arXiv:0907.3824v1 [math.AG] 22 Jul 2009

ALGEBRAIC GROUPS OVER THE FIELD WITH ONE ELEMENT

OLIVER LORSCHEID

ABSTRACT. Remarks in a paper by Jacques Tits from 1956 led to a phigsbpw a
theory of split reductive groups ovér, the so-called field with one element, should look
like. Namely, every split reductive group ov&rshould descend t, and its group of
F;-rational points should be its Weyl group. We connect theéonoof a torified variety
to the notion ofFF;-schemes as introduced by Connes and Consani. This yieldslsno
of toric varieties, Schubert varieties and split reductiveups asf;-schemes. We endow
the class off'; -schemes with two classes of morphisms, one leading tosfydat notion
of F;-rational points, the other leading to the notion of an atgiEbgroup overF; such
that every split reductive group is defined as an algebraiogoverF;. Furthermore, we
show that certain combinatorics that are expected frombpéicasubgroups ofzL(n) and
Grassmann varieties are realized in this theory.

INTRODUCTION

The development oF;-geometry plays a key rdle in the program of translating 'é/ei
proof of the Riemann hypothesis as shaped by Kurokawa ([D&hinger ([7], [8], [9]),
Manin ([13]) and others in the early 1990s. But the first memf the “field with one
element” appeared in Jacques Tits’ paper [16] from 1956 @nitlbas are a main inspira-
tion in the development df;-geometry. Tits’ remarks gave rise to a philosophy of groups
and group actions ovét,, which was first seriously treated by Connes and Consanjin [1
For a further discussion of their results, se€ [11, sectidh &Ve will give an idea of this
philosophy in the present introduction and show how to zedtiin the following sections.

While there are now general different frameworkslfergeometry, a common theme is
thatlF, should be an object lying below the integers. this meansiiigi-geometry should
be a categoriichr, with a terminal objectr, = Specy, IF; and a base extension functor
— ®p, Z from Schy, to the categoryschy of schemes such thag, ®p, Z is isomorphic
to xz = SpecZ. Given a candidate fd8chy,, it is natural to ask: which schemes have
a model overF,, i.e. for which scheme& does exist an object in Schy, such that
Xz := X ®p, Z is isomorphic toX ?

The viewpoint originating from Tits’ paper is the following wide class of schemes of
finite type ovelZ admit a polynomialV (¢) with integer coefficients as@unting function
that is, N (¢) equals the number &;,-points of the scheme for every prime poweiFirst
examples include affine spaces, projective spaces andr@zaassns:

n n n— n
AUE) =" #PUE) =Dl and  #Grlbn)E) = [

q
where[n], = ¢"' +--- 4+ ¢ + 1 is the Gauss numbejp],! = []._,[i], is the Gauss
factorial and[ﬁ]q = m is the Gauss binomial. Evaluating these polynomials at
g = 1 leads to interesting numbers, which should be thought di@stmbeg X (F,) of
“IF-rational points” of the schem&. Comparing cardinalities, we see that

n

k) = #Mk,n

where« is the one point setM,, = {0,...,n — 1} and M}, is the set of subsets of
cardinalityk in M,,. We formulate a first problem.
1

SAT(E) = 1= #hx, #PUE) = n = #M,, #Gr(k,n)(Fy) = (
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Problem A. We seek a categoBchy, with a terminal objecty, and a functor— ®g, Z :
Schy, — Schz that contains objectag , ]P)g;l andGr(k,n)r, (forn > 1and0 < k < n)
such that

Ay, ®F, Z = A" and AR (Fy) ~ x,
Pp ' ®p, Z ~ P and Ppt (F1) o M,
Gr(k,n)p, ®p, Z ~ Gr(k,n) and Gr(k,n)p, (F1) ~ Mg, .

There are already several approaches that give partiafi@wduto this problem. All
suggestions foBchy, in literature contain models of toric varieties, which udeA”™ and
P"~1. As we will see in the course of this textr(k,n) has a model in the notion @, -
scheme as suggested by Connes and Consani in [2]. Howewagshcategories, the set
Hom(Specg, F1, X) is not equal to what we expect 4§F, ). Note thatP" ! = Gr(1,n),
so part (i) follows from part (iii) of Problem A. In the predepaper, we will introduce
morphisms betweeR; -schemes as defined (n [2] and show that Problem A can be solved

Another interesting source of examples are split reducfieeipsG with maximal split
torusT ~ GJ , wherer is the rank ofG. Let N be the normalizer of" in G andW =
N(Z)/T(Z) the Weyl group ofG. Let B be a Borel subgroup af containingZ’. The
Bruhat decomposition aff (w.r.t. 7" and B) is the natural morphism

H BwB — G.
weWw

This morphism induces a bijectidf BwB (k) ~ G(k) of k-rational points for every field
k. SinceBwB ~ G’, x A for certaind,, > 0, the Bruhat decomposition shows titat
admits a polynomial counting function

#G(F,) = Y (g—1)q™.
weW

However, if the rank: of G is positive, then the value of this polynomial@t= 1 is
zero. A more interesting number of the counting polynomig) is

i N (q)
g—1 (¢ —1)*

wherep is the order of vanishing d¥(¢) in ¢ = 1, i.e. the lowest non-vanishing coefficient
in the development ofV(q) in ¢ — 1. Note that in the previous cases &f, P*~! and
Gr(k,n), we havep = 0 and nothing changes regarding Problem A. In the case off spli
reductive groug, we havep = r and

—1)r dw
@) li Zwew(@— V7™ N gt = HW
q—1 (q — 1)T q—1 oW

It was indeed Tits’ suggestion to interpret the Weyl groua aplit reductive group as its
set ofF;-points. In the framework as above, this means that we stemldor a concept of
“algebraic groups ovdr,” such that split reductive groups are defined as algebraicms
overlF; and such that theiF;-points are isomorphic to their Weyl group. More precisely,
consider the following problem.

Problem B. We seek a catego®chy, with finite products and a terminal objeet, to-
gether with a functor- ®p, Z : Schy, — Schyz that respects finite products and the ter-
minal object such that for every split reductive gra@pwith group lawm : G x G — G,
there is a group objedf in Schyr, with group lawu : G x G — G (in Schy, ) satisfying the
following properties.
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(i) Gz ~ G as algebraic groups, i.e. there is an isomorphismG; — G such that

Gz x Gz —r Gz
l(wp) lso
GxG@ = G

commutes.
(i) G(F,) := Homg, (*r,,G) together with the induced group structure is isomor-
phic toW as a group such that the limit i) is respected, i.e. the morphism

o: N2Z)/T(Z) =W —  G(F) sy Gz(Z) - G(z)

(*]F1 — g) — (*Z — QZ)

maps each cosetl'(Z) in N(Z)/T(Z) to an element ot T(Z) C G(Z).

