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1 Introduction

Each Hilbert modular surface has a beautiful minimal smooth compactification
due to Hirzebruch. Higher-dimensional Hilbert modular varieties instead admit
many toroidal compactifications none of which is clearly the best. In this paper,
we consider canonical compactifications of closely related varieties, namely the
real multiplication locus RMe in the moduli space M, of genus g Riemann
surfaces, as well as the locus of eigenforms Q2o in the bundle QM, — M, of
holomorphic one-forms.

If g is 2 or 3, we give a complete description of the stable curves in the
Deligne-Mumford compactification M, which are in the boundary of R Mo, and
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which stable curves equipped with holomorphic one-forms are in the boundary
of the eigenform locus QEp. If g > 3, we give strong restrictions on the stable
curves in the boundary of RMep. This allows one to reduce many difficult
questions about Riemann surfaces with real multiplication to concrete problems
in algebraic geometry and number theory by passing to the boundary of M,.
In this paper, we apply our boundary classification to obtain finiteness results
for Teichmiiller curves in M3 and noninvariance of the eigenform locus under
the action of GL3 (R) on QM.

Boundary of the eigenform locus. We now state a rough version of our
calculation of the boundary of the eigenform locus. See Theorems [5.2] BTl
and for precise statements. Consider a totally real cubic field F', and let
O C F be the ring of integers (we handle arbitrary orders O C F, but stick
to the ring of integers here for simplicity). The Jacobian of a Riemann surface
X has real multiplication by O roughly if the endomorphism ring of Jac(X)
contains a copy of O (see §2 for details). We denote by RMep C Ms the
locus of Riemann surfaces whose Jacobians have real multiplication by O. Real
multiplication on Jac(X') determines an eigenspace decomposition of Q(X), the
space of holomorphic one-forms on X. The eigenform locus QE» C QM3 is the
locus of pairs (X, w), where Jac(X) has real multiplication by O, and w € Q(X)
is an eigenform.

The bundle QM, — M, extends to a bundle QM, — M, whose fiber
over a stable curve X is the space of stable forms on X. A stable form over a
stable curve is a form which is holomorphic, except for possibly simple poles at
the nodes, such that the two residues at a single node are opposite (see §3 for
details). We describe here the closure of Q€ in QMs, which also determines
the closure of RMo in Ms.

Consider the quadratic map Q: F — F, defined by

Q(z) = N§ (@) /2. (L1)

We say that a finite subset S C F satisfies the no-half-space condition if the
interior of the convex hull of Q(S) in the R-span of Q(S) in F ®g R contains 0.

It is well known that every stable curve which is in the closure of the real
multiplication locus RMep C M, has geometric genus 0 or g (we give a proof
via complex analysis in §0). Our description of the closure of the eigenform
locus is as follows.

Theorem 1.1. A geometric genus 0 stable form (X,w) € QMs lies in the
boundary of the eigenform locus QE» if and only if:

e The set of residues of w is a multiple of v(S), for some subset S C F,
satisfying the no-half-plane condition and spanning an ideal T C O, and
for some embedding v: F — R.

o If Q(S) lies in a Q-subspace of F, then an explicit additional equation,
involving cross-ratios of the nodes of X, is satisfied.



Remark. The more precise version of this theorem, which we state in 5l gives
a necessary condition which holds more generally in any genus. In §8 we show
that this condition is sufficient in genus three. In fact, it is sufficient also in
genus two, but we ignore this case as the boundary of the eigenform locus was
previously calculated in the genus two case in [Bai(7]. The higher genus cases
are more difficult, as the Torelli map M, — A, is no longer dominant.

The boundary of £» = PQEp has a stratification into topological types,
where two stable forms are of the same topological type if there is a homeo-
morphism between them which preserves residues up to constant multiple. We
may encode a topological type by a directed graph with the edges weighted by
elements of an ideal Z C O. Vertices represent irreducible components, edges
represent nodes, and weights represent residues. The corresponding boundary
stratum of £o is a product of moduli spaces My, or a subvariety thereof.
The possible topological types arising in the boundary of RM are shown in
Figure [l In Appendix [Al we give an algorithm for enumerating all boundary
strata of £o associated to a given ideal Z. In Figured we tabulate the number
of two-dimensional boundary strata for many different fields.

An important special case is boundary strata parameterizing irreducible sta-
ble curves, otherwise known as trinodal curves. Consider a basis r = (ry,r2,73)
of an ideal Z C O. We say that r is an admissible basis of Z if the r; satisfy the
no-half-space condition. Let S. C PQM3 be the locus of trinodal forms having
residues (+¢(r1), £¢(re), +¢(r3)). Since a trinodal curve may be represented by
6 points in P! identified in pairs, we may identify S. with the moduli space
Mo of such points. Suppose 7 is admissible. As three points in R® whose
convex hull contains 0 must be contained in a subspace, we are in the second
case of Theorem [[LT], so E» NS} is cut out by a single polynomial equation on
St 2 M. We see in Theorem BH that this equation is

RURRI =1, (1.2)

where R;: Myg — C* are certain cross-ratios of four points and the a; are
integers determined explicitly by the r;.

Intersecting flats in SL3(Z)\SL3(R)/SO3(R). In 7l we show that the no-
tion of an admissible basis of a lattice in a totally real cubic number field is
equivalent to a second condition on bases of totally real number fields, which
we call rationality and positivity. Namely, a basis 71, ...,r4 of F is rational and
positive if
ﬁ/ﬁ €Qt forallij,
Si S5
where s1,..., 5, is the dual basis of F' with respect to the trace pairing.

There is a classical correspondence between ideal classes in totally real de-
gree g number fields and compact flats in the locally symmetric space X, =
SL,(Z)\SL,4(R)/SO4(R), the moduli space of lattices in RY. Given an lattice Z
in a totally real number field F', let U(Z) C F™* be the group of totally positive
units preserving Z, embedded in the group D C SL4(R) of positive diagonal



matrices via the g real embeddings of F. There is an isometric immersion pz
of the flat torus T'(Z) = U(Z)\D into X, arising from the right action of D on
SL4(Z)\SL4(R). Let Rec C X, be the locus of lattices in RY which have an or-
thogonal basis. Rec is a closed, but not compact, (¢ —1)-dimensional flat. In §7]
we show that rational and positive bases of lattices in number fields correspond
to intersections of the corresponding compact flat with Rec.

Theorem 1.2. Given an lattice T in a totally real number field, there is a
natural bijection between the set pgl(Rec) and the set of rational and positive
bases of T up to multiplication by units, changing signs, and reordering.

Theorems [[LT]and [[.2] together imply that there is a natural bijection bound-
ary strata of eigenform loci £» C PQLM3 and intersection points of compact flats
in X3 with the distinguished flat Rec. Note that X3 is 5-dimensional, while each
flat in X3 is at most 2-dimensional, so one would not expect many intersections
between these flats. Nevertheless, we show in §9that the ring of integers in each
totally real cubic field has some ideal which has an admissible basis. In fact,
the computations described in Appendix [A] suggest that most lattices in cubic
fields have many admissible bases, although there are also examples of lattices
which have none. It would be an interesting problem to study the asymptotics
of counting these bases.

Algebraically primitive Teichmiiller curves. There is an important ac-
tion of GL3 (R) on QM,, the study of which has many applications to the
dynamics of billiards in polygons and translation flows. A major open problem
is the classification of GLJ (R)-orbit-closures. In genus two, this was solved by
McMullen in [McMOQ7], while next to nothing is known for higher genera.

Very rarely, a form (X,w) has a GLg (R)-stabilizer which is a lattice in
SLo(R). In that case, the GLJ (R)-orbit of (X, w) projects to an algebraic curve
in M, which is isometrically immersed with respect to the Teichmiiller metric.
Such a curve in M, is called a Teichmiiller curve. A Teichmiiller curve C' is
uniformized by a Fuchsian group I', called the Veech group of C'. The field F'
generated by the traces of elements in I' is called the trace field of C. The trace
field is a totally real field of degree at most g. See {I0l for basic definitions
around Teichmiiller curves and the GL3 (R)-action.

