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ABSTRACT. In this paper we generalize correspondence theorems dfidikiin
and Nishinou-Siebert providing a correspondence betwégbaic and parame-
terized tropical curves. We also give a description of a naab tropicalization
procedure for algebraic curves motivated by Berkovichsstauction of skeletons
of analytic curves. Under certain assumptions, we conisérone-to-one correspon-
dence between algebraic curves satisfying toric consraind certain combinato-
rially defined objects, called “stacky tropical reductigrthat can be enumerated
in terms of tropical curves satisfying linear constrain&milarly, we construct a
one-to-one correspondence between elliptic curves widdfjxinvariant satisfying
toric constraints and “stacky tropical reductions” thah ¢@ enumerated in terms
of tropical elliptic curves with fixed tropicgl-invariant satisfying linear constraints.
Our theorems generalize previously published corresparetheorems in tropical
geometry, and our proofs are algebra-geometric. In péatictine theorems hold in
large positive characteristic.

1001.1554v4 [math.AG] 11 Jul 2011

arXiv

Key words and phrasesalgebraic geometry, tropical geometry, correspondensaréms, toric stacks.
The research leading to these results has received fundingthe European Union Seventh Frame-
work Programme (FP7/2007-2013) under grant agreement28488

1


http://arxiv.org/abs/1001.1554v4

2 ILYA TYOMKIN

1. INTRODUCTION.

Recently, tropical varieties appeared in various fieldswdy such as string the-
ory, mirror symmetry, and enumerative geometry. Roughgagmg, tropical variety
is an integral piece-wise linear polyhedral complex eqaegpwith an integral affine
structure. One can also think about tropical varieties gstahic varieties over the
(max +) semi-ring. Till now several applications of tropical gedmgeo algebraic
geometry have been found.

In 2005, Mikhalkin [9] discovered a “tropical” formula fonemeration of curves
of genugy in a linear systentZ on a toric surfacX passing through an appropriate
number of points in general position. The main ingredierthmproof was a “corre-
spondence theorem” that provide®ae-to-one correspondenbetween certain al-
gebraic and parameterized complex tropical curves. Mkihgave two descriptions
of parameterized tropical curves: a combinatorial detioripas weighted balanced
graphs inR", and an algebraic description as algebraic curves gwex +) semi-
ring. He showed that any algebraic curve on a toric surfafiee®a parameterized
(complex) tropical curve ifR?. To assign a parameterized tropical curve to an alge-
braic curve Mikhalkin analyzed the Hausdorff limits of @ntlogarithmic degenera-
tions of algebraic curves in the logarithmic imageof the complex torugC*)?, and
showed that these limits are piece-wise linear grapiithat can be equipped with
weights turning them into parameterized tropical curvesnil8rly, he associated
complex tropical curves to algebraic curves. Then, by usimglytic and symplec-
tic techniques, Mikhalkin proved that under certain trarsality assumptions there
exists unique algebraic curve defining a given complex tapiurve. Finally, he
described a couple of combinatorial formulae that counhtiraber of complex trop-
ical, hence also algebraic, curves in terms of paramettinpical curves and lattice
paths. In his ICM paper, Mikhalkin presents the correspondé¢heoreni [10, Theo-
rem 2] as an application of a result about realization of lsagparameterized tropical
curves by complex algebraic curvés|[10, Theorem 1], whidd$true in arbitrary
dimension.

An algebra-geometric proof of Mikhalkin’s theorem basedvimo’s patchwork-
ing method was proposed by Shustin|[13] in 2005. He showedaber a non-
Archimedean field, any algebraic curve on a toric surfacedsf degeneration of the
surface corresponding to a convex subdivision of the Newtdygon, and the subdi-
vision is combinatorially dual to the corresponding parterieed tropical curve. By
taking the closure of the curve in the family of toric surfac8hustin obtained a de-
generated algebraic curve sitting in a degenerated torfiace) and called such a pair
tropicalization. Then he introduced refined tropicaliaasi, and used patchworking
techniques to prove that under certain conditions one cemnstruct uniquely the
algebraic curve from its refined tropicalization.

In 2006, Nishinou and Siebeit [12] proved another corredpone theorem for
rational curves in higher dimensional toric varieties,ngsthe techniques of log-
geometry. Similarly to Shustin, they constructed a torigateration of the ambient
toric variety controlled by the parameterized tropicaMeurThen they looked at the
corresponding degeneration of the algebraic curve andpgdiit with the natural



TROPICAL GEOMETRY AND CORRESPONDENCE THEOREMS VIA TORIC 8TKS 3

log-structure coming from the degeneration of the torigetsr Finally, they proved
that under certain conditions the algebraic curve can benstoucted uniquely from
its degeneration as log-variety.

In [9,[12,[13], the parameterized tropical cuivecorresponding to an algebraic
curveC was constructed in terms of the morphism fr@o the toric variety. As
a result, the underlying tropical curve, i.e., the metriagr, depended on the toric
variety.

The first goal of this paper is to describe a canonical proeedssociating a tropi-
cal curvel to an algebraic curve with marked poiti& D) over the separable closure
I of the field of fractionsF of a discrete valuation ring. In Subsection 2,111, we
define the underlying graph &f to bethe dual graph of the stable reduction of the
pair (C,D), and we define the metric dnin a natural way in terms of the singular-
ities of the total space of the stable model. If, in additiae, are given a morphism
f: C\D — (F)", then in Subsectioh 2.2.1, we construct a natural paraineter
tropical curveh: ' — R". Our construction is canonical, and the parameterized trop
ical curves constructed inl[9, 12,113] are obtained fiorabove by contraction of
maximal connected subgraphs contractechbyVe note here that similar approach
to tropicalization of algebraic curves was used by Bakzr [jte also that there is
an alternative description df. Namely, given a curve with marked poinis, D),
one considers the corresponding Berkovich analytifica®®). If (C,D) is stable,
thenB contains a distinguished skeleton, which is a metric grapld; it is possible
to show that this graph is naturally isometriclto In fact, our definition ofr was
motivated by the Berkovich’s construction of skeletons wélstic curves. We will
not use the language of Berkovich spaces in this paper, buterested reader may
look at [3] for an introduction to Berkovich spaces, andigétions, and skeletons of
analytic curves.

The second goal of this paper is to generalize the corregpmedtheorems of
[9,[12,[13]. Our Theorem 6.2 is a generalization of the thewsref Mikhalkin and
Nishinou-Siebert for curves satisfying toric constraimgy., passing through given
points in general position, and Theoréml|6.3 gives an algefmapical correspon-
dence for elliptic curves satisfying toric constraints dading givenj-invariant.

Our approachis as follows: L&t be an algebraic torus, af, ..., Ok be general
orbits of some subtori of . Let (C,D) be an algebraic curve with marked points,
andf: C\ D — Ty be a morphism, such thdtextends to the firdt marked points
and maps them to the orbi®, ..., 0. Setl” to be the parameterized tropical curve
associated t¢C, D, f). As afirst step, we constructa minimal partial compactiiaat
X of Ty such thatf extends taC. Then, we construct a canonical integral model
fR?: CR? — XRF of f: C — X over the integer®; C F. One must think about the
integral model as a degeneration similar to the degeneatio[12,/13]. We also
construct an integral mod‘&ﬂzF of the constrain¥ = UQ;. Furthermore, we introduce
a natural structure of a Deligne-Mumford staﬁﬁ? and(fpgF on XR? andCR?. We
note here that the partial compactificatdénthe integral modefRF: Cr. — Xr_, and
the stacky structures are determined by the parameteniapital curve. We call
the reduction of(%”RF,DRF) together with the morphism t&r_. the stacky tropical



4 ILYA TYOMKIN

reduction of(C,D, f). Finally, we show that under certain assumptiof@,D, f)
can be reconstructed uniquely from its stacky tropical c&ida. Our approach to
Theoreni&.B is similar.

Several remarks are in place here. First, in order to coctsting natural stacky
structures, we introduced singular toric Deligne-Mumfetaicks generalizing toric
stacks of Borisov, Chen, and Smith [4]. Second, one of theraptons of the corre-
spondence theorems is th&, D) is a simple Mumford curve, i.e., its stable reduc-
tion has rational components with precisely three spedaltp on each component.
Third, the number of stacky tropical reductions can be diesdrcombinatorially in
terms of the corresponding parameterized tropical clinsee Propositiods 3.115 and
[4.10. Thus, under the assumptions of the correspondenoeeths, one obtains a
one-to-one correspondence between the simple Mumfordbraligecurves satisfy-
ing certain constraints and stacky tropical reductionsisfging the degenerations
of those constraintswvhich, in turn, can be enumerated in terms of the correspond
ing parameterized tropical curves combinatorially. Hinabote that our approach
is algebra-geometric and works in large positive charties. The case of small
characteristics involves technical difficulties since r@venomena occur, and it will
be studied in a separate paper. We note here that in [9, 12h&3uthors assume
the ground field to be of characteristic zero. Plainly, therapch of Mikhalkin does
not work in positive characteristic. Similarly, Shustiagproach uses the character-
istic assumption a lot. However, to the best of our undeditay) Nishinou-Siebert’s
approach must work in large positive characteristic thahghis not claimed in[12].

We wish to conclude the introduction by saying that the defiiion-theoretic pat-
tern developed in this paper can be used in other problemslhsher instance, one
can prove that any regular tropical curve is representahl&kemark5.11), which ex-
tends Mikhalkin’s[10, Theorem 1] to the case of large pwsitiharacteristic. More-
over, it is possible to obtain representability resultssigperabundant tropical curves,
but this will be discussed in a separate paper.

Recently, Nishinou posted a preprint[11], where he exté¢neogarithmic tech-
niques of[12]. He proves a version of the correspondenae¢ine overC for regular
tropical curves, and also for superabundant genus-onesumhere is an overlap be-
tween the results presented in our paper and in the papeshbfridiu, but the results
were obtained independently and the techniques are differe
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conversations we had, and for sharing his ideas with me. Ichalgo like to thank V.
Berkovich, K. Kremnizer, E.Shustin, and M. Temkin for heipdiscussions.

1.1. Conventions and notation.

Non-Archimedean base field: Throughout this papek denotes an algebraic-
ally closed field,R denotes a complete discrete valuation ring with residue
field k and field of fraction&, F denotes the separable closurefpfandu
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denotes the valuation dnnormalized such that(F*) = Z. For an interme-
diate extensioff C . C F, R;, denotes the ring of integersin Note that if
[L: F] < o thenRy, is a complete discrete valuation ring sirRés so. For
two finite intermediate extensioisC K C I C F, the relative ramification
index [u(LL*) : u(K*)] is denoted by, x, and if K = IF then it is denoted
simply byey . For a finite intermediate extensiérC L C I, t;, denotes a uni-
formizer inRy.. Note that ifchar(k) = 0 thenR ~ k[[t]] andRy, ~ k[[t1/e.]].
Hence, we may assume that= t/e in this case.

Latices and toric varieties: Throughoutthis papel denotes a lattice of finite
rank,N = Homy, (M, Z) denotes the dual lattice. For an abelian gr@jpve
denoteMg := M ®7 G andNg := N ®y G. All toric varieties are considered
overZ. In particular,Ty denotes the torus SpéfM], andTy 1, denotes the
torus Spek[M]. The monomials itZ[M] andL[M] are denoted by™. If
is a fan inNg, ando, T € %, thenZX denotes the set of cones of dimension
kin Z, X, denotes the toric variety Sggjey N M], andX,; denotes the toric
variety Xg N X = Xgnr-

Graphs: The graphs we consider in this paper are finite connectechgrap
They are allowed to have loops and multiple edges. For a gjvaphl, the
sets of vertices and edgeslofire denoted by (I') andE(I"). Forve V(I),
val(v) denotes the valency of V(') denotes the set of vertices of valency
k. If vV e V(I) thenE,y(I") denotes the set of edges connectirandyv’.
Most graphs in the paper are topological graphs, i.e. CW d¢exep of di-
mension one consisting of: (i) a 0-dimensional cell for eaetiex, and (ii)

a 1-dimensional cell for each edge glued to the O-dimensicells corre-
sponding to the boundary vertices of the edge.

Curves: Throughout this pape(C,D) denotes a smooth complete curve with
marked point® = {ds,...,qp } over the fieldF, and(Cr,_,Dr, ) denotes a
nodal model ofC,D), i.e.,Cr_ — Spe®,, is a proper curve, where/F is
afinite separablextensionDg, is a finite ordered set d&_-points inCg, ,
the total space d@r_ is normal, the reductio(Cr, ,Dr; ) X spew, Spedk is a
reduced nodal curve with marked points, and we are givenamagphism
(Cr., DR]L) X speg,, Sped’ ~ (C,D).

1.2. Plan of the paper. In the appendix, we summarize the basic facts about the
nodal and the semi-stable models of algebraic curves. Adefurition and treatment

of (parameterized) tropical curves is motivated by thestsfave suggest to start
reading the paper by looking at the appendix.

Several different definitions of (parameterized) tropmatves can be found in the
literature. In Sectiof]2, we give a version of the definitithat are most conve-
nient for our approach. In particular, since sometimes wekwath nodal models of
algebraic curves with marked points, we must allow tropazales with vertices of
valency less than three, and unbounded ends of zero slops, $hctiohP is devoted
to the definitions of tropical and parameterized tropicales, to the discussion of
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basic theory of (parameterized) tropical curves, toric eltigtic constraints, and de-
formation theory of parameterized tropical curves. In #@stion we also introduce
most of the notation we use throughout the paper. Subsa@dnl and 2.211 give
the motivating examples for our definitions, and descriteedhnonical tropicaliza-
tion of algebraic curves. For the convenience of the readtar each definition we
give a remark comparing it to other definitions in the litarat and explaining the
differences.

In Sectior 8, we construct the integral modeld ofC — X and of the constraints
and define the notion of tropical reduction. At the end of tbetisn we explain the
reason for introducing the stacky structures.

In Sectior4, we introduce singular Deligne-Mumford toriacks, and use them
to construct the natural stacky structure on the tropicgéderations and reductions.

In Sectionb, we discuss the deformation theory needed focthrespondence
theorems.

Finally, we formulate and prove the correspondence thesiri8ection b.

2. TROPICAL CURVES AND PARAMETERIZED TROPICAL CURVES
2.1. Tropical curves.

Definition 2.1.

(1) A tropical curveis a topological grapfi equipped with a complete, possi-
bly degenerate, inner metric, and with the following stanet(s1),(s2), and
satisfying the following properties (p1),(p2),(p3):

(s1) the vertices of are subdivided into two groupdinite verticesand
infinite vertices

(s2) the set of infinite vertices is equipped with a total orded is denoted
by V= (I'); the set of finite vertices is just a set, and is denoted by );

(p1) T has finitely many vertices and edges;

(p2) any infinite vertex has valency one, and is connecteditita vertex by
an edge, callednbounded edgeéther edges are calldébunded edges
The set of bounded edges is denotedEBy™), and the set of unbounded
edges is denoted &~ (I");

(p3) any bounded edgss isometric to a closed intervi, |€|], wherele| e R
denotes the length & and any unbounded edgés isometric tg[0, o],
where the isometry maps the infinite vertexcto Hence|e| = « for
any unbounded edgg and the restriction of the metric fo\V*(I') is
non-degenerate.

(2) A Q-tropical curveis a tropical curve such thé&| € Q for anye e EP(I").

(3) Atropical curve is calledreducibleif the underlying grapl is connected.

(4) Thegenusof a tropical curve is defined by

g(M):=1—-x(M) =1- V() +[EM)].
If T isirreducible themy(I") = by ().

(5) A tropical curve is calledtableif all its finite vertices have valency at least
three.
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(6) Anisomorphisnof tropical curves is an isomorphism of metric graphs.

Remark2.1. Among the definitions of tropical curves existing in theritture, [6,
Definition 1.1] of Gathmann and Kerber is the closest to D&dini2.1. They also
allow vertices of valency less than three, and add vertit@sfiaity. The only dif-
ference is that Gathmann and Kerber don't order the infindgices and call the
unbounded edges unbounded ends.

We shall mention that from the point of view of our motivatiegample, as pre-
sented in Subsectién 2.1.1 below, it would be more natur@bhsider tropical curves
equipped with a functiog: V(') — Z, associating to each vertex a non-negative
integer, calledhe genus of the verteand to modify the definition of the genus of a
tropical curve by setting(I") := 1 — x(I') + Yyeyt(r)9(V). The notion of the stabi-
lization defined below should then also be modified. Howesiage for the purpose
of this paper the more standard definitions are sufficientdesded not to change
the standard definitions too much.

