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Abstract

I classify the cohomological 2D field theories based on a semi-simple complex Frobe-
nius algebra A. They are controlled by a linear combination of κ-classes and by an
extension datum to the Deligne-Mumford boundary. Their effect on the Gromov-
Witten potential is described by Givental’s Fock space formulae. This leads to the
reconstruction of Gromov-Witten (ancestor) invariants from the quantum cup-product
at a single semi-simple point and the first Chern class of the manifold, confirming
Givental’s higher-genus reconstruction conjecture. This in turn implies the Virasoro
conjecture for manifolds with semi-simple quantum cohomology. The classification
uses the Mumford conjecture, proved by Madsen and Weiss [MW].

Introduction

This paper studies structural properties of topological field theories (TFT’s), a notion introduced
by Atiyah and Witten [W] and inspired by Segal’s axiomatisation of Conformal Field Theory. A
TFT extracts the topological information which is implicit in quantum field theories defined over
space-time manifolds more general than Euclidean space. The first non-trivial example is in 2
dimensions, a setting which has been the focus of much interest in relation to Gromov-Witten the-
ory: the latter captures the expected count of pseudo-holomorphic curves in a compact symplectic
target manifold. The result proved here, the classification of semi-simple theories, shows that an
important property of these invariants is a formal consequence of the underlying structure, rather
than a reflection of geometric properties of the target manifold. Loosely stated, the property in
question is that a count of rational curves with three marked points, encoded in the quantum coho-
mology of the target, determines the answer to enumerative questions about curves of all genera,
when the quantum cohomology ring is semi-simple.1

My classification leaves some important questions open (see [Te] for more discussion). One
of them is to extract the Gromov-Witten classification data from the geometry of the symplectic
manifold. Finding even a single semi-simple quantum cup-product (when one exists) may require
infinite information, if curves are counted degree-by-degree. Another, more precise question con-
cerns the degeneration of a semi-simple theory to the locus in its Frobenius manifold (the natural
parameter space, see §7) where the algebra acquires nilpotents. An example is the discriminant lo-
cus within the deformation space of an isolated singularity: it is unclear whether the higher-genus
part of the associated TFT, the Landau-Ginzburg B-model for a singularity, extends continuously
there (the semi-simple classification data blow up).

1To be precise, this is true of the so-called ancestor Gromov-Witten invariants. The complete, descendent invariants
require additional genus zero information, the J-function.
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(0.1) First definition. A 2-dimensional topological field theory over a ring k is a strong symmetric
monoidal functor Z from the 2-dimensional oriented bordism category to the tensor category
of finitely generated projective k-modules. This means that Z assigns to every closed oriented
1-manifold X a k-module Z(X), and to any compact oriented surface Σ, with independently ori-
ented boundary ∂Σ, a linear “propagator”

Z(Σ) : Z(∂−Σ) → Z(∂+Σ).

The sign ± of a boundary component compares the orientation induced from Σ with the inde-
pendent one on ∂Σ; we call ∂−Σ the incoming boundary and ∂+Σ the outgoing one. The above
definition requires that

(i) Z is multiplicative under disjoint unions, Z(X1 ∐ X2) = Z(X1)⊗ Z(X2).

(ii) Sewing boundary components leads to the composition of maps.

Part (i) is the monoidal condition, while (ii) is the functorial property. Note that the cylinder “=”
with one incoming and one outgoing end represents the identity. In the simplest definition of
the bordism category, morphisms are surfaces modulo oriented homeomorphism (rel boundary);
more sophisticated definitions remember the topology of the diffeomorphism group (Remark 1.2).

(0.2) First classification. A folk theorem (with non-trivial proof, see [A1]) ensures that Z is equiva-
lent to the datum of a commutative Frobenius k-algebra structure on the space A := Z(S1). This last
notion comprises a commutative k-algebra structure on A, together with an A-module isomor-
phism ι : A

∼
−→ A∗ := Homk(A, k). The Frobenius structure on Z(S1) can be read from the functor

Z as follows:

• the multiplication map A ⊗ A → A is defined by the trinion with two incoming circles and
an outgoing one;

• the unit in A is defined by the disk with outgoing boundary, Z(⊃) : k → A;

• the disk ⊂ with incoming boundary determines the vector θ := ι(1) ∈ A∗.

(My pictures represent the projection outlines of surfaces, with their boundaries omitted. Also,
the reader will have noticed that surfaces are ‘read’ from right to left, matching the ordering con-
vention for the composition of operators.) The form θ, in turn, determines a symmetric pairing
β : A × A → k, β(a × b) = θ(ab), which is the partial adjoint to ι in one of the variables. Non-
degeneracy of β — equivalently, the isomorphy condition on ι — is also known as Zorro’s lemma,2

and is proved by the diagram wherein a “Z”-shaped identity cylinder is factored into a “right
elbow” ⋑ (that is, a cylinder with two outgoing ends), sewed on to a left elbow ⋐ at one of its
outputs: Z(⋐) represents β, and Z(⋑) provides an inverse co-form.

(0.3) Semi-simple case. An easy but important special case concerns semi-simple algebras A over
k = C. As algebras, these are isomorphic to

⊕
i C · Pi for projectors Pi, uniquely determined up

to reordering. From the definition and non-degeneracy of β, the projectors are β-orthogonal and
their θ-values θi = θ(Pi) must be non-zero complex numbers. Up to isomorphism, A is classified
by the (unordered) collection of the θi. The TFT is easy to describe in the normalised canonical basis

of rescaled projectors pi := θ−1/2
i Pi, as follows. For a connected surface Σ with m incoming and

n outgoing boundaries, the matrix of the propagator Z(Σ) has entry θ
χ(Σ)/2
i linking p⊗m

i to p⊗n
i ,

while all entries involving mixed tensor monomials in the pi are null. I leave it to the reader’s care
to supply the correct reading of this rule when m or n are zero.

2I believe the name was coined by Jacob Lurie.
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(0.4) Example: the Euler class. A Frobenius algebra contains a distinguished vector, the Euler class α,
which is the output of a torus with one outgoing boundary. When A is the cohomology ring of
a closed oriented manifold with coefficients in a field and β the Poincaré duality pairing, α is the
usual Euler class. (Of course, A will be a skew-commutative, if there is any odd cohomology.) By
contrast, in the semi-simple case, α is the invertible element ∑i θ−1

i Pi. The endomorphism of A

defined by a two-holed surface of genus g is the multiplication by αg: in matrix form, diag[θ
−g
i ]. In

the semi-simple case, this observation allows the recovery of low-genus Z from high genus, and
will play a key role in the paper.

There is actually a converse: invertibility of α implies semi-simplicity of A. (The trace on
A of the operator of multiplication by x is θ(αx), so TrA defines a non-degenerate bilinear form
on A; it follows that, over any residue field of the ground ring k, A is a sum of separable field
extensions.) This, and the importance of an invertible α, were perhaps first flagged by Abrams,
also in connection with quantum cohomology; the reader is referred to the nice paper [A2].

(0.5) What this paper does. Here, I give an algebraic classification for family TFTs (FTFTs), in which
the surfaces vary in families and the functor Z takes values in the cohomology of the parameter
spaces, with coefficients in the space of maps between tensor powers of A. These theories are
variants of the Cohomological Field Theories (CohFT’s) introduced by Kontsevich and Manin [KM1].
“Families” consisting of single surfaces recover the previous TFT notion, detecting the underlying
Frobenius algebra A. My classification applies whenever A is semi-simple and k is a field of
characteristic zero; I use C for simplicity.

(0.6) The Gromov-Witen case. The theories of greatest interest involve nodal surfaces, the stable
curves of algebraic geometry, and come from Gromov-Witten invariants. In this setting, I provide a
structure formula for the Gromov-Witten invariants of manifolds whose quantum cohomology is
generically semi-simple. Such theories have additional structure, a grading which stems from the
fact that spaces of stable maps have topologically determined (expected) dimensions. This struc-
ture limits the freedom of choice considerably: the full FTFT is determined by the Frobenius alge-
bra and the grading information. This affirms a conjecture of Givental’s [G1] on the reconstruction
of higher-genus invariants, and in particular, as pointed out in [G3], the Virasoro conjecture for
such manifolds. Verification of this conjecture involves tracing through Givental’s construction,
with an improvement to the formulation which (I think) is originally due to M. Kontsevich, and
which we review in §6.

(0.7) Relation to “open-closed” theories. With different starting hypotheses, a vast extension of my
classification has been reached by Kontsevich and collaborators in the framework of open-closed
FTFTs (see [KKP] and sequels in preparation). From that perspective, I show that any semi-simple
(closed string) CohFT might as well be assumed to come from an open-closed FTFT with a semi-
simple category of boundary states. In Gromov-Witten theory, this statement could even follow
from a sufficiently optimistic formulation of Homological Mirror Symmetry: semi-simplicity of
quantum cohomology suggests a Landau-Ginzburg B-model mirror with isolated Morse critical
points of the potential, since (in the case of isolated singularities) the quantum cohomology ring
is meant to be isomorphic to the Jacobian ring of the potential. In this situation, the mirror cate-
gory of boundary states (B-branes) is also semi-simple. Assuming all this, we could then invoke
Kontsevich’s classification.

However, while it seems clear that the open-closed framework (or some related 2-categorical
approach) is the right setting, Gromov-Witten theory is not quite ready for it, as the requisite
assumptions on the Fukaya category of boundary states have only been checked in special cases;
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whereas the CohFT axioms are well-established. Examples of varieties with generically semi-
simple quantum cohomology include: toric manifolds, most Fano three-folds with no odd Betti
numbers [Ci], as well as blow-ups of such varieties at any number of points [B]. Of these, only for
toric ones does the open-closed theory seem to be in convincing shape, thanks to work by Fukaya
and collaborators [FOOO].
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1. Summary of definitions and results

This section outlines the definition and classification of the various versions of FTFT’s used through-
out the paper, as well as the background of the two key results, Theorems 1 and 2, formulated
towards the end of the section. It is not possible to cover all the details in the space suited to an
opening section, and the reader will often be referred to later paragraphs for clarification. For in-
stance, classifying spaces of surface bundles are discussed in §2; a refresher on κ- and ψ-classes is
found in §2.15; and the list of axioms for a DMT is only truly completed by spelling out the ‘nodal
relations’ in §4.5.

(1.1) Functorial definition. Family TFT’s admit a categorical definition in the style of the introduc-
tion. I give it here for logical completeness; its meaning and use, in the several variants outlined
in §1.3 below, will be spelt out more clearly in Section 2.

Consider the following two contra-functors C and F , defined over the category of topological
spaces and continuous maps, and taking values in symmetric monoidal categories. On a topolog-

4



ical space X, the first category C(X) has as objects bundles of closed oriented 1-manifolds over
X, and as morphisms bundles of compact oriented 2-bordisms, modulo boundary-fixing oriented
homeomorphisms over X. Objects of the second category F(X) are flat complex vector bundles
over X, while the morphisms are the graded vector spaces

HomF (X)(V, W) := H• (X; HomX(V, W)) .

A FTFT is a symmetric monoidal transformation Z from C to F . Variants of this notion are ob-
tained by changing the defining features of C: we can require all circles in C(X) to be parametrised
(§1.3.i) or not (§1.3.ii), allow Lefschetz fibrations as morphisms (§1.3.iii), and finally, impose the
Deligne-Mumford stability condition on the surface fibrations (§1.3.iv).

1.2 Remark. The objects of C and F form sheaves over the site of topological spaces, but the mor-
phisms do not. Morphisms of F are the cohomologies of a differential-graded version of F , in
which the objects are complexes of local coefficient systems over X and the morphisms are co-
cycles, instead of cohomology classes. There is a similar enhancement of C to a sheaf of cate-
gories enriched over topological spaces: morphisms are classifying spaces of the homeomorphism
groupoids of surface bundles. A (symmetric monoidal) natural transformation between these
sheaves of categories is a possible definition of chain-level FTFT’s, and is closely related to Segal’s
definition of topological conformal field theory [S, Ge]. We will not use this more refined notion in the
paper.

(1.3) FTFT variants and their classification. We will consider several versions of family field theories;
their classification increases in complexity. All four variants below are relevant to the eventual
focus of interest, semi-simple cohomological field theories.

(i) In the simplest variant, the surfaces have parametrised boundaries. These theories are clas-
sified by a single, group-like class Z̃+ in the A-valued cohomology of the stable mapping
class group of surfaces (§2.20). As a result of the Mumford conjecture [MW], such a class is
necessarily of the form exp{∑j>0 ajκj}, with arbitrary elements aj ∈ A coupled to the Morita-

Mumford classes κj. The class Z̃ associated to a surface bundle acts diagonally on tensor
monomials of the normalised canonical basis, as follows. if aj = ∑ aijPi, aij ∈ C, then the en-

try θ
χ/2
i in the propagator matrix (0.3) which the Frobenius algebra assigns to a single surface

is now multiplied by the factor exp{∑j>0 aijκj}. Note that, as χ = −κ0, we could also account

for the θi by including in our sum a term j = 0, with a0 = 1
2 log α.

(ii) The second FTFT variant allows the boundaries to rotate freely. This introduces a new classi-
fication datum, a C-linear map E : A → A[[z]] with E ≡ Id (mod z). A free boundary theory
is determined by E and the earlier Z̃+ as follows: twist the incoming states by E−1 and the
outputs by E, with z specialised to the sign-changed Euler classes of the respective boundary
circle bundles. (The awkward sign is reluctantly adopted here to avoid worse later; it stems
from the sign mismatch between Euler and ψ classes for inbound circles.) In-between, the
fixed-boundary propagator of (i) applies.

1.4 Remark. The meaning of E is obscured by our simplified, cohomological setting; it can be
reverse-engineered from the context of open-closed and chain-level FTFTs. In the functorial
setting (1.1), the local system Z(S1) with fibre A over CP∞ defined by the universal circle
bundle is necessarily trivial, because CP∞ is simply connected. Our E supplies a second,
’interesting’ trivialization of the same, (−z) ∈ H2(CP∞) is the universal Euler class. In the
chain-level version of the theory, A is the homology of a space X (or a chain complex) with
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circle action, and the inputs and outputs at free boundaries belong naturally to the circle-
equivariant cohomology, and E is here to split the latter as A ⊗ C[[z]]. When the circle action
on X is trivialized for independent reasons, as happens with the Hochschild complex of a
semi-simple category of boundary states, E expresses the difference between the ‘obvious’
splitting and the one relevant the field theory. (See [KKP] for more discussion.)

(iii) Next in line are the Lefschetz theories, where surfaces are allowed to degenerate nodally into
the Lefschetz fibrations of algebraic geometry. A nodal surface can be deformed uniquely
to a smooth one; the cohomological nature keeps Z unchanged under this deformation, so
adding single nodal surfaces to the theory involves no new information. Things are differ-
ent in a family: up to homotopy, the automorphism group of the “nodal propagator” ⊃⊂,
an incoming-outgoing pair of crossing disks, is the product T × T of the two independent
circle rotation groups. This provides a new datum Z(⊃⊂), an End(A)-valued formal series
D(−ω+, ω−) in the Euler classes ω± of the two universal disk bundles.

Keeping only the diagonal rotation, we can deform the node ⊃⊂ into a rotating cylinder.
Since Z(=) = Id for a fixed cylinder, and it must remain a projector when the cylinder rotates,
we conclude that D = Id mod (ω+ − ω−). In addition, we will find a symmetry constraint
relating D and E; see §4 for the precise relation. These are all the data and constraints: an
involved, but explicit formula for the Lefschetz theory classes is given in §4.10 from Z̃, E and
D, as a kind of “time-ordered exponential integral” along the surfaces in any family.

(iv) Lastly, we are interested in Deligne-Mumford theories (DMT’s): these are Lefschetz theories in-
volving only stable nodal surfaces, the Deligne-Mumford stable curves of algebraic geometry.
Excluding cylinders and disks (which are unstable) brings about the need for two additional
axioms, the nodal factorisation rules and vacuum axiom, which in a Lefschetz theory follow from
the other axioms (See §§2.7–2.13).

The best-known DMT’s are the Cohomological Field theories à la Kontsevich and Manin,
which satisfy D = Id. It is more customary to state their structure in terms of surfaces with
inputs only, but that is a matter of convenience. In CohFT’s, the compatibility constraint
on E will become Givental’s symplectic constraint E(z) ◦ E∗(−z) = Id. The main examples
of CohFT’s are the Gromov-Witten cohomology theories of compact symplectic manifolds,
which carry even more structure and constraints: see §§1.6–1.8 below.

Functors of the types (i), (ii) and (iii, iv) shall be denoted by Z̃, Z and Z̄, respectively. In the semi-
simple case, we will find that (iii) and (iv) have the same classification.

(1.5) Idea of proof. For the first two types of FTFTs, the classification is an easy consequence of the
Mumford conjecture, proved by Madsen and Weiss [MW]. (We will also use an older result of
Looijenga’s on ψ-classes, [L].) In the limit of large genus surfaces, the sewing axiom becomes an
equation in the complex cohomology of the stable mapping class group. The latter is a power
series ring in the tautological classes (see §2.15), and we solve the equation there. Semi-simplicity
of A lets us retrieve the low-genus answer from high genus thanks to invertibility of the Euler
class α.

