) Let ǫi andιi be the unit resp. inversion ofG for i = 1, 2. Then the diagrams

G1

ϕ
��

∗C

ǫ1 33ffffffffffff

ǫ2 ++XXXXXXXXXXXX

G2

and G1
ι1 //

ϕ
��

G1

ϕ
��

G2
ι2 // G2

commute. �

Let Y be an object and(G,m) be a group object inC. A group action ofG onY is a
morphismθ : G× Y → Y such that for every objectX in C, the mapθ∗ : Hom(X,G) ×
Hom(X,Y ) → Hom(X,Y ) is an action of the groupHom(X,G) on the setHom(X,Y ).
There is an alternative definition.

1.3.Proposition. Let Y be an object,(G,m, ǫ, ι) a group object andθ : G × Y → Y a
morphism inC. Thenθ is a group action if and only if the diagrams

G×G× Y
(id,θ)

//

(m,id)

��

G× Y

θ

��
G× Y

θ // Y

and ∗C × Y
(ǫ,id)

//

pr
2

##GG
GG

GG
GG

G
G× Y

θ
||xx

xx
xx

xx
x

Y

commute. �

Let θ : G × Y → Y be a group action. ThenQ together with a morphismp : Y → Q
is a(categorical) quotient ofθ if the diagram

(3) G× Y
θ //

pr
2

��

Y

p

��
Y

p
// Q

commutes and if for all morphismsf : Y → Z such that diagram (3) withp : Y → Q
replaced byf : Y → Z commutes, there is a unique morphism̄f : Q → Z such that
f = f̄ ◦ p.

A subgroupof a group object(G,m, ǫ, ι) is a group object(H,m′, ǫ′, ι′) together with
a homomorphismH → G of group objects that is a monomorphism inC. By Lemma
1.2, we can think of(m′, ǫ′, ι′) as the restriction of(m, ǫ, ι) toH and when will suppress
the formal difference between(m′, ǫ′, ι′) and(m, ǫ, ι) in the notation, when the context is
clear.

A subgroupH of group object(G,m, ǫ, ι) acts on a subsetY of G by conjugationif
the image of the morphism

θ̄ : H × Y
(∆,id)

// H ×H × Y
(id,χ)

// H × Y ×H
(m,ι)

// G×W
m // G

is contained inY , i.e. θ̄ factors through a group actionθ : H × Y → Y , which we call the
conjugation ofH onY . A normal subgroup ofG is a subgroupN of G on whichG acts
by conjugation.

1.4.Lemma. If N is a normal subgroup of a group objectG andQ is a quotient of the
conjugationG × N → N , thenQ inherits a natural structure of a group and we callQ
thequotient groupofG byN .
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The direct product of group objects(G1,m1) and (G2,m2) is the productG1 × G2

together with the pairm = (m1,m2) as group law, which is easily seen to define a group
object.

Let (N,mN ) and(H,mH) be group objects andθ : H × N → N a group action that
respects the group lawmN of N , i.e. if we define thechange of factors alongθ as

χθ : H ×N
(∆,id)

// H ×H ×N
(id,θ)

// H ×N
χ

// N ×H,

then the diagram

H ×N ×N
(id,mN )

//

(χθ ,id)

��

H ×N
θ

**UUUUUUUUUUU

N

N ×H ×N
(id,θ)

// N ×N
mN

44iiiiiiiiiii

commutes. Then the morphism

mθ : N ×H ×N ×H
(id,χθ,id)

// N ×N ×H ×H
(mN ,mH)

// N ×H

is a group law forG = N ×H . We say thatG is thesemidirect product ofN withH w.r.t.
θ and writeG = N ⋊θ H . The group objectN is a normal subgroup ofG with quotient
groupH , andH is a subgroup ofG that acts onN by conjugation. The conjugation
H ×N → N equalsθ. If θ : H ×N → N is the canonical projection to the second factor
of H ×N , thenN ⋊θ H is equal to the direct product ofN andH (as group object).

1.5.Lemma. LetG be the semidirect product ofN withH w.r.t.θ andG′ be the semidirect
product ofN ′ with H ′ w.r.t. θ′. If there are group homomorphismsϕ : N → N ′ and
ψ : H → H ′ such that

N ×H
θ //

(ϕ,ψ)

��

N

ϕ

��
N ′ ×H ′ θ′ // N ′

commutes, thenG = N ⋊θ H
(ϕ,ψ)
−→ N ′ ⋊θ′ H

′ = G′ is a homomorphism of group
objects. �

Let C andD be cartesian categories. We say that a functorF : C → D is cartesianif
F(A×B) ≃ F(A) ×F(B) andF(∗C) ≃ ∗D.

1.6.Proposition. LetF : C → D be a cartesian functor between cartesian categories and
(G,m) be a group object inC. Then(F(G),F(m)) is a group object inD, and for every
objectX in C, the mapHomC(X,G) → HomD(F(X),F(G)) sendingϕ to F(ϕ) is a
group homomorphism.

Proof. By functoriality, F maps the commutative diagrams (i)–(iii) to commutative di-
agrams. SinceF respects products and the terminal object, these diagrams verify that
(F(G),F(m)) is a group object inD.

The last statement of the proposition follows from the equality

F(ϕ · ψ) = F(m ◦ (ϕ, ψ)) = F(m) ◦ F(ϕ, ψ) = F(m) ◦ (F(ϕ),F(ψ)) = F(ϕ) · F(ψ)

for any two morphismsϕ andψ in Hom(X,G). �

By functoriality, Lemma 1.5 and Proposition 1.6 imply immediately the following.
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1.7.Corollary. LetG = N⋊θH be the semidirect product ofN withH w.r.t.θ in C and let
F : C → D be a cartesian functor. ThenF(G) is the semidirect productF(N)⋊F(θ)F(H)
ofF(N) with F(H) w.r.t.F(θ) in D. �

In the following, avariety means a reduced scheme of finite type overZ. A group
schemeis a group object in the categorySchZ of schemes. Analgebraic groupis group
scheme that is a variety.