Remark2.2. Note that the isomorphism class of a tropical curve is coteplaleter-
mined by the underlying graph with the extra structure (s2)-on the set of vertices
and the positive lengths of the bounded edges. Vice verganguch data, one can
easily construct a tropical curve in the correspondingscldote also, that given an
isomorphismp of the underlying graphs of two tropical curvesandl™’, there exists
at most one isomorphism of the tropical curves indugmgn particular, there ex-
ist no non-trivial automorphism of a tropical curve indugithe identity maps on the
sets of vertices and edges. However, in general, there nistysexeral isomorphisms
betweer” andl"’. Thus, we will not identify tropical curves with their isomphism
classes.

Algorithm 2.1 Given a tropical curvé one can construct a new tropical curive
using the following three steps (compare to Algori{hni 7.ihie opposite order):

(1) subdivide each bounded edg@to finitely many pieces, i.e., maig > 0
distinct points on the edgg add them to the set of finite vertices, and replace
the edgee with the subintervals defined by the points and equipped thigh
induced metric;

(2) in a similar way, subdivide each unbounded edge intcelipinany pieces;

(3) attach metric trees to certain finite vertisesV f (), i.e., pick a metric tree
Ty, such that all edges but maybe some of the leavds béve finite length,
and identify the root ofy with v.

Claim2.2. Letl be anirreducible tropical curve satisfying

Vo) +1
21 o(ry+ MO
Then there exists a unique stable tropical cui¥esuch thav® () = V= (rst) and

I" can be obtained fromis by the three steps of Algorithm 2.1. In particular[iis
stable thed St=T.

Proof. To construct™st we must first, remove fromh the maximal forest of trees
all of whose leaves are finite vertices. Then we remove thevialent vertices and

> 2.
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“glue” the corresponding pairs of edges. As a result, weinlata irreducible tropical
curvelst, and there are three possibilities: (1% has neither finite leaves nor two-
valent vertices, i.el;Stis stable; (2J St consists of a unique finite vertex, at most two
infinite vertices, and no bounded edges;[)consists of a unique finite vertex and
aloop, i.e., a unique bounded edge connecting the vertéseib.iHowever, since by
the assumption and the construction8¥it must satisfy [2.11), it follows thalt St is
stable. Note that by the constructivf? (I') = V*(I's!) andl" can be obtained from
stusing AlgorithnZ.1L. The uniqueness part of the claim is obsi O

Remark2.3. Condition [2.1) is the analog of the stability condition fbe algebraic
curves: any rational curve must have at least three spegiatgy and any elliptic
curve must have at least one special point. For tropicalesunf positive genus,
(2.1) holds if and only if the Euler characteristic of the ptured graph is negative:
x(r\ve))<o.

Definition 2.3. I'Stis called thestabilizationof I".

Remark2.4. In [7], Gathmann and Markwig defined stabilization for trogdicurves
without one-valent finite vertices. In the latter case, the $tabilizations coincide.

Remarlk2.5. If I has no one-valent finite vertices then the underlying m&polog-
ical spaces oF andr st are naturally isometric. Vice versa, if the underlying rieetr
topological spaces df andl"’ are isometric thefisSt = /s,

2.1.1. TheQ-tropical curve assigned to a paiC,D). Let (C,D) be as in Subsec-
tion[1.d, andCr, ,Dr, ) be a nodal model ofC, D). One can associate to it a tropical
curve, which will be denoted byCR]L’DRﬂ" The underlying graph dTCR]L’DRIL is de-
fined as follows: the set of finite vertices is the set of ir@le components of the
reduction ofCr, , and the set of infinite vertices is the set of marked pdints Dr, .
The set of edges connecting two finite vertices is defined ttheeset of common
nodes of the corresponding components. In particular, BragpnenC, is singu-

lar then each singular point &, corresponds to a loop at the corresponding finite
vertex. Finally, if a marked point specializes to certaimpmnent then the corre-
sponding vertices are connected by an unbounded edge.

Notation1. Forv e Vf(rCR[L.,DRrL)- the corresponding component is denotedZhy
and forv e VM(FCRL,DRL)’ the corresponding marked point is denotedgpyIf eis
a bounded (resp. unbounded) edge then the correspondiedmesgp. specialization
of the marked point) is denoted Ipg. Finally, py denotes the specialization .

It remains to specify the lengths of the bounded edgd‘chJ,DRL. For a bounded
edgee, set|e| := % if Cr, has singularity of typé\, at p.. Observe that the length
le| is independent dt. Indeed, ifL C I/, Cr,,» DR[U) = (Cr.,DRr,) X spe®, Spe®y,,

andCg_ has singularity of typeA, at a nodep thenCg , has singularity of type

_ 1 e+l —1+1
Ae, (r+1)-1; hences = =F—a—.
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Note thatif(C, D) is stable then it admits a distinguished model, narttedystable
model,and the associated tropical curve is independent of thedidkhsiori.. Fur-
thermore, the latter is the stabilization of the tropicalveuassociated tany nodal
model(Cr, ,Dr, ) of (C,D).

Notation2. If (C,D) is stable then the tropical curve associated to the stabteemo
of (C,D) is denoted by & .

2.1.2. Existence of models with given metric graplitss natural to ask the following
guestion:Given aQ-tropical curvel’, are there an extensioh and a nodal model
(Cr,,Dr, ) suchthaf” = rCRIL’DR]L ? The answer is given in the following proposition:

Proposition 2.4. Assume thafC,D) is stable. Lef” be aQ-tropical curve. Then
[ = lcg pg for a nodal modelCr ,Dr,) if and only if (%' =gy, The model
(Cr,,Dr, ) is defined over any field satisfying the following two conditions: (a) the
stable model is defined ovir and (b)

1
2.2 g € —N,
(2.2) lel o

for any e EP(I"). Moreover, ifl” can be obtained frorﬁgD using only steps one and
two of Algorithn 2.1l then this model is unique up to uniquenisgphism and field
extensions.

Proof. Since any nodal model dominates the stable model, and thke steodel can
be obtained from it by Algorithrin 711, the “only if” part folles. Let us now show the
“if” part. Let IL be an extension over which the stable model is defined, anditamm
[@2.2) is satisfied for ang € E°(I'). Let [’ be the metric graph obtained from
by subdividing any bounded edgeinto a chain ofre + 1 = e |e| subintervals of
Iength%. Itis sufficient to construct the modely ,Di ) with I = I'%L,D/RL, since
(Cr.,DRr, ) is obtained from(Cg ,Dp ) by a uniquely defined sequence of blow-
downs, namely one must blow down the projective IinesOQIrJ corresponding to
virn\vir).

Note that™’ can be obtained frorﬁgD by the three steps of Algorithim2.1. More-
over, it can be obtained from mrssDe using only step two and step three with
bounded trees, whe@f'**denotes the minimal regular semi-stable model dominat-
ing Cﬁl. It is easy to see that there exists a sequence of blowupg afoooth points
of the reduction of the minimal regular semi-stable mazfgF°— C& such that the
resulting regular semi-stable mod€l; ,Dy, ) has metric graph’ = F%’D/ . For
the moreover part, note that the sequence of blowups camegpg to the second step
of the algorithm is uniquely defined. Indeedei€ EM(FCQ{SS’DRIL) is subdivided into
k pieces then the corresponding sequence consiktsarfsecutive blowups along the
reduction ofge. O

2.2. Parameterized tropical curves.

Definition 2.5. Let N be a lattice.
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(1) An Ng-parameterized tropical curvis a pair(l', hr) consisting of a tropical
curvel and a maphr: V(I') — N that satisfy the following properties:
(@) hr(v) € N for any infinite vertew e V= (I');
(b) %(hr (v) —hr(V)) € N for any bounded edgec E,, (I");
(c) (Balancing conditioipfor any finite vertex the following holds:

1
H (hr(\/)—hr(V))+ Z hr(\/) =0.
vevi(r).ecEy () Veve(r) ek, y ()

(2) If hr(v) € Ng for anyv thenl is calledNg-parameterized-tropical curve

Remark2.6. If no confusion is possible, we will often omit- and, by abuse of
language and notation, will refer foasNg-parameterized tropical curve.

Remark2.7. Usually, one defines a parameterized tropical curve as actiopurvel
equipped with amap: I'\V*®(I") — Ng satisfying certain properties. Note, that after
one identifies the edges with straight intervals, a pararizetktropical curve in the
sense of Definition 215 defines a usual parameterized tdapicee as followshis the
unigue continuous map that coincides whithon the set of finite vertices, maps boun-
ded edges € EP, (I") linearly onto the intervalf- (v), hr (V')], and maps unbounded
edgese € E%, (") linearly onto the rayghr(v) +thr (V) [t e R, } if ve VT(I") and

v eve(r).

Note, that althoughr is defined for any vertex, it has different meanings for finite
and for infinite vertices: I € V(') then one must think abotit (v) asa point in
the affine space )l and ifv e V*(I") then one must think abobit (v) asa vector in
the corresponding vector spacgyN

Definition 2.6. Let I' be anNg-parameterized tropical curve,c V() be a finite
vertex, ance € E, (") be an edge.

(1) Themultiplicity I(e) of an edgee is the integral length ofi- (V) if e is un-
bounded, and is the integral Iength‘%f(hr(v) —hr(V)) if eis bounded; in
the latter case, the multiplicity is exactly the factor byigéhh; stretches
with respect to the lattice length di.

(2) If v e v*(I') then themultiplicity I(v) of V' is the integral length dfi- (V).

(3) TheslopeofeisR-(hr(v)—hr(V)) C Ng if eis bounded, an®-hr (V') C Ng
if eis unbounded. The slope eis denoted byNg ¢, and the latticéN NN ¢
is denoted byNe. If the slopeNg e is not trivial thenNe and Ng ¢ have
a generatong, given byne = ﬁ(hr(v) —hr(V)) if eis bounded, and
Ne = %hr(\/) if eis unbounded. In the second case it idistinguished
generator, while in the first case it is defined only up-to & sigowever, if
anorientationof the bounded edge is given then the generator is also distin
guished.

(4) Thedegreeded") of I" is the collection of pairgny,dy), where{n,...,ns}
is the set of non-zero distinguished generators of slopealadunded edges,
anddy = Y ece(r),ne=n ! (€)-

Remark2.8. Balancing condition implie§  4)edegr)dn= 0.
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Proposition 2.7. Let " and [’ be tropical curves, such thadt' is obtained from"
using Algorithn{211. If" has the structure of anjNparameterized tropical curve,
then there exists a unigue structure of ag-parameterized tropical curve drl sat-
isfying the following two properties: (a)-h(v) = 0for allv e V*(I'")\V*®(I"), and
(b) hrr(v) = hr(v) forallv e V(I')NV(I). Vice versa, if”" has the structure of an
Ng-parameterized tropical curve such that tv) = 0for allv e V* (") \V*(I') then
its restriction tol" defines the structure of angNparameterized tropical curve dn

Proof. It is sufficient to prove the proposition féf obtained using only one step of
the algorithm; furthermore, we may assume that only one éagp. metric tree) is
subdivided (resp. attached).

First, assume thdt’ is obtained fronT by a subdivision of a bounded edge
Ew (). Letvy,...,v be the new verticesp =V, vy 1 =V, ande, € Eyy,,, (") be
the new edgesy|_o|ex| = |€]. If " has a structure of aNg-parameterized tropical
curve then it follows from the balancing condition that

hr (Vicrr) = e (Vi) (Vi) —hr(Viea) e (V) —hr(v)
& ] E

forall 1<k <r. Thush pIELL] 3joler i
<k<r. r (V) = o hr: (v) + g hr (V) for 1 <k <r, which
implies the uniqueness and the vice versa parts of the pitapos

Second, assume thitis obtained fronT by a subdivision of an unbounded edge
e€ Ey (M) with vV e V*(I). Letvy,...,v be the new verticesip =V, Vi1 =V,
ande € Eyy,,, () be the new edges. I has a structure of aNg-parameterized
tropical curve then it follows from the balancing condititat

o () = () = = (e () — P (v 1)) = (V)
lex| =1
forall 1 <k <r— 1. Thushr/(w) = hr/(v) + (345 ej| )hr (V') for 1 < k <r, which
implies the uniqueness and the vice versa parts of the pitapos

Third, assume thdt’ is obtained fronT by attaching a metric tre€ to a vertex
veVT(I), and that it has a structure of Ala-parameterized tropical curve satisfying
(a) and (b). Thei vanishes on the infinite leaves of the tigavhich, by balancing
condition, implies that the slopes of all edgedddre trivial. Hencehr (w) = hr(v)
for all verticesw of T but infinite leaves, which implies the uniqueness and the vic
versa parts of the proposition.

To prove the existence part, we define on the new vertices by the formulae

r ' k=11a
obtained above. Namely, in the first casetgetvy) := 2l (V) + ZJ:o“ﬁ”‘hr(\/),

le] le]
in the second case skt (vk) = hr(v) + (2‘1-(;5 lej))hr (V), and in the third case set
hr(w) := hr(v) for all new verticesv but infinite leaves, for which sék- to be zero.
Then, it is easy to see thdi’, hy/) is anNg-parameterized tropical curve. O

Corollary 2.8. Letl and I’ be as in Propositiof 2]17. Then the following holds:
{1(e)Yece(r) € {1 (&) }ecr(rr) € {1(€) }ece(r) U{0}. Moreover, ifl” is obtained front”
using only the first two steps of the algorithm tHe(e) ecg(r) = {1(€) fece(r)-
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Proof. Obvious. O

Corollary 2.9. LetT be an N-parameterized tropical curve, and be a graph
obtained from™ by subdivision of some of the edges with non-trivial slopssume
that for each bounded (resp. unbounded) edge®&, (') with ve V' (I"), which

is subdivided into #- 1 edges g€ E\,k\,m(r’), 0 <k <'r, we are given a sequence
of numberd =Ag <A1 < - <A <Ay =1(resp.0=2Ap <Ay < --- < A;). Set
Ny := Achr (V) + (1= A hr (v) (resp. i, :=hr(v) +Achr (V) forall 1<k <r. Then
there exists a unique structure of ag{garameterized tropical curve drf such that
hr/(v) = hr(v) for all v e V(") NV (I), the lengths of non-subdivided edges in the
two curves coincide, and-h(vk) = ny, for the new verticesye V(') \ V(T).

Proof. Without loss of generality we may assume thats obtained by subdivision
of only one edge. For the existence part, |sgt:= (Ax;1— Ax)|€| forall 0< k <r
(resp.|ex| := Aky1— Ak forany 0< k <r—1, and|e | = =), and apply Propositidn 2.7.

r ) k=1|a.
For the uniqueness part, observe thatvy) = ZJ:‘;“e“h,—/(v) + ZJTZ“E"h,—/ (V') (resp.

hr(v) = hr(v) + (z‘j(;é|ej|)h,-,(\/)) for all 1 <k <r (see the proof of Proposi-
tion[2.4). Note thahr (V') = hr (V) # hr(v) = hr/(v) (resp. hp (V) = hr (V) # 0)
k=14
since the slope of is non-trivial. ThusAy = zj:‘g“e" (resp. Ax = le(;é lej|) for all
1 <k<r,whichimplies|e| = (Akr1—Ak)|€| forall 0 < k <r (resp.|ex| = Akr1— Ak
forany 0O< k <r—1, and|e| = ). O

Proposition 2.10. Letl" be an Ny-parameterized tropical curve, arith C I be the
maximal metric subgraph satisfying the following two pties: (1) V(I'g) =V (I"),
E(Io) CEP(I"), and (2) N = Ofor all edges & E (o). Consider the weighted metric
graphT = I /[o obtained from™ by contracting the maximal connected subgraphs
of [y to vertices. TheR is an N;-parameterized tropical curve andig) < g(I").