For the following reason, this problem cannot be solved inegal. Note that is a
group homomorphism, since it is a composition of group homquhisms (for the fact
that the base extension is a group homomorphism, see PtiopdB). Then the fact that
o(nT(Z)) C nT(Z), shows that splits the short exact sequence of groups

2) 1 T(Z) N(Z) =W 1.
This, however, is not possible for every split algebraicupras the example dL(2)
shows.

In 1], Connes and Consani circumvent the lifting problemuisyng Tits’ construction
from [17], which shows that a certain extensiondf (2) sgbrsevery split reductive group.

In this way, the normalizeN becomes a group object that is defined ovér", but the
group law ofG fails to be defined ovéF,- in general, cf.[[1, section 6.1]. In this text, we
will use a different method that allows us to define everytspliuctive group as a group
object defined ovelF, such that it has the expected groupgfafpoints. Namely, we will

use the framework df';-scheme given by Connes and Consaniin [2], and introduce two
different classes of morphisms betwdeérischemes, one leading to a satisfying notion of
IF-rational points, the other allowing models of all split vetive groups ovel;.

Once we have established split reductive groups as groggistgveit,, we can inves-
tigate group actions and ask whether a quotient exists.drcéise of a standard parabolic
subgroupP of GL(n) of type (k, n — k) acting onGL(n) by multiplication from the left,
the quotient isGr(k,n). SinceP is isomorphic toGL(k) x GL(n — k) x A*n=F) as
a variety, it has a polynomial counting function, namaiy(q) = ¢*—*) . Nearw)(q) -
Necrn—k) (), whereNgr, ) (¢) = >, ew (¢ — 1)"¢% is the counting function oL (r),
where the Weyl groupl” of GL(r) is isomorphic taS, for » € {k,n — k}. The order of
vanishing ofNp(q) atq = 1 isk + (n — k) = n and the number df-rational points is

gkn=") (Zaesk (q— 1)kqd“) (Zﬁesn,k(q - 1)n7kqdﬁ)

#P(F) = lim e
= limg" "D ™) (Y ¢) = #(Sk X Sn_r)
I a€Sk ﬂESn,k

The quotient of the actioh: P x G — G is the Grassmannia@r(k,n — k) and the
quotient of the actio’ : (S, x S,_i) X S, — Sp is My_,. There is a natural action
t : GL(n) x Gr(k,n) — Gr(k,n) and a natural actiotf : S,, x My, — My,. This
leads to the following problem.

Problem C. We seek a categofichy, with finite products and a terminal objegt, to-
gether with a functor— ®p, Z : Schy, — Schyz that respects finite products and the
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terminal object such that there exist group objggandP, a group actiom\ : Px G — G
and a quotien© of A\ with the following properties.
(i) There are isomorphisms: Pz ~ P andg : Gz ~ GL(n) of algebraic groups
such that\z : Pz x Gz — Gz is compatible with : P x GL(n) — GL(n), i.e.

Pz x Gz S RN gz
(f,g)l lg
P x GL(n) — GL(n)

commutes. There are bijectiofXF;) ~ Sj, x S,,_ andG(F;) ~ S, such that

AFq) : P(F1)xG(F1) — G(Fy) is compatible with’ : (S x Sp—k) XS, — Sy.
(i) Letr: GxQ — Q be the natural action on the quotient. There is an isomornphis

Qz ~ Gr(k,n) of varieties such that; : Gz x Qz — Qg is compatible with

t : GL(n) x Gr(k,n) — Gr(k,n). There is a bijectior@(F, ) ~ Mj, ,, such that

7(F1) : G(F1) x Q(F1) — Q(F1) is compatible witht’ : S,, x My, ,, — M .

We will show that Problem C can be solved within the framewafrthis paper.

The text is organized as follows. In sectidn 1, we recall thsibfacts about group
objects in an arbitrary category with finite products andrmieal object. In sectionl2, we
introduce the notion of afi;-scheme as defined by Connes and Consanilin [2] and show
that toric varieties descend . In sectiori 8, we introduce the notion of a torified variety
as defined by Lépez Pena and the authof in [11]. The impopaperty is that every
torified variety descends ;. We recall from[[11] that toric varieties, Schubert vagsti
and split reductive groups are torified varieties and are thafined oveF;.

In section 4, we define the notion of a strong morphism betw&eschemes. With
relation to this class of morphisms, the sat&F; ) = Homj' (Specg, Fy, X') return forX’
being theF;-schemes from Problems A and B the expected sdfs-gioints. In particular,
we solve Problem A. In sectidd 5, we define the notion of a weakpmism betweei; -
schemes. In sectidd 6, we introduce certain functors theivals to pass group objects
from one category to another.

In sectior ¥, we define the notion of a group scheme @iyyesis a group object in the
category offF;-schemes together with weak morphisms. An algebraic graepl®; is
a group scheme ovédt; whose base extension is an algebraic group. We show that
extensions of finite groups by split tori, split reductiveogps and successive extensions
of the additive group schente, descend to algebraic groups oW&r. In particular, this
solves a slight modification of Problem B. In sectidn 8, wevsltwat parabolic subgroups
of GL(n) can be defined as algebraic groups dverWe solve Problem C.

Acknowledgements. The author thanks the Max Planck Institute for the inspiring
working environment. He thanks the organizers and theqpatts of the Nashville con-
ference orfF; from May 2009 for many interesting discussions. He thanksedd opez
Pefna and Lisa Carbone for stimulating conservations. ldekth Ethan Cotterill for his
help with preparing the paper.

1. PRELIMINARIES ON GROUP OBJECTS

To begin with, we review the concept of a group object and id@gome facts that we
will use later on. For more detalils, cf.|[5, Exposé 1, secflh [12, Section 111.6] and [14,
§0.1].

In this text, we say that a catego€yis cartesianif it contains finite products and a
terminal object¢. A cartesian category comes with the following canonical morphisms
for all objectsA andB:

e an isomorphisnpr; : A X x¢ — A,
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e thediagonalA: A — A x A,
e anisomorphisny : A x B — B x A.
A group objectin a cartesian categotyis a pair(G, m), whereG is an object irC and
m: G x G — G is a morphism irC such that the multiplication

m, : Hom(X,G) x Hom(X,G) — Hom(X,G)
(f.9) —  mo(f,g)
defines a group structure dfom(X, G) for every objectX in C. We refer toG as the

group object, when the context is clear, and refentas itsgroup law
There is an alternative characterization of group objects.

1.1.Proposition. LetG be an object andn : G x G — G be a morphism in a cartesian
categoryC with terminal objectc. Then(G, m) is a group object if and only if there are
morphisms : x¢ — G and. : G — G such that the following diagrams commute:

(i) (associativity) G x G x G —2"" Gy q,
(Tmid)l lm
GxG - G
(id,e)

(i) (left (right) unit) G x *¢ G x G  (resp. withm
\ / replaced bym o x),
pry m
G

(i) (eft (right)inverse) ¢ —> G x G 2L G xq, (resp. withm
l lm replaced bym o ).