DMT’s require an additional argument. The universal families of stable nodal surfaces are
classified by orbifolds with a normal-crossing stratification. The argument above determines the
classes Z on each stratum, but there could be ambiguities and obstructions in patching these
classes together. However, the Euler classes of certain boundary strata involving large-genus
surfaces are not zero-divisors in low-degree cohomology. This ensures the unique gluing of coho-
mology classes over suitably chosen strata. We find enough strata to cover all Deligne-Mumford

6



moduli orbifolds, and prove the unique patching of the Z-classes to a global class Z. This obser-
vation is the key contribution of the paper; the remainder falls in the “known to experts” category.

A more natural resolution of the gluing ambiguity involves the use of chains, instead of ho-
mology classes. This point of view, pioneered by Kontsevich in the context of homological mirror
symmetry, fits naturally with the notion of open-closed field theories and their A∞-categories, and
was successfully developed by Costello, leading in that setting to a beautiful classification result
[C]. It also ties in nicely with the string topology example of Chas and Sullivan [Su]. From this an-
gle, my result shows that the semi-simple case is considerably easier: open strings and chain-level
structures are not needed.

(1.6) Example: Gromov-Witten theory. Here, the Frobenius algebra A is the quantum cohomology of
a compact symplectic manifold X, at some chosen point u ∈ Hev(X). To apply my classification,
we must choose a point u where this ring is semi-simple (assuming such a point exists, which is a
strong restriction on the manifold X). This u may be the generic point — which indeed may be the
only option, if the series defining the quantum cup-product turns out to diverge. Semi-simplicity
confines H•(X) to even degrees, because odd classes are necessarily nilpotent. (More is true: it
turns out that semi-simplicity of the even part Hev of the quantum cohomology ring forces the
vanishing of odd cohomology [HMT].)

The Gromov-Witten theory of X is constructed as follows. Denote by Xn
g,δ the space of Kontse-

vich stable maps to X with genus g, degree δ ∈ H2(X), and n marked points. We obtain maps

GWn
g,δ : H•(X)⊗n → H•

(
Mn

g

)

to the cohomology of Deligne-Mumford spaces Mn
g by pulling back classes on X via the evaluation

map Xn
g,δ → Xn, and then integrating along the forgetful map Xn

g,δ → Mn
g. This last step uses the

virtual fundamental class of Xn
g,δ. The degree of each map GWδ, in the natural grading on H•(X),

is determined by the relative (virtual) dimension of moduli spaces:

deg GWg,δ = 2(dimC Mn
g − dimC Xn

g,δ) = 2(g − 1)dimC X − 2〈c1(X)|δ〉. (1.7)

Summing over homology degrees δ yields a class

GWn
g := ∑

δ

GWn
g,δ · eδ,

with coefficients in (a completion of) the group ring Q[H2], called the Novikov ring of X. For a fixed
u ∈ H2(X; C), sending eδ 7→ exp 〈u|δ〉 furnishes a ring homomorphism Q[H2] → C, and subject
to convergence we get a u-dependent family of complex cohomology classes GWn

u,g. We recall
in Section 2 below why this is equivalent to a family of DMT’s GWu, in the sense of 1.3.iv. It is
no accident that we obtain an entire family of DMT’s: in fact, a general deformation construction
(Definition 7.1 below) produces a family parametrised by all u in (an open, or possibly formal
subset of) Hev(X). Example 7.17 spells this out in the case of Gromov-Witten cohomology.

(1.8) Gromov-Witten cohomology constraints. The theories GW just described meet three additional
constraints. They are specifically traced to the use of ordinary cohomology (for instance, they do
not apply in this form to the exotic Gromov-Witten theories of Coates and Givental [CG]).

(i) The Cohomological Field Theory (CohFT) condition D = Id;

(ii) The flat vacuum condition: inserting the identity 1 ∈ A as the first input in GWn
u leads to the

same class as the pull-back of GWn−1
u along the first forgetful morphism Mn

g → Mn−1
g ;
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(iii) Homogeneity of the family GWu under the Euler vector field ξ on Hev(X). Along H2(X), ξ is the
constant vector field c1(X), but more generally

ξu := c1(X) + ∑(i − 1)u2i at u = ∑ u2i ∈
⊕

i
H2i(X).

In GW theory, condition (i) reflects the factorisation of the (virtual) fundamental class of Xn
g,δ at the

boundary of Deligne-Mumford space [G2]. Condition (ii) is the base change formula in the square
of forgetful morphisms3

Xn
g → Xn−1

g

↓ ↓
Mn

g → Mn−1
g

Readers may know that (ii) implies the flatness of the identity in the associated Frobenius manifold
[M, III]; we will revisit this in §7.12. Finally, the homogeneity condition (iii), to be reviewed in
more detail in §7.15 (see also [M, §I.3]), encodes the degrees (1.7) of the maps GWn

g,δ: see Example
7.17.

These constraints can be axiomatised in the setting of abstract DMT’s, and imposing them
narrows down the classification of semi-simple theories. In CohFT’s, the operator E of §1.3.ii
satisfies E(z) ◦ E∗(−z) = Id. The flat vacuum condition determines the Z̃+ (of §1.3.i) from E,
as in Proposition 3.14 below. Confirming a prediction of Givental’s [G1], we will see that semi-
simple CohFT’s are determined by their genus-zero part, the restriction to families of genus zero
curves, save for an ambiguity related to the Hodge bundle. (See §8.6 for the precise statement.)
Homogeneous theories (iii) have no such ambiguity, and we can then give an explicit reconstruction
procedure from the Frobenius algebra A alone and the homogeneity constraint, as we explain after
reviewing the following example.

(1.9) Example: the Manin-Zograf conjecture. A simple illustration of the classification concerns the
cohomological field theories of rank one: dim A = 1, so A is necessarily semi-simple. (These
theories are the units for a natural tensor structure on the category of CohFT’s.) In this case, my
classification affirms an older conjecture of Manin and Zograf [MZ]: Z is an exponentiated linear
combination of κ- and µ-classes (the latter being the Chern character components of the Hodge
bundle). The coefficients of the µ-classes are easily related to those of log E(z) (§8.8), and this ex-
ample illustrates nicely the ambiguities in reconstruction, as follows. Genus zero CohFT’s of rank
one are described using κ-classes alone, [M, §III.6], because the Hodge bundle is trivial in genus
zero, where the µ-classes are therefore invisible. On the other hand, the flat vacuum CohFT’s
are precisely those involving µ-classes only (Proposition 8.10). Imposing all three conditions in
§1.8 leads to Z̃+ = 1 and E = Id, leaving only one choice: the Frobenius algebra structure on A,
determined by the single complex number θ(1).

(1.10) Reconstruction from genus zero. We now outline the reconstruction result of semi-simple ho-
mogeneous CohFTs from their underlying Frobenius algebra; full details are given in §7 and §8.

For any CohFT Z, a formal construction (Definition 7.1) produces a family Zu of CohFT’s,
parametrised by u ∈ U, an open (or formal) nieghbourhood of 0 ∈ A. In Gromov-Witten theory,
the H2 part of this family was described in §1.6. The Frobenius algebra structure on A varies in
this family and leads to a so-called Frobenius manifold structure on U; see §7.3 below for a minimal
discussion, or [D, M, LP] for an extensive one. A reconstruction theorem [M] determines the

3This is not altogether trivial, because the square is not quite Cartesian, due to the contractions of the universal
curve. Again, it is conditioned by our use of ordinary cohomology.
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genus-zero part of the CohFT from this Frobenius manifold. This fact has no known analogue for

the higher-genus part of the theory, largely because the cohomologies H•
(

M
n
g

)
are unknown.

However, for semi-simple theories, Givental [G1] conjectured a formula for the classifying
datum E from genus-zero information. (The conjecture was framed in the sightly different setting
of potentials, to be recalled in §1.12 below.) Specifically, he characterised E by a system of linear
ODE’s on U (Dubrovin’s first structure connection), and from there, the homogeneity constraint
§1.8.iii led to a unique solution. In the final sections of this paper, I verify the ODE’s for E in the
abstract setting of CohFT’s (along with a companion ODE for Z̃) and conclude

Theorem (1). A semi-simple Cohomological Field theory satisfying the homogeneity constraint 1.8.iii is
uniquely and explicitly reconstructible from genus zero data. For homogeneous theories with flat vacuum,
the Euler vector field and the Frobenius algebra structure suffice for reconstruction.

Reconstruction takes the form of a recursion for the Taylor coefficients of E(z) = ∑k Ekzk. Let us
spell this out in Gromov-Witten cohomology, when A = H•(X) with the quantum cup-product at
some point u ∈ Hev(X), assumed to define a semi-simple multiplication. Denote by µ the shifted
degree operator (deg−dimC(X))/2 on A, and by (ξ·u) that of quantum multiplication by the
Euler vector ξu at u. Then, the recursion

[(ξ·u), Ek+1] = (µ + k) · Ek

determines E(z) uniquely form E0 = Id. (See the proof of Theorem 8.15.) Thus, all Gromov-Witten
classes GWn

g,δ ∈ H•(Mn
g) are constructible from c1(X) and the quantum multiplication operator

(ξ·u) at a single (semi-simple) point u.

1.11 Remark. The series E(z) has an interpretation already flagged by Dubrovin [D]. Namely, the
formal expression E(z) · exp(−ξ ·u /z) gives the asymptotics at z = 0 of solutions of an ODE with
irregular (quadratic) singularities there (see §8.1). In the case of quantum cohomology, genuine
solutions have unipotent, but non-trivial monodromy around 0. (The monodromy logarithm is
the operator of classical multiplication by c1(X), cf. [D], which does not vanish for manifolds with
semi-simple quantum cohomology.) Because the asymptotic formula is single-valued, it cannot
represent a genuine solution and so the series E(z) cannot converge. This makes the prospect of
expressing E in terms of immediate geometric data of the symplectic manifold problematic; this
last question is very much open.

(1.12) Potential of a DMT. Let Z
n
g : A⊗n → H•(Mn

g) be the class associated by the DMT to the uni-

versal stable curve over the Deligne-Mumford space Mn
g . The primary invariants are the integrals

of the Z’s on the Mn
g ’s. However, Mn

g also carries the Euler classes ψ1, . . . , ψn of the cotangent

lines to the universal curve at the marked points, and more information about Z is recovered by
including ψ’s before integration. The resulting numbers are encoded in a generating series, the
(ancestor) potential, a function of a series x(z) = x0 + x1z + · · · ∈ A[[z]]:

A(x) = exp

{

∑
g,n

h̄g−1

n!

∫

Mn
g

Zn
g (x(ψ1), . . . , x(ψn))

}
; (1.13)

the sum excludes the values (g, n) = (0, 0), (0, 1), (0, 2) and (1, 0) for which M is not an orbifold.
The series in (1.13) need not converge analytically, but converges at least formally as a power series
in {x, h̄, x3/h̄}; so its exponential is well-defined in some space of C((h̄))-valued functions of x.
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1.14 Example. The trivial 1-dimensional theory has A = C and Z = 1 for all g and n; the integrand
is x(ψ1) ∧ · · · ∧ x(ψn) and A is the τ-function of Kontsevich and Witten.

More generally, any Frobenius algebra A can be coupled to the trivial cohomological field
theory, by letting each qZ

p
g be the degree zero class specified by the surface of genus g with p

inputs and q outputs. The potential is then expressible in terms of Kontsevich integrals.

The potentials Au corresponding to the family GWu of Gromov-Witten cohomology theories
of a compact symplectic manifold are parametrised by u ∈ A = Hev(X) — or in a formal version
thereof, since the convergence question seems open in general. They are known as the ancestor
GW potentials of X. Their relation to the more customary descendent potential, defined using the
ψ-classes and integration over the spaces Xn

g,δ, was determined4 by Kontsevich and Manin [KM2].

The ancestor-descendent relation was reframed by Givental in the setting of loop group actions,
which we now recall.

(1.15) Givental’s loop group conjecture. For clarity, let us focus here on Cohomological Field Theories
(D = Id), postponing discussion of the general case until §6. Let F((h̄)) be the space of C((h̄))-
valued polynomials on A[[z]]; the potentials A in (1.13) live in some completion of this, such as
the space of power series described in §1.12. (The choice of completion is not material, as our
constructions and group actions will reduce to recursively defined operations on power series
coefficients; see §6.) Define a symplectic form on the space A((z)) of formal Laurent series,

Ω(x, y) =
∮

β (x(−z), y(z)) dz,

using the Frobenius bilinear form β. We view F((h̄)) as a Fock representation of the Heisenberg
group H built on {A((z)), h̄Ω}. The symplectic group Sp on A((z)) acts projectively on suitably
chosen completions of F((h̄)) by the intertwining metaplectic representation. (The Lie algebra acts
on F((h̄)), and the portion of the action which we will need is integrable on a space containing the
potentials; see §6.) The Laurent series loop group GL(A)((z)) acts point-wise on A((z)). Consider
the following subgroups of Sp:

• SpL := Sp ∩ GL(A)((z)), the symplectic part of GL(A)((z));

• Sp+
L := Sp ∩ (Id + z · End(A)[[z]]).

The term “symplectic loop group” is sometimes used for SpL, but it really is the twisted form of
the loop group of GL(A). The subgroup Sp+

L contains the matrix series E(z) of §1.8. In [G1, G3],
Givental described the Kontsevich-Manin relation between descendent and ancestor potentials
of Gromov-Witten theory in terms of the action of SpL, without assuming semi-simplicity. In
addition, he proposed (and proved, for toric Fano manifolds) a formula for the value of the GW
ancestor potential Au at a semi-simple point u of quantum cohomology. This was formulated in
terms of the action Sp+

L , using ingredients which appear in Dubrovin’s isomonodromy description
[D] of semi-simple Frobenius manifolds.

Call ADM the subspace of those vectors in the cohomology ∏g,n H•(Mn
g ; (A∗)⊗n) of all Deligne-

Mumford spaces which are invariant under the symmetric groups. A DM field theory Z defines
a vector in ADM, by restricting to surfaces with no output points. (Furthermore, if the nodal
factorisation rule D is specified, Z is in turn determined by this vector.) A distinguished vector
IA ∈ ∏ H0 represents the trivial CohFT based on A. Let H+, H++ denote the subspaces zA[[z]] and

4For clarification, recall that the descendent potential carries additional “calibration” information from the 1-point,
or J- function, a choice of solution of the quantum ODE, which is not contained in our notion of a CohFT.
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z2 A[[z]] in the Heisenberg group H, acting on F((h̄)) by translation. In §6, we describe an action
of Sp+

L ⋉ H+ on ADM, which lifts the metaplectic and translation actions on potentials.5 Let Tx

denote the translation by x ∈ H+, (TxF)(y) = F(y − x), and write Tz short for Tz1, for the unit
1 ∈ A. My classification of DMT’s will imply the following.

Theorem (2). The CohFT’s with underlying semi-simple Frobenius algebra A constitute the Sp+
L ⋉H++-

orbit of the trivial theory IA. The theories with flat vacuum form the orbit of the subgroup Tz ◦ Sp+
L ◦ T−1

z .

The group element of Sp+
L ⋉ H++ taking IA to the theory with classification data {A, E(z), Z̃+} in

§1.3 is E(z) · ζ, with

ζ = z exp
(
−∑j>0

ajz
j
)
− z ∈ H++.

This formula is closely related to the coordinate changes studied by Kabanov and Kimura6 [KK].

Note that this ζ contains no z-linear term. Adding a term ζ1z, with ζ1 = ∑i ζi1Pi turns out to
change the structure constants θi of A, scaling them by (1+ ζi1)

2 (Proposition 6.13). Every complex
semi-simple Frobenius algebra can be obtained in this way from a sum of copies of the trivial one,
C with θ(1) = 1. It is tempting to say that all semi-simple CohFT of the same rank constitute a
single Sp+

L ⋉ H+-orbit, but there is trouble when some ζi1 = −1: in other words, the action of the
linear modes zA ∈ H+ on ADM has some singularities, so this re-formulation of the first part of
Theorem 2 requires some care.

Translation by z is the dilaton shift of the literature; it encodes the expression of ζ from E in
flat vacuum theories. With a general vacuum vector v(z) (as in §3.12), we are instead looking at
the set Tzv(z) ◦ Sp+

L ◦ T−1
z (IA); cf. §6.18. Even more generally, abandoning the CohFT condition

to allow D 6= Id enlarges the space of DM theories to the orbit of a larger subgroup Sp+ ⊂ Sp;
this requires a slightly different setup and will be discussed in §6, where the proof of Theorem 2 is
completed.

1.16 Remark. The translation action of H+ on the space of CohFT’s has an analogue for the zero-
modes A ∈ A[[z]]: this leads to the Frobenius manifold mentioned in §1.10. The interaction of
these translations with the group Sp+

L ⋉ H+ is rather complicated, given by a system of ODE’s
which we will derive in §7.4. For instance, A-translations and H+-translations do not commute.
In the setting of open-closed theories, translation along the Frobenius manifold and that by H+

correspond to deformations of the TFT coming from independent sources: to wit, deformation of
the category of boundary states, versus deformation of the cyclic trace.7

2. Field Theories from universal classes

We now review the definitions of FTFTs from the perspective of classifying spaces of oriented
surface bundles. In the process, we complete the definition of Cohomological Field theories; how-
ever, the list of axioms for more general DM theories is only completed in §4.5, after listing some
explicit conditions.

We may switch between oriented topological, smooth, metric and Riemann surfaces as conve-
nience dictates, because these structures are related by contractible spaces of choices (the spaces
of Riemannian metrics, or metrics up to conformal equivalence), so their classifying spaces —
the bases of universal surface bundles — are homotopy equivalent. Similarly, we can describe
boundary circles more economically as follows.

