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ON A DIOPHANTINE REPRESENTATION OF THE
PREDICATE OF PROVABILITY

ABSTRACT. Let P be the first order predicate calculus with a single
binary predicate letter. Making use of the techniques of Diophan-
tine coding developed in the works on Hilbert tenth problem, we
construct a polynomial F(t;x1,...,xs) with integral rational coef-
ficients such that the Diophantine equation

F(to;z1,...,2n) =0

is soluble in integers if and only if the formula of P, numbered ¢y in
the chosen numbering of the formulae of P, is provable in P. As an
application of that construction, we describe a class of Diophantine
equations which can be proved insoluble only under some additional
axioms of the axiomatic set theory, for instance, assuming existence
of an inaccessible cardinal.

§1. INTRODUCTION

By a well-known theorem of Matiyasevich [10, 11], a recursively enu-
merable set is Diophantine, and therefore there is no algorithm, deciding
whether a given Diophantine equation is soluble in Z. Moreover, given
a recursively enumerable set S, one can actually construct a polynomial
Ps(t, &) in Z[t, Z], & := (z1,...,Tn), such that

S={ala€eN, 3b((beZ"& Ps(a,b) = 0)}.
The set of the theorems in a formalised mathematical theory, say 7', being
recursively enumerable, is Diophantine (cf. [3, pp. 327-328], [4]); therefore
one can construct a polynomial Fr(t,#) in Z[t, Z] such that the Diophan-
tine equation
Fr (a, J_,") =0

is soluble in Z if and only if a = AM(2) for a formula 2 provable in 7,
where

N:F—N

Key words and phrases: Diophantine coding, Matiyasevich’s theorem, Pell’s equa-
tion, Godel-Bernays set theory.
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is a suitable numbering of the set § of the well-formed formulae of 7.
However such a polynomial F7 has not been so far constructed for any
non-trivial theory 7. The goal of this work is to construct a polynomial
Fs, which encodes provability in the Godel-Bernays axiomatic set the-
ory S. Since, as it is commonly assumed, any mathematical proof can be
formalised in S, one may say that the polynomial Fs(¢,#) encodes the
content of pure mathematics; in this sense, the arithmetic of the affine
hypersurface, defined by the equation

FS(tJf) =0,

is “exactly as difficult as the whole of mathematics” (cf. [9, p. 2]). As a
by-product of our construction, one encounters a presumably true mathe-
matical statement of the shape

V(zZ) =2, (1)

where V' is a hypersurface defined over Z, that can not be proved in § (or,
say, in the Zermelo-Fraenkel set theory) if S is consistent, and for its proof
requires new “axioms, which go beyond the usual axioms for mathematics,”
cf. [5, p. 804]. Our arithmetic statement (1) seems to be simpler and by far
more natural than those combinatorial statements presented in the work
of H. M. Friedman we have just cited (an interested reader is referred,
however, to Friedman’s new preprints for his latest results in the spirit of
[5])- In point of fact, on letting

b= N(B)
for a formula B (obviously) false in S, one obtains a Diophantine equation
Fs(ba f) =0, (2)

whose insolubility is equivalent to the consistency of &. Thus in order
to prove that Eq. (2) has no solutions in Z, one has to employ an addi-
tional axiom, for instance, the axiom asserting existence of an inaccessible
cardinal (cf. [5], where some combinatorial statements, whose provability
depends on that axiom, have been constructed).

The Godel-Bernays set theory S is finitely axiomatisable in the first
order predicate calculus P with a single binary predicate letter (and no
function letters or individual constants) [6], [14, Chap. 4]. By Kalmdir’s
theorem [8], (cf. also [14, p. 223]), analysis of provability in any first order
pure predicate calculus can be reduced to studying provability in P. In
what follows we construct a polynomial Fp (¢, %), encoding provability in P.
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Let 2y denote the conjunction of the proper (non-logical) axioms of S.
Since a formula 9B is a theorem in S if and only if the formula (2y D B)
is a theorem in P, the polynomial Fs is easily expressible in terms of Fp.

As any other polynomial with integral rational coefficients, the poly-
nomial Fp is a special instance of an universal polynomial (the reader
may consult references [7], [12, Chap. 4], and the literature cited in those
works for different constructions of an universal polynomial). If the Godel-
Bernays set theory S is consistent, then the formula

(Ao D 3b (b e Z™ &f(b) =0)),

=

with f(&) € Z[Z], & := (z1,...,,), is provable in P if and only if equation
f(&) = 0 is soluble in Z; thus, under that assumption, Fp(t,Z) is an
universal polynomial (it suffices, of course, to assume the consistency of
any theory 7 formalisable in P and such that the formula

3b (b e Z" &f(b) =0)

is provable in 7 if and only if the equation f(Z) = 0 is soluble in Z).

Although one does not expect a polynomial, encoding provability in
pure mathematics, to be too simple, it is not known how complicated it
must be. Both the polynomial Fp(t,#) constructed in this work and a
similar polynomial described in [1] are rather involved; those polynomials
can be, however, explicitly written down.

This paper is organised as follows. In Sec. 2, we describe the language
of P, define a numbering

N:P =N,

and give a Diophantine description of the first three groups of the axioms
of P. The necessary preliminaries on Diophantine coding are collected
in Sec. 3. After proving a few technical lemmata in Sec. 4, we complete
the description of the axioms of P in Sec. 5. Our polynomial Fp(t,Z) is
described at the end of Sec. 6; an example of a Diophantine equation of
the shape (2), whose insolubility is equivalent to the consistency of the
Godel-Bernays system S, is given at the end of Sec. 7 (see also §8 for some
calculations relating to the description of that Diophantine equation).

1.1. Notation and conventions. As usual, R,Z, and N stand for the
field of real numbers, the ring of rational integers, and the semigroup of pos-
itive rational integers, respectively. A finite sequence of symbols is denoted
by Z and L(Z) stands for its length (we write, for instance, & := (y1,- .., Yn)
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and L(Z) = n); let
Zxg:= (a1, - ,0n,01,-..,bp)
stand for the concatenation of the sequences
Z:=(ay,...,a,) and 7 := (b1,...,bn).
The polynomial
(1 +z2 — 2) (1 + 22 — 1)

p(xy,xe) = 5 + x2

defines a bijection
p: N? = N, p: @ — p(a) for @ € N?;
moreover, for @ € N?, @ := (ay, as),
p(@) > max{a;,as} and p(a@) < ai + 2a3
(cf. [2, p. 237]). Given an arithmetical formula 2, let
(Vj<m)U:=Vj ((jEN&j<n) = ).

