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EFFECTIVE AND BIG DIVISORS ON A PROJECTIVE SYMMETRIC VARIETY

ALESSANDRO RUZZI

Abstract. We describe the effective and the big cones of a projective symmetric variety. Moreover,

we give a necessary and sufficient combinatorial criterion for the bigness of a nef divisor on a projective

symmetric variety. When the divisor is G-stable, such a criterion has an explicit geometric interpreta-

tion. Finally, we describe the spherical closure of a symmetric subgroup.
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Introduction

Brion gave a description of the Picard group of a spherical variety in [Br89]. He also found necessary

and sufficient conditions for the ampleness and global generation of a line bundle. From these conditions

follows that a line bundle is nef if and only if it is globally generated. It is natural to ask what are the

conditions on a line bundle to be effective, respectively big. It is known that the effective cone is closed,

polyhedral and, if the variety is Q-factorial, generated by the classes of the B-stable prime divisors. But

in general it is hard to say which are the B-stable prime divisors whose classes generate an extremal ray

of the effective cone. In the very special case of projective homogeneous varieties, the big cone coincides

with the ample cone. More generally, the case of wonderful varieties is studied in [Br07]. For any normal

projective variety, there is a very useful criterion for a nef divisor D to be big: D is big if and only if its

volume DdimX is strictly positive (see [La04], Theorem 2.2.16). In the case of a toric T -variety Z this

criterion has a more combinatorial version. A T -stable, nef divisor D can be identified with a certain

polytope with integral vertices, its moment polytope; moreover, the volume of D is equal to (dimZ)!

times the volume of this polytope. In particular, D is big if and only if its moment polytope has positive

volume. See also [FS08] for a partial study of the big cone of some toric varieties.

We are interested to study the bigness of Cartier Q-divisors on symmetric varieties (over which acts

a semisimple group). First, we describe explicitly the effective cone; we determine also when the classes

of two B-stable prime divisors are proportional. When the variety is Q-factorial, we find the conditions

for the class of a B-stable prime divisor to generate an extremal ray of the effective cone (see Theorem

3.1, Theorem 3.2 and Corollary 3.1).

Given a Q-factorial, projective symmetric variety X , we will give an explicit description of its big cone

using the description of Eff(X) and the fact the Big(X) is the interior part of Eff(X) (see Theorem

4.1). We will give also a combinatorial version of the cited criterion on the volume of a nef Q-divisor

D, stated in terms of the T -weights of the fibres of O(D) over the B-stable points (see Theorem 4.2).

The idea of the proof is the following. Up to take a lifting and up to linear equivalence, one can reduce

itself to study G-stable divisors on a projective toroidal symmetric variety, i.e. a projective variety

such that the closure of none B-stable divisor of the open G-orbit contains a G-orbit. Each projective

toroidal symmetric variety X (with fixed open G-orbit) contains a projective toric variety Zc which

determines X uniquely. We prove that the restriction of a big Q-divisor D of X to Zc is always big. If

the divisor is G-stable, then this condition is also sufficient (see Proposition 4.1). One can show that

the subspace of Pic(X)Q generated by the classes of G-stable divisors is a complement to the kernel of
1
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the restriction Pic(X)Q → Pic(Zc)Q. Then, we use the combinatorial description of H0(Zc,O(D)|Zc)

to prove Theorem 4.2.

We describe also the spherical closure of a symmetric subgroup H in Proposition 2.1. We will use such

description to give a condition so that the class of a G-stable prime divisor is proportional to the class

of a B-stable, but not G-stable, divisor (see Corollary 2.1 and Theorem 3.2). Given a symmetric space

G/H , H is called a symmetric subgroup and its spherical closure is defined, after Luna, as the subgroup

H
sph

of NG(H) which stabilizes all the B-stable prime divisors of G/H . A subgroup H of G is wonderful

(resp. spherical) if G/H has a wonderful compactification (resp. is spherical). The definition of spherical

closure is useful to associate in a natural way a wonderful subgroup of G to any spherical subgroup of

G. Moreover, NG(H)/H is isomorphic to the group of G-equivariant automorphisms of G/H , so H
sph

can be thought as a group of automorphisms.

1. Notation

In this section we introduce the necessary notations. The reader interested to the embedding theory

of spherical varieties can see [LuVu83], [Kn91], [Br97a] or [T06]. In [Vu90], this theory is explained in

the particular case of symmetric varieties.

1.1. First definitions. Let G be a connected semisimple algebraic group over an algebraic closed field

k of characteristic zero and let θ be an involution of G. Let H be a closed subgroup of G such that

Gθ ⊂ H ⊂ NG(G
θ), then we say that G/H is a symmetric space and that H is a symmetric subgroup.

We can assume G simply connected (see [Vu90], §2.1). An equivariant embedding of G/H is the data of a

G-variety X together with an equivariant open embedding ϕ : G/H →֒ X , in particular ϕ(g ·x) = g ·ϕ(x)

for each x ∈ G/H . A normal G-variety is called a spherical variety if it contains a dense orbit under

the action of an arbitrarily chosen Borel subgroup of G. One can show that every normal equivariant

embedding of G/H is spherical (see [dCoPr83], Proposition 1.3); we call it a symmetric variety. The

most important example of symmetric space is the one of a semisimple (or more generally reductive)

group G seen as (G×G)-variety.

We say that a subtorus of G is split if θ(t) = t−1 for all its elements t; moreover it is a maximal split

torus if has maximal dimension. We say that any maximal torus containing a maximal split torus is

maximally split. Any maximally split torus is θ stable; moreover they are all conjugate under Gθ (see

[Vu74], Proposition 2 (iv) and Proposition 6). We fix arbitrarily a maximally split torus T containing

a maximal split torus T 1. Let RG be the root system of G with respect to T . We can choose a Borel

subgroup B containing T such that, given any positive root α with respect to B, either θ(α) = α or θ(α)

is negative. Moreover, BH is dense in G (see [dCoPr83], Lemma 1.2 and Proposition 1.3).

1.2. Colored fans. We want to describe the Picard group of a symmetric variety. Before doing this, we

need to introduce some details about the classification of the symmetric varieties by their colored fans

(this classification holds more generally for spherical varieties).

Let D(G/H) be the set of colors of G/H , namely the set of B-stable prime divisors of G/H . They

are the irreducible components of (G/H) r (BH/H) because BH/H is affine and open. We say that

a spherical variety is simple if it contains one closed orbit. Let X be a simple symmetric variety with

closed orbit Y . We define the set of colors of X as the subset F(X) of D(G/H) consisting of the colors

whose closure in X contains Y . To each prime divisor D of X , we can associate the normalized discrete

valuation vD of C(G/H) whose ring is the local ring OX,D. One can prove that D is G-stable if and

only if vD is G-invariant, i.e. vD(g · f) = vD(f) for each g ∈ G and f ∈ C(G/H). Let N be the set

of all G-invariant valuations of C(G/H) taking values in Z and let N (X) be the set of the valuations

associated to the G-stable prime divisors of X . Observe that each irreducible component of X r (G/H)

has codimension one, because G/H is affine. Let S := T/ T ∩H ≃ T · (H/H). One can show that the

group C(G/H)(B)/C∗ is isomorphic to the character group χ(S) of S (see [Vu90], §2.3); in particular,
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it is a free abelian group. We define the rank of G/H as the dimension of S. We can identify the dual

group HomZ(C(G/H)(B)/C∗,Z) with the group χ∗(S) of one-parameter subgroups of S. The restriction

map of valuations to C(G/H)(B)/C∗ is injective over N (see [Kn91], Corollary 1.8), so we can identify

N with a subset of χ∗(S). We say that N is the valuation monoid of G/H . Observe that N is stable

under addition (see, for example [Kn91], Lemma 5.1). For each color F , we define ρ(F ) as the restriction

of vF to χ(S). In general, the map ρ : D(G/H) → χ∗(S)R is not injective. Let C(X) be the cone in

χ∗(S)R generated by N (X) and ρ(F(X)). A simple symmetric variety is uniquely determined by its

colored cone (C(X),F(X)) (see [Kn91], Theorem 3.1).

Let Y be a G-orbit of a symmetric variety X . The set {x ∈ X | G · x ⊃ Y } is an open simple

G-subvariety of X with closed orbit Y , because any spherical variety contains only finitely many G-

orbits. Let {Xi} be the set of open simple subvarieties of X and define the set of colors of X , F(X),

as
⋃

i∈I F(Xi). The family F(X) := {(C(Xi),F(Xi))}i∈I is called the colored fan of X and determines

completely X (see [Kn91], Theorem 3.3). Moreover X is complete if and only if N is contained in the

support
⋃

i∈I C(Xi) of F(X) (see [Kn91], Theorem 4.2).