5A construction along similar lines was alluded to in [CKS].
6I am grateful to V. Tonita for pointing this out.
7Unfortunately, the author does not know of a written reference detailing this point of view.
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(2.1) Points versus boundaries. Call a surface (m, n)-pointed if it carries a set of m + n distinct un-
ordered points, separated into m incoming and n outgoing ones. Given a vector space A, the base X
of an (m, n)-pointed surface bundle ΣX carries local systems A(m), A(n) with fibres A⊗m, A⊗n, per-
muted by the monodromy in the base. Removing open disks centred at the special points shows
that, up to a contractible space of choices, points contain the same information as un-parametrised
boundary circles. Moreover, since Diff+(S1) is homotopy equivalent to its subgroup of rigid rota-
tions, we may capture the parametrisation information, again up to a contractible space of choices,
by specifying unit tangent vectors, or tangent rays. More precisely, there is a torus bundle X̃ ։ X
with fibre Tm × Tn, the product of unit tangent spaces at the special points.8 Up to homotopy, X̃
parametrises the surfaces in the family ΣX, together with all parametrisations of their boundary
circles.

(2.2) FTFT’s reviewed. Let us recall the functorial definition of FTFT’s, and then convert the data
to a collection of cohomology classes on the classifying spaces of surface bundles. This is espe-
cially necessary for DMT’s, where we must formulate the nodal factorisation and vacuum axioms
mentioned in §1.3.iv.

• A family TFT with fixed boundaries and coefficients in A assigns to each family ΣX 7→ X of
closed oriented (m, n)-pointed surfaces a class

Z̃(ΣX) ∈ H•(X̃; Hom(A(m), A(n))).

This must be functorial in X̃ and subject to the condition that sewing together any collection
of incoming-outgoing boundary pairs gives the corresponding composition of linear maps.

• In a free boundary FTFT, the class Z(ΣX) lives in H•(X; Hom(A(m), A(n))), is functorial in
X, and the sewing condition must hold for any given identification over X of an incoming-
outgoing boundary pair.

• A Lefschetz FTFT assigns such Z’s functorially to (chiral) Lefschetz fibrations of closed ori-
ented pointed surfaces.

• Finally, a Deligne-Mumford FTFT is a Lefschetz FTFT for stable surfaces, satisfying a nodal
factorisation rule and a vacuum axiom. We describe these in §§2.9–2.13 below, after introducing
the universal classes pZq.

2.3 Remark. (i) Single surfaces define a commutative Frobenius algebra structure on A.

(ii) “Sewing” of pointed surfaces in a family is well-defined, up to homotopy, from an identifica-
tion of tangent rays at the matched points.

(iii) As usual, nodes and special points must avoid each other.

(iv) Stability of surfaces leads to an orbifold description of the moduli of nodal surfaces, but this
does not play a role here. More important is the connection with Gromov-Witten theory,
which forces us into the setting of Deligne-Mumford spaces and cohomological field theories.
The classification of semi-simple theories remains unchanged for Lefschetz theories, which
allow pre-stable curves.

(2.4) Reformulation using universal classes. Let qM
p
g denote the classifying space of the universal sur-

face with p + q distinct ordered points, and denote by q M̃
p
g (or alternatively, q Mg,p, as is common

in the literature) the principal torus bundle defined by all choices of tangent rays at those points.

8X̃ is a principal bundle only if there is no monodromy, that is, if the special points can be ordered over X.
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Functoriality reduces a fixed-boundary FTFT to the specification of universal classes

qZ̃
p
g ∈ H•

Sp×Sq

(
q M̃

p
g ; Hom(A⊗p; A⊗q)

)
,

where the symmetric groups Sp,Sq act on q M
p
g by permuting marked points and simultaneously

on A⊗p,q by permuting the factors. Over C, equivariance under finite groups simply means in-
variance. With free boundary theories, we obtain classes qZ

p
g over q M

p
g , and in the case of DM

theories, qZ
p
g over the Deligne-Mumford compactifications qM

p
g .

The classifying space for the universal Lefschetz fibration has model which is perhaps less
familiar, as a finite-dimensional complex algebraic Artin stack q A

p
g of infinite type, classifying

nodal curves with arbitrary chains and trees of rational curves. This has an infinite descending
normal-crossing stratification, reflecting the unlimited bubbling that can occur in families.

(2.5) Sewing conditions. Sewing two specified boundary components together defines maps, uniquely
up to homotopy (with x = x′ + x′′ for x = g, p, q)

s : q′ M̃
p′

g′ ×
q′′ M̃

p′′

g′′ →
q−1M̃

p−1
g , (2.6)

and similar maps where several pairs of boundaries are simultaneously identified. The FTFT
sewing condition is

s∗
(

q−1Z̃p−1
)
= q′ Z̃p′ ◦ q′′ Z̃p′′ ,

with composition of the appropriate entries. Self-sewing in a family of single surfaces is also
permitted, but the result could be re-expressed by means of sewing on elbows.

Free boundary FTFT’s are different, in that the sewing maps (2.6) does not descend to the base
moduli spaces M, M′, M′′ for surfaces with free boundaries: sewing requires an identification of
the boundaries. A natural circle bundle π : ∂N ։ M′ × M′′ parametrises the possible identifi-
cations. This ∂N is also (the pull-back to M′ × M′′ of) the circular neighbourhood of a divisorial
boundary stratum in M, image of M′ × M′′ under a boundary map (see (2.10) below). Functorial-
ity stipulates that, after contracting out the A, A∗ factors of the two sewing indices, the pull-back

π∗(q′Z
p′

g′ ×
q′′Z

p′′

g′′ ) agrees with the restriction of the class q−1Z
p−1
g to ∂N.

(2.7) Nodal factorisation in Lefschetz theories. Every Lefschetz theory carries a nodal factorisation rule,
which describes Z(Σ), for a nodal surface family Σ, in terms of the normalised family Σ̃. This rule
is a consequence of the sewing condition: cutting out the pair of crossing disks near a chosen node
expresses Z(Σ) as a contraction of Z(Σ̃) with the crossing disk family. Functoriality describes the
latter by a universal formula in the Euler classes of the two tangent spaces at the node. Thus,
for of a pair of marked points of opposite type, the relevant operator is the nodal propagator
Z(⊃⊂) = D(−ω+, ω−) ∈ End(A)[[ω±]] mentioned in §1.3.iii. Similarly, the effect of attaching two
output points of Σ̃ into a node is controlled by a bilinear form B on A with values in k[[ω±]], while
inputs involve a co-form C ∈ (A ⊗ A)[[ω±]].

The tensors B, C and D are not independent: each of them determines the other two, by a
formal game with connecting elbows. In addition, B and C are symmetric under a switch of
the two disks, and this also translates into a symmetry constraint on D. We will list the explicit
formulae in §4.1 below.

2.8 Remark. When lifted from M′ × M′′ to ∂N, the nodal factorisation law becomes precisely the
smooth surface sewing axiom, by virtue of the identity D(−ω, ω) = Id.
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(2.9) Deligne-Mumford factorisation rules. The nodal factorisation condition can also be formulated
in a DMT, but as the pair of crossing disks is an unstable surface, the cutting argument used to
derive it in Lefschetz theories is no longer valid. We therefore adopt these rules as an additional
DMT axiom, and now spell them out.

Universally on Deligne-Mumford spaces, attaching marked points define the following bound-
ary morphisms, differing only in the type of the attaching points:

bD
2 : q′ M

p′

g′ ×
q′′M

p′′

g′′ →
q−1M

p−1
g , bD

1 : qM
p
g → q−1M

p−1
g+1,

bC
2 : q′ M

p′

g′ ×
q′′ M

p′′

g′′ →
qM

p−2
g , bC

1 : q M
p
g → qM

p−2
g+1, (2.10)

bB
2 : q′ M

p′

g′ ×
q′′ M

p′′

g′′ →
q−2M

p
g, bB

1 : qM
p
g → q−2M

p
g+1.

(There are corresponding maps for the Artin classifying stacks q Ap of Lefschetz fibrations.)

DMT’s are required to satisfy a factorisation rule under each of these maps, involving contrac-
tion with specified tensors B, C and D. Thus, for bB

2 : 1Mn′

g′ ×
1Mn”

g” → Mn
g , we require

(
bB

2

)
∗Zn

g = B(ω′, ω”)
(

1Zn′

g′ ⊗
1Zn”

g”

)
, (2.11)

where ω′, ω′′ are the two Euler classes at the node; similarly for the other maps, with D(−ω′, ω′′)
and C(−ω′,−ω′′), respectively. (The choice of signs here is adapted to our later use of ψ-classes,
in lieu of Euler classes.)

The tensors B, C, D should satisfy the consistency constraints already mentioned (and spelt
out in §4.1), which are guaranteed in a Lefschetz theory. As it turns out, these constraints are also
guaranteed in a semi-simple DM theory; so we could omit them from the axiom in this case. Refer
to §4.5 below for more detail.

2.12 Remark. In the familiar case of CohFT’s, we require that D = Id, B = β, and C is the inverse
co-form. Factorisation rules with interesting B appear in generalised-cohomology Gromov-Witten
theory [CG] (although the dependence on ω′, ω′′ has a very special form there, D is scalar).

(2.13) Vacuum axiom. In a Lefschetz theory, a distinguished vector v(z) ∈ A[[z]], defined by the
universal sphere with a single output, has the following property: for any Lefschetz fibration ΣX

with n > 0 input points and the associated family Σ′
X which ignores the first input, we have

Z(ΣX)
(
v(ω1), x2, . . . , xn

)
= Z(Σ′

X)(x2, . . . , xn),

where ω1 is the the first input Euler class. This is the smooth surface sewing rule at work.

Again, this story fails in a DMT, so our final DMT axiom is the specification of a “vacuum”
vector v(z), which must satisfy the following condition in the case of a CohFT. Let ϕ : Mn

g → Mn−1
g

be the morphism of Deligne-Mumford spaces induced by forgetting the first marked point. Then,

Zn+1
g

(
v(ω1), x2, . . . , xn

)
= ϕ∗Zn

g(x2, . . . , xn).

The vacuum condition is more complicated in general DMT’s with D 6= Id, where it gets corrected
by boundary terms. The reason is that ϕ does not classify the point-forgetting map on nodal
surfaces: the universal curve over Mn−1

g lifts to a contraction of the one over Mn
g . This contraction

turns out to be inoffensive for Z in a CohFT, but not so in general. We will not use the vacuum in
general DMT’s, so will not spell out the correction terms.

Later, we will concentrate on the special class of CohFT’s with flat vacuum, when v = 1.
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(2.14) PROP description. The sewing maps (2.6) assemble to a PROP structure on the spaces q M̃
p
g ,

which carries over to their homology. In this language, an FTFT is equivalent to an algebra over
the homology PROP. Similarly, the Deligne-Mumford boundary morphisms (2.10) give a PROP
structure on H•(Mg). In this case, self-sewing of single surfaces enhances this to a wheeled PROP
(a notion introduced in [MMS]). Cohomological field theories are algebras over the associated
homology PROP of DM spaces, but to capture the full CohFT structure, we must add a cyclic
structure, permuting inputs and outputs. (We lost the ability to switch inputs and outputs by
means of elbows.) DMT’s with general D are algebras over a twisted form of the DM homology
PROP. Free boundary FTFT’s do not fit into PROP language, for the reason explained in §2.5.

(2.15) Tautological classes. The classification will describe the various field theories in terms of the
tautological classes on the moduli of surfaces. We briefly recall the generating tautological classes
on Mn

g; those on Mn
g , M̃n

g are obtained by restriction. Let ϕ : Mn+1
g → Mn

g be the map forgetting
the last marked point. The marked points define n sections σi of ϕ, with smooth divisors [σi] as
their images. Let T∗

ϕ be the relative cotangent complex of ϕ and define

ψi := σ∗
i c1(T

∗
ϕ), κj = ϕ∗

(
ψ

j+1
n+1

)
,

(where ψn+1 on Mn+1
g is defined using σn+1 and Mn+2

g ). These classes satisfy the relations

[σi] · ψi =[σi] · ψn+1 = 0,

ψk
i = ϕ∗ψk

i + σi∗(ψ
k−1
i ), κj = ϕ∗κj + ψ

j
n+1.

The correction term σi∗(ψ
k−1
i ) in the first relation is only visible on Mn

g , but the one for κ also
appears on Mn

g . Thus defined, the κj are primitive: that is, under the boundary maps (2.10),

b∗2(κj) = κ′j + κ′′j , b∗1(κj) = κj.

Additional tautological classes on Deligne-Mumford spaces arise by the recursive pushing for-
ward of polynomials in the κ− and ψ−classes from boundary divisors.

(2.16) The stability theorems. The key to the classification are two stability theorems, due to Harer
[H] (later improved by Ivanov [I]), and to Madsen and Weiss [MW], respectively. For the first
theorem, let Mn

g,m be the base family of the universal surface of genus g with m+ n ordered points,
equipped with unit tangent vectors at the first m special points.

2.17 Theorem (“Harer stability” [H, I]). The maps Mn
g,m → Mn

g,m−1 and Mn
g,m → Mn

g+1,m, defined (up

to homotopy) by sewing in a disk, respectively by sewing on a two-holed torus, induce homology isomor-
phisms in degree less than (g − 1)/2.

An important consequence describes the homological effect of adding marked points:

2.18 Corollary (Looijenga, [L]). In the stable range of total degree < (g − 1)/2, we have

H•(Mn
g ; Q) ∼= H•(Mg; Q)[ψ1, . . . , ψn].

We reproduce the easy proof. The circle bundle π : Mg,1 ։ M1
g presents H•(Mg,1; Q) as the

cohomology of the differential graded algebra {H•(M1
g; Q)[η], d}, with deg η = 1 and dη = ψ1.

Now, thanks to Harer, a right inverse of π∗ : H•(M1
g; Q) → H•(Mg,1; Q) in the stable range is
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provided by the forgetful pull-back H•(Mg; Q) → H•(M1
g; Q). Therefore, π∗ is onto, in the stable

range. But then, ψ1 is not a zero-divisor in that range: if ψ1x = 0, then ηx is a class which is not in
the image of π∗. From the DGA presentation, we conclude that, in the stable range,

H•(Mg; Q) ∼= H•(M1
g; Q)/(ψ1)

so that H•(Mg)[ψ1] surjects and injects to H•(M1
g), giving the corollary for n = 1. Repeat for the

other ψ.

2.19 Theorem (“Mumford conjecture” [MW]). In the stable range, we have

H•(Mg; Q) = Q[κj], j = 1, 2, . . . .

(2.20) Primitive and group-like classes. We conclude by spelling out the role of κ-classes in our con-
text. Genus-stabilisation Mn

g,m → Mn
g+1,m defines a limiting homotopy type Mn

∞,m. This agrees

with the classifying space of the stable mapping class group Γn
∞,m of a surface with m fixed and n

free boundaries. Harer stability makes the fixed boundaries invisible in the homology of the clas-
sifying space, while the homological effect of free boundaries is described by Corollary 2.18; so
we focus on M∞,1. Sewing two surfaces, with one fixed boundary each, into a fixed pair of pants
defines a map

m : Mg,1 × Mh,1 → Mg+h,1, (2.21)

which gives a homotopy-commutative monoidal structure on ∐g Mg,1 and, in the limit, on M∞,1.
The latter becomes a group-like topological monoid, and its cohomology H•(M∞,1; Q) acquires a
(commutative and co-commutative) Hopf algebra structure. By the Milnor-Moore theorem, this
must be the free power series algebra in the primitive cohomology classes, that is, the classes x
satisfying m∗(x) = x ⊗ 1 + 1 ⊗ x. The κ’s do have that property (§2.15), so the Madsen-Weiss
theorem has the following important consequence.

2.22 Corollary. All primitive rational cohomology classes on M∞,1 are linear combinations of the κ’s.

2.23 Remark. Corollary 2.22 is equivalent to the rational Mumford conjecture. Madsen and Weiss
prove an integral version, identifying the homotopy type of the group completion of the topologi-
cal monoid ∐Mg with the infinite loop space Ω∞CP∞

−1 of the Madsen-Tillmann spectrum [MT]. An
integral, in fact spectrum version of Looijenga’s theorem was found earlier by Bödigheimer and
Tillmann [BT].

Another important notion is that of a group-like class X ∈ H•(M∞,1; Q), a non-zero class for
which m∗X = X ⊗ X. It is easy to see that the group-like classes are precisely those of the form
exp(x), with primitive x.

3. Smooth surface theories

Armed with the boundary maps between the Mg and the tautological classes, we proceed to clas-
sify FTFT’s of the first two types, involving smooth surfaces with parametrised or with free bound-
aries. This might be the place to confess to a minor gap in the classification: the definitions do not
seem to determine the value of the universal Z̃g without marked points, although a valid choice
can always be made from my data. For free boundaries, the same ambiguity applies to Z0

1. This
last, genus one problem persists for Lefschetz theories, but not for DMT’s, since M1 does not exist.

16



(3.1) Fixed boundary theories. With g = g′ + g′′, consider the effect on Z̃-classes of the operation of
sewing onto the general surface of genus g′ a fixed 2-holed surface of genus g′′:

1Z̃g = αg′′ · 1Z̃g′ on 1M̃g′

where α ∈ A is the Euler class of §0.4, and the left-side class has been restricted to 1M̃g′ . When α

is invertible, it follows that α−g · 1Z̃g stabilises, as g → ∞, to a class Z̃+ ∈ H•(M∞; A). The sewing

axiom, applied to the multiplication map (2.21) and corrected by the same power α−(g+h) on both
sides, implies that Z̃+ is group-like. It follows that

Z̃+ = exp
{
∑j>0

ajκj

}
, for certain aj ∈ A.