*e < G
Moreover, if (G, m) is a group object, thel and . are unique with the property that the
diagrams(i)—({ii] commute. The unit elementlddm(X, G) for any objectX in C is the
morphismX — xc = G.

We refer toe as theunit of G and to. as theinversion ofG. We sometimes say that
a quadrupl€G, m, ¢,.) is a group object, when we want to label the morphisrasd.
related to a group obje¢G, m) explicitly.

Proof. This proposition is standard. We give only a brief outline.

Let (G, m) be a group object. I : x¢ — G is the unit of the grouflom(x¢, G) and
t: G — Gistheinverse oid : G — G in the groupHom(G, G), then the diagrams
()—(@D) commute, and these choices foand. are unique.

Conversely, assume that there are morphisraad. such that the diagramf (i}=liii)
commute. Then for every objeat, the multiplication ofHom (X, G) is defined byp-1) :=
mo (p,1) forall ¢, € Hom(X, G), the mapX — ¢ — G is the unit and o ¢ is the
inverse ofy € Hom(X, G). O

A homomorphism of group objediS, m1) and(Gz, m2) is amorphisny : Gy — Gs
such that

G1XG1m1—>G1

(%W)l lv’

G2X02m2—>G2

commutes. If the context is clear, we will simply say that G; — G is a homomor-
phism of group objects.
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We collect some standard facts.

1.2.Lemma. Lety : G; — G5 be a homomorphism of group objects.
(i) For every objectX, the mapy. : Hom(X,G1) — Hom(X,Gs) is a group
homomorphism.
(i) Lete; ande; be the unit resp. inversion @f for i = 1, 2. Then the diagrams

o G and G, u Gy

Sy | |

T Gy Gy e Gy
commute. 0

LetY be an object andG, m) be a group object id@. A group action ofG onY is a
morphismd : G x Y — Y such that for every object in C, the map.. : Hom(X, G) x
Hom(X,Y) — Hom(X,Y) is an action of the grouHom (X, G) on the seHom(X,Y).
There is an alternative definition.

1.3.Proposition. LetY be an object(G, m,¢,.) a group objectand : G x Y — Y a
morphism inC. Thend is a group action if and only if the diagrams

(id,0) (e,id)
GxGxY ——>GxY and xc XY ——>GxY
(de)l lg N /
GxY 6 Y Y
commute. O

Letd : G x Y — Y be a group action. Thef) together with a morphism: Y — @
is a(categorical) quotient of if the diagram

Q) GxY Y
Y - Q

commutes and if for all morphismé : Y — Z such that diagrani{3) with : Y — Q
replaced byf : Y — Z commutes, there is a unique morphigm @ — Z such that
f=TFop.

A subgroupof a group objectG, m, ¢, 1) is a group objectH, m’, €', ) together with
a homomorphismtf — G of group objects that is a monomorphismdn By Lemma
[L.2, we can think ofm’, ¢/, /) as the restriction ofm, €, ¢) to H and when will suppress
the formal difference betwedm', ¢/, /) and(m, e, ¢) in the notation, when the context is
clear.

A subgroupH of group object(G,m, ¢, ) acts on a subset” of G by conjugationif
the image of the morphism

_ (A,id) (id,x) (m,e) m
.- HxY ——HxHxY —HxY xH GxW

G

is contained i, i.e. @ factors through a group actigh: H x Y — Y, which we call the
conjugation ofH onY. A normal subgroup of7 is a subgroupV of G on whichG acts
by conjugation.

1.4.Lemma. If N is a normal subgroup of a group obje€t and @ is a quotient of the
conjugationG x N — N, then( inherits a natural structure of a group and we cé)l
thequotient groupf G by N.
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The direct product of group objectéF1, m1) and (G2, m2) is the productz; x Gs
together with the paim = (m1, m2) as group law, which is easily seen to define a group
object.

Let (N,my) and(H,mg) be group objects anél: H x N — N a group action that
respects the group lam y of N, i.e. if we define thehange of factors along as

(A,id) (id,0) X

xo: HXN HxHXxN——HXxN

N x H,
then the diagram

(id,mn)

HXxNxN——HXxN

(x0,id) N

(id,0) %

N x HxN
commutes. Then the morphism

me : NxHxNxHMNxNxHxHMNxH
is a group law folG = N x H. We say that7 is thesemidirect product oV with H w.r.t.
0 and writeG = N Xy H. The group objectV is a normal subgroup a& with quotient
group H, and H is a subgroup of7 that acts onV by conjugation. The conjugation
Hx N — Nequald. If 6 : Hx N — N is the canonical projection to the second factor
of H x N, thenN x4 H is equal to the direct product &f and H (as group object).

1.5.Lemma. LetG be the semidirect product 8f with H w.r.t.# andG’ be the semidirect
product of N with H” w.r.t. ¢’. If there are group homomorphisms: N — N’ and
v : H — H' such that

NxH N
(«p,w)l l#’
N x H' v N
commutes, thel = N xyp H o) N7 xgr H' = G’ is a homomorphism of group
objects. 0

Let C andD be cartesian categories. We say that a fungtorC — D is cartesianif
F(Ax B) ~ F(A) x F(B) andF(x¢) =~ *p.

1.6.Proposition. LetF : C — D be a cartesian functor between cartesian categories and
(G, m) be a group object . Then(F(G),F(m)) is a group object irD, and for every
objectX in C, the mapHom¢ (X, G) — Homp(F(X), F(G)) sendingy to F(p) is a
group homomorphism.

Proof. By functoriality, 7 maps the commutative diagranis ([)=iii) to commutative di-
agrams. SinceF respects products and the terminal object, these diagranify that
(F(G),F(m)) is a group object irD.

The last statement of the proposition follows from the eifyal
Flp-) = F(mo(p,¢)) = F(m)o Fle,¢) = F(m) o (F(p), F(¥)) = Fl) - F(¥)

for any two morphisms and« in Hom(X, G). O

By functoriality, Lemma 1.6 and Propositibn 1.6 imply imniegely the following.
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1.7.Corollary. LetG = N x¢H be the semidirect product of with H w.r.t.6 in C and let
F : C — Dbe acartesian functor. Thefi(G) is the semidirect produck (N ) x ) F (H)
of F(N) with F(H) w.rt. 7(0) in D. O

In the following, avariety means a reduced scheme of finite type d¥erA group
schemeés a group object in the categoBghy of schemes. Aralgebraic groupis group
scheme that is a variety.

2. SCHEMES OVERFF;

In this section, we review the definition of a scheme d¥eras given by Connes and
Consani in[[2]. This notion combines the earlier ideas bfdddl [15] with [3] and([18].

We begin with recalling the notion of @ito-scheme. For details, se€ [2, section 3.6];
also cf. [3]. Let9o be the category of commutative monoidi$ with 1 (monoidsfor
short) and withp, i.e. an element satisfying- « = 0 for all « € M. A morphism between
monoids with0 is a multiplicative map that sendsto 1 and0 to 0. A monoidal space
(with 0)is a topological spac& together with a structure she@fy with values indto. A
morphism of monoidal spacésa continuous map together with a morphism of sheaves.
Since direct limits exist ifo, it is possible to define stalk@x , for every pointz € X.