Proof. Obvious. O

2.2.1. The Ny-parameterized)-tropical curve assigned to an algebraic curve with
a rational map to a torusLet f: C\D — TNF be a morphism, and I€Cr, ,Dr, )
be a nodal model ofC,D). Then theQ-tropical curvell = e, DR inherits the
structure of aNg-parameterize@-tropical curve fromf. Indeed, letv be a vertex.
To simplify the notation let us identify it with the corresmting marked poing, or
the irreducible compone,. Then, the order of vanishing qid*(x™)) is a linear
function onM, hence an element df. Sethr(v) := %ord,(f*(x')) € Ny if visfinite,
andhr(v) ;= ord,(f*(x*)) € N if vis infinite.
Remark2.9.
(1) ForveV®, hr(v) =0 if and only if f can be extended .
(2) If e€ E,y is a bounded edge théfe)(re+ 1) is equal to the integral length
of e, (hr(v) — hr(V)); in particular, the latter is divisible biye).
(3) If L c L is afinite extension, an@r,,Dr,) = (Cr.,Dr.) X spew, SPERy/
then there exists a canonical isomorphisnit = rCR]L’DRIL — rcR{L’ Dr, = r'
andhr =hrro1.
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Lemma 2.11. (I',hr) is an Ny-parameterized)-tropical curve.

Proof. All we have to show is that (i) the vectgét‘(hr (V) —hr(V)) € Ny is integral
for any bounded edge € E,y, and (ii) the balancing condition of Definitign 2.5 is
satisfied.

Assume first, thatCr ,Dr, ) is regular. Then all bounded edges bfhave length
& Note thatt, (V™ £+ (xm) is a rational function or€, for all me M, hence

L (hr (V) —hr(v)) = eL(hr (V) — hr(v)) € N for all bounded edgesc E,,/, and the

l€]
degree of the divisor of the functidn "™ f+(xm) | is equal to

Z (eJLhF(\/) _eﬂth(v)vm)"" Z (hr(\/),m)
veVvl ecE Vev®, ecky

However, the degree of a rational function is zero, thus
1
=

(hr(V)=h(v)+ T  hr(v)=0,

v’eV’,ZeeEW Vev® ecE

and we are done.
In general, Iet(C,;L,D/RL) be the minimal regular nodal model dominating the
model(Cr, ,Dr, ). Thenthe grapﬁq%%]L is obtained fronf'c; pg by subdivision

of any bounded edgec E,y (rCRL.,DR[L) intore+ 1 = ey |€| subintervals of Iengtl%,
and FC& Dp, is an Np-parameterized-tropical curve. Thus, by Propositién .7,
=

lcq, D _Satisfies the balancing condition, and for WE\?\/(FCRL-,DRL) there exists
& € Eeovl(rcgl,D;qL) such tha%‘(hr(V) —hr(V)) = ﬁ(hr(Vo) —hr(v1))eN. O
Notation3. Assume thafC,D) is stable, and : C\ D — Ty 7 is @ morphism. We de-

note byl ; the Ng-parameterize@-tropical curve associated to the stable model
of (C,D).

2.2.2. Two complexes associated to ap-Narameterized tropical curveln this sub-
section we will work with a fixedNg-parameterized tropical cur¥e Fix an orienta-
tion of the bounded edges bf and letG be an abelian group. Consider the following
linear maps

(2.3) bg: ( <5 NG) @( <5 (Ne)G> - P No

vev(r) ecEP(I") ecEP(I)

given bybg: X, — Y ecED(T) £(e,v)xy andbg: Xe — xe Wheree(e,v) = —1if vis the
initial point of e, (e,v) = 1 if vis the target o, ande(e,v) = 0 otherwise; and

(2.4) Bc: ( o, NG) 69< b (Ne)G> - P Ne

veV(r) ecEP(IN) ecEP(M)

given byBg: Xy — Y ecED(T) g(e,v)xy andfg: Xe— l(€)Xe.
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Notation4. Denote byEL (") andEZ(I") the kernel and the cokernel b, and
by £2(T") and &Z(T") the kernel and the cokernel @. SetE®(I") := E%() and
&*(I) =&, ('), and denote by(I") the number of bounded edgedofiaving trivial
slope.

Remark2.1Q Let @y (r)Ne — Dece(r)(N/Ne)e be the complex, in which the
map is given by, — EeeEb y(E(e V)X mod (Ne)g). Itis naturally quasi-isomorphic

to complex[[Z.B). Hence, beIow we will think abdig () andEZ (") as the kernel
and the cokernel of either of these complexes. Note alsojfthée): G — G is an
isomorphism for alk then the complex

P Ne— P (N/I(eNe)s
vevf(r) ecEP(IN)
with the map is given by, — 3 ogbr)(€(€, V)%, mod (I (e)Ne)c) is naturally quasi-
isomorphic to complex(214).
Claim2.12 In the above notatior€4 (") = E?(I") ®7 G, and there is a natural exact
sequence
0— EXMN) ®z G — E§(T") — Torg(E*(I),G) — 0.
The same statement holds truélf is replaced bys™*.

Proof. Since 0— E(I") — (@vevf( ) (@eeEb Ne) — @ecepryN = 0isa
free resolution of2?(I"), the cohomology of

0—>IE1( ®ZG—>( EB NG>EB( EB (Ne)G)—> EB Ng — 0

vevf(r) ecEP(I") ecEP(I")

computes the torsion grouf®ry,(E?(I'),G). Note thatTorZ(E3(T"),G) = 0 since
E2(I") admits a free resolution of length two. This implies the twleritities for
E&(T). The proof for&2(I) is identical. O

Corollary 2.13. LetK be a field. Theitl (M) = E(I") @z K if and only if the order
of the torsion part of2?(I") is prime to the characteristic d& . The same statement
holds true ifE® is replaced bys™.

Proposition 2.14. There exists a natural exact sequence

0 = Beced(r) Moo (Hie)(G)) = &&(N) = EE(M) —
— @ecep(r)nero (G/1(€)G) — &4(T) = EZ(T) =0,
wherep ) (G) = ker(l(e): G — G), and I(e): G — G is the multiplication by e).
Proof. If the slopeNe is not trivial then(Ne) is canonically isomorphic t& since
Ne has a distinguished generator (cf. Definition] 2.6). T@&Eb(r),r\l#o (M(e)(G))
and@eceb(r) ne20 (G/1(€)G) are the kernel and the cokernel of the natural morphism

(8) (2e)-(2,4) (2,
veV(r) ecEP(I) vev () ecEP(IN)
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given by the identity map oig-s and by the multiplication bi{e) on (Ng)g-s. It
extends to a morphism frof_(2.4) fo (R.3) by the identity megeen the right terms.
The proposition now follows from the standard homologidgeara computation,
which we leave to the reader. O

Corollary 2.15. Assume that(e) is prime to chatk) for all e. ThenEp (I') = &(I"),
EZ. (M) = &2(T), and|&z (M)] = [E (7)] Meceb(r)neo! (€)-

Proof. Note thatl (e)k =k, pje)(k) = 0, |t (k*)| = I(€), and(k*)'® = k* since
[(e) is not divisible by the characteristic aikds algebraically closed. The corollary
now follows from the proposition. O

Definition 2.16. The space&2(I") and&Z(I") are called thebstruction spacand
the stacky obstruction spaa#f I' over G. Following Mikhalkin [, Definition 2.22],
we say thaf is G-regularif fé(r) = 0. Otherwise it is calle@-superabundant

Remark2.11 Note that by Propositidn 2.14, @/1 (e)G = 0 for any bounded edge
with non-trivial slope theiir is G-regular if and only iﬂEé(F) = 0. In particular, this
is the case if eithe® = k or G = k* andl(e) are prime to the characteristic for all

Definition 2.17. Let andl"’ be Ng-parameterized tropical curves, and assume that
I is obtained fronT’ by subdivision of (some of) its edges. Given an orientation o
" we define thenducedorientation o™ as follows: if edgee € E\?\,(I") is oriented
fromvtoV and is subdivided into a chain of edg®s. .., e € E(I'), i.e., there exists

a chain of vertices = vo,v1,...,Vry1 =V € V(I') such thaEyy,,, (I) = {&} for all
0<k<r, andval(v) = 2 andv ¢ V(I'’) for all 1 <k <, then we set the target of

& to beviq; if ec Ej; () is subdivided into a chain of edges ..., & then allg

are oriented in the direction of the infinite vertex.

Proposition 2.18. Letl" andl"’ be Ny-parameterized tropical curves. Assume that
is obtained fronT’ by subdivision of (some of) its edges. Pick an orientatiofi’on
and consider the induced orientation 6n ThenEZ () = E4(T), 2(I') = &2(T),
and the following sequences are exact:
0= P  (No)s—EG() —EE(M) =0
veV (M)
and
0 P (No)e— &) — &) —0,
vev T (M\V ()
where § € E(I') denotes the edge subdivided by the vertex v. In particldr, i
SatISerSﬂﬂ) and r/ == rSt then@vevf(r)\vf(r/) Ne‘l - @VEVZf (r) NQ/

Proof. Let e € E,y(T'’) be an edge witlv € V(") Then there exists a chain of
vertices ofl": Vo = V,vi,...,Vr11 =V € V(I), such thatEyy,,, () = {&} for all
0<k<r, andval(v) =2 andy, ¢ V(I'") for all 1 < k <r. FurthermoreNg = Ne
for all k due to the balancing condition (cf. the proof of Proposifad), and the
chains of edgesy, ..., e are disjoint for different edges Thus, for each bounded
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edgee, the mapsPj_o N — Ng and@®i_o(Ne,)c — (Ne)s mapping(xc) to Fi_oXk
are well defined. For unbounded edgesonsider the trivial map@rk;% Ng — 0
and@rk;%(NeK)G — 0. Thus, by taking direct sums we obtain surjective lineapsna
Decen(r) No = Decep(r) No aNd@eces(r) (Ne)s = Decep(r)(Ne)s-

Consider the natural projectia®,cy t r) N — @yevf () Ne and the maps con-
structed above. Since the orientationfoiis induced from the orientation dn, it
follows from the definition obg that the following diagram with exact rows is com-
mutative:

0—>E4(1) (Buev N6) & (Bocen(r) (Neds ) ——

i

00— E%(F/) — (@vevf(r/) NG) ® (@eeEb(F'>(Ne)G) -

—— Decer(r)No ——E§(M) —0

i l

—_— @eeEb(r/) NG — ]Eé(r/) _— O

Consider the induced mapbetween the kernels of the two central vertical arrows.
By the construction, it decomposes into a direct sum oveetlyes € E(I'') of the
following summands:

r(e) r(e) r(e)
(@ NG) @ ker (@(N@)G — (Ne)G> — ker (@ Ng — NG)

k=1 k=0 k=0
if eis bounded and
r(e) r(e)—1 r(e)—1
@NG ® @ (NeJ | — @ Ne
k=0 k=0

if eis unbounded; where, as befoesis subdivided by the vertices, ...,V into

edgesey, ..., € (), andvg € V(). Observe that in both cases the map is surjective,
hence so igp. Furthermore, we see that the kernelgfs canonically isomorphic

to Dyevi(rwvi(Ne)a, which implies the proposition. The proof faf*(I") is
identical. O

Proposition 2.19. Let I and T be as in Propositiof_ 2.10. Then the natural map
EL(T) — EL(I) is an isomorphism, and there exists an exact sequence

0 EA(T) - EE(TM) — Ng(r)*g(r> —0.

The same statement holds tru&ffis replaced bys™.
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Proof. Let[g C I be as in Propositidn 2.10. Then the finite vertice§ abrrespond
to the connected componentslaf. Below we shall think about € V(T) as both:
the vertices of” and the connected metric subgraphg ofConsider the following
diagram with exact rows:

0 E&(T) (@VGVW) NG) @ (@eeEb(ﬂ(Ne)G) —
0 Eg (M) (@Ve\/f(r) NG) @ (eaeeEb(r)(Ne)G) .

— eaeeEb(F) Ng —— Eé(f) —0

.

—— @eeEb(r) Ng —— EZG(I_) —0

where the vertical arroy. -y Ne — Dvev(r)Ne = Byevi(r (EBvev )

the direct sum of the diagonal embeddings, @geEb r) (Ne)e — @eeEb (Ne)
and@eeEb Ng — @eeEb ryNe are the natural embedding. Then the above diagram
is commutauve Consider the induced map of the cokerneteemmiddle vertical

arrows: Pyey (1 [@vev NG/ANG — Dece(m) NG} . Plainly, it is injective and its
cokernel is canonlcally |somorphic to

@HVNG @ (NG )N ()g(f)_

vevi(T) vevi(T)

This implies the proposition fdE* (I"). The proof for&* () is identical. O
2.2.3. Deformations of N-parameterized tropical curves.

Definition 2.20. Letl” be anNg-parameterized tropical curve. Bydaformatiorof I
we mean a germ (at 1) of a continuous fam{ilys}scr 0f Ng-parameterized tropical
curves, withl; =T

Remark2.12

(1) Any deformation of” induces a deformation of the underlying graph. Since
we work only with finite graphs, any such deformation can beocécally
trivialized. Hence we may consider only deformationd oinducing the
trivial deformation of the underlying graph.

(2) The multiplicities and the slopes of the edges are pveseby deforma-
tions sincehr,(v) € N for anyv € V*, and ‘é‘ (hr¢(v) — hr (V) € N for
any bounded edgec E, . This also shows that the lengtles of the edges
e € E,y with non-trivial slopes are uniquely defined by the valuesfv)
andhr (V).
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Fix an orientation of the bounded edgeslof Then the germ of theniversal
deformation of", i.e., of the space of deformations up to isomorphism, caidde-

tified naturally with the germ of the group () x Ri(” at the identity, where(I"),
as usual, denotes the number of bounded edgEsdth trivial slope.

Definition 2.21. Therank of anNg-parameterized tropical curyeis the dimension
of the universal deformation df, i.e., ranK") = ¢(I") + rank EX(I")).

Lemma 2.22. The rank of" is given by the following formula:

rank(") = (rankN) — 3)x () +|E®(F)| — ov(T") + rankE?(I")),
where overvalency ¢V) is defined to be d¥') = 3 ey 1 (r)(val(v) — 3).
Proof. By definition,

rank") = +d|m( P NR> —dim( P (N/Ne)R) + rank E?(I")).

veVv(r) ecEP(M)

SinceNg is either trivial or has rank one, amdl) is the number of bounded edges
with trivial slope, it follows that

rank(") = rankN)|V T ()| — (rankN) — 1)|E®(F)| 4 rank E?(I")).
Note thatx (I') = [V ()| — |[EP(I)|, since|E*(T")| = V(). Thus,
rank(T") = (rankN) — 3)x () +3)V' ()| — 2|[E°(T")| + rankE*(T")),

and since€E” ()| + Jyey 1y val(v) = [V*(I)] + 3 ey 1 () val(v) = 2|E(T)], the fol-
lowing holds:

3V ()| - 2E™(T)| = [E™(N)| + 3V ()| - Z val(v) = [E*(F)| —ov(T).
veVT(T)

Hence ranki") = (rankN) — 3)x(I") + |E®(T")| — ov(I") + rank E2(T")). O
2.2.4. Linear constraints.

Definition 2.23. LetL; C N, 1 <i <k, be sublattices of coranks greater than or equal
to two, such thaN/L; is torsion free for any. LetA = {A.}I 1 A C Ng, be a set of
affine subspaces with tangent spafasg. Consider arNg-parameterized tropical
curverl .

(1) We say thaf satisfies the affine constrainiffor any 1 <i < kthe following
holds:hr (vi) = 0 andhr (V|) € Aj, wherev; € V*(I) is the i-th infinite vertex,
andv; is the unique f|n|te vertex connectedwo

(2) If I satisfiesAthen we say thaA is asimple constraintor I if forall 1 <i <
k the following holds:/ is trivalent,Ne # 0, andNe N L; = 0, whereeis any
bounded edge containing (note that the slopes of the two bounded edges
containingv; coincide due to the balancing condition, sifggv;) = 0).

(3) We define the codimension Afto be codintA) := X ; codimy, (A).
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Example2.1 LetL; be as in Definition 2.23. Consider the subfifir C Ty r, and a
setO = {O.}, 1 of T, p-orbits inTy . ThenO defines an affine constraiAt= Ao.
Indeed, anyF-pointq € O; defines a linear map froml to Z: m+— v(x™(q)). The
set of all such maps forms a lattice of maximal rank in sdmaffine subspace, and
we defineA; to be this subspace.

Let (C,D, f) be as usual, and assume thétj) € O; for all 1 <i <k. In this
case we say thdC,D, f) satisfies theoric constraint Q Let (Cr, ,Dg, ) be a semi-
stable model, and I€t be the associatedy-parameterize@-tropical curve. Them
satisfies the corresponding affine constraint

Letl be anNg-parameterized tropical curvA,be an affine constraint satisfied by
I, vi,...,V be the infinite vertices correspondingdg, . .., dk, andG be an abelian
group. Consider the map

k
vm(@%)@(@ ) D (N/Li)s
veVi(r) ecEP(I) i=1

defined byys(xe) =0, ya(xv) = (X, modL;) if vis connected t@;, andys(x,) = 0
otherwise.