We have used the superscript “+” to flag the lack of a κ0-contribution, present in the classes Z̃.

3.2 Remark. Integrally, Z̃+ would be a group-like class in the A-valued cohomology of Ω∞CP∞
−1.

Additively, there exist additional primitive classes, the Dyer-Lashof descendants of the κ’s [Ti];
quite likely, analogous group-like classes exist as well. The new classes could perhaps be ruled
out by imposing the FTFT axioms at chain level.

Clearly, 1Z̃g is the restriction to 1Mg of αg · Z̃+; let us find mZ̃n
g . Sewing on large genus surfaces

to one boundary allows us to assume g is large, without loss of information. Map now 1M̃g to
mM̃n

g by sewing on to the universal surface a fixed sphere with n + 1 inputs and m outputs. This

sphere determines the map mSn+1 : A⊗(n+1) → A⊗m, multiplication to A followed by the mth
co-power A → A⊗m. Thanks to Harer, the map 1M̃g → m M̃n

g is a homology equivalence in a range

of degrees, so we detect mZ̃n
g by pulling back to 1M̃g, where we see the result of feeding 1Z̃g as one

of the inputs in mSn+1. Thus,
mZ̃n

g = mS1(α
g · Z̃+ · 1Sn)

and we conclude the desired classification, with freely chosen elements aj = ∑i aijPi of A:

3.3 Proposition (Fixed-boundary FTFTs). If m, n do not both vanish, then the matrix for mZ̃n
g is diagonal

in the tensor monomials of the normalised canonical basis. All entries are null, save for those relating p⊗n
i

to p⊗m
i ; these have the form

θ
χ/2
i · exp

{
∑j>0

aijκj

}
,

for fixed complex numbers aij. Each p⊗0
i stands for 1 ∈ C, if m or n (but not both) vanish.

Finally, every choice of numbers {aij} gives rise to an FTFT by this rule, if, in addition, we define Z̃g

defined by summing the above expression over i.

3.4 Remark. The argument fails when m = n = 0, and the axioms don’t seem to determine Z̃g for
closed surfaces, except in the stable range of homology, where we can detect it by lifting to Mg,1.

(3.5) Free boundaries and E. Restricting to surfaces with fixed boundaries determines a Z̃ as above.
Let now 1Zg,1 denote the lift of 1Z1

g to 1Mg,1. Recall that the latter is a circle bundle over 1M1
g and

classifies surfaces with a fixed incoming boundary and a free outgoing one. Sewing a fixed surface
of genus g′′ into the fixed incoming boundary of the general surface over 1Mg′,1 tells us that

1Zg,1 ∈ H•
(

1Mg,1; End(A)
)

restricts to 1Zg′,1 ◦ (α
g′′ · ) ∈ H•

(
1Mg′,1; End(A)

)
,
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with (x· ) denoting the operator of multiplication by x ∈ A. Again, we get a stable class

1Z+
1 (κ, ψ+) := 1Zg,1 ◦ (α

−g· ) ∈ H•
(

1Mg,1; End(A)
)

as g → ∞, (3.6)

minding that the cohomology ring is freely generated by the κj (j > 0) and the class ψ+ at the
outgoing point. Similarly, switching the roles of the boundary circles defines a stable class

1Z+,1(κ, ψ−) := lim
g→∞

(α−g· ) ◦ 1Z1
g (3.7)

Setting the κ’s to 0 in (3.6) defines a formal Taylor series E(−ψ) := 1Z+
1 (0, ψ) ∈ End(A)[[ψ]].

3.8 Lemma. We have

1Z+
1 (κ, ψ+) = E(−ψ+) ◦ (Z̃

+(κ)· ) and 1Z+,1(κ, ψ−) = (Z̃+(κ)· ) ◦ E(ψ−)
−1.

More generally, in any genus g,

1Z1
g = E(−ψ+) ◦ (α

gZ̃+(κ)· ) ◦ E−1(ψ−).

Proof. Modify the sewing above by letting both surfaces vary, while the sewing circle rotates freely.
This takes place over

∂N = 1Mg′,1 ×
T

1M1
g′′

where the circle T simultaneously rotates the two boundaries being sewn together. The sewn
surface is classified by a map ∂N → 1M1

g. Pull-backs to ∂N being understood, we have

1Z1
g′ ◦

1Z1
g′′ =

1Z1
g. (3.9)

In a moment, we will proceed by fixing the incoming or outgoing boundaries, as convenient. In
any case, ∂N → 1M1

g′ ×
1M1

g′′ is a circle bundle with Chern class −(ψ′ + ψ′′), using the ψ-classes

at the node. On the total space ∂N, ψ′′ = −ψ′, the common value representing the Euler class
of the sewing circle. The Leray sequence and our knowledge of stable cohomology show that
H•(∂N), below degree (g′′ − 1)/2, is freely generated over H•(1M1

g′) by the κ′′j . Similarly, it is

freely generated over H•(1M1
g′′) by the κ′j, below degree (g′ − 1)/2. Let now both g′ and g′′ be as

large as needed, and lift (3.9) to 1Mg,1; we obtain from (3.6) and (3.7), after cancelling powers of α:

1Z+,1(κ′, ψ′) ◦ 1Z+
1 (κ

′′,−ψ′) = Z̃+(κ). (3.10)

Using the relation κ = κ′ + κ′′ and the algebraic independence of κ′, κ′′, ψ′, we obtain the second
formula in the lemma by setting κ′′ = 0, and from there, the first formula by setting κ′ = 0.

For the final and more general formula, return to (3.9) and let only g′′ be large. Fixing the
incoming circle leads to

1Z1
g′ =

1Zg,1 ◦
(

1Zg′′,1

)−1

with both factors on the right now known. Minding that ψ′ = −ψ′′ gives the formula.

3.11 Proposition (Free boundary FTFTs). For (g, m, n) 6= (1, 0, 0), we obtain nZm
g as follows: each input

is transformed by E−1(ψ), with the respective ψ class; the product of these is multiplied by αg · Z̃+(κ), the
result is co-multiplied out to A⊗n, where each factor is transformed by the respective E(−ψ). The unit 1

substitutes for the empty input, and the Frobenius trace θ is applied if there is no output.
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Proof. If at least one marked point is present, we can repeat the final argument in the proof of
the previous lemma: for each output or input point, compose with a large-genus 1Z1

G or 1ZG,1,
respectively, to arrive at the known operator mZ>G,n. Since 1Z1

G is invertible and known, we are
done. The case m = n = 0 is handled as follows. Pull back Zg along the forgetful map ϕ : M1

g →

Mg. The universal closed surface bundle splits, when lifted to M1
g, into an open surface and a

disk sewed along their common (moving) boundary, and we can compute ϕ∗Zg from the known
formulae to get the desired

ϕ∗Zg = θ
(
αg · Z̃+(ϕ∗κ)

)
,

having used the primitivity of κ-classes. (More precisely, the κ-classes of the unpointed disk pre-
cisely undo the ϕ∗κ-correction of §2.15; see the discussion of the vacuum below, if more help is
needed.) Now, when g 6= 1, the map ϕ∗ is split in rational cohomology by integration against the
ψ-class down to Mg, so we recover Zg as hoped.

(3.12) The vacuum. The universal disk with outgoing boundary defines the vacuum vector v(z) ∈
A[[z]], where we take z to be the opposite of the boundary Euler class (and of the ψout at the output,

in the pointed sphere model). Let ϕ : pM
q+1
g → pM

q
g be the map which forgets the first input;

capping the first boundary in the universal surface with a disk shows that

pZ
q+1
g (v(ψ1), . . . ) = ϕ∗(pZ

q
g)(. . . ). (3.13)

Fixing the disk shows that v ≡ 1 (mod z). We say that that Z has flat vacuum if in fact v = 1.

3.14 Proposition. In the semi-simple free boundary FTFT build from data {E, Z}, the vacuum is given by

v(z) = E(z)
(

exp{−∑j>0
ajz

j}
)

,

and Z has a flat vacuum precisely when exp
{
−∑j>0 ajz

j
}
= E(z)−1(1).

Proof. This is the formula in Lemma 3.8 together with the equality κj = −(−ψout)j on 1M0. One

way to see the latter is to use the correction formula in §2.15 for the pull-back to 1M1
0, on which

space all κ’s vanish, and the two ψ-classes are opposite.

3.15 Remark. Unlike Harer stability and Looijenga’s result on ψ-classes, the Mumford conjecture
has not seriously been used: in the discussion so far, the κ’s could have been replaced by the
primitives in the Hopf algebra H•(M∞,1). However, later on, unknown primitive classes would
break the argument for reconstruction from genus 0.

(3.16) Comment on stable surfaces Deligne-Mumford theories, which we aim to classify, can be re-
stricted to families of smooth curves and they define free boundary FTFTs for stable surfaces only;
so we must track the role of stability in the arguments of this section. The discussion applies
with two exceptions: the construction of the vacuum, and the determination of Z0

g (in the proof
of Proposition 3.11). In a general DMT, the vacuum (specified in an extra axiom) can be used to
determine Z0

g. In semi-simple theories, we can detect v — and establish its existence — by going to

large-genus surfaces in the contraction formula (3.13); invertibility of Z̃+ allows us to replicate the
conclusion of Proposition 3.14. This helps explain why there will be no distinction later between
classification of semi-simple Lefschetz and DM theories.
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4. Lefschetz and DM theories: construction

Restricting a Lefschetz theory to families of smooth surfaces gives a free-boundary theory. In the
semi-simple case, this is parametrised by

(i) the Frobenius algebra A,

(ii) the class Z̃+ = exp
{

∑j>0 ajκj

}
of §3.1,

(iii) the formal Taylor series E(z) = Id + zE1 + z2E2 + · · · ∈ End(A)[[z]] of §3.5.

New information arises from the universal pairs of crossing disks, in the form of

(iv) the “nodal propagator” Z(⊃⊂) = D(−ω+, ω−) and the companion quadratic tensors B, C of
§2.7, all of which are formal series in the Euler classes of the two disks.

Ingredients (iii) and (iv) are subject to consistency constraints. In particular, we will see that B, C
and D determine each other in any Lefschetz theory, whether or not A is semi-simple. After
spelling out the constraints on B, C, D — and the compatibility condition with E, in the semi-
simple case — we will construct a Lefschetz theory from those data. Restriction to stable curves
gives a DMT. Unlike the proof of uniqueness in the next section, the construction does not require
semi-simplicity of A.

We will switch henceforth from the Euler classes ω of boundary circles to the ψ-classes at the
node, and in doing so must mind the signs: ω = −ψ at the center of an outgoing disk, but ω = ψ
for an incoming one. We use z’s to denote universal ψ classes.

(4.1) Relating on B, C and D. The discussion in this sub-section applies to any Lefschetz theory, not
necessarily semi-simple. The pairing

B : A ⊗ A → k[[z1,2]]

defined by two disks with incoming boundaries and crossing at their centres must be symmetric
under simultaneous swap of the A factors and of the nodal ψ-classes z1,2. The same symmetry
holds for the co-form output by two crossing disks,

C ∈ (A ⊗ A)[[z1,2]].

Each of these pairs of disks can be constructed from ⊃⊂ and from the left or right elbows ⋐, ⋑.
To simplify notation in converting to algebra, we use the Frobenius pairing β to express quadratic
tensors as endomorphisms: define B′ by β(a1, B′(a2)) = B(a1 ⊗ a2), and similarly define Z′(⋐) ∈
End(A)[[z]] from Z(⋐), with z standing for the Euler class of the second input circle. We then have

B′(z1, z2) = Z′(⋐)(z1) ◦ D(z1, z2); (4.2)

similarly, defining the operator C′ by β(a1, C′(a2)) = β⊗2(a1 ⊗ a2, C), and Z′(⋑)(z) by the same
rule (with z the Euler class of the second circle) leads to

C′(z1, z2) = D(z2, z1) ◦ Z′(⋑)(z1), (4.3)

and these endomorphisms must satisfy B′(z2, z1) = B′(z1, z2)∗ and C′(z2, z1) = C′(z1, z2)∗.

We can eliminate the operators Z′(⋐) and Z′(⋑) from formulas (4.2) and (4.3):

4.4 Proposition. We have

Z′(⋐)(z) = B′(z,−z) = D∗(0, z) ◦ D−1(z, 0) = C′(−z, z)−1 = Z′(⋑)(−z)−1.
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Proof. The first identity arises by setting z = z2 = −z1 in (4.2): this results in the specialisation
D(z,−z) = Id, as in §1.3.iii. For the second, set one of the arguments to 0 and the other to z in (4.2)
to get

B′(0, z) = D(0, z), B′(z, 0) = Z′(⋐)(z) ◦ D(0, z),

and now use the symmetry of B. The last two identities are reached by the same route, but using
equation (4.3). Incidentally, equality of the outer terms in (4.4) is the equivariant form of Zorro’s
lemma.

Equations (4.2), (4.3) and (4.4) allow us to express B, C and D in terms of each other. In partic-
ular, note the equivalent Cohomological Field theory constraints B′ = Id ⇐⇒ C′ = Id ⇐⇒ D = Id.

(4.5) Deligne-Mumford data and constraints. In a DMT, the data B, C and D are supplied in the nodal
factorisation axioms, controlling the behaviour of Z-classes at the boundary of Mn

g . The arguments
of §4.1 are now disallowed, because the elbows ⋐,⋑ are unstable surfaces. Instead, the relations
between B, C, D are imposed as consistency constraints on the data. (In the process of interpreting
the formulas form the previous section, we define Z(⋐), Z(⋑) from B and C by Proposition 4.4.)
Equivalent constraints can be formulated for each datum separately, as follows:

(i) symmetry of B;

(ii) symmetry of C;

(iii) the identity D(z,−z) = Id, together with an awkward adjointness condition on D.

(We shall not use this adjointness condition on D, and leave it to the reader to spell it out.) With
these constraints, the list of axioms of a DMT is finally complete!

Let us note, on the side, that it is unnecessary to impose the constraints in semi-simple theories,
as they can be inferred from the other axioms by a different method. Namely, one considers the
universal curve with a single node and two components of large genus, each carrying a marked
point, and computes its Z-class in the three possible nodal factorisations, using B, C and D. This
suffices to detect the identities of §4.1 for the usual reasons: the surface operators are invertible,
and the nodal ψ-classes are free algebra generators in the stable range. (The details of the argument
closely parallel the proof of Lemma 3.8, and are left to the reader.)

(4.6) Constraint on E, and the CohFT condition. Thanks to Proposition 3.11, in a semi-simple theory
we have

Z′(⋐)(z) = E−1(−z)∗ ◦ E−1(z),

whence equation (4.4) gives the compatibility constraint between E and each datum B, C and D.
For example, fixing a symmetric B subjects E to the constraint

B′(z,−z) = E−1(−z)∗E−1(z), (4.7)

and determines E up to left multiplication by any End(A)-valued Taylor series F(z) = Id + O(z)
which preserves the symplectic form on A((z))

ΩB(a1, a2) = Resz=0 B(−z, z) (a1(−z), a2(z)) dz.

In particular, in a CohFT with B = Id, (4.7) becomes the standard symplectic condition

E∗(z) = E−1(−z),
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which says that E(z) preserves the symplectic form

Ω(a1, a2) := Resz=0 β (a1(−z)a2(z)) dz.

The constraint on E must applies in any semi-simple DMT: we can detect the requisite identity in
the tubular neighbourhood of a nodal stratum in large genus.

(4.8) Alternative parameters for semi-simple theories. The following alternative description will be
useful in §6. Since D(z,−z) ≡ Id, we can write

C′(z1, z2) = E
(
z1) ◦ (Id + (z1 + z2)W

′(z1, z2)
)
◦ E∗(z2) (4.9)

for a uniquely determined W ′ satisfying the straight-forward symmetry constraint

W ′(z1, z2)
∗ = W ′(z2, z1),

corresponding to a symmetric W ∈ (A ⊗ A)[[z1,2]]. The triple (Z̃+, W, E) will be an alternative
set of parameters for a semi-simple DMT or Lefschetz theory, with symmetry of W as the only
constraint. For example, in these parameters, the CohFT condition becomes

W ′(z1, z2) =
E−1(z1)E

−1(z2)∗ − Id

z1 + z2
,

which can be met precisely for symplectic E.

Finally, we give the promised construction of a Lefschetz theory with compatible data (i)–(iv).

4.10 Proposition. Given any Frobenius algebra A and data Z̃+, E and B, subject to the constraint (4.7),
there exists a Lefschetz theory with nodal bilinear form B, and which on smooth surface families is given by
Proposition 3.11.

Proof. Here is a recipe to produce a field theory; for definiteness, we write it on Mn
g but An

g would
work as well. For a single surface Σ, the smooth-surface and nodal factorisation rules leave no
choice: resolve the surface, viewing all nodal points as outgoing say, then apply the free boundary
formula to each component, and finally use B(ψ′, ψ′′) to contract the two factors of A at each node
(formula 2.11). Clearly, this recipe works in any family which does not vary the topological type
of the surface, and in particular over any stratum of Mn

g . However, patching these classes together
when attaching the strata requires more comment.