For @ e R, @:= (a1,...,an,), let

n
a?:.= Za? and |@| := max {|a;| |1 <j <n}.
i=1

§2. THE PREDICATE CALCULUS P

The predicate calculus P is a first order theory. The alphabet of its
language consists of the set

X = {t;|ieN}

of the individual variables, the binary predicate letter €, the logical connec-
tives: {—, D} (“negation” and “implication”), the universal quantifier V,
and the parentheses {(, )}. The set § of the formulae of P is defined in-
ductively. An expression of the form (z € y), with {z, y} C X, is (an
elementary) formula; if 2 and 9B are formulae, then — 2, (2 D B), and
Ve 2 are formulae.

Let us define inductively a map AV: § — N.

Definition 1. Let N'(t; € t;) = 4p(i, j)—3 for {i, j} CN. For {2, B} C §
and i € N, let N(= ) = AN(R) — 2, N(Vt; ) = 4p(i, N () — 1, and
N2 D B) = 4p(N (), N (B)).

Proposition 1. The map N: § — N is a bijection.
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Proof. It follows easily from the definition of the map N by induction. O

Notation. For 2 € § and {z, y} C &, let [A]; and A[z|y| stand for the
set of the free variables of 2l and the formula obtained from 2 on replacing
each of the free occurences of the variable z in 2 by y, respectively.

Definition 2. Let 2l € § and {z, y} C X. If no free occurence of x in A
lies within the scope of a quantifier Yy, then the variable y is free for x in

A (cf. [14, p. 54]).
There are five groups of axioms in P (cf. [14, pp. 69-70]):
A :={A> (B> | {A B} C T}
Az ={(RA>(B>¢)>(ADB)D (ADQ)[{A B, €} CT};
A3 ={(-BD2-A)D(—-BOA)DVB) | {A B} CF}h
Ay :={Vz (ADB) D ADVeB) | {A, B} CF, v € X\ [}
As = {Vz AD Az|y] |A € F, {z, y} C X,
the variable y is free for = in 2}.
The set T of the theorems of P is defined inductively:
®) Uacs
i

(By) If {2, (A > B)} C T, then B € T (“modus ponens”).
(Bz) If A €%, then Vo A € T (“generalisation”).

In what follows (see Corollary 3), we shall construct a polynomial f(¢, ¥)
in Z[t, #] such that

NE@) ={a|laeN, 3b (e 2P & fla,b) =0)}.

Our first task is to give a Diophantine description of the predicate “X is
an axiom of P.” In this section, we provide such a description for the three
predicates “A € A;,” with i =1,2,3.

Proposition 2. Let g1 (u, Z) := u — 4p(x1,4p(x2, 1)) with & := (x1, z2).
Then
N(A) = {u|3b(beN* & gi(u,b) = 0)}.

Proof. Let N () = 21, N(B) = z2, and N (A D (B D A)) = u. It follows
then from the definition of the map N that v = 4p(zy,4p(xs,z1)). This
proves the proposition. O
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Proposition 3. Let
92(u, &) 1= u — dp(4p(z1, 4p(w2, ©3)), 4p(4p(w1, T2), 4p(71, 73)))
with & := (x1,z2,x3). Then
N(Ay) ={u|3b (b e N & go(u,b) = 0)}.

Proof. Let ® := (A D (B D €) D (A D B) D (A D ))) and let
N&) = 21, N(B) = 23, N(€) = 3. An easy calculation shows that,
in these notations, g»(u,#) = 0 if and only if N (D) = u. This proves the
proposition. O

Proposition 4. Let
93(u, T) := u — 4dp(dp(dxs — 2,421 — 2), 4p(4p(4dxe — 2, 1), x2))
with & := (x1,x2). Then
N(As) ={u|3b(beN & gs(u,b) = 0)}.

Proof. Let € := (=B D> - A) D ((- B D> A) D V), NA) = x4,
and N (B) = z5. The equation gs3(u,Z) = 0 is easily seen to assert that
N (€) = u. This proves the proposition. O

To give a Diophantine description of the sets of axioms 44 and Aj, we
shall make use of the techniques developed in the works, relating to the
Hilbert tenth problem (cf. [2, 12], and references therein ).

§3. ON DIOPHANTINE CODING

In this section, following [2], we state a few lemmata about Diophantine
coding.

Lemma 1. Let f(t, %) € Z[t, &] with L(Z) = n and suppose that
S={alaeN, 3b(beN"& f(a,b) =0)}.
Then
S={alacN, 3b(becZ & g(a,b) = 0)},

where
4
g(tag')::f(ta'g): Z::(zla---azn)a Zj ::Zyjz'i_'_]-: 1<j<n.
i=1

Proof. See, for instance, [12, §1.3]. O
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Lemma 2. Let f3(m,n, k; Z)
= (2} — (23 — D)2g —1)* + (2 — (23 — 1)ag — 1) + (2§ — (27 — D25 — 1)*
+(z5 —2973)% + (z7 — 1 —4T1073)° + (27 — T2 — 211 74)* + (T6 — 71 — T1274)°
+(wg—k—4(r13—1)23)* + (23— k—T14+1)*+ (217 —N—218)° + (717 —k—T19)?
+((x1 — z3(x2 — 1) —m)? — (215 — 1)*(2zan — n? — 1)%)?
H(m 4 w16 — 2z0 n+n® +1)? + (25 — (af; — 1)(217 — 1)%23, — 1)%,
where & := (x1,...,T20). Then m = n* if and only if
3 (@ e N* & fy(m,n, k;@) = 0).
Proof. See [2, pp. 244-248].
Lemma 3. Let fy(m,n,k; X)
= fa(z1,2,n;3V) + f3(25, 24,1 82)) + f3(26, 73, k3 7))
+(z1 + 29 — 3)? + (w4 — 23 — 1)* + (2627 + T3 — T5 — 1)?
+(x5 + 29 — (27 + Va6)? + (w7 — m — (w10 — Dx3)® + (m + 211 — x3)?,

where & = 0 5 x 73 with 0 = (z1,...,211), TV = (z12,...,231),
f(z) = (3332, e ,£U51), f(S) = (3352, e ,£U71). Then
n!
= =

if and only if
3@ (@ eN" & fi(m,n, k;@) = 0).