2. SCHEMES OVERF1

In this section, we review the definition of a scheme overF1 as given by Connes and
Consani in [2]. This notion combines the earlier ideas of [1]and [15] with [3] and [18].

We begin with recalling the notion of anMo-scheme. For details, see [2, section 3.6];
also cf. [3]. LetMo be the category of commutative monoidsM with 1 (monoidsfor
short) and with0, i.e. an element satisfying0 · a = 0 for all a ∈M . A morphism between
monoids with0 is a multiplicative map that sends1 to 1 and0 to 0. A monoidal space
(with 0) is a topological spaceX together with a structure sheafOX with values inMo. A
morphism of monoidal spacesis a continuous map together with a morphism of sheaves.
Since direct limits exist inMo, it is possible to define stalksOX,x for every pointx ∈ X .

A prime idealof a monoidM with 0 is a subsetp ofM containing0 such thatpM ⊂M
andM−p is a multiplicative subset containing1. It is possible to define localisations ofM
at multiplicative subsets and to endow the set of prime ideals ofM with a Zariski topology
in the same way as it is done for rings, since these constructions use only multiplicative
structure. This defines a monoidal spaceSpec

Mo
M , called thespectrum ofM . An Mo-

schemeis a monoidal space that is locally isomorphic to the spectrum of a monoid. A
morphism ofMo-schemes is a morphism of monoidal spaces. LetSchMo denote the cate-
gory ofMo-schemes.

The categorySchMo is cartesian. The terminal object is∗Mo = Spec{0, 1} and the
product is locally given bySpecA × SpecB = Spec(A ∧ B), whereA ∧ B denotes the
smash product ofA andB with respect to0 as base point.

There is abase extension functor̃X 7→ X̃Z = X̃ ⊗F1
Z from SchMo to the category

SchZ of schemes (overZ), which is locally described by

Spec
Mo

M 7−→ Spec
(

Z[M ]/(1 · 0M − 0Z[M ])
)

,

whereZ[M ] is the semi-group ring ofM , 0M is the zero ofM and0Z[M ] is the zero of
Z[M ]. This functor is cartesian.

A scheme overF1 (or F1-scheme) is a tripleX = (X̃,X, eX), whereX̃ is anMo-
scheme,X is a scheme andeX : X̃Z → X is a morphism of schemes (called theevaluation
map) such thateX(k) : X̃Z(k) → X(k) is a bijection for every fieldk.

2.1. Remark. An F1-schemeX = (X̃,X, eX) is locally of finite typeif X is locally
of finite type. For the sake of simplicity, we will assume for the rest of this text thatall
schemes overF1 are locally of finite type.

There is a natural choice of morphism ofF1-schemes as a morphism between the un-
derlyingMo-schemes together with a morphism between the underlying schemes that are
compatible with the evaluation maps. However, this notion of morphism is not suitable
for a theory of algebraic groups overF1 as the only group laws that are of this nature are
extension of finite groups by split tori (cf. Remark 7.7). We postpone the task to define the
appropriate notion of morphism to a later section.

Thebase extension functor− ⊗F1
Z associates to anF1-schemeX = (X̃,X, eX) the

schemeXZ := X .

2.2.Example. To everyMo-schemeX̃, we can associate theF1-schemeX = (X̃, X̃Z, idX̃Z
).

We have thatX̃ ⊗Mo Z = X ⊗F1
Z. We give first examples ofF1-schemes of this
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kind. The affine lineA1
Mo

is the spectrum of the monoid{T i}i∈N ∐ {0} and the as-
sociatedF1-scheme(A1

Mo
,A1, idA1) is a model of the affine line overF1. The mul-

tiplicative groupGm,Mo is the spectrum of the monoid{T i}i∈Z ∐ {0}, which defines
Gm,F1

= (Gm,Mo,Gm, idGm
) and base extends toGm as desired. Both examples can be

extended to define a model(An
Mo
,An, idAn) of then-dimensional affine space overF1 and

Gn
m,F1

= (Gn
m,Mo

,Gn
m, idGn

m
) by considering multiple variablesT1, . . . , Tn.

More generally, every toric varietyX gives rise to a connectedMo-schemeX̃ such
thatX̃Z ≃ X . Thus toric varieties can be realized asF1-schemes. On the other hand, the
only varieties that have models asMo-schemes are toric varieties. These observations are
essentially due to Deitmar ([4], consider also [11, Thm. 4.1]).

3. TORIFIED VARIETIES

We review the definition of a torified variety as introduced byJavier López Peña and the
author in [11]. The connection to schemes overF1 is immediate and delivers a rich class
of examples including Grassmannians and split reductive groups.

A torified schemeis a schemeX together with atorification eX : T → X , that is,
a morphismT → X , whereT is a disjoint unionT =

∐

i∈I Gdi
m of split tori, such that

eX(k) : T (k) → X(k) is a bijection for all fieldsk. A torified varietyis a torified scheme
X that is a variety.

3.1.Remark. The definition of a torified scheme given here differs from theoriginal one
given in [11]. Namely, in [11], one meets the additional condition that the restrictions
eX |

G
di
m

: Gdi
m → X are immersions for alli ∈ I. The aim of [11] was to establish

examples ofF1-varieties in the sense of the papers [15] and [1]. For the aimof the present
text, we do not need this additional property and thus work with the simplified (and more
general) definition.

The two definitions are close to each other, since every morphism e : Gd
m → X from

a split torus to a schemeX is locally closed and injective. It is, however, not clear to
me whether the morphismsOX,e(y) → OGd

m,y
between the stalks are surjective for all

y ∈ Gd
m, which is the missing property fore to be an immersion.