Our main motivation for this work was the problem of classifying alge-
braically primitive Teichmiiller curves in My, that is Teichmiiller curves whose
trace field has degree g. Every algebraically primitive Teichmiiller curve lies in
RMe for some order O in its trace field by [M&l06bh], and every Teichmiiller
curve has a cusp, so Theorem [[LT] allows one to approach the classification of
Teichmiiller curves by studying the possible stable curves which are limits of
their cusps.

In QMa, each eigenform locus Q€p is GLJ (R)-invariant and contains one
or two Teichmiiller curves (see [McMO03| [McMO05]). These Teichmiiller curves
lie in the stratum QM3(2) (where we write QM (nq,...,nE) C QM, for the
stratum of forms having zeros of order nq,...,ny). These Teichmiiller curves
were discovered independently by Calta in [Cal04].



A major obstacle to the existence of algebraically primitive Teichmiiller
curves in higher genus is that the eigenform loci are no longer GL;r (R)-invariant.
McMullen showed in [McMO03| that Qo is not GLF (R)-invariant for O the
ring of integers in Q(cos(27/7)). We prove in {I1] the following stronger non-
invariance statement

Theorem 1.3. The eigenform locus Q2Ep is not invariant for O the ring of
integers in any totally real cubic field.

In contrast to the situation in My, we give in this paper strong evidence for
the following conjecture.

Conjecture 1.4. There are only finitely many algebraically primitive Teich-
miller curves in Ms.

In §13] we prove the following instance of this conjecture.

Theorem 1.5. There are only finitely many algebraically primitive Teichmiiller
curves generated by a form in the stratum QMsz(3,1).

The proof uses the cross-ratio equation (I.2) together with a torsion condi-
tion from which gives strong restrictions on Teichmiiller curves gen-
erated by forms with more than one zero. This torsion condition was used
previously in [McMO6D] to show that there is a unique primitive Teichmiiller
curve in QM3(1,1) and in [MSI0O§] to show finiteness of algebraically primitive
Teichmiiller curves in the hyperelliptic components QM (g — 1,9 — 1)™P of
QMgy(g — 1,9 — 1). Similar ideas should establish finiteness in the strata of
QM3 with more than two zeros. More ideas are needed in the strata QM3(4)
and the component QM3(2,2)° of QM3(2,2), as the torsion condition gives
no information (in QM3(2,2)°44 due to the presence of hyperelliptic curves).

While we cannot rule out infinitely many algebraically primitive Teichmiiller
curves in the stratum QMs3(4), Theorem [[1] gives an efficient algorithm for
searching any given eigenform locus Q2€p for Teichmiiller curves in this stratum.
Given an order O, first one lists all admissible bases of ideals in O as described in
Appendix [Al For each admissible basis, there are a finite number of irreducible
stable forms having these residues and a fourfold zero. One then lists these
possible stable forms and then checks each to see if the cross-ratio equation (L2))
holds. If it never holds, then there are no possible cusps of Teichmiiller curves
in QMs3(4) N QEp, so there are no Teichmiiller curves.

Due to numerical difficulties with the odd component, we have only applied
this algorithm to the hyperelliptic component QM3(4)"P. The algorithm re-
covers the one known example in this stratum, Veech’s 7-gon curve, contained
in Q& for O the ring of integers in the unique cubic field of discriminant 49; it
has ruled out algebraically primitive Teichmiiller curves in QM3 (4)™P for every
other eigenform locus it has considered.

Theorem 1.6. Except for Veech’s T-gon curve there are no algebraically prim-
itive Teichmiiller curves generated by a form in Q€0 N QM3z(4)™P for O the
ring of integers in any of the 1778 totally real cubic fields of discriminant less
than 40000.



We discuss the algorithm on which this theorem is based in §141 We also give
in this section some further evidence for Conjecture [L4] in QM3(4)™P, that an
infinite sequence of algebraically primitive Teichmiiller curves in this stratum
would have to satisfy some unlikely arithmetic restrictions on the widths of
cylinders in periodic directions.

For completeness we mention that there is no hope of proving a finiteness
theorem for algebraically primitive Teichmiiller curves in Hg without bound-
ing g. Already Veech’s fundamental paper [Vee89] and also [War98] and [BM]
contain infinitely many algebraically primitive Teichmiiller curves for growing
genus g.

The eigenform locus is generic. A rough dimension count leads one to ex-
pect Conjecture[l4] to hold for the stratum QM3 (4), as the expected dimension
of Eo NPQM3(4) is 0, which is too small to contain a Teichmiiller curve. On the
other hand, if the eigenform locus Q2€» C QM3 is contained in some stratum
besides the generic one QMs3(1, 1,1, 1), one would expect this intersection to be
positive dimensional. This would be a source of possible Teichmiiller curves. In
d12] we prove that the eigenform locus is indeed generic.

Theorem 1.7. For any order O in a totally real cubic field, each component of
the eigenform locus Q€ lies generically in QMs(1,1,1,1).

The proof uses Theorem [I.1] to construct a stable curve in the boundary of
QE» where each irreducible component is a thrice-punctured sphere. A limiting
eigenform on this curve must have a simple zero in each component.

Primitive but not algebraically primitive Teichmiiller curves. From a
Teichmiiller curve in M, one can construct many Teichmiiller curves in higher
genus moduli spaces by a branched covering construction. A Teichmiiller curve is
primitive if it does not arise from one in lower genus via this construction. Every
algebraically primitive Teichmiiller curve is primitive, but the converse does not
hold. In M3, McMullen exhibited in [McMO0Ga] infinitely many primitive Teich-
miiller curves with quadratic trace field. These curves lie in the intersection
of QMs3(4) with the locus of Prym eigenforms, that is, forms (X,w) with an
involution ¢: X — X such that the —1 part of Jac(X) is an Abelian surface
with real multiplication having w as an eigenform. It is not known whether all
primitive Teichmiiller curves in M3 with quadratic trace fields arise from this
Prym construction.

Our approach to classifying algebraically primitive Teichmiiller curves could
also be applied to the classification of (say) primitive Teichmiiller curves in
M3 with quadratic trace field. Given a positive integer d and an order O in a
real quadratic field F, there is the locus £o(d) C PQMj of forms (X, w) such
that there exists a degree d map of X onto an elliptic curve F with the kernel
of the induced map Jac(X) — E having real multiplication by O with w as
an eigenform. The locus £p(d) is three-dimensional, and £»(2) coincides with
McMullen’s Prym eigenform locus. Teichmiiller curves in M3 having quadratic



trace field must be generated by a form in some En(d). There is a classification
of the geometric genus zero forms in the boundary of £n(d), similar to that of
Theorem [T} with the map @ replaced by a quadratic map

Q:FeQ—FaQ

Each boundary stratum of o (d) parameterizing trinodal curves is again a sub-
variety of My g cut out by an equation in cross-ratios similar to (L2)).

Since the cross-ratio equation (2] was responsible for ruling out alge-
braically primitive Teichmiiller curves in 2Ms3(4), one might wonder why its
analogue does not also rule out McMullen’s Teichmiiller curves in £o(2). The
difference is that the cross-ratio equation cutting out the trinodal boundary
strata of £o(2) no longer depends on the associated residues r; € F' as in ([2).
Moreover, each such boundary stratum contains canonical forms having a four-
fold zero, as opposed to the algebraically primitive case where these forms almost
never exist. We hope to provide the details of this discussion in a future paper.

Towards the proof of Theorem [I.J1 We conclude by summarizing the
proof of Theorem [T} For simplicity, we continue to assume that O is a maximal
order. The reader may also wish to ignore the case of nonmaximal orders on a
first reading.

The real multiplication locus RMo C M, (or more precisely, its lift to the
Teichmiiller space) is cut out by certain linear combinations of period matrices.
To better understand the equations which cut out the real multiplication locus,
in flwe give a coordinate-free description of period matrices. Given an Abelian
group L, we define a cover My(L) — My, the space of Riemann surfaces
X equipped with a Lagrangian marking, that is, an isomorphism of L onto a
Lagrangian subspace of Hy(X;Z). We define a homomorphism

U: Sz(Homz(L,Z)) — Hol" My(L),

where Sz() denotes the symmetric square, and Hol® My(L) is the group of
nowhere vanishing holomorphic functions on Mgy(L). Each function ¥(a) is
a product of exponentials of entries of period matrices. There is a Deligne-
Mumford compactification M (L) of My(L) with a boundary divisor D., for
each v € L, consisting of stable curves where a curve homologous to « has been
pinched. In Theorem Il we show that each W(a) is meromorphic on M, (L)
with order of vanishing

ordp, ¥(a) = (a,7® )

along D.,.