Notation5. We denote byEL (T, A) andEZ (I, A) the kernel and the cokernel of the
linear mapbg X yg

k
(2.5) ( ) NG) @( P (Ne) ) ( D NG) X (@(N/Li)e>
vevi(r) ecEP(IN) ecEP(IN) i=1

Similarly, we denote bys3(I",A) and &3(I",A) the kernel and the cokernel of the
linear mapBs X V&

k
(2.6) ( ) NG) 69( P (Ne) ) ( ., NG) X <@(N/Li)e>
veV () ecEP(IN) ecEb(IM) i=1

If G = Z then we use shorter notatid@ (I, A) and&™(I", A) instead ofE, (I, A) and
&y (FLA).

Remark2.13 One may think abouE} (I, A) andE2(",A) as the kernel and the
cokernel of the map

P Ne— ( T (N/Ne)e) ® (é(N/LOG)

vevi(r) ecEP(I") i=1

(cf. Remar2.100). Similarly, if(e): G — G is an isomorphism for ak then one
may think aboutsd(I",A) and&2(I", A) as the kernel and the cokernel of the map

k
D No— ( ® (N/I(e)Ne>G) ® <@(N/Li)e>-

vevi(r) ecEP(T) i=1
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Claim2.24. Consider the germ of the universal deformatiof efhich, as before, we
identify with the germ of the grouﬁi(r) X Ri(” at the identity. Then the locus of
the deformations satisfyingy can be identified naturally with the germ at the identity
of EL (I, A) x R,

Proof. Obvious. O

Definition 2.25. Let ' be anNg-parameterized tropical curve satisfying an affine
constraintA, andG be an abelian group. The pdlr,A) is calledG-regularif Ais a
simple constraint, ang2(I",A) = 0. Otherwise it is calleés-superabundant

Proposition 2.26. Consider the natural projectionsa E& (") — DX 1(N/Li)c and
ac: E&(MN) — @ 1(N/L)g. ThenEL(T,A) = ker(ag), &4(T,A) = ker(ag), and
there exist natural exact sequend®s» cokerag) — EZ(I,A) — E(I") — 0 and
0 — cokel(ag) — &E(T,A) — &&(I) — 0.

Proof. Straightforward from the definitions. O

Claim2.27. If (I',A) is k-regular then it is*-regular. If, in additionc(") = 0 and
codim(A) = rankT") then|EL, (T, A)| = [E?(T,A)| and|&L (T, A)| = [£2(T,A)).

Proof. Since(I",A) is k-regular,&2(T,A) = &2(F,A) @k = 0. Hence&?(T',A) is
a torsion group of order prime tehar(k). Thus, &2 (F,A) = &2(T,A) @zk* =0
sincek is algebraically closed. Hend€,A) is k*-regular. If codinjA) = rank[")
andc(I") = 0 then&(T",A) = 0. Thus, &L (T, A) = Tor} (£2(T",A),k*), and hence
|&L(T,A)| = |£2(T,A)|. The proof forE* is similar. O

The proofs of the following three propositions are idertioahe proofs of Propo-

sitions[2,T# 2.718, arld 2.119:
Proposition 2.28. There exists a natural exact sequence

0 — @Peced(r) nexo (Hi(e)(G)) = &5(TA) = EE(T,A) —
— Deced(r) Nero (G/1(8)G) — &&(T,A) = EG(T,A) — 0

wherepy g (G) =ker(I(e): G — G), and l(e): G — G is the multiplication by le).

Proposition 2.29. Let " and I’ be Ny-parameterized tropical curves, and assume
that [ is obtained fronT’ by subdivision of some of its edges. Pick an orientation
onT”’, and consider the induced orientation 6n Assume thaft’ satisfies an affine
constraint A. Therf satisfies AEZ(I'’,A) = EZ(",A), and the following sequence
is exact:

0+ €  Ne —Eg(,A) —EEM,A) =0,

veVv M\

where @ € E(I") is the edge subdivided by the vertex v. In particulaF, Hatisfies
@I)andr’ =T then@ycy ()i () Ne, = @veVZf ryNev: The same statement holds

true if E* is replaced by,
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Proposition 2.30. Let I and T be as in Propositiof_ 2.10. IF satisfies a sim-
ple constraint A therl” satisfies A, A is a simple constraint fby the natural map
EL(T,A) — EL(I,A) is an isomorphism, and there exists an exact sequence

0— E4(T,A) — E4(F,A) - NID-90 0,
The same statement holds trué&ffis replaced bys™.
2.3. Elliptic constraint.

Definition 2.31. Let I be a tropical curve of genus on&opical j-invariant ofl is
the minimal length of a cycle generating the first homologi/ of

LetT" be the tropical curve corresponding to an integral modé¢Cob), and as-
sume thag(l") = g(C) = 1. As any two integral models ¢€C, D) are dominated by a
third one, and the tropical curve corresponding to the datiig model is obtained
from I by the steps of Algorithi 211, it follows that the tropidainvariant ofl" is
independent of the model; hence depends onlZpand is independent @. The
following theorem (to the best of our knowledge) goes backdte:

Theorem 2.32. Let " be the tropical curve corresponding to an integral model of
(C,D). If g(C) =g(I') = 1 then the tropical j-invariant of is equal to—u(j(C)),
where |C) is the algebraic j-invariant of C.

Proof. Since the tropicaj-invariant of (C,D) depends only o€, we may assume
thatD consists of one point and = FgD. Assume for simplicity thathar(k) # 2.
Then, there exists a finite extensiBre I, and a scalak € L, such thaC is a plane
cubic given byy? = x(x— 1)(x— A). After replacing with Al if necessary we may
assumethat € Ry,. If u(A) = u(1—A)=0thenC has good reduction arg{l") = 0
which is a contradiction. After replaciny with /\771 if necessary we may assume
that 1— A is invertible inRy,. Thus,j(I") = 2u(A), since, locally, the singularity of
the total space is of the forddY = A2. Recall that thej-invariant ofC is given by

(0) = 2295548 Thus,j(1) = 20(A) = —u(j(C)) as required. O
We would like to define the groufigg (I, A, j) and&g (T, A, j) similarly toEg (I, A)
and&2(I",A). It turns out thatlEg (I, A, j) can be defined only if(e): G — G is

an isomorphism for any bounded edgwith non-trivial slope, e.9.G is a field of
characteristic prime tb(e) for all e. However&&(T', A, j) can be defined for an@.

Let ' be anNg-parameterized tropical curve of genus one satisfying &ineaf
constraintA, andey,...,& be the finite edges in the shortest cycle generating the
first homology ofl". Fix an orientation on the edges bffor which ey,... e is an
oriented cycle. This induces an isomorphislge: Z for all e € EP(I") with Ng # 0.

Let G be an abelian group, ardg;: (@vevf(,-) NG) ® (@eeEb(r) (Ne)G) — Gbe the

map given bydg(x,) =0, dg(Xe) = Xe if €= g for some 1< i <k, anddg(x) =0
otherwise.
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Notation6. Denote bys2(I", A, j) and&Z(T, A, j) the kernel and the cokernel of the
mappc x V6 x de

k
(2.7) ( ) Ne) @ ( b (Ne)G) — ( D NG) X (@(N/Li)e> xG.
vevi(r) ecEP(IN) ecEb(I") i=1

Claim2.33 There exists a natural exact sequence
0— &&(MAJ) = (A = G— EE(T,A, j) — E&(T,A) — 0.

Proof. This sequence is nothing but the long exact sequence of cabggassoci-
ated to 0— G[-1] — (214)— (28)— 0. O

Definition 2.34. Letl” be anNg-parameterized tropical curve of genus one satisfying
an affine constraim, andG be an abelian group. The pdir, A) is calledelliptically
G-regularif Ais a simple constraint fdf, and&2(I", A, j) = 0. Otherwise it is called
elliptically G-superabundant

It is not difficult to check thatl", A) is elliptically k-regular if and only if(", A) is
k-regular, and the locus of tropical curves satisfying thest@intA and having fixed
tropical j-invariant j(I") in the universal deformation space I6fhas codimension
codim(A) +1.

The proofs of the following two propositions and of the claane identical to the
proofs of Propositions 2.18, 2]19 and Cldim 2.27:

Proposition 2.35. Let " and I’ be Ny-parameterized tropical curves, and assume
thatl" is obtained fronT’ by subdivision of some of its edges. Pick an orientation on
", and consider the induced orientation BnAssume thaft’ satisfies an affine con-
straint A. TherT™ satisfies AgZ(I", A, j) = &2(T',A,j), and the following sequence
is exact:

0 P No—&TAj) =& Aj) =0,

veV i (m\vi(r)

where g € E(I) is the edge subdivided by the vertex v. In particulaF, Batisfies
ZT)andr’ =T then@ycy vt Ne, = @vevzf(r> Ne, -

Proposition 2.36. Let " andT be as in Propositiof 2.10. Assume tliasatisfies
a simple constraint A, and that§) = g(I') = 1. Then A is a simple constraint for
T, and the natural map&2(T, A, j) — &&(T,A j) and&E(T,A, j) — &&(T,A, j) are

isomorphisms.

Claim 2.37. Assume that the paifl,A) is elliptically k-regular. Then(l",A) is
elliptically k*-regular. If, in addition,c(I") = 0 and codinfA) + 1 = rank(I") then
|6 (CA D =162(TA D).

3. TROPICAL DEGENERATIONS AND TROPICAL REDUCTIONS

3.1. ' and two fans. Let ™ be anNg-parameterize@-tropical curve.
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Definition 3.1. We defineXr , to be the fan ifNg generated by the ray&, hr(v) for
ve V().
Let us now define another fan associated taConsider the séfr consisting of
the following cones ilNg & R:
(i) the zero cone,
(i) pv=Span_ {(hr(v),1)} forveV(r),
(ii)) pv=Span,, {(hr(v),0)} forve v=(r),
(V) 0e=Spa, {(hr(v),1), (hr(V'),1)} foree E\‘,’\,(I'),
(V) ge=Span, {(hr(v),1),(hr(V),0)} forec E, () withv e vir).
Note thatKr is not necessarily a fan, since the intersection of two difiécones in
Kr need not be a common face of these cones. However, aftevalibdithe cones
in Kr, one gets a fan. The following claim is obvious:

Claim 3.2 LetW be the set of rays consisting of the one-dimensional conéseof
form o Nt with o, T € Kr. Then there exists a unique fap, such that! =W, and
|Zr| = Ugek 0.

Proposition 3.3. There exists a uniquegNparameterized)-tropical curvel™™, ob-
tained froml” by subdivision of edges with non-trivial slopes, such Hyat Kre. In
particular, ¥r = .

Proof. To construct"" we apply steps 1 and 2 of Algorithm 2.1 to the grdpH_et

e € E,v(I') be an edge with a non-trivial slope, aod be the corresponding cone.
If ge € 21 then we leave this edge as is, otherwigds a union of two-dimensional
cones inZr. Letp,...,pr € It be the rays contained in the interior of, and
let (nk,1) € px be the corresponding vectors. Then we subdivide the edgéh r
new verticesry,...,v; € e, and sehr« (Vi) ;= n;. The proposition now follows from

Corollary(2.9. The uniquenessBY is obvious. O
Remark3.1 To any edgee € E(I'") with Ne # O corresponds a cona € Zﬁl,, to
any finite vertexv € V' (I'") corresponds a rag = R (hr(v),1) € =1, and to any

infinite vertexv € V(") with hr (v) # 0 corresponds a rgy =R (hr (v),0) € Z1;.
Each ray/cone corresponds to at least one vertex/edgeybos@seral vertices/edges
may correspond to the same ray/cone.

Note that there is a natural embeddyg, — 2}, and we will often identifyzf
with its image int.
Notation7. Letp € Z}" be aray, andr € Zﬁtr be a two-dimensional cone. We denote
by V,, (I'") the set of vertices € V(') that correspond to the rgy and byEq (™)
the set of edges corresponding to the coneFor p € zl%”,n we denote byn, the
primitive integral vector in the rap C Ng, and forp € Z}tr \ Z}" nr We denote by,
the unique rational vector such thab,, 1) € p.

Definition 3.4. Leto € 2, andp € zl%”,n C 2} be cones. We define the multiplic-
ities1(0) :=lcm{l(e)|e € Eq(M")} andl(p) := lcm{l(v)|v € V,(I'")}, wherel (e)
andl(v) are the multiplicities defined in Definitidn 2.6.
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3.2. Toric varieties assigned toNg-parameterizedQ-tropical curves. Pick a nat-
ural number € N. Let us equiR with the latticeaZ, andNg @& R with the lattice
N @ aZ, and letX(I",a) = X(I'",a) be the toric variety oveZ associated to the fan
>r = Zrv. The projectioNg © R — R induces a natural map from the fap to the
fan {0,R}. Hence the varietX(I",a) admits a natural projection th}, where the
subscripta indicates that the integral structure Bris given byaZ. Let nowX (I, n)
be the toric variety associated to the fan,. The following proposition is an easy
exercise in toric geometry:

Proposition 3.5.

(1) The morphism X, a) — Al is flat.

(2) LetK(A}) be the field of rational functions afl. Then the general fiber of
X(r',a) — Al is canonically isomorphic to ¥, 1) x speq. Sped (AY).

(3) The fiber oveD s reduced if and only if gne N for any rayp € 5t \ 3t .
Furthermore, if it is reduced then it is a union of irredu@btomponents
parameterized by the rayse =1\ Z}’n, the component corresponding o

is the closureD, of the orbit @, and

= = [ Og, fo=p1+p2€Zs;
Opy M Op, = { 0, otherwise.

(4) If ais divisible by &then X', a) is isomorphic to the normalization of the
base change },&) x ,1 A,

Remarl3.2. Note first, that by the construction there is a distinguistaidnal func-
tiont on X(I",a) lifting the coordinate oM. Recall thatO, is isomorphic to the
toric variety Xstars), and in our case (if the fiber over O is reduced) theycameon-
ically isomorphicthanks to the existence of If g € Z,Z then Oy = Oy, and if
o=pezt\ Z,l’n then Star(o) is the fan inNg consisting of the zero cone and
the following collection of rays: for eacp’ € Z,l such thatp + p’ € Z,2 the cone
Ryny if p' € Z,l’n and the con® , (ny —np) otherwise.

Notation8. Let I' be anNg-parameterized-tropical curve. Letl/F be a finite
field extension, antl, € Ry, be a uniformizer. Then there exists a uniqgue morphism
Spe®,, — Ag, for which the pullback of the coordinate @t} is the uniformizet..

We denoteXg, () := X(I',eL) Xay Spedy, X () := Xr, () xspew, Sped, and

X () :=Xg, () xspew, Sped. = X(I',N) xspee Sped..

3.3. Tropical degenerations andl-reductions. Let C be a smooth complete curve
overF, andf: C --» Ty.7 be arational map. For any poipte C, letnp be the order
of vanishing off* (x™) at p. Note thatn, = 0 if and only if f is defined af, hence
np = 0 for all but finitely many pointg.

Claim 3.6. Consider the toric varietX — Sped associated to the following fan in
Ng: the zero cone, and the collection of rags:= R,.np. Then the mag extends to
a morphismf : C — X.
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Proof. SinceX = UpSpe®|[Jp N M], it is sufficient to show that for anp, the fol-
lowing holds: the functiong*(x™) are regular ap for all me d, N M. Note that
me 0, M if and only if (np,m) > 0. Hencef*(x™) is regular atp by the definition
of np. O

Remarlk3.3. LetD C C be the indeterminacy locus éf Then, in terms of Notatidn 8,
X = XL(FE{DJ) X Sped. Sped'.

Assume thatC, D) is stable. The goal of this section is to construct a dististyed
integral model ofC,D, f,X). Setl :=T&, ;, and let™™ be theNg-parameterize€)-
tropical curve associated foin Propositiod 3.3. Then, by Propositibn.4, there ex-
ists a unique (up-to an isomorphism and a field extensioayat mode(CgL, Dr,)
of (C,D), whose associatedy-parameterize@-tropical curve ig™™".

Definition 3.7. We say thal. is sufficiently ramifiedor (C, D, f) if the stable model
of (C,D) is defined oveRy, and condition[(212) is satisfied for any bounded edge
ecEP(r'"), i.e.,e lg € N.

Remark3.4. Note that the modeC" is defined over any sufficiently ramified field
extensiorlL by Propositio 24.