Proof. See [2, pp. 249-250]. O
Lemma 4. Let fy(m,n;¥)
= f3($3,$1,$2;f(1)) + f3(3347333;n5f(2)) + f4($5,$3;n§f(3))

+(x1 —2n—1)* 4+ (z2 —n—1)*+ (mas + 26 — 1 —24)* + (x4 + 27 — (M+1)25)?,

where & = O x - x ZO) with O = (xy,...,x7), TV := (xs,...,T27),
7 = (29s,...,247), ©®) 1= (248,...,2118). Then m = n! if and only if

3 (@e N8 & folm,n;@) =0).
Proof. See [2, pp. 251-252]. O
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Lemma 5. Let fi(m,n,a,b;T)
= (z1 —a—bn)* + (v3 — bwz — 1)* + (bry — a — x375)* + (m + x5 — 23)°
+(zg — x4 —n)? + (m + z321, — TeT7T10)° + fg(:vg,:cl,n;f(l))
+f3(@e, b,n; ) + folwr,n; 89 + fa(w10, w9, m; V),

where

f:f(o)**f(4), f(o) = (CUl,...,CUll), f(l) = (:Ulz,...,él?gl),
72 = ($32; ce ;3351); ) = (3352; . -;33169); F = (33170; ces ;$240)-
Then

if and only if
& (e N* & fi(m,n,a,b;¢) =0).
Proof. See [2, p. 252]. O
Proposition 5. Let
o(u, j,w; 2) := 4((u—p(21, 22))? +(w+zz(1+j2z2) —21)* + (w+24 — j 20— 2)?)
with Z:= (z1,...,24). There is a function
S:N? — N,
satisfying the following conditions:
(i) w = S(j,u) if and only if 3b (b € N* & o (u, j,w;b) = 0);
(i) Vj,u (S(j,u) < u);
(iil) #f {ax | 1 <k <n} CN for some n in N, then there is
a number u in N such that ap = S(k,u) for 1 <k <n.

Proof. See [2, pp. 237-238]. O
Proposition 6. Let P(ui,us;y,2) € Z[ui,us;¥,2] with L(Z) = 1, and

suppose there is a polynomial R(uy,us;y) in Zluy,u2; 4] such that
|P(n, j;d,d)| < R(n, T;d)

fora e NLW {n j}CN, j<n, deN, |cﬂ <T and
R(cy,c2;@) > max{ep, o}

for {c1,c2} CN, @€ NEW), Write, for brevity,

-

Hy(Z,b) := fa(bs, by; ) + fi(bg,m,1,b5;23) + (bg — bibs — 1)°
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l
+(by — bgbr)? + (@D — 7Y + F)2 + 3 fi(bez(” ,bs, 2V, 1;7019),

i=1
where
b= (bs,...,b7), B:=B,....5)
with
Bi=bs+1 for 1<i<l,
7= 70 w4 70640
with
g0 =z *(]))) <541,
L(#Y) = L(*“‘)) L(#Y) = L(a:*(”) =118,
L(#EY) = LE*Y) = 240f 1<i<l,
and
L@ = Y L@E")=2431+358.
1<i<54+1
Then

(Vj <n)3E(@eN & P(n,j;a@,é) =0) <
3#,b(beN &&eND & (P(n,by;a, &) — by)?
+(R(n, bs; @) — ba)* + H(Z,5) = 0)
for @ € N,
Proof. See [2, pp. 253-256]. O

§4. A FEW TECHNICAL LEMMATA

Notation. For & € §, let m(2) stand for the number of occurences of the
logical connectives -, D, or V.

Definition 3. Let i € N. A sequence of formulae {p1,...,pn} in § is
i-admissible if, for every j in the interval 1 < j < n, one of the following
conditions holds true:

) @i = (tk € tr) and i & {k,1},

(a

(b) ¢ j —VtMZJ for some ¢ in F,

(©) ;= (px D 1) with1 <k, 1 < j,
(d) @j :=—pp with1 <k<j,

(e) ¢j :=Vt, pp withveN1<Ek<j.
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Lemma 6. The variable t; does not occur as a free variable in a formula
@ if and only if there is an i-admissible sequence of formulae {p1,...,pn}
with @, = .

Proof. Let m(p) = 0 and suppose that ¢; ¢ [¢];. Then ¢ := (¢ € ¢;) with
i & {k,l} and we may take n = 1, ¢1 = . Conversely, if m(p) = 0 and
there is an i-admissible sequence of formulae {p1,...,p,} with @, = ¢,
then ¢, must satisfy condition (a) (since m(p,) = m(yp) = 0) and therefore
t; is not a free variable of ¢ (= ¢,,).

Let m(y) = [ with [ € N and suppose the assertion be true for every
formula ¢’ with m(p’) < 1. Let {¢1,...,pn} be an i-admissible sequence of
formulae with ¢, = ¢. Since m(y) > 0 and ¢,, = ¢, the formula ¢ satisfies
one of the conditions (b) — (e). If ¢ := Vt; ¢ for some ¢ in §, then t; ¢ [¢]¢;
if o := (pr D 1) with 1 < k, I < n, then, by the inductive supposition,
ti ¢ [r]s Ue]r and therefore t; ¢ [¢]r; finally, if either ¢ := -y with
1<k<mnory: =Vt ¢, with v € N, 1 <k < n, then, by the inductive
supposition, t; ¢ [pr]r and therefore ¢; ¢ [p]s. In either case, t; is not a
free variable of ¢. Conversely, suppose that t; is not a free variable of .
Since m(p) > 0, the formula ¢ must contain one of the logical connectives
-, Dyor V. If p € {—= 4, Vt, Y} with ¢ € §F and v # i, then ¢; is not
a free variable of v, therefore, by the inductive supposition, there is an
i-admissible sequence of formulae {¢1,...,¢,} with ¢, =1 and we may
let n = p+1, p, = @. If p := (Y1 D ) with {1,192} C F, then t;
is not a free variable of both v; and 1, and therefore, by the inductive
supposition, there are two i-admissible sequences of formulae {¢1,...,¢,}
and {p],...,¢,} with ¢, = 91 and ¢} := i»; it is clear that in this
case the sequence of formulae {p1,...,9u, ¢, ..., ¥,, ¢} is i-admissible.
Finally, if ¢ := Vt; ¢ for some ¢ in §, then we may take n = 1 and let

P11 =¢. (]

Definition 4. Let {ri,rs3} C N. An (ry,ry)-admissible triple consists of
two sequences of formulae {p1,...,0n}t, {t1,...,%n} and a sequence of
integers {d,...,d,} such that {¢;, ¥;} C§, dj € {1,2} for 1 < j <n
and, for every j in the interval 1 < j <n, one of the following conditions
holds true:

(1) @j = (try €try) withri & {r3,74}, dj = 2, Pj 1= @j;
(2) Pj = (tT’3 6t7‘4) with ry € {7”3,7”4}, dj =1, ’l/}j = wj[tﬁ'trz];
(3) Pj = TPk, dj:dk, 1,[1]' = —\Q/Jk with1§k<j,
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(4) @i = (px D @1), ¥j == (Yr D), dj = (d, — 1)(d; — 1) + 1 with
1<k,l<y;

(5) Pj = Vtra Pk with 3 g {7”1,7'2}, ¢j = Vtra ’l/}k; dj = dk; 1<k< j;

(6) @j =Vt x with x €T, ¢j :=j, dj =2;

(7) ) :==Vtr, o withr1 £ 12, Y :=;, dj =d, =2, 1<k <j.