Note thatT = X̃T ⊗Mo Z for X̃T =
∐

i∈I G
di

m,Mo
. This yields immediately:

3.2.Lemma. Every torified schemeX with torificationeX : T → X defines anF1-scheme
(X̃T , X, eX)

In [11, section 1.3], we find examples of torified varieties. We will recall these briefly.

3.3.Example (Toric varieties). The decomposition of a toric varietyX with torus action
T × X → X into the orbits of this action provides a torification ofX . This establishes
models of toric varieties asF1-schemes, again.

We treat the example of a split torus and affine space in more detail. The split torus
Gr
m has the trivial torificationGr

m,F1
→ Gr

m,F1
. With that, we obtain the sameF1-scheme

Gr
m,F1

= (Gr
m,Mo

,Gr
m, idGr

m
) as in Example 2.2. The affine spaceAd has a decomposition

into tori GI
m = Spec Z[Ti, T

−1
i ]i∈I , whereI ranges through all subsets of{1, . . . , d}. The

embeddingGI
m →֒ Ad is given by the algebra homomorphism

Z[T1, . . . , Td] −→ Z[Ti, T
−1
i ]i∈I .

Tl 7−→

{

Tl if l ∈ I

0 if l /∈ I

In particular, there is a unique torus of dimension0, which is embedded into the origin of
Ad. This defines theF1-schemeAd

F1
= (Ãd,Ad, eAd). Note that the topological space of

Ãd is discrete, while theMo-schemeAd
Mo

given by the canonical structure ofAd as toric
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variety (as described in Example 2.2) is connected. Thus theF1-schemes(Ad
Mo
,Ad, idAd)

and(Ãd,Ad, eAd) are not the same, but we will see in Remark 4.5 that they becomeiso-
morphic when we endowF1-schemes with “strong morphisms”.

3.4.Example (Schubert varieties). Another class of examples is Schubert varieties, which
in particular includes Grassmann and flag varieties. Schubert varieties allow a decom-
position into affine spaces that can be further decomposed into tori. In the case of the
GrassmannianGr(k, n), we have a Schubert decomposition

∐

w∈Mk,n

A
dw −→ Gr(k, n),

which induces a bijection onk-points for every fieldk. The affine spacesAdw can be
further decomposed into split tori, what yields a torification ofGr(k, n) and consequently
a modelGr(k, n)F1

= (G̃r(k, n),Gr(k, n), eGr(k,n)) of the Grassmannian overF1. Note
that the0-dimensional tori in this torification stay in bijection withMk,n.

3.5. Example (Split reductive groups). The last class of examples discussed in [11] are
split reductive groupsG. For a definition, see [6, Exposé XIX, Def. 2.7]. LetT ≃ Gr

m be a
maximal split torus ofG, wherer is the rank ofG. LetN be the normalizer ofT in G and
W = N(Z)/T (Z) the Weyl group ofG. LetB be a Borel subgroup ofG containingT .
The Bruhat decomposition

∐

w∈W BwB → G can be refined to a decomposition into split
tori in the following way. (Note that we identify the cosetw ∈ W with the corresponding
subvariety ofG, which is isomorphic toGr

m). For everyw ∈ W , we can choose an
isomorphismBwB ≃ Gr

m × Adw for a certaindw ≥ 0 as varieties. ThereforeBwB is
toric and thus torified. More precisely, we can choose a torification ofBwB ≃ Gr

m×Adw

that containsGr
m ≃ w →֒ BwB asr-dimensional torus; all other tori in the torification are

of dimension larger thanr. This provides a torification ofG that restricts to a torification
of N into r-dimensional tori, indexed byW .

We collect the results obtained by these examples using Lemma 3.2.

3.6.Proposition. There areF1-schemesGr
m,F1

, Ad
F1

(Example 3.3),Gr(k, n)F1
(Example

3.4) such that

G
r
m,F1

⊗F1
Z ≃ G

r
m, A

d
F1

⊗F1
Z ≃ A

d, Gr(k, n)F1
⊗F1

Z ≃ Gr(k, n),

and there is aF1-schemeG for every split reductive groupG (Example 3.5) such that
GZ ≃ G.

4. STRONG MORPHISMS

In this section, we define a class of morphisms betweenF1-schemes that produces the
expected sets ofF1-points for affine and projective space, Grassmann varieties and split
reductive groups as formulated in Problems A and B of the introduction.
Let X = (X̃,X, eX) andY = (Ỹ , Y, eY ) beF1-schemes. Then we define therank of a
pointx of the underlying topological spacẽX asrkx := rkO×

X,x, whereOX,x is the stalk

(of monoids) atx andO×
X,x denotes its group of invertible elements. We define therank of

X asrkX := minx∈X̃{rkx} and we define

X̃rk :=
∐

rkx=rk X̃

Spec
Mo

O×
X,x,

which is a sub-Mo-scheme ofX̃ whose underlying topological space is discrete.
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4.1.Definition. A strong morphismϕ : X → Y is a pair(f̃ , f), wheref̃ : X̃rk → Ỹ rk is
a morphism ofMo-schemes andf : X → Y is a morphism of schemes such that

X̃rk
Z

f̃Z
//

eX

��

Ỹ rk
Z

eY

��
X

f
// Y

commutes. We denote the category whose objects areF1-schemes (locally of finite type)
and whose morphisms are strong morphisms bySchstr

F1
.

Recall that∗Mo = SpecMo{0, 1} is the terminal object inSchMo and∗Z = Spec Z, the
terminal object inSchZ. TheF1-scheme(∗Mo, ∗Z, id∗Z

) is the terminal object inSchstr
F1

,
and we denote it by∗F1

or SpecF1
F1.

