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A COHOMOLOGICAL OBSTRUCTION TO WEAK APPROXIMATION

FOR HOMOGENEOUS SPACES

MIKHAIL BOROVOI AND TOMER M. SCHLANK

Abstract. Let X be a homogeneous space, X = G/H , where G is a connected linear
algebraic group over a number field k, and H ⊂ G is a k-subgroup (not necessarily
connected). Let S be a finite set of places of k. We compute a Brauer-Manin obstruction
to weak approximation for X in S in terms of Galois cohomology.
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0. Introduction

LetX be an algebraic variety over a number field k, and let S be a finite set of places of k.
We say that X has the weak approximation property in S if X(k) is dense in

∏
v∈S X(kv)

with respect to the diagonal embedding. We say that X has the weak approximation
property if it has the weak approximation property in S for any finite set S of places of k.

In 1970 Manin [M] introduced a general obstruction to the Hasse principle for a k-variety
X, using the Brauer group of X. Using Manin’s ideas, Colliot-Thélène and Sansuc [CTS]
defined a Brauer-Manin obstruction to weak approximation for X in all S simultaneously
(see also [Sk], §5.2). We consider a variation of this obstruction introduced in [B1], which
is a Brauer-Manin obstruction to weak approximation in a specific set of places S for a
k-variety X having a k-point.

Write kS =
∏
v∈S kv, then

X(kS) =
∏

v∈S

X(kv).

We assume that X(k) 6= ∅. The Brauer-Manin obstruction of [B1] is a map

obS : X(kS) → BS,∅(X)D,
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where BS,∅(X) := BS(X)/B(X) is a certain subquotient of the Brauer group BrX (for

details see §1) and D denotes the dual group, i.e. •D = Hom(•,Q/Z). The map obS is
an obstruction in the following sense: if xS ∈ X(kS) and obS(xS) 6= 0, then xS is not
contained in the closure of X(k) in X(kS). In particular, if the map obS is not identically
0, then X does not have weak approximation in S.

Now let X be a homogeneous space of a connected linear k-group G. It is convenient
to use the notion of a quasi-trivial group, introduced by Colliot-Thelene, see Definition
2.1 in [CT] or Definition 2.2 below. By Lemma 2.3 below we may assume that X is a
homogeneous space of a quasi-trivial k-group G. In [B2] we computed the Brauer-Manin
obstruction of [B1] to the Hasse principle for X in terms of Galois cohomology. Here we
do a similar computation for the Brauer-Manin obstruction of [B1] to weak approximation
for X. We assume that X has a k-point x0. Let H denote the stabilizer of x0 in G, then
X = G/H.

From now on we assume that X = G/H, where G is quasi-trivial (and H is not neces-
sarily connected). We describe the group BS,∅(X)D and the map obS in terms of Galois

cohomology. Let Hmult denote the greatest quotient of H that is a group of multiplicative
type. Write

H1(kS ,H
mult) =

∏

v∈S

H1(kv ,H
mult)

and set

Q
1
S(k,H

mult) = coker[H1(k,Hmult)
locS−−→ H1(kS ,H

mult)],

where locS is the localization map. The following theorem describes the group BS,∅(X)D

in terms of Galois cohomology.

Theorem 0.1 (Theorem 5.1). Let X = G/H, where G is a quasi-trivial k-group over a
number field k, and H is a k-subgroup of G. Then there is a canonical isomorphism:

φ : BS,∅(X)D
∼
→ Q

1
S(k,H

mult).

We wish to describe not only the group BS,∅(X)D, but also the map obS in terms of
Galois cohomology. Let xS = (xv)v∈S ∈ X(kS). For v ∈ S consider the G(kv)-orbit
G(kv).xv of xv in X(kv). This orbit defines a cohomology class

ξv(xv) ∈ ker[H1(kv,H) → H1(kv , G)],

cf. [Se, §I.5.4]. Consider the canonical epimorphism µ : H → Hmult, and set

ξmult
v (xv) = µ∗(ξv(xv)) ∈ H

1(kv,H
mult),

ξmult
S (xS) =

(
ξmult
v (xv)

)
v∈S

∈ H1(kS ,H
mult).

Let cS(xS) denote the image of ξmult
S (xS) under the canonical map

H1(kS ,H
mult) → Q

1
S(k,H

mult).

The following theorem describes the map obS in terms of Galois cohomology.

Theorem 0.2 (Theorem 5.1). Let k, G, H, and X be as in Theorem 0.1. The following
diagram commutes:

X(kS)
obS // BS,∅(X)D

φ∼=
��

X(kS)
−cS // Q1

S(k,H
mult).
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Note that results similar to our Theorem 0.2 in the special case of a finite group H were
obtained earlier by D. Harari [H], §5, Theorem 4, and C. Demarche [D1], §7, Corollary 4.

Remark 0.3. In this paper we consider the Brauer-Manin obstruction obS of [B1], which
is a variation of the Brauer-Manin obstruction associated with the group Bω(X), cf. [Sa,
(6.2.3)]. By [B1, Thm. 2.4], if H is connected or abelian, then obS is the only obstruction
to weak approximation in S for X. However, it may be not the only obstruction if H
is non-connected and non-abelian, see Demarche [D1, §6, Prop. 2]. The failure of weak
approximation in the counter-example of Demarche can be explained by the Brauer-Manin
obstruction associated with the larger group Brnr,1(X), loc. cit.

Now let H be an arbitrary k-group of multiplicative type. Let Ĥ := Homk̄(Hk̄,Gm,k̄) be

the (geometric) character group of H. Let X1
S(k, Ĥ) denote the kernel of the localization

map

loc1
S∁ = loc1

V (k)rS : H
1(k, Ĥ) →

∏

v∈V (k)rS

H1(kv , Ĥ)

where V (k) is the set of all places of k. As a byproduct of our study of the group
Q

1(k,Hmult) we obtain a duality theorem:

Theorem 0.4 (Theorem 4.2). Let H be a k-group of multiplicative type over a number
field k. There is a canonical non-degenerate pairing

X
1
S(k, Ĥ)/X1

∅(k, Ĥ)×Q
1
S(k,H)

∪S−−→ Q/Z.