For any boundary stratum, the recipe just given can also be applied to nearby smoothings of
our nodal surface Σ. These smoothings have a distinguished handle which degenerates to the
node; we can cut this handle and use, in contracting with B, the Euler class of the cutting circle,
with the two choices of sign, in lieu of the nodal ψ-classes. Let us call this the nodal recipe. The
nodal recipe is unavailable as we move farther into the bulk of Deligne-Mumford space, where
the handle is lost; the smooth recipe, based on the true topology of the surface, must take over. Con-
straint (4.7) ensures the agreement of the smooth and nodal recipes, at the level of cohomology, in
the region where both can be used. However, to produce a well-defined cohomology class on Mn

g,

we must exhibit cocycle-level representatives, such as differential forms, for the local Z-classes, and
check their agreement on overlaps. (Choose the overlaps to be (poly-) annular neighbourhoods of
the Deligne-Mumford strata.)

For this purpose, we choose differential forms ψ̃ representing the ψ’s over Mn+1
g , such that:

(i) ψ̃n+1 vanishes near the sections [σi] and near the nodes of the universal curve
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(ii) The closed forms ψ̃′, ψ̃′′ at a node are also defined on a tubular neighbourhood of the locus
of nodal curves, and ψ̃′ = −ψ̃′′ in an annular neighbourhood.

This is possible because the line bundle det σ∗
n+1T∗

ϕ is trivial near the [σi] and flat near the nodes,
so its curvature forms in any metric which is constant near [σi] and near the nodes will work.

Apply now the nodal recipe for Z with differential forms, using
∫

ϕ ψ̃
j+1
n+1 for each occurrence

of κj in the cohomological formula. Vanishing of ψ̃n+1 near the nodes allows us to omit nodal
neighbourhoods of the surface when computing the integral, and gives a well-defined differential
form expression for Z of the cut surface Σcut with values in A ⊗ A, over a small neighbourhood
of the boundary of Mn

g . We can then contract with B(ψ̃′, ψ̃′′). In other words, we can continue to

use the nodal recipe in a neighbourhood of any given boundary stratum, using Σcut and the forms
ψ̃′, ψ̃′′ as substitutes for the boundary Euler classes. Moving now a little further away, into the
annular neighbourhood where ψ̃′ = −ψ̃′′, constraint 4.7 shows that contraction with B simply has
the effect of cancelling the output E(ψ̃)-twists in the formula for Z(Σcut). As a result, the nodal
and smooth recipes agree at the level of forms. This gives the desired patching.

4.11 Remark. Another construction of the classes Z will be given in §6, in terms of a group action
on cohomology of the Deligne-Mumford spaces.

(4.12) The vacuum in Lefshetz theories. Existence of a vacuum (§2.13) follows from the Lefschetz the-
ory sewing rule. In the theory of Proposition 4.10, v(z) is given by the formula of Proposition 3.14,
and the flat vacuum condition v(z) = 1 amounts to

exp
{
−∑j>0

ajz
j
}
= E−1(z)(1). (4.13)

In the semi-simple case, large genus surfaces detect the vacuum, so the restricted Deligne-Mumford
theory will also have a flat vacuum precisely when (4.13) holds.

5. Deligne-Mumford theories: uniqueness

This section contains the key argument of the paper: we show that semi-simple DMT’s are uniquely
determined by the nodal propagator D and by the associated free-boundary theory on smooth
curves.9 The argument also applies to Lefschetz theories, but we focus on the DM case. A re-
formulation of the main result, suggested by one of the referees, is found in the appendix to this
section.

(5.1) Extending Z-classes over Deligne-Mumford strata. Let j : S →֒ M be the divisor parametrising
a (locally versal) nodal degeneration of a family ΣM → M of marked Riemann surfaces. The
normal bundle νS to S in M is the tensor product L′ ⊗ L′′ of the complex tangent lines at the
two exceptional points p′, p′′ of the normalised surface Σ̃ over S; as to its Euler class, eul(νS) =
−(ψ′ + ψ′′).

Since p′ and p′′ may be switched by the monodromy over S, we view them both as outgo-
ing. Over S, and hence over a tubular neighbourhood N, Z(Σ) is the contraction of Z(Σ̃) ∈
H•(∂N; A(2)) by B(ψ′, ψ′′). The Mayer-Vietoris sequence

· · · → H•−1(∂N)
δ
−→ H•(M) → H•(M \ N)⊕ H•(N) → H•(∂N)

δ
−→ · · · ,

9In the context of chain-level theories, this fact is true without the semi-simplicity assumption; but in that situation,
it can be made obvious with the right definitions.
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shows that cohomology classes over M \ S and N patch into one over M, if they agree over the cir-
cular neighbourhood ∂N; but an ambiguity arises from the δ-image of H•−1(∂N). More precisely,
if η is a connection form on the circle bundle ∂N → S, then H•(∂N) is computed as the cohomol-
ogy of the DGA H•(S)[η], with differential dη = eul(νS). For a ∈ H•−1(∂N), δ(a) is given by the
differential of any extension of a to N as a co-chain. This kills classes pulled back from S, while
a class bη, with b from S, is sent to j∗(b). Now, bη is a co-cycle iff b · eul(νS) = 0, so the patching
ambiguity is precisely the Thom push-forward j∗ of the annihilator of eul(νS) in H•−2(S).

This observation applies to Deligne-Mumford strata S of any co-dimension c: a class in H•(M)
with known restrictions to M \ S and S is ambiguous only up to addition of some j∗(b), with
b ∈ H•−2c(S) annihilated by eul(νS). We see this from the long exact cohomology sequence

· · · → H•−2c(S)
j∗
−→ H•(M) → H•(M \ S)

δ
−→ H•−2c+1(S) → . . . ,

(where we have used the Thom isomorphism j∗ : H•−2c(S) ∼= H•(M, M \ S)) and from the fact that
j∗(b)|S = eul(νS) · b. Note that eul(νS) is the product of Euler factors for the Deligne-Mumford
divisors containing S.

(5.2) Uniqueness for large genus: the main idea. If M \ S is the universal family of smooth surfaces of
large genus and S a boundary divisor in its DM compactification, Looijenga’s theorem (2.18) en-
sures that eul(νS) = −ψ′ −ψ′′ is not a zero-divisor within a range of degrees, as one component of
Σ̃ must have large genus. Classes then patch uniquely. This applies to strata of any co-dimension,
and even if the family M includes nodal and reducible surfaces, the only requirement being that
each node defining the degeneration to S should belong to at least one large genus component.
This is the germ of an inductive proof of unique extension of Z(ΣM) to the Deligne-Mumford
boundary. The induction requires a careful stratification of the Deligne-Mumford spaces Mn

g .

(5.3) Stratification of Mn
g . Assume that n > 0, and call the irreducible component of the universal

curve containing the marked point n special. We now decompose Mn
g following the topological type

τ of the special component. A partial ordering on the resulting strata is defined by stipulating
that higher special types can only degenerate to lower ones (plus extra components, which cease
to be special). We extend this to some complete ordering; an example is the dictionary order on
geometric genus, number of nodes and total number of marked points of the special component.
(Nodes linking the special component to other components should be counted for this purpose as
marked points, not nodes.) The smooth stratum Mn

g is by itself. Every stratum in the decompo-

sition is isomorphic to (Mν
γ × M)/F, where γ and ν pertain to the special component, while M

parametrises the complementary components, and F is the group of symmetries of the modular
graph describing the topological type our curves.

5.4 Example. With g > 2 and n = 1, if we split off an elliptic curve crossing the special component

at two nodes, γ = g − 2, ν = 2, M = M
2
1 and F = Z/2, switching the two nodes.

Our decomposition Mτ of M
n
g is not a stratification in the strict sense: it is not compatible with

the dimensional ordering. However, we have the following:

(i) Each Mτ is a union of Deligne-Mumford strata.

(ii) Every descending union ∐τ′≥τ Mτ′ of strata is open.

(iii) Each Mτ is a closed sub-orbifold of ∐τ′≥τ Mτ′ .

(iv) The normal bundle to Mτ is (locally) a sum of lines L′ ⊗ L′′ for tangent line pairs at the nodes
which belong to the special component (and possibly one other component).
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Parts (i) and (ii) are clear by construction. To see (iv), choose a surface Σ in Mτ. It belongs to a
DM stratum MΣ, which is wholly contained within Mτ. The deformation space of Σ is smooth,
and its tangent space is the sum of the lines L′ ⊗ L′′, over all nodes, with the tangent space to
MΣ. The nodes which lie on the special component give deformations changing the topology of
the special component, hence they represent normal directions to Mτ; whereas the other nodes
correspond to deformations of the complement of the special component, which are tangent to
Mτ. An automorphism of Σ preserves the special component, and cannot interchange tangent and
normal lines. This shows that the symmetry group F, acting on the tubular neighbourhood of Mτ,
preserves the decomposition into tangent and normal directions; so Mτ has no self-intersections,
proving smoothness in (iii).

(5.5) Unique patching. Let us now prove uniqueness of the patched class on every Mn
g (n > 0).

Attach to the marked input point n a moving smooth surface ΣG of large genus G with an incoming
point marked “−′′ and an outgoing one marked “+′′ (the latter attached to n). This embeds S :=
Mn

g ×
1M1

G as part of the boundary of Mn
g+G. Let, as before, N be a tubular neighbourhood of S

and ∂N its boundary.

5.6 Lemma. The projection ∂N → Mn
g × M1

G forgetting the point + gives an isomorphism in degree less
than (G − 1)/2:

H•(∂N) ∼= H•(Mn
g)⊗ H•(MG)[ψ−].

Proof. The description of ∂N as a circle bundle over S gives the description of H•(∂N) in the stable
range as the cohomology of the differential graded algebra

H•(Mn
g)⊗ H•(MG)[ψ+, ψ−, η] with dη = ψn + ψ+,

which implies our statement.

Now, S parametrises nodal degenerations at n = + of those surfaces corresponding to the
open union of U of DM strata in Mn

g+G which meet ∂N. We carry over our type decomposition

of §5.3 to U ⊂ Mn
g+G with special point −, and observe that properties (i)–(iv) continue to hold.

In addition, the special component now has geometric genus G or higher. All the normal Euler
classes in (iv) are then products of free generators of the cohomology ring. The classes Z over the
Uτ then patch uniquely. But each Uτ factors as Mν

G+γ × M, and M parametrises surfaces whose
type is strictly lower than that of geometric genus g, with n marked points. We can inductively
assume their Z-classes to be known; the factorisation rule gives the Z-class on each Uτ, therefore
on all of U and then also on S. The class on S is Zn

g ◦ D(−ψn, ψ+) ◦ 1Z1
G, with D fed into the nth

entry of Zn. Lifting to ∂N recovers Zn
g, by Lemma 5.6.

(5.7) Pre-stable surfaces. Restriction to stable surfaces may seem unnatural from the axiomatic point
of view. There are Artin stacks An

g parametrising all pre-stable curves, nodal curves with no con-

dition on the rational components: they arise from stable curves by inserting chains of P1’s at a
node (leading to semi-stable curves) and trees of P1’s at smooth points. However, these stacks also
have normal-crossing stratifications à la Deligne-Mumford, and the inductive argument applies
as before, ensuring uniqueness of the extension to An

g.

(5.8) Appendix: An infinite-genus Deligne-Mumford space. One referee observed that the splitting re-
sult of this section has a re-formulation in the guise of a homological splitting of a certain “infinite-
genus Deligne-Mumford space” Mn

n·∞ into its constituent strata. This space is a partial completion
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of the classifying space BΓn
∞ of the infinite-genus mapping class group, and can be obtained by the

addition of certain boundary strata. Roughly speaking, Mn
n·∞ parametrizes infinite-genus nodal

surfaces with n marked points such that each irreducible component which carries a marked point
has infinite genus, but the other components have finite genus.

A geometric construction of the requisite DM space, as well as its moduli interpretation, re-
quire some effort; so I shall only outline the story. While it is true that we need the spaces only up
to homotopy in order to know their cohomology, we need to describe Mn

n·∞ as a stratified homo-
topy type, with normal structure to the strata. In this format, the space can be assembled from its
constituent strata, which are products of various Mk

g and factors of BΓl
∞, in the manner in which

Mn
g is assembled from its Deligne-Mumford strata, and with the same normal-crossing structure.

Readers familiar with the structure of Deligne-Mumford boundary divisors should have no trou-
ble supplying the details for this case.

A point in Mn
n·∞ represents a nodal curve C; to this, we associate its stable graph γ̃(C) in the

usual way (a genus-labeled vertex for each component, an edge for each node, a labeled external
edge for each marked point), and the modified graph γ(C) which collapses all the edges which
link vertices of finite genus. We now stratify Mn

n·∞ according to the modified graph. (For this
purpose, one must take care that the ‘infinite’ genera of components of the curve are really very
large numbers, to be stabilized later; for instance, splitting off some finite genus piece from a large
genus surface changes the graph. This book-keeping must be built into the construction of Mn

n·∞.)
For a single marked point, we recover the stratification of §5.3 by topological type of the special
component (now stabilised to infinite genus). Call cγ the complex co-dimension of Mγ.

There is a partial ordering on strata, compatible with degeneration of the infinite-genus com-
ponents: γ ≥ γ′ if the closure of the stratum Mγ contains Mγ′. (This happens as soon as the former
meets the latter.) This gives an increasing filtration of Mn

n·∞ by the open subsets Fγ := ∐γ′≥γ Mγ′ .
The following proposition, suggested by the referee, has the same proof as Lemma 5.6.

5.9 Proposition. (i) The cohomology spectral sequence associated to the filtration Fγ collapses at the first
page:

grH•(Mn
n·∞) =

⊕
H•(Mγ)[2cγ].

(ii) Every cohomology class of Mn
n·∞ is uniquely determined by its restrictions to all the strata Mγ.

6. A group action on DM field theories

This section reformulates the classification of semi-simple DMT’s in terms of the action of a sub-
group of the symplectic group on the cohomology of Deligne-Mumford spaces. This construction,
which lifts some of Givental’s quadratic Hamiltonians, may have been first flagged by Kontse-
vich [CKS] (see also the recent [KKP]), and plays a substantial role in his study of deformations
of open-closed field theories. Here, it is merely a convenient way to rephrase my classification,
but it does provide the link with Givental’s original conjecture, which was formulated in terms of
CohFT potentials. The context is more general than in the Introduction: we allow D 6= Id, and this
requires us to review the notation.

(6.1) Definitions. Let ∆ be the completed second symmetric power of A[[z]]; we may view it as the
space of (symmetric) 2-variable Taylor series in A⊗2[[z1,2]]. The group GL(A)[[z]] acts on V ∈ ∆

point-wise,
Adg(V)(z1,2) := (g(z1)⊗ g(z2)) ◦ V(z1,2).

26



Let GL+ ⊂ GL(A)[[z]] be the congruence subgroup ≡ Id (mod z), and define Sp+ := GL+
⋉

exp(∆), the second factor denoting the vector Lie group with Lie algebra ∆. Call F the space of
polynomial functions on A[[z]], introduce a formal parameter h̄ and consider, on the space F((h̄))

• the translation action of A[[z]]: (TxF)(y) = F(y − x);

• the geometric action of GL+: (gF)(x) = F(g−1x);

• the action of exp(∆), exponentiating the quadratic-differentiation action of h̄∆.

Together, these assemble to an action of Sp+
⋉ A[[z]]. When A[[z]] is doubled to a symplectic

vector space, F can be regarded as the Fock representation of its Heisenberg group H constructed
therefrom, Sp+ is a subgroup of the symplectic group Sp, acting on H, and ∆ is the “upper right
corner” of the Lie algebra of Sp. The (projective) metaplectic representation of Sp on F induces
on F((h̄)) the action of Sp+ that we have just described, except that we have chosen to rescale ∆

by h̄. To be precise, only the Lie algebra of Sp acts on polynomial functions on A[[z]]; integrating
the action to the group Sp requires one to complete F in some way. Nonetheless, ∆-differentiation
does exponentiate on F((h̄)), and our h̄ scaling will match the action we need on DMT potentials.

Note that we have not committed to an identification of the symplectic space A[[z]] ⊕ A[[z]]∗

with (A((z)), Ω) as in §1.15. Most importantly, the geometric action of (symplectic group elements)
g ∈ GL+ does not agree with the metaplectic one, induced from its point-wise action on A((z)) in
§1.15: rather, the latter comes from a different embedding of (the symplectic part of) GL+ in Sp+;
see Proposition 6.17 below.

(6.2) Action on DMT’s. A Deligne-Mumford theory defines a vector in the space of Sn-invariant
cohomologies

ADM := ∏
g,n

H•
(

Mn
g ; (A∗)⊗n

)
Sn .

To any Z ∈ ADM, not necessarily one coming from a DMT, we assign as in §1.12 its potential

A(x) = exp

{

∑
g,n

h̄g−1

n!

∫

Mn
g

Zn
g (x(ψ1), . . . , x(ψn))

}
, (6.3)

living in a completion of F((h̄)). It converges as a formal power series in h̄, x and x3/h̄, but is in fact
of a very restricted kind, thanks to the dimensions 3g + n− 3 of the spaces Mn

g . Thus, the exponent

is a formal series in {x, h̄, x3/h̄} for x ∈ A ⊕ Az, whose coefficients are polynomials in the z2 A[[z]]
variables. This shows that the differentiation by z2 A[[z]] and of h̄∆ can be exponentiated to a linear
enlargement of F((h̄)) which contains the potentials.