Proposition 3.8. If LL is a sufficiently ramified extension f¢€, D, f) then the mor-
phism f : G, — X, extends to a stable maﬁmf: cgm — Xg, (™).

Proof. First, note that the mafy, extends to the generic points of the components of
the reduction. Indeed, letc V' (I'") be a finite vertexC, be the corresponding com-
ponent of the reduction, anglbe its generic point. Then it is sufficient to check that
thkaj(xm) is regular at; for all (m k) e M & %Z satisfying((m,k), (hrr(v),1)) > 0.

But suchthkf]L* (X™) is regular at by the definition ofhr«(v). Moreover, the image
of n belongs to the open affine subset defined by theorayR , (hrv(v),1).

Second, ifp € Cy is anon-special pointi.e., p is different frompe for all edges
with non-trivial slopes, therf;, extends t, sinc:ecg[L is normal andf, is defined in
a punctured neighborhood pf

Finally, it remains to prove thaf;, extends to the special points of the reduc-
tion. Let pe be the special point of the reduction corresponding to a dedredge
e € E,y. Then the con@y is spanned by the rays p’ where(e hrt(v),e.) € p and
(eLhre(V),e1) € p’ are primitive integral vectors (recall that the integralisture on
the second factor dilg ® R is given by the lattices Z). In order to prove thafy,
extends tqoe, it is sufficient to show thaﬁkfﬁ(xm) is regular atpe for all (m, k) sat-
isfying two inequalities((m, k), (hr(v),1)) > 0 and((m,k), (hr«(V'),1)) > 0. Note
that such functions are regular in a punctured neighborlodqs, hence regular in
codimension one. Sint@‘,{IL is normal atpe it follows that these functions are regular
at pe as well. The case of special points corresponding to the wmded edges is
similar, and we leave it to the reader. O
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Definition 3.9.

(1) If I =T&p ; thenl" is called theNy-parameterized)-tropical curve asso-
ciated to the quadrupléC, D, f,X) and is denoted byE b ¢

(2) The quadrupléCy ,Dr., fg ,Xr (I'")) is called thetropical degeneration
of (C,D, f,X) over a sufficiently ramified extensidn

(3) The reductionC, Dy, f', X, (I'")) of a tropical degeneration is called the
tropical reduction ofC, D, f, X).

Remark3.5.

(1) The tropical degeneration depends on the choice of tHeramizert;, € Ry,
while Clg, Dy, X (T''"), and the tropical curve associated@D, f, X) are in-
dependent off, and ofLL. Note, however, that" depends otty.. In fact, for
different choices of the uniformizef" differ by the action of a compatible
family of xv € Ty, depending only on the residue class of the ratio of the
uniformizers. Since each componentXf(I'") is a toric variety (see Re-
mark[3.2), and in particular contains a distinguished piirthe big orbit,
we see that the tropical reduction depends on the uniformize

(2) By Proposition 315 and Remdrk BX, (") is a union of irreducible compo-
nentsOp = Xstarp) Parameterized by the ragse =t \ 2t | = =1, \ zl%”.n'

(3) We will use the shorter notatio := Xg, (T'") and X" := X ("), when
no confusion is possible.

Notation9. For v € V,(I'"), denote byX, the open subvariety of the component
Op C X! defined by the subfan @&tar(p) consisting of the zero cone and of all rays
of the formR . (hrw (V) — hr (V) andR ; hr (V'), wherev' € VT (I, v/ e V(')

for whichE,y (I'") # 0 # Eyy (I'").

Remark3.6. It is easy to see theit,gIL (Cy) C Xy. Note that ifC, ~ P! then one can
describe the restriction d1‘,‘{[L to C, explicitly. Indeed, lety be a coordinate o@,,
y1,--.,Yk € Cy be the points of intersection & with other components of the reduc-
tionofC, eq,...,e € Eb(l'") be the corresponding bounded edggs;, . . ., ys be the
specializations of the points &f on the componer@,, andvs, ...,vs € V(I'") be the
corresponding vertices, i.g. € C,NC,, for 1 <i < kandy; is the specialization ddy,
fori > k. Then, since the pullback of" to C, is invertible away fromys,...,ys, and
has a zero of ordeg |~ (hr (vi) — hre (v), m) aty; for i < kand of ordehr (vi), m)
aty; fori >k, the restrictionf,‘{ﬂcV is given by

(SO (e, ) e =
XV(m) r]Ik:l(y_ yi)‘el ‘71(hrtr(vi>*hrtr(v>-,m) ﬂiS:k+1(y_ yi)(hrtr (Vi),m)

for some multiplicative characteg,: M — k*, which depends on the choice of the
coordinatey.

(3.1)

Definition 3.10. LetT” be anNg-parameterize@@-tropical curve(Cy, Dy) be a semi-
stable curve with marked points, arfg: C; — X (") be a morphism. Denote
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Xy (") by XI'. Then the quadrupléCy, Dy, fx, XI") is called ar-reductionif the
following conditions are satisfied:

(1) The set of irreducible components@f is {Cy }ycy 1 (rt),

(2) Dk = {Pe}ecE=(rv),

(3) Foranyec E*(I''"), pe € C, if and only if there existy’ € V*(I'"") such that

ec EW(F"),

(4) &NCy = {Pe}eck,, (rv) forall v,V € V(")

(5) fi(Cy) C X, forallveV,(r'), and

(6) (fk|C\,)*(?X\, = ZV’EV(F"),EGEV\/(I'") | (e) Pe forallve Vf (F").
If, in addition, all components dE; are rational then we say théE, Dy, fk,Xﬂg) is
aMumfordl -reduction

The last condition of the definition implies that if the retlan is Mumford, andy
is a coordinate on a componditC Cg, then the mag|c, is given by formulal(311).

Claim3.11 The tropical reduction ofC,D, f) is al', ¢-reduction. Furthermore, it
is Mumford if and only if the curv€ is Mumford.

Proof. Obvious. O

Next, we shall analyze the set of isomorphism classes of Muhif-reductions
for a givenNg-parameterize@-tropical curvel.

Proposition 3.12. Let " be an Ny-parameterized)-tropical curve satisfyind2.7)

for which qI") = 0. Assume tha2. (') = 1. Then the set of isomorphism classes
of Mumfordr-reductions has a natural structure of{. ("'")-torsor over the prod-

uct Myev (rsy ~Zoyal(v), Where.#o, denotes the moduli space of smooth genus zero
curves with n marked points over the fiéd

Proof. First, observe thal, ('") acts naturally on the set of MumfoFdreductions.
Indeed, let(Cy, Dy, f]k,xﬂf(’) be a Mumfordr -reduction. Fix a coordinate on each
component ofSx. Then the restrictiorfi|c, is given by a charactexy (cf. (3.1)),
and the collection of characteps = (xy) must satisfy the following compatibil-
ity conditions at anype € C,NCy: x\,x\;l restricted toNg is a given character,
which depends on the choice of the coordinate€pandC,. Thus, for any ele-
mentx® = (x2) € EL. ('"") the collectiony x° = (xvx0) defines another morphism
X°(fi): Cx — X', hence another Mumforid-reduction. Plainly, the action we have
constructed is independent of the choice of the coordinatesade, and it induces
an action on the isomorphism classes of Mumfbreductions. Note that the latter
action is transitive on the fibers of the natural projectiothie product of the coarse
moduli space§],cyf 1) -#ovaiv)» and@Byevy(r) (N, Jir = ker (EL. (M) — EL. (%)

is the kernel of this action. Hence, the induced actioff ") on the set of isomor-
phism classes of MumforG-reductions is free, and the set of isomorphism classes
of Mumford I'-reductions is a torsor over its image under the naturalegtmn to
Mvevt (r) Aovaiv) = Tvev' sy #ovalv)- Finally, observe that i£2. (M) = 1 then
E2.(I'") = 1 by Propositiof 2.18, and the projectionQcy t (rst) 4o val(v) IS surjec-
tive. O
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3.3.1. Tropical degenerations of toric constraintset L; C N, 1 <i <k, be sublat-
tices of arbitrary coranks greater than or equal to two, shabiN/L; is torsion free
for anyi. Let T, r C Tyr be the corresponding subto® = {O; ik:1 be a set of
Ty, p-orbits in Ty r, andA = Ao be the corresponding affine constraint. Consider an
Ng-parameterize@-tropical curve, and assume thétis a simple constraint fdr.
Thenhr(vi) € A for all 1 <i <k, wherey; is the unique finite vertex connected to
thei-th infinite vertex, which we denote b¥.

For any 1< i <k, pick a pointr; € O; such that the corresponding pointAnis
preciselyhr(v;), i.e., the following equality holdsv (x™(r;)) = (hr(vi),m) for all
me M. LetT, 1, = Tn C X := X () be theTy, 1.-equivariant morphism sending
le T, tor. Sety, := ]_[ik:lTLi,]L. Consider the maj, — Ty, C X, and let us
construct a natural integral modé, — Xg (I") of Y, < X,.. Letp; € =t be the ray
corresponding te;, andX, C Xr () be the open subvariety defined by Note that

v (ti(emhr(vi)’m)xm(ri)) =0 for allme M by the choice of;. Thus, the morphism

T, L — T is given byx™ — xi(m)t{® M)™ym for some charactexi: M — L*

satisfyingu o x; = 0. Hence the pullbacks of the regular functionsXgnbelong to
O(Ty R, ), and the mady, . — Ty extends to a morphisiy, g, — Xp C Xg, ().

SetYr, = HikleLi,RL- Thus, by the constructioNR, is an integral model oy, and
the morphisn¥g, — Xgr (') extendsyy, — X;; we denote it bygg, .

Definition 3.13. Morphismgg, : Yr, — Xg (") is called thetropical degeneration
of toric constraint O associated 10, and the reductiogy: Yy — Xi(I") is called the
reduction of the toric constraint O associatedto

The reduction of the toric constraint can be written ex[jiicis]_[ik:lTLi & — TN
where each map, x — Xp C X is given byx™ — Xi(m)x™, andy; is the composition
of x; followed by the residue maR, — k (recall thatv o x; = 0, hencey; (M) C Ry).

Definition 3.14. Let ' be anNg-parameterized-tropical curve,O be a toric con-
straint, andCy, Dy, fi, X{") be a -reduction.(Cy, Dy, fi., X[") is calledO-constrained
if and only if f(pi) € gk (Yk) for the firstk marked points, ..., px € Dy.

Remarl3.7. If Ois atoric constraint, an(C, D, f) satisfie<0, then the corresponding
I-reduction isO-constrained.

Proposition 3.15. In the above notation, if(€) = 0andE2, (I, A) = 1 then the set of
isomorphism classes of O-constrained Mumfonmductions has a natural structure
of aEg. (T, A)-torsor over ey st Aoyai)-

Proof. The proof is identical to the proof of Proposition 3.12. O

We conclude this section by explaining the motivation fa thtroduction of the
stacky tropical degenerations and reductions. In the ¢ed@ipproach to enumera-
tive problems, one counts algebraic curves satisfyingagedonstraints, e.g., toric
constraints, in terms of their tropical reductions; or, tdmatorially, in terms of the
correspondindlg-parameterize@-tropical curves. To do so, one must be able to re-
construct uniquely the algebraic curve from its tropicaluetion, or, equivalently, to
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reconstruct the integral model from the tropical reductibnother words, one must
solve the following deformation-theoretic problem: Givediagram of solid arrows,
extend it to a commutative square:

(3.2) D ———— - Ve,

One can compute the tangent and the obstruction spaces tetformation prob-
lem. In many cases, the deformation space has the expectethsibn, e.g., the
dimension is zero if one imposes the “correct” number of t@msts. However, usu-
ally, it is singular and obstructed! One of the reasons fis; ik the non-trivial torsion
in the normal sheaf of the mafp: C, — X{". In the next section we will equip trop-
ical degenerations with a natural stacky structure, whighmake the deformation
space smooth and unobstructed in many cases. | shall mahtonhe idea, that
by introducing an appropriate stacky structure, one carentiaé deformation space
smooth and unobstructed | learned from Dan Abramovich.

4. TORIC STACKS AND STACKY TROPICAL DEGENERATIONS

In 2005, Borisov, Chen, and Smith introduced toric staclfs [Pheir construc-
tion gives rise to two kinds of stacks: smooth Deligne-Murdfstacks, if the fan
is simplicial, and Artin stacks with infinite stabilizershetrwise. Below we intro-
duce singular Deligne-Mumford stacks, or, more genergdiye Artin stacks with
finite stabilizers. Our construction generalizes Bori€hen-Smith’s construction,
and produces the kind of toric stacks we need for the correpuce theorems.

4.1. Toric stacks.

Definition 4.1. Let = be a fan inNg. Toric stacky datds a collection’ of sub-
latticesN; € Ny = NN Sparfog) of maximal possible rank for aly € %, satisfying
the following compatibility conditiorN; N Sparfa N 1) = N; N Sparfo N 1) for all
o,Te2.

For given toric stacky dat®’, let us construct a tame Artin stacky/: Let g €
be a cone, and lell; C Ny be the corresponding sublattice. Choose a sublattice
N’ c N of full rank, such thalN; = N’ N Spar{g). Then the sequences® N’ —
N—N/N —0and 0—-M — M — M’/M — 0 are exact, wherl’ = Homg (N, Z)
is the dual lattice, antll /N’ andM’ /M are torsion groups. Thus,

1-Gun—Tw—=>Tn—1

is an exact sequence of algebraic groups, wiigey — Sped. is a finite group-
scheme.
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Consider the affine toric varietio§ = Spe&[d NM] and X/, = Spe&[d NM’].
Then the natural maX;, — X, is invariant under the action @& y. Itis well known
thatX, is the geometric quotient o€} by the action oGy . Thus, X, is the coarse
moduli space of the quotient stapk; /Gy ).

Let N” C N be another sublattice of full rank for whidk’ N Sparfo) = N. If
N” C N’ then there is a natural mafj, — X/, andX}; is the geometric quotient of
Xg by the action of the grou@y . SinceNy; = N'NSparfo) = N" N Spar{o), it
follows thatGyr v acts freely orXj. HenceX;, = [X5 /Gy n], and the natural map
[X5/Gnrn] — [X5/Gw ) is an isomorphism, which, by [1, Lemma 4.2.3], has no
non-trivial 2-automorphisms. We constructed a compasigitem of isomorphisms.
Note that the system of sublatticesC N of full rank for whichN/, = N’ N Spar{o),
is partially ordered by embeddings, and any two elementslanginated by a third
one. Thus, we can define the stagk to be[X/ /Gy n]; and it is well defined up-to
unique isomorphism. '

Let T be a face ofo € Z, and letN’ C N be a sublattice of full rank such that
N = N'nSpar{o), and hencd\’ " Spar{t) = N;. Then there is a natural isomor-
phismagr: Zo xx, Xr — Z7, which, again, has no non-trivial 2-automorphisms.
If 0,p € Z then we defin@gp: Zo xx, Xt = Zp Xxo Xr, wheret = o nNp, to be
the compositiom’;} o dgr. Plainly, the collectioq agp } satisfies the cocycle condi-
tion, and the 2-cocycle condition is empty by the constaorctiThus, we can glue the
stacksZ, together, and we obtain the desired statk.

Note thatZss is a normal separated tame Artin stack with coarse modutiesga
Itis clear from the construction that torli§ acts onZss, and there is a one-to-one
order reversing correspondence between the orbity @hd the cones € 2.

Claim4.2. Orbit ©4 is isomorphic tadOs x BGy, whereGgs = Ker(TN(/7 — TNy )-

Proof. First, note that there exists a sublattideC N such thatN, = N’ N Spar{o)
andN/N’ = Ny /NJ. To construct such a lattice we use the fact tHatC N splits,
hence there existil} C N such thatN = Ny ® N3. ThusN’ = Nj + N2 C N is

the desired sublattice. Singe" "M’ = 0 NM andGy n = G acts trivially on
Spet[o+ NM'] it follows that®y = [Spe&[o NM]/Gg| ~ Oy x %G . O

Corollary 4.3. 23 (RL) := 25 Xspee Spedy, is a Deligne-Mumford stack if and
only if chank) does not dividéNy /N | for all o € .

Definition 4.4. Let 2" be a normal separated Deligne-Mumford stack,éwd C 2

be a divisor. A rational differential forrm on 2 is called dog-differential formif it

is regular on the complement 8f2", and has at worst simple poles alogg’, i.e.,

if k: U — 2" is an étale covering and = k~(9.2") thenk*w has at worst simple
pole alongD. Log-differential forms form a sheaf oft” denoted by 4 (Iog(ﬁ%‘)).