Theorem 0.4 generalizes a result of Sansuc [Sa], Lemma 1.4, who considered the case
of finite H. This theorem can be also deduced from the Poitou-Tate exact sequence for
groups of multiplicative type, see [D2, Thm. 6.3].

Acknowledgements. The authors are grateful to David Harari for useful discussions and to
the referee for helpful comments. The first-named author worked on the paper while visit-
ing the Max-Planck-Institut für Mathematik, Bonn; he thanks the Institute for hospitality,
support, and excellent working conditions.

Notation.

By k we denote a field of characteristic 0, and by k̄ a fixed algebraic closure of k. By a
k-variety we mean a separated geometrically integral scheme of finite type over k. For a
k-variety X we set X = X ×k k̄ and

U(X) = k̄[X]∗/k̄∗,

where k̄[X] is the ring of regular functions onX and k̄[X]∗ is the group of invertible regular
functions on X. We denote by PicX the Picard group of X . Note that both U(X) and
PicX are Galois modules, i.e. the Galois group Gal(k̄/k) acts on them.

By an algebraic k-groupH we mean a linear algebraic group (not necessarily connected).

We write Ĥ or X(H) for the (geometric) character group of H, i.e.

X(H) = Ĥ := Homk̄(H,Gm,k̄).

When k is assumed to be a number field, we write V (k) for the set of places of k. If
v ∈ V (k), we write kv for the completion of k at v. Let S ⊂ V (k) be a finite set of places
of k. We set kS =

∏
v∈S kv , then for a k-variety X we have

X(kS) =
∏

v∈S

X(kv).
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The set of k-points X(k) embeds diagonally into X(kS), and we denote byX(k) the closure
of X(k) in X(kS). If G is a linear algebraic group over k, we set

H1(kS , G) :=
∏

v∈S

H1(kv , G).

1. Preliminaries on the Brauer group and the Brauer-Manin obstruction

Let k be a field of characteristic 0. Let X be a smooth geometrically integral k-variety
with a marked k-point x0. Then BrX := H2

ét(X,Gm) is the cohomological Brauer group
of X. We use the following notation:

Br0X = im [Br k → BrX]; Br1X = ker[BrX → BrXk̄];

Brx0X = ker[(x0)∗ : Br1X → Br k]; BraX = Br1X/Br0X.

We have

Br1X = Br0X ⊕ Brx0X,

and therefore we have a canonical isomorphism Brx0X
∼
→ BraX.

If S ⊂ V (k) is a finite subset, let BS(X) be the subgroup of Brx0X consisting of
elements b whose localizations locvb in BrXkv are trivial for all places v of k outside S.
We set B(X) = B∅(X).

Note that for any S we have B∅(X) ⊂ BS(X). We denote

BS,∅(X) := BS(X)/B∅(X) = BS(X)/B(X).

Now we describe the Brauer-Manin obstruction of [B1] to weak approximation in S for
X.

For our purposes the Brauer-Manin obstruction coming from the subgroup Br1X of
BrX will suffice. Following [Sa] and [B1], we define the Brauer–Manin obstruction in
terms of the group BS,∅(X).

Let X be a smooth geometrically integral variety over a field k of characteristic 0.
Consider the pairing

X(k) × Br1X
ev
−→ Br k

where ev is the evaluation map ev : (x, b) 7→ b(x). This pairing is additive in b:

ev(x, b+ b′) = ev(x, b) + ev(x, b′).

If k is a local field, then the above pairing gives us a pairing

X(k)× Br1X
inv ◦ ev
−−−−→ Q/Z,

(x, b) 7→ inv(b(x))

where inv: Br k → Q/Z is the homomorphism of local class field theory. This pairing is
continuous in x (see [Sa], Lemma 6.2, or [BD], Lemma 6.2) and is additive in b.

Now let k be a number field. Let S ⊂ V (k) be a finite subset. Consider the pairing

〈 , 〉S : X(kS)×BS(X) → Q/Z,(1)

〈(xv)v∈S , b〉S =
∑

v∈S

(
invv(b(xv))

)
.

If b ∈ B∅(X), then 〈xS , b〉S = 0 for any xS ∈ X(kS). Thus the pairing 〈 , 〉S induces a
pairing

(2) X(kS)×BS(X)/B∅(X) → Q/Z ,



WEAK APPROXIMATION 5

which is additive in the second argument. We call the pairings (1) and (2) the Manin
pairings. Thus we obtain a map

obS : X(kS) → (BS(X)/B∅(X))D = BS,∅(X)D .

The map obS is continuous because the pairing 〈 , 〉S is continuous in xS . Further, by the
Hasse-Brauer-Noether theorem if x ∈ X(k) ⊂ X(kS), then obS(x) = 0. It follows that if

xS is contained in the closure X(k) of X(k) in X(kS), then obS(xS) = 0.

Recall that X has the weak approximation property in S, if X(k) is dense in X(kS). If

X has the weak approximation property in S, then X(k) = X(kS) and obS is identically
0. We see therefore that obS is an obstruction to weak approximation in S. We call obS
the Brauer–Manin obstruction to weak approximation in S, associated with BS,∅.

The obstruction obS is functorial. Namely, let π : (X,x0) → (Y, y0) be a morphism of
k-varieties with marked k-points. Then the following diagram is commutative:

X(kS)

π

��

obS // BS,∅(X)D

π∗

��
Y (kS)

obS // BS,∅(Y )D

where π∗ is the homomorphism induced by π.

