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INTEGRABILITY OF WEIGHT MODULE OF DEGREE 1

GUILLAUME TOMASINI

Abstract. The aim of this article is to find all weight modules of degree 1 of a simple
complex Lie algebra that integrate to a continuous representation of a simply-connected
real Lie group on some Hilbert space. Weight modules and Representations of Lie
groups and Gelfand-Kirillov dimension

1. Introduction

Let g denote a simple Lie algebra over the field C of complex numbers. Let h be a
Cartan subalgebra of g. A weight module is a g-module, h-diagonalizable, having finite
dimensional weight spaces. The set of all weight g-modules is a category containing the
BGG category O. This category of weight modules has been much studied in recent years
(e.g. [5, 6, 3, 12, 2, 4, 7, 8, 14, 13]). It is then a natural question to find those weight
modules that integrate to continuous (resp. unitary) representations of simply-connected
real Lie groups. They should form a small but interesting class of representations, with
small Gelfand-Kirillov dimension. In this paper, we treat the case of weight modules
with weight multiplicities equal to 1.

Let us explain our strategy. Let G be a simply-connected real Lie group. Assume
the g-module V integrates to a continuous representation π of G in some Hilbert space
H. Let K be a compact subgroup of G and denote by (π|K , H|K) the representation
(π, H) restricted to K. Then it is well known that the representation (π|K , H|K) is
unitarizable. Therefore, we can express H|K as a direct sum of simple finite dimensional
unitary representation of K. A consequence is that the (complexified) Lie algebra of
K should act nicely on V : the module V should be a k-finite g-module. If K is big
enough, this condition is strong enough to imply that V should be a highest (or lowest)
weight module. We then use a classification result due to Benkart, Britten and Lemire
to describe the possible modules. Then it remains to check whether or not these modules
can be integrated. Our results also make use of a theorem of Jørgensen and Moore and
classical results about discrete series.

2. Some facts about weight modules

2.1. Weight modules of degree 1. Let g denote a simple Lie algebra over the field C

of complex numbers. Fix a Cartan subalgebra h. A g-module V is called a weight module
if

(1) The module V is finitely generated,
(2) We have the following decomposition of V :

V =
⊕

λ∈h∗

Vλ, Vλ := {m ∈ V | ∀ H ∈ h, H · m = λ(H)m},
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(3) The weight spaces Vλ are all finite dimensional.

We call degree of a weight module the supremum of the dimension of the weight spaces:

deg(V ) = sup
λ

{dim(Vλ)} ∈ Z≥0 ∪ ∞.

When deg(V ) ∈ Z≥0, we call V a bounded module. In particular, if V is a weight g-
module of degree 1, then all the non zero weight spaces are 1-dimensional. The weight
modules of degree 1 have been studied by Benkart, Britten and Lemire [1]. In particular,
they constructed weight modules of degree 1, N(a) (with a ∈ C

n) for sl(n + 1,C) and
M(b) (with b ∈ C

n) for sp(n,C) (see [1] for the explicit construction of these modules).
Moreover, they proved the following:

Theorem 2.1 (Benkart, Britten, Lemire [1]). Let V be a simple infinite dimensional
weight g-module of degree 1. Then

(1) The Lie algebra g is isomorphic to either sl(n + 1,C) or to sp(n,C).
(2) The Gelfand-Kirillov dimension of V equals the rank of g.
(3) If g = sl(n + 1,C), then there is a ∈ C

n such that V ∼= N(a).
(4) If g = sp(n,C), then there is b ∈ C

n such that V ∼= M(b).

For our purpose we shall need another notion. Let l be a subalgebra of g. A g-module
V is a (g, l)-module of finite type if as an l-module, V splits into a direct sum of simple
finite dimensional l-modules, with finite multiplicities. For instance, a weight module is
a (g, h)-module of finite type. The general notion of (g, k)-module has been studied in
details by Penkov, Serganova and Zuckerman in [15, 16, 17, 18, 19].