If 2" = 25 (R.) thenQ - (log(d.2")) denotes the sheaf of log-differential forms on
2 with respectt@ 2" = Upex1©p X speq, SPERL.

Claim4.5. Let¥’ be toric stacky data an@s (Ry,) be the corresponding toric stack.
Assume that?s(R.) is a Deligne-Mumford stack. The@ ,_, ) (log(d 25 (Rv)))
is canonically isomorphic tM ®z Oy, r,)-
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Proof. We claim that the map: m® f — i—’&nf is an isomorphism. It is sufficient to
check this locally. Letr € = be a cone, and I&' C N be a sublattice of maximal rank
such thalN; = N'NnSpar{o) and|N/N’| is not divisible bychar(k). Then the natural
mapk : X;(Ry,) = Sped [0 NM'| = 25(RL) C Z%(Ry) is an étale covering. Note
that the natural embeddilgd C M’ induces an isomorphisi @z R, — M’ @7 RL.
Thus,

K (M2 00, r)) =Mz Oy r,) = M @2 Oy s, ), and

K*Qa,(ry) (109(0 25 (RL))) = Qs ) (109(0X5(RL))) =M ®z Oxy g, )
Hencex*(1) is an isomorphism. O

4.2. Stacky tropical degenerations and reductions.Let (C,D, f,X) be as in Def-
inition 3.9, L be a sufficiently ramified extension, ariég ,Cg ,Dr_, X5 ) be the
corresponding tropical degeneration. The goal of this ectisn is to introduce nat-
ural stacky structures dgf;, andXg .

Let us first, construct the stacky’ with coarse moduli spackf . Recall that
for " =Tg ¢, we constructed a falrv, and defined = X (", eL) Xy SPe®,
whereX(I'" ey ) is the toric variety assigned to the fapw in (N ©e.Z)g. Thus, to
introduce the stacky structure mﬁ{L, it is sufficient to specify stacky data &,
i.e., a compatible collection of sublattic§ C (N¢ e Z)q for 0 € Zrv.

Let p € =1 be aray. Ifp ¢ Z}"ﬂ then setN), := (N @ e.Z),, otherwise set
N, :=Z- (I(p)np,0) (cf. Definition[3.4 and Notatiofl 7).

Let nowo € Zﬁl, be a two-dimensional cone, apg, p» be the facets of. If one
of them belongs t‘i%tr.n then we seN := N,gl + N,’_.,Z. Otherwise g is generated by

vectors(ny,1) € o, i =1,2. Letn be the primitive integral vector in the direction of
Np, —Np,. We defineN;; C (N@ e, Z)s to be the sublattice generated @®y,n,,,€r.)
and(I(o)n,0) (cf. Definition[3.4). Recall that the integral lengthefn,, —epn,, is
divisible byl (e) for all e € E¢(I'") (cf. Remark2.B). Thus, it is divisible bfo).
HenceN/, Np; = N;)i. We constructed stacky dafa,, hence a toric stac&”z/rtr, and

we define2g, (M) := %zfr" Xak Spe®;,. As before, we shall use shorter notation
2R = 2Zr, (") if no confusion is possible.

Remarkd.1 The stacky structure Qﬁ”,% is concentrated over the intersections of the

irreducible components of the reductiXff, and along the closures of the boundary
divisors of the generic fibeX[". It follows from Corollary[4.8 and Corollafy 2.8 that
%FEL is Deligne-Mumford if and only if

(4.1) char(k) 1 |'| [(e).
ecE (ISt Ng£0

Conventioril. From now on we assume thzs’t‘f,%lrL is Deligne-Mumford.
Remark4.2. Note that if we repeat the construction above, butdar Z}" n chose

the sublattice generated ,,0) rather thatl(p)n,,0), then we will obtain a stack
%%{L/ with coarse moduli spa%RUIL, and a natural maﬂ”,%li — %%{L/ compatible with
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the projections t()(Rr Furthermore, the stacky structure @rg is concentrated on
the intersections of the irreducible components of the c:Bdu of XRr[L — Spedr,
only, and 2%’ is obtained from2g’ " by extracting the roots of ordéfp) alongOp
forallp € Z,—n ey ('%RJL)ID)?’ whereD = UO, andr = (I(p)) (see[5] for
the definition and the basrc properties of the root stacks).

Next, we define the stacfl&’FEEL with coarse moduli spao@"L, and a morphism
¢ 6n, — 2w lifting the morphismfg : Cg% — X,t{L/. We do it in two steps:
First, we consider the twisted stable mgi§ : 4§ — 2% extending the stable map
fL:CL— Xy C %Rtg (seel[1] for the definition and the properties of the twisted s
ble maps). Note that the coarse moduli spacﬁ@éf is CEIL, and the stacky structure
on ‘5,%; is concentrated at the nodes of the reductio€®f. Second, observe that
(yg )*_ = Yvev,rt | (V)ay for anyp € Zr" Thus, by [5, Theorem 3.3.6], there
exists a stacksy , and a unique representable morphigfh : 65 — 2% lifting
rp , such that the coarse moduli spaceﬁée'[fL is C"IL More explrcrtely,%” R Is the

root stack( RIL)D r, forthe divisomy =5 ;1 Vo) O and the vector of multi-

plicities 1 = (1(p)/I (v ))pezﬁ"n,vev (rry- I fact this is theminimalstacky structure

onCE such that the magg lifts to a mapgl : 45 — 23 . Moreover, we can
Lo, L. L L L TURL
describe it explicitly at each node and each marked point.

Notation10. Let e € Eq(I'™") be an edge, and € V,(I'") be a vertex. We denote
Ge:= Spe&|l(e)Z/1(0)Z] andG, := Spe&|[l (V)Z/1(p)Z)].

Leto e Zrtr be a conee € E4(I''") be an edge, angk be the corresponding node.
Then, étale locally ape, the schem€f; is given byxy = tf”e‘ =t/*"!. Recall that
I(e)(re+ 1) is the integral length oé, (hr+(v) — hre (V). Hence, Zariski locally at
f¥ (pe), X is given byXY = (&), Furthermore, locally2 ¥ = [X4 /Gol,
where Xg is given by XY’ = ()<re+1)/' ), andG, = Sped|Z/|(0)Z] acts by
E (XY t) — (EX’,E*lY’,t]L). Consider the affine curv& given by the equa-
tionxy = '@tV ThenG, <G, acts diagonally 064 x C', where the action
onCis givenbyé : (X,y,t.) — (EX, &Yy tr), and‘ftr X 2R Xg ~(Gg xC')/Ge
etale locally. Finallyzg = Gg\(Gg xC')/Ge= [C’/Ge] In partrcular ifl (o) =1(e)

then the stacky structure pt is trivial. Similarly, one describes the stacky structure
at the marked points. Indeed,gfe Zrtr andv € V,(I'") then, étale locally aty,

the curveCE,{L is isomorphic toétl Consrderthe maf’ = A% L AL , C CRIL given
by xi— X P/, Thensl is IocaIIy isomorphic tdC’'/Gy], WhereGV acts naturally
onC'.

Definition 4.6.

(1) The quadruplé R]L’DRJL’(I)RIL’ ) is called thestacky tropical degenera-
tion of (C,D, f,X) over a suffrcrently ramified extensidn
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2) Thereductiof 6, Dy, ¢, 2,") of (¢¥ ,Dr, , 0% , 22 )is called thestacky
k k> “k Ry LY PR YRy,
tropical reductionof (C, D, f, X).

Recall that in Subsectidn 3.3.1 we constructed tropicagéderations of toric con-
straintsYr, — Xgr . Note that by the construction ofr,_and ofYr, — Xg, , the latter
morphism lifts to the mapr, — 2R, , which has no non-trivial 2-automorphisms by
[1, Lemma 4.2.3].

Definition 4.7. Let " be anNg-parameterized-tropical curve ¢y : ¢, — 2, be
a representable morphism of Deligne-Mumford stadks,C, — X" be the corre-
sponding morphism between their coarse moduli spacesDard Cy be a divisor.
The quadruplé®i, Dy, ¢, %k“) is called astackyl -reductionif the following holds:

(1) 2. is the reduction of the stack ',
(2) (Cy,Dy, i, X[") is al-reduction, and
(3) ¢ (%) is transversal t@d .2y for all ve V().

If, in addition, all components @ are rational then we say thg#i, Dy, ¢y, %k”) is
aMumford stacky -reduction

Claim 4.8 The quadruplé;’,Dy, ¢, 2,) is a stackyl &, ;-reduction. Further-
more, it is Mumford if and only if the curv€ is Mumford.

Proof. Obvious. O

Proposition 4.9. Let ' be an N-parameterized)-tropical curve satisfying2.1)
and having ¢) = 0. Let(Cy, Dy, fi, X{") be ar-reduction. Assume tha@2. (I') = 1.
Then the number of isomorphism classes of stdl‘el@rductions(%k,Dk,%,%ﬁg’)
with coarse moduli isomorphic t&;, Dy, fi, X\') is equal tO[eceb(rsy I(e).

Proof. The group of automorphisnmut of the IM-reduction(Cy, Dy, fk,Xﬂf{) is iso-
morphic to ﬂvevf(r") Hi@e,)» Wheree, denotes any of the two edges containing
2

Given a stackyl -reduction (¢, Dy, k., 2;") with coarse moduliCy, Dy, fi,X["),
one obtains a family of map®, — £, lifting the mapsC, — X, for any rayp
and any vertex € V,. Furthermore, this family satisfies compatibility conalits
on the intersection®, N ¢,. Vice versa, a family of map%, — 2, lifting the
mapsC, — X, with identifications on the intersections defines a steclgduction
(¢, Dy, ¢i, 2,") with coarse modul{Cy, Dy, fi,X["). For anyp, and anyv € V,,
the mapC, — X, can be lifted td6, — %, and the lifting is unique sinc#, and
Z, are generically schemes, ait], is separated. Thus, the set of isomorphism
classes of stacky-reductions(%j, D, ¢y, %r) with coarse moduli isomorphic to
(Cx, Dk, fk,Xﬂf{) is in one-to-one correspondence with the product of theraate
phism groups of the mapgse = ¢, N6y — Zp N 2y = Zg Modulo the action
of the groupAut. Finally, observe thafut(¢e — 2q,) = Go./Ge = L(¢ and the

groupAut = ﬂvevzf(rtr> Hi(e,) ACtS ONMecp(rtry AU(Ge — 2o ) = [Mecen(rty Hi(e) Via
the diagonal embedding, i.e., if we fix an orientation on tbermed edges df'f
then&y: Ze — &Y ¢, wheree(e,v) = —1 if vis the initial point ofv, £(e,v) = 1
if vis the target oV, ande(e,v) = 0 otherwise. Hence, the number of isomorphism
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classes of stacky-reductions(j, D, ¢x, ;") with coarse moduli isomorphic to

(Ci, Dy, fie, XIN) is

( |<e>)+( M I(e»)— M e
ecEP(rr) vev, (1t ecED(rsY

Proposition 4.10. Let " be an N-parameterized)-tropical curve satisfyind2.1)

for which ") = 0. Let O be a toric constraint, and A be the corresponding affine
constraint. Assume thdt satisfies A, and that A is a simple constraint far Let
(Cx, Dy, fi, XI") be an O-constrained-reduction. IfEHZ@(I',A) = 1 then the number

of isomorphism classes of O-constrained stackgductions(%y, Dy, ¢, %ﬂgf) with

the coarse moduli isomorphic €, Dy, fi., X{") is equal tOTecen(rsy [(e).

O

Proof. Identical to the proof of the previous proposition. O

Remark4.3. Fix an orientation of the bounded edgesIdt. It induces an orien-
tation on the bounded edges Bbf Then, under the assumptions of the proposi-
tions, the set of isomorphism classes of (re§pconstrained) Mumford stackly-
reductions has a natural structure ofa(I"s")-torsor (resp.&L ('St A)-torsor) over
Mvevt (rsy “#oyaiv)- The action of &L (Mt A) on the set ofO-constrained stacky

tropical reductions is defined similarly to the actionE}f. (!, A) on the set ofO-
constrained tropical reductions (cf. Propositibns B.1@[AA5%). Indeed, given an
O-constrained stacky tropical reduction with the corregfiog O-constrained trop-
ical reduction(Cy, Dy, fk7xﬂf{r), pick a coordinate on each componentGf Then
the restriction offy|c, is given by a charactex, (cf. (3.1)), and the set of charac-
ters must satisfy the following compatibility conditiortsamy pe € C,NCy/, €€ E,y:
XuXyIng = XvXglng Wherex) and x are two fixed characters dependiogly on
the choice of the coordinates @y andC,. Assume thav is the initial point of
e. Theng@, determines, and is determined by the choice®E (Ne)i+ satisfying

0
Xel® — XX Now we can describe the action explicitly: For

E=[(&) (e AC| D Ne|a| B New

vevf(r) ecEb(I)

we defineE(‘fk,Dk,cpk,%lgr) to be the stacky reduction defined by the collection
((Eva)ver , (EeXe)eeEb). Plainly, this defines an action on the set@tonstrained
stacky tropical reductions, and the action is independheacchoices we made. Fur-
thermore, it is compatible with the action Bf. ("', A) on the set oD-constrained
tropical reductions.

4.2.1. Tropical degenerations of elliptic constrainAssume thaC and the corre-
sponding tropical curve have genus one. We have seen in Sidrg2.3 that in this
caseu(j(C)) = —j(I') < 0. LetL be a sufficiently ramified extension, and fix a uni-

formizerty, € Ry.. Then the residue class tﬂe‘L“(j(C))j(C) is a well defined element
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of k*, which we denote by (C). The goal of this subsection is to describe the set
of isomorphism classes of stacky tropical reductions @fie¢s (C,D, f) satisfying

an affine constraint and having giver{j(C)) and jx(C). We start with necessary
preparations.

Let (Cg, ,Dr, ) be a regular semi-stable model(@,D). Setl" := F%,DRIL. Let
Vi,Vo,...,Vk be the vertices of the cycle of minimal length generatingftirst ho-
mology of [/, and set 1 :=vi. Letg € Ey,,, i = 1,...,k be the edges of the
cycle, and seky := &. Then the reduction (It:,g[L contains the cycle of projective
linesUX_,C,,. For any 1< i < k, pick a coordinatg; onCy,, such that; vanishes at

Pe s and has a pole aty ;.
Consider the infinitesimal deformation of the reductién= C{QIL X spe®,, Spedk

to Spe®y,/(t?) defined bnd/aL/(tZ) = Ck_Xspew, SPe®y/(t?). Then there ex-

L
ists an exact sequence-9 ﬁ% — O , i/?m /(1)
Ry /() L

SpetR]L/(tf). Forany 1<i <Kk, letz € ﬁ%,pq andwi 1 € ﬁ%,pq be the liftings of
Vi andyi—i1 respectively, such that vanishes o€, , andwi,, vanishes oi€,,. Pick

i+1
arbitrary liftings ofz andwi1 to O , and denote them also lzyandw; 1.
RL/(t?)

2) is given byzw; 1 =t f; for somef; € ﬁ%pq.

— ﬁqﬁ — 0, sinceC is flat over

»Pe; !

/
Then, locally atpg,, CRM

Four remarks are in place here: fir§t,p ) are independent of the choice of the
liftings we made; secongj*_; fi(pe ) is independent of the choice wf since if{y}
is another set of coordinates with the same propertiesgthen;y; for some non-zero
constantshi € k, / = fix*=, and[1i_y fi(ps) = M1 f/ (Pe); third, [114 fi(pg) # O
sinceC’RIL is regular; finally, ifC’RIL was not regular, but would have a singularity
of type A, at ps, and would be given locally bgwi 1 =t/ "' modt/i "2, then
M., fi(pg) would give rise to the same value. To see this, one must cletkie
value of the product does not change when blowingpve leave the details to the
reader.

; _ 1
Proof. Sett :=t;,. Assume for simplicity thathar(k) # 2. Then, without loss of
generality, we may assume ti@is given byy? = X(X — 1)(X — A), whereA € L is
such thatv(A) > O (cf. Subsectiof213). Set.= X — "7 Then the equation can be
rewritten as@+y2 = A 1 (x+4)(x@ — 47). We will assume that u(A) > 1 since
the casee,u(A) = 1 is easier and can be done along the same lines.