If X = (X̃,X, eX) is anF1-scheme such thateX : X̃rk
Z

→ X is an isomorphism,
we say thatX is of pure rank, and we denote the full subcategory of thoseF1-schemes
in Schstr

F1
by Schrk

F1
. If X is of pure rank and(f̃ , f) : X → Y is a strong homomorphism

betweenF1-schemes, thenf ◦eX = eY ◦ f̃ . SinceeX is an isomorphism,f = eY ◦ f̃ ◦e−1
X ,

and we obtain:

4.2.Lemma. LetX = (X̃,X, eX) andY = (Ỹ , Y, eY ) beF1-schemes andX be of pure
rank. The mapHomstr

F1
(X ,Y) → HomMo(X̃, Ỹ ) sending(f̃ , f) to f̃ is a bijection. �

Thus we can also considerSchrk
F1

as a full subcategory ofSchMo. Its objects are char-
acterized as thoseMo-schemesX̃ for which there is a numberr such thatX̃ is a disjoint
union ofMo-schemes of the formSpecMo({0}∪H), whereH is an abelian group of rank
r. We define

Y(F1) := Homstr
F1

(∗F1
,Y)

for F1-schemesY, and, more generally,Y(H) := Homstr
F1

(

SpecMo({0} ∪ H), Y
)

for
an abelian groupH of finite rank andY(X ) := Homstr

F1
(X ,Y) for everyF1-schemeX of

pure rank.

4.3.Lemma. LetY = (Ỹ , Y, eY ) be anF1-scheme. ThenY(F1) equals the set of points
of Ỹ rk .

Proof. TheF1-scheme∗Mo = Spec
Mo

{0, 1} has one point, namely the unique prime ideal
{0} of {0, 1}. For every choice of imagey of {0} in Ỹ rk , the stalkOY,y is of the form
{0}∪H for an abelian groupH and there is consequently a unique monoid homomorphism
OY,y → {0, 1} sending0 to 0 andH to 1. �

If X is defined by a torified variety, theñXrk corresponds to the tori of lowest dimen-
sion in the torification. For split tori, affine spaces, Grassmannians and split reductive
groups we described a torification and their tori of lowest dimension in the examples of the
previous section. Thus we obtain a solution to Problem A and Problem B, part (i), from
the introduction.

4.4. Theorem. In Schstr
F1

, there are objectsGr
m,F1

, Ad
F1

(Example 3.3),Gr(k, n)F1
(Ex-

ample 3.4) and there is an objectG for every split reductive groupG (Example 3.5) such
that

G
r
m,F1

⊗F1
Z ≃ G

r
m and G

r
m,F1

(F1) ≃ ∗,

A
d
F1

⊗F1
Z ≃ A

d and A
d
F1

(F1) ≃ ∗,

Gr(k, n)F1
⊗F1

Z ≃ Gr(k, n) and Gr(k, n)F1
(F1) ≃Mk,n.

G ⊗F1
Z ≃ G and G(F1) ≃W (as sets). �
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4.5.Remark. For a toric varietyX , we have defined two different modelsX1 = (X̃1, X, e1)

(Example 2.2) andX2 = (X̃2, X, e2) (Example 3.3) ofX asF1-schemes, wherẽX1 is a
connectedMo-scheme and̃X2 is a discreteMo-scheme. However, both̃Xrk

1 andX̃rk
2 are

discrete and there is an isomorphismĩ : X̃rk
1 → X̃rk

2 of Mo-scheme such that(̃i, idX) is
a strong morphism. This shows thatX1 andX2 are isomorphic inSchstr

F1
.

5. WEAK MORPHISMS

In this section, we introduce a second notion of morphism betweenF1-schemes, which
allows us to define all split reductive groups as group objects overF1. We start with
proving some useful facts.

5.1. Lemma. Let (X̃,X, eX) be a scheme overF1. As a map between the underlying
topological spaces,eX : X̃Z → X is injective.

Proof. AssumeeX(x1) = eX(x2) for two pointsx1 andx2 of X̃Z. Then there is a fieldk
and two morphismsSpec k → X̃Z whose images are{x1} and{x2}, respectively. Since
eX induces an isomorphism̃XZ(k) ≃ X(k), the two morphism must have the same image,
and thusx1 = x2. �

Let Xrk denote the image ofeX : X̃rk
Z

→ X . For every pointx ∈ X̃ , let {x}Z be
the corresponding subscheme ofX̃Z. We writeeX(x) for the imageeX({x}Z) in X . By
a theorem of Chevalley, the images of constructible sets areconstructible. Since{x}Z is
connected,eX(x) is connected, too, and thus locally closed. This shows thateX(x) is a
subscheme ofX .

5.2.Lemma. The image ofX̃rk undereX is a disjoint union

Xrk =
∐

x∈X̃rk

eX(x).

Proof. Since the rank of a pointx ∈ X̃ equals the dimension of the subscheme{x}Z of
X̃Z andeX is injective by Lemma 5.1, the dimension ofeX(x) equals the rank ofX for
all x ∈ X̃rk . SinceeX(x) andeX(y) are disjoint and of equal dimension for two different
pointsx, y ∈ X̃rk , their union is not connected. SinceX is locally of finite type, the image
of eG is a locally finite disjoint union of subschemes of the formeG(x) with x ∈ X̃rk .
Thus the lemma follows. �

5.3. Remark. The previous two lemmas show thateX is an injective map between the
underlying topological spaces of̃XZ andX whose image is locally closed. For to show
thateX is an immersion, we need to show that all morphism between stalks are surjective.
It is not clear to me whether this holds true in general. If it holds true, we can identify
X̃rk

Z
andXrk via eX . Further it implies that the different definitions of torified schemes

(locally of finite type) given in the present text and in [11] coincide, cf. Remark 3.1.

Let X = (X̃,X, eX) andY = (Ỹ , Y, eY ) be F1-schemes. The unique morphism
SpecMo O

×
X,x → ∗Mo induces a morphism

X̃rk =
∐

x∈X̃rk

Spec
Mo

O×
X,x −→ ∗X :=

∐

x∈X̃rk

∗Mo.