If one allows G to be reductive, then the toric varieties are a special case of symmetric varieties. If X

is a toric variety, then D(G/H) is empty and we need only to consider the fan Ff (X) = {(C(Xi))}i∈I

associated to the colored fan of X (actually the classification of spherical varieties by colored fans is a

generalization of the classification of toric varieties by fans). One can show that, fixed any symmetric

space G/H such that ρ is injective (for example if G/H is a group), the symmetric varieties with open

orbit G/H are classified by the fans Ff (X) = {(C(Xi))}i∈I .

1.3. Restricted root system. To describe the sets N and ρ(D(G/H)), we need to associate a root

system to G/H . W can identify χ(T 1)R with χ(S)R because χ(S) has finite index in χ(T 1). We call

again θ the involution induced on χ(T )R. The inclusion T 1 ⊂ T induces an isomorphism of χ(T 1)R with

the (−1)-eigenspace of χ(T )R under the action of θ (see [T06], §26). Denote by WG the Weyl group of G

(with respect to T ). We can identify χ(T 1)R with its dual χ∗(T
1)R by the restriction ( ·, ·) of the Killing

form to χ(T 1)R . The set RG,θ := {β − θ(β) | β ∈ RG}\ {0} is a root system in χ(S)R (see [Vu90], §2.3

Lemme), which we call the restricted root system of (G, θ); we call the non zero β − θ(β) the restricted

roots. We denote by α1, ..., αs the elements of the basis RG,θ := {β−θ(β) |β ∈ RG simple} \ {0} of RG,θ.

We denote by {α∨
1 , ..., α

∨
s } the dual basis of the restricted coroot system R∨

G,θ, i.e. the dual root system

of RG,θ. Let C
− be the negative Weyl chamber of RG,θ (in χ∗(S)Q). Given a dominant weight λ of G, we

denote by V (λ) the irreducible representation of highest weight λ. See [ChMa03], Theorem 2.3 or [T06],

Proposition 26.4 for an explicit description of the dominant weights of RG,θ. They are called spherical

weights and are also dominant weights of RG. Let WG,θ be the Weyl group of RG,θ; it is isomorphic to

NH0(T1)/ZH0(T 1) and to NG(T1)/ZG(T
1) (see Proposition 26.2 in [T06]).

1.4. The sets N and D(G/H). The set N is equal to C− ∩ χ∗(S); in particular, it consists of the

lattice vectors of the rational, polyhedral, convex cone C− = cone(N ). The set ρ(D(G/H)) is equal to

{α∨
1 , ..., α

∨
s } and, for each i, the fibre ρ−1(α∨

i ) contains at most 2 colors. In particular, the number of

colors of a symmetric space is at least its rank. We say that (G, θ) is indecomposable if any normal,

connected, θ-stable subgroup of G is trivial. In this case the number of colors of G/H is at most

equal to rank of G/H plus one. If |D(G/H)| > rank(G/H) and (G, θ) is indecomposable, we have two

possibilities: 1) Gθ = H = NG(G
θ); 2) H is equal to Gθ and has index two in NG(G

θ). In the last case

any element of NG(G
θ)\Gθ exchanges two colors. Because of the simply-connectedness of G, we can

always write G as a direct product
∏
Gi of θ-stable, semisimple, normal subgroup Gi such that each

(Gi, θ) is indecomposable. Moreover, the finite cover G/Gθ of G/H is the direct product
∏

i∈I Gi/G
θ
i .

We say that a simple restricted root α is exceptional if ρ−1(α∨) contains two colors and 2α is a

restricted root. Moreover, we say that a symmetric variety is exceptional if there is an exceptional root.

If moreover θ is indecomposable, then Gθ = H = NG(G
θ). Furthermore, ρ is injective if H is semisimple.
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LetD(G/H)H be the set of colors F such that ρ−1(ρ(F )) = {F}. One can show that ρ−1(ρ(F )) = {F}

if only if the equation of π−1(F ) in G is H-invariant, where π : G→ G/H is the projection. We denote

by Fα the sum of the colors in ρ−1(α∨). If α∨ /∈ ρ(D(G/H)H), we write ρ−1(α∨) = {F+
α , F

−
α }, so

Fα = F+
α + F−

α .

1.5. Toroidal symmetric varieties. Before to describe the Picard group, we want to define a special

class of varieties. We say that a spherical variety is toroidal if F(X) = ∅. There is a special toroidal

completion of any symmetric space G/H , because NG(H)/H is finite. This completion, called the

standard completion X0, is the simple symmetric variety associated to (cone(N ),∅) and it is the unique

simple completion of G/H which dominates all the other simple completions. When X0 is smooth then

it is a wonderful variety (in the definition of Luna). In particular, X0 is smooth (and wonderful) if

H = NG(G
θ). This case has been defined and studied by De Concini and Procesi in [dCoPr83].

X0 contains an affine toric S-variety Z0, which is a quotient of an affine space by a finite group.

The toroidal varieties are the symmetric varieties which dominate the standard completion; they are in

one-to-one correspondence with the S-toric varieties which dominate Z0. The correspondence is obtained

in the following way. The open set U := X0 r
⋃

D(G/H) F is a B-stable affine set; let P be its stabilizer.

U is P -isomorphic to RuP × Z0, where RuP =
∏

β≻0, θ(β) 6=β Uβ is the unipotent radical of P and

dimZ0 = rankX0. To any toroidal variety X we associate the inverse image Z of Z0 by the projection

X → X0. Moreover, Xr
⋃

D(G/H) F is P -stable and is P -isomorphic to RuP ×Z. The toroidal varieties

are also in one-to-one correspondence with a class of complete toric varieties in the following way. To a

symmetric variety variety X , we associate the closure Zc of Z in X ; Zc is also the inverse image of Zc
0 .

The T -variety Zc can be covered by finitely many NGθ (T 1)-translated of Z; thus Zc is a S-toric variety,

in particular it is normal. The fan of Z is the fan Ff (X) associated to the colored fan F(X), while the

fan of Zc consists of the translates of the cones of Z by the Weyl group WG,θ of RG,θ.

Given a symmetric variety X there is a unique minimal toroidal variety Xdec, called the decoloration

of X , which dominates X . If F(X) = {(Ci,Fi)}i∈I , the colored fan of Xdec is {(Ci ∩ cone(N ),∅)}i∈I .

1.6. Big divisor. Before to describe the Picard group of a symmetric variety, we define some general

notions about the line bundle. The reader can see [La04] for more details. Let X be a (normal)

projective algebraic variety over an algebraically closed field of characteristic zero. Let CDiv(X) the

group of Cartier divisors. Given two Cartier divisors D1 and D2 on X , we say that they are numerically

equivalent if D1 · C = D1 · C for each curve C on X (here · is the intersection product). In such a case

we say also that O(D1) and O(D2) are numerically equivalent.

We define two generalization of an ample bundle. By Nakai’s criterion (see [La04], Theorem 1.2.23),

a Cartier divisor D is ample if and only if the intersection product DdimY ·Y is strictly positive for each

subvariety Y (with dimY > 0). A first generalization is obtained weakening such property. Indeed, we

say that a Cartier divisor D is nef (or numerically effective) if D ·C ≥ 0 for each curve C in X . Remark

that in definition we have used only subvarieties of dimension one. But, by Kleiman’s Theorem (see

[La04], Theorem 1.4.9), D is nef if and only DdimY · Y ≥ 0 for each subvariety Y (with dimY > 0).

To define the second generalization of ample divisor we need to define the Itaka dimension of a divisor.

Given a Cartier divisor D, let E(D) := {m ≥ 0 : H0(X,O(mD)) 6= 0}; given any m ∈ E(D) we have a

rational map φm : X 99K P(H0(X,O(mD))). If E(D) is empty we define the Itaka dimension κ(D) of

D as −∞. Otherwise we define κ(D) := maxm∈E(D){dimφm(X)}. Remarks that κ(D) is equal at most

to the dimension of X . When D is the canonical divisor, κ(D) is also called the Kodaira dimension of

X . We say that a Cartier divisor on X is big if and only if its Itaka dimension is equal to the dimension

of X . Clearly an ample divisor is big.