Remark 1.1. In [B1] the group BS(X) and the Brauer-Manin obstruction were defined in
terms of BraX = Br1X/Br0X rather than Brx0X. However, these two groups are canon-
ically isomorphic, and one can check that our definitions here are essentially equivalent to
those of [B1]. Note that though we defined the obstruction obS using x0, this obstruction
essentially does not depend on x0, cf. [B1], §1.

2. Preliminaries on quasi-trivial groups

All the lemmas in this section are well known. For the reader’s convenience we provide
short proofs and/or references.

2.1. Notation concerning linear algebraic groups. Let G be a connected linear algebraic
group over a field k of characteristic 0. We use the following notation:

Gu is the unipotent radical of G;

Gred = G/Gu, it is a reductive k-group;

Gss is the commutator subgroup of Gred, it is a semisimple k-group;

Gtor = Gred/Gss, it is a k-torus.

Let H be a linear k-group, not necessarily connected. We denote by Hmult the biggest

quotient group of H that is a group of multiplicative type. Let Ĥ denote the character

group of H. We have Ĥ = Ĥmult. If H is connected, then Hmult = Htor.

Recall that a torus T is called quasi-trivial if its character group T̂ is a permutation
Galois module.

Definition 2.2 ([CT], Proposition 2.2). Let k be a field and G a connected linear k-group.
We say that G is quasi-trivial if Gtor is quasi-trivial and Gss is simply connected.

Let X be a homogeneous space of a connected linear k-group G. By virtue of the
following lemma one can always take G to be quasi-trivial without changing X.
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Lemma 2.3. Let G be a connected linear algebraic group over a field k of characteristic
0, then there exists a surjective homomorphism G′ → G such that G′ is a quasi-trivial
k-group.

Proof. See [CT], Proposition-Definition 3.1. �

2.4. By a pair of k-groups we mean a pair (G,H), where G is a quasi-trivial k-group and
H is a k-subgroup of G (not necessarily connected). A pair (G,H) defines a homogeneous
space X := G/H together with a marked point x0 = eH ∈ X(k), where e ∈ G(k) is the
identity element of G.

By a morphism of pairs φ : (G1,H1) → (G2,H2) we mean a surjective homomorphism
φ : G1 → G2 such that φ(H1) = H2. If we set X1 = G1/H1 and X2 = G2/H2, then we
have an induced morphism φ∗ : (X1, x

0
1) → (X2, x

0
2), where x

0
1 and x

0
2 are the corresponding

marked points.

Let G be a k-group. In the next lemma we use the notation X(G) = Ĝ to denote the
Galois module of (geometric) characters of G.

Proposition 2.5. Let (G,H) be a pair of k-groups with quasi-trivial G as in 2.4, and let
X = G/H. Let X = X ×k k̄. Consider the natural morphism of Galois modules

X(G) → X(H)

and the dual morphism of k-groups of multiplicative type

Hmult → Gmult = Gtor

Then there are natural isomorphisms of Galois modules

(i) U(X) ∼= ker[X(G) → X(H)] ∼= X(coker[Hmult → Gtor])
(ii) PicX ∼= coker[X(G) → X(H)] ∼= X(ker[Hmult → Gtor])

Proof. We have canonical isomorphisms

ker[X(G) → X(H)] ∼= X(coker[Hmult → Gtor])

and

coker[X(G) → X(H)] ∼= X(ker[Hmult → Gtor]).

Proof of (i). The natural map G → G/H = X induces an embedding U(X) →֒
U(G). By Rosenlicht’s theorem ([R], Theorem 3) the injection X(G) →֒ k̄[G]∗ induces an
isomorphism X(G) ∼= U(G). It is easy to see that a character χ ∈ X(G) corresponds to an
element of U(G) coming from U(X) if and only if χ ∈ ker [X(G) → X(H)].

Proof of (ii). See Popov [P], Theorem 4 (we use that PicG = 0, cf. [CT], Definition
2.1). �

3. The cohomological obstruction cS

In this section, using nonabelian Galois cohomology we define a cohomological obstruc-
tion to weak approximation in X at a finite set of places S ⊂ V (k). This obstruction
takes values in the group Q

1
S(k,H

mult), and we denote it by cS .

Let k be a number field. Let k̄ be a fixed algebraic closure of k. Let (G,H) be a pair
of k-groups as in 2.4 over a number field k.

Lemma 3.1. Let S be a finite subset of V (k), (G,H) be a pair of k-groups as in 2.4,

and xS ∈ X(kS) be a kS-point. Then xS ∈ X(k) if and only if the orbit G(kS).xS of xS
contains a k-point of X.
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Proof. This is well known, see e.g. [B3], §2.1. �

We see from Lemma 3.1 that a point xS ∈ X(kS) lies in the closure X(k) of X(k) if
and only if its G(kS)-orbit G(kS).xS lies in in the image of the localization map

(3) locS : G(k)\X(k) → G(kS)\X(kS).

3.2. Cohomological formulation. By [Se], I.5.5, Corollary 1 of Proposition 36, we have a
canonical bijection

(4) τk : G(k)\X(k)
∼

−−→ ker
[
H1(k,H) → H1(k,G)

]
.

For a finite set S of places of k we obtain a bijection

(5) τS =
∏

v∈S

τkv : G(kS)\X(kS) → ker
[
H1(kS ,H) → H1(kS , G)

]

We have a commutative diagram with bijective vertical arrows:

G(k)\X(k)

τk

��

locS // G(kS)\X(kS)

τS

��
ker[H1(k,H) → H1(k,G)]

locS // ker[H1(kS ,H) → H1(kS , G)].

An element xS ∈ X(kS) is contained in X(k) if and only if τS(G(kS).xS) lies in the image
of the map

ker[H1(k,H) → H1(k,G)]
locS−−→ ker[H1(kS ,H) → H1(kS , G)].