Givenf̃ : X̃rk → Ỹ rk , there is a unique morphism∗X → ∗Y such that

X̃rk
f̃

//

��

Ỹ rk

��
∗X // ∗Y
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commutes.
The unique morphismeX(x) → ∗Z to the terminal object∗Z = Spec Z in SchZ induces

a morphism
Xrk =

∐

x∈X̃rk

eX(x) −→ (∗X )Z =
∐

x∈X̃rk

∗Z.

5.4.Definition. A weak morphismϕ : X → Y is a pairϕ = (f̃ , f), wheref̃ : X̃rk →
Ỹ rk is a morphism ofMo-schemes andf : X → Y is a morphism of schemes that restricts
to a morphismf : Xrk → Y rk such that

X̃rk
Z

f̃Z
//

((PPPPPPPP Ỹ rk
Z

((PPPPPPPP

(∗X )Z
// (∗Y)Z

Xrk
f

//

66mmmmmmmm

Y rk

66mmmmmmmm

commutes. We denote bySchweak
F1

the category whose objects areF1-schemes (locally of
finite type) and whose morphisms are weak morphisms.

6. CARTESIAN CATEGORIES

We reason that the categories we invented are cartesian and introduce certain cartesian
functors that allow us to pass from group objects from one category to group objects of
another category by means of Proposition 1.6. The categorySchZ has finite products and
∗Z = Spec Z as terminal object. ThusSchZ is cartesian. We already reasoned in section 2
thatSchMo is cartesian and that the base extension functor− ⊗Mo Z : SchMo → SchZ is
cartesian.

Since the evaluation is an isomorphism for everyF1-scheme of pure rank, the product
in Schrk

F1
is given by

(X̃,X, eX) × (Ỹ , Y, eY ) = (X̃ × Ỹ , X × Y, (eX , eY )).

Since(X̃×Ỹ )rk = X̃rk×Ỹ rk , the products inSchstr
F1

andSchweak
F1

are realized by the same
formula. The terminal object in all three categories is∗F1

. It follows that the categories
Schrk

F1
, Schstr

F1
andSchweak

F1
are cartesian and that the inclusion functorSchrk

F1
→֒ Schstr

F1

is cartesian. Every strong morphism is a weak morphism, thusSchstr
F1

is a subcategory of
Schweak

F1
. Consequently, the inclusion functorSchstr

F1
→֒ Schweak

F1
is cartesian.

Recall that we defined the base extension of anF1-schemeX = (X̃,X, eX) asXZ =

X . To extend this to a functor− ⊗F1
Z : Schweak

F1
→ SchZ, we define the base extension

of a weak morphismϕ = (f̃ , f) : X → Y to Z asϕZ := f : XZ → YZ. This yields a
cartesian functor.

We introduce a functor(−)rk : Schweak
F1

→ Schrk
F1

that associates to anF1-scheme
X = (X̃,X, eX), the F1-schemeX rk = (X̃rk , X̃rk

Z
, id) of pure rank and to a weak

morphismϕ = (f̃ , f) the strong morphismϕrk = (f̃ , f̃Z). This functor is cartesian.
We subsume these cartesian functors in the following diagram:

Schrk
F1

⊂ Schstr
F1

⊂ Schweak
F1

−⊗F1
Z

//

(−)rk

xx

SchZ .

Note that the composition of cartesian functors is cartesian. Thus the base extension
to Z restricted toSchrk

F1
or Schstr

F1
is cartesian, too. A consequence of the fact that ev-

ery strong morphismϕ : X → Y factors throughYrk whenX is of pure rank is that
Homrk

F1
(X ,Yrk ) = Homstr

F1
(X ,Y).
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An immediate consequence of Proposition 1.6 is the following key property that will be
of important (implicit) use for the theory of algebraic groups overF1 as introduced in the
next section.

6.1. Lemma. Let G be an algebraic group overF1 with group lawµ. ThenGZ is an
algebraic group (overZ) with group lawµZ, andGrk is a group object inSchrk

F1
with group

law µrk . In particular, for everyF1-schemeX of pure rank,G(X ) = Homrk
F1

(X ,Grk )
inherits the structure of a group. �

7. ALGEBRAIC GROUPS OVERF1

The subject of this section is to establish the notion and various examples of algebraic
groups overF1.

7.1.Definition. A group scheme overF1 is a group object inSchweak
F1

. LetG be a group
scheme with group lawm. If there is a group scheme(G, µ) overF1 such thatGZ ≃ G
as group schemes (overZ), then we say thatG is amodel ofG overF1. If µ is a strong
morphism, we say thatG is acanonical model ofG overF1. A group schemeG overF1 is
called analgebraic group overF1 if GZ is an algebraic group (overZ).

For a groupW , denote byWZ the constant group scheme ofW , i.e. the schemeWZ =
∐

W Spec Z together with the obvious group law. Clearly, we have a modelof the constant
group scheme inSchstr

F1
. More precisely:

7.2.Lemma. For every groupW , there is a group lawµ : WF1
×WF1

→ WF1
in Schstr

F1

for the F1-schemeWF1
=

∐

W ∗F1
such thatWF1

⊗F1
Z ≃ WZ as group schemes and

WF1
(F1) ≃W as groups. �

7.3.Lemma. For everyr ≥ 0, there is a group lawGr
m,F1

× Gr
m,F1

→ Gr
m,F1

in Schstr
F1

such thatGr
m,F1

⊗F1
Z ≃ G

r
m as algebraic groups. The groupGr

m,F1
(F1) is the trivial

group.