2.2. Classification of (g, lj)-module of finite type and of degree 1. Let n be a
positive integer greater than 1. Let g denote the Lie algebra sl(n + 1,C). Let h de-
note the standard Cartan subalgebra of g, consisting of diagonal matrices. Denote by
H0, H1, . . . , Hn−1 its canonical basis. Denote by Ej (resp. Fj) the vector in g corre-
sponding to the elementary matrix Ej+1,j+2 (resp. Ej+2,j+1) for 0 ≤ j ≤ n − 1. Then g

is Lie-generated by the vectors {Hj, Ej , Fj}0≤j≤n−1. Denote by lj the maximal standard
Levi subalgebra of g Lie-generated by h and the vectors {Ek, Fk}k 6=j .

For future use, we shall find those infinite dimensional weight g-modules of degree 1
whose restriction to some lj is a direct sum of finite dimensional lj-modules. To this aim,
we need the following general result:

Lemma 2.2 (Fernando [5], Benkart-Britten-Lemire [1]). Let a be a simple Lie algebra
over C. Let t be a Cartan subalgebra of a. Let V be a simple weight a-module. Let R
denote the root system of (a, t). Then

(1) For any α ∈ R, and any X ∈ aα \ {0}, the action of X on V is either locally
finite or injective.

(2) Let α, β ∈ R be such that there are X± ∈ a±α \{0} and Y ± ∈ a±β \{0} satisfying
X± both act locally finitely on V and Y ± both act injectively on V . Then α+β 6∈
R.

Proof. See [1, Section4]. �

Corollary 2.3. Let V be a simple weight g-module. Let 0 ≤ j ≤ n − 1. Assume that V

is a (g, lj)-module of finite type. Then V is a highest weight or a lowest weight module.
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Proof. From lemma 2.2, the vectors Ek and Fk act locally finitely or injectively on V .
By hypothesis, they act locally finitely for k 6= j. Now, lemma 2.2 applied to Ej , Fj and
either Ej−1, Fj−1 or Ej+1, Fj+1 shows that at least one of the vectors Ej and Fj acts
locally finitely on V . In the first case, the module is a highest weight module. In the
second case, it is a lowest weight module. �

Denote by {ωi}i=1..n the fundamental weights for g. Recall now the following:

Proposition 2.4 (Benkart-Britten-Lemire [1, Proposition 3.4]). Up to isomorphism,
the only highest weight g-module of degree 1 are the modules with highest weight aω1,
aωi − (1 + a)ωi+1, and aωn, for a ∈ C.

In the notation of theorem 2.1, these modules correspond to N(a, 0, . . . , 0), N(−1, . . . , −1
︸ ︷︷ ︸

i

, −1−

a, 0, . . . , 0), and N(−1, . . . , −1, −1 − a), for a ∈ C.
In the sequel we will often work with the sl(n + 1,C)-module N(a, 0, . . . , 0). For the

convenience of the reader we write down here the action of the vectors {Hj, Ej , Fj}0≤j≤n−1

on a basis. The module N(a, 0, . . . , 0) has a basis x(k) indexed by k ∈ Z
n
≥0. If

k = (k1, . . . , kn) ∈ Z
n
≥0, we set |k| := k1 + · · · + kn. The action is given by:

H0 · x(k) = (a − k1 − |k|)x(k)(1a)

Hj · x(k) = (kj − kj+1)x(k)(1b)

E0 · x(k) = k1x(k − ǫ1)(1c)

F0 · x(k) = (a − |k|)x(k + ǫ1)(1d)

Ej · x(k) = kj+1x(k − ǫj+1 + ǫj)(1e)

Fj · x(k) = kjx(k + ǫj+1 − ǫj)(1f)

From this classification, we are in position to prove the

Proposition 2.5. Let 0 ≤ j ≤ n − 1. Let V be a simple infinite dimensional (g, lj)-
module of finite type and of degree 1. Then

(1) If j = 0, then V or its contragredient is isomorphic to N(a, 0, . . . , 0), for some
a ∈ C \ Z≥0 or to N(−1, m, 0, . . . , 0) for some m ∈ Z≥0.