We have some equivalent conditions for the bigness of a divisor. First, we recall a lemma.
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Lemma 1.1 (see [La04], Corollary 2.1.38). Let D be a Cartier divisor on X and let κ = κ(D). Then

there are strictly positive constants a and A such that

a ·mκ ≤ dimH0(X,O(mD)) ≤ A ·mκ

for all sufficiently large m ∈ E(D).

Proposition 1.1 (see [La04], Lemma 2.2.3 and Corollary 2.2.7). Let D be a Cartier divisor on X. The

following conditions are equivalent:

• D is big;

• there is a constant C > 0 such that dimH0(X,O(mD)) ≥ C · mdim X for all sufficiently large

m ∈ E(D);

• for each ample divisor A, there is m > 0 such that mD −A is linearly equivalent to an effective

divisor.

• for each ample divisor A, there is m > 0 such that mD − A is numerically equivalent to an

effective divisor.

When D is nef is a lot easier to verify if it is big:

Proposition 1.2 (see [La04], Theorem 2.2.16 and Corollary 1.4.41). Let D be a nef divisor on X and

let n be the dimension of X. Then D is big if and only if vol(D) = Dn is strictly positive.

One can define a Q-divisor (respectively R-divisor) as an element of CDiv(X)Q (resp. of CDiv(X)Q).

All the previous definitions can easily extend to Q-divisors. For example, we say that a Q-divisorD is big

if there is m > 0 such that mD is a big divisor. One can also extends such definitions to R-divisors, but

we do not do it here because it is a little more technical. Often one works in the quotient Pic(X)R/ ≡

of the real Picard group by the numerical equivalence for the following two reasons: such space is finite-

dimensional (see [La04], Proposition 1.1.14) and the previous definitions depends only by the numerical

class of a divisor (see [La04], Corollary 1.2.20 and Corollary 2.2.7). Often, we will work with Q-divisors

by simplicity.

We define the following cones in Pic(X)Q/ ≡.

• Amp(X) is the cone generated by the class of ample divisors;

• Nef(X) is the cone generated by the class of nef divisors;

• Big(X) is the cone generated by the class of big divisors;

• Eff(X) is the cone generated by the class of effective divisors.

• the pseudo-effective cone PE(X) is the closure of Big(X).

Such cone are related in the following way:

Proposition 1.3. All the previous cone are convex. Moreover:

• Amp(X) and Big(X) are open;

• Nef(X) and PE(X) are closed;

• [see [La04], Theorem 1.4.23 ] Nef(X) is the closure of Amp(X) and Amp(X) is the interior

part of Nef(X);

• [see [La04], Theorem 2.2.26 ] PE(X) is the closure of Big(X) and Big(X) is the interior part

of PE(X);

• Big(X) ⊂ Eff(X) ⊂ PE(X).

We define Eff(X) in the same way when X is only complete (and normal). Finally we say that

X is Q-factorial if its rational Picard group coincides with the rational class group; clearly the smooth

varieties are Q-factorial.

When X is a spherical variety, two Cartier divisors are numerically equivalent if and only if they are

linearly equivalent (see for example [Br93], Corollaire 1.3), so we can omit the quotient by ≡. Moreover,
5



any effective divisor is linearly equivalent to a B-stable effective divisor (see for example [Br93], Théorème

1.3). Thus, if X is Q-factorial, the effective cone Eff(X) is the closed polyhedral cone generated by the

class of the B-stable prime divisors (there are a finite number of them); in particular Eff(X) is equal

to the pseudo-effective cone.

1.7. The Picard group. The class group of a symmetric variety is generated by the classes of the B-

stable prime divisors with the relations div(f), where f ∈ C(G/H)(B). Indeed Cl(BH/H) = Pic(BH/H)

is trivial. Given ω ∈ χ(S) we denote by fω the element of C(G/H)(B) with weight ω and such that

fω(H/H) = 1. We denote by vE the image of E ∈ N (X) in χ∗(S); vice versa, given an element ω of the

image of N (X) in C− ∩ N we denote by Eω the corresponding elements of N (X).

A Weil divisor D =
∑

F∈D(G/H) aFF +
∑

E∈N (X) bEE is a Cartier divisor if and only if, for each

colored cone (C,F), there is hC ∈ χ(S) such that hC(E) = aE for each E ∈ C and hC(ρ(F )) = aF for

each F ∈ F . The hC define a piecewise linear function on the support of F(X) (see [Br89], Proposition

3.1). We denote such function by hD or by h; sometimes we will use also the notation hDC instead of hC .

Let P̃L(X) be the set of functions h on the support
⋃
C of F(X) such that: 1) h is linear on each

colored cone; 2) h takes integral values at all the point of χ∗(S) ∩ (
⋃
C). Let PL(X) be the quotient of

P̃L(X) by the subset of restrictions of linear functions. If X is complete, there is the following exact

sequence (see [Br89], Theorem 3.1):

0 →
⊕

F∈D(G/H)rF(X)

ZF → Pic(X) → PL(X) → 0.

A Cartier divisor is globally generated (resp. ample) if and only if the associated function is convex

(resp. strictly convex) and hC(ρ(F )) ≤ aF (resp. hC(ρ(F )) < aF ) for each colored cone (C,F) and each

F ∈ D(G/H) r F (see [Br89], Proposition 3.3). In particular a Cartier divisor is nef if and only if it is

globally generated. Given any Cartier divisor F =
∑

D(G/H) nFF +
∑

N (X) h(E)E, then H0(X,O(D))

is a multiplicity-free representation of G and its highest weights are in one-to-one correspondence with

the point of χ(S) ∩ P (D) where P (D) is the polytope in χ(S)R intersection of the following half-spaces

(see [Br89], Theorem 3.3): i) {m : m(E) + h(E) ≥ 0} for each E ∈ N (X); ii) {m : m(F ) + nF ≥ 0}

for each F ∈ D(G/H). If D is globally generated then the hC belongs to χ(S) ∩ P (D). If moreover X

is toroidal and D is G-stable, then P (D) is the intersection of the positive Weyl chamber C+ with the

convex hull Q(D) = convex(whC) of the points whC , where (C,∅) varies in the set of maximal colored

cone and w varies in WG,θ (see [Bi90], Corollary 4.1). Furthermore, the integral points in Q(D) are

the weights of a basis of seminvariant vectors of H0(Zc,O(D)|Zc) (see [Bi90], Proposition 4.1) and the

volume of O(D)|Zc is equal to (rank G/H)! vol(Q(D)).

Remark 1. Let ϕ : X → X ′ be a G-equivariant, birational morphism of symmetric varieties and let L

be any line bundle over X ′, then H0(X ′, L) is isomorphic to H0(X,ϕ∗(L)); in particular, L is big if and

only if ϕ∗(L) is big. Moreover, L is nef if and only if ϕ∗L is nef, because of the previous description of

nef divisors.

When X is toroidal we have the following split exact sequence (see [Br89], Proposition 3.2):

0 → Pic(X0) → Pic(X) → Pic(Z) → 0,

where the maps are induced respectively by the projection X → X0 and by the inclusion Z →֒ X .

Given any simple X , its Picard group is isomorphic to
⊕

F∈D(G/H)rF(X) Z[F ]; in particular Pic(X0) =⊕
F∈D(G/H) Z[F ].

A (complete) symmetric variety is Q-factorial if and only if each colored cone is simplicial and ρ is

injective over F(X) (see [Br93], Proposition 4.2). Recall that a cone is said simplicial if it is generated by

a number of vectors equal to its dimension. In particular the standard completion of any symmetric space
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is Q-factorial. The conditions for the smoothness are much more complicated (see [Ru07], Theorem 2.2).

Notice that the most part of this section is true for any spherical variety: in particular the descriptions of

the class group and of the Picard group holds in general. Also the previous condition for the Q-factoriality

is stated in [Br93] in a more general form which holds for all spherical varieties.

2. Spherical closure

We define (after Luna) the spherical closure H
sph

of H as the subgroup of NG(H) which stabilizes all

the colors of G/H . The standard completion Xsph
0 of G/H

sph
is wonderful and the standard completion

X0 of G/H is a ramified cover of Xsph
0 . Moreover the projection induces an isomorphism between their

rational Picard groups. Indeed, we can identify D(G/H) with D(G/H
sph

).

Proposition 2.1. Let G/H a symmetric space, then we can write (G, θ) =
∏n

i=1(Gi, θ) so that G/H is a

direct product
∏n

i=1Gi/(Gi∩H), where the (Gi, θ) with i > 1 are indecomposable and |D(Gi/(Gi∩H))| >

rank(Gi/(Gi ∩H)) if and only if i > 1. Moreover H
sph

= NG1(G1 ∩H)×
∏n

i=2(Gi ∩H).