A prime idealof a monoidM with 0 is a subse of M containing) such thapM C M
andM —yp is a multiplicative subset containirig It is possible to define localisations bf
at multiplicative subsets and to endow the set of prime &lefil/ with a Zariski topology
in the same way as it is done for rings, since these constnsctise only multiplicative
structure. This defines a monoidal sp&gec,,, M, called thespectrum of\/. An to-
schemds a monoidal space that is locally isomorphic to the spectod a monoid. A
morphism ofJto-schemes is a morphism of monoidal spaces.Sckty, denote the cate-
gory of 9to-schemes.

The categonSchay, is cartesian. The terminal objectsisy, = Spec{0,1} and the
product is locally given byspec A x Spec B = Spec(A A B), whereA A B denotes the
smash product oft and B with respect td) as base point.

There is abase extension functo¥ — Xz = X ®r, Z from Schgy, to the category
Schy of schemes (oveE), which is locally described by

Specgp, M ——  Spec (Z[]V[]/(l -0pr — Oz[M])),

whereZ[M] is the semi-group ring oM, 0, is the zero ofM and0zyy is the zero of
Z[M]. This functor is cartesian.

A scheme oveF; (or F;-schemgis a tripleX = (X,X, ex), where X is ano-
schemeX is a scheme andy : X; — X is a morphism of schemes (called #aealuation
map) such thaex (k) : Xz(k) — X (k) is a bijection for every field:.

2.1.Remark. An F;-schemeX = (X’,X, ex) is locally of finite typeif X is locally
of finite type. For the sake of simplicity, we will assume fbetrest of this text thall
schemes ovdr; are locally of finite type

There is a natural choice of morphismIbf-schemes as a morphism between the un-
derlyingMto-schemes together with a morphism between the underlyimgnses that are
compatible with the evaluation maps. However, this notibmorphism is not suitable
for a theory of algebraic groups ovEi as the only group laws that are of this nature are
extension of finite groups by split tori (cf. Remarkl7.7). Wisfpone the task to define the
appropriate notion of morphism to a later section.

Thebase extension functer ®p, Z associates to afi;-schemet’ = (X, X,ex) the
schemety := X.

2.2.Example. To everydito-schemeX, we can associate tifg-schemet = (X, Xz, idg, ).
We have thatX ®@gn, Z = X ®r, Z. We give first examples of-schemes of this
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kind. The affine lineA};, is the spectrum of the monoifil};cy 1 {0} and the as-
sociatedF;-scheme(Af;,, A',idy1) is a model of the affine line oveF,. The mul-
tiplicative groupG,,, am, is the spectrum of the monoifil"};cz 11 {0}, which defines
Gmr, = (Gm,o0, Gm,idg,, ) and base extends @,, as desired. Both examples can be
extended to define a modgly,,, A", ids~ ) of then-dimensional affine space ovigr and
G, = (G}, om0 G7y,» idgn, ) by considering multiple variables, . .., T5,.

More generally, every toric varieti gives rise to a connectetito-schemeX such
that X; ~ X. Thus toric varieties can be realizedBsschemes. On the other hand, the
only varieties that have models 2880-schemes are toric varieties. These observations are
essentially due to Deitmar ([4], consider alsal[11, Thm]}¥.1

3. TORIFIED VARIETIES

We review the definition of a torified variety as introducedldayier Lopez Pefia and the
author in [11]. The connection to schemes dfelis immediate and delivers a rich class
of examples including Grassmannians and split reductivegs.

A torified schemés a schemeX together with atorificationex : T' — X, that is,
a morphisml’ — X, whereT is a disjoint unionl” = [],; G% of split tori, such that
ex(k) : T(k) — X (k) is a bijection for all fields:. A torified varietyis a torified scheme
X thatis a variety.

3.1.Remark. The definition of a torified scheme given here differs fromdhiginal one
given in [11]. Namely, in[[1l1], one meets the additional citiod that the restrictions
eX|Gdi : G4 — X are immersions for ali € I. The aim of [11] was to establish
exarﬁ"ples off', -varieties in the sense of the papérs [15] and [1]. For theddithe present
text, we do not need this additional property and thus wothk wie simplified (and more
general) definition.

The two definitions are close to each other, since every niemph: G¢ — X from

a split torus to a schem& is locally closed and injective. It is, however, not clear to
me whether the morphisn@yx .,y — Ogu , between the stalks are surjective for all

y € G2, which is the missing property ferto be an immersion.

Note thatl’ = X7 @amo Z for Xp = [[,c; Gi 4, This yields immediately:
3.2.Lemma. Every torified schem& with torificationex : 7' — X defines aff'; -scheme

(XT7 X7 eX)
In [11, section 1.3], we find examples of torified varietiee Will recall these briefly.

3.3.Example (Toric varieties) The decomposition of a toric variety with torus action
T x X — X into the orbits of this action provides a torification &f. This establishes
models of toric varieties d8,-schemes, again.

We treat the example of a split torus and affine space in mawsdlddhe split torus

Gy, has the trivial torificatior],  — G, 5, . With that, we obtain the sani® -scheme
G, r, = (G}, 9n00 Gry»ider, ) asin ExamplB2]2. The affine spak&has a decomposition

m,Fq

into tori G!, = Spec Z[T;, T; ']:c1, wherel ranges through all subsetsgf, . .., d}. The

embeddings! — A9 is given by the algebra homomorphism
ZITy, ..., Ta) — Z[T;,T; Yier -
T T; !f lel
0 iflgl

In particular, there is a unique torus of dimensipnvhich is embedded into the origin of
A?. This defines th&,-schemeAf = (A% A% e,q). Note that the topological space of

A s discrete, while th@to-schemeAd,, given by the canonical structure f as toric
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variety (as described in ExampleR.2) is connected. ThuEtreehemesgAd,;,, A% idya)
and(A?, A% e,q) are not the same, but we will see in RemlarK 4.5 that they beisone
morphic when we endoW; -schemes with “strong morphisms”.

3.4.Example (Schubert varieties)Another class of examples is Schubert varieties, which
in particular includes Grassmann and flag varieties. Satwagieties allow a decom-
position into affine spaces that can be further decompodedani. In the case of the
Grassmanniar(k,n), we have a Schubert decomposition

H Adw — Gr(k,n),

wEMp, n

which induces a bijection ok-points for every fields. The affine spaces?- can be
further decomposed into split tori, what yields a torificatof Gr(k, n) and consequently
a modelGr(k,n)r, = (CGr(k,n), Gr(k,n), ecr(k,n)) Of the Grassmannian ovéy. Note
that the0-dimensional tori in this torification stay in bijection Wwi\/j, ,,.