Proof. SinceGr
m,Mo

= SpecMo({0}∪H), whereH = {T n1

1 · · · · ·T nr
r | n1, . . . , nr ∈ Z}

is the free abelian group inr generators, it has precisely one point, namely the unique
prime ideal{0} of H . The stalkOGr

m,Mo
,{0} is equal toH . If we letm be the group law

of G
r
m (in SchZ) and definem̃ topologically as the trivial map and on the stalk as the map

m̃# : H → H ∧H sending an elementh ∈ H to (h, h) ∈ H and0 to 0, then

(Gr
m,Mo

)Z × (Gr
m,Mo

)Z

m̃Z // (Gr
m,Mo

)Z

Gr
m × Gr

m
m // Gr

m

commutes. Ifǫ : ∗Z → G
r
m andι : G

r
m → G

r
m are the morphisms of Proposition 1.1, then

it is easily seen that they extend to morphisms(ǫ̃, ǫ) : ∗F1
→ Gr

m,F1
and(ι̃, ι) : Gr

m,F1
→

Gr
m,F1

of F1-schemes that satisfy the definition of an algebraic group. ThusGr
m,F1

is a

group object inSchstr
F1

andGr
m,F1

⊗F1
Z = Gr

m as algebraic groups by construction.
SinceGr

m,Mo
has only one point and since there is only one homomorphism ofmonoids

{0} ∐H → {0, 1}, Gr
m,F1

(F1) is the trivial group. �

This proof generalizes to show the more general lemma.

7.4.Lemma. LetH be a finitely generated abelian group. ThenG := (Spec
Mo

({0} ∐
H), Spec Z[H ], id) is a group scheme overF1 with GZ = Spec Z[H ] andG(F1) being the
trivial group. �
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Let G be a group scheme with group lawm. If eG :
∐

i∈I Gdi
m → G is a torification

of G, then let(G̃,G, eG) be the associatedF1-scheme (cf. Lemma 3.2). LetN = Grk

be the image of̃Grk
Z

undereG, put r = mini∈I{di} andIrk = {i ∈ I | di = r}, and
denote byerkG : G̃rk

Z
→ N the restriction ofeG to G̃rk

Z
=

∐

i∈Irk Gr
m. If erkG is an

isomorphism of schemes andm restricts to a group law ofN , then defineW := N/T ,
whereT = N0 ≃ Gr

m is the connected component ofN ≃
∐

i∈Irk Gr
m. Thus we can

identify Irk with W and writeN ≃
∐

W Gr
m.

7.5.Theorem. Let (G,m) be a group scheme with torificationeG such thatm restricts
to a group law ofN = Grk . Put T = N0, W = N/T and r = dimT . Assume that
erkG :

∐

W Gr
m → N is an isomorphism.

(i) There is a modelG ofG overF1 andG(F1) ≃W .
(ii) If N ≃ T ⋊θW for someθ : W ×T → T , then there is a canonical modelG ofG

overF1. If e′G is another torification ofG that satisfies the hypotheses for to have
a canonical modelG′ overF1 and if there is an group automorphismf : G→ G
such thatf(N) = N ′, whereN ′ = Grk w.r.t. e′G, thenG andG′ are isomorphic
in SchsF1

tr.

Proof. We begin with (i). LetG = (G̃,G, eG) be theF1-scheme associated to the torifica-
tion eG. Lemma 7.2 provides a canonical modelWF1

= (WMo,WZ, eW ) of WZ overF1.
In particular, we have a group objectWMo =

∐

W ∗Mo with group lawm̃W in SchMo.
Lemma 7.3 provides a canonical modelT = (T̃ , T, eT ) of T ≃ Gr

m overF1 and in partic-
ular a group object̃T ≃ Gr

m,Mo
with m̃T in SchMo.

Choose any group actioñθ : WMo × T̃ → T̃ that respects̃mT , e.g. the projection to
the second component, which is always possible. Thenθ̃ defines the semidirect product
Ñ := T̃ ⋊θ̃ WMo with group lawm̃ as a group object inSchMo. The diagram

ÑZ × ÑZ

m̃Z //

))RRRRRRR
ÑZ

&&LL
LL

LL
L

WZ ×WZ
// WZ

N ×N
m //

55kkkkkkkk

N rk

88qqqqqq

commutes. This shows thatµ = (m̃,m) : G × G → G is a weak morphism.
To verify thatµ is a group law, letǫ andι be the unit and the inversion ofG and letǫ̃

and ι̃ be the unit and the inversion of̃G (cf. Proposition 1.1). It is easily seen that(ǫ̃, ǫ)
and(ι̃, ι) are weak morphisms (the former one being even a strong morphism) and verify
the conditions of Proposition 1.1. ThusG is a group scheme overF1 whose base extension
to Z isG.

By Lemma 4.3,N (F1) = Ñ rk = W as sets. Since every strong morphism∗F1
→

Gr
m,F1

is trivial, a strong morphism∗F1
→ N factorizes through∗Mo → WF1

, thus
N (F1) = W as groups.

We proceed with (ii). We need to defineθ̃ as above such that(θ̃, θ) is a strong morphism.
Fix an isomorphismT ≃ Gr

m. For everyw ∈ W , the restrictionθw : Gr
m → Gr

m of θ
to the component of

∐

W Gr
m corresponding tow is a homomorphism of group schemes,

sinceθ respects the group law ofGr
m. Let H = {T n1

1 · · · · · T nr
r | n1, . . . , nr ∈ Z},

thenθw induces an automorphismθ#w of the Hopf algebraZ[H ], which restricts to a group
automorphismθ̃#w : H → H of the group-like elementsH of Z[H ]. This defines a
homomorphism̃θw : Gr

m,Mo
→ Gr

m,Mo
of group objects inSchMo that base extends to
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(θ̃w)Z = θw. We obtain a morphism ofMo-schemes

θ̃ =
∐

w∈W

θ̃w : WMo × G
r
m,Mo =

∐

W

G
r
m,Mo → G

r
m,Mo

whose base extension toZ is θ̃Z = θ. Therefore,(θ̃, θ) : WF1
× Gr

m,F1
→ Gr

m,F1
is a

strong morphism. Note thatθ is a group action, and it respects the group law ofGr
m,Mo

,

since the restrictions̃θw are homomorphisms of group objects for allw ∈W .
That canonical models associated toeG ande′G as in the theorem are isomorphic is

reasoned as follows. Since(θ̃, θ) is a strong morphism, we have thatθ ◦ eN = eT ◦ θ̃,
whereeN = (eW , eT ). But eT is an isomorphism, thus̃θZ is determined byθ. Since the
automorphismf : G → G restricts to an isomorphism betweenN andN ′, which is an
isomorphism of algebraic groups. Going through the construction of θ̃, we see that this
defines already a morphism̃f : Ñ → Ñ ′ of Mo-schemes such that(f̃ , f) : G → G′ is a
strong morphism that is an isomorphism of group schemes overF1. �

We have some immediate corollaries.