3.3. The definition of cS. Consider the following commutative diagram:

(6) X(k)

ν

��

� � // X(kS)

νS

��
G(k)\X(k)

τk

��

locS // G(kS)\X(kS)

τS

��
ker[H1(k,H) → H1(k,G)]

��

locS // ker[H1(kS ,H) → H1(kS , G)]

��
H1(k,H)

µ

��

locS // H1(kS ,H)

µS

��
H1(k,Hmult)

locS // H1(kS ,H
mult).

By composing the arrows in the right column of diagram (6) we obtain a map

c̃S : X(kS) → H1(kS ,H
mult).

By composing c̃S with the canonical map

H1(kS ,H
mult) → Q

1
S(H

mult),

we obtain a map

cS : X(kS)
c̃S−→ H1(kS ,H

mult) → Q
1
S(H

mult).

We prove that the map cS is indeed an obstruction to weak approximation.



8 MIKHAIL BOROVOI AND TOMER M. SCHLANK

Lemma 3.4. Let cS be the map defined above and let xS ∈ X(k) ⊂ X(kS). Then cS(xS) =
0.

Proof. First note that the map

cS : X(kS) → Q
1
S(H

mult)

is constant on G(kS)-orbits. Since the G(kS)-orbits are open, the map cS is continu-
ous, and therefore we may assume that xS ∈ X(k). Now the assertion follows from the
commutativity of diagram (6). �

Note that every step in the definition of cS is functorial, and therefore cS is functorial
as well. Namely:

Lemma 3.5. Let φ : (G1,H1) → (G2,H2) be a morphism of pairs as in 2.4 over a number
field k (with quasi-trivial groups G1 and G2). Set X1 = G1/H1 and X2 = G2/H2, and
let φX : X1 → X2 be the induced map. Since φ(H1) = H2, φ induces a map φµ : Hmult

1 →
Hmult

2 , and the following diagram commutes:

X1(kS)

cS
��

φX // X2(kS)

cS
��

Q
1
S(H

mult
1 )

φ
µ
∗ // Q1

S(H
mult
2 ).

�

4. Proofs: the case of a torus

In this section we prove our results in the special case when our pair (G,H) over k is such
that G is a quasi-trivial torus. Note that in this case H ⊂ G is a k-group of multiplicative
type and X = G/H has a canonical structure of a k-torus. We write T = G/H and denote
by e the neutral element of T . Then e ∈ T (k) is our marked point x0 ∈ X(k).

Our main result in this special case is:

Theorem 4.1. Let (G,H) be a pair of k-groups over a number field k such that G is a
quasi-trivial k-torus. Set T = G/H. Then H = Hmult is a k-group of multiplicative type,

T is a k-torus, T (kS) and T (k) ⊂ T (kS) are groups, and

(i) There are canonical isomorphisms

βS : X
1
S(Ĥ)

∼
→ BS(T ),

βS,∅ : X
1
S,∅(Ĥ) := X

1
S(Ĥ)/X1

∅(Ĥ)
∼
→ BS,∅(T ).

(ii) We have a canonical commutative diagram

T (kS)/T (k)

−cS∼=

��

× BS,∅(T )
〈 , 〉S // Q/Z

Q
1
S(k,H) × X

1
S,∅(Ĥ)

βS,∅ ∼=

OO

∪S // Q/Z,

in which by abuse of notation we write cS : T (kS)/T (k) → Q
1
S(k,H) for the map induced

by the map cS defined in §3, and by abuse of notation again we write 〈 , 〉S : T (kS)/T (k)×
BS,∅(T ) → Q/Z for the pairing induced by the Manin pairing. Moreover, in this diagram:

(i) Both vertical arrows are isomorphisms of abelian groups.
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(ii) Both pairings are perfect pairings of finite abelian groups.

When proving Theorem 4.1 we rely on Sansuc [Sa], §8. After we establish our result we
shall be able to prove the following duality theorem:

Theorem 4.2. Let H be a group of multiplicative type over a number field k. Then there
is a non-degenerate pairing of finite abelian groups

X
1
S,∅(k, Ĥ)×Q

1
S(k,H)

∪S−−→ Q/Z,

where

∪S =
∑

v∈S

invv ◦ ∪kv

and ∪kv is the cup-product pairing:

∪kv : H
1(kv , Ĥ)×H1(kv,H)

∪
−→ H2(kv,Gm) = Br k.

Our first step in proving Theorem 4.1 is to describe the Brauer group of T in terms of

the second Galois cohomology of the Galois module T̂ , and to describe the Manin pairing
in terms of the cup product.

Lemma 4.3. Let T be a torus defined over a field F of characteristic 0. Then there is a
canonical commutative diagram

(7) T (F) × BreT
ev // BrF

T (F) × H2(F, T̂ )

θF ∼=

OO

∪ // BrF

where ev is the evaluation map (t, b) 7→ b(t), and θF is the canonical isomorphism of
abelian groups from [Sa], Lemma 6.9(ii). Both pairings in this diagram are additive in
both arguments.

Note that the additivity of the pairing ev in the first argument means that

ev(tt′, b) = ev(t, b) + ev(t′, b) for t, t′ ∈ T (F), b ∈ BreT.

Proof. This is the upper half of the commutative diagram (8.11.2) in the proof of [Sa],

Lemma 8.11. Note that θF is the map θF : H
2(F, T̂ ) = H2(F, U(T )) → BraT = BreT that

appears in the long exact sequence in [Sa], Lemma 6.3(ii). Since the bottom pairing is
additive in both arguments, so is the top one. �

4.4. Now let k be a number field and S ⊂ V (k) be a finite set of places. Then diagram
(7) above can be used in order to compute the Manin pairing.

