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A characterization of the Maass space

on O(2, m+ 2) by symmetries

Bernhard Heim and Atsushi Murase

In this paper, we define certain symmetries for automorphic forms on O(2,m+2) and show that

the space of automorphic forms satisfying these symmetries coincides with the Maass space, the

image of Saito-Kurokawa lifting.
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1 Introduction

In [3], the first named author introduced certain symmetries for Siegel modular forms of even

degree and showed that the space of Siegel modular forms of degree two satisfying the symmetries

coincides with the so-called Maass Spezialschar, which is the space of Siegel modular forms

whose Fourier coefficients satisfy Maass relations. Note that this space coincides with the image

of Saito-Kurokawa lifting. Later Bringmann and Heim proved certain symmetries for Jacobi

Eisenstein series of degree two ([1]).

On the other hand, Oda ([5]) and Rallis-Schiffmann ([6]) independently studied a theta

lifting from elliptic modular forms of integral or half-integral weight to automorphic forms on

the orthogonal group O(2,m + 2). Note that, if m = 1, the theta lifting coincides with the

Saito-Kurokawa lifting. Later Gritsenko ([2]) and Sugano ([7]) studied the theta lifting in terms

of Jacobi forms of degree 1. It is known that the image of the theta lifting coincides with the

space of holomorphic automorphic forms whose Fourier coefficients satisfy the Maass relation

([7]). Thus it is natural to ask whether certain symmetries characterizes the Maass space in the

general orthogonal group case. The object of the paper is to give an affirmative answer to this

question.

In this paper, we introduce symmetries of automorphic forms on G = O(2,m + 2) arising

from two embeddings of SL2 into G, and show that the space of holomorphic automorphic forms

on G satisfying the symmetries coincides with the Maass space.

The paper is organized as follows. In Section 2, we first recall the definitions of automorphic

forms on G = O(2,m+2) and the Maass space. After defining certain symmetries for automor-

phic forms on G, we state the main result of the paper (Theorem 2.2): The space of automorphic

forms satisfying these symmetries coincides with the space of those satisfying Maass relations.

As a direct consequence of the characterizaion of the Maass space by symmetries, we show that

the restriction mapping induced by an embedding G′ = O(2,m + 1) →֒ G = O(2,m + 2) maps

the Maass space on G to that on G′. The proof of Theorem 2.2 is carried out in Section 3. By
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using some combinatorics, we prove an algebraic result (Proposition 3.2), from which Theorem

2.2 follows.

Notation

The upper half plane is denoted by H = {z ∈ C | Im(z) > 0}. For a real symmetric matrix R of

degree n, we put R(x, y) = txRy and R[x] = txRx for x, y ∈ Cn. For a condition P , we put

δ(P ) =




1 if P holds,

0 otherwise.

Denote by N the set of natural numbers. We put e[z] = exp(2π
√
−1z) for z ∈ C.

2 Main results

2.1 The orthogonal group G

Let S be a positive definite even integral symmetric matrix of degree m. We put

Q1 =




1

−S

1


 , Q =




1

Q1

1


 .

In the following, we include the case of m = 0. Note that the signatures of Q1 and Q2 are

(1,m+ 1) and (2,m+ 2), respectively.

Let

L0 = Zm, L∗
0 = S−1L1, V0 = L0 ⊗Z Q = Qm,

L1 = Zm+2, L∗
1 = Q−1

1 L1, V1 = L1 ⊗Z Q = Qm+2,

L = Zm+4, L∗ = Q−1L, V = L⊗Z Q = Qm+4.

Let G = O(Q) be the orthogonal group of Q and G+
∞ the identity component of G∞ = G(R).

Let

D =




Z =




τ

w

z


 ∈ Cm+2 | τ, z ∈ H, w ∈ Cm, Q1[Im(Z)] = Im(τ)Im(z)− 1

2
S[Im(w)] > 0





.

As is well-known, D is a hermitian symmetric domain of type (IV). We often write (τ, w, z) for


τ

w

z


 ∈ D. We define an action of G+

∞ on D and an automorphic factor J : G+
∞ × D → C×

by gZ̃ = g̃〈Z〉 J(g, Z) for g ∈ G+
∞ and Z ∈ D, where

Z̃ =



−2−1Q1[Z]

Z

1


 ∈ Cm+4.
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Let k be an integer and F a function on D. For g ∈ G+
∞, we define the Petersson slash operator

by (F |kg)(Z) = J(g, Z)−kF (g〈Z〉).

2.2 Embeddings of SL2 into G

Let H = SL2. For h =

(
a b

c d

)
∈ H∞ and z ∈ H, let h〈z〉 = (az + b)(cz + d)−1 and

j(h, z) = cz + d as usual. We define two embeddings ι↑ and ι↓ of H into G by

ι↑(h) =




a −b

a b

1m

−c d

c d




,

ι↓(h) =




a −b

−c d

1m

a b

c d




for h =

(
a b

c d

)
∈ H, respectively. It is easily verified that ι↑(h) and ι↓(h) commute each

other and that ι↑(H∞), ι↓(H∞) ⊂ G+
∞. A straightforward calculation shows the following.

Lemma 2.1. For h =

(
a b

c d

)
∈ H∞ and Z = (τ, w, z) ∈ D, we have

ι↑(h)〈Z〉 =




h〈τ〉
j(h, τ)−1w

z − c

2j(h, τ)
S[w]


 , J(ι↑(h), Z) = j(h, τ)

and

ι↓(h)〈Z〉 =




τ − c

2j(h, z)
S[w]

j(h, z)−1w

h〈z〉


 , J(ι↓(h), Z) = j(h, z).

2.3 Automorphic forms

Let Γ be a discrete subgroup of G∞ commensurable with Γ(L) = {γ ∈ G+
∞ | γL = L}. We

assume that

(2.1)



1 −txQ1 −2−1Q1[x]

0 1m+2 x

0 0 1


 , ι↑(γ), ι↓(γ′) ∈ Γ (x ∈ Zm+2, γ, γ′ ∈ SL2(Z)).
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Note that Γ(L) and Γ∗(L) = {γ ∈ Γ(L) | γl ≡ l (mod L) for any l ∈ L∗} satisfy this condition.

For a positive integer k, let Mk(Γ) denote the space of holomorphic functions F on D
satisfying the following two conditions:

(2.2) F |kγ = F for any γ ∈ Γ.

(2.3) If m = 0, F is holomorphic at any cusp of Γ.

Let

Λ = Z× L∗
0 × Z,(2.4)

Λ+ = {(a, α, b) ∈ Λ | a, b, 2ab − S[α] ≥ 0}.(2.5)

An automorphic form F ∈ Mk(Γ) admits the Fourier expansion

F (τ, w, z) =
∑

(a,α,b)∈Λ+

AF (a, α, b)e[az − S(α,w) + bτ ].

We say that λ = (a, α, b) ∈ Λ is primitive if (n−1a, n−1α, n−1b) 6∈ Λ for any n ∈ N, n > 1.

Denote by Λprm (respectively Λ+
prm) the set of primitive elements of Λ (respectively Λ+).

2.4 The Maass space and symmetries

We now define two subspaces of Mk(Γ).

Let MM
k (Γ) be the space of F ∈ Mk(Γ) satisfying

(2.6) AF (la, lα, lb) =
∑

r|l

rk−1AF ((r
−1l)2ab, (r−1l)α, 1)

for any l ∈ N and (a, α, b) ∈ Λ+
prm, where r runs over the positive divisors of l. Note that

AF (a, α, b) =
∑

d∈Z>0, d−1(a,α,b)∈Λ

dk−1AF

(
ab

d2
,
α

d
, 1

)

for F ∈ MM
k (Γ). When Γ = Γ∗(L), this space coincides with the Maass space introduced by

Maass ([4]) when m = 1 and Sugano ([7]) when m > 1.

To define symmetries, let

Tn = {ξ ∈ M2(Z) | det ξ = n} =
⋃

j

SL2(Z)ξj (a disjoint union)

for n ∈ N. Define

F |kT ↑
n = nk/2−1

∑

j

F |kι↑(n−1/2ξj),

F |kT ↓
n = nk/2−1

∑

j

F |kι↓(n−1/2ξj)
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for F ∈ Mk(Γ). Note that F |kT ↑
n and F |kT ↓

n are not in Mk(Γ) in general. We define the space

MS
k (Γ) to be the space of F ∈ Mk(Γ) satisfying F |kT ↑

n = F |kT ↓
n for any n ∈ N. It is easy to

see that F ∈ MS
k (Γ) if and only if F |kT ↑

p = F |kT ↓
p for any prime number p. Observe that, for a

prime number p, we have

(F |kT ↑
p )(τ, w, z) = pk−1F (pτ,

√
pw, z) + p−1

p−1∑

c=0

F
(
p−1(τ + c),

√
p−1w, z

)

(F |kT ↓
p )(τ, w, z) = pk−1F (τ,

√
pw, pz) + p−1

p−1∑

c=0

F
(
τ,
√
p−1w, p−1(z + c)

)
.

The main result of the paper is stated as follows.

Theorem 2.2. The Maass space MM
k (Γ) coincides with MS

k (Γ).

2.5 The compatibility with restrictions

Let (L′
0, S

′) be a quadratic sub-lattice of (L0, S). Let Q
′
1, Q

′, G′ and D′ be as in 2.1 corresponding

to S′. We assume that the inverse image Γ′ of Γ by the embedding G′ ⊂ G satisfies a condition

similar to (2.1). Then the restriction of F ∈ Mk(Γ) to D′ gives rise to a linear mapping

j : Mk(Γ) → Mk(Γ
′). Since the symmetry is compatible with j, we have proved the following.

Theorem 2.3. We have j(MS
k (Γ)) ⊂ MS

k (Γ
′) and hence j(MM

k (Γ)) ⊂ MM
k (Γ′).

3 Proof of Theorem 2.2

3.1 Symmetries and Fourier expansion

Lemma 3.1. Let F ∈ Mk(Γ). Then F ∈ MS
k (Γ) if and only if the following holds for any

(a, b, α) ∈ Λ+ and any prime number p:

pk−1AF (a, p
−1α, p−1b)− pk−1AF (p

−1a, p−1α, b) +AF (a, α, pb) −AF (pa, α, b) = 0.

Here we make a convention that AF (a, α, b) = 0 if (a, α, b) 6∈ Λ+.

Proof. We have

(F |kT ↑
p )(τ,

√
pw, z) = pk−1F (pτ, pw, z) + p−1

p−1∑

c=0

F (p−1(τ + c), w, z)

= pk−1
∑

(a,α,b)∈Λ+

AF (a, p
−1α, p−1b)e[bτ + az − S(α,w)]

+
∑

(a,α,b)∈Λ+

AF (a, α, pb)e[bτ + az − S(α,w)]
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and

(F |kT ↓
p )(τ,

√
pw, z) = pk−1

∑

(a,α,b)∈Λ+

AF (p
−1a, p−1α, b)e[bτ + az − S(α,w)]

+
∑

(a,α,b)∈Λ+

AF (pa, α, b)e[bτ + az − S(α,w)],

from which the lemma immediately follows.

3.2 The spaces FM and FS

For a function f on V = Q× V0 ×Q and r ∈ N, we put

M(r)f(a, α, b) = f(r2ab, rα, 1),

N(r)f(a, α, b) = f(ra, rα, rb) ((a, α, b) ∈ V).

It is easy to see that

M(r)f(a, α, b) = M(r)f(ma,α,m−1b),(3.1)

M(mr)f(a, α, b) =M(r)f(m2a,mα, b) = M(r)f(a,mα,m2b)(3.2)

for r,m ∈ N. Let F be the space of functions on V whose support is contained in Λ. For f ∈ F ,

a prime number p and (a, α, b) ∈ V, we set

Ipf(a, α, b) = pk−1f(a, p−1α, p−1b)− pk−1f(p−1a, p−1α, b) + f(a, α, pb)− f(pa, α, b).

We define two subspaces of F as follows:

FM = {f ∈ F | N(l)f(X) =
∑

r|l

rk−1M(r−1l)f(X) for any l ∈ N and X ∈ Λprm},

FS = {f ∈ F | Ipf(X) = 0 for any prime number p and X ∈ Λ}.

Let F ∈ Mk(Γ) and consider AF as an element of F . In view of (2.6) and Lemma 3.1, we

see that F ∈ MM
k (Γ) if and only if AF ∈ FM and that F ∈ MS

k (Γ) if and only if AF ∈ FS .

Thus the proof of Theorem 2.2 is now reduced to that of the following result.

Proposition 3.2. We have FM = FS .

3.3 Proof of FM ⊂ FS

In this subsection, we let p be a prime number and f ∈ FM, and show that Ip(X) = 0 for any

X ∈ Λ.

Lemma 3.3. Let l = psn ∈ N with s ≥ 0, n ∈ N, p ∤ n. For X ∈ Λprm, we have

(3.3) N(pl)f(X)− pk−1N(l)f(X) =
∑

r|n

rk−1M(pr−1l)f(X).
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Proof. The left-hand side of (3.3) is equal to

∑

r|ps+1n

M(r−1ps+1n)f(X)− pk−1
∑

r|psn

M(r−1psn)f(X)

=

s+1∑

j=0

∑

r|n

(pjr)k−1M(ps−j+1r−1n)f(X)−
s∑

j=0

∑

r|n

(pjr)k−1M(ps−jr−1n)f(X)

=
∑

r|n

rk−1M(ps+1r−1n)f(X),

which proves the lemma.

Let X ∈ Λ. Then X = (lc, lβ, ld) with l = psn ∈ N (s ≥ 0, n ∈ N, p ∤ n) and (c, β, d) ∈ Λprm.

To simplify the notation, we write I for Ipf(X). We have

I = pk−1N(l)f(c, p−1β, p−1d)−N(l)f(pc, β, d)

− pk−1N(l)f(p−1c, p−1β, d) +N(l)f(c, β, pd).

First consider the case where β ∈ L∗
0 − pL∗

0. Then (pc, β, d), (c, β, pd) ∈ Λprm and

M(r−1l)f(pc, β, d) = M(r−1l)f(c, β, pd)

for r|l. Suppose that s = 0. Then we have

N(l)f(c, p−1β, p−1d) = N(l)f(p−1c, p−1β, d) = 0,

since p−1lβ 6∈ L∗
0. It follows that

I = −N(l)f(pc, β, d) +N(l)f(c, β, pd)

= −
∑

r|l

rk−1M(r−1l)f(pc, β, d) +
∑

r|l

rk−1M(r−1l)f(c, β, pd)

= 0.

Next suppose that s > 0. By Lemma 3.3, we have

I = pk−1N(p−1l)f(pc, β, d) −N(l)(pc, β, d) − pk−1N(p−1l)(c, β, pd) +N(l)f(c, β, pd)

= −
∑

r|n

rk−1M(r−1l)f(pc, β, d) +
∑

r|n

rk−1M(r−1l)f(c, β, pd)

= 0.

Next consider the case where β ∈ pL∗
0, p|c and p ∤ d. Then (pc, β, d), (p−1c, p−1β, d) ∈ Λprm

and

M(r−1l)f(pc, β, d) = M(pr−1l)f(p−1c, p−1β, d).
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First suppose that s = 0. Then N(l)f(c, p−1β, p−1d) = 0 since p−1ld 6∈ Z. By Lemma 3.3, we

have

I = −N(l)f(pc, β, d) − pk−1N(l)f(p−1c, p−1β, d) +N(pl)f(p−1c, p−1β, d)

= −
∑

r|l

rk−1M(r−1l)f(pc, β, d) +
∑

r|l

rk−1M(pr−1l)f(p−1c, p−1β, d)

= 0.

If s > 0, we have

I = pk−1N(p−1l)(pc, β, d) −N(l)f(pc, β, d)

− pk−1N(l)(p−1c, p−1β, d) +N(pl)f(p−1c, p−1β, d)

= −
∑

r|n

rk−1M(r−1l)f(pc, β, d) +
∑

r|n

rk−1M(pr−1l)f(p−1c, p−1β, d)

= 0

by Lemma 3.4.

We can show that I = 0 in the other cases in a similar way.

3.4 Proof of FS ⊂ FM

Let f ∈ FS . We will show that

(3.4) N(l)f(X) =
∑

r|l

rk−1M(r−1l)f(X)

holds for l ∈ N and X = (a, α, b) ∈ Λprm by induction on bl. If bl = 1, both sides of (3.4) are

equal to f(X). Suppose that bl > 1 and let p be a prime factor of bl. Then we have

N(l)f(X) = N(l)f(pa, α, p−1b) + pk−1N(p−1l)f(a, α, b) − pk−1N(l)f(a, p−1α, p−2b).

First consider the case where p ∤ l. Then b is divisible by p. Since (p−1la, p−1lα, p−1lb) 6∈ Λ,

we have N(p−1l)f(a, α, b) = 0. Suppose that α ∈ L∗
0 − pL∗

0. Then (pa, α, p−1b) ∈ Λprm and

N(l)f(a, p−1α, p−2b) = 0. By induction, we have

N(l)f(X) = N(l)f(pa, α, p−1b) =
∑

r|l

rk−1M(r−1l)f(pa, α, p−1b) =
∑

r|l

rk−1M(r−1l)f(a, α, b),

which proves the claim (3.4). Next suppose that α ∈ pL∗
0 and ordp b = 1. A similar argument

as above shows that

N(l)f(X) = N(l)f(pa, α, p−1b) =
∑

r|l

rk−1M(r−1l)f(pa, α, p−1b) =
∑

r|l

rk−1M(r−1l)f(a, α, b).
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Suppose that α ∈ pL∗
0 and ordp b ≥ 2. Then p ∤ a and (a, p−1α, p−2b) ∈ Λprm. By induction, we

have

N(l)f(X) = N(pl)f(a, p−1α, p−2b)− pk−1N(l)f(a, p−1α, p−2b)

=
∑

r|l

rk−1M(pr−1l)f(a, p−1α, p−2b) +
∑

r|l

(pr)k−1M(p(pr)−1l)f(a, p−1α, p−2b)

− pk−1
∑

r|l

rk−1M(r−1l)f(a, p−1α, p−2b)

=
∑

r|l

rk−1M(pr−1l)f(a, p−1α, p−2b)

=
∑

r|l

rk−1M(r−1l)f(a, α, b).

Next consider the case where p|l. We let l = psn with s ≥ 1, s ∈ N and p ∤ n. First suppose

that p ∤ b. Then (p2a, pα, b) ∈ Λprm. By induction, N(l)f(X) ie equal to

N(p−1l)f(p2a, pα, b) + pk−1N(p−1l)f(a, α, b) − pk−1δ(s ≥ 2)N(p−2l)f(p2a, pα, b)

=
s−1∑

j=0

∑

r|n

(pjr)k−1M(ps−j−1r−1n)f(p2a, pα, b) +
s−1∑

j=0

∑

r|n

(pj+1r)k−1M(ps−j−1r−1n)f(a, α, b)

− δ(s ≥ 2)

s−2∑

j=0

∑

r|n

(pj+1r)k−1M(ps−j−2r−1n)f(p2a, pα, b)

=

s−1∑

j=0

∑

r|n

(pjr)k−1M(ps−jr−1n)f(a, α, b) + (psr)k−1M(r−1n)f(a, α, b)

=
s∑

j=0

∑

r|n

(pjr)k−1M(ps−jr−1n)f(a, α, b)

=
∑

r|l

rk−1M(r−1l)f(a, α, b).

Suppose that either ordp b = 1 or “ordp b ≥ 2 and α ∈ L∗
0 − pL∗

0” holds. Then (pa, α, p−1b) ∈
Λprm. By induction, N(l)f(X) is equal to

N(l)f(pa, α, p−1b) + pk−1N(p−1l)f(a, α, b) − pk−1N(p−1l)f(pa, α, p−1b)

=
∑

r|l

rk−1M(r−1l)f(pa, α, p−1b) +
∑

r|p−1l

(pr)k−1M(p−1r−1l)f(a, α, b)

−
∑

r|p−1l

(pr)k−1M(p−1r−1l)f(pa, α, p−1b)

=
∑

r|l

rk−1M(r−1l)f(a, α, b).

Finally suppose that ordp b ≥ 2 and α ∈ pL∗
0. Then p ∤ a and (a, p−1α, p−2b) ∈ Λprm. By
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induction, N(l)f(X) is equal to

N(pl)f(a, p−1α, p−2b) + pk−1N(p−1l)f(a, α, b)− pk−1N(l)f(a, p−1α, p−2b)

=
∑

r|pl

rk−1M(pr−1l)f(a, p−1α, p−2b) +
∑

r|p−1l

(pr)k−1M(p−1r−1l)f(a, α, b)

−
∑

r|l

(pr)k−1M(r−1l)f(a, p−1α, p−2b)

=

s+1∑

j=0

∑

r|n

(pjr)k−1M(ps−j+1r−1n)f(a, p−1α, p−2b) +

s−1∑

j=0

∑

r|n

(pj+1r)k−1M(ps−j−1r−1n)f(a, α, b)

−
s∑

j=0

∑

r|n

(pj+1r)k−1M(ps−jr−1n)f(a, p−1α, p−2b)

=
∑

r|n

rk−1M(ps+1r−1n)f(a, p−1α, p−2b) +
s−1∑

j=0

∑

r|n

(pj+1r)k−1M(ps−j−1r−1n)f(a, α, b)

=
s∑

j=0

∑

r|n

(pjr)k−1M(ps−jr−1n)f(a, α, b)

=
∑

r|l

rk−1M(r−1l)f(a, α, b),

which completes the proof of (3.4).
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