Cusps of the real multiplication locus correspond to ideal classes in O (or
extensions of ideal classes if O is nonmaximal). Given an ideal Z C O, we define
in §0l a real multiplication locus RMe(Z) C M3(Z), covering RMo C Mg, of
surfaces which have real multiplication in a way which is compatible with the
Lagrangian marking by Z. The closure of RMo(Z) in M3(Z) covers the closure



of the cusp of RMp corresponding to Z, so it suffices to compute the closure in
M3(Z). In §5l we construct a rank 3 subgroup I' of Sz(Hom(Z,Z)) = Sz(ZV)
(where ZV C F is the inverse different of Z) such that RMe(Z) is cut out by
the equations

U(a) =1 (1.3)

for all @ € T'. The proof of Theorem yields an identification of I" with a
lattice in F with the property that for each a € I' and ¢ € Z, the order of
vanishing of ¥(a) along the divisor D; C My(Z) is

ordp, ¥(a) = (a, Q(t)) (1.4)

with the pairing the trace pairing on F' and Q(¢) as in (LI)).

Now suppose that S C ﬂg (Z) is a boundary stratum which is the intersec-
tion of the divisors Dy, for t1,...,t, € Z, and suppose that the ¢; do not satisfy
the no-half-space condition. This means that we can find a vector a € F such
that (a, Q(t;)) > 0 for each t; with strict inequality for at least one. Multiplying
a by a sufficiently large integer, we may assume a € I'. From (L3]) we see that
U(a) =1 on RMop(Z), and from (L) we see that ¥(a) = 0 on S. It follows
that RMo(Z) NS = 0, from which we conclude the first part of Theorem [l

If the Q(t;) lie in a subspace of F', then we may choose a € I' to be orthogonal
to each Q(t;). By ([[4)), the function ¥(a) is nonzero and holomorphic on S. The
equation ¥(a) = 1 restricted to S cuts out a codimension-one subvariety of S,
which yields the second part of Theorem [Tl In the case where S parameterizes
trinodal curves, the equation ¥(a) = 1 is exactly the cross-ratio equation (L2]).
This concludes the necessity of the conditions of Theorem [T1]

To obtain sufficiency of these conditions, in §§ we show that one can of-
ten define, using the functions ¥(a), local coordinates from a neighborhood of
a boundary stratum S in M (L) into (C*)™ x C". In these coordinates, S
is (C*)™ x {0}, and the real multiplication locus RMo(Z) is a subtorus of
(C*)m+n. The computation of the boundary of the real multiplication locus is
thus reduced to the computation of the closure of an algebraic torus in (C*)™+™,
which is done in Theorem BT4l

Hilbert modular varities and the locus of real multiplication. We
conclude with a discussion of the relation between Hilbert modular varieties and
the real multiplication locus. In several textbooks (e.g. [Fre90]) Hilbert modular
varieties are defined as the quotients HY /T, where I' = SL(O @& OV) = SLy(0O)
for some order O C F, or even more restrictively for O the ring of integers
[Gor02]. There is a natural map from HY/T" to the moduli space of Abelian
varieties whose image is a component of the locus of Abelian varieties with real
multiplication by O. In Appendix [Bl we provide an example showing that the
real multiplication locus need not be connected, so it is in general not the image
of H9/T'. This phenomenon is surely known to experts but is often swept under
the rug. If one restricts to quadratic fields (as in [vdG88]) or to maximal orders
(as in [Gor02]) this phenomenon disappears.



In this paper, we regard a Hilbert modular variety more generally as a quo-
tient HY/T for any TV commensurable with SLy(0). With this more general
definition, the locus RAp C A, of Abelian varieties with real multiplication by
O is parametrized by a union X of Hilbert modular varieties.

The eigenform loci £o C PQQM, which we compactify are closely related
to the Hilbert modular varieties X¢. In genus two, £ is isomorphic to Xo,
while in genus three, £» is a (degree-one) branched cover of Xp. The real
multiplication locus RMp C M, is a quotient of £ by an action of the Galois
group. See §2] for details on Hilbert modular varieties and the various real
multiplication loci.
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Notation. Throughout the paper, F' will denote a totally real number field,
O and order in F', and Z C F a lattice whose coefficient ring contains O.

Given an R-module M, we write Symp (M) for the submodule of M ®r M
fixed by the involution f(z ® y) = y ® . We write Sg(M) for the quotient of
M ®pr M by the submodule generated by the relations 6(z) — x.

Given a bilinear pairing (, ): M x N — R, we write Hom}(M, N) and
Homp (M, N) for the self-adjoint and anti-self-adjoint maps from M to N.

We write A, for the disk of radius r about the origin in C; we write A for
the unit disk, and A* for the unit disk with the origin removed.

2 Orders, real multiplication, and Hilbert mod-
ular varieties

In this section, we discuss necessary background material on orders in number
fields, Abelian varieties with real multiplication, and their various moduli spaces.

Orders. Cousider a number field F' of degree d. A lattice in F (also called full

module) is a subgroup of the additive group of F' isomorphic to a rank d free

Abelian group. An order in F'is a lattice which is also a subring of F' containing

the identity element. The ring of integers in F' is the unique maximal order.
Given a lattice Z in F, the coefficient ring of Z is the order

Or={a€eF:axe M foral x € M}.

We will sometimes write Oz for the coefficient ring of Z.
Lattices in finite dimensional vector spaces over F' and their coefficient rings
are defined similarly.



Ideal classes. Two lattices Z and Z’ in F are similar if T = oZ’ for some
«a € F. An ideal class is an equivalence class of this relation. Given an order
O the set Cl(O) of ideal classes of lattices with coefficient ring O is a finite set
(see [BSGO]). If O is a maximal order, C1(O) is the ideal class group of O.

Modules over orders. Let O be an order in a number field F' and M a
module over O. The rank of M is the dimension of M ® QQ as a vector space
over F'. We say M is proper if the O-module structure on M does not extend
to a larger order in F.

Every torsion-free, rank-one O-module M is isomorphic to a fractional ideal
of O, that is, a lattice in F' whose coefficient ring contains O.

A symplectic O-module is a torsion-free O-module M together with a uni-
modular symplectic form ( , ): M x M — 7 which is compatible with the
O-module structure in the sense that

(Az,y) = (z, \y)

forall A € O and z,y € M.
We equip F? with the symplectic pairing

((a1,51), (a2, B2)) = Tr(a1 P2 — azf1). (2.1)

Every rank-two symplectic O-module is isomorphic to a lattice L in F? with
coeflicient ring contains O such that the symplectic form on F' induces a uni-
modular symplectic paring L x L — Z.

Inverse different. Given a lattice Z C F' with coeflicient ring O, the inverse
different of T is the lattice

IV ={x € F:Tr(zy) € Z for ally € M}.

ZV and 7 have the same coefficient rings. The trace pairing induces an O-module
isomorphism 7V — Hom(Z, Z).
The sum Z ® IV is a symplectic O-module with the canonical symplectic

form (2.1)).

Symplectic Extensions. We now discuss the classification of certain exten-
sions of lattices in number fields. This will be important in the discussion of
cusps of Hilbert modular varieties below.