(2) If j = n − 1, then V or its contragredient is isomorphic to N(−1, . . . , −1, a), for
some a ∈ C \ Z<0 or to N(−1, . . . , −1, −1 − m, 0) for some m ∈ Z≥0.

(3) If 0 < j < n − 1, then V or its contragredient is isomorphic to
N(−1, . . . , −1

︸ ︷︷ ︸

j+1

, m, 0, . . . , 0) or N(−1, . . . , −1
︸ ︷︷ ︸

j

, −1 − m, 0, . . . , 0), for some m ∈

Z≥0.

Proof. From corollary 2.3, V or its contragredient is a simple highest weight module.
Therefore we know that V or its contragredient is given by proposition 2.4. It thus
remains to check whether or not the modules in proposition2.4 satisfy the restriction
property.

Assume that j = 0. Let 0 < k < n−1 and consider the module V = N(−1, . . . , −1, a, 0, . . . , 0)
where a is a complex number in position k+1. Then the highest weight x for this module
satisfies:

Hk−1 · x = (−1 − a)x, Hk · x = ax.
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If k−1 6= 0, then by our assumption on V , x should generate a finite dimensional module.
This imposes that the vectors H1, . . . , Hn−1 of the Cartan subalgebra acts on x by non
negative integers. Therefore a and −1 − a should be non negative integers, which is
impossible. The same argument shows that for k = 1 we must have a ∈ Z≥0.

Consider now the module N(−1, . . . , −1, a) for a ∈ C. Using once again the same
argument, we show that necessarily a should be a negative integer. In this case, the
module is finite dimensional.

We need to show now that N(a, 0, . . . , 0) for a ∈ C \ Z≥0 and
N(−1, m, 0, . . . , 0) for m ∈ Z≥0 do satisfy the restriction property. Let us prove it for
N(a, 0 . . . , 0).

We want to find those linear combinations
∑

µkx(k) which are highest weight vectors
for the action of l0. From the explicit action given by formulae (1), we conclude that the
highest weight vectors are the linear combinations of the following linearly independent
highest weight vectors:

x(k1, 0, . . . , 0), k1 ∈ Z≥0.

We shall prove now that the module U(l0)x(k1, 0, . . . , 0) is a simple highest weight mod-
ule. Since it is a highest weight module, it is indecomposable. It is simple if and only if
it does not contain a highest weight vector linearly independent of x(k1, 0, . . . , 0). But
any such vector is a linear combination of x(k′, 0, . . . , 0) for some k′ ∈ Z≥0. However the
action of nH0+(n−1)H1+· · ·+Hn−1, vector generating the center of l0, on x(k′, 0, . . . , 0)
is:

(nH0 + (n − 1)H1 + · · · + Hn−1) · x(k′, 0, . . . , 0) = na − (n + 1)k′.

Therefore the center acting as a scalar on U(l0)x(k1, 0, . . . , 0), we conclude that there is
no highest weight vector in this module but the multiples of x(k1, 0, . . . , 0). Thus proving
that the module is simple. Hence it is clear that we have the following branching:

N(a, 0, . . . , 0)|l0 =
⊕

k∈Z≥0

U(l0)x(k, 0, . . . , 0).

Therefore we proved that N(a, 0, . . . , 0) is a (g, l0)-module of finite type as asserted. The
proof for N(−1, m, 0, . . . , 0) is the same.

The case j > 0 is analogous. �

3. Type A case

In this section, we shall find which degree 1 sl(n+1,C)-module integrate to a continu-
ous representation of some real Lie group whose complexified Lie algebra is sl(n + 1,C).