First we note that for every v ∈ S ⊂ V (k) there is a canonical inclusion invv : Br kv →֒
Q/Z. Thus for every v ∈ S we obtain a commutative diagram

(8) T (kv) × BreTkv
invv ◦ evv// Q/Z

T (kv) × H2(kv , T̂ )

θv ∼=

OO

invv ◦∪v// Q/Z,

where θv := θkv .
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Now we sum several copies of diagram (8) (one for each v ∈ S) and obtain a commutative
diagram

(9) T (kS) ×
∏
v∈S BreTkv

∑
invv◦evv // Q/Z

T (kS) × H2(kS , T̂ )

∑
v∈S

θv ∼=

OO

∪S // Q/Z.

Since the isomorphism θF is functorial in F, it induces natural isomorphisms

θS : X
2
S(T̂ )

∼
→BS(T ),(10)

θS,∅ : X
2
S,∅(T̂ )

∼
→BS,∅(T ).(11)

Using the natural homomorphisms

locS : X
2
S(T̂ ) → H2(kS , T̂ ), BS(T ) →

∏

v∈S

BreTkv ,

we obtain from diagram (9) a commutative diagram

T (kS) × BS(T )
evS // Q/Z

T (kS) × X
2
S(T̂ )

θS ∼=

OO

∪S // Q/Z

where θS is isomorphism (10) and

evS(tS , b) =
∑

v∈S

invv(b(tv)) for b ∈ BS(T ) ⊂ Br eT ⊂ Br1T and tS ∈ T (kS).

But evS is exactly the Manin pairing (1) (denoted by 〈 , 〉S there). Thus we obtain the
following commutative diagram, containing the map induced by the Manin pairing as the
top pairing:

(12) T (kS)/T (k) × BS,∅(T )
〈 , 〉S // Q/Z

T (kS)/T (k) × X
2
S,∅(T̂ )

θS ∼=

OO

∪S // Q/Z

Note that we may write T (kS)/T (k) instead of T (kS), because we know that the Manin

pairing vanishes on T (k) and is additive in the first argument.

The next step in our proof will be using connecting maps in order to reduce the second
Galois cohomology that appears in diagram (12) to the first Galois cohomology.

Lemma 4.5. Let 1 → H → G → T → 1 be a short exact sequence of groups of multi-

plicative type over a field F of characteristic 0, and let 0 → T̂ → Ĝ → Ĥ → 0 be the dual
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exact sequence. Then the following diagram anti-commutes:

(13) H0(F, T )

∂

��

× H2(F, T̂ )
∪ // Br (F)

H1(F,H) × H1(F, Ĥ)

∂

OO

∪ // Br (F)

Proof. The proof is similar to that of [Sa], Lemma 8.11. Let t ∈ T (F) and f ∈ H1(F, Ĥ).

Let us lift t and f to tG ∈ C0(F, G) and fG ∈ C1(F, Ĝ), respectively. We have d(tG∪fG) =
d(tG)∪ fG+ tG∪d(fG). By passing to cohomology classes we obtain ∂t∪ f = −t∪∂f . �

4.6. By taking the anticommutative diagram (13) with F = k and F = kv, v ∈ S, and
arguing as in 4.4, we obtain an anticommutative diagram

(14) T (kS)

∂dS
��

× X
2
S,∅(T̂ )

∪S // Q/Z

Q
1
S(H) × X

1
S,∅(Ĥ)

∂uS

OO

∪S // Q/Z.

Note that in diagram (14) we may write Q
1
S(H) instead of H1(kS ,H), because by the

short exact sequence

0 → Br k → ⊕Br kv

∑
invv

−−−−→ Q/Z

the image of the map
locS : H

1(k,H) → H1(kS ,H)

lies in the left kernel of the pairing

H1(kS ,H)×X
1
S(Ĥ)

∪S−−→ Q/Z.

Now we prove that the map ∂dS from diagram (14) is exactly our obstruction cS and

that it induces an isomorphism T (kS)/T (k) → Q
1
S(H).

Lemma 4.7. Let a pair of k-groups (G,H) be such that G is a (quasi-trivial) torus. Set
T = G/H. We denote by α : H1(kS ,H) → Q

1
S(H) the canonical epimorphism, and by ∂S

the map

T (kS)
∂S−→ H1(kS ,H),

obtained from the short exact sequence of groups of multiplicative type 1 → H → G →
T → 1. Then

(i) α ◦ ∂S = cS;
(ii) cS is a homomorphism;
(iii) cS is surjective;

(iv) ker cS = T (k).

Proof. From the short exact sequence of groups of multiplicative type

1 → H → G
ρ
−→ T → 0

we obtain a commutative diagram of abelian groups

(15) G(k)
� _

locS
��

ρ // T (k)
� _

locS
��

∂ // H1(k,H)

locS
��

// 0

G(kS)
ρS // T (kS)

∂S // H1(kS ,H) // 0.
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Since Hmult = H, we have cS = α ◦ τS ◦ νS (see §3.3), and (i) follows from the equality
∂S = τS ◦νS . Since α and ∂S are both homomorphisms, we see that cS is a homomorphism,
which proves (ii). Assertion (iii) follows from the surjectivity of α and ∂S .

We prove (iv) by diagram chasing in diagram (15). Since we know that T (k) ⊆ ker cS ,

it suffices to show that ker cS ⊆ T (k). Let tS ∈ ker cS ⊂ T (kS), i.e. α(∂S(tS)) = 0. Then
there exists h ∈ H1(k,H) such that ∂S(tS) = locS(h). We can find t ∈ T (k) such that
∂(t) = h (because ∂ is surjective). We have

∂S(tS) = locS(h) = locS(∂(t)) = ∂S(locS(t)),

and therefore tS − t ∈ ρS(G(kS)). Thus we have showed that ker cS ⊆ ρS(G(kS)) + T (k),

and it suffices to prove that ρS(G(kS)) + T (k) ⊆ T (k). Since G is quasi-trivial, it has the

weak approximation property (cf. [CT], Proposition 9.2), and therefore G(k) = G(kS).
We obtain:

ρS(G(kS)) + T (k) ⊆ ρS(G(k)) + T (k) ⊆ ρ(G(k)) + T (k) = T (k).