3.5. Example (Split reductive groups) The last class of examples discussed_in [11] are
split reductive groupé&:. For a definition, see [6, Exposé XIX, Def. 2.7]. LBt~ G!, be a
maximal split torus of7, wherer is the rank ofG. Let N be the normalizer of’ in G and

W = N(Z)/T(Z) the Weyl group ofG. Let B be a Borel subgroup a containingT'.
The Bruhat decompositiof,, ., BwB — G can be refined to a decomposition into split
tori in the following way. (Note that we identify the cosete W with the corresponding
subvariety ofG, which is isomorphic tdG],). For everyw € W, we can choose an
isomorphismBwB ~ G” x A% for a certaind,, > 0 as varieties. ThereforBwDB is

m

toric and thus torified. More precisely, we can choose a tatiton of BwB ~ G7, x Adw
that contaings], ~ w — BwB asr-dimensional torus; all other tori in the torification are
of dimension larger than. This provides a torification of7 that restricts to a torification

of N into r-dimensional tori, indexed bi/.
We collect the results obtained by these examples using Lat&th

3.6.Proposition. There arelf;-scheme&;,  , A%l (Examplé3B)Gr(k, n)r, (Example
[B:4) such that

G;L]Fl AF, L~ G:nv A%l QF, 7~ Adv GI‘(k‘, n)]Fl QF, L~ GI‘(k‘, Tl),

and there is aF;-schemej for every split reductive groug: (Example3.b) such that
QZ ~ G

4. STRONG MORPHISMS

In this section, we define a class of morphisms betwBeschemes that produces the
expected sets df,-points for affine and projective space, Grassmann vasietne split
reductive groups as formulated in Problems A and B of th@ahiction.

LetX = (X, X,ex)andy = (Y,Y,ey) beF;-schemes. Then we define trank of a
pointz of the underlying topological spacé asrk z := rk Ofm, whereOx , is the stalk
(of monoids) atr andO}w denotes its group of invertible elements. We defineém of

X asrk X :=min_ ¢ {rkz} and we define

vrk . X
X" = H Specon, Ox 4
rk z=rk X

which is a sutBite-scheme off whose underlying topological space is discrete.



ALGEBRAIC GROUPS OVER THE FIELD WITH ONE ELEMENT 11

4.1.Definition. A strong morphisnp : X — Y is a pair(f, f), wheref : X — Yk js
a morphism ofte-schemes and : X — Y is a morphism of schemes such that

X%k fa S Y/Zrk
exl ley
f
X Y

commutes. We denote the category whose objectdaszhemes (locally of finite type)
and whose morphisms are strong morphismSdy;”.

Recall thatcgn, = Specgy,{0, 1} is the terminal object iSchoy, and*z = Spec Z, the
terminal object inSchz. TheF;-scheme(«s,, *z,id., ) is the terminal object ifBchj'”,
and we denote it byr, or Specg, F;.

If ¥ = (X, X,ex) is anF;-scheme such thaty : X2 — X is an isomorphism,
we say thatt is of pure rank and we denote the full subcategory of thdseschemes
in Schi" by SchfFf. If X is of pure rank andf, f) : X — ) is a strong homomorphism
betweer¥,-schemes, theficex = eyof. Sinceex is an isomorphismy = eyofoe)}l,
and we obtain:

4.2.Lemma. LetX = (X, X, ex) andy = (}:/, Y, ey) beF,-schemes and’ be of pure
rank. The mafHomg” (X, Y) — Homay, (X,Y) sending(f, f) to f is a bijection. [

Thus we can also considSchfFlj as a full subcategory dfchgy,. Its objects are char-
acterized as thos®lo-schemesX for which there is a numbersuch thatX is a disjoint
union ofMo-schemes of the for@pecyy, ({0} U H), whereH is an abelian group of rank
r. We define

Y(F,) = Honl]lsflr(*]g1 V)
for F1-schemes), and, more generallyy(H) := Homg" (Specgy, ({0} U H), V) for
an abelian group? of finite rank andy(X') := Homj'" (X, V) for everyF:-schemeY of
pure rank.

4.3.Lemma. Let) = (Y,Y,ey) be anF,-scheme. Thel(F;) equals the set of points
of Yk,

Proof. TheF;-schemexgy, = Specqy, {0, 1} has one point, namely the unique prime ideal
{0} of {0,1}. For every choice of imagg of {0} in Y"*, the stalkOy, is of the form
{0}UH for an abelian grou@! and there is consequently a uniqgue monoid homomorphism
Oy,y, — {0,1} sending) to 0 andH to 1. O

If X is defined by a torified variety, theki™s corresponds to the tori of lowest dimen-
sion in the torification. For split tori, affine spaces, Graasnians and split reductive
groups we described a torification and their tori of lowestelision in the examples of the
previous section. Thus we obtain a solution to Problem A amdlEm B, part (i), from
the introduction.

4.4. Theorem. In Schi”, there are objectssy, »,, Af (Exampld3B)Gr(k,n)r, (Ex-
ample[3.4) and there is an objegtfor every split reductive group’ (Examplé-3.5) such
that

G, ®rF, Z =Gy, and %,Fl(Fl) ~ x,
Af ®r, Z~A° and A¢ (Fy) =~
Gr(k,n)r, ®p, Z~ Gr(k,n) and  Gr(k,n)p, (F1) ~ My .
G®r Z~G and G(F) ~W (assets) O
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4.5.Remark. Foratoric varietyX, we have defined two different modets = (X'l, X,e1)
(ExampldZR) andt, = (X5, X, e5) (ExampleZ3B) ofX asF,-schemes, wher&, is a
connectedNo-scheme and, is a discretélto-scheme. However, botki’s and X2k are
discrete and there is an isomorphismX}* — X3k of 9o-scheme such thai, idx ) is

str

a strong morphism. This shows th#t and X are isomorphic irbchy .

5. WEAK MORPHISMS

In this section, we introduce a second notion of morphismvbenlF;-schemes, which
allows us to define all split reductive groups as group objesterF,. We start with
proving some useful facts.

5.1.Lemma. Let (X,X,;X) be a scheme ovef,. As a map between the underlying
topological spaces;x : X7 — X isinjective.

Proof. Assumeex (1) = ex (x2) for two pointsz; andz, of Xz. Then there is a field
and two morphismSpec k — X7 whose images argr; } and{z,}, respectively. Since
ex induces an isomorphisiiz (k) ~ X (k), the two morphism must have the same image,
and thuse;, = . d

Let X™* denote the image afx : Xz — X. For every point: € X, let {z}z be
the corresponding subschemeXf. We writeex (z) for the imageex ({x}z) in X. By
a theorem of Chevalley, the images of constructible sete@mstructible. Sincéx}y is
connectede x (x) is connected, too, and thus locally closed. This showsdhét) is a
subscheme ok .