Let H+ and H++ be the natural lifts of zA[[z]], z2 A[[z]] in H. I will define an action of Sp+
⋉H++

on ADM which lifts the action on potentials. Now, a distinguished point IA ∈ ADM represents
the trivial theory based on A; its (g, n)-component is the nth co-power of αg (interpreted as the
Frobenius trace, if n = 0). We will verify the following DMT version of Theorem 2: the semi-
simple DM theories constitute the Sp+

⋉ H++-orbit of IA. Specializing to Cohomological Field
theories will lead to the original version of Theorem 2.

As we will see, this lifted action extends infinitesimally to the larger group Sp+
⋉ H+, but the

exponentiated action of the linear modes zA ⊂ H+ has singularities. We will compute the action
explicitly in the case of semi-simple DMT’s, and will see that these linear modes vary the algebra
structure of A, re-scaling the projectors. On the other hand, a similarly-defined translation by
zero-modes is more complicated, and does not commute with the rest of H+; see §8.
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(6.4) Translation. Let Z ∈ ADM be any class. For a(z) ∈ z · A[[z]], define a new class aZ by setting

aZn
g(x1, . . . , xn) =: ∑

m≥0

(−1)m

m!

∫ Mn
g

Mn+m
g

Zn+m
g (x1, . . . , xn, a(ψn+1), . . . , a(ψn+m)).

All ψ-classes are on Mn+m
g . With a = 0, we recover Z. For dimensional reasons, the sum is finite if

a ∈ z2 · A[[z]], but linear components zA can cause convergence problems, and should a priori be
treated as formal variables. For semi-simple DMT’s, we will see below that aZ depends rationally
on a ∈ zA.

We claim that a

(
bZ

)
= a+bZ. Indeed, the second-order infinitesimal variation, capturing the

linear effect of an infinitesimal b-translation followed by that of an a-translation, is

δ2Zn
g

δaδb
(x1, . . . , xn) =

∫ Mn
g

Mn+1
g

∫ Mn+1
g

Mn+2
g

Zn+2
g (x1, . . . , xn, a(ϕ∗ψn+1), b(ψn+2)) , (6.5)

where ϕ is the morphism forgetting the point n + 2. The difference a(ψn+1) − a(ϕ∗ψn+1) is a
multiple of [σn+1] (cf. §2.15); it is killed by ψn+2, therefore also by b(ψn+2). As a result, the right-
hand side is symmetric in a, b.

The same argument, using the presence of ψ-classes in a, gives the binomial expansion
∫

Mn
g

Zn
g (x + a(ψ1), . . . , x + a(ψn)) = ∑k

(
n

k

) ∫

Mk
g

aZk
g (x, . . . , x) .

Defining a potential Aa from aZ as in (1.13) leads to

Aa(x) = A(x − a) for a ∈ zA[[z]].

In other words, Z 7→ aZ lifts to DMT classes the translation action of a on F((h̄)).

(6.6) The Sp+-action. It is clear how the action of elements g(z) ∈ GL(A)[[z]] can be lifted to ADM:
the ith input of Z is transformed by g−1(ψi). The quadratic differentiations in ∆ can be imple-
mented by the addition of boundary terms, as I now describe.

Recall first that Mn
g has one boundary divisor Dir parametrising irreducible nodal curves of

genus g − 1, and additional divisors corresponding to reducible nodal curves. The latter ones are
labelled by tuples (g′, g′′, n′, n′′, σ), where (g′, n′)+ (g′′, n′′) = (g, n) and the partitions σ of marked
points range over co-sets in Sn/(Sn′ ×Sn′′). As usual, forbidden values of (g′, n′) or (g′′, n′′),
giving unstable degenerations, are excluded. Our labelling double-counts the boundaries because
of the interchange (g′, n′) ↔ (g′′, n′′); in the case when g′ = g′′ and n′ = n′′, this becomes an
involution of the respective boundary stratum, interchanging the branches at the node. In other
words, a label determines a boundary stratum together with an ordering of the two branches.
(This also applies to Dir, which is a Z/2-quotient of Mn+2

g−1.) Denote by ψ′, ψ′′ the two ψ-classes

at the node. Call Λ the set of labels for reducible degenerations, let Θλ be the Thom class of the
boundary Dλ, λ ∈ Λ and Θir the one for Dir.

6.7 Definition. The infinitesimal action of δV = v′zp ⊗ v′′zq + v′′zq ⊗ v′zp ∈ ∆ on Z ∈ ADM is
given by

δZn
g(x1, . . . , xn) =− ∑

λ∈Λ

Θλ ∧ Zn′+1
g′ (xσ(1), . . . , xσ(n′), v′) ∧ ψ′p

∧ Zn′′+1
g′′ (xσ(n′+1), . . . , xσ(n), v′′) ∧ ψ′′q

− Θir ∧ Zn+2
g−1(x1, . . . , xn, v′, v′′) ∧ ψ′p ∧ ψ′′q.
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(An extension of the boundary class Z to a small tubular neighbourhood has been implied.)

This is a non-linear action — notice the quadratic term – that is, a vector field on ADM. To see
that this really defines an action of ∆, we must check that the effects of any two δV, δW commute.
Now, the second variation, computed in either order, is expressed as a sum over all boundary
strata of complex co-dimension 2 in Mn

g . These strata are labelled by stable curves with two dis-
tinguished nodes, and a stratum S contributes the following term: the Thom class of S, times the
product of Z-classes, with one factor for each irreducible component of the curve, and having the
pair of entries at the two nodes contracted with δV, respectively with δW. We are exploiting the
facts that nodal ψ-classes of boundary strata restrict to their counterparts on second boundaries,
and that the Thom push-forwards, from these same second boundaries, factorise into two succes-
sive Thom push-forwards of the type appearing in Definition 6.7. This is the desired symmetry of
the second variation.

Let us now show that the actions just defined on ADM assemble to an action of Sp+
⋉ H+.

6.8 Proposition. The action of GL(A)[[z]] intertwines naturally with those of H+ and ∆, which commute
with each other. Moreover, the resulting action of Sp+

⋉ H+ lifts the metaplectic action on potentials.

Proof. The statement about GL is clear, as it merely transforms the input arguments. We now
check the infinitesimal ommutation of H+ with ∆. Recall that the derivative (∂aZ)n

g in the direction

a ∈ H+ is the integral along the universal curve of the a-contraction a ⊢ Zn+1
g . Call ϕ : M•+1

g → M•
g

the last forgetful morphism. Omitting the obvious symbols in Definition 6.7, we have

δaδVZ = ∑ Θλ ∧
((

∂aZ
)′

ψ′ p ∧ Z′′ψ′′q + Z′ψ′ p ∧
(
∂aZ

)′′
ψ′′q

)
+ (∂aZ)n+2

g−1 ∧ Θirψ′ pψ′′q,

δVδaZ =
∫

ϕ
a ⊢

(
∑ Θλ ∧ Z′ψ′ p

∧ Z′′ψ′′q
)
+

∫

ϕ
a ⊢

(
Θir ∧ Zg−1ψ′ pψ′′q

)
;

we must show the agreement of the two.

Now, each ∂aZ in the first formula represents an integral
∫

ϕ a ⊢ Z, but when extracting this op-

eration out to the front of the sum, several discrepancies arise with respect to the second formula:

(i) The sum in δaδV ranges over the boundary divisors of Mn
g, that in δVδa over those of Mn+1

g .

(ii) The Thom classes in δaδV are those of the boundary divisors downstairs. In δVδa, we use the
Thom classes of the boundaries upstairs.

(iii) The nodal ψ′, ψ′′ classes are the ones from Mn
g in δaδV , but are those on Mn+1

g in δVδa.

To establish the commutation of H+ with ∆, we must resolve these discrepancies. Concerning (i),
note that each ϕ−1(Dλ), from Mn

g , is the union of a pair Dλ′ ∪ Dλ′′ of boundary divisors upstairs:10

they correspond to the components of the universal curve Cn
g , and are distinguished by the com-

ponent which contains the marked point absorbing a. Therefore, each λ in the first sum has two
matching terms λ′, λ′′ in the second sum. Moreover, because ϕ∗Θλ = Θλ′ + Θλ′′ , the Thom push-
forward operations in the two formulae match after integrating down along ϕ. We are therefore
only left to account for the boundary components [σi] in the second sum (the sections of ϕ), which
have no counterparts in δaδV , as well as the discrepancy (iii). However, all of these vanish for the
same reason: they are killed by the positive powers of ψn+1 present in a.

Finally, let us compare this action with the metaplectic action on potentials. Translation was
checked earlier. It is clear that the GL-action lifts the geometric action on F((h̄)). The analogue for

10With the usual exception g′ = g′′, n′ = n′′ when we get a self-intersecting divisor, just as we do for Dir .
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the metaplectic action of ∆ is seen in the following interpretation of the power series expansion of
A: it is the integral over the moduli of all, possibly disconnected stable nodal surfaces, with individ-
ual components of the moduli space weighted down by the automorphisms of their topological
type. In this expansion of the potential A, differentiation in the input x involves replacing one
x-entry in a Z-factor in each term by the direction of differentiation, and summing over all choices
of doing so. Quadratic differentiation is the same procedure, but applied to all pairs of entries.
Thanks to the Thom classes in formula (6.7), we can re-interpret the integral of δZn

g there over Mn
g

as a sum of integrals over the relevant boundaries instead. Book-keeping confirms that we thus
supply all requisite terms for the quadratic differentiation in the expansion of A.

6.9 Proposition. If Z defines a DMT, then so do all of its transforms under Sp+
⋉ H+. More precisely,

upon transforming by eV(z1,2) ∈ exp(∆), the nodal co-form C is changed to C(z1,2) + (z1 + z2)V(z1,2).
H+-translation does not change C. Finally, GL+ has the obvious effect on C via its action on ∆.

Proof. For the action of GL+, this is clear from first definitions. For ∆ and H+, we will check that
the infinitesimal action gives a first-order deformation of a field theory; in the process, we spell
out its effect on the co-form C, and will do so first in the more delicate case of ∆.

More precisely, we claim that for the variation δZ resulting from δV, Z + ǫ · δZ is a DMT over
the ground ring k[ǫ]/ǫ2 , with nodal co-form C + ǫδC, where δC(z1,2) = (z1 + z2) · δV(z1,2). Write
the DMT factorisation rule (2.10) at a boundary divisor Dλ0

, corresponding to a splitting node and
labelled by λ0 ∈ Λ, as

b∗2
(
Z
)
= Z′ ⊣ C(ψ′, ψ′′) ⊢ Z′′,

where the two contractions ⊣ and ⊢ absorb the left and right factors of C into the nodal slots of
Z′, Z′′. In a DMT over k[ǫ]/ǫ2 , the ǫ-linear part of factorisation becomes a “Leibniz rule”

b∗2
(
δZ

)
= δZ′ ⊣ C(ψ′, ψ′′) ⊢ Z′′ + Z′ ⊣ δC(ψ′, ψ′′) ⊢ Z′′ + Z′ ⊣ C(ψ′, ψ′′) ⊢ δZ′′, (6.10)

which we must verify for our specific δZ and proposed δC.

To do so, restrict formula (6.7) for δZ to Dλ0
. Since b∗2Θλ0

is the Euler class −(ψ′ + ψ′′) of Dλ0
,

the term λ = λ0 in the sum becomes

ǫ(ψ′ + ψ′′) ∧ Zn′+1
g′ (xσ(1), . . . , xσ(n′), v′) ∧ ψ′p ∧ Zn′′+1

g′′ (xσ(n′+1), . . . , xσ(n), v′′) ∧ ψ′′q.

This is precisely the contribution to (6.10) of the variation δC we posited above. On the other
hand, the λ 6= λ0 and Dir terms in (6.7) correspond to boundary divisors on the Deligne-Mumford

moduli space underlying Dλ0
; the nodal factorisation rule for Z

′
or Z′′ identifies those terms,

restricted by b∗2 , with the Z′ ⊣ C ⊢ δZ′′ + δZ′ ⊣ C ⊢ Z′′ terms in our Leibniz factorisation (6.10). A
similar discussion applies to the boundary divisor Dir, proving our Leibniz rule.

For an infinitesimal translation by a(z), the first variation δaZ is the integral
∫

ϕ a(ψ) ⊢ Z along

the universal curve. Restricting now to Dλ0
, we can split the integral into two terms, coming from

the two irreducible components of the curve, to get Z′ ⊣ C(ψ′, ψ′′) ⊢ δZ′′ + δZ
′
⊣ C(ψ′, ψ′′) ⊢ Z

′′
,

and there is now no additional term that could provide a δC contribution.

This last argument argument conceals a subtlety: thanks to the presence of a ψ-factor, con-
traction with a(ψ) kills the difference between the nodal ψ′, ψ′′-classes pulled back from Dλ0

and
those on the universal curve, over which integration is taking place. (Compare with the proof of
Proposition 6.8.)
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6.11 Remark. If a(z) contains a constant term and the co-form C carries a dependence on ψ′, ψ′′,
there will be a δC-term accounting for the difference between nodal ψ′, ψ′′-classes on the curve
and their pull-backs from Dλ0

. However, this does not happen in Cohomological Field theories,
where C is constant. We will exploit this observation in §7.4 below.

(6.12) The action on semi-simple DMT’s. Let us now determine the action of a general group element
g · eV · ζ ∈ GL+

⋉ (exp ∆ × H+) on semi-simple DMT’s, in terms of their classification. The natural
description involves the alternative parameters (Z̃, W, E) of (4.9). We will meet a restriction on the
z-linear term of ζ.

Write ζ = ∑j>0 ζ jz
j. If ζ1 = 0, we will not change the algebra structure on A, and the reader can

skip straight to the statement of the Proposition below, ignoring the primes. However, if ζ1 6= 0,
let A′ be the Frobenius algebra which is identified with A as a vector space with quadratic form β,
but with the multiplication re-defined in such a way that the new projectors are P′

i = (1 + ζ1)Pi.
Thus, the new multiplication is x ·′ y := x · y · (1 + ζ1)

−1, the new identity is 1′ = 1 + ζ1, and the
Euler class is now α′ = α · (1 + ζ1)

−1. However, note that the vector (α′)1/2, with the square root
in the prime algebra, agrees with the old α1/2. The construction breaks down when (1 + ζ1) is not
a unit in A, so we must exclude that case.

6.13 Proposition. The trivial DMT IA transforms under g · eV · ζ ∈ GL+
⋉ (exp(∆) × H+) into the

semi-simple theory based on the algebra A′, with alternative parameters

Z̃ = exp′
{
∑j≥0

a′jκj

}
, E(z) = g(z), W(z1,2) = V(z1,2).

Here, ∑j≥0 a′jz
j is the Taylor expansion of log′ α1/2 − log′(1 + ζ/z) ∈ A′[[z]], and the logarithm and

exponential are computed in A′.

6.14 Remark. Since log′(1 + ζ1) = log′(1′) = 0, we have exp′ a′0 = α1/2. In the original algebra A,
we can expand log α1/2 − log(1 + ζ/z) = ∑j≥0 ajz

j; the relation exp′ x′ = (1 + ζ1) · exp x for x′ =
(1 + ζ1) · x shows that the Taylor coefficients are then related by a′j = (1 + ζ1)aj. The operators of

multiplication by exp
{

∑j≥0 ajκj

}
on A and by exp′

{
∑j≥0 a′jκj

}
on A′ coincide, when we identify

the two vector spaces as above. (However, the customary relation a0 = log α1/2 is broken if ζ1 6= 0
since involves the ‘wrong’ log.)

Proof. Note that E and W do not change the Frobenius algebra structure, which is determined by
β and by the tensor Z3

0 : A⊗3 → C. The effect of ζ will be checked in a moment. In particular,
semi-simple theories remain semi-simple and we are merely looking for the change in parameters.

The effect of E is clear from its definition, while that of eV was explained in Proposition 6.9
above: on a theory with E = Id, W 7→ W + V. To understand ζ, note first that translation cannot
affect the E and W parameters of a DMT, because of the group law in Sp+

⋉ H+. To find its effect
on Z̃, it suffices to take n = 1 and compute its first-order variation over M̃1

g under δζ. This leads
to a differential equation governing the action of ζ, which we solve. We omit the ζ-subscript from
the notation for tidiness (so Z̃ should really be ζ Z̃, etc.) and let Cg,1 → Mg,1 denote the universal
curve. Then,

δZ̃(κj) = −
∫ Mg,1

Cg,1

α−1/2 · Z̃(κj) · δζ(ψ2) = −α−1/2Z̃(κj)
∫ Mg,1

Cg,1

Z̃(ψ
j
2)δζ(ψ2),

where Z̃(κj) = exp
{

∑j≥0 cjκj

}
with the cj as yet unknown, Z̃(ψ

j
2) = exp

{
∑j cjψ

j
2

}
and we have

used the fact that κj inside the integral is κj outside plus ψ
j
2. Integration converts ψ

j+1
2 to κj.
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Quadratic and higher terms in δζ do not give rise to κ0 and so do not affect the multiplication
in A. Assuming first that ζ1 = 0, we specialise to κj 7→ zj:

δZ̃(zj) = −α−1/2Z̃(zj)2 ·
δζ(z)

z
,

which is solved by

ζ Z̃(zj) =
α1/2

1 + ζ(z)/z

since we know the initial value Z̃ = α1/2. Now, log Z̃ is linear homogeneous in the κj, so we re-

cover the true Z̃ from our specialisation by substituting zj 7→ κj in log Z̃, and then exponentiating.