Let 7 be a lattice in a number field F' with coefficient ring Oz. An extension
of IV by T over an order O C Oz is an exact sequence of O-modules,

0—-Z—-M-—1I"—0,

with M a proper O-module. Given such an extension, a Z-module splitting
s: IV — M determines a Z-module isomorphism Z ®ZY — M. The module M
inherits the symplectic form (2I), which does not depend on the choice of the

10



splitting s. We say that this is a symplectic extension if the symplectic form is
compatible with the O-module structure of M.
Let E(Z) be the set of all symplectic extensions of ZV by Z over any order
O C Oz up to isomorphisms of exact sequences which are the identity on 7
and ZV. We give F(T) the usual Abelian group structure: given two symplectic
extensions,
075 M =71V =0,

define w: My & My — IV by w(a, 8) = m(a) — m2(8) and ¢: T — M; & My by
t =11 ® (—t2). The sum of the two extensions is

0 — Z — Ker(r)/Im(t) — Z" — 0.

and the identity element is the trivial extension Z @& ZV.
Let Hom& (F, F) be the space of endomorphisms of F that are self-adjoint

with respect to the trace pairing. Note that Homp(F, F) C Hom& (F,F). For
x € F,let M, € Homp(F, F) denote the multiplication-by-2 endomorphism.
Given T € Homa(F, F), let O(T) be the order

{r e F:[M,,T|(TV)C1I},

where [X,Y] = XY — Y X is the commutator. That O(T) is a subring of F'
follows from the formula

MM, T]+ [Mx, TIM,, = [Mx,,T).

Define a symplectic extension (Z@®ZY)r of ZV by Z over O(T) by giving ZHZV
the O(T')-module structure

A (e, B) = (Aa + [My, T](B), AB).
Theorem 2.1. The map T — (Z ®ZY)r induces an isomorphism
Homg (F, F)/(Hompg(F, F) + Homy (ZV,7)) — E(T).

Proof. To see that our map is a well-defined homomorphism is just a matter of
working through the definitions, which we leave to the reader.

To show our map is a monomorphism, suppose (Z @ Z")r is isomorphic to
the trivial extension via ¢: (Z ® Z¥)r — Z @& Z". This isomorphism must be
of the form ¢(a, 8) = (o + R(B),3) for some self-adjoint R: ZV — Z. The
condition that this is an O(T')-module isomorphism implies [M,, T — R] = 0 for
all z € O(T). Since Homp(F, F) is its own centralizer in Homg(F, F'), we must
have T — R € Homp(F, F), so T € Homp(F, F) + Hom} (ZV,T).

Now consider the space D = Homg(F, Homg, (F, F)). We write elements of
D as Q. with Q, € Homg (F, F) for each x € F'. Let C C D be those elements
Q. satisfying

MoQy + QeMy = Quy (2.2)
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for all z,y € F. We claim that every element of C is of the form QZ = [M,, T].
To see this, let # be a generator of F' over Q. The map C — Homg, (F,F)
sending Q_ to Qg is injective by ([Z2), so dimC < d(d—1)/2, where d = [F : Q).
The map Homéf (F,F)/Homp(F,F) — C sending T to Q” is injective so is an
isomorphism because the domain also has dimension d(d — 1)/2. Thus every
element of C has the desired form.

Now, every symplectic extension of ZV by Z over an order O is isomorphic
as a symplectic Z-module to Z @ ZV with the O-module structure,

)\ : (aaﬁ) = (AO{ + Q)\(B)a )‘6)7
with @Q_ € C. Since Q_= QT for some T, our map is surjective. |

Given an order O C Oz, let E®(Z) C E(Z) be the subgroup of extensions
over some order O’ such that O C O’ C Oz, and let Eo(Z) C E©(Z) be the set
of extensions over O. From the above description of E(Z), we obtain:

Corollary 2.2. E(Z) is a torsion group with E€(I) a finite subgroup.

If two lattices Z and Z' are in the same ideal class, then the groups E(Z) are
canonically isomorphic.

Real multiplication. We now suppose F' is a totally real number field of
degree g.

Consider a principally polarized g-dimensional Abelian variety A. We let
End(A) be the ring of endomorphisms of A and End’(A) the subring of en-
domorphisms such that the induced endomorphism of Hi(A;Q) is self-adjoint
with respect to the symplectic structure defined by the polarization.

Real multiplication by F on A is a monomorphism p: F — End"(A) @z Q.
The subring O = p~!(End(A)) is an order in F, and we say that A has real
multiplication by O.

There can be many ways for a given Abelian variety to have real multiplica-
tion by O. We write Gal(O/Z) for the subgroup of the Galois group Gal(F/Q)
which preserves @. If p: © — End®(A) is real multiplication of ©® on A, then
so is poo for any o € Gal(O/Z).

Let A, = Hy/Spy,(Z) be the moduli space of g-dimensional principally
polarized Abelian varieties (where Hy is the g(g+ 1)/2-dimensional Siegel upper
half space). We denote by RAo C A, the locus of Abelian varieties with real
multiplication by O.

Eigenforms. Real multiplication p: @ — End"(A) induces a monomorphism
p: O — End Q(A), where Q(A) is the vector space of holomorphic one-forms on
A. If ©: F — R is an embedding of F', we say that w € Q(X) is an t-eigenform
if

Arw=1(Aw
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for all A € O. Equivalently, w is an t-eigenform if

fomm]

for all A € O and v € H1(A;Z). If we do not wish to specify an embedding ¢,
we just call w an eigenform.

Given an embedding ¢ and t-eigenform (A, w), there is a unique choice of real
multiplication p: @ — End’(A) which realizes (A,w) as an t-eigenform. Thus
considering t-eigenforms allows one to eliminate the ambiguity of the choice of
real multiplication.

We denote by 2¢(X) the one-dimensional space of t-eigenforms. We obtain
the eigenform decomposition,

QX)) = P X)), (2.3)

v: F—R

where the sum is over all field embeddings ¢.

We denote by Q2A4, — A, the moduli space of pairs (A, w) where A is a prin-
cipally polarized Abelian variety and w is a nonzero holomorphic one-form on A.
We write EAo C PQA, for the locus of eigenforms for real multiplication by O
and EAp for the locus of t-eigenforms. Note that for Gal(O/Z)-conjugate em-
beddings ¢ and ¢/, the eigenform loci €A, and EAé coincide (as an (-eigenform is
simultaneously an /-eigenform for a Galois conjugate real multiplication); how-
ever, each (4,w) € EA, comes with a canonical choice or real multiplication
which depends on .

Hilbert modular varieties. Choose an ordering ¢1,...,¢4 of the g real em-
beddings of F. We use the notation () = 1;(x). The group SLy(F) then acts
on H9 by A-(z)_, = (AW - 2)7_,, where SLy(R) acts on the upper-half plane
H by Mobius transformations in the usual way.

Given a lattice M C F?, we define SL(M) to be the subgroup of SLy(F)
which preserves M. The Hilbert modular variety associated to M is

X (M) = H9/SL(M).

Given an order O C F, we define
Xo = HX(M)a
M

where the union is over a set of representatives of all isomorphism classes of
proper rank two symplectic O-modules. If O is a maximal order, then every
rank two symplectic O-module is isomorphic to O @ OV (this also holds if g = 2;
see [McMOT]), so in this case X is connected. In general, X¢ is not connected,
as there are nonisomorphic proper symplectic O-modules; see Appendix[Bl
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There are canonical maps j,: Xo — EAp and j: Xo — RAe defined as
follows. Given a lattice M C F? and 7 = (7;)?_, € HY, we define ¢,: M — C9
by

Or(2,y) = (= +y D)L,

The Abelian variety A, = C9/¢,(M) has real multiplication by O defined by
A (z)0, = (A9 z)7_ . The form dz; is an 1;-eigenform.

The map j,: Xo — EAp is an isomorphism, so we may regard Xo as the
moduli space of principally polarized Abelian varieties A with a choice of real
multiplication p: O — End"(A).

The Galois group Gal(O/Z) acts on X, and the map j factors through to
a generically one-to-one map j': Xo/ Gal(O/Z) — RAo.

Cusps of Hilbert modular varieties. The Baily-Borel-Satake compactifi-
cation X (M) of X (M) is a projective variety obtained by adding finitely many
points to X (M) which we call the cusps of X(M). More precisely, we embed
PY(F) in (HU {ico})? by (z : y) — (2 /yD)?_,. We define HY, = HI U P (F)
with a certain topology whose precise definition is not needed for this discussion;
see [BJO6]. The compactification of X (M) is X (M) = HY./SL(M). We define

)/5(9 to be the union of the compactifications of its components.