5.2.Lemma. The image of{"¥ underey is a disjoint union

X = H ex(x).

zeXrk

Proof. Since the rank of a point € X equals the dimension of the subschefa;, of
X7 andey is injective by Lemm&5]1, the dimension of (z) equals the rank oX for
allz € X™*. Sinceex (z) andex (y) are disjoint and of equal dimension for two different
pointsz, y € X', their union is not connected. Sindeis locally of finite type, the image
of e¢ is a locally finite disjoint union of subschemes of the farg(z) with = € X",
Thus the lemma follows. O

5.3.Remark. The previous two lemmas show that is an injective map between the
underlying topological spaces &f;, and X whose image is locally closed. For to show
thatey is an immersion, we need to show that all morphism betwedksstize surjective.

It is not clear to me whether this holds true in general. Ifatds true, we can identify
X’ik and X' viaex. Further it implies that the different definitions of tordischemes
(locally of finite type) given in the present text and[in|[1bjrcide, cf. Remark3]1.

Let ¥ = (X,X,ex)and)y = (Y,Y,ey) be F;-schemes. The unique morphism
Specon, O)Xw — gy, induces a morphism

v rk X R
X" = II Specoy, OX@ — Ky = || *00 -

Givenf : X*™* — Y*¥  there is a unique morphismy — xy such that

er 4f> }N/rk

! }

Xy —— = XY
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commutes.
The unique morphismax (z) — *z to the terminal objectz = Spec Z in Schyz induces
a morphism
Xk = H ex(x) — (xx)z = H *7.
zEXTK zeXrk
5.4.Definition. A weak morphisnp : X — Vs a pairy = (f, f), wheref : X™* —
Yk is a morphism of)to-schemes andl : X — Y is a morphism of schemes that restricts
to a morphismf : X' — Yk such that

Xik YZrk
(*x)z (xy)z
X1k / ! yrk

weak

commutes. We denote chy ™" the category whose objects dfe-schemes (locally of
finite type) and whose morphisms are weak morphisms.

6. CARTESIAN CATEGORIES

We reason that the categories we invented are cartesiamaduce certain cartesian
functors that allow us to pass from group objects from onegmaty to group objects of
another category by means of Proposifiod 1.6. The catedry has finite products and
xz = Spec Z as terminal object. ThuSchy is cartesian. We already reasoned in sedfion 2
thatSchay, is cartesian and that the base extension funet@muy, Z : Schgn, — Schy is
cartesian.

Since the evaluation is an isomorphism for evBryscheme of pure rank, the product
in Sch* is given by

(X, X,ex) x (Y,Y,ey) = (X x Y, X XY, (ex,ey)).
Since(X xY)™* = Xk x Y%, the productsiSchi” andSchy*** are realized by the same
formula. The terminal object in all three categoriesqis. It follows that the categories
Schi, Schi”™ andSchy®** are cartesian and that the inclusion funcohy® — Schi”
is cartesian. Every strong morphism is a weak morphism,$l0h$lr is a subcategory of
SchYFVfak. Consequently, the inclusion functeehs" — SchXFVfak is cartesian.

Recall that we defined the base extension oFarschemet = (X, X, ex) asAy, =
X. To extend this to a functor ®p, Z : Sch@VFVfak — Schy, we define the base extension
of a weak morphisnp = (f, f): X = YtoZasyy := f: Xz — Yz Thisyields a
cartesian functor.

We introduce a functo(—)** : SchYFﬁeak — SchﬁFlj that associates to &f,-scheme
X = (X, X, ex), theF;-schemex™ = (X*% X!k id) of pure rank and to a weak
morphismy = (f, f) the strong morphism™™ = (f, fz). This functor is cartesian.

We subsume these cartesian functors in the following diagra

(=)

/\ Conz

Schf* < Schi < Schye* Schz .

Note that the composition of cartesian functors is cantesihus the base extension
to Z restricted toSchfFlj or Sch'” is cartesian, too. A consequence of the fact that ev-
ery strong morphisnp : X — ) factors throughy** when X is of pure rank is that
Homp* (X, V™) = Homj" (X,)).
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An immediate consequence of Proposifiod 1.6 is the follovikiey property that will be
of important (implicit) use for the theory of algebraic gpsuoverF; as introduced in the
next section.

6.1. Lemma. Let G be an algebraic group oveF; with group lawu. ThengGyz is an
algebraic group (ovef) with group lawyz, andG™ is a group object irSchfFlj with group
law p™% . In particular, for everyF;-schemeY of pure rank,G(X) = Homj (X, G*)
inherits the structure of a group. O

7. ALGEBRAIC GROUPS OVERF,

The subject of this section is to establish the notion anibuarexamples of algebraic
groups oveff;.

7.1.Definition. A group scheme ovéf, is a group object irSchIVFVfak. Let G be a group
scheme with group lawn. If there is a group schem, i) overF; such thaig; ~ G
as group schemes (ovE), then we say thaf is amodel ofG overF;. If i is a strong
morphism, we say thal is acanonical model ofz overF;. A group schemg over[F; is
called amalgebraic group oveff, if Gz is an algebraic group (ové).

For a groupV, denote byi¥;, the constant group schemeldf, i.e. the schem&; =
[ Spec Z together with the obvious group law. Clearly, we have a moil#ie constant
group scheme ifichy’". More precisely:

7.2.Lemma. For every grouplV, there is a group law: : Wy, x Wr, — Wg, in Schﬂsﬁlr
for the F-schemély, = [[; *r, such thatWy, ®r, Z ~ Wy as group schemes and
Wr, (F1) ~ W as groups. O

7.3.Lemma. For everyr > 0, there is a group lavG!, ; x G, . — G’ o in Schy”
such thatG;,

mF, ©F Z ~ Gy, as algebraic groups. The grou@;, p, (F1) is the trivial
group.

Proof. SinceGy, oy, = Specon, ({0} UH ), whereH = {T7" -----T" [ ny,...,n, € Z}

is the free abelian group in generators, it has precisely one point, namely the unique
prime ideal{0} of H. The stalkOg: ! is equal toH . If we letm be the group law

of G”, (in Schz) and definem topologically as the trivial map and on the stalk as the map
m* : H— H A H sending an elemeite H to (h, h) € H and0 to 0, then

(G:n,imo)z X (G:n,imo)z = (G:n,imo)z

Gr, x G, m G,

commutes. Ik : xz — G7 and. : G!, — G, are the morphisms of Propositiobn1l.1, then
itis easily seen that they extend to morphis@s) : +r, — Gj, p, and(,¢) : G, 5,
G, r, Of F1-schemes that satisfy the definition of an algebraic groupus®;,  is a
group object irSchE{r andGy, , ®r, Z = Gy, as algebraic groups by construction.

SinceG7, 45, has only one point and since there is only one homomorphisnoobids

{0}y H — {0,1}, G, 5, (F1) is the trivial group. O

—

This proof generalizes to show the more general lemma.