Lemma 7. Let {ri,r2} CN and {¢,v} C F. Then the variable t,, is free
for t., in @ and ¢ := p[t,, |t.,] if and only if there is an (r1,rs)-admissible
triple

{e1, - ent, {¥1, v}, {di,...da} (3)
with @, = @, ¥, = 1. Moreover, any (r1,r2)-admissible triple (2) satisfies
the condition

1 i t., €lp;
d; = lf 1 [‘PJ]f (4)
2 if tr, &lpjls

for 1 <j<n.

Proof. For any (r1,r2)-admissible triple (3) relation (4) can be easily
proved by induction on 7.

Let m(p) = 0, then ¢ := (t,, € tr,) with {rs,ra} C N, so that the
variable t,., is free for ¢, in . Let ¢ := @[t |tr,], n =1, and

g = 1 if r €{rs,re}
e 2 if T ¢{T3,T4};

it is clear then that {p}, {¢}, {di} is an (r1,rs)-admissible triple. Con-
versely, if (3) is an (r1,72)-admissible triple with ¢,, = ¢, ¥,, = 9, then,
since m(p) = 0, for j = n one of the conditions 1) or 2) holds; in either
case ¥ := Pty |try]-

Let now m(p) = [ with [ € N and suppose the assertion be true for every
formula ¢" with m(¢") < I. If ¢ := Vt,, ¢’ with ¢’ € §, then ¢,, & [¢]f
and the assertion is obvious; if ¢ := Vi, ¢’ with ¢’ € § and r; # 7o, then
tr, is free for t,, in ¢ if and only if ¢,, & [¢']f (and therefore t,, & [¢]f)
and the assertion follows from the inductive supposition. Finally, if

pe{-¢, Yy, ¢, ¢ D"} with {¢, "} CF, rs & {r1,m2},
then one can deduce the assertion from the inductive supposition arguing
as in the proof of Lemma 6. (]

Notation. Let
ho(5; @) := (jo — j1 + x1)% + (Jz — J1 + 22)?
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with
J = (j1,J2,73), € := (21, %2).

It is clear that, for j € N3,
3Z (FeN? & ho(f;2) =0) < max{js,js} < ji.

The following lemma is a Diophantine reformulation of Lemma 6.

Lemma 8. Let C; :={A | A € F, t; ¢ [A]s}. Then
N(Ci) = {v | Bu(i,v)},

where
Ba(i,v) := 3w, n({w,n} CN & (Vi1 <n) 3G € N & Pa(n, ji3i,v,w; §) = 0))
with

Py(n, jr;i,v,w; §) = o(w,n,v; ZY)

3 5
Z ’lU ]Ilaxll: )) +h0(.7 Zlazl + qul Z ;U

v=1

Here
q1(i, %) := (21 — 4p(z4,25) + 3)* + (24 — 1) — 26)* + (x5 — 1)* — z7)?,
(i, %) :=x1 —4p(i,za) + 1, q3(i, %) = x1 — 4p(x2, x3),
qs(i, %) :=x1 —4xo + 2, ¢5(i,%) :=x1 — 4p(x4,22) + 1
with
J = (g2, ds), Ti= (@1, ,m1),  §i= (G2, Ja) % (21, 22) * T x 7,
7: =720 %...x 7Y and L(z"'(”)) =4 for 1 <v <4, so that L(§) = 27.
Proof. Let {¢1,...,¢n} be a sequence of formulae in § with N(¢,) = a,
for 1 < g < n. In view of Proposition 5, there is a natural number w such

that the formula 3 b (l_; e N* & o(w, j,z; 5) = 0) holds true if and only if
z = a; for 1 < j < n. Therefore the formula

3
3 z"<2'€ N & o (w,n,v; ZM) + Za(w,j,,,:c,,;é’(")) = 0)

asserts that a;, = =, for 1 < v < 3 and a,, = v. Moreover, the formula
3 21, 22(ho(J; 21, z2) = 0) asserts that max{js,js} < ji. It follows further
that ¢1(i,&) = 0 if and only if m(p;,) =0, @j, := (tx € t;) and i & {k,1},
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where k := x4, | := x5, that ¢2(¢, &) = 0 if and only if p;, := Vt;¢ for some
¢ in §, that ¢3(¢,&) = 0 if and only if ¢;, = (¢j, D @j,) with 1 < gy,
Js < j1, that ¢4(4,2Z) = 0 if and only if ¢;, := —p;, with 1 < j, < ji, and
that ¢5(4,Z) = 0 if and only if ¢;, = Vt,p;, with p € N, 1 < jo < ji.
Thus, by Lemma 6, the variable ¢; does not occur as a free variable in the
formula N'7!(v) if and only if the formula B4(i,v) holds true. O

Corollary 1. Let
Ag(w) :=Fi,v ({i,v} SN & By(i,v) & Fy(y € N& hy(u;i,v;y) =0)),
where
ha(u;i,v;y) = u — 4p(4p(i, 4p(v,y)) — 1,4p(v, 4p(i, y) — 1)).
Then
N(Ag) = {u | As(w)}.
Proof. Let
¢:=Vt; (A DB) D (™A DVt B),
N(2) = v, and N(B) = y. An easy calculation shows then that
N(€) = dp(dp(i, 4p(v,y)) — 1,4p(v, 4p(i,y) — 1)).
The assertion follows now from Lemma 8. (]
The following lemma is a Diophantine reformulation of Lemma 7.
Lemma 9. Let
C() :=={v]vi =N(p),v2 =N(¥),p €37,
= Pltr |tr], try is free fort,, inp},
where 7 := (r1,r2) and ¥ := (v1,vs). Then
C(F) = {7] 7 € N* & B5(0,7)},
where
Bs(7,7) =3 W,n (TeN* &neN&
(Vi1 <n) 377 € N° & Ps(n, jr; 7, 7,10; ) = 0))
and

Ps(n, ju; 8,70 ) := ho(Jiz1,22) + > 0(wi, fus Tai-1) 403 Z27)
1<i,v<3
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9 7
+ Z a(wi,n,vi;Zg‘l)) + Z(:c, — 1) (z; —2)* + Hqi(f', ).