Proposition 2.3. There is a natural bijection between the set of cusps of Xo
and the set of isomorphism classes of symplectic extensions

0—-Z—N—=I"—0 (2.4)

with N a primitive rank-two symplectic O-module and T a torsion-free rank one
O-module. The cusps of X (M) correspond to the isomorphism classes of such
extensions where M = N as symplectic O-modules.

Sketch of proof. Fix a lattice M C F?. We must provide a SL(M )-equivariant
bijection between lines L C F? and extensions 0 — Z — M — ZV — 0 (up to
isomorphism which is the identity on M). We assign to a line L, the extension
0—-LNM— M — M/(LNM) — 0. The line L is recovered from an extension
0—7Z— M —7TV — 0 by defining L =7 ® Q.

The bijection for cusps of X follows immediately. |

Consider the set of all pairs (Z,T'), where 7 is a lattice in ' whose coefficient
ring contains O, and T € En(Z). The multiplicative group of F acts on such
pairs by a - (Z,T) = (aZ,T*), where T%(z) = aT (az) (using the identification
of Theorem 21)). We define a cusp packet for real multiplication by O to be an
equivalence class of a pair (Z,T') under this relation.

We denote by C(O) the finite set of cusp packets for real multiplication by
O. We have seen that there are canonical bijections between C(QO), the set of
isomorphism classes of symplectic extensions of the form (Z4]), the set of cusps
of Xo, and the set of cusps of EA. Moreover, there is a canonical bijection
between the set of cusps of RAp and C(O)/ Gal(O/Z).
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3 Stable Riemann surfaces and their moduli

In this section, we discuss some background material on Riemann surfaces with
nodal singularities, holomorphic one-forms, and their various moduli spaces.

Stable Riemann surfaces. A stable Riemann surface (or stable curve) is
a connected, compact, one-dimensional, complex analytic variety with possibly
finitely many nodal singularities — that is, singularities of the form zw = 0 —
such that each component of the complement of the singularities has negative
Euler characteristic. In other terms, a stable Riemann surface can be regarded a
disjoint union of finite volume hyperbolic Riemann surfaces with cusps, together
with an identification of the cusps into pairs, each pair forming a node. We will
refer to a pair of cusps facing a node as opposite cusps.

The arithmetic genus of a stable Riemann surface is the genus of the non-
singular surface obtained by thickening each node to an annulus; the geometric
genus is the sum of the genera of its irreducible components.

Homology. Given a stable Riemann surface X, let Xy be the complement of
the nodes. For each cusp ¢ of Xy, let a. € H1(X0;Z) be the class of a positively
oriented simple closed curve winding once around ¢, and let I C H;(Xo;Z) be
the subgroup generated by the expressions a. + a4, where ¢ and d are cusps
joined to a node on X. R

We define H1(X;Z) = H1(Xo;Z)/I. Defining C(X) C H1(X;Z) to be the
free Abelian subgroup (of rank equal to the number of nodes) generated by the
«¢, we have the canonical exact sequence

0— C(X) — H{(X;Z) — H(X;Z) — 0,
where X — X is the normalization of X.

Markings. Fix a genus g surface X, and let X be a genus g stable Riemann
surface. A collapse is a map f: X, — X such that the inverse image of each
node is a simple closed curve and f is a homeomorphism on the complement of
these curves.

A marked stable Riemann surface is a stable Riemann surface X together
with a collapse f: ¥; — X. Two marked stable Riemann surfaces f: ¥, — X
and g: X, — Y are equivalent if there is homeomorphism ¢: ¥, — ¥, which is
homotopic to the identity and a conformal isomorphism ¢: X — Y such that

gog=1of.

Augmented Teichmiiller space. The Teichmiiller space T (%,) is the space
of nonsingular marked Riemann surfaces of genus g. It is contained in the aug-
mented Teichmiiller space T (3,), the space of marked stable Riemann surfaces
of genus g. We give ?(Eg) the smallest topology such that the hyperbolic length
of any simple closed curve is continuous as a function 7 (X,) — Rxq U {oo}.
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Abikoft [Abi77] showed that this topology agrees with other natural topologies
on 7 defined via quasiconformal mappings or quasi-isometries.

Deligne-Mumford compactification. The mapping class group Mod(X,)
of orientation preserving homeomorphisms of 3, defined up to isotopy acts on
T(%,) and 7(X,) by precomposition of markings. The moduli space of genus
¢ Riemann surfaces is the quotient M, = 7(Z,)/Mod(X,). The Deligne-
Mumford compactification of M, is M, = T (%) / Mod(%,), the moduli space
of genus g stable curves.

Over ﬂg is the universal curve p: C — Mg, a compact algebraic variety
whose fiber over a point representing a stable curve X is a curve isomorphic to
X (provided X has no automorphisms).

Stable Abelian differentials. Over M, is the vector bundle QM, — M,
whose fiber over X is the space (X) of holomorphic one-forms on X. We
extend this to the vector bundle QM, — M, whose fiber Q(X) over X is the
space of stable Abelian differentials on X, defined as follows.

Given a genus g stable Riemann surface X, a stable Abelian differential is a
holomorphic one-form on Xy, the complement in X of its nodes, such that:

e w has at worst simple poles at the cusps of Xj.

e If p and ¢ are opposite cusps of X, then

Respw = —Resq w

The dualizing sheaf wx is the sheaf on X of one-forms locally satisfying the two
above conditions (see [HMO98, p. 82]), so a stable Abelian differential is simply a
global section of the dualizing sheaf wx. We write (X)) for the space of stable
Abelian differentials on X, a g-dimensional vector space by Serre duality.

In the universal curve p: C — /\/lq, let Cy be the complement of the nodes
of the fibers. The relative cotangent sheaf of Co — M, (the sheaf of cotangent
vectors to the fibers) is an invertible sheaf which extends in a unique way to an
invertible sheaf ws /M, On C, the relative dualizing sheaf of this family of curves.

The restriction of w5 /M, toa fiber X of this family is simply wx. The push-

forward p.ws /M, is the sheaf of sections of the rank g vector bundle Q./\/l —

M,.

Plumbing coordinates. Following Wolpert [WoI89] we give explicit holo-
morphic coordinates at the boundary of ﬂg and a model of the universal curve
in these coordinates. See also [Ber74l [Ber81] and [Mas76].

Let X be a stable curve with nodes ni,...,ng, and let Xy be X with the
nodes removed, a disjoint union of punctured Riemann surfaces. At each node
n;, let U; and V; be small neighborhoods of n; in each of the two branches of
X through n;, and choose conformal maps F;: U; — C and G;: V; — C whose
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images contain the unit disk around the origin A;. We write z; and w; for the
coordinates on U; and V; induced by these maps. We define

X=X \J sl < yu{lw] <1)) and

M=X*x A}
We take a model of a degeneration of a family of curves.
Vi = {(wi,yi,t) € Ay x Ay x A} s 2y, = 1},

where t = (t;,...,t;). The fiber V* of the projection (z;,v;,t) — t is a non-
singular annulus except when t; = 0, in which case it is two disks meeting at a
node.

Let X — A% be the family of stable curves obtained by gluing each V; to
M by the maps

E(pvt) = (E(p)vti/ﬂ(p)vt) and éi(pvt) = (ti/Gi(p)vGi(p)vt)v

defined on subsets of M. The fiber X; over t is simply the stable Riemann
surface obtained by removing the disks {|z;| < [t;]'/?} and {|w;| < |t;|'/?} and
gluing the boundary circles by the relation w; = t;/z;. If t; = 0, the node n; is
unchanged.

Let @ be the space of holomorphic quadratic differentials on X, with at
worst simple poles at the nodes. Choose 3g — 3 — k Beltrami differentials p; on
Xo \U(U; UV;) so that no nontrivial linear combination of the p; pairs trivially
with a quadratic differential in Q. Given s € A2973=F for sufficiently small ¢,
the Beltrami differential ps = > s;p; satisfies ||pslloo < 1.

We define a family of stable curves Y — A29737% x AF by endowing ) =
X x A29737F with the complex structure on ) defined by placing on each fiber
X7 over (s,t) the Beltrami differential pis.