Finally, the effect of ζ1-translation on the trivial A-theory can be determined directly from the
formula ∫ M

1
g

Mn+1
g

ψ1 ∧ · · · ∧ ψn = (2g + n − 2) · · · · · (2g − 1),

giving

1
ζ Z̃g = αg ∑

n

(−ζ1)
n

n!

∫ M1
g

Mn+1
g

ψ1 ∧ · · · ∧ ψn = αg ∑
n

(
1 − 2g

n

)
ζn

1 =
αg

(1 + ζ1)2g−1
.

This introduces no higher κ-classes, but changes the multiplication on A in the manner claimed.

(6.15) Cohomological Field theories. We now deduce Theorem 1 from Proposition 6.13 by identifying
the subgroup of Sp+

⋉ H+ which preserves the Cohomological Field theory constraint (1.8.i).
Recall from §4.6 that this constraint takes the equivalent forms B′ = Id, C′ = Id and D = Id. In
terms of E and W, we need the identity

W ′(z1, z2) = W ′
E :=

E(z1)
−1E(−z2)− Id

z1 + z2
, (6.16)

together with the symplectic condition E(z)∗E(−z) ≡ Id of §4.6. In §1.15, we wrote Sp+
L for the

subgroup of symplectic matrix series E ∈ GL+. It follows from Proposition 6.9 that the group
homomorphism E(z) 7→ E(z) · eWE(z1,2) identifies Sp+

L with the stabiliser of C′ = Id in Sp+; it is
a new, a new sheared embedding of Sp+

L in Sp+. We now use the symplectic form Ω of §1.15 to
identify the symplectic double of A[[z]] with A((z)). The group GL+ acts on A((z)), point-wise in z;
its subgroup Sp+

L , by definition, preserves Ω and lies in Sp. We write E 7→ Ê for this point-wise
embedding of Sp+

L in Sp.

6.17 Proposition. The two embeddings of Sp+
L into Sp agree: Ê = E · eWE .

Proof. We verify this on Lie algebras. Let δE = ∑n>0 δEnzn; then,

δWE(z1,2) =
δE(−z2)− δE(z1)

z1 + z2
= − ∑

p,q≥0

δEp+q+1(−z2)
pz

q
1.

In the monomial decomposition {zn · A}n∈Z of A((z)) ∼= A[[z]]⊕ A[[z]]∗ , the geometric action of δE
is given by the operator with (p, q) blocks

Op,q =





−δEp−q for p > q ≥ 0

(−1)p+q−1δE∗
p−q for 0 > p > q

0 otherwise
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The symplectic condition is (−1)p+qδE∗
p−q = δEp−q. On the other hand, the matrix corresponding

via the symplectic form Ω to the quadratic differentiation operator δWE(z1,2) has (p, q)-blocks
−δEp−q in positions q < 0 ≤ p. This supplies precisely the missing p ≥ 0 > q blocks for the point-
wise multiplication action of the operator δE(z) : A((z)) → A((z)). Our statement follows.

(6.18) Flat vacuum. Let us identify the vacuum vector (§2.13) of the theory in terms of the group
element Ê · ζ. In particular, we will identify the subgroup of Sp+

L ⋉ H+ whose action on IA pre-
serves the flat vacuum condition (1.8.ii) with the conjugate of Sp+

L by the translation Tz by z1. This
will conclude the proof of Theorem 2.

By equation (4.13) and Proposition 6.13,

E−1(z)(v) = exp′
{
−∑j>0

a′jz
j
}
= 1 + ζ/z

so ζ = z(E−1(z)(v)− 1). Clearly, the CohFTs with vacuum v constitute the orbit
(

Tzv(z) · Ê · T−1
z

)
(IA),

with E ranging over the symplectic End(A)-valued series considered. (Note that the action of
Tz on IA is singular, but the conjugate TzÊT−1

z makes good sense, so that the group element in
parentheses acts.) In particular, notice that changing the vacuum of a theory with fixed underlying
algebra and symplectic parameter E is accomplished by H++-translation.

7. Frobenius manifolds and homogeneity

We now enrich a given DMT Z into a family of DMT’s parametrised by a (possibly formal) neigh-
bourhood U of 0 ∈ A. When starting with a cohomological field theory, the genus zero part of
this family defines on U the structure of a Frobenius manifold, a notion introduced by Dubrovin
[D]. The family of DMT’s will allow us to incorporate the grading information of Gromov-Witten
theory in the form of a homogeneity condition under a vector field on U. The reader may consult
[M, §I] or [LP] for a broader account of the subject.

7.1 Definition. Given a DMT Z, define for u ∈ U

uZn
g(x1, . . . , xn) := ∑

m≥0

(−1)m

m!

∫ Mn
g

Mn+m
g

Zn+m
g (x1, . . . , xn, u, . . . , u).

Restriction to U may be required for convergence, but for convenience we will treat u as a genuine
parameter in our formulae. It is straightforward to verify the DMT axioms for uZ from those for Z;
the construction is formally similar to the translation of §6.4, but in this case we are using the sub-
space A ⊂ A[[z]] of the Heisenberg group. However, while the effect of translation by zA[[z]] was
easily expressed in terms of κ-classes, the structure resulting now is more complicated, because
the new translation interacts with the boundary terms, and fails to commute with H+. Micro-
scopically, the absence of a ψ-factor in u breaks the calculations in the proof of Proposition 6.9.
Conceptually, in the case of open-closed field theories, which are controlled by linear categories
with a cyclic trace, the u-parameter is related to deformations of the category of boundary states,
whereas translation by H+ is tied to the (easier) deformation of the trace. There is, however, one
easy fact to state, which was already mentioned in Remark 6.11.

7.2 Proposition. If the DMT Z is actually a CohFT, then so is every uZ; moreover, the Frobenius bilinear
form β remains unchanged.
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(7.3) Frobenius manifold of a CohFT. The previous proposition does conceal something: the product
and the Frobenius trace θ on A will vary with u. We obtain a u-dependent family of Frobenius
algebra structures on A, viewed as a fixed vector space with bilinear form β. Spelt out, we get for
g = 0, n = 3 a map

uZ3
0 : A⊗3 → C.

Converted to a map A⊗2 → A by means of β, this gives a u-dependent multiplication ·u on A. This
multiplication is evidently commutative, because of the symmetry of Z, but must be associative as
well, since it is part of a CohFT structure. (Explicitly, we can apply the nodal factorisation rule to
the several boundary restrictions of the map uZ4

0 : A⊗4 → H∗
(

M4
0

)
. Since M4

0 = P1 is connected,

these restrictions define the same map A⊗4 → C, so that β(a ·u b, c ·u d) is symmetric in the four
variables.)

We write Au when referring to the algebra structure at u, and identify each Au with the tangent
space TuU using the linear structure. The multiplications satisfy an integrability condition, which
is captured by the observation that uZ3

0 is the third total partial derivative of a function uZ0
0. This

function, the potential of the Frobenius manifold, is expressed by the series in Definition 7.1 with
g = n = 0, after omitting the m ≤ 2 terms. This integrable family of Frobenius algebras on U,
together with the (flat) metric β, is called a Frobenius manifold structure. The linear structure on
U ⊂ A is characterized by the flat coordinates under β.

We say that the Frobenius manifold has flat identity if the unit vector field 1 is flat in the metric
(constant in flat coordinates). It is shown in [M, III] that this is follows from the flat vacuum
condition on Z; we will also verify that as part of Proposition 7.13 below. A Frobenius manifold is
in fact equivalent to the datum of a genus-zero CohFT (the collection of classes Zn

0 , satisfying the
CohFT axioms), by an explicit reconstruction [M].

(7.4) The basic differential equations. Semi-simplicity of A ensures that of the nearby Au, so nearby
theories are classified by u-dependent data Z̃u, Eu, Bu. Assuming that Z is a CohFT, I describe the
changes in Z̃ and E by means of differential equations.

To isolate the effect of the varying multiplication, we will express it in the (moving) normalised

canonical basis pi = θ−1/2
i Pi, in which the product can be computed entry-wise. Let Πu : A0 →

Au be the map identifying the normalised canonical bases in the two spaces. In the normalised
canonical identification CN ∼= A0, this gives the normalised canonical framing of TU. Let ∗ denote
the entry-wise multiplication of column vectors, and ·u the multiplication in Au; we have

Πu(x ∗ y) = α−1/2
u ·u Πu(x) ·u Πu(y). (7.5)

Also define the following column vector depending on u and on the κ-classes,

Yu = Yu(κ) := Π−1
u (α1/2Z̃u),

whose entries are the eigenvalues of multiplication by Z̃u: that is, Π ◦ (Yu∗) ◦ Π−1 = (Z̃u·). (The
ith entry of Y is exp{∑j≥0 aijκj}, with u-dependent coefficients aij.) Write Yu(z) for the result of

the substitution κj 7→ zj. Since log Y(κ) is linear homogeneous in the κ’s, Y(z) determines Y(κ).

We can now write the propagator 1
uZn

g : A⊗n
u → Au for smooth curves of genus g, with incoming

points {1, . . . , n} and one outgoing point labelled by 0, as follows:

1
uZn

g (x1, . . . , xn) = Eu(−ψ0)Πu

(
Yu(κ) ∗ Π−1

u E−1
u (ψ1)(x1) ∗ · · · ∗ Π−1

u E−1
u (ψn)(xn)

)
. (7.6)

The contribution of n to κ0 = 2g + n− 1 gives a factor of αn/2 in uZ̃ and has the virtue of correcting
the n operations ∗ into the multiplication ·u, cf. (7.5). We now differentiate in u.
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7.7 Proposition. Eu and Yu verify the following systems of ODE’s in u, ∀v ∈ TuU:

∂(EuΠu)

∂v
(z) ◦ Π−1

u =

[
Eu(z),

(v·u)

z

]
; (7.7.a)

∂Yu(z)

∂v
∗ Yu(z)

−1 = −Yu(z) ∗ Π−1
u Eu(z)

−1
(v

z

)
+ Yu(0) ∗ Π−1

u

(v

z

)
. (7.7.b)

Before turning to the proof, the following comments might be helpful.

7.8 Remark. (i) We use the flat structure of TU to differentiate Πu and Eu.

(ii) Since E = Id (mod z), the commutator in equation (7.7.a) is regular at z = 0, where we obtain,
with Eu,1 denoting the z-linear term of Eu,

∂vΠu ◦ Π−1
u = [Eu,1, (v·u)] .

By substituting this for the derivative of Π, (7.7.a) can be expressed as a non-linear ODE system in
E alone; Π can then be recovered from E.

(iii) The second term on the right in equation (7.7.b) removes the pole present in the first term.

(iv) Let C1
g := M1

g ×Mg M1
g be the universal curve over M1

g and note that
∫ M1

g

C1
g

ψj = κj−1, or zero if

j = 0. Because ∂vY(κ) ∗ Y−1 is linear homogeneous in the κ’s, we can write the ODE’s for Yu(κ)
explicitly:

∂Yu(κ)

∂v
∗ Yu(κ)

−1 = −
∫ M1

g

C1
g

Yu(ψ) ∗ Π−1E−1(ψ)(v). (7.7.c)

Indeed, we will prove the equation in this form.

(v) A coordinate-free form of equation (7.7.b) is found in Proposition 7.13 below.

Proof. Proving the proposition will require us to find the variation of (7.6) with n = 1. However,
to keep the formulas simple, we first write out the variation with n = 0. It will then be straight-
forward to describe the additional terms for general n. We also drop the u-subscript from the
notation when no confusion arises.

From (7.6),
∂v(

1Z) = ∂v(EΠ)(−ψ0) (Y(κ)) + E(−ψ0)Π (∂vY(κ)) . (7.9)

This same variation is also, by definition, an integral along the universal curve:

−
∫ M1

g

C1
g

E(−ψ0)Π
(

Y(κ) ∗ Π−1E−1(ψ)(v)
)
− v ·u

1 − E(−ψ0)

ψ0
Π (Y(κ)) ;

the second term is the boundary correction to Z on the diagonal section σ0 of M1
g ×Mg M1

g. The req-

uisite picture for this correction attaches a three-pointed P1 to C1
g at its output σ0; this P1 absorbs

v at the second input, and the output is read at the third point.

Using the familiar formula κj = ϕ∗κj + ψj upstairs, the integral above (without sign) becomes

E(−ψ0)Π

(
Y(κ) ∗

∫
Y(ψ) ∗ Π−1E−1(ψ)(v)

)
+

E(−ψ0)− 1

ψ0
(v ·u Π(Y(κ))) ;

the second term comes from the correction to ψ0 on the diagonal σ0, and all the κ’s now live on the
base M1

g. All in all, we get

∂v(
1Z) =

[
(v·u),

E(−ψ0)

ψ0

]
◦ Π (Y(κ))− E(−ψ0) ◦ Π

(
Y(κ) ∗

∫
Y(ψ) ∗ Π−1E−1(ψ)(v)

)
(7.10)
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and comparing with formula (7.9) suggests a separation into two identities, namely (7.7.a), with
z = −ψ0, and (7.7.c). However, in order to prove the proposition, we must:

• consider n = 1 in the variation of (7.6), in order to allow the insertion of arbitrary arguments
in the first operator, in place of Π(Y);

• justify the splitting of the one resulting identity into two pieces.

Taking n = 1 changes (7.10) as follows: Y(κ) is replaced by Y(κ) ∗ Π−1E−1(ψ1)(x1), and an addi-
tional term,

E(−ψ0)

(
Z̃ ·u

[
E−1(ψ1)

ψ1
, v·u

])
,

appears from the correction of ψ1 along σ1 and from the boundary contribution of σ1 to Z, just as
explained in the case of ψ0. Likewise, (7.9) changes by inserting ∗Π−1E−1(ψ1)(x1) after Y(κ) and
∂vY(κ), and by the addition of

E(−ψ0)Π
(

Y(κ) ∗ ∂v(EΠ)−1(ψ1)(x1)
)

.

Splitting the identity into separate ones will now complete the proof. This is accomplished by
setting the κ’s or ψ’s, which are now independent variables, selectively to zero. A priori, this
leaves a constant term ambiguity. That, however, is resolved by noting that the constant term of
the first ODE, ∂vΠ ◦ Π−1, is a skew matrix, whereas the operator ∂vY∗ is purely diagonal; so there
is no possible mixing of constant terms.

(7.11) Flat vacuum preserved. If Z verifies the flat vacuum condition (1.8.ii), then the identity vector
1 ∈ A0 remains the identity in the algebra structure at all u: indeed, in the formula for uZ3

0(1, a, b)
in Def. 7.1, all integrals with m 6= 0 vanish, because the integrand is lifted from the lower moduli
space missing the first marked point:

Z3+m
0 (1, a, b, u, . . . ) = ϕ∗Z2+m

0 (a, b, u, . . . ).

Moreover, each uZ then satisfies the flat vacuum condition ϕ∗
uZn

g(x1, . . . ) = uZn+1
g (1, x1, . . . ),

because of the “base change” identity

ϕ∗
∫ Mn

g

Mn+m
g

Zn+m
g (x1, . . . , xn, u, . . . , u) =

∫ Mn+1
g

Mn+1+m
g

ϕ∗Zn+m
g (x1, . . . , xn, u, . . . , u)

=
∫ Mn+1

g

Mn+1+m
g

Zn+1+m
g (1, x1, . . . , xn, u, . . . , u)

confirming condition (1.8.ii) term-by-term in the sum (7.1). Note that it is the absence of ψ in u
which carries the argument here: the vacuum, of course, is not preserved by H+-translations.

(7.12) Vacuum differential equation. The ODE’s for Y(z) have a cleaner, equivalent form in terms of
the vacuum vector v(z) of the theory.

7.13 Proposition. At each u ∈ U and for any v ∈ TuU,
∂v(z)

∂v
=

v

z
·u (1 − v(z)).
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Proof. Y(z) and v(z) are related by v(z) = E(z)Π
(
Y(z)−1

)
(Proposition 3.14). Direct computation

gives the following (we omit the argument z, when it is not set to zero):

∂EΠ(Y−1)

∂v
=

∂EΠ

∂v
(Y−1) +

v − EΠ
(
Y−1 ∗ Y(0) ∗ Π−1(v)

)

z

=
∂EΠ

∂v
(Y−1) +

v − E
(
Π(Y−1) · v

)

z

=
E
(
v · Π(Y−1)

)
− v · EΠ(Y−1) + v − E

(
Π(Y−1) · v

)

z

=
v − v · v

z
,

having used (7.5) and the relation Π(Y(0)) = α to convert ∗ to the product in Au.

Proposition 7.13 provides the following formula for v(z) in terms of derivatives of 1. Let ∂1 be
the operator of differentiation, in flat coordinates, along the vector field 1.

7.14 Corollary. v(z) = (1 + z∂1)−1(1) = ∑k(−1)kzk · ∂k
1(1).

Thus, v is determined by the Frobenius manifold, and in particular v ≡ 1 if the identity is flat.
Conversely, if v(z) ≡ 1 at some point u, then ∂1/∂v = 0 at u for all v, by Prop. 7.13, and induction
shows the vanishing of all higher derivatives of 1.