�

The following lemma has been widely used, see e.g. [B1], Proof of Lemma 4.4, or [B2],
§3.5, but we do not know a reference where it was stated, so we state and prove it here.

Lemma 4.8. Consider a commutative diagram of abelian groups with exact rows

0 // A

λA
��

ϕ // B

λB
��

ψ // C

λC
��

0 // A′
ϕ′

// B′
ψ′

// C ′,

then the induced sequence

0 → ker λA
ϕ∗

−−−→ kerλB
ψ∗

−−−→ kerλC

is exact.

Proof. We replace C and C ′ by imψ and imψ′, resp., and apply the Snake Lemma. �

We proceed by proving that the map ∂uS from diagram (14) is an isomorphism.

Lemma 4.9. Let 1 → H → G→ T → 1 be a short exact sequence of groups of multiplica-
tive type such that G is a quasi-trivial torus. Let

(16) ∂ : X1
S(Ĥ) → X

2
S(T̂ )

be the map induced by the connecting map obtained from the short exact sequence

0 → T̂ → Ĝ→ Ĥ → 0.

Then ∂ is an isomorphism.

Proof. From the short exact sequence 0 → T̂
i
−→ Ĝ → Ĥ → 0 we obtain a commutative

diagram with exact rows

0 // H1(k, Ĥ)

loc
S∁

��

∂ // H2(k, T̂ )

loc
S∁

��

i // H2(k, Ĝ)

loc
S∁

��

0 // H1(kS∁ , Ĥ)
∂
S∁ // H2(kS∁ , T̂ )

i
S∁ // H2(kS∁ , Ĝ),
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where S∁ = V (k) r S. Since the k-torus G is quasi-trivial, by [Sa], (1.9.1), we have

X
2
S(Ĝ) = 0. Now by Lemma 4.8 the induced homomorphism (16) is an isomorphism. �

Using Lemmas 4.7 and 4.9, we can rewrite diagram (14).

Lemma 4.10. Let (G,H) be a pair of k-groups such that G is a quasi-trivial torus. Set
T = G/H. Then we have a commutative diagram

(17) T (kS)/T (k)

−cS∼=

��

× X
2
S,∅(T̂ )

∪S // Q/Z

Q
1
S(H) × X

1
S,∅(Ĥ)

∂uS
∼=

OO

∪S // Q/Z .

In this diagram:

(i) Both vertical arrows are isomorphisms.
(ii) Both pairings are perfect pairings of finite abelian groups.

Proof. First note that we can write in diagram (14) T (kS)/T (k) instead of T (kS), because

T (k) lies in the left kernel of the top pairing by diagram (12), and in the kernel of ∂dS = cS
by Lemma 4.7. By Lemmas 4.7 and 4.9, diagram (17) is just a version of diagram (14),
where we take cS with the negative sign in order to obtain a commutative diagram from
the anticommutative diagram (14). Also (i) follows from Lemmas 4.7 and 4.9.

It remains to prove (ii). By Ono’s lemma (cf. [O], Theorem 1.5.1) there is an exact
sequence

1 → B → Q1 → Tm ×Q2 → 1

such that m > 0 is an integer, Q1 and Q2 are quasi-trivial k-tori and B is a finite abelian
k-group.

Now we construct diagram (17) for the pair of k-groups G = Q1 and H = B, then
Q1/B = Tm ×Q2. Using (i) we obtain

(
T (kS)/T (k)

)m
⊕Q2(kS)/Q2(k)

−cS∼=

��

×

(
X

2
S,∅(T̂ )

)m
⊕X

2
S,∅(Q̂2)

∪S // Q/Z

Q
1
S(B) × X

1
S,∅(B̂)

∂uS
∼=

OO

∪S // Q/Z .

Since Q2 is a quasi-trivial torus, it has the weak approximation property,

i.e. Q2(kS)/Q2(k) = 0. Further, by [Sa], (1.9.1), we have X
2
S(Q̂2) = 0. Thus we have a

commutative diagram

(18)
(
T (kS)/T (k)

)m

−cS∼=

��

×

(
X

2
S,∅(T̂ )

)m ∪S // Q/Z

Q
1
S(B) × X

1
S,∅(B̂)

∂uS
∼=

OO

∪S // Q/Z

where the vertical arrows are isomorphisms.

But by [Sa], the proof of Lemma 1.4, the bottom pairing in diagram (18) is a perfect
pairing of finite abelian groups. Therefore the top pairing:

(
T (kS)/T (k)

)m
×

(
X

2
S,∅(T̂ )

)m ∪S // Q/Z
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is a perfect pairing of finite abelian groups, and clearly the same is true for the pairing

T (kS)/T (k) × X
2
S,∅(T̂ )

∪S // Q/Z .

Now (i) gives us (ii). �

Now we complete the proof of Theorem 4.1.

Proof of Theorem 4.1. By composing the isomorphisms:

X
1
S(Ĥ)

∼
→ X

2
S(T̂ )

∼
→ BS(T )

from (16) and (10), respectively, we obtain isomorphisms

βS : X
1
S(Ĥ)

∼
→ BS(T ),

βS,∅ : X
1
S,∅(Ĥ) := X

1
S(Ĥ)/X1

∅(Ĥ)
∼
→ BS,∅(T ),

so we have proved (i). We prove (ii) (a,b). First we put diagram (12) on top of dia-
gram (17) and obtain the following commutative diagram, in which the vertical arrows are
isomorphisms:

(19) T (kS)/T (k) × BS,∅(T )
〈 , 〉S // Q/Z

T (kS)/T (k)

−cS∼=

��

× X
2
S,∅(T̂ )

θS ∼=

OO

∪S // Q/Z

Q
1
S(H) × X

1
S,∅(Ĥ)

∂uS
∼=

OO

∪S // Q/Z.