To prove such proposition we will use §1.4. In particular, we will use the following fact: if there is

n ∈ N(H) and D1, D2 ∈ D(G/H) such that nD1 = D2, then ρ(D1) = ρ(D2).

Proof. First, we reduce to the non-exceptional case. Write (G, θ) =
∏n

i=1 (Gi, θ) with (G1, θ) non

exceptional and the other (Gi, θ) indecomposable and exceptional. For each i > 1, we have Gθ
i =

Gi ∩H = NGi
(Gθ

i ) and |D(Gi/(Gi ∩H))| = rank(Gi/(Gi ∩H))+1; in particular the Gi ∩H with i > 1

are spherically closed in Gi and G/H is the direct product
∏
Gi/(Gi ∩H).

Suppose now X non-exceptional and write (G, θ) =
∏
(Gi, θ) with the (Gi, θ) indecomposable. Let

Hi := Gi ∩ H . We can think of D(Gi/G
θ
i ) as a subset of D(G/Gθ) by associating F ×

∏
j 6=iGj/G

θ
j ∈

D(G/Gθ) to any F ∈ D(Gi/G
θ
i ). We can suppose that: 1) |D(Gi/G

θ
i )| > rank(Gi/G

θ
i ) if and only

if i > r; 2) there is h ∈ H which exchanges two colors of Gi/G
θ
i if and only if r < i ≤ r + m.

Observe that if i > r there is always an element of NG(H) which exchanges two colors of Gi/G
θ
i .

Let G0 =
∏r+m

i=1 Gi, then H
sph

is contained in N ′ := NG0(H0) ×
∏

i>r+mHi because any element of

NG(H) r N ′ exchanges two colors of some Gi/G
θ
i with i > r + m (which correspond to two distinct

colors of G/H). Moreover, the number of colors of G0/H0 is equal to its rank. But |D(G0/H0)| ≥

|D(G0/NG0(H0))| ≥ rank(G0/NG0(H0)) = rank(G0/H0), thus the spherical closure of H0 in G0 is

NG0(H0). Therefore H
sph

⊃ NG0(H0)×
∏

i>r+mHi. �

Corollary 2.1. If H is spherically closed, then G/H is a direct product of indecomposable symmetric

spaces
∏
Gi/Hi. Moreover, the wonderful completion of G/H is the product of the wonderful completions

of the Gi/Hi.

Remark 2. Let X be a symmetric variety with open orbit G/H . Then there is a unique maximal sym-

metric variety Xsph with open orbit G/H
sph

and with an equivariant proper morphism X → Xsph that

extends the canonical projection G/H → G/H
sph

. Indeed, we can identify D(G/H) with D(G/H
sph

),

respectively (C(G/H)(B)/C∗)Q with (C(G/H
sph

)(B)/C∗)Q. Thus the colored fan of X defines a colored

fan associated to an embedding of G/H
sph

. It is easy to show that this variety satisfies the requested

properties (see also [Kn91], §4).

3. Effective cone of a complete symmetric variety

First, we determine Eff(X) when X is Q-factorial, then we consider the case where X is projective

but possibly not Q-factorial.

Theorem 3.1. Let X be a Q-factorial complete symmetric variety. Then:

(1) Eff(X) is a closed polyhedral cone whose extremal rays are generated by:

• the colors which are not contained in D(G/H)H ;
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• the G-stable prime divisors E whose classes are not proportional to any of the [F+
αi

+ F−
αi
].

(2) given any extremal ray r of Eff(X), there exist a unique prime divisor D which belongs to one

of the two previous families and such that [D] ∈ r.

Let D̃iv G(X) be the abelian group freely generated by the G-stable prime divisors and let DivG(X)

be its image in Pic(X). These groups are isomorphic; indeed there is no non-trivial relation between

these divisors, because any rational function which is a G-eigenvector is constant. If X is toroidal, we

can identify D̃iv G(X)R with D̃iv T (Z)R by the restriction.

To prove the theorem we use the explicit knowledge of the relations of Cl(X). In particular, the prin-

cipal divisor associated to any function in C(X)(B) is a linear combination of the Fα and of the G-stable

prime divisors. Moreover, any [Fα] belongs to Div
G(X)R because div(fωα

) = Fα +
∑

E∈N (X) vE(ωα)E.

Thus the class of each Fα belongs to σ := Eff(X) ∩ DivG(X)R. This will implies that Eff(X) is

generated by the others B-stable prime divisors.

Proof of Theorem 3.1. Exactly as in [Br07], Lemma 2.3.1, we can prove that σ is cone([E], E ∈ N (X));

thus σ is simplicial because N (X) is a basis of D̃iv
G
(X)R. Moreover, σ contains all the [Fα] because

div(fωα
) = Fα +

∑
E∈N (X)(ωα, vE)E and the vE are antidominant. Therefore, the theorem is proved if

ρ is injective.

In the general case, Pic(X)R =
⊕

E∈N (X) R[E] ⊕
⊕

α∨:|ρ−1(α∨)|=2 R[F
+
α ]. Indeed, Pic(X)R (=

Cl(X)R) is generated by the [E] with E ∈ N (X), the [Fα] and the [F+
α ] with |ρ−1(α∨)| = 2 (see §1.4 for

the definition of Fα and F+
α ). Moreover, the relations are freely generated by the following ones (∗ωα

):

[Fα] =
∑

E∈N (X)(ωα,−vE)[E] with α ∈ RG,θ. Indeed, Cl(X) is generated by the B-stable prime divisors

with relations div(fω) = 0 for any ω ∈ χ(S); moreover the relation (∗ωα
) is the one corresponding to the

fundamental spherical weight ωα (see also §1.7). Observe that ρ is injective over F(X) because X is Q-

factorial. Hence, Eff(X) is generated by N (X) and by D(G/H)rD(G/H)H . Each [F+
α ] generates an

extremal ray of Eff(X) because for any divisor F+
α +div(fω) =

∑
E∈N (X) nEE+

∑
β∈ρ(D(G/H)H ) nβFβ+∑

β/∈ρ(D(G/H)H ) n
+
β F

+
β +

∑
β/∈ρ(D(G/H)H ) n

−
β F

−
β such that n+

α = 0, we have n−
α = −1. We can argue sim-

ilarly for the F−
α .

If the class of E ∈ N (X) does not generate an extremal ray of Eff(X), then [E] is a positive

combination of the classes of the other G-stable prime divisors and of the [Fα] with α∨ ∈ R
∨
G,θ r

ρ(D(G/H)H). But [E] generates an extremal ray of σ, so it has to be proportional to some [Fα]. �

Given any symmetric variety X , let X≤1 be the open G-subvariety composed of orbits of codimension

at most 1. We have an equivariant morphism q : X≤1 → Xsph
0 which can be extended to X if and only

if X is toroidal. Here Xsph
0 is the wonderful completion of G/H

sph
.

Theorem 3.2. Let X be a Q-factorial complete symmetric variety. Then:

(1) The class of a G-stable prime divisor E belongs to the cone generated by the classes of colors if

and only if it is proportional to some [Fα].

(2) The class of a G-stable prime divisor E is proportional to [Fα] if and only if the irreducible factor

R of RG,θ containing α is orthogonal to vE′ for any E′ ∈ N (X) different from E.

(3) The class of a G-stable prime divisor E is proportional to some [Fα] if and only if there is

a G-equivariant morphism ϕ : X≤1 → X ′ such that X ′ is a wonderful symmetric G-variety,

ϕ(E) ( X ′ and ϕ(E′) = X ′ for each G-stable prime divisor E′ of X different from E.

(4) If such a morphism exist, we can identify the restricted root system of X ′ with a product R of

irreducible factors of RG,θ. Then [E] is proportional to [Fα] for each simple root α in R. We

can also suppose that the stabilizer of ϕ(H/H) is generated by H
sph

and some normal, θ-stable,

connected subgroup of G. If moreover X is toroidal, then ϕ can be extended to X, −vE is a

fundamental spherical weight and X ′ is a product of wonderful symmetric varieties of rank one.
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(5) [Lemma 2.3.2 of [Br07]] The class of a G-stable prime divisor E generates an extremal ray of

Eff(X)R which does not contain the class of a color if and only if dimH0(X,O(mE)) = 1 for

each positive integer m.

(6) [Lemma 2.3.3 of [Br07]] The class of a color F generates an extremal ray of Eff(X)R which

does not contain the class of any E ∈ N (X) if and only if there is a G-equivariant morphism

ϕ : X → G/P , where P ⊇ H is a maximal parabolic subgroup, such that F is the preimage of

the Schubert divisor (the unique B-stable prime divisor) in G/P .