7.6.Corollary. If N is an extension of a constant group schemeWZ associated to a group
W by a split torus, thenN has a modelN overF1. The groupN (F1) is isomorphic toW .
If N is a split extension, it has a canonical model overF1. �

7.7. Remark. Let N = Gr
m ⋊θ WZ be as in the theorem. LetN = (Ñ ,N, eN) be

the canonical model ofN overF1. SinceÑ rk = N , the group lawµ extends (trivially)
to a group law ofN in the categorySchnat

F1
whose objects areF1-schemes and whose

morphisms are pairs(f̃ , f) : (X̃,X, eX) → (Ỹ , Y, eY ), wheref̃ : X̃ → Ỹ is a morphism
betweenMo-schemes andf : X → Y is a morphism between schemes such thateY ◦f̃Z =
f ◦ eX . More generally, we can substituteGr

m by a group scheme of the formSpec Z[H ],
whereH is a finitely generated abelian group.

However, semidirect products of a group schemes of the formSpec Z[H ] with a finite
constant group scheme seem to be the only algebraic groups that allow models inSchnat

F1
,

cf. the explanations in [11, section 6.1]. The following implications of Theorem 7.5 show
thatSchstr

F1
allows a larger class of group objects.

LetGa be the additive group scheme. We say thatG is asuccessive extension of additive
groupsif there is a sequence of subgroups0 = G0 < G1 < · · · < Gn = G such thatGi−1

is a normal subgroup ofGi andGi/Gi−1 ≃ Ga for all i = 1, . . . , n.

7.8. Corollary. Let G be an algebraic group that is a successive extension of additive
groups. Then it has a canonical modelG overF1. The groupG(F1) is the trivial group.

Proof. As a variety,G is isomorphic toAn, wheren is the number of subgroups in the
filtration of G. Let ǫ : ∗Z → G be the unit ofG. We can choose a torification of
G ≃ An such thatǫ is the unique0-dimensional torus of the torification. This defines
an F1-schemeG = (G̃,G, eG) such thatG̃rk ≃ ∗Mo, andG̃rk

Z
≃ ∗Z

ǫ
→ G equalserkG .

Thus Theorem 7.5 (ii) applies and proves thatG has a canonical model overF1. Clearly,
G(F1) = Hom(∗Mo, G̃

rk ) is the trivial group. �

If G is a reductive group with Weyl groupW = N(Z)/T (Z), then we say thatW lifts
alongσ if the exact sequence of groups

1 // T // N // WZ
//

σ

xx
S_

k
q

1.

splits. As a consequence of this theorem we obtain the following solution to Problem B of
the introduction.



ALGEBRAIC GROUPS OVER THE FIELD WITH ONE ELEMENT 17

7.9. Theorem. LetG be a split reductive group with group lawm : G × G → G and
Weyl groupW . ThenG has a modelG = (G̃,G, eG) overF1 and there is an isomorphism
G(F1) ≃W of groups such that

σ : N(Z)/T (Z) = W
∼
−→ G(F1)

−⊗F1
Z

−→ GZ(Z) = G(Z)
(∗F1

→ G) 7−→ (∗Z → GZ)

maps each cosetnT (Z) in N(Z)/T (Z) to an element ofnT (Z) ⊂ G(Z).
If the Weyl group lifts along a group homomorphismσ′ : W → N(Z), then there is a

canonical modelG ofG overF1 and an isomorphismG(F1) ≃ W such thatσ coincides
with σ′.

Proof. In Example 3.5, we endowed a split reductive groupG with a torificationeG that
restricts to a torificationeN of the normalizerN of a maximal split torusT . SinceGrk =
N w.r.t. eG, we have thateN = erkG , anderkG :

∐

W Gr
mt → N is an isomorphism.

Theorem 7.5 (i) shows thatG has a modelG overF1 and thatG(F1) = G̃rk = W . That
σ maps each cosetnT (Z) in N(Z)/T (Z) to an element ofnT (Z) ⊂ G(Z) is clear by the
construction of(G, µ) andG(F1) ≃W in the proof of Theorem 7.5.

If the Weyl group lifts along a group homomorphismσ′ : W → N(Z), thenW can be
considered as a subgroup ofN(Z), or, equivalently,WZ can be considered as a subgroup
of N . SinceT is normal inN , WZ acts by conjugation onT . The conjugationθ respects
the group law ofT . ThusN = T ⋊θ WZ and we can apply Theorem 7.5 (ii) to obtain a
canonical model. Again, it is clear from the proof of Theorem7.5 thatσ andσ′ coincide.

�

8. PARABOLIC SUBGROUPS OFGL(n)

In this last section, we will investigate Problem C from the introduction. We show that it
can be solved within the framework of this paper.

8.1.Lemma. LetP be a parabolic subgroup ofGL(n) of type(k1, . . . , kr). ThenP has a
canonical modelP(F1) overF1 andP(F1) ≃ Sk1 × · · · × Skr

. In particular,GL(n) has
a canonical modelG overF1 andG(F1) ≃ Sn.