We obtain a holomorphic (orbifold) coordinate chart A29=37% x A¥ — M,
sending (s,t) to the point representing the stable curve X7. The family Y is
the pullback of the universal curve by this coordinate chart.

Lagrangian markings. Given a genus g stable curve X, a Lagrangian sub-
group of H1(X;Z) is a free Abelian subgroup L of rank g such that Hy(X;Z)/L
is torsion-free and the restriction of the intersection form on Hy(X;Z) to the
image of L under the canonical projection Hy (X;Z) — Hy(X;Z) is trivial.

Fix a free Abelian group L of rank g. A Lagrangian marking of a genus g
stable Riemann surface X by L is a monomorphism p: L — H;(X;Z) whose
image is a Lagrangian subgroup. The image p(L) necessarily contains the sub-
group C'(X) of fll (X;7Z) generated by the nodes. Thus we may assign to each
node of X its “homology class” in L, an element of L well-defined up to sign.

Let My(L) be the space of genus g stable Riemann surfaces with a La-
grangian marking by L and My(L) C M, (L) the subspace of nonsingular sur-
faces. If we identify L with a Lagrangian subgroup of H(3,;Z), we have

My(L) =T(E,)/Mod(Xy, L),
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where Mod(X,, L) is the subgroup of Mod(X,) fixing L pointwise. Moreover
My(L) =T (2, L)/ Mod(Z,, L),

where 7 (X,,L) C 7(%,) is the locus of stable Riemann surfaces which can be
obtained by collapsing only curves on ¥, whose homology class belongs to L
(including homologically trivial curves).

Given a nonzero v € L, there is the divisor D, C M (L) consisting of stable
curves where a curve homologous to « has been pinched. D, and D_, are the
same divisor.

The above plumbing coordinates provide in the same way coordinates at the
boundary of M(L).

Weighted stable curves. Given a free Abelian group L, we define an L-
weighted stable curve to be a geometric genus 0 stable curve with an element of
L associated to each cusp of X, called the weight of that cusp, subject to the
following restrictions:

e Opposite cusps of X have opposite weights.

e The sum of the weights of the cusps of an irreducible component of X is
7€ero.

e The weights of X span L.

In other words, the first two conditions mean that the weights are subject to
the same restrictions as the residues of a stable form.

We say that two L-weighted stable curves X and Y are isomorphic (resp.
topologically equivalent) if there is a weight-preserving conformal isomorphism
(resp. homeomorphism) X — Y.

The notion of an L-weighting of a geometric genus 0 stable curve X is in
fact equivalent to a Lagrangian marking p: L — H;(X;Z) (necessarily an iso-
morphism because X is genus 0). If o, € H, (X;7Z) is the class of a positively
oriented curve around a cusp ¢ with weight w, the marking p maps w to ae.

Weighted boundary strata. An L-weighted boundary stratum is a topo-
logical equivalence class in the set of all L-weighted stable curves. If X is an
L-weighted stable curve having m components C;, each homeomorphic to P!
with n; points removed and with each component having distinct weights, then
the corresponding L-weighted boundary stratum is an algebraic variety isomor-

phic to
m
H MO,ni )
i=1

where M, ,, is the moduli space of n labeled points on P!, with each point being
labeled by its weight.

The notion of a L-weighted boundary stratum is in fact equivalent to that of
a boundary stratum in M (L). We consider two marked stable curves (X, p) and
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(Y,o) in My(L) to be equivalent if there is a homeomorphism f: X — Y which
commutes with the markings, and we define a Lagrangian boundary stratum
in OM, (L) to be an equivalence class of this relation. A Lagrangian bound-
ary stratum is simply a maximal connected subset of M, (L) parameterizing
homeomorphic stable curves.

In view of the above correspondence between L-weightings and Lagrangian
markings by L, every L-weighted boundary stratum S can be regarded canoni-
cally as a geometric genus zero Lagrangian boundary stratum & C M, (L), and
vice-versa.

Given an L-weighted boundary stratum S, we define Weight(S) C L to be
the set of weights of any surface in S.

Embeddings of strata. Suppose now that Z is a lattice in a degree g number
field F. Given an Z-weighted boundary stratum S and a real embedding ¢ of
F, we define p,: § — ]P’Qﬂg by associating to a weighted stable curve X the
unique stable form on X which has residue «(w) at a cusp with weight w. The
it" embedding S* of S is its image under p,.

Similar strata. Suppose Z and J are lattices in a number field F. We say
that Z and J-weighted stable curves X and Y are similar if there is a conformal
isomorphism X — Y which sends each weight = to Az for some fixed A € F.

We say that two weighted boundary strata are similar if they parameterize
similar weighted stable curves. Note that if the unit group of F' is infinite, then
Z-weighted boundary stratum is similar to infinitely many distinct Z-weighted
boundary strata.

Extremal length and the Hodge norm. Given any Riemann surface X,
the Hodge norm on Hy(X;R) is defined by
[«
~

where 1 (X)) denotes the space of forms with unit norm, for the norm

[vllx = sup
we (X)

)

Given a curve v on a Riemann surface X, we write Ext(y) for the extremal
length of the family of curves which are homotopic to v, that is

Ext(y) = Sup I;l((pp)) :

where the supremum is over all conformal metrics p(z)dz with p nonnegative
and measurable,

L) = jnf [ ple)idz.

=y
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and
Alp) = [ pley?iasp

The relation between curves with small extremal length and homology classes
with small Hodge norm is summarized by the following two Propositions.

Proposition 3.1. For any curve v on a Riemann surface X, we have
V1% < Ext(y).

Proof. Choose a form w such that ||w| = 1 and |fvw| = ||7llx. Regarding |w|
as a conformal metric on X, we obtain

/w\s/M,
Yy Yy

I711% < L(jwl)* < Ext(y). u

I¥llx =

thus

Proposition 3.2. Given any Riemann surface X, there is a constant C' —
depending only on the genus of X — such that any cycle v € H1(X;Z) is homol-
ogous to a sum of simple closed curves ~yi,...,vn such that for each i,

Ext(yi) < Cl% (3.1)

Proof. Let w be a holomorphic one-form on X such that Imw is Poincaré dual
to 7. Since Imw has integral periods, the map f: X — R/Z defined by f(q) =
qu Imw (with p a chosen basepoint) is well-defined. The horizontal foliation of

w (that is, the kernel foliation of Im w) is periodic, and each fiber v, = f~1(r) is
a union of closed, horizontal leaves of w. Giving the leaves of 7, the orientation
defined by Rew, we can regard 7, as a cycle in Hy(X;Z) which is homologous
to . By Poincaré duality,

length(v,) = / Rew :/ Rew Almw = %Hw”z,
. b's
so each component of 7, has length at most ||w]|?/2.

Since w has at most 2g — 2 distinct zeros, there is an open interval I C R/Z
of length at least 1/(2g — 2) which is disjoint from the images of the zeros of
w. Choose some 7 € I. The inverse image f~1(I) consists of flat cylinders
Cy,...,C,, each of height at least 1/(2g — 2), and with each C; containing a
component 7% of ,.. We obtain the bound,

2
Mod(C) > —=
(29 = 2)|w[?
for the modulus of C;. From monotonicity of extremal length, (see [AhIG6]
Theorem 1.2]) we have Ext(y?) < 1/Mod(C;), which with [B2) implies (B
(setting v; = +2). [ |

(3.2)

Remark. A similar argument is used by Accola in [Acc60], where he shows that
[I7lx is equal to the extremal length of the homology class ~.
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4 Period Matrices

In this section, we study period matrices as functions on ﬂg. We develop a
coordinate-free version of the classical period matrices. We see that exponentials
of entries of period matrices are canonical meromorphic functions on mg(L),
and we calculate the orders of vanishing of these functions along boundary
divisors of M (L).

Fix a genus g surface ¥, and a splitting of H;y(X,;Z) into a sum of La-
grangian subgroups,

H\(X4;Z)=L& M.