Before to prove the theorem, we do some remarks.

Remark 3. Observe that given an irreducible factor R of RG,θ, there is always an E ∈ N (X) with

(vE , R) 6= 0 because of the completeness of X . The statement of the third point is very similar to that

of Lemmas 2.3.4 in [Br07].

Remark 4. Write RG,θ as a product
∏
Ri of irreducible factors, then Xsph

0 is a product
∏
XRi

by

Corollary 2.1. In the proof we show that to check if [E] belongs to R≥0[Fα] with α ∈ Ri0 is sufficient to

check if πi0 ◦ q : X
≤1 → XR0 satisfies the conditions of point (3).

Remark 5. In the setting of wonderful varieties, there are never two colors whose classes are propor-

tional.

Remark 6. In [Br07] the Lemma 2.3.1 and 2.3.2 are stated for wonderful varieties, but their proof holds

for any Q-factorial complete spherical variety whose open orbit is sober, i.e. NG(H)/H is finite. In

the setting of symmetric varieties, one can explicitly construct the morphism of point (6). Let F be a

color as in the point (6) and let α∨ be ρ(F ). Then, by Theorem 3.1, ρ−1(α∨) contains two colors and

ωα is the sum ω1 + ω2 of two (possibly equal) fundamental weights of G. We can also suppose that

Gθ = P (ω1) ∩ P (−ω1) and ω2 = −̟oω1, where ̟o is the longest element of WG. Also the other color

in ρ−1(α∨) satisfies the conditions of (6) and the corresponding applications are the following:

G/Gθ → G/P (ω1) ⊂ P(V (ω1))

g → g · vω1

and

G/Gθ → G/P (−ω1) ⊂ P(V (ω2))

g → g · v−ω1

where vχ is a weight vector of weight χ. Furthermore, G/P (−ω1) is isomorphic to G/P (ω2). There are

some difference according to whether α is exceptional or not. If α is exceptional then ω1 is different from

ω2; in particular the stabilizer of F+
α is different from the stabilizer of F−

α . Moreover P(V (ω1)), resp.

P(V (ω2)), contains a unique point fixed by Gθ.

Instead, if α is non-exceptional then ω1 = ω2; in particular, the stabilizer of F+
α is equal to the

stabilizer of F−
α . Moreover, P(V (ω1)) contains two points fixed by Gθ, namely vω1 and vω1 . In this case

there is an element n of NG(H)rH which exchanges F+
α with F−

α ; moreover n exchanges vω1 with v−ω1 .

Proof of Theorem 3.2. We have already showed the first point in the proof of the previous theorem.

First, we will prove the point (2). Then we will use it to prove the points (3) and (4). We will use

also the Corollary 2.1 to find an explicit candidate for the application ϕ (see also Remark 4). Because

div(ωα) = Fα+
∑

E∈N (X) (ωα, vE)E, [E] is proportional to [Fα] if and only if (ωα, vE′) = 0 for any

E′ 6= E. But the −vE′ are dominant coweights. Thus, if [E] ∈ R≥0[Fα] and α
′ belongs to the irreducible

factor of RG,θ containing α, then [E] ∈ R≥0[Fα′ ].

Given an irreducible factor R of RG,θ, we can write, by Corollary 2.1, Xsph
0 = X1 × X2 where the

Xi are wonderful varieties and the restricted root system of X2 is equal to R. Given any v ∈ C− and

α ∈ R, (ωα, v) = 0 if and only if, for any α′ ∈ R, −ω∨
α′ is not contained in the face of C− whose relative
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interior contains v. Thus, [E] is proportional to [Fα] if and only if the following condition (∗) holds: if

K ∈ N (Xsph
0 ) contains the image of a G-stable prime divisor of X≤1 different from E, then K has the

form K ′ ×X2 with K ′ ∈ N (X1). Hence, if [E] is proportional to [Fα], then the projection on X2 of any

q(E′) with E′ 6= E is the whole X2.

Vice versa suppose that exists a morphism ϕ as in the statement. By the Corollary 2.1 and by the

description of morphisms between spherical varieties, we can suppose that the stabilizer of ϕ(H/H) is

generated by H
sp

and some normal, θ-stable connected subgroup of G (we may have to compose or to

lift ϕ with a finite equivariant morphism). We need also the following property: if H ′ is a symmetric

subgroup of G which contains H and does not contain any normal connected subgroup of G, then

H ′ ⊂ NG(H) (see [dCoPr83], Lemma 1.7). Therefore, ϕ is the composite of q : X≤1 → Xsph
0 with a

projection Xsph
0 = X1 ×X2 → X2. Now, the hypotheses on ϕ implies the condition (∗).

Finally, if X is toroidal then −ω∨
α is contained in N (X) for each α ∈ RG,θ, so [Fα] can be proportional

only to E−ω∨

α
. �

Remark 7. LetX be any projective symmetric variety (possibly nonQ-factorial) and letD =
∑

F∈D(G/H)

aFF +
∑

E∈N (X) bEE be an effective Cartier divisor on X , so aF , bE ≥ 0. Up to exchanging some F+
αi

with F−
αi
, there is an effective divisor D′ = D1 +D2 linearly equivalent to D and such that: i) D1 is G-

stable and effective; ii) D2 =
∑
a+i F

+
αi

with a+i ≥ 0 for each i. Moreover, D is nef (resp. big) if and only

if D1 is nef (resp. big). Indeed, we can suppose X toroidal by taking the pullback of these line bundles to

a desingularization X ′ of Xdec. Then D is nef (resp. big) if and only if D′ is nef (resp. big). Moreover,

hD
′

= hD1 and the coefficients of D′ with respect to the F−
α are all zero (and lesser than the coefficients of

D′ with respect to the F+
α ). Finally, if D′ =

∑
F∈D(G/H)H cFF +

∑
d+αF

+
α +

∑
d−αF

−
α +

∑
E∈N (X) fEE,

the dimension of H0(X,O(D′)) and the combinatorial conditions on the nefness of D1 depend only on

the linear functions hD1

C , on the cF (= 0) and on the min{d+α , d
−
α }(= 0).

Corollary 3.1. Let X be a projective symmetric variety (possibly non Q-factorial). Then Eff(X) is

the intersection of Pic(X)R with the polyhedral cone of Cl(X)R whose extremal rays are generated by the

classes of the colors not in D(G/H)H and by the classes of the G-stable prime divisors which are not

linearly equivalent to a multiple of [Fα] with Fα /∈ D(G/H)H . Moreover, the statement of Theorem 3.2

holds again.

Proof of Corollary 3.1. To prove the corollary it is sufficient to show that there is a Q-factorial complete

symmetric variety X ′ and an equivariant morphism ψ : X ′ → X which induces an isomorphism be-

tween (X ′)≤1 and X≤1; in particular ψ induces an isomorphism between Cl(X) and Cl(X ′). Moreover

ψ∗Eff(X) = Eff(X ′) ∩ ψ∗Pic(X)R ⊂ Cl(X)R and Pic(X)R ∼= ψ∗Pic(X)R ⊂ Pic(X ′)R = Cl(X ′)R ∼=

Cl(X)R. Observe that the Theorem 3.2 depends only on X≤1.

Now, we will construct X ′. The procedure will be more complicated if X is neither non-exceptional

nor toroidal. We need to define a new variety X̃, isomorphic to X in codimension 1: let F(X̃) :=

{(C, F̃) : (C,F) ∈ F(X)}, where F̃ := ρ(ρ−1(F)), and let X̃ be the corresponding variety. Remark that

if X is non-exceptional or toroidal, then it is equal to X̃. We have a morphism p : X → X̃ which is an

isomorphism between X≤1 and X̃≤1, thus it is sufficient to find a variety ϕ : X ′ → X̃ over X̃ such that:

1) ϕ factorizes by p and 2) ϕ is an isomorphism in codimension 1.

First, we define the fan Ff (X ′) associated to X ′. The idea is the following: the cones in Ff (X̃)(=

Ff (X)) are generated by some faces of an appropriate polytope in χ∗(S) (which is the polar polytope

of the moment polytope of an ample bundle D over X̃); we triangularize the faces of such polytope and

define Ff (X ′) as the cones generated by the simplices obtained from the previous faces.