The reduction of the integral model @f defined by the same equation has one
nodal component, and the singularity of the total space yé Ay y(x)-1. TO
resolve the singularity of the total space, we will proceéitha sequence & U (A)

blow ups with centers given by the ided@sy,t), (¥,7.t),..., (W, W,t .

Each blow up increases the number of the components of thuetied by two, but
the last blow up, which adds only one component. Thus2e, u(A).
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Letvy,...,Vki1;€0,--.,6 be as above. Without loss of generality, we may assume
thatv; corresponds to the strict transform of the component in thggnal reduction.
Thenvyii andvyg y(x)+1-i correspond to the strict transforms of the components of
the exceptional divisor of theth blow up if 0< i < eLu(A), andvy e y(x) COr-
responds to the exceptional divisor of the last blow up. TUmﬁon§ has values

++/—1 at the nodege, andpe,; and without loss of generality, we may assume that
the value ape, is —v/—1.

Sety; := i*\/cz Vi t,, and e y(r)+1-i i= ﬂ for0<i<e,u(A), and
Yiteo(h) ‘= 3 2 Fy) One can check by a stralghtforward calculation that first,
for anyi, y; is a coordinate o€, satisfying the properties required above; and sec-

ond, if a denotes the residue classxtf-¢-") in the fieldk, thenfy(pe,) = @

f2eJLU (peZe[Lu ): \/2?’ feJLU( >(peeTLu(A)) = \2/:’ feJLU +1(peeﬂ‘u()\)+1) = 702\57’

andfi(pg) = 1for| #12e,0(A),eLu(A),eLu(A)+ 1. Thus,
28 1

S B Wgpg)

N 2
sincej(C) = ZSW. O

Let now (CRL,DRIL, fR[L,XR ) and (‘f“ ,DRL,¢RL, ) be the tropical and the
stacky tropical degenerations @, D, f,x) Fix a coordmate on each component of
the reduction ofCg . Recall that the restriction ofi, to C, is given by [3.1). Pick
v,V V' andec E,y with Ne #0. TherCg_ has singularity of typéy |1 atpe, and
by (1), locally atpe, the following equality holds 0Br, x spes, SP¢RyL/t2-T1):

k

v _ ‘ Sv ,
tEL(hF(V)-,m)XV(m) I—!(yv_yi)\a\ Y(hr (vi)—hr (v),m) L—l (yv_yi)(hr<v|),m> —
i= i=ky+1

ky S
V), -1 N — /
ey (m) | l(yv'—x/i)‘e“ (B ()=t (4).m)- (v —y) " eom
i= =

1
Without loss of generality we may assume that=V, v; = v, y, vanishes ape,
yv has a pole ape, and, in a neighborhood qfe, Cr, x spec, SPe¢Ry/t= ) is
given by yV = at™® modt®®™. Then, it follows from the equation above that

al® — ;M;v € (Ne)ir = k* where

k

v Sv
0 — _ v \l&l7 (e () —hr (v),m) —v: ) (hr (vi),m)
Xo (M) = [7(=w) (=i
om =] 1.0

andx\?,(m) = 1. Recall that the stacky tropical model determines an ai¢mesatis-
fying xo® = ;3’—);‘(’; (cf. Remark4.B). By the construction, this element is mugtiut
v

a. above! Henceji(C) is completely determined by the stacky tropical reduction,
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and can be computed @k, go Xa * for an appropriate choice of coordinates on the
components of the reduction. This leads to the followingrdigdin:

Definition 4.12. Let I = I'" be anNg-parameterize@-tropical curve of genus one,
V1, Vo,...,Vk, Vki-1 = V1 be the vertices of the cycle of minimal length generating the
first homology of", ande € Ey, v, i = 1,...,k, be the edges of the cycle. Assume
thatNg # O for all i, and setey := €. Let (6, Dy, ¢i, 2,") be a Mumford stacky
tropicall -reduction. For any X i <Kk, pick a coordinatg; on %, such that; van-
ishes afpg and has a pole gty _,. Then(%j, Dy, ¢k, 2;") defines, and is completely
determined by the following datd{Xv)yey . (Xe)ecen) (cf. RemarK4.B). We define

K
jic (%, Dy, @i, 23) 1= ﬂXa-
i—

Note thatjy (¢, Dk, @, %k”) is well defined since if we choose different coordi-
natesy! = Aiyi then[TE; x4 = Mia(xgXe) = M1 Xe-

Proposition 4.13. Letl" be an Ny-parameterized)-tropical curve of genus one with
c(I") = 0 for which (2.1) is satisfied. Let O be a toric constraint, and A be the cor-
responding affine constraint. Assume thaatisfies A, and A is a simple constraint
for . If £2(T',A, j) = 1 then the set of isomorphism classes of O-constrained Mum-
ford stackyl -reductions with fixedj(4i, Dk, ¢k, 2;") has a natural structure of a
éoﬂél* (rst7 A, j)-tOI’SOI’ Over[]yeyf (rst) ///O,val(v)-

Proof. If &2 (T",A, j) = 1 then&?2 (I, A) = 1 andE2. (', A) = 1. Thus, the set of iso-
morphism classes @-constrained Mumford stacKy-reductions has a natural struc-
ture of aéakl* (TS, A)-torsor over, oy f (st Ao yalv)- Furthermore, by the construction
of the action (cf. Remark4.3); (& (%, Dk, ¢x. 2y")) = j(%k, Dk, ¢x, 23") if and
only if & € §L(TSLA, j) € &L (TSLA). This implies the proposition. O

5. THE DEFORMATION THEORY.

Conventior2. In this section all sheaves are considered as elements igéderat-
egories of sheaves, and all functors are derived functarpaiticular, we use short
notation such a$*, f., andsZominstead oL f*, Rf., andZ.s#omrespectively. All
stacks in this section are Deligne-Mumford stacks, i.e. ssime thaf{(4]11) holds.

The reference for this section is the book of lllusie [8], avelshall use lllusie’s
notation in this section. In particular, we use notatigny for the cotangent complex
associated to a morphish— Y. The deformation problem we are going to deal with
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is the following:

(5.1) D --------- > Y,
7
DkC/ - I v /
k [ «
|
|
1% % ¢/
%R]L 777777 - — > %RL
7
(g]k(/ ¢k %r

In other words, we are given a stadkyreduction(4j, Dy, ¢x, 2;") satisfying a con-
straintY, and we want to complete the corresponding diagram of sofahe to a
commutative diagram of dotted arrows; which we shall do obyeorder.

Recall that by[[8, p. 138], for a pair of morphisms

X—Y——Z
there exists a distinguished triangle of cotangent congslex
(5.2) Ly /v

~

f*Ly/Z _ Lx/z

Notation11. For a scheme (stack) over Spek, Lz denotes the cotangent complex

Lz/sped-

Claim5.1 LetZ be a stack ovek, andp € Z be a smooth schematiepoint. Then

Lp/z = TgZ[1].

Proof. The statement is local, thus we may assumeZhata smooth scheme. Con-

sider triangle[(512) fop — Z — p. Sincel/p =0andLz,, = Qz is a vector bundle,

we havel /7 = (Lz/p®e, Op) [1] = T Z[1]. O
Consider distinguished trianglds (b.2) associated toribtes ¢, — 2" — p,

Ye = 2.7 — p, DK — % — 2, andDE — Y, — 2,

Ly /LYk |25
fiL ™ L L ™ L
kboy ———— Ly Gl Vi
LDE/%’k
HES
L,/ 2 Lok

Lok v,
/ \

sk
Jieby, 2y Lok
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Since anyg € Dﬁ; is a smooth schematic point #i., 2;", andY, the second pair of
distinguished triangles can be rewritten as follows duel#ind5.1:

T %k[1
/ DEE ]k[ ]
il 20 T2 4]
(5.3) /TS]EY]]([]-] _
Jiby, oy TD*]E 2,1

whereT}, Z = @quﬂi TqZforZ =Y, 2,7, .
k
Let us now return to deformation problein (5.1). By [8, Théue 2.1.7], the
deformation problem defined by the top square of](5.1) is atrabted, and the set
of small extensions is a torsor under the natural actionefjioup

Extl(LDﬂi e Oor) = TV == €D T
qeDk
By the same theorem, the obstructions to the deformatidsli@nodefined by the bot-
tom square of[(5]1) belong ﬁbth(chk/%gr, U, ), while the set of small extensions

is either empty or forms a torsor under the action of the gﬂE)mlé(L%k/%ﬁ:r, Og,).

Consider the following commutative diagram of exact segesrassigned to distin-
guished triangle$ (5.3):

EXC(izLe /20 Opk)

To i
di
TDHEY]k( d ik TDHE ‘%?ktr - Extl(jﬂtLYk/ﬁl]:r’ ﬁDukg)

T

Ext!(Ly, /v, O,) L Extt(ifLy, 127 O
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and assume that we are given a pair of small extensions ofofhard the bot-
tom squares of(5l1) defined K§§,{) € TDﬂng]k & Extl(L%k/%ktr, Ug,). Then, by[[8,
Proposition 2.2.4], one can extend it to a small extensiordédormation problem
(5.J) if and only ifh(&) =i;:({), and the set of small extensions for giveéfn {)

is a torsor under the action of the group (ddg) = ]Exto(iﬂ*(chk/%gr,ﬁDﬁ). Note
that if d ji (TDB‘f(Yk) ﬂdik(TDD{fk) = 0 thenh is an embedding, and if, in addition,
Exto(iﬂzL%k/%ﬁr, ﬁDui) = 0 then the set of small extensions for deformation problem
(5.1) is either empty or forms a torsor under the action okéeel of the map

IEth (IE;L%IK/%E?’ ﬁDﬂE)
h(TDuiY”‘)
We can summarize the discussion above in the following [sitipo:
Proposition 5.2. Assume that qgj(TD]EYk) mdik(TDﬁ(fk) =0, and the map diis
injective. Then the space of the first order deformationdiéndeformation problem

G.)is given by Det(5.1)= ker(a), and the obstruction space @l)fits naturally
into the exact sequende— cokefa) — Ob(5.d) — EXtZ(L%k/%ﬁ:r,ﬁg}k) — 0. In
particular, if o is surjective ancEth(L%;k J 250 U«,) = 0 then the deformation space

De f(5.J)is smooth and unobstructed. If, in additianjs an isomorphism then there
exists a unigue solution to the deformation probi@nd).

(5.4) a: Extl(Ly, s 05,) =

5.1. Semi-simple computations.
, , t
Let {%p}pez%n\z%% be the set of irreducible components.8f". Then eachZ),

is a toric stack with coarse moduli spa®g, whose orbit decomposition is given by
Xp = Hpcoezﬁtr 251 TNk Furthermore,2,N 2y = 25 if p+p’' =0 € 22,
and Zp, N Z, = 0 otherwise. Set, = i X gt Zp andéy 1= 6x X i Zo, and
denote by,, I the natural embeddings &, and %, into ;. Thené, N6y = 65
ifp+p' =0¢ Zﬁ" and%, N6, = 0 otherwise. We denot]t_a[pcaez?tr ZobyoZ,,
HPCUEZIZ-H Co by d‘ﬁp, andq),‘{L |<gp by ¢p.

Lemma5.3. Let Zp, Z5, €p, and%, be as above. Then
(1) There exists a distinguished triangle

®0:p+P’ %Oﬁlﬁ%k (L%/k/%ﬁ:" (IU)*ﬁ‘ﬁa)

]

%on’[@g]‘k (L%/k/%ﬁ:r? ﬁ(f}k) @p %Ornﬁ%’k (L%’k/%ﬁ:r’ (’P)*@ﬁp)

where in the upper sump,p’ € =3, \ zl%",n and o € 22, and in the lower
sump € Z.Iltr \ Z}t,ﬂ. Ny .
(2) There exists a natural quasi-isomorphism
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(3) There exists a natural quasi-isomorphism
ji”orrmk (L%ﬁg/%r, (16)+Og,) — (lo)*%oWWO (L) 24 Ot )-

Proof. By applying the derived funct(z%ﬂorn@]k (L‘fk/%ﬂé” -) to the distinguished tri-
angle

Do—p+p(10)+O%,

T

Og, Dp(1p)« O,

one proves the first part of the lemma.

The proofs of the second and the third parts of the lemma armdasj thus we
prove the second statement, and leave the third statemtna teader. We shall first,
prove that_ ther_e is a natural quasi-isomorphigmgk/%ugr — L, 2, Consider the
commutative diagram

%y _r %

|

%p —_— c%]i(’[l’
It induces the natural malgL%ﬁg/%ug =Ly, 2, which is quasi-isomorphism if (a)

O Htr
Torg i (O9,,04,)=0forq>0and (b)L%b/%ﬁw_tr 2, =0, by [8, Corollary 2.2.3].
Plainly, (b) is satisfied sinc&), = %i X gyt Zp. To prove that (a) holds, observe

that the problem is étale local. Thus, we may assume . #jit= Sped|x,y,z]/xy
(herezis a multivariable) by the construction Kt{L and%FgI’L. Furthermore, we may
assume thaty, = Sped|x,y]/xy, (¢{')*: z— 0, andé, and 2, are given byx =0,
sincedy (%)) is transversal t@ 2. Thus,

2

tr
Totg "= (6, O, ) = Torg™™ ¥ (kly], k[x.y]/xy) @i k[Z,

sincek[Z is flat overk. Hence (a) holds. The second part of the lemma now follows,
sincel; and(1p). are adjoint functors. O

Lemma 5.4. There exists a distinguished triangle

Lo/ 2,

.

$4Q2,(log(d2)) Qg, (log(d%)))

Proof. The imageg, (%, ) is transversal t@ Z),; hence, there exists a well defined
map of log-differential form$;Q 4., (log(d 2;)) — Q«, (109(96;)), and the natu-

95Q4, (l0g(0.2p)) % (log(0%,))
$6Q2, Qg

ral map

is an isomorphism. Thus, the complexes
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$4Q2,(l0g(02p)) = Q«,(log(96,)) and¢;Q4, — Qg, are quasi-isomorphic.
Note that¢), is a complete intersection and), is smooth, thud¢, = Q, and
L2, = Qy,. Hence, there exists a distinguished triangle

Lo 2,

N

$pQ2, Qq,

and the lemma follows. O

Lemma 5.5. Assume that the coarse moduli spage@ %, is a smooth rational
curve, i.e., G = Uyey,(rr)Cyv, G are rational for all ve V, ('), and no two vertices
Vv,V € V,(I'"") are connected by an edge. Then

(1) Ext'(Lg,/2,,0¢,) =0fori # 1.

2) (a IExtl(ngv/%p, Oy,) = Ng for any ve V, (T'") of valency three.

(b) IExtl(chv/%,ﬁ%) = (N/I(V)Ny)g for any ve V,(I'"") of valency two,
where N and |(v) denote the slope and the multiplicity of an edge con-
taining v. By the balancing condition, the slope and the iplidity are
independent of the choice of the edge.

(©) BxtH (L), Oy) = (Buaiy-2(N/N (VN ) & (Buary—aNe ) iF 7
has no vertices of valency greater than three correspontiirthe ray

p.
(d) There is an exact sequence

0— Ng — Ext'(Ly, 2, O,) — H'(Cy, Te, (log(aCy))) — 0

for any vertex \e V, (I'") with val(v) > 3.
(3) Leto =p+p’ € 2%, be acone, wherp,p’ € =1, \ zl%”,n' Then

@eeEg(F”)(N/Ne)]ka if i=1;
0

EXt (L 25+ Os) = { ) otherwise.

To prove the Lemma, we need a tool for computing Eha-s. Note that such
computations can be reduced to the computations of coh@yaoliosheaves, which,
in turn, can be computed using the following result of Abrarb and Vistoli [1,
Lemma 2.3.4]:Let T: ¥ — C be the natural map between a tame st@cland its
coarse moduli space C. Then the funatpis an exact functor between the categories
of (quasi)coherent sheaves @hand C. HenceH*(¥¢,.#) = H*(C, m..%) for any
(quasi)coherent sheaf on%.