By Lemma 4.10(ii) the pairings in the two lower rows of diagram (19) are perfect pairings
of finite abelian groups. Since all vertical arrows of diagram (19) are isomorphisms, we
see that the pairing in the top row is a perfect pairing of finite abelian groups as well. We
conclude that the diagram

T (kS)/T (k)

−cS∼=

��

× BS,∅(T )
〈 , 〉S // Q/Z

Q
1
S(H) × X

1
S,∅(Ĥ)

βS ∼=

OO

∪S // Q/Z

satisfies (a,b), as required. �

Proof of Theorem 4.2. Let H be a k-group of multiplicative type. Since the Galois module

Ĥ is a quotient of a permutation Galois module, there exists an embedding H →֒ G into a
quasi-trivial k-torus G. By applying Lemma 4.10 to the pair (G,H) we obtain the desired
duality. �

5. Proofs: the general case

In this section we prove our results in the general case by using morphisms of pairs
(G,H) which preserve both the Brauer-Manin obstruction and our cohomological ob-
struction cS . Using such morphisms we reduce the proof of Theorem 0.2 to the case when
G is a torus, which was dealt with in the previous section.

The following theorem is the main result of this paper.
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Theorem 5.1. Let (G,H) be a pair of k-groups as in 2.4 (with quasi-trivial G) over a
number field k, and let S ⊂ V (k) a finite set of places of k. Then

(i) There are canonical isomorphisms

βS : X
1
S(Ĥ)

∼
→ BS(X),

βS,∅ : X
1
S,∅(Ĥ)

∼
→ BS,∅(X).

(ii) The following canonical diagram commutes:

(20) X(kS)

−cS
��

× BS,∅(X)
〈 , 〉S // Q/Z

Q
1
S(k,H

mult) × X
1
S,∅(Ĥ)

βS,∅ ∼=

OO

∪S // Q/Z

In diagram (20) the bottom pairing is a perfect pairing of finite groups.

In order to prove Theorem 5.1 we shall construct auxiliary pairs of k-groups and mor-
phisms of pairs, similar to [B1].

5.2. Let (G,H) be a pair of k-groups as in 2.4 (with quasi-trivial G) over a number field k.
Choose an embedding i : Hmult → Q into a quasi-trivial torus Q. Consider the embedding

i∗ : H → G×k Q, h 7→ (h, i(µ(h))),

where µ : H → Hmult is the canonical epimorphism. Set GY = G×k Q, HY = i∗(H). The
pair (GY ,HY ) defines a homogeneous space Y = GY /HY = (G×kQ)/i∗(H) with a marked
point y0. The projection map π : GY = G×Q→ G is surjective and satisfies π(HY ) = H,
and therefore it defines a morphism of pairs as in 2.4 π : (GY ,HY ) → (G,H), which in
turn defines a morphism of varieties with marked points π∗ : (Y, y

0) → (X,x0). Note that
the map Hmult

Y → Gtor
Y is injective and that (Y, π∗) is a torsor over X under Q. Since Q is

a quasi-trivial torus, we see that for any field F containing k the map π∗ : Y (F) → X(F)
is surjective.

Lemma 5.3. With notation and assumptions of 5.2 we have:

(i) U(Y ) ∼= ̂Gtor
Y /Hmult

Y .

(ii) PicY = 0.
(iii) There is a canonical functorial isomorphism

θ : H2(k, U(Y ))
∼
→ BraY

∼
→ Bry0Y

where Y = Y ×k k̄.

Proof. Since the map Hmult
Y → Gtor

Y is injective, (i) and (ii) follow from Proposition 2.5.
It remains to prove (iii). The Hochschild-Serre spectral sequence

Hp(Gal(k̄/k),Hq(Y ,Gm)) ⇒ Hn(Y,Gm)

gives rise to an exact sequence

H0(k, PicY ) → H2(k, U(Y ))
θa−→ BraY → H1(k, PicY )

(see [Sa], Lemma 6.3(ii)). We see from (ii) that θa is an isomorphism. Composing θa with

the canonical isomorphism BraY
∼
→ Bry0Y , we obtain the desired isomorphism θ. �
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5.4. Consider the canonical epimorphism µ : GY → Gmult
Y = Gtor

Y . Then the following
diagram commutes and has injective horizontal arrows and surjective vertical arrows:

(21) HY

µ

��

// GY

µ

��
Hmult
Y

j // Gtor
Y .

We construct a new pair (GZ ,HZ) as follows: GZ = Gtor
Y , HZ = j(Hmult

Y ). Set Z =
GZ/HZ , it is a k-torus, we denote by z0 its identity element. We have a morphism of
pairs µ : (GY ,HY ) → (GZ ,HZ) as in 2.4 and the induced morphism of homogeneous
spaces µ∗ : (Y, y

0) → (Z, z0). Thus we have diagrams

(GY ,HY )

µ

��

π // (G,H) (Y, y0)

µ∗

��

π∗ // (X,x0)

(GZ ,HZ) (Z, z0)

Since GZ is a torus, we know that Theorem 5.1 is true for Z (this is Theorem 4.1). So all
we have to do is to prove that both µ and π preserve obS and cS .

Lemma 5.5. The following diagrams commute and all the vertical arrows marked with
(∼=) are isomorphisms.