3.1. A natural action of SU(1, n). Let n be a positive integer. Let SU(1, n) denote
the subgroup of GL(n + 1,C) consisting of those matrices g such that

tḡ ×

(
−1

In

)

× g =

(
−1

In

)
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and whose determinant is 1. We shall label rows and columns from 0 to n. This is a real
Lie group. It acts on Sn := {(zj) ∈ C

n |
∑n

j=1 |zj |2 = 1} via

g ·






z1
...

zn




 =
























n∑

j=0

g
j
1zj

n∑

j=0

g
j
0zj

...
n∑

j=0

gj
nzj

n∑

j=0

g
j
0zj
























,

where g = (gj
k)0≤j,k≤n ∈ SU(1, n) and z0 = 1. Since SU(1, n) preserves the quadratic

form −|Z0|2 + |Z1|2 + · · · + |Zn|2, the denominator is never 0 and g · z is in Sn for any
z ∈ Sn. Denote by dσ the measure on Sn induced from the Lebesgue measure of Cn and
by Ωn the volume of Sn. It is well known that Ωn = 2πn

(n−1)! . We also denote by H(Cn) the

space of holomorphic functions from C
n to C. Then the action of SU(1, n) on Sn induces

a natural continuous representation on L2(Sn, dσ
Ωn

) ∩ H(Cn). We can further construct a
unitary representation ρ on this space by

ρ(g)(ϕ)(z) :=





n∑

j=0

(g−1)j
0zj





−n

× ϕ(g−1 · z).

Let k = (kj) ∈ Z
n
≥0. Set P (k)(z) :=

n∏

j=1

z
kj

j . Then the family (P (k))k∈Zn
≥0

is an

orthogonal basis for the Hilbert space L2(Sn, dσ
Ωn

)∩H(Cn). Moreover, we have ‖P (k)‖2 =
n∏

j=1

kj !

|k|
∏

j=1

(j + n − 1)

, where |k| :=
n∑

j=1

kj .

Consider the following 1-parameter families:

eitH1 :=













1
e−it

eit

1
. . .

1













, . . . , eitHn−1 :=











1
. . .

1
e−it

eit











.
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etX1 :=













1
cos t − sin t

sin t cos t

1
. . .

1













, etY1 :=













1
cos t −i sin t

−i sin t cos t

1
. . .

1













, . . . ,

etXn−1 :=











1
. . .

1
cos t − sin t

sin t cos t











, etYn−1 :=











1
. . .

1
cos t −i sin t

−i sin t cos t











,

etX0 :=











cosh t − sinh t

− sinh t cosh t

1
. . .

1











, etY0 :=











cosh t −i sinh t

i sinh t cosh t

1
. . .

1











,

eitH0 :=











e−it

eit

1
. . .

1











.

Then the Lie algebra su(1, n) of SU(1, n) is generated (as a Lie algebra) by

iH0, . . . , iHn−1, X0, . . . , Xn−1, Y0, . . . Yn−1.

Set

E0 :=
X0 + iY0

2
, F0 :=

X0 − iY0

2
,

Ej := −
Xj + iYj

2
, Fj :=

Xj − iYj

2
, 1 ≤ j ≤ n − 1.

Then (Hj, Ej , Fj)0≤j≤n generates a Lie algebra g isomorphic to sl(n + 1,C). The Cartan
subalgebra h of g is the subalgebra generated by {H0, . . . , Hn−1}. We can compute as
usual the action of g on the basis (P (k))k∈Zn

≥0
. We get:







H0 · P (k) = (−n − |k| − k1)P (k)
E0 · P (k) = k1P (k − ǫ1)
F0 · P (k) = (−n − |k|)P (k + ǫ1)

,(2a)







Hj · P (k) = (kj − kj+1)P (k)
Ej · P (k) = kj+1P (k − ǫj+1 + ǫj)
Fj · P (k) = kjP (k + ǫj+1 − ǫj)

, ∀ 1 ≤ j ≤ n − 1,(2b)

where ǫj is the vector in Z
n
≥0 whose entries are all zero except the jth entry which is 1.