Given a surface X € 7(X,), integration of forms yields isomorphisms
P Q(L) — Homgz(L,C) and Pjy: Q(X) — Homgz(M,C).
We obtain a holomorphic map
T(,) — Home (Homy (L, C), Homz (M, C)) = L ®z L ®7 C, (4.1)

where the second map uses the isomorphism L. — M* provided by the inter-
section form. The Riemann bilinear relations imply that the image of the map
@I) lies in Symy (L), so we obtain a holomorphic map,

®: T(X,) — Symy(L) @ C,
and the dual homomorphism,
®*: Sz(Hom(L,Z)) — Hol T (X,),

where Hol 7 (X,) denotes the additive group of holomorphic functions on 7' (X,).
The map ®* is just a coordinate-free version of the classical period matrix.
If we choose a basis (a;) of L and dual bases (;) of M and (w;) of Q(X), the
period matrix is (;;) where 7;; = w;(5;). The map ®* is simply
(I)*(Oé;k ® a;‘) = Tij,

where (af) is the dual basis of Hom(L, Z).
The map ®* depends on the choice of the complementary Lagrangian sub-
group M. Every complementary Lagrangian is of the form

Mp={m+T(m): me M},

for some self-adjoint T: M — L. Suppose we choose a different complemen-
tary Lagrangian M7, and ®7 is the corresponding homomorphism. The new
homomorphism ®7, is related to the old one by

7(z) = % (x) + (2,T),

where we are regarding T as an element of Symg(L). It follows that the functions
U(x) = e>™® (#) do not depend on the choice of M and so descend to nonzero
holomorphic functions on M, (L). We obtain a canonical homomorphism

U: Sz(Hom(L,Z)) — Hol" M4(L).
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Theorem 4.1. For each a € Sz(Hom(L,Z)), the function ¥(a) is meromorphic
on My(L). For each nonzero vy € L, the order of vanishing of ¥(a) along D., is

ordp, ¥(a) = (y®7,a).

U(a) is holomorphic and nowhere vanishing along any Lagrangian boundary
stratum obtained by pinching a curve homologous to zero.
If § C OMy(L) is a Lagrangian boundary stratum with

(y®v,a) >0 (4.2)

for all v € Weight(S), then W(a) is holomorphic on S. If the pairing [@2) is
zero for all v € Weight(S), then U(a) is nowhere vanishing on S. Otherwise
U (a) vanishes identically on S.

Proof. We use in this proof the plumbing coordinates and related notation in-
troduced in 3l Let X be a stable curve with nodes nq,....n; obtained by
pinching curves 71, ...,y with homology classes [y1], ..., [yx] € L. Let

Y — B := Afgfgfk X Alf

be the family of stable curves constructed above with X the fiber over (0,0).
The nodes of this family are contained in the open sets

Wi = Vl X Aggigik = {(xi,yi,s,t) S Al X Al X Aggigik X Alf XY = ti},
for i = 1,..., k. Define sections p;, q;: B — Y with image in OW,; by
pi(s,t) = (1,t;,8,t) and ¢;(s,t) = (t;,1,s,¢t).

Choose oy ® ay € Sz(Hom(L,Z)) and let n be the holomorphic section of
the relative dualizing sheaf wy /5 such that each period homomorphism L — C
defined by each restriction n; to the fiber X} agrees with ay: L — Z.

On W; we may express 7 as

o ([7i]) dews

2w x;

with f; and g; holomorphic functions of x;,y;, s, and ¢.
Let 63 ,: [=1,1] — W, be a path in the fiber of W; over (s,t) joining p;(s, t)
to ¢i(s,t). We may explicitly parameterize this path as

s() (\/t_i_r(l_\/Fi)vti/(\/t_i_r(l_\/a))vsvt) ifr<o0

(r) =

" (ti/(r(1 = V&) + V), r(1 — V&) + V&, s,t) if r > 0.

We may choose a continuous family of 1-chains 0f in X7 with endpoints in
{pi(s,t),qi(s,t)}r_, such that

k
6 = 5:,0 + Z a2([%‘])5ts,i

i=1
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is a 1-cycle whose intersection with classes in L agrees with the homomorphism
as: L — 7.
We have

V(g ® as)(s,t) = FE </55 nf) , (4.4)

where we use the notation E(z) = e?™**. The integral f(;s 7; is an integral
t,0

of a holomorphically varying form over a 1-cycle with holorﬁorphically varying
endpoints, and so its contribution to (4] is holomorphic and nonzero. Thus it
does not contribute to the order of vanishing of ¥(a; ® as).
The integral
fidz; + gidz;
68
is a finite holomorphic function of s and ¢t and so does not contribute to the

order of vanishing of ¥(ay ® asz). The factor of U(a; ® ag) coming from the
first term of (A3) is

E <a1([%])a2([w])/6 @> — g (tDoa(ln])

s Iy
t,i v

In our (s,t)-coordinates for M, (L), the divisor D., is the locus {t; = 0}.
We have seen that in these coordinates,

V(a1 ® an)(s,t) = k(s t) [ ] e Do) (4.5)

K2

with k& a nonzero holomorphic function. Thus ¥ (a1 ® ) is meromorphic with
the desired orders of vanishing.

Now suppose S is a Lagrangian boundary stratum and a € Hom(L,Z) with
(y®47,a) > 0 for each weight v , we see from ([£3) that ¥(a) is holomorphic on
S, since each t; has nonnegative exponent. If (y ® v,a) > 0 for some weight ~,
then some ¢; has positive exponent, so ¥(a) vanishes on S. |

We will also need the following strengthening of this theorem.

Corollary 4.2. Let S C OM,(L) be a Lagrangian boundary stratum obtained
by pinching m curves on X, whose homology classes are vy1,...,v, € L. Take
local coordinates tq,...,t, around some x € S in which the divisor D,, of

curves obtained by pinching v; is cut out by the equation t; = 0. Then for any
a € Sz(Hom(L,Z)), the function

is holomorphic and nonzero on a neighborhood of x.

Proof. This follows immediately from (£1]). |
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5 Boundary of the eigenform locus: Necessity

In this section we begin the study of the boundary of the locus of Riemann
surfaces whose Jacobians have real multiplication. We give an explicit necessary
condition for a stable curve to lie in the boundary of the real multiplication locus.
In §8 we will see that this condition is also sufficient in genus three.

In all that follows, F’ will denote totally real number field of degree g, O will
denote an order in F', and Z will denote a lattice in F' whose coefficient ring
contains O.

The real multiplication locus. The Jacobian of a stable curve X is
Jac(X) = Q(X)*/H\(X; Z) = UX)*/Hy(Xo; Z),

where Xg C X is the complement of the nodes. The Jacobian is a compact
Abelian variety if each node of X is separating, or equivalently if the geometric
genus of X is g. Otherwise it is a noncompact semi-Abelian variety. We denote
by My C M, the locus of stable curves with compact Jacobians. The Torelli
map t: .//\/lvg — A, maps each Riemann surface to its Jacobian.

Let RMo C M, be the locus of Riemann surfaces whose Jacobians have
real multiplication by O. In other words, RMep =t 1(RAp). If g is 2 or 3,
then t is a bijection, so RM is a g-dimensional subvariety of M ¢- In general,
it is not known what is the dimension of RMp, or even whether RMep is
nonempty. N

We define Eo C PQAM, to be the locus of eigenforms for real multiplication
by O and &}, to be the locus of (-eigenforms. The Torelli map exhibits &, as a

one-to-one branched cover of EA, = Xo.

Admissible strata. The tensor product ' ®g F' has the structure of an F-
bimodule. We define

M={zeFagF:\-z=x-\forall \ € F}.
Proposition 5.1. A' C Symg(F).
Proof. Identify F with Homg(F, Q) via the trace pairing. This induces a canon-
ical isomorphism F' ®g ' — Homg(F, F'). Under this isomorphism, Symg (£')
corresponds to the self-adjoint endomorphisms Homé (F, F), and A! corresponds

to Homp (F, F). Since left multiplication by @ € F is self-adjoint, Homp (F, F') C
Hom6 (F,F). |

Identifying F" with its dual as above, the dual of Symg(F) is Sg(F). We let
Ann(A') C Sg(F) denote the annihilator of A
Given an Z-weighted boundary stratum S, we define the following cone and
subspace of Sg(F):
C(S) ={z €Sq(F) : (x,a ®a) >0 for all & € Weight(S)}
N(S) ={x € Sg(F): (z,a®a) =0 for all « € Weight(S)}.
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We say that an Z-weighted boundary stratum S is admissible if
C(S) N Ann(A') € N(S). (5.1)

We will see in Corollary B2 that if Z is a lattice in a cubic field, then there are
only finitely many admissible Z-weighted boundary strata up to similarity.