ie{1,2} =17 i=1

(7, %) == (z7 — 2)? + (x4 — 21)* + (21 — 4p(r3,74) + 3)?
+ ((rs —r1)?(ra —m1)* — 210)%;

@7 8) = (o7 - 1)° + [[ " (7 2)

i=1

qél)(f', Z) = (x1—4p(r1,74) +3)* + (x4 —4p(re, 74) +3)* + ((ra—r1)* —210)?,
a? (7, 7) = (21 —4p(rs, r1) +3)" + (w4 —4p(rs, 12) +3)2+ ((rs—r1)* —210)%,
07 (7, 2) = (a1 — Ap(ri,m) +3) + (24 — dp(ra,2) +3)%
g3 (F, &) == (21 — 422 + 2)* + (v4 — da5 + 2)* + (27 — 28)%;
qa (7, &) = (7 — (23— 1) (29 —1) = 1)* + (21 —4p(x2, 23))* + (24— dp (w5, w6)*;
g5 (7, @) := (z1 — 4p(r3, v2) + 1)® + (x4 — 4p(r3, z5) + 1)?
+(zr —m8)* + ((rs — 11)*(r3 — 12)” — 210)%;
q6(7, @) := (z1 — 4p(r1,w10) + 1)* + (w7 — 2)* + (24 — 71)%;
a7 (7, 2) == (x1 — 4p(ra, 22) + 1) + (27 — 2)?
+(zs —2)% + (74 — 1) + ((r2 — 1) — 210)*;

@ o= (wi,wa,ws), § = (1, o ja), 2 =27« A A7 for1 <v <3,

2= 2V Y with L(EY) =4
for 1<i<3, 1<v<d4, 7= 70 g Y.
T = (r3,r4) * (21, 22) % (®1,...,%10), §:= (Jo,J3) x T * 2,

so that L() = 60.
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Proof. Let
{o1, - onts A, ), {dy, ..o dn}

be two sequences of formulae and a sequence of natural numbers, so that
{¢j, ¥;} € §, dj € Nfor 1 < j < n.In view of Proposition 5, there are
three natural numbers wy, ws, w3 such that the formula

35 (b e N* & o(wy, j, z;b) = 0)
holds true if and only if

N(g;) if i=1
x= N(;) if i=2
d if i=3

for 1 < j < n. Therefore the formula
J7(WeN & 7eN* &
Z U(wiajww3(i—1)+u; 5’5'/)) + Z U(wianavi; 21(4)) = 0)7
1<i,v<3 ie{1,2}
with & := (wy, w2, ws), implies that there are three sequences
{@17"'7@7@}7 {1/}17"'71/}”}7 {d17"'7dn}

such that {p;, ¢;} CF, d; e Nfor 1 <j <n, N(pn) =v1, N(¢n) = v2,
and N(p;,) = z,, N(¢j,) = y43, dj, = 2,46 for 1 < v < 3. The formula
3 z1,20({z1,22} C N & ho(]_"; z1,22) = 0) asserts that max{j=,j3} < j1.
Moreover, for 1 < i < 7, the formula

3 #(# € N & ¢;(7,7) = 0)
is equivalent to condition 4) in the definition of an (ry, 3 )-admissible triple.
Finally, the equation 29: (z; — 1)?(x; — 2)? = 0 implies that d; € {1, 2} for
1<j<n.Lemma9 fl(?llows now from Lemma, 7. O
Corollary 2. Let
As(u) := 37,7 ({T,7} € N? & B5(7,7) & (hs(u; 7,71) = 0)),

where

7= (r1,r2), U:=(v1,v2), and hs(u;¥,r) = u—4p(dp(ri,v1) —1,v2).

Then
N(As) = {u | As(u)}-
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Proof. Let € := (Vt,;, @ D Dty |tr,]), v = N(®D), and vy :=
N(D[t,, |tr,]). It follows then that N (€) = 4p(4dp(ri,v1) — 1,v2). In view
of Lemma 9, this proves the corollary. (I

§5. ELIMINATION OF UNIVERSAL QUANTIFIERS

It follows from Proposition 6 that formulae d4(u) and 2s(u) define
Diophantine predicates. In this section, we construct two polynomials
ga(u, ) and g5 (u, Z®)) such that

{ul () = {u] 35 Fe N &g, =0))
for v =4,5.
Lemma 10. Let
Ry(ty,ta;i,v,w) := 32w” 4 160 + 300t] + 2 - 10%3* 4 2 - 10%*°
with {i,v,w} C N. Then
|Py(n, 4130, v, w; )| < Ra(n, T;i,v,w)

forji <n, |[§] <T, §e N7, {n,ji} CN.
Proof. Suppose that

ji<n, [§1 <T, §e N7, {i,v,w,n,j1} CN.
An easy calculation shows that

hg(]; r4,75) < 16772 + 4n?,
a(w,j,,,x,,,é'(")) < 8w? + 2407 for v =2,3,
o(w, ji,z1, 7)) < 8w? 4 288T%n?,
and o(w,n,v,2%) < 8w? + 16v* + 2807*n?.
Moreover, under the same conditions, we have
q1(i, @) < 16i* 4+ 160T*,  |q2(i, @)| < 12772,
lgs(i, &) < 1277, |qu(i, )| < 4T, and |gs(i, %) < 1277

The assertion of the lemma follows from these estimates and the definition
of the polynomial Py(n, ji1;4,v,w; ) in Lemma 8. O



ON A DIOPHANTINE REPRESENTATION 93

Lemma 11. Let
Rs (21, 22; U, 7, ) := 3205° + 1607 + 800t] + 10%°¢5* + 5 10%°(r{* + r3?)
with {7, 7} C N2, @ € N3. Then
|P5(n, jr; 0,7, 03 §)| < Rs(n, T'; 0, 7, )
for j1 <n,|§| <T, 7€ N {n j} CN.
Proof. Suppose that
ji<n, [f1<T, 7N {nj}CN, {7} CN? & cN>.
An easy calculation shows that ho(J; 213, z14) < 1672 + 4n2,

> 0(wisjiswaioayse A7) < 8T + 7207 for v=2,3,
1<i<3

Z a(wi,jl,:cgi_z,igl)) S 8’[172 + 432(T8 + n4),
1<i<3
and
S o(wi,n, v, 2Y) < 802 + 1667 + 280(T° + T0nt).
i€{1,2}
Moreover, under the same conditions, we have