Proof. Pick p andv € V,(I'"). First, note thatp;Q 2, (109(d 2p)) = M @z Oy, by
Claim[435. Thus,
N if s=0

Ext3(¢:Q4- (109(02p)),0%,) = N@zH (G, Og,) =
X (¢p Zp( a( P))’ %v) ®z H(%, 5v) {0 otherwise
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since(1,). 0y, = Oc, andC, ~ P1. Second, note that

(T):Q,(log(9%)) = Qc, (log(aCy)).
Thus,
Ext®(Qg, (109(94,)), O%,) = H%(Cy, Tg, (log(dCy)) ) ,

which is equal to zero f@+# 0,1, sinceC, ~ PL. Finally, by Lemm&5}4, we conclude
that there exists an exact sequence

0 Ext®(La, 2, O,) —H(Cv, T, (109(9Cy))) — Ni =
Ext'(Lg, 2, O,) — H(Cy, Te, (log(9Cy)) ) — 0

andExt*(Ly,/ 2, 0,) = 0 for s# 0,1. To finish the proof of the first part of the
lemma it remains to show thaxt®(L, /4, O,) = 0.

If val(v) > 2 then degTc, (log(dCy))) < 0, henceH®(Cy, Tg, (log(dC,)) ) =0, and
we are done. Ifal(v) = 2 thenh®(C,, Tg, (log(dC,)) ) = 1, and the statement follows
from the second part of the Lemma.

(a) Assume thatal(v) = 3. Then de§, (log(dC,)) = 1, which implies

Ext®(Qg, (109(0%)), Oz,) ~ HO(P*, Op1(—1)) = 0.

Hence the mapl, = Ext?(¢;Q 4, (109(0 2p)), Og,) = Ext!(Ly, 2, O,) is aniso-
morphism.

(b) Assume now thatal(v) = 2. ThenExt’(Qy, (log(d4,)), O,) is one-dimen-
sional since de@c, (Iog(éC\,)) = 0. Thus, it remains to prove that its image in
Ext®(¢;Q2, (10g(0.2p)), Og,) = Nx coincides with(1(v)Ny ). LetV’ be a finite ver-
tex connected tg, ande € E, (I'") be the edge. Note tha,\ 0%, = C,\ dCy ~ Gn.
Fix such an isomorphism, and kebe a coordinate oG, vanishing afpe € C,. Then
9plGm : Gm— Tn C 2 is given by(@p|g,) x™ = Xuy(m)yld (re()=hre()m) for
some characteyyy: M — k* (cf. RemarK3.56). Thus, the map

M (=4 ﬁggp = f;Qij (Iog(d%p)) — Qcé;/ (Iog(a‘@”\,)) = ﬁ%;/
is given bym |e|~(hr« (V') — hre (v), m). By Corollary{4.3, the integral lengtife)
of ||~ (hrv (V) — hre (V) is not divisible bychar(k), since.2, is Deligne-Mumford.
Thus, the map

k = Ext°(Qy, (109(0%.)), O,) — Ext°(¢;;Q,% (10g(0.2)), Og,) = Ny

is given by 1— |e/~%(hrv (V') — hre(v)) and its image coincides with the subspace
(I(V)Ny)k C Ng.

(c) Follows immediately from (a) and (b); and (d) follows ifinathe vanishing
h°(Cy, Tg, (log(dCy))) = 0.

For the third part of the lemma, note that in terms of Notafi@rand Claini 4.2,
o = [lecg, (ry) #Ce(k) and 25 = Ty n, x #Go (k), whereG, (k) := G, x Sped.
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Furthermore, %Ge(k) x 2, Tn/nek = Go(k)/Ge(k), and its image inTy n, i is @
pointue € Ty/ng - Thus, by Claim BIEXt (Ly, /4, , O, ) is given by

{ @eeEo(rtr) TUeTN/|(e)Ne,]k7 |f | - 1, { @%Eg(F")(N/I(e)Ne)]k? |f | - 1,

0, otherwise ~ | 0, otherwise
O

Corollary 5.6. Under the assumptions of Lemfmal5.5, if(wak 3 for any ve Vp (")
thenExt'(Ly; / o, O, ) = & (MY fori=1,2.
Proof. It follows from Lemmat&5]3 and 3.5 that there exists an ezagtience
0— Ext'(Ly, )y, O, ) =

= (B iy Ne) © (B iy (NN VIO ) = By (N1 (@Ne)sc =
where the central map is given by — 5 ..o (£(e,v)xy modNe), and, as before,
£(e,v) = —1if vis the initial point ofe, (e,v) = 1 if vis the target o0&, ande(e,v) =0
otherwise. Consider the natural injective map of complexes

0 0

@vevf(rsl) Ny (@VEV;(FU) N]k) D (@VEVJ(F") (N/l (V)N\/)k)

@eeEb(rSt) (N/l (e) Ne)lk

@eeEb(rtr) (N/l (e)Ne)k

0 0

Plainly, its cokernel is quasi-isomorphic to zero. Thu® thap itself is a quasi-
isomorphism. Recall, that the cohomology of the left coluise? (M) (cf. Re-
markZ.I0). Hencelixt' (Ly, /5, O, ) = &(rsY fori=1,2. O

Corollary 5.7. Let O be a toric constraint, and A be the corresponding affiore-c
straint. Assume thdt" satisfies A, and A is a simple constraint ff. Then, under
the assumptions of Corollafy 3.6, D¥ET) = &1(M, A) and OHE.T) = &2(I'SL A).

Proof. Pickl <k. Letve V(') be the unique vertex connected#p, andp be the
corresponding ray iﬁ}l,. Sincev has valency three it follows from the balancing con-
dition that it is connected to two finite vertices, and thepskwof the bounded edges
containingv coincide. Let us denote them by. Consider the maf, — %, and its
restrictionGm — Ty C Zp. As we have seen above, it is givenydy— Xy (m)y™m,
wherey is a coordinate offis,m andn € Ny. Furthermore, the integral length ofis
not divisible by the characteristic & Thus, in the notation of Proposition 5.2, we
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havediy (Tg 6k) = (Nv)x, hencediy is injective since the slopl, # 0. Moreover,
dix (T k) Nd jk(Tq (Yx)) = O sinceA is a simple constraint fdf". Then, by Propo-
sition[5.2,De f1(5.1) = ker(a) and the obstruction spa&b(5.]) fits naturally into
the exact sequence-8 cokerfa) — Ob(G.1) — Extz(L%ﬁg/%ﬂgr, U«,) — 0. Observe,
that in our case the right-hand side[of{5.4) is j@st ; (N/Li )i, and, by Corollarz5]6,
Ext (L2, Og,) = &L(TsY. The corollary now follows from Propositi¢n 2126

Remark5.1 If in Lemma[5.5, one assumes only ti@4 is rational (but, probably,
singular) for anyp then, by repeating the same computations we did in Lemnma 5.5
and CorollarieE 5]6-5.7, one can show that there exists art sgquence

0— ELTA) = ElLy . O) st
- GaeeEb(r)aNe:Ok - gz(r 7A) — EZ(L%ﬁg/eﬁ?fka ﬁ%’]k) — O,

wherel™ denotes the tropical curve obtained frénby contraction of the maximal
connected subgraphs of finite vertices connected by eddgébstrvial slopes (cf.
Propositio 2.10). In particular, (ITSt, A) isk-regular then it is representable.

Assume now, thaf'" has genus onezal(v) < 3 for all v e V(I'"), %; has only
rational components, and no bounded edgé& btas trivial slope. Consider the
stabilizationsIs' and %> of I'" and 4;,. Denote byvs,...,V, Vi1 = Vi andeg €
Ev v, the vertices and the edges in the cycle of minimal length igeimg the first
homology oflSt. Consider the following deformation problem:

(5.5) (¢,Dx) — — > (¢Rr.,Dr,)
|
|
|
Y
Spedy,

Spedk

Since the components &£ are smooth, and each component contains at most
three special points, the deformations (@™, D) are induced from the deforma-
tions of the nodes. Thus, the solutions[of(5.5) are giverhbyrt -homomorphisms
Ry [[Xe]lecen(rsty — R mapping the coordinate functions to the maximal idéa).

Let us blow up SpeéR]L[[Xe]]eeEb(rst)) alongxe = t;, = 0 for anye € EP(I'sY),
and proceed witty (er,|e| — 1) more blow ups till we get the chart with the coor-
dinates(tH:eL‘e‘xe,tL)eeEb(rst), which we denote bpef(5.8). By the construction,
the projectionDe f(5.1) — De f(5.5) lifts to a maprs : Def(5.0) — Def(5.8). Let
ITef@)a M1 X spee, SPe®y, be a projection forgetting all but one marked point,
and contracting the unstable components. Its image belonhe chartAlL, where
the origin corresponds to the infinity o#1 1, in other words the coordinate o%a’i}zIL
is 7. Let us blow upAk along =t;, = 0 and proceed with— 1= 5K ; e e[ — 1
more blow ups till we get a chart with coordinat@ﬁ—,th). Denote this chart by

/Z[Il. By the construction, the maﬁ)Ae/f(Iﬂ)% M1 X spee, Spedyy, lifts to a map
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: Def(5.8) — /Z[Il Finally, consider the compositione f(&.1) — /Z[Il The
following lemma is a straightforward computation:

Lemma 5.8. Let L be an O-constrained Mumford stadk{j-reduction. Then, un-
der the assumptions of Corollafy 5.7, the following holdD& f(E.1) = &1(SL A),

Try()DefEE) = D 1k = DI 1 (Ne )i, dm: EHTLA) = Bl 4 (Ng )i is the natu-
ral projection, T, (mL))-#1,1 = k, and if the orientation o Stis such that the cycle
el,...,e& is oriented then dp: @F 1k — k is given by db(x) = Y& ; .

Corollary 5.9. Under the assumptions of Lemial5.8, the mgp i is smooth if
and only if&2(TSY A, j) — &2(TSL A) is an isomorphism. In particular, ifr 4 A) is
elliptically k-regular thenrp o 1g is smooth.

Proof. By Claim[Z33,&2(SL A, j) — &2(TSLA) is an isomorphism if and only if
O £’H{1(FS‘,A) — k is surjective, and under the identifications of Lenima 5,8is
a non-zero multiple ofite odrm : T Def(E.1) — Tnz(,Tl(L))//Z,l, which implies the
corollary. O

6. CORRESPONDENCETHEOREMS

Definition 6.1. A smooth complete curve with marked poif@& D) is called asimple
Mumford curvef it is stable, the grapR g ; is trivalent, i.e., all finite vertices have

valency three, and(Fp, ;) = g(C).

Theorem 6.2(Correspondence Theorem)et I be a stable N-parameterized)-
tropical curve, O be a toric constraint, and A be the corrasgiong affine constraint.
Assume that

(1) I istrivalent, i.e., all finite vertices have valency three,

(2) T satisfies A,

(3) (I',A) isk-regular,

(4) codimA=rank),

(5) All bounded edges e EP(I") have non-trivial slopes,

(6) The multiplicities of all edges are not divisible by the cheteristic.
Then, there exist precisel§. (T, A)| = [EL.(T,A)|- Mecen(r | (€) isomorphism clas-
ses of triplegC, D, f) satisfying the toric constraint O such thét,D) is a simple
Mumford curve of genus g arfgf!, ; = I'. Moreover, there is a one-to-one corre-

spondence between such curves and the isomorphism cld€3eoastrained stacky
I-reductions.

Remark6.1 Under the assumptions of the theorem, we H&e(I, A)| = [E3(T,A)|
and|&L (F,A)| = |£2(T,A)| by Claim[Z2T.

Proof. First, note thatEL, (T, A)| is finite andE2, (", A) = 0 since codim = rank(I")
and (I",A) is k*-regular by Clair2.27. Then, by Proposition 3.15, the nundfe
isomorphism classes @-constrained -reductions is equal t¢EL. (7, A)| sincel”
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is trivalent. Hence, by Propositién 4110, the number of isgshism classes db-
constrained stacky -reductions is equal to the produl@Ll. (I',A)| - Mecevry!(8).
Thus, it is sufficient to prove the “moreover part” of the the.

Pick a finite extensiof C I C F sufficiently ramified for any triplgC,D, f)
satisfyingO, and fix a uniformizet, € Ry. Plainly, any triple(C, D, f) satisfyingO
defines arD-constrained stackly-reduction. Vice versa, an®-constrained stacky
I-reduction(%, Dy, ¢k, %ﬁgr) defines a unique isomorphism class of triplésD, f)
satisfying the toric constraif®: by Corollary(5.7,De f}(51)= EL (I, A) = 0 and
Ob(E1) = E2(r's A) = 0, since codim = rank(T") and (I",A) is k-regular. Hence,
there exists a unique solution to the deformation probledi) f&r anyO-constrained
stackyl -reduction, and we are done. O

Theorem 6.3(Yet Another Correspondence Theoremt ™ be a stable N-para-
meterized)-tropical curve of genus one, O be a toric constraint, and AHhzecorre-
sponding affine constraint. Assume that

(1) I istrivalent,

(2) T satisfies A,

(3) (I',A) is elliptically k-regular,

(4) rankT) = codimA+ 1,

(5) All bounded edges e E°(I") have non-trivial slopes,

(6) The multiplicities of all edges are not divisible by the cheteristic.

Then for any E F with v (J) = — j(I) there exist preciselysk (T, A, j)| isomorphism
classes of triple§C, D, f) satisfying the toric constraint O such th@, D) is a simple
Mumford curve of genus one(d) = J, andl'g, ; = I'. Moreover, there is a one-
to-one correspondence between such curves and the isorsrghasses of stacky
O-constrained Mumfor@-reductions with i (%, Dy, ¢x, %r) = jﬂgl(C).

Proof. First, note that coditd+ 1 = rank(I") and(I",A) is elliptically k*-regular by
ClaimZ37. Thus&L (T, A, j)| is finite ands2 (T, A) = 0. Then, by Propositidn 4.1.3,
the number of isomorphism classes®tonstrained stackly-reductions with given
ji (G, Dy, ¢i, 277) is equal to &L (I, A, j)|. Thus, itis sufficient to prove the “more-
over part” of the theorem.

Pick a finite extensioff C IL C T sufficiently ramified for any tripl¢C, D, f) sat-
isfying O and havingj(C) = J. Fix a uniformizen, € R.. Plainly, any such triple
(C,D, f) defines a stackyD-constrained Mumford'—reduction((fk,Dk,q)k,%r).
Furthermore ji (%, Dk, px, 2,") = jﬂgl(C) by Lemmd4.I1. Vice versa, any stacky
O-constrained -reduction(%j, Dy, ¢x, 2;") defines a unique isomorphism class of
triples (C, D, f) with j(C) = J that satisfy the toric constraif. Indeed, by Corol-
lary[5.9, the projectiobe f(5.1) — /Z/I,l is smooth, and both spaces have dimension
one. Hence there exists a unique solution to the deformptimslem [5.1) with given
j-invariant for anyO-constrained stackly-reduction. O
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7. APPENDIX

In this appendix we summarize well known facts about noddl @emi-)stable
models of algebraic curves that we use in our paper(CdD) be as in the introduc-
tion. By the nodal reduction theorem, one can find a finitersitsnL of F and a
nodal modelCg, ,Dg, )

DR, C Cr.

~N

Spedy,

i.e., a triple consisting of a proper cur@g, — Spe®y, a finite ordered sdbr, of
Rp-points inCg, , and an isomorphisrtCr, ,DRr; ) X spe®, Sped ~ (C,D) such that
thereduction(Cr, ,Dr; ) Xspe®, Sped is a reduced nodal curve with marked points,
and the total spadgg,; is normal. In particularC,D) is defined oveiL. A model is
calledregularif the total spac€r_ is regular.

It is well known that the singularities of a nodal model are@entrated at the
nodes of the reduction. Moreover, any singular pointis p&#, i.e., étale locally, it
is given by an equatiory = t{L*l. Itis also known that any nodal model is dominated
by a (minimal) regular nodal model and the preimage of a darquoint of typeA, is
a chain ofr lines of self-intersection-2.

Algorithm7.1 Let (Cg ,Dr ) — (Cr_,Dr,) be nodal models. Then the modz,
can be obtained frorﬁ,’qIL using the following three steps:

(1) blow down the maximal forest of trees of relative unstatmponents, such
that each tree intersects the remaining components at done-fbe root of
the tree, and no marked point belongs to the forest;

(2) blowdown the relative unstable chains of projectivedicontaining a unique
marked point, which belongs to the first line of the chain, imersecting the
remaining curve at a unique point, which belongs to the iastdf the chain;
and

(3) blow down the remaining relative unstable chains ofgctiye lines.

Note that if one starts with a regular nodal monIIL, and proceeds as above,
then after the second step one obtains the minimal regulzalmoodel dominating
Cr, . Note also that if{C, D) is stable then by applying the algorithmad unstable
components o€y one obtains the stable mod@,%tl, Dr, ) over SpeRy..
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