(7.15) Homogeneity and the Euler vector field. Assume that we are given a vector field ξ on our Frobe-
nius manifold U ⊂ A, whose Lie derivative action on TuU we denote by L. We call U homogeneous
(or conformal) of weight d with Euler vector field ξ if the (u-dependent) multiplication operator on
TuU and the quadratic form β are homogeneous with weights 1 and 2 − d, respectively.

Since flat coordinates remain flat under the ξ-flow, it follows that ξ must be affine-linear in any
flat coordinates xj on A:

ξ = ξ0 − µi
j · xj∂i + (1 − d/2)xj∂j.

The matrix µi
j contributes an infinitesimal rotation about 0 in A, and the last term is the conformal

scaling. The action of L on the flat frame of vector fields, commonly denoted adξ , is given by

µ +
(

d
2 − 1

)
Id.

Following Dubrovin, we can reformulate homogeneity by viewing the space of sections Γ(U; TU)
as a Frobenius algebra over the ring C[U] of functions on U. Differentiation by ξ gives a deriva-
tion of C[U], and the shifted operator L+ := L+ Id defines a compatible derivation of the algebra
Γ(U; TU). The metric has L+-weight (−d), and in general the L+-weights of the basic objects in
A are eminently more reasonable than their L-weights, cf. Table 1.

View now the CohFT data uZn
g : A⊗n → H•

(
Mn

g

)
as a collection of n-ary tensor fields on U,

with values in H•(Mn
g). Using the Lie action L+ and weighting the cohomology of M by half the

degree, we can extend the notion of homogeneity to the entire CohFT:

7.16 Definition. The CohFT uZ is homogeneous of weight d under the vector field ξ if each tensor
field Zn

g : (TU)⊗n → H2•(Mn
g) is L+-homogeneous with weight (g − 1)d.

By considering g = 0 and the values n = 3 and 4, we recover the Frobenius manifold homogeneity
condition. Conversely, Manin’s genus-zero reconstruction theorem shows that the latter implies
the seemingly stronger property (7.16), in genus g = 0, for all n.
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object L-weight L+-weight reason

product 1 0 definition
β 2 − d −d definition

1 ∈ A −1 0 1 · x = x
projector P −1 0 P · P = P

θi −d −d β(P, P)
θ : A → C 1 − d −d β(1, .)

αu d − 1 d θ(x · α) = TrA(x·)
(αu·) d d

Table 1: Some basic weights

7.17 Example. In the Gromov-Witten theories of §1.6, the series

GWn
g,u := ∑

δ∈H2(X;Z)

e〈u|δ〉 · GWn
g,δ (7.18)

gives a (possibly formal) function on the group H2(X; C×), expressed in the Fourier modes eu.
This group is a disjoint union of tori, each labelled by a character of the torsion subgroup of
H2(X; Z). The divisor equation (see for instance [LP, G2])

∫
GWn+1

δ (. . . , u) = −〈u|δ〉 · GWn
δ (. . . ), for u ∈ H2(X),

where we integrate along the last forgetful map, ensures that the family uZ := GWu is its own u-
variation along the H2 torus directions, in the sense of Definition 7.1. Near any chosen base-point,
H2(X; C×) can be identified with U ∩ H2(X; C) ⊂ A by means of a translated exponential map.
Subject to convergence, we can extend the family GWu to an open set U of A = Hev(X), starting
from our base point. If convergence fails, we treat H2(X; C×)× Hev, 6=2(X) as a formal Frobenius
manifold. The dimension formula (1.7) for the spaces of stable maps ensures that the family GWu

obtained from (7.18) is homogeneous of weight d = dimC X with respect to the Euler field

ξGW = c1(X) + ∑j

(
1 −

deg(xj)

2

)
∂

∂xj

in a homogeneous basis xj of H•(X). Thus, µ = (deg−d)/2.

We conclude by describing the homogeneity condition in terms of the data Eu, Z̃u.

7.19 Proposition. In a homogeneous semi-simple CohFT, Eu(z), Z̃+
u and vu(z) are invariant under the

shifted Lie action L+ of the Euler field ξ.

Recall that z has weight 1, so we are saying that the zjth Taylor coefficient in Eu has weight (−j).
The same applies to the coefficient aj of κj in log Z̃+. It is not difficult to show that, for a vector

field ξ of the form in §7.15, these conditions are also sufficient for homogeneity of Z, but we will
not use that fact.

Proof. The operator 1
uZ1

g for smooth surfaces must have weight gd = (g − 1)d + 2 + (d − 2), the

last term being the added weight of replacing an input by an output. In particular, 1Z̃1
g = (αgZ̃+·)

has weight gd, whereas (α·) has weight d; this settles (Z̃+
u ·). Next, since 1

uZg,1 = E(−ψ0) ◦ 1Z̃1
g,

L(1
uZg,1) = L(E(−ψ0)) ◦

1Z̃1
g + E(−ψ0) ◦ L(

1Z̃1
g),
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showing that the first term vanishes, so L(E(−ψ0)) = 0. The final statement follows from the
relation

E(z)−1(v(z)) = (Z̃+)−1
∣∣∣
κj=zj

.

8. Reconstruction

I now explain the reconstruction of semi-simple cohomological field theories from genus zero
data, confirming a conjecture of Givental’s for Gromov-Witten theory [G1]. In the case of homo-
geneous theories with flat vacuum, I also give a concrete variant which uses less input: the Euler
vector field plus the Frobenius algebra at a single semi-simple point of the Frobenius manifold
(Theorem 1). This more economical recipe is implicit in Dubrovin’s paper [D]. The present section
is largely a review and adaptation of Givental’s relevant work.

(8.1) Reconstruction from the Frobenius manifold: Givental’s conjecture. Let u be the vector of canonical
coordinates, for which the associated vector fields ∂/∂ui are the projectors Pi in the multiplica-
tion at the respective point. As shown in [D], the existence of such coordinates follows from the
integrability conditions of §7.3. Clearly, the ui are unique up to constant shifts. In the case of
homogeneous Frobenius manifolds, a preferred choice of canonical coordinates is given by the
eigenvalues of the operator (ξ·u) of multiplication by the Euler vector field ξ.

8.2 Proposition. (i) The linear map du : TuU → CN is given by Π−1
u ◦ (α−1/2

u ·u).

(ii) The system of ODE’s in (7.7.a) is equivalent to

∂F

∂v
= −

(v·u)

z
◦ F, with F(z) = Eu(z) ◦ Πu ◦ exp

(
−

u∗

z

)
.

Proof. The first part merely rewrites the defining property of u: du takes the projector frame to
the standard frame of CN. For the second claim, use the chain rule and the relation Π ◦ ( ∂u

∂v ∗) =
(v·u) ◦ Π, which in turn is a consequence of part (i) and of formula (7.5).

8.3 Remark. (i) Letting ξ = ∑i ui∂/∂ui in canonical coordinates, an alternative expression for F is

F(z) = Eu(z) ◦ exp

(
−
(ξ·u)

z

)
◦ Πu.

In the homogeneous case, ξ is the Euler vector field.

(ii) Usually, E(z) does not converge; so F(z) may not belong to any symplectic loop group, but only
to a thickened version of it (analogous to the space of Laurent series infinite in both directions).
One such thickening can be constructed as a moduli of (twisted) principal GL(A)-bundles over
P1, with formal sections at 0 and at ∞. This variety has no group structure, but is a homogeneous
space for a (left and a right) loop group action, and this suffices to make the ODE meaningful.

The system of ODE’s in Proposition 8.2.ii is that of [G1, pp.1269–1270], with the change of
notation Ψ = Π, R(z) = Π−1E(z)Π. Recall:

8.4 Proposition ([D, G1]). The system of Proposition 8.2.ii has solutions in which R ≡ Id (mod z)
satisfies the symplectic condition Ru(z)R∗

u(−z) = Id. These solutions are unique up to right multiplication
by a matrix series H(z) = exp

(
H1z + H3z3 + . . .

)
with constant diagonal matrices H2i+1. In the

homogeneous case, there is a unique solution with R invariant under the Euler field.
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The proof of the proposition, for which we refer to Givental [G1], is closely related to the recon-
struction procedure we will give below, in the homogeneous case. The ambiguity in R reflects the
possibility of a z-dependent shift in the canonical coordinates; the parity constraint comes from
the symplectic condition. In terms of E, this ambiguity is the right composition with the opera-
tor of multiplication by a “symplectic” unit in A[[z]]. Note that Euler invariance of R and E are
equivalent because of the relation L(Π) = (d/2 − 1)Π.

8.5 Corollary. A semi-simple homogeneous CohFT is determined from its Frobenius manifold, by the
unique Euler-invariant solution E of the ODE (7.7) and the vacuum (7.14).

(8.6) Ambiguity for inhomogeneous theories. The inhomogeneous theories corresponding to a given
semi-simple Frobenius manifold are related geometrically by Hodge bundle twists. More precisely,
let µj = chjΛ be the Chern components of the Hodge bundle Λ, whose fibres are the spaces of
global differentials along the universal curve, with simple poles allowed at the marked sections σi.
Recall that the classes µj vanish for even j. We can construct a Hodge CohFT based on A by choosing

any odd power series h(z) = ∑j h2j−1z2j−1 in A[[z]] and setting

nZg[h] := (nth co-power of) αg · exp
{

∑j
h2j−1

(2j)!

B2j
· µ2j−1

}
,

with the Bernoulli numbers B2j. Basic properties of the Hodge bundle ensure that Z[h] is a CohFT

with flat vacuum: namely, Λ is primitive11 under restriction to the boundaries of Mn
g , and changes

under forgetful pull-back by the addition of a trivial line. Note, in addition, that nZ0[h] is the
trivial genus-zero theory on A, because the Hodge bundle Λ is trivial there. Givental’s calculation
in [G1, §2.3], summarised in Part (i) of the next proposition (and re-derived below), identifies the
theory for us.

8.7 Proposition. (i) The theory Z[h] is the transform T−1
z ◦ exp h(z) ◦ Tz(IA) of the trivial A-theory.

(ii) All cohomological Field theories with flat vacuum based on a fixed semi-simple, pointed Frobenius man-
ifold are classified by matrices E ◦ exp h(z) ∈ Sp+

L , with arbitrary h but the same E. That is, they have
the form T−1

z E(z) exp h(z)Tz(IA), with a fixed E.

Let us revisit the flat vacuum condition (4.13) in light of statement (i). Over Mg, we find

∑j
h2j−1

(2j)!

B2j
· µ2j−1 = ∑j

h2j−1κ2j−1,

recovering the Riemann-Roch identities µ2j−1 =
B2j

(2j)!
· κ2j−1 over Mg. These identities, in turn,

prove statement (i), because Z̃ determines E when the latter is a multiplication operator in the
Frobenius algebra and v ≡ 1.

(8.8) Rank one theories: a conjecture of Manin and Zograf. When A has rank 1, we can give a closed
formula for all possible CohFT’s (which are necessarily semi-simple).

Taking logarithms converts the FTFT factorisation axiom for the classes Zn
g into the primitivity

condition. Manin and Zograf conjectured in [MZ] that the κj (j ≥ 0) and the µj (j > 0, odd) were

the only primitive classes on the Mn
g; consequently, they proposed that any rank 1 theory should

have the form
nZg = exp

{
∑j≥0

ajκj +∑j>0
b2j−1µ2j−1

}
· exp(a0)

⊗n, (8.9)

for freely chosen constants aj, bj ∈ C. (Note that exp(a0) is the normalised canonical vector.)

11When there are no marked points, we must normalise the bundle by virtually subtracting a trivial line.
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8.10 Proposition. Formula (8.9) describes all possible rank one CohFT’s. Flat vacuum theories are those
with aj = 0 for j > 0.

Proof. The symplectic condition forces the element E(z) in our classification to have the form
exp h(z). A general translation vector ζ in our classification inserts unrestricted κ-class combi-
nations in (8.9), but the flat vacuum condition fixes the aj to be zero.

(8.11) Classification of homogeneous CohFT’s. Since the family uZ of theories is constructed from its
special value at u = 0, we can describe the homogeneity condition in terms of the Euler field

ξ = ξ0 − µi
jx

j∂i + (1 − d/2)xi∂i

and the classification datum E; as always, (ξ0·) denotes the operator of multiplication by the
(constant vector) ξ0 in A. We focus on the important special case of flat vacuum theories, and
show that they are completely determined by the Frobenius algebra structure and the Euler field.

8.12 Proposition. The CohFT Z with flat vacuum defined by E is homogeneous of weight d for ξ iff

µ(1) = −
d

2
· 1 and [(ξ0·), Ek+1] + (µ + k)Ek = 0.

8.13 Remark. (i) Without the flat vacuum assumption, the first equation must be replaced by the
differential equation

dv(z)

dz
+

µ + d/2

z

(
v(z)

)
=

ξ0

z2
· (v(z)− 1) .

The calculation follows the same steps as the proof of the proposition. At a generic point where ξ0

is invertible in the algebra (that is, away from the canonical coordinate axes), the Taylor coefficients
of v are recursively determined by this equation.

(ii) The second recursion is equivalent to an ODE for the expression F(z) of Remark 8.3.ii,

dF

dz
+

µ

z
◦ F =

(ξ·)

z2
◦ F.

(iii) For k = 0, we find µ = [E1, (ξ·)]. When (ξ·) has repeated eigenvalues (on the big diagonal
in canonical coordinates), solvability of this equation places constraints on µ. In a general Frobe-
nius manifold, one can expect semi-simplicity to fail on the big diagonal. However, the requisite
constraint on µ must hold at all semi-simple diagonal points, because the solution Eu exists there.

Proof. First, 1 = −L(1) = −∂(1)/∂ξ − µ(1) + (1 − d/2) · 1; flatness of 1, ∂(1)/∂ξ = 0, gives the
first relation. Next, L(Ek) = −kEk from Proposition 7.19. But

L(Ek) =
∂Ek

∂ξ
+ µ ◦ Ek − Ek ◦ µ,

whereas according to equation (7.7.a),

∂Ek

∂ξ
= [Ek+1, (ξ·)]− Ek ◦

∂Π

∂ξ
◦ Π−1.

The normal canonical frame Π scales with weight (d/2 − 1) under the Euler flow; since

L(Π) =
∂Π

∂ξ
+ µ ◦ Π + (d/2 − 1)Π,
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we have ∂ξΠ ◦ Π−1 = −µ and combining the equations proves necessity of the conditions:

−kEk = [Ek+1, (ξ·)]− Ek ◦ ∂ξ(Π) ◦ Π−1 + µ ◦ Ek − Ek ◦ µ = [Ek+1, (ξ·)] + µ ◦ Ek.

Conversely, the same calculations show that the two conditions imply the L-homogeneity of

uZn
g to first order at u = 0,

L(uZn
g)
∣∣∣
u=0

= (gd − d + n)Zn
g .

We now check that Euler homogeneity at any other point is a formal consequence. Recall from
§7.15 the action adξ of L on the flat frame of TU and its multi-linear extension to tensors. Also,
denote by ∆ half the degree operator on H•(M); it was implicit in Definition 7.16. At a point u, ξ
has the value ξu = ξ0 − adξ(u) and

(L− ∆)(uZn
g) = ∂ξu

(uZn
g)− uZn

g ◦ adξ =
∫ Mn

g

Mn+1
g

ι(ξ0 − adξ(u))uZn+1
g − uZn

g ◦ adξ .

Substitute now formula (7.1) for uZ, this becomes

−∑
m

(−1)m

m!

∫ Mn
g

Mn+m+1
g

(
ι(u)mι(ξ0)Z

n+m+1
g − ι(u)mι(adξ(u))Z

n+m+1
g

)
− uZn

g ◦ adξ ,

and shifting the summation index m 7→ m + 1 in the second term of the sum converts this into

∑
m

(−1)m

m!

∫ Mn
g

Mn+m
g

ι(u)m
(

∂ξ0
Zn+m

g − Zn+m
g ◦ adξ

)

By homogeneity at u = 0, the integrand is ι(u)m(L− ∆)Zn+m
g = ι(u)m(gd − d + n + m − ∆)Zn+m

g .

Pulling ∆ through the integral gives (gd − d + n − ∆)uZn
g , proving homogeneity at u.

(8.14) GW invariants from quantum cohomology. As we now explain, Proposition 8.12 determines E
from A, ξ0 and µ. In Gromov-Witten theory, we have:

8.15 Theorem. The Gromov-Witten classes GWn
g,d ∈ Hev(Mn

g) of a compact symplectic manifold are

uniquely determined by its first Chern class and by the quantum multiplication law at any single semi-
simple point.

Proof. Assume first that the quantum multiplication operator (ξ·) at our chosen semi-simple point
has distinct eigenvalues. Working in the normal canonical basis, the second equation in Proposi-
tion 8.12 supplies the off-diagonal entries of Ek, once Ek−1 is known. Next, since (ξ·) is a diagonal
matrix, the diagonal entries of the commutator [(ξ·), Ek+1] = (µ+ k)Ek must vanish; since those of
the skew matrix µ vanish as well, this fact determines the diagonal part of Ek from its off-diagonal
part. Finally, E0 = Id.

In the general case, consider the block-decompositions of µ and of the Ek corresponding to the
eigenspaces of (ξ·). The first equation [(ξ·), E1] = µ implies the vanishing of the diagonal blocks
of µ. This is a constraint which must hold if A is semi-simple. Given that, the off-diagonal blocks
of E1 are determined from those of µ. The diagonal blocks are determined from the vanishing of
those of (µ + Id)E1 — which must equal [(ξ·), E2] — and in this way, the recursive determination
of the Ek proceeds as before.
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