9
> (@i = 1)* (@ — 2)* <1007, qu (7, %) < 3007 + 130rf,

oV (7, 7) < 321" +128r%, ¢ (7, @) < 1007 + 140(r} + 1),
¢V (7, &) < 10072 + 300(rf +18),  q3(F, &) < 40T?, qu(7, ) < 3007,
g5 (7, 8) < 500T° + 100(r} +15), ¢s(7, ) < 150T* + 32rf,

=

and g7 (7, ) < 140T7*+16r] +50r3. The assertion of the lemma follows from
those estimates and the definition of the polynomial Ps(n, ji; 7,7, w;¥) in
Lemma 9. O

By construction,
P4(n,j1;i,v,w;;17) € Z[najl; i,v,w; :’ﬂ
and
P5(n7j1;1777?7w;g') € Z[najlaﬁafawzg’]
Therefore one concludes as follows.
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Proposition 7. Let

—

ga(u, 2) == ha(u;i,v,y)* + Har (&, b)
+ (Py(n,bysi,v,w; 1)) — by)? + (Ra(n, bs;i, v, w) — by)?,
where 7 = & % b (i,v,w,n,y) with L(Z) = 6931. Then
N(As) = {u| 3@ (@ € N & ga(u,a@) = 0)}.
Proof. In notations of Lemma 8§,
B4(i,v) :=Fw,n {w,n} CN & (Vj; <n)
J @@ e N*" & Py(n, j1;4,v,w;€) = 0)).
In view of Lemma 10, it follows from Proposition 6 that
B, (i,v) < Jw,n,#,b ({w,n} CN&beN & #eN¥ &
Hor(#,0) + (Py(n, by; i, v, w; &) — bo)? + (Ra(n, bs; i, v, w) — bg)?) =0
for {i,v} C N, since L(&) = 243l + 358 = 6919 with [ := L(¢) = 27. The

assertion of Proposition 7 follows now from Corollary 1. O

Proposition 8. Let

95(u, 2) 1= hs (w3 3,71)* + Heo(, b)

+ (P5(n7 bla 67 F) 117, f(l)) - 62)2 + (R5(n7 b3) 177 ’Fa U7) - b4)27
where = &% bx 0% 7% @ * (n) with L(Z) = 14953. Then

N(As) = {u|3d (@€ N"D & g5(u,@) = 0)}.
Proof. In notations of Lemma 9,

Bs(7,7) =3 W,n (TeN>&neN&
(Vi1 <n) 3 EE e N & Ps(n, ji; 0, 7,4;¢) = 0)).
In view of Lemma 11, it follows from Proposition 6 that
B (7,7) < Id,n,T,b (W eN° &neN&beN &z e N g
Heo(#,5) + (P (n, by 8,75 1)) = bs)® + (R (1, ba; 0,7, ) — ba)* = 0)

with {#,7} C N2, L(Z) = 243l + 358 = 14938, and [ := L(&) = 60. The
assertion of Proposition 8 follows now from Corollary 2. O
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§6. THE MAIN THEOREM

Proposition 9. Let u; := N(2;) for some A; in§, 1 < i < 3, and let
G (@ z) = x(uz — 4p(uz,u1)), where @ := (uy,us,us). The formula A,
follows from the formulae As and A3 by the rule (By) if and only if

3b (be N & Gy(d;b) = 0).

Proof. Since the formula uz = 4p(us,u;) asserts that Az := 2As O Ay, the
assertion follows from the definition of inference rule (B;). O

Proposition 10. Let u; := N(2;) for some 2; in §, i = 1,2, and let
Go(i;r) = ur —4p(r,us)+1, where @ := (u1,u2). The formula Ay follows
from the formula As by the rule (Bz2) if and only if Ir(r eN&G(@;r)=0).

Proof. Since the formula 3 r (r € N & Go(d;r) = 0) asserts that
Ay := Vi, Ay for some t,. in X, the assertion follows from the definition of
inference rule (Bs). O

The following lemma is a Diophantine reformulation of the definition of
the set T of the theorems of P.

Lemma 12. Let
3

Q(najl;vau;u-;) = ZU(U,ji,.’L'i;Z(i)) + U(“:”:”;Z(Al))

i=1
5 .
+ho (74, 35) + Gr (w1, @2, 035 51)* G (w1, 223 51)? [ [ gi(ea, 79),
i=1
where
j’:: (j17j27j3)7 7= ('7"17"'7'7"5)7 W= (j27j3)*£*5*ga Z:= 2(1)* "*2(4)7

g =i = (y1,92), T = (1,92, 98), 7 = Y1, -+, ys031),
7O == (y1,- -, yaess), LEY) =4 for 1<i<4,
so that L(W) = 14976. Then
N(&)={v|JFu,n {u,n} CN& A(v;u,n))},
where

A(v;u,n) == (Vi1 <n) (@ € N9 & Q(n, jr; v, u;8) = 0).
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Proof. Let ¢,...,&, be a sequence of formulae in § with N'(€,) = a,
for 1 < p < n. In view of Proposition 5, there is a natural number u such
that the formula 3 b (l_; e N* & o(u,j,; 5) = 0) holds true if and only if
z = a; for 1 < j < n. Therefore the formula

3
3 2(Z e N** & o(u,n,v; ZY) + Z o(u, j,,x,; 2) = 0)
v=1
asserts that a;, = =, for 1 < v < 3 and a,, = v. Moreover, the formula
3 z1, 22 (ho(J; 21, T2) = 0) asserts that max{js,js} < ji. Thus, in view of
Propositions 2-4 and Propositions 7-10, the formula 2(v; u,n) asserts that
either €;, € U?_,C;, or €;, can be deduced from €;, and €;, (respectively,
from €;,) by the rule “modus ponens” (respectively, by the rule “general-
isation”), where max{js, j3} < 71 < n, and that A (€,) = v. The formula
Ju,n ({u,n} CN & A(v;u,n)) can be now seen to assert that v € N(%),
as claimed. O

Lemma 13. Let
R(z1, 29;v,u) = 32u® + 16v* + 30027 + 10372352
Then
1Q(n, jr;v,u;W)| < R(n, T;v,u) for j1 <n, [@| < T,& € N1 := 14976,
with {v,u,n,j1} CN.