Proof. A parabolic subgroupP of GL(n) of type (k1, . . . , kr) is an extension ofM =
GL(k1) × · · · × GL(kr) by a successive extensionU of additive groups. Hence, the
parabolic subgroupP has a maximal split torusT of rankn = k1 + · · · + kr. LetN =
∐

W T be the normalizer ofT . ThenW = N(Z)/T (Z) ≃ Sk1 × · · · × Skr
and the

sequence1 → T (Z) → N(Z) → W → 1 splits.
As a variety,P ≃ M × U , thus the product torification of torifications ofM andU

is a torification ofP . Choose a torification ofM relative to the torusT as described
in Example 3.5 and forU as described in the proof of Corollary 7.8. Then the product
torification eP of P defines anF1-schemeP = (P̃ , P, eP ) such thateP restricts to an
isomorphismP̃ rk

Z
≃ N . Thus Theorem 7.5 (ii) applies and implies the statement of the

proposition. (Note thatGL(n) is a parabolic subgroup of type(n) of GL(n)). �

Recall from Example 3.5 that a choice of a maximal split torusT in GL(n) and a Borel
subgroupB containingT leads to a Bruhat decomposition

∐

W BwB → GL(n), where
W ≃ Sn is the Weyl group ofGL(n). This leads further to a torificationeG of GL(n) and
defines anF1-schemeG = (G̃,G, eG). By Theorem 7.9, there is a group lawµ = (m̃,m)
of G such thatG is a canonical model ofG. This canonical model depends a priori on the
choice ofT andB, but since all maximal split tori inGL(n) are conjugated, Theorem 7.5
(ii) implies that the canonical modelG is unique up to isomorphism. LetP be a parabolic
subgroup of type(k, n − k) of GL(n) that containsT andB, and letP = (P̃ , P, eP ) be
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the canonical model as described in Lemma 8.1. Letl : P ×G → G be the restriction of
m : G×G→ G to the natural action ofP onG by left multiplication.

8.2.Theorem. In the situation as above, the following holds true.

(i) Then there is a morphism̃l : P̃ rk × G̃rk → G̃rk of Mo-schemes such that
λ = (l̃, l) : P×G → G is a group action inSchstr

F1
. TakingF1-points is compatible

with the natural group action

λ(F1) : (Sk × Sn−k) × Sn → Sn.

(ii) There is anF1-schemeQ that is a quotient ofλ. Consequently,

QZ ≃ Gr(k, n) and Q(F1) ≃Mk,n.

The natural actionτ : G ×Q → Q on the quotient is compatible with the natural
actionGL(n) × Gr(k, n) → Gr(k, n) and takingF1-points ofτ is compatible
with the natural action

τ(F1) : Sn ×Mk,n →Mk,n

induced by permuting the elements ofMn = {1, . . . , n}.

Proof. We begin with (i). The maximal split torusT is a subgroup of bothP andG.
Its normalizerNP in P is a subgroup of its normalizerN in G. By construction of
P = (P̃ , P, eP ), we have thatNP = P̃ rk

Z
(cf. Lemma 8.1) and by construction of

G = (G̃,G, eG), we have thatN = G̃rk
Z

(cf. Theorem 7.9). PutWP,Z = NP /T and
WZ = N/T . Then we obtain an inclusionWP,Z →֒ WZ of groups. SinceWZ lifts to a
subgroup ofG,N is a semidirect productT ⋊θWZ along a group actionθ : WZ ×T → T .
If θP : WP,Z×T → T is the restriction ofθ, thenNP is the semidirect productT⋊θP

WP,Z.
These semidirect products define group lawsm̃P andm̃ on P̃ rk andG̃rk , respectively,

such thatP̃ rk is a subgroup of̃Grk . Consequently, the restriction of̃m defines an action
l̃ : P̃ rk ×G̃rk → G̃rk . Since(m̃,m) is a strong morphism,λ = (l̃, l) is a strong morphism,
too. By Theorem 7.9 and Lemma 8.1, takingF1-points yieldsλ(F1) : (Sk×Sn−k)×Sn →
Sn as desired.

We proceed with (ii). We constructQ = (Q̃,Q, eQ) as follows. DefineQ = Gr(k, n).
We review the Schubert decomposition in detail. We have the decompositions

∐

w∈WP

BwB −→ P and
∐

w∈W

BwB −→ G,

whereWP = WP,Z(Z), W = WZ(Z) andw ∈ W is identified with the image of the
corresponding point ofWZ in G. These decompositions yield a decomposition

∐

w∈W/WP

(BwB) / (BWP,ZB) −→ Gr(k, n) = G/P.

The quotients(BwB)/(BWP,ZB) are affine spacesAdw of a certain dimensiondw for ev-
ery cosetw ∈W/WP . We obtain a Schubert decomposition ofGr(k, n) and we refine this
decomposition to a torificationeQ whose0-dimensional tori coincide with the morphisms
G0
m = T/T →֒ (BwB)/(BWP,ZB) for everyw ∈ W/WP . This torification defines an

F1-schemeQ = (Q̃,Gr(k, n), eQ).
Since the tori of lowest dimension in the torification ofG are the immersionsT →֒

BwB for everyw ∈ W and the tori of lowest dimension in the torification ofP are the
immersionsT →֒ BwB for everyw ∈ WP , theMo-schemeQ̃rk is the quotient of the
actionl̃ : P̃ rk × G̃rk → G̃rk . ThusQ is a quotient ofλ.

By construction, we haveQZ ≃ Gr(k, n). The groupW is the Weyl group ofGL(n)
and thus naturally isomorphic toSn, andWP is naturally isomorphic toSk × Sn−k by
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Lemma 8.1. Thus we have

Q(F1) ≃ G(F1)/P(F1) ≃ W/WP ≃ Sn/(Sk × Sn−k).

By construction, the natural actionG ×Q → Q is after base extension toZ compatible
with the natural actionG ×Q → Q. The identificationMk,n = Sn/(Sk × Sn−k) yields
the natural action ofG(F1) = Sn onQ(F1) = Mk,n. �
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en groupes.Lecture Notes in Mathematics, vol. 151, 1962/64.
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