Algebraic tori. Fix an Z-weighted boundary stratum &. There is a surjective
map of algebraic tori:

p: Hom(N(S) NSz(TY),G,,) — Hom(N(S) N Ann(A') N Sz(ZY),G,,). (5.2)

The reader unfamiliar with algebraic groups should think of G,, as the multi-
plicative group C* of nonzero complex numbers.

By the discussion at the end of §3] we may regard S as a boundary stratum
of M,(Z). By Corollary 2] for each nonzero a € N(S)NSz(Z") the restriction
of ¥(a) to S is a nonzero holomorphic function on §. We obtain a canonical
morphism,

CR: S — Hom(N(S)NSz(ZY),G,,). (5.3)

Recall that F(Z) is the torsion Abelian group of symplectic extensions of
TV by Z. Identifying Homa(F, F) with Symg(F) via the trace pairing, the
isomorphism of Theorem 2] becomes an isomorphism,

Symg(F)/(A" + Symy (7)) — E().
Given T € Symq(F) and a € N(S) N Ann(A') N Sz(ZY), we define
q(T)(a) = e 7T, (5.4)
Since ¢(T)(a) = 1 if T lies in A* or Sym,(Z), (5.4) defines a homomorphism,
q: E(T) — Hom(N(S) N Ann(A') N Sz(ZV),G,,).
Given a symplectic extension T' € F(Z), we define
G(T) = p~ ' (a(T)),

a translate of a subtorus of Hom(N(S) N Sz(ZV)). We then obtain for each
extension 1" a subvariety of S:

S(T) = CR™HG(T)).

We define S*(T") C PQM, to be the image of S(T') under p,.

If S is an Z-weighted stratum and S’ is a similar aZ-weighted stratum, then
the subvarieties S(T') and S'(T'*) are identified under the canonical isomorphism
S — &’. Thus the variety S(T') can be regarded as depending only on the
similarity class of S and the cusp packet (Z,T).
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Boundary of RMp. We can now state our necessary condition for a stable
curve to be in the boundary of RMe.

Theorem 5.2. Consider an order O in a degree g totally real number field
F, a real embedding v of F, and a cusp packet (Z,T) € C(O). The closure in
PQM, of the cusp of E, associated to (Z,T) is contained in the union over all
admissible T-weighted boundary strata S of the varieties S*(T).

The closure of the corresponding cusp of RMeo in ﬂg is contained in the
union over all T-weighted boundary strata S of the images of the S(T) under
the forgetful map to M,.

The proof of Theorem comes at the end of this section.

Auxiliary real multiplication loci. Given a cusp packet (Z,T) € C(O), let
RMo(Z,T) C My(I)

be the locus of Riemann surfaces with Lagrangian marking (X, p) such that
Jac(X) has real multiplication by O, the marking p: 7 — H;(X;Z) is an O-
module homomorphism, and the extension of O-modules

0— p(I) — Hi(X;Z) — Hi(X;Z)/p(Z) — 0

is isomorphic to the extension determined by (Z,T).

We also have bundles of eigenforms over RMo(Z,T). On My(Z), there is
the trivial bundle Q*M,(Z) of forms w such that for some constant ¢ and for
each A € 7, we have fp()\) w = ct(A), where p is the Lagrangian marking. The
restriction Q“RMo(Z,T) of Q*My(Z) to RMo(Z,T) is the trivial line bundle
of 1-eigenforms. We denote its projectivization by Eq(Z,T) C PQM,(T).

Given a cusp packet (Z,T) and a symplectic isomorphism p: Z & IV —
H,(X,;Z), we define

RTo(Z,T,p) C T(Z,)
to be the locus of marked Riemann surfaces (X, f) such that Jac(X) has real
multiplication by O and the symplectic Z-module isomorphism

feop: (TTIY)r — Hi(X;Z)

is also an isomorphism of symplectic O-modules.
The homomorphism p determines a Lagrangian splitting of Hy(X,;Z), and
we obtain as in §4] a holomorphic map ®: 7(3,) — Symy,(Z) ® C.

Proposition 5.3. We have
RTo(Z,T,p) = 1A' ®eC—-T)

Proof. In this proof, we will identify Sym,(Z) with Hom™(ZV,Z). Under this
identification, we have

Symy(Z) ® C = Hom{ (Z¥ ® C,Z ® C),
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A'®C =Hom}(ZV®C,Z®C)
¢ = (X, f) € Hom{(ZV ® C, T ®C), and
T € Hom{ (7 © Q, T ® Q).

We have two splittings of H;(X;C): the one induced by p,
Hi(X;C)=(ZeC)a (Y 0C),
and the Hodge decomposition,
H,(X;C) = Hom(Q(X),C) ® Hom(Q(X), C).
The Hodge decomposition is determined by the map ¢: ZV @ C — Z ® C:
Hom(Q(X),C) = Graph(¢). (5.5)

The O-module structure of H;(X; C) inherited from that of (ZZ" )7 induces
real multiplication on Jac(X) if and only if it preserves the Hodge decomposi-
tion. By (&3], the Hodge decomposition is preserved if and only if

(A - a) =X g(a) + [My, T]()

for all &« € ZV and A € O, which holds if and only if
(@+T)A-a)=X-(¢+T)(a),

that is, if and only if ¢ +T € A [ |

Corollary 5.4. Given any a € Ann(A) C Sz(ZV), we have

on RMo(Z,T).

Proof. This follows directly from Proposition [5.3] and the definition of g. |

Invariant vanishing cycles. Consider a family X — A of stable curves which
is smooth over A* in the sense that the fiber X,, over nonzero p is smooth. Any
such family defines a holomorphic map A — M, sending p to X,,, and conversely
any holomorphic disk A — M, sending A* to M, after possibly taking a base
extension (a cover of A ramified only over 0), arises from such a family.

In any smooth fiber X, there is a collection of isotopy class of simple closed
curves, which we call the vanishing curves which are pinched as p — 0. The
vanishing curves are consistent in the sense that given any path in A* joining p
to g, the lifted homeomorphism f: X, — X, (defined up to isotopy) preserves
the vanishing curves. The wvanishing cycles in H1(X,;Z) are those cycles gen-
erated by the vanishing curves. Trivializing the family over a path starting and
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ending at p yields a homeomorphism of X, which is simply a product of Dehn
twists around the vanishing curves. Thus the monodromy action of 71 (A*, p)
on H;(X,;Z) is unipotent and fixes pointwise the subgroup V, C Hy(X;Z) of
vanishing cycles.

Real multiplication by O on the family X — A is a monomorphism p: O —
End’ Jacy/a, where Jacy, o — A is the relative Jacobian of the family X — A.
This is equivalent to a choice of real multiplication p: O — Jac(X,) for each
smooth fiber X, with the requirement that each isomorphism H;(X,;Z) —
H,(Xy; Z) arising from the Gauss-Manin connection commutes with the action
of O.

Proposition 5.5. Consider a family of genus g stable curves X — A, smooth
over A*, with real multiplication by O. For each nonzero p, the subgroup V, C
Hy(Xp;Z) of vanishing cycles is preserved by the action of O on Hy(X,;Z).

Proof. Since the action of O on first homology commutes with the Gauss-Manin
connection, it is enough to show that V), is invariant for a single p.

Let A € O be a primitive element for F. For any v € H1(Xp;Z), we have
the bound,

IA-Allx, < AoVl

where ||A]|oo = sup, [¢(A\)|, with the supremum over all field embeddings ¢: F —
R, and || - [|x, is the Hodge norm introduced in §3l

There is a constant D such that Ext(y) > D for any curve v on X, which
is not a vanishing curve. For any € > 0, we may choose p sufficiently s