Proof. Suppose that j; < n, || < T for @ € N', and {v,u,n,j;} C N.
Then, arguing as in the proof of Lemma 10, one concludes that

3
ho(J; 74, m5) + Z o (u, ji, wi; 29) + o (u,n,v; 29)
i=1
< 32u” 4 16v> + 300n* + 10°T®.
Moreover, it follows from the definition of the polynomials G1, Ga, ¢1, g2,
and g3 that

|G1($17$27$3;gl)| < 12T27 |G2($17$2;171)| < 12T47
g1 (1, 7)) < 1.2-10°T*,  [ga(z1,§?)| < 510775,

and [gs(x1,7®)| < 101478, After some calculations, it follows from Lem-
mas 10 and 11 and the definition of g;(z1,7"), i = 4,5, that

ga(z1, 7)) <1072 and gs(z1, 7)) < 2- 10477128,



ON A DIOPHANTINE REPRESENTATION 97

Those estimates and the definition of the polynomial Q(n, j1; v, u; @) show
that

1Q(n, j1; v, u; )| < 32u? + 160 + 300n* + 105397152,

as asserted. O

Theorem 1. In the notations of Proposition 6, let
F(v,7) == (Q(n,by;v,u; V) — bo)* + (R(n, bs;v,u) — bs)* + H(%,b)
with 1 := 14976 and Z := (u,n) *x &, so that L(Z) = 2431 + 360 = 3639528.
Then
N@E)={a|aeN, 3¢(@eN® & F(a,d) = 0)}.
Proof. By contruction, Q(n, ji;v,u; W) € Zn, ji;v,u; d]. Therefore, in
view of Lemma 13, the assertion follows from Proposition 6 and Lemma 12.

O

Corollary 3. Let f(t, %) := F(t,2), where Z:= (21, ...,2n), n := 3639528,
with

4
zj 1= Zaz?z +1 for 1<j<mn, Z:=(T11,.- T4, -, Tnl,- -, Tnd)-
i=1
Then
N(©@)={a|aeN, 3b(beZ" & f(a,b) = 0)}.
Proof. In view of Lemma, 1, the assertion follows from Theorem 1. O

Thus we may let Fp(t, %) := f(t, ).

§7. THE GODEL-BERNAYS SYSTEM S

Let us list the proper (non-logical) axioms of the Godel-Bernays ax-
iomatic set theory, denoted by S, in the language of the predicate calculus
P (cf. [14, Chap. 4]).

Notation. For {2, B} C § and z € X, let
AVB:==B DA A&LB == (- AV - B),
A=B:=RADB)&B D A), Iz A:=-Vr - A
For {i,7} C N\ {1}, write
m(t;) =3t (¢ €t1) and t; =t; =Vt (t1 €t =t €¢5).
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Assuming that {i,7,k} C N\ {1} and ¢ & {j, k}, let

ti = [tj, te] = (m(t;)&m(t) &Vt (t1 €t = (81 =t; Vi1 =tg)))
V(= (m(t))&m(ty))&t; = @)
and
ti = (t5, te) := ts = [[t;, 15], [t5, ta]]-
Finally, let
t; = <tj,tk,tl> =1; = <<tj,tk>,tl>
for {i,7,k,1} C N\ {1} and ¢ & {j, k,l}. Let us introduce the set of the
“set variables” {s; | i € N, i > 1} by means of the following abbreviations:
Vs; A :=Vt; (m(t;) DA) and Js; A:=-Vs; = A
for A € § and i € N\ {1}. Write
ti= 0=Vt - (b € t;).
There are sixteen proper axioms of S:
Ay = (t2 =t3) D (t2 €ty =tz € t4);
Ao 1= Vs, 53354Vs1(t1 €ty = (81 = t2 V1 = t3));
A := JsaVs1 (11 € t2);
Ay = FtoVss, 54((t3,t4) € ty = t3 € ty);
s 1= Vi1, 13t Vea(ts € b3 = (ts € &ty € t));
As 1= Vi1 I2Vs3(ts € ta = - (I3 € £1));
Az := Vit It2Vs3(ts € to = Isa((t3,t4) € t1));
A 1= Vi1 ItaVs3, s4({t3,t4) € ta = t3 € t1);
Ay 1= thﬂtQVSg,S4,S5(<t3,t4,t5> €ty = <t4,t5,t3> S t1);
A1 1= Vt1t2Vs3, 54, 55({t3, ta, t5) € to = (t3,t5,t4) € t1);
A1 1= Vs13s2Vs3(ts € to = Fs4(ts € ta&ity € 11));
Wio := Vs1352Vs3(t3 € to = Vig(ts €Et3 Dty € 11));
A1z 1= Vs1,taTs3Vs4(ty € t3 = (t4 € t1&ty € 12));
g =AY DAY,
where
ALY = (R(t1)&Vs2, 53, 54(((ta, t3) € t1&(ba, ts) € 11) D t3 = t4))
with
R(t1) := Vita(ty € t1 = 3t3, ta(ts = (t3,t4))),
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and
Qlﬁ) = V82383V84(t4 €ty = 385(<t5,t4> €t &ts € tz));

Ais := 382(3t4(t4 € &ty = @)&VSg(tg €ty Dty (t4 S tg&m%)))),
where
Q[g? = Vt5(t5 ety = (t5 =t3V (t5 = [tg,tg])));

;6 is the axiom of choice, which need not be stated here (cf., however,
[14, p. 275]).

Notation. Let
A = A1 & .. &As5, Ao =AD&y,
TS :={B|BeF AV >B) eI,
and
TS)={B|BcF ™A DB)ecZ}
The set T(S) (respectively, T(S)) is, by definition, the set of the theo-

rems of the system S (respectively, of the system S(®)). By a theorem of
K. Godel’s [6], the system S is consistent if and only if S(®) is. Thus

(TS?) =3) = (TS) =)
Let a; :== N(2;) and
¢ (B):= (A1 OB), €;11(B) := (Aj11 D E;(W)), 1<j <16,
for B € §. Further, let b := N(B) and let
f(E) =dp(zy,y),  fin(@y) =4p(zin, fi(Ey), 1<j<l, (5

where # := (z1,...,2;). It follows then that
N(€;(B)) = f;(@,b), 1<j<16,
with @ := (a1, ..., a16). Thus we can let

Fso) (t, %) := Fp(fi5(d,t), T)
and
Fs(t,7) := Fp(fi6(d,t),7));
let n := 3639528. By construction, if
- B e Z(S),

then the formula
Icé(ce 7" & Fs(b,6) =0)
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asserts that T(S) = §; likewise, if
- B e T8O,
then the formula
3E(F€ 2 & Fs) (b,&) = 0))
asserts that T(Sp) = §. Take, for instance,
B = Vi, (t € ),
then M(B) = 3 and
- B e3(S0).
Thus the formula
3E (€ Z™ & Fg00)(3,8) = 0)

asserts that T(S(V)) = T(S) = F. In view of Gddel’s second theorem [14,
pp. 212-213], we can summarise our conclusions as follows.