(22) X(kS)
cS // Q1

S(H
mult) Q

1
S(H

mult) × X
1
S(Ĥ)

∼= π̂
��

∪S // Q/Z

Y (kS)

π∗

OO

µ∗

��

cS // Q1
S(H

mult
Y )

∼= πµ

OO

∼= µµ

��

Q
1
S(H

mult
Y )

∼= πµ

OO

∼= µµ

��

× X
1
S(ĤY )

∪S // Q/Z

Z(kS)
cS // Q1

S(H
mult
Z ) Q

1
S(H

mult
Z ) × X

1
S(ĤZ)

∼= µ̂

OO

∪S // Q/Z

Proof. The lemma follows from the functoriality of cS and from the fact that πµ : Hmult
Y →

Hmult and µµ : Hmult
Y → Hmult

Z are isomorphisms. �

Lemma 5.6. The following diagram commutes and all the vertical arrows marked with
(∼=) are isomorphisms.

(23) X(kS) × BS(X)

∼= π∗

��

〈 , 〉S // Q/Z

Y (kS)

π∗

OO

µ∗

��

× BS(Y )
〈 , 〉S // Q/Z

Z(kS) × BS(Z)

∼= µ∗

OO

〈 , 〉S // Q/Z

Proof. The commutativity of the diagram follows from the functoriality of 〈 , 〉S . We prove
that π∗ is an isomorphism. Since Y is a torsor over X under Q, by [Sa], (6.10.3), there is
an exact sequence

PicQ→ Br1X
π∗

−→ Br1Y → BreQ,
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hence an exact sequence

PicQ → Brx0X
π∗

−→ Bry0Y → BreQ.

By [Sa], Lemma 6.9(ii), we have PicQ ∼= H1(k, Q̂) = 0 (because Q is quasi-trivial) and

BreQ ∼= H2(k, Q̂). We obtain a commutative diagram

(24) 0 // Brx0X
π∗

//

loc
S∁

��

// Bry0Y

loc
S∁

��

// H2(k, Q̂)

loc
S∁

��

0 //
⊕

v∈S∁ Brx0Xkv
π∗

////
⊕

v∈S∁ Bry0Ykv // H2(kS∁ , Q̂)

where S∁ = V (k) r S. By [Sa], (1.9.1), we have X
2
S(Q̂) = 0. By Lemma 4.8 our

diagram (24) induces an isomorphism

π∗ : BS(X) → BS(Y ).

It is remains to prove that µ∗ is an isomorphism. From the construction of (GZ ,HZ)
we obtain a commutative diagram with injective horizontal arrows and bijective vertical
arrows

Hmult
Y

∼= µ

��

// Gtor
Y

∼= µ

��
Hmult
Z

// Gtor
Z

From this diagram we obtain an isomorphism µ∗ : G
tor
Y /Hmult

Y → Gtor
Z /Hmult

Z . By Lemma 5.3
and Diagram (8) in §4.4 we have canonical isomorphisms

Brz0Z ∼= H2(k, U(Z)) ∼= H2(k, ̂Gtor
Z /Hmult

Z ),

Bry0Y ∼= H2(k, U(Y )) ∼= H2(k, ̂Gtor
Y /Hmult

Y ).

We obtain a commutative diagram

Brz0Z
∼= //

µ∗

��

H2(k, ̂Gtor
Z /Hmult

Z )

µ∗

��

Bry0Y
∼= // H2(k, ̂Gtor

Y /Hmult
Y ),

where the right-hand vertical arrow is an isomorphism. It follows that the left-hand vertical
arrow in this diagram is an isomorphism, hence the homomorphism µ∗ : BS(Z) → BS(Y )
is an isomorphism. �

Now we complete the proof of Theorem 5.1.

Proof of Theorem 5.1. We prove (i). Since GZ is a quasi-trivial torus, by Theorem 4.1(i)
we have an isomorphism

βZS : X1
S(ĤZ)

∼
→ BS(Z).
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Using diagrams (22) and (23), we obtain a diagram with bijective arrows

X
1
S(Ĥ) ∼=

π̂ //
X

1
S(ĤY ) X

1
S(ĤZ)∼=

µ̂oo

∼= βZ
S

��
BS(X) ∼=

π∗
// BS(Y ) BS(Z)∼=

µ∗oo

This diagram gives us the required isomorphism

βS : X
1
S(Ĥ)

∼
→ BS(X).

The map βS induces an isomorphism

βS,∅ : X
1
S,∅(Ĥ)

∼
→ BS,∅(X).

We prove (ii). By Theorem 4.2 the bottom pairing in diagram (20) is a perfect pairing
of finite groups. We prove the commutativity of this diagram by a diagram chase in
diagrams (22) and (23).

Let xS ∈ X(kS) and t ∈ X
1
S(Ĥ). Since Y → X is a torsor under the quasi-trivial torus

Q, there exists yS ∈ Y (kS) such that π(yS) = xS . We set zS = µ(yS) ∈ Z(kS). We set

tY := π̂(t) ∈ X
1
S(ĤY ) and tZ = µ̂−1(tY ) ∈ X

1
S(ĤZ). By diagrams (22) we have

∪S(−cS(xS), t) = ∪S(−cS(yS), tY ) = ∪S(−cS(zS), tZ).

By Theorem 4.1 we have

∪S(−cS(zS), tZ) = 〈zS , β
Z
S (tZ)〉S .

Set bZ = βZS (tZ), then
∪S(−cS(zS), tZ) = 〈zS , bZ〉S .

Set bY = µ∗(bZ) ∈ BS(Y ), bX = (π∗)−1(bY ) ∈ BS(X), then by diagram (23) we have

〈zS , bZ〉S = 〈yS , bY 〉S = 〈xS , bX〉S .

Since bX = βS(t), we obtain that

∪S(−cS(xS), t) = 〈xS , βS(t)〉S ,

as required. �
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