7.4.Lemma. Let H be a finitely generated abelian group. Thén= (Specgy, ({0} II
H),SpecZ[H],id) is a group scheme ové@h with Gz = Spec Z[H| andG(F) being the
trivial group. O
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Let G be a group scheme with group law. If eq : [],; G% — G is a torification
of G, then let(G, G, eq) be the associateB;-scheme (cf. Lemma3.2). Lef = G’k
be the image o6 undereg, putr = min;e;{d;} andI'* = {i € I | d; = r}, and
denote byelk : GiF — N the restriction ofeg to G5 = [],c;n Gh,. If €k is an
isomorphism of schemes amd restricts to a group law o, then definé¥V := N/T,
whereT = N° ~ G, is the connected componentM ;e G7,. Thus we can

m

identify I with W and writeN ~ [],;, G

m*

777.

7.5.Theorem. Let (G, m) be a group scheme with torificatiar; such thatm restricts
to a group law ofN = G™. PutT = N°, W = N/T andr = dim 7. Assume that
ex : [T G, — N is an isomorphism.

m

(i) Thereis a mode&f of G overF; andG(F;) ~ W.

(i) f N ~TxoW forsomed : W xT — T, then there is a canonical modélof G
overF;. If e;; is another torification of7 that satisfies the hypotheses for to have
a canonical modefy’ overF; and if there is an group automorphisfn: G — G
such thatf(N) = N’, whereN’ = G™ w.rt. e[, theng andG’ are isomorphic
in Schg, tr.

Proof. We begin with[(j). Letg = ((}, G, ec) be theF;-scheme associated to the torifica-
tion eq. LemmdZ.R provides a canonical mod&, = (Won,, Wz, ew ) of Wy overF;.
In particular, we have a group objeldtyr, = [ [y, *mo With group lawry; in Schy,.
Lemmd 7.8 provides a canonical modek= (T, T,er) of T ~ G, overF, and in partic-
ular a group obJeCT Gono with m7 in Schay,.

Choose any group actich: Wap, x T — T that respectsur, €.g. the projection to
the second component, which is always possible. Thdefines the semidirect product
N:=T x5 Wane With group lawm as a group object iichoyr,. The diagram

N2XNZ NZ

N x N

commutes. This shows that= (m, m) : G x G — G is a weak morphism.

To verify thaty is a group law, let and. be the unit and the inversion 6f and leté
and? be the unit and the inversion ¢f (cf. Propositio I11). It is easily seen th@t e)
and(i, ) are weak morphisms (the former one being even a strong nsmland verify
the conditions of Propositidn 1.1. Thdgss a group scheme ovér, whose base extension
toZisG.

By Lemma4BN (F,) = N'* = W as sets. Since every strong morphism —
G F, is trivial, a strong morphismy, — N factorizes throughgy, — Wg,, thus
N (F;) = W as groups.

We proceed witH{ji). We need to defii@s above such thé\i, ) is a strong morphism.
Fix an isomorphisml” ~ G . For everyw € W, the restrictiord,, : G|, — GJ, of 8
to the component of[,;, G}, Correspondlng tav is a homomorphlsm of group schemes

sinced respects the group law @&’,. LetH = {17 ----- T | ny,...,n, € Z},

thend,, induces an automorphis#j, of the Hopf algebr%[H], which restricts to a group
automorphismd# : H — H of the group-like element# of Z[H]. This defines a
homomorphisnd,, : G0 — Gi,.omo Of group objects irSchay, that base extends to
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(éw)z = 0,,. We obtain a morphism @bto-schemes

0 . r _ r r
H aw . meﬂ X Gm,i)ﬁo - HGm79ﬁa - Gmﬁma
weWw w

whose base extension is 0z = 6. Therefore,0,6) : Wg, x G,z — G ; isa

m

strong morphism. Note thdtis a group action, and it respects the group Iav@gj_’mo,

since the restriction8, are homomorphisms of group objects forale W.

That canonical models associatedetp ande, as in the theorem are |somorph|c is
reasoned as follows. Smc(é ) is a strong morph|sm we have thab ey = eg o 6,
whereey = (ew,er). Buter is an isomorphism, thug;, is determined by. Since the
automorphismf : G — G restricts to an isomorphism betwe@dhand N’, which is an
isomorphism of algebraic groups. Going through the corttrn of §, we see that this
defines already a morphisfn: N — N’ of 9to-schemes such thaf f):G—¢gisa
strong morphism that is an isomorphism of group schemesltver (]

We have some immediate corollaries.

7.6.Corollary. If N is an extension of a constant group schdfgassociated to a group
W by a split torus, therdV has a modelV overF;. The groupV (F; ) is isomorphic taV .
If N is a split extension, it has a canonical model ofer [l

7.7.Remark. Let N = G’, xy Wy be as in the theorem. Le&¥ = (N, N,ey) be
the canonical model oV overF;. SinceN'™ = N, the group law: extends (trivially)
to a group law of\/ in the categorySchnat whose objects ar&;-schemes and whose
morphisms are pairf, f) : (X, X,ex) — (Y,Y,ey), wheref : X — Y is a morphism
betweerMio-schemes andl : X — Y is a morphism between schemes suchhatf;, =

f o ex. More generally, we can substitut®,, by a group scheme of the forfipec Z[H],
whereH is a finitely generated abelian group.

However, semidirect products of a group schemes of the fiysaa Z[H| with a finite
constant group scheme seem to be the only algebraic groapslitw models nSch“at,
cf. the explanations in[11, section 6.1]. The following iimptions of Theorerh 715 show
thatSch;tlr allows a larger class of group objects.

LetG, be the additive group scheme. We say thas asuccessive extension of additive
groupsif there is a sequence of subgroups Go < Gy < --- < G,, = G such thatz;
is a normal subgroup @¥; andG;/G;—1 ~ G, foralli =1,...,n

7.8. Corollary. Let G be an algebraic group that is a successive extension of iaddit
groups. Then it has a canonical modgbverF;. The groupg(F,) is the trivial group.

Proof. As a variety,G is isomorphic toA”, wheren is the number of subgroups in the
filtration of G. Lete : xz; — G be the unit ofG. We can choose a torification of
G ~ A™ such that is the uniqued-dimensional torus of the torification. This defines
anF,-schemeg = (G, G, eq) such thatG™ =~ xgy,, andGEE ~ x5 5 G equalsels
Thus Theorerh 719{ii) applies and proves thahas a canonical model ovEi. Clearly,
G(F1) = Hom(*gno, G™*) is the trivial group. O

If G is a reductive group with Weyl grouly = N(Z)/T(Z), then we say thatV lifts
alongo if the exact sequence of groups
1 T Nz Wy 1.
splits. As a consequence of this theorem we obtain the faligwolution to Problem B of
the introduction.
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7.9. Theorem. Let G be a split reductive group with group lam : G x G — G and
Weyl groupl¥. ThenG has a mode§ = (G, G, e;) overF; and there is an isomorphism
G(F;) ~ W of groups such that
~ -®r, Z
or N@)T@) =W =  GF) —%  GZ) = G@
(*]Fl — g) — (*Z — gZ)

maps each cosetl’'(Z) in N(Z)/T(Z) to an element ok T(Z) C G(Z).

If the Weyl group lifts along a group homomorphistn: W — N(Z), then there is a
canonical model of G overF; and an isomorphisrg (F;) ~ W such thats coincides
with o’.