To define the previous polytope we need an ample Cartier divisor D over X̃ such that: i) the interior

of P (D) contains 0 and ii) D is linearly equivalent to a G-stable divisor. We have defined X̃ to assure the

existence of such a divisor. Now, we will find it; let D′ an ample Cartier divisor on X . As in the Remark

7 we can write D′ = D1 +D2 +D3 where 1) D1 is linearly equivalent to a G-stable divisor; 2) D2 +D3
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is a positive linear combination of the F+
α . Moreover, we can suppose that D2 is

∑
α∈I a

+
αF

+
α , where I

is the set of α such that F+
α belongs to F(X) (and D3 is

∑
α/∈I aαF

+
α ). One can easily show that D′′ :=

D1+D2+
∑

α∈I a
+
αF

−
α is an ample divisor over X̃. Indeed, hX̃,D′

= hX,D′

= hX,D1+D2 and the minimum

of the coefficients of D′′ w.r.t. the colors in ρ−1(α∨) is lesser than the corresponding minimum for D′.

Remark that we have used the fact that X≤1 is isomorphic to X̃≤1, so Cl(X) ∼= Cl(X̃) (but Pic(X)

can be non-isomorphic to Pic(X̃)). Then D(3) := D′′ +
∑

α/∈ρ(F(X̃)) Fα is ample over X̃ and is linearly

equivalent to a G-stable effective divisor D(4) such that hD
(4)

(vE) > 0 for each E ∈ N (X̃). Indeed, none

irreducible factor of R∨
G;θ can be contained in span{ρ(F(X))} because the colored cones are strictly

convex. Therefore we can choose D as nD(4) +
∑

α/∈ρ(F(X̃)) Fα +
∑

α∈ρ(F(X̃))(Fα −
∑

N (X̃) vE(ωα)E)

with n >> 0.

Let P be the polar polytope of P (D), i.e. {n ∈ χ∗(S)R : m(n) ≥ −1 ∀m ∈ P (D)}. Then, given

any cone C in the fan Ff (X̃) of X̃, C is generated by an appropriate face of P . Observe that there are

faces of P which are associated to none colored cone of X̃ . Let A′ be the set of vertices of P and set

A = A′ ∪ {0}. We need to give a triangulation of P with vertices in A. Given a polytope Q generated

by the points S = {q1, ..., qm}, a subdivision of Q with vertices in S is a finite collection {Q1, ..., Qr} of

polytopes such that: i) Q is the union
⋃
Qi; ii) the vertices of each Qi are drawn from S; iii) if i 6= j then

Qi ∩Qj is a common (possibly empty) face of the boundaries of Qi and Qj . If all the Qi are simplices,

the subdivision is called a triangulation. Before to define the desired triangulation of P , we need to

define an elementary construction step.

Let Q be a n-dimensional polytope in Rn, let F be a (n − 1)-dimensional face of Q, let H be the

unique hyperplane containing F and let v be a point in Rn. The polytope Q is contained in exactly one

of the closed halfspaces determined by H . If v is contained in the opposite open halfspace, then F is said

to be visible from v. If Q is a k-dimensional polytope in Rn with k < n and v ∈ Aff(Q), then the above

definition can be modified in the obvious way, so that everything is considered relative to the ambient

space Aff(Q). Suppose S = {Q1, ..., Qm} is a subdivision of a n-dimensional polytope Q = convex(V )

in Rn and let v ∈ V . The result of pushing v is, by definition, the subdivision S′ of Q obtained by

modifying the Qi ∈ S as follows:

• If v /∈ Qi, then Qi ∈ S′.

• If v ∈ Qi and convex(vert(Qi)r {v}) is (n− 1)-dimensional (i.e. Qi is a pyramid with apex v),

then Qi ∈ S′.

• If v ∈ Qi and Q
′
i := convex(vert(Qi) r {v}) is n-dimensional, then Q′

i ∈ S′. Also, if F is any

(n− 1)-dimensional face of Q′
i that is visible from v, then convex(F ∪ {v}) ∈ S′.

Let Q = convex(V ) and order the point of V = {v1, ..., vm} in an arbitrary way; then the subdivision

obtained by starting with the trivial one and pushing the points of V in that order is a triangulation

(see [Le97], §14.2). Returning to our problem, let P and A as the first part of the proof and order

the points of A so that 0 is the first point. Let T be the triangulation of P obtained from the trivial

subdivision by pushing the points of A in the chosen order. This triangulation induces a triangulation

of the (proper) faces of P . Let {Ti}i∈I be the set of (s− 1)-dimensional simplices obtained in such way,

where s = rank χ∗(S), and let I ′ ⊂ I be the family of simplices whose relative interior intersects C−.

Given i ∈ I ′, let Ci be the cone generated by Ti. We want to define F(X ′) so that Ff (X ′) is composed

by the faces of all the Ci with i ∈ I ′. Such set is a fan by the definition of subdivision of a polytope;

moreover its support is the same of the one of F(X̃)

For each i ∈ I ′, we define Fi as follows. For each α∨ in Ti, choose a color Eα in F ∩ ρ−1(α∨),

where (C,F) is the (s-dimensional) colored cone of X containing Ci. Finally, define Fi as the set of

such Eα. If α∨
j is contained in two different simplices, say Ti and Tj , then we choose the same Eα

for both Fi and Fj . Remark that we need to work with the colored cones of X because we want that

X ′ dominates not only X̃ , but also X . The previous choices are possible because of the combinatorial
11



conditions for the ampleness of a Cartier divisor D′ on X . Indeed, suppose by contradiction that there

are a simple restricted root α and two colored cones of X , say (C1,F1), (C2,F2), such that F+
α ∈ F1rF2

and F−
α ∈ F2 r F1. Write D′ =

∑
D(G/H)H aFF +

∑
b+β F

+
β +

∑
b−β F

−
β +

∑
N (X) cEE and let h be

the convex function associated to D′. Then b+α = b−α = h(α∨) because F+
α , F

−
α ∈ F(X). Moreover

b+α = hC1(ρ(F
+
α )) = hC1(ρ(F

−
α )) < h(ρ(F−

α )) = h(α∨), a contradiction. Thus {(Ci,Fi) : i ∈ I ′} is a

colored fan and the associated symmetric variety satisfies the requested properties. �

4. Bigness of Q-divisors on a complete symmetric variety

First we describe the big cone of any Q-factorial, projective symmetric variety. Then we will prove

two criterions for a nef (G-stable) divisor to be big.

4.1. The big cone.

Theorem 4.1. Let X be a projective, Q-factorial symmetric variety. Then Big(X) is the union of the

following cones (whose closure is simplicial):
⊕

E∈N (X)R
>0[E] ⊕

⊕
α∨ /∈ρ(D(G/H)H ) R

≥0[F •
α ], where the

F •
α ∈ ρ−1(α∨) are chosen in all the ways possible.

To prove such theorem we will use Theorem 3.1 plus the explicit expression of the relations (∗ωα
).

Proof. Let I be R
∨
G,θ r ρ(D(G/H)H). First, we prove that all the cones in the statement are contained

in Big(X). It is sufficient to prove that σ̇ :=
⊕

E∈N (X)Q
>0[E] is contained in Big(X) because the

sum of a big divisor with an effective one is big. Given any element [D] of σ̇, there are rα such that

[D′] := [D] −
∑

I rα[Fα] belongs to σ̇, because σ̇ is open and all the [Fα] belongs to the closure σ of σ̇.

Thus [D] = [D′] +
∑

I rα[Fα] is big by Theorem 3.1.

Now, let D be a big divisor. Up to exchanging some F+
α with the corresponding F−

α , we can write

D =
∑

E∈N (X) nEE +
∑

α∈RG,θ
nαFα +

∑
α∈I n

+
αF

+
α with positive coefficients. This divisor is linear

equivalent to an effective divisor D′ =
∑

E∈N (X)mEE+
∑

α∈I m
+
αF

+
α , so it is sufficient to show that all

the mE are strictly positive. There are two cases: i) the class of any G-stable prime divisor generates

an extremal ray of Eff(X); ii) there is some E linearly equivalent to a multiple of Fα with α ∈ I (see

Theorem 3.1). In the first case, all the mE (and all the m+
α ) are strictly positive because Big(X) is

an open cone of dimension equal to |N (X)| + |I| and all the vectors in the sum generate an extremal

ray of Eff(X). In the second case, some [E] is equal to some t[F+
α ] + t[F−

α ], so we can’t use the same

argument. Let J be the set of G-stable prime divisors which generate an extremal ray of Eff(X) and

let K ⊂ I be subset of roots such that [Fα] is proportional to some [E] with E ∈ N (X). Then we can

write [D] =
∑

E∈J mE [E] +
∑

IrK m+
α [F

+
α ] +

∑
K r+α [F

+
α ] +

∑
K r−α [F

−
α ] and, as before, the coefficients

must be strictly positive. Given E′ /∈ J and α ∈ K such that [E′] = tα[Fα] with tα > 0, we have

r+α = tαmE′ +m+
α and r−α = tαm

−
α . Therefore m

′
E is strictly positive for all E′. �

4.2. Bigness of nef divisors. Now, we want to study the bigness of a fixed (nef) Cartier divisor.

Remark 8. We want to observe that to study the bigness of a fixed (Cartier) Q-divisor we can reduce

to the case of a smooth toroidal symmetric variety with H wonderful. These are the smooth symmetric

varieties proper over a wonderful one.