In the sequel we shall deform this infinitesimal representation and show the 1-parameter
deformation thus constructed integrates to a continuous representation of the universal
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cover of SU(1, n). We shall further explicit those values of the parameter such that the
representation is unitary.

3.2. Deformation of the natural action of sl(n + 1,C). To each k ∈ Z
n
≥0, let us

associate a vector e(k). Let

H :=







u :=
∑

k∈Zn
≥0

uke(k)

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

∑

k∈Zn
≥0

|uk|2

n∏

j=1

kj !

|k|
∏

j=1

(j + n − 1)

< ∞







.

We define on H a Hilbert space structure by requiring that the basis (e(k)) is orthogonal

and that ‖e(k)‖2 =

n∏

j=1

kj !

|k|
∏

j=1

(j + n − 1)

. Denote by G the universal cover of SU(1, n). Ac-

cording to the previous subsection, there is a continuous representation ρ of G (in fact,
a unitary representation of SU(1, n)) corresponding to the representation of g given on
H by formulae (2).

Let a ∈ C \ Z≥0. For any l ∈ Z≥0, set µa(l) :=

√
√
√
√

l∏

j=1

j + n − 1

|j − a − 1|
. Note that µa(l)

is a well defined positive real number such that µ−n(l) = 1. We define now operators
(Hj(a), Ej(a), Fj(a))0≤j≤n−1 on H by their action on the basis e(k) as follows:

∀ 1 ≤ j ≤ n − 1, Hj(a) = Hj, Ej(a) = Ej , Fj(a) = Fj ,

(H0(a) − H0) · e(k) = (n + a)e(k),(3a)

(E0(a) − E0) · e(k) = k1

(
µ(|k| − 1)

µ(|k|)
− 1

)

e(k − ǫ1),(3b)

(F0(a) − F0) · e(k) =

(

(a − |k|)
µ(|k| + 1)

µ(|k|)
+ n + |k|

)

e(k + ǫ1).(3c)

Notice that if a = −n then all the new operators coincide with the corresponding un-
deformed operator. It is easy to check that the new operators give rise to another
representation of sl(n + 1,C). We shall refer to the space of this representation as Ha

(even though as a Hilbert space it is nothing but H). In the sequel we will use

m−
k := k1

(
µ(|k| − 1)

µ(|k|)
− 1

)

, m+
k := (a − |k|)

µ(|k| + 1)

µ(|k|)
+ n + |k|.
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Remark 3.1. Set x(k) := µ(|k|)e(k). Then ‖x(k)‖2 =

n∏

j=1

kj!

|k|
∏

j=1

|j − a − 1|

. Moreover, x(k)

is also a basis for Ha and the deformed action of sl(n + 1,C) on Ha is precisely the one
given in [1].

3.3. Integrability of the representation Ha. To prove the integrability of the rep-
resentation Ha we shall use a criterion of Jørgensen and Moore [9]. Let us recall it. Let
H′ be a Hilbert space. Let D be a dense subspace. Denote by ‖ · ‖

0
the Hilbert norm.

By A(D) we mean the set of all operators on D. Let A0 = Id and let A1, . . . , Ad be a
basis for some (finite dimensional) Lie algebra included in A(D). We define inductively
a norm ‖ · ‖

l
on D by setting ‖u‖

l+1
:= max{‖Aku‖

l
, 0 ≤ k ≤ d}. Denote by Dl the

completion of D with respect to ‖ · ‖
l

and by Lj the space of continuous operators of
Dj. Let Lu(D∞) := ∩{Lj, j ≥ 0} and A∞(D) := A(D) ∩ Lu(D∞). This is the set of
operators on D bounded for all the