Proof. In Example€_3.b, we endowed a split reductive graupvith a torificationes that
restricts to a torificatior y of the normalizetV of a maximal split torug”. SinceG™ =
N w.rt. eq, we have thaty = ei¥, andel¥ : [[,, G't — N is an isomorphism.
TheoreniZB[{i) shows th&@t has a mode{j overF; and thatG(F,) = G™ = W. That
o maps each cosetI'(Z) in N(Z)/T(Z) to an element ohT'(Z) C G(Z) is clear by the
construction of G, 1) andG(FF,) ~ W in the proof of Theorern 715.

If the Weyl group lifts along a group homomorphisth: W — N(Z), thenWV can be
considered as a subgroup§f(Z), or, equivalentlyJ¥; can be considered as a subgroup
of N. SinceT is normal inN, W7 acts by conjugation oft". The conjugatior respects
the group law ofl". ThusN = T xy W7 and we can apply Theordm ¥[3 (ii) to obtain a
canonical model. Again, it is clear from the proof of Theoféf thato ands’ coincide.

(I

8. PARABOLIC SUBGROUPS OFGL(n)

In this last section, we will investigate Problem C from th&@duction. We show that it
can be solved within the framework of this paper.

8.1.Lemma. Let P be a parabolic subgroup &&L(n) of type(ks, ..., k.). ThenP has a
canonical modeP(F;) overF; andP(F;) ~ S, X --- x Sk, In particular, GL(n) has
a canonical mode§ overF; andG(F,) ~ S,,.

Proof. A parabolic subgroug® of GL(n) of type (k1,...,k,) is an extension o/ =
GL(k1) x --- x GL(k,) by a successive extensidn of additive groups. Hence, the
parabolic subgroup” has a maximal split toru®' of rankn = ky +--- + k.. Let N =
[l T be the normalizer of". ThenW = N(Z)/T(Z) ~ Sk, % --- x Sk, and the
sequencé — T(Z) — N(Z) — W — 1 splits.

As a variety,P ~ M x U, thus the product torification of torifications 8f andU
is a torification of P. Choose a torification of/ relative to the torug’ as described
in Example_3.b and fot/ as described in the proof of Corolldry 7.8. Then the product
torification ep of P defines anF;-schemeP = (P, P,ep) such thatep restricts to an
isomorphismPzk ~ N. Thus Theorerfi 713 ii) applies and implies the statemerhef t
proposition. (Note that:L(n) is a parabolic subgroup of tyde) of GL(n)). O

Recall from ExamplE33]5 that a choice of a maximal split tdfuiis GL(n) and a Borel
subgroupB containing?” leads to a Bruhat decompositi¢t,,, BwB — GL(n), where
W ~ S, is the Weyl group of5L(n). This leads further to a torification; of GL(n) and
defines arF;-schem& = (G, G, e). By Theoreni 719, there is a group law= (i, m)
of G such thayj is a canonical model aff. This canonical model depends a priori on the
choice ofT" and B, but since all maximal split tori iL(n) are conjugated, Theordm¥.5
(i) implies that the canonical modélis unique up to isomorphism. Lét be a parabolic
subgroup of typék, n — k) of GL(n) that containg” and B, and letP = (P, P,ep) be
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the canonical model as described in Lenima 8.1./LeP x G — G be the restriction of
m : G x G — G to the natural action aP on G by left multiplication.

8.2.Theorem. In the situation as above, the following holds true.
() Then there is a morphisth: P x G — G'* of Mo-schemes such that

str

A= (I,1) : PxG — G isagroup action irbchy,". Taking[F -points is compatible
with the natural group action

AFq1) : (Sk X Sp—k) X Sy — Sy
(i) There is arF;-scheme that is a quotient of. Consequently,
Qz ~ Gr(k,n) and O(Fy) ~ My, .

The natural actionr : G x @ — Q on the quotient is compatible with the natural
action GL(n) x Gr(k,n) — Gr(k,n) and taking[F;-points ofr is compatible
with the natural action

T(Fl) : Sn X Mk,n — Mk,n
induced by permuting the elements\df, = {1,...,n}.

Proof. We begin with [i). The maximal split torug is a subgroup of bottP and G.
Its normalizerNp in P is a subgroup of its normalizeV in G. By construction of
P = (P,P,ep), we have thatNp = P* (cf. Lemmal8l) and by construction of
G = (G,G,eq), we have thatV = G (cf. Theoren[ 7). PutVp; = Np/T and
Wz = N/T. Then we obtain an inclusioWpz — W of groups. Sincély lifts to a
subgroup of7, N is a semidirect produdt x¢ W7 along a group actiof : Wz x T — T.
If 6p : WpzxT — Tisthe restriction ofl, thenNp is the semidirect produ@txg, Wpz.

These semidirect products define group laims andr on P andG*™* , respectively,
such thatP™® is a subgroup o™ . Consequently, the restriction 6f defines an action
[: P* xG™ — G . Since(rn, m) is a strong morphism\ = (i, 1) is a strong morphism,
too. By Theorern 719 and Lemma8.1, takifigpoints yields\(F; ) : (Sg X Sp—x) X Sy, —
S,, as desired.

We proceed with[{li). We constru@ = (Q, Q, eq) as follows. Defin&) = Gr(k,n).
We review the Schubert decomposition in detail. We have duechpositions

I[ BuB — P and I[ BwB — G,
weWp weW

whereWp = Wpz(Z), W = Wz(Z) andw € W is identified with the image of the
corresponding point o’z in G. These decompositions yield a decomposition

Il BwB)/(BWpzB) — Gr(k,n) = G/P.
weW/Wp

The quotient§ BwB)/(BWp 7 B) are affine spaces?- of a certain dimensiod,, for ev-
ery cosetw € W/Wp. We obtain a Schubert decompositior(af(k, n) and we refine this
decomposition to a torificatiosyy whose0-dimensional tori coincide with the morphisms
GY = T/T — (BwB)/(BWpzB) for everyw € W/Wp. This torification defines an
F,-schemed = (Q, Gr(k, n), eq).

Since the tori of lowest dimension in the torification @Gfare the immersion§’ —
BwB for everyw € W and the tori of lowest dimension in the torification Bfare the
immersionsI” — BuwB for everyw € Wp, theMto-schemeQ™ is the quotient of the
action] : P x G'™ — G ThusQ is a quotient of\.

By construction, we hav®y; ~ Gr(k,n). The grouplV is the Weyl group ofGL(n)
and thus naturally isomorphic t8,, andWp is naturally isomorphic ted, x S, by
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Lemmd38.1L. Thus we have
O(Fy) ~ G(F,)/P(F1) ~ W/Wp =~ S,/(Sk X Sn—r)-

By construction, the natural actighx Q — Q is after base extension #bcompatible
with the natural actioi? x @ — Q. The identificationM},,, = S,,/(Sk X Snh—x) yields
the natural action off (F,) = S,, on Q(Fy) = My, . O
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