First of all, we can reduce to the smooth toroidal case because of the Remark 1. Suppose now

X toroidal and let Xsph be the completion of G/H
sph

with the same colored fan of X (see Remark

2). Then Xsph dominates the wonderful completion Xsph
0 of G/H

sph
. We have unique equivariant

morphisms φ : X → Xsph and X0 → Xsph
0 (which send H/H to H

sph
/H

sph
) and the pushforwards of

such morphisms are isomorphisms between their rational Picard groups. In general the pushforwards are

defined between the (rational) class groups; in our case the pushforward define an isomorphism between

the rational class groups which restricts to an isomorphism between the rational Picard groups.
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Indeed, dimCl(X)Q = dimCl(Xsph)Q and dimPic(X)Q = dimPic(Xsph)Q because D(G/H
sph

) ≡

D(G/H) and Xsph “has” the same colored fan of X (forgetting the lattice in (C(G/H)B/C∗)Q); in

other words the rational Picard group does not depend on the lattice χ∗(S). If Xsph is smooth, then

φ∗ ◦ φ∗ : Cl(Xsph)Q → Cl(Xsph)Q is (deg φ)Id and φ∗(Pic(Xsph)Q) ⊂ Pic(X)Q, so the claim holds.

In the general case we take a desingularization ψ : X
sph

→ Xsph of Xsph and we define X as the

completion of G/H with colored fan F(X
sph

), ϕ : X → X , resp. φ : X → X
sph

, as the obvious maps.

Then we regard to the subspace ψ∗(Pic(Xsph)Q) of Pic(X
sph

)Q (isomorphic to Pic(Xsph)Q) and use the

following facts: i) (φ
∗
◦ψ∗)(Pic(Xsph)Q) = (ϕ∗◦φ∗)(Pic(Xsph)Q) is contained in ϕ∗(Pic(X)Q) and ii)

φ∗◦ϕ∗ = ψ∗◦φ∗.

A line bundle O(D) on X is big if and only if φ∗(O(D)) is big. Indeed if χ∗(T/T∩H
sph

) ⊂ 1
mχ∗(T/T∩

H), then |P (rD)∩χ∗(T/T∩H)| ≤ |P (rD)∩χ∗(T/T∩H
sph

)| ≤ |P (mrD)∩χ∗(T/T∩H)| for each positive

integer r (see §1.6 and [Br89], §3). The last inequality holds because the multiplication by m defines an

inclusion of P (rD) ∩ χ∗(T/T ∩H
sph

) in P (mrD) ∩mχ∗(T/T ∩H
sph

) (⊂ P (mrD) ∩ χ∗(T/T ∩H)).

Let X be a toroidal symmetric variety and suppose X0 smooth. Using the results of [Br89], one can

show that a G-stable divisor D on X is ample (resp. nef) if and only if O(D)|Zc is ample (resp. nef).

Moreover, this holds if and only if the restrictions of O(D) to Z and to the closed orbits are ample (resp.

nef). These last conditions can be stated as appropriate conditions on the function h = {hC} and on

the weights hC , where the (C,∅) are the maximal colored cones of F(X): 1) D is nef if and only if h

is convex and the −hC are spherical weights; 2) D is ample if and only if h is strictly convex and the

−hC are regular spherical weights (i.e. they are strictly dominant weights of RG,θ). We want to prove a

similar condition for the bigness of any nef line bundle. Observe that, given a closed G-orbit OC of X

associated to a (maximal) colored cone (C,∅), the weight of the fiber of O(D) over the B-stable point of

OC is −hC because D is G-stable (see [Bi90], §2). Suppose by simplicity X toroidal. First we prove that

a nef G-stable divisor is big if and only if its restriction to the associate complete toric variety Zc is big

(see Proposition 4.1). Then, we use the fact the such restriction is big if and only if vol(Q(D)) is strictly

positive (see §1.7 for the definition of Q(D)). For example, if X is wonderful, θ is indecomposable and

D is a G-stable divisor with associated function h one can easily prove the following description (recall

that there is a unique maximal colored cone (C,∅)):

• D is ample if and only if −hC is spherical and regular (i.e. it is an strongly dominant weight of

RG,θ);

• D is nef if and only if −hC is spherical;

• D is big and nef if and only if −hC is spherical and non-zero.

When X is only toroidal, but θ is again indecomposable, we will prove that D is nef and big if and only

the sum −
∑

(C,∅)∈F(X) maximal hC is spherical and non-zero (see Theorem 4.2).

Remark 9. Given a complete symmetric varietyX , let p : Xdec → X be the decoloration ofX and let Zc

be the complete toric variety associate toXdec. IfX is projective thenXdec and Zc are projective. Indeed

let D be an ample divisor on X , then D′ := p∗D+
∑

F∈D(G/H) F is ample on Xdec. Indeed, hp
∗D = hD

′

is equal to the restriction of hD on C−. Thus, (hD
′

C )(F ) ≤ aF < aF + 1 for each (C,∅) ∈ F(Xdec) and

F ∈ D(G/H) (here aF is the coefficient of D with respect to F ; see also §1.7).

Proposition 4.1. Let X be a projective symmetric variety and let D be a B-stable, Cartier Q-divisor

on X. If D is big then the restriction O(p∗D)|Zc to the associated complete toric variety Zc is big.

Moreover, if D is G-stable and O(p∗D)|Zc is big then D is big.

Proof. By the previous discussion we can suppose that X is smooth and toroidal (see also the proof of the

Corollary 3.1). First, we describe the restriction i∗Pic(X)Q → Pic(Zc)Q, then we use the Proposition

1.1 applied respectively to X and Zc. Under the previous assumption, we can define a linear map
13



i∗ : DivB(X)Q → DivT (Zc)Q such that [i∗(D)] = i∗([D]) in the following way: i∗ : DivB(X)Q ։

Pic(X)Q ≡ PicG(X)Q → PicT (Zc)Q ≡ DivT (Zc)Q. Here i : Z
c →֒ X is the inclusion and PicG(X) is

the group of G-linearized line bundles. See [Od88], Proposition 2.1 for the last isomorphism. First we

want to study the kernel and the image of i∗ by using some techniques similar to ones in [Vu90] and in

[Bi90].

Given a G-stable prime divisor E on X we define E|Z as the closure of E ∩Z in Zc, so E|Zc := i∗(E)

is
∑

w∈WG,θ
wE|Z and has support E∩Zc. Hence, E|Zc and E|Z are effective divisors on Zc. Moreover,

the T -stable prime divisors on Zc are the wE|Z with E ∈ N (X) and w ∈ WG,θ (actually w is a fixed

representant in NH0(T 1) of the corresponding element in WG,θ). Let π : G → G/H be the projection.

The kernel of i∗ : Pic(X)Q → Pic(Zc)Q is generated by the [F+
α −F−

α ] with α /∈ ρ(D(G/H)H). Indeed, let

ω±
α be the T -weight of an equation of π−1(F±

α ), then, for any t ∈ T 1, (−ω−
α )(t) = θ(ω+

α )(t) = ω+
α (θ(t)) =

ω+
α (t

−1) = (−ω+
α )(t), so 2ω+

α |T
1 = 2ω−

α |T
1 = ωα|T 1, where ωα is the fundamental spherical weight

corresponding to α (see [Ru07], pages 6-8 and [Vu90] §3.3-3.4). In particular, there is Yα ∈ DivG(X)

with i∗(2F+
α ) = i∗(2F−

α ) = i∗(Yα). Observe that DivG(X)Q is a complement to ker(i∗), so i∗ is injective

over DivG(X)Q and i∗(Pic(X)Q) = i∗(DivG(X)Q).

Let (Div T (Zc)Q)
WG,θ be the subgroup ofWG,θ-invariants inDiv

T (Zc)Q; we can identify this subgroup

with its image in Pic(Zc)Q. Moreover, this image is i∗(Pic(X)Q) = i∗(Div G(X)Q).