Theorem 2. Let B € § and suppose that -~ B € T(S(©). If the Gidel-
Bernays axiomatic set theory S is consistent, then although the Diophan-
tine equation

Fs(o) (b,f) = 0, b:= N(%),
has no solutions in Z, the formula

—\35(56 Z4n&Fs(0)(b,€) :0)

can not be proved in the system S. The function b — fi5(d,b) can be
explicitly evaluated by means of (5) and (6)—(20) below.

Corollary 4. If the Gddel-Bernays aziomatic set theory S is consistent,
then although the Diophantine equation

Fso(3,7) =0
has no solutions in Z, the formula
- 3E(Ce 7' & Fs50)(3,8) = 0)

can not be proved in the system S.
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§8. APPENDIX TO §7

The following formulae (6)—(20) provide explicit expressions for the
numbers a;j := N(2;), 1 < j < 16. An easy calculation shows that

NV B) = (N (A),N(B)), N &B)=r(N@),N(B)),
N =B) =NV @A),N(B)), NGt A) =wvs(i, N(A)),
where
vo(u,v) :==4p(dv — 2,u), vi(u,v) :=4dyy(du — 2,4v — 2) — 2,
va(u,v) := vy (4p(u,v),4p(v,u)), wvs(i,u) := 16p(i,4u — 2) — 6,
and
Nm(t:)) = va(i), N(ti=2) =vs(i), N(ti =t;)=wvs(i,]),
NVs; ) = v (i, N(R)), N(3s; A) = vg(i, N(2))
with
vy(i) == v3(1,4p(i,1) — 3), ws(i) :=4p(1,16p(1,4) — 14) — 1,
ve(i, ) := 4p(1,v2(4p(L,1) — 3,4p(1,j) — 3)) — 1,
vr(i,u) = 4p(i, 4p(va(i),uw)) — 1, wvs(i,u) := 4w (i, 4u — 2) — 2.
A further calculation shows that
N(ti = [tj, tr]) = vo(i, 4, k)
with vg(3, 7, k) := vo(u1,us), where
uy = v (1 (va(j), va(k)),us), wus:=4p(l,va(4dp(l,i) —3,uq)) — 1,
ug = vo(4p(1,7) — 3,4p(1, k) — 3), w9 := v (us,vs(i)),
us = 4vy (va(5),va(k)) — 2;
N(ti = {tj, te)) = v10(i, j, k)
with v19(4, 4, k) := v3(u1,v3(us, us)), where
up=i+j+k uy:i=u +1, wuz:=uvo(ug,voe(i,ur,uz))),
ug :=v1(vo(u1, 4, J), vo(uz, j, k));
Nt = (t,te, t) = 111(4, 4, k, 1)
with v11 (4,4, k, 1) := v3(uy1,us), where
upi=i+j+k+1, ur:i=vi(vio(u,d, k), v10(i,ur,k)).
It follows now that
ar = 4p(v6(2,3),v2(4p(2,4) — 3,4p(3,4) — 3)); (6)
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az = v7(2,v7(3,v5(4,v7(1,u)))) (7)
with u = v2(4p(1,4) — 3,v0(v6(1,2),v6(1, 3)));
az = vg(2,v7(1,4p(1,2) - 3));
as = v3(2,v7(3,v7(4,u1))),
where uy 1= vo(v3(5, u2),4p(3,4)—3) and us := v1(v10(5,3,4),4p(5,2) —3);
as = 4p(1,4p(2,u1) — 1) — 1, (10)

where uy := v3(3,4p(4, va(us,us)) — 1), us := 4p(4,3) — 3,
and uz := vy (4p(4,1) — 3,4p(4,2) — 3);

ae :4p(171/3(27u1)) -1, (11)
where uy := v7(3, va(u2,u3)), us :=4p(3,2) — 3, and us := 16p(3,1) — 14;
ar = 4p(171/3(27u1)) -1, (12)

where uy := v7(3,va(u2,u3)), us :=4p(3,2) — 3, ug := vs(4,u4), and
ug = v3(5,v1(110(5,3,4),4p(5,1) — 3));
as = 4p(1,v3(2,u1)) — 1, (13)
where w1 1= v7(3,v7(4, u2)), uz := va(ug,4p(3,1) — 3), and
uz = v3(5, 1 (110(5,3,4),4p(5,2) — 3));
ag = 4p(1,v5(2,u1)) — 1, (14)
where uy := v7(3,v7(4,v7(5,u2))), uz := v3(6,v3(7,v1 (us, us))),
us == v1(111(6,3,4,5),111(7,4,5,3)),
and ug 1= v2(4p(6,2) — 3,4p(7,1) — 3);
aro = 4p(1,v5(2,u1)) — 1, (15)

where uy = v7(3,v7(4,v7(5,u2))), us = v3(6,v3(7,v1(us,us))), ug :=
v1(111(6,3,4,5), 111(7,3,5,4)), and uq := 12 (4p(6,2) — 3,4p(7,1) — 3);

an = V7(17V8(27V7(37u1)))7 (16)
where u 1= v5(4p(3,2)—3,v53(4,u2)) and us := vy (4p(3,4)—3,4p(4,1)—3);
a12:V7(17V8(27V7(37u1) )7 (]‘7)

where w1 := v2(4p(3,2) — 3, u2), us := 4p(4,u3) — 1,
and ug := 4p(4p(4,3) — 3,4p(4,1) — 3);

a13 = 1/7(].,4])(2,’(11) — ].), (18)
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where uy := v5(3,v7(4,u2)), uz := v2(4p(4,3) — 3, us),
and uz :=v1(4p(4,1) — 3,4p(4,2) — 3);

ais = 4p(uy, uz), (19)
where
uy = v (v1,v2), vy :=4p(2,v2(vs,vs)), wvs:=4p(2,1) — 3,
vg = 13(3,v3(4,110(2,3,4))), w2 :=v7(2,v7(3,v7(4,v5))),
vs = 4p(v1(vs, v7),v6(3,4)), v :=v3(5,v1(r10(5,2,3),4p(5,1) — 3)),
vr == v3(5, 11 (110(5,2,4),4p(5,1) — 3)),
and
u2 = v7(2,v8(3,v7(4,08))), s :=r2(4p(4,3) — 3,v9),
vy := vg(5, 1 (v10,4p(5,2) —3)), w1 = v3(6,v1(v10(6,5,4),4p(6,1) —3));
a1y =:= vg(2,v1(u1, uz2)), (20)
where

uy = v3(4,v1(4p(4,2) — 3,v5(4))), w2 := v7(3,4p(4p(3,2) — 3, u3)),
us = v3(4,v1(4p(4,2) — 3,4p(5,uqs) — 1)),

and
ug = v2(4p(5,4) — 3, v0(v6(5,3),19(5,3,3))).
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