Now, we prove the first statement; suppose D big. Then we can assume, up to linear equivalence, that

mD = A +M where m >> 0, A is an ample, B-stable divisor and M is an effective, B-stable divisor.

Then mi∗(D) = i∗(A)+ i∗(M), with i∗A ample. By Theorem 3.1 we can write, up to linear equivalence,

M =
∑

E∈N (X) aEE+
∑
b+αF

+
α +

∑
b−αF

−
α with positive coefficients. Thus i∗(M) =

∑
E∈N (X) aEi

∗(E)+
1
2

∑
(b+α + b−α )i

∗(Yα) is effective, so i
∗(D) is big.

Vice versa, suppose that i∗(D) is big and that D is G-stable. Fix an ample, G-stable divisor A on X ,

then, for m >> 0, mi∗(D)− i∗(A) is linearly equivalent to an effective, T -stable divisor M ′ on Zc. We

claim that we can choose i∗(mD −A) as M ′. Remark that i∗(mD −A) is WG,θ-invariant.

Let D1 and D2 be T -stable divisors on Z
c such that: 1) D1 isWG,θ invariant; 2) D2 is linear equivalent

to 0; 3) D1 +D2 is effective. We claim that D1 is effective. Indeed, suppose by contradiction D1 non-

effective and write D1 =
∑

E∈N (X),w∈WG,θ
aE,wwE|Z, D2 =

∑
E∈N (X),w∈WG,θ

bE,wwE|Z. Then D2 6= 0

and there is a strictly negative aE,w. Notice that there is (E,w′) such that bE,w′ ≤ 0 because D2 is

principal. Thus aE,w′ + bE,w′ = aE,w + bE,w′ < 0, a contradiction. Thus there is M ∈ DivG(X)Q with

i∗M = M ′ and mD = A +M . Moreover, the coefficient of M with respect to any E is equal to the

coefficient of M ′ with respect to E|Z, which we know to be positive. �

Remark 10. If D is in the kernel of i∗, then it is not big. Furthermore, if ρ is not injective, there are

non-big divisors D with i∗(D) big. Suppose by simplicity X toroidal and let α∨
i /∈ ρ(D(G/H)H), then∑

j 6=i Fαj
+ 3F+

αi
− F−

αi
is not big, but it is equal to

∑
j Fαj

+ 2(F+
αi

− F−
αi
), where

∑
j Fj is big and

(F+
αi

− F+
αi
) ∈ ker i∗.

Let D be a B-stable nef Cartier divisor on a projective symmetric variety. By Remark 7, we can

write D ∼ D1 +D2 so that: i) D1 is G-stable, effective and nef; 2) D2 is a positive linear combination

of the F+
α , up to exchanging some F+

α with the corresponding F−
α . Moreover D is big if and only if

D1 is big. Remark, however, that the previous choice of F+
α in ρ(α∨) depends on D and that, if ρ is

not injective, we can always find another nef divisor for which such choice does not hold, for example

D1 + F−
α . Thus, to study the bigness of any fixed B-stable nef Cartier divisor, we can reduce ourselves

to study the bigness of an opportune G-stable nef Cartier divisor. Observe that if none F+
α belongs to

F(X) (for example, if X is toroidal), then hD1+D2 = hD1 . We say that D satisfies (*) if it is equal to
14



D1 +D2, with D1, D2 as before. Remark the, given any B-stable and nef D, we can rename the F+
α so

that D satisfies (∗).

Theorem 4.2. Let X be a projective symmetric variety. Let D be a nef, B-stable Cartier Q-divisor

on X which satisfies (∗) and let h be the piecewise linear function over the support of the colored fan

associated to D1. Write h = {hC}{(C,F)} where the {(C,F)} are the maximal colored cones. Then D is

big if and only if (
∑
hC , R

∨) 6= 0 for each irreducible factor R∨ of R∨
G,θ. Moreover, if X is toroidal or

if D is G-stable, then h is also the piecewise linear function associated to D.

The idea of the proof is the following: first, we reduce to study the pullback of O(D) to Zc by the

previous proposition. Then, we study vol(WG,θ · (
∑
hC)) to verify if such line bundle is big.

Proof. We can suppose X toroidal and Q-factorial. Let s be the rank of G/H (equal to the dimension

of Zc). In this way the support of h can change, but the weight
∑
hC doesn’t change. Moreover, we can

suppose that D is G-stable by Remark 7. By Proposition 4.1, D is big if and only if i∗(D) is big, where

i : Zc → X is the inclusion. Observe that i∗(D) is nef and globally generated. Denoted by Q(D) the

polytope convex(WG,θ{hC}) (as in §1.7), i∗(D) is big if and only if vol(i∗(D)) := i∗(D)s = s! vol(Q(D))

is strictly positive. Notice that the hC are antidominant because D is nef and G-stable.

First, suppose that D is big and suppose by contradiction that there is an irreducible factor R∨ of

R∨
G,θ such that (

∑
hC , R

∨) = 0. Then (hC , R
∨) = 0 for each C because the hC are antidominant. Let α∨

be any simple coroot in R∨, then (whC , α
∨) = 0 for all C and for all w ∈WG,θ. So Q(D) is contained in

the hyperplane ( ·, α∨) = 0, thus it has volume 0.

Now, suppose that it is verified the condition (
∑
hC , R

∨) 6= 0 for each irreducible factor R∨ of R∨
G,θ.

Let s be rank of X and let n be the number of s-dimensional colored cones, then v1 = 1
n

∑
(C,F):dim C=s hC

belongs to Q(D), so convex(WG,θv) ⊂ Q(D). Thus it is sufficient to prove that vol(convex(WG,θv1)) > 0.

Write RG,θ = I1 ⊔J1 with (v1, α) 6= 0 if and only if α ∈ I1. If J1 is not empty, then, by hypothesis, there

are α ∈ I1 and β ∈ J1 such that (α, β) 6= 0. Thus (sαv1, β) = −(β, α∨)(v1, α) < 0; moreover sαv1 ∈

Q(D). Hence v2 = 2
3v1 +

1
3sαv1 is antidominant and belongs to convex(WG,θv1). Write RG,θ = I2 ⊔ J2

with (v2, α) 6= 0 if and only if α ∈ I2. Notice that I1 ( I2; in particular J2 contains no irreducible

factor of RG,θ. By induction we can find m such that RG,θ = Im and vm belongs to convex(WG,θv1); in

particular vm is strictly antidominant. So vol(convex(WG,θv1)) ≥ vol(convex(WG,θvm)) > 0. �

Remark that, if (G, θ) is indecomposable, we obtain that any non-trivial, G-stable, nef, Cartier Q-

divisor is big. This fact can also be proved directly, because in this case the morphism associated to the

divisor has to be birational.

5. Final remarks

The results of this work cannot be extended to a general spherical variety. In particular, Theorem

3.1 is false if H has infinite index in NG(H), i.e. G/H is not sober. This means that the valuation cone

cone(N ) is not strictly convex. First, the class of two distinct G-stable prime divisors can generate the

same halfline. For example P1 = C∗ ∪ {0} ∪ {∞}, seen as toric variety, has two G-stable prime divisors

and Picard number 1. Furthermore, it is not clear how to extend the Theorem 3.2 to the horospherical

varieties. Consider for example P2 = P(C2 ⊕ C) as completion of SL2/U , where U is the group of

upper triangular matrices with diagonal entries equal to 1. This variety has one color, one G-stable

divisor, rank 1 and Picard number 1. In particular, one can show that, given an equivariant morphism

SL3/U → SL3/H onto a spherical space, H is U , SL3, a Borel subgroup or the semidirect product of U

with a cyclic group (indeed, there is a Borel subgroup such that U = [B,B] ⊂ H ⊂ B and B/U ∼= k∗).

We have take these examples from [Br07], §4.1.

Also the Theorem 4.2 does not hold for a generic spherical variety. We can generalizes it in two ways:

i) substituting RG,θ with the spherical root system; ii) substituting R∨
G,θ with the image of colors. But,
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in the first case the horospherical varieties have not spherical roots and the statement would be trivially

satisfied by all the divisors. In the second case, the flag manifolds have rank zero, so the image of ρ

has to be 0. Therefore none divisor can satisfy the statement. We hope that the Theorem 4.2 can be

generalized to any sober spherical variety. To this aim, it would be useful to prove such theorem using

the definition of big divisors based on dimH0(X,mL). Unfortunately, we have not succeeded in doing

it, even for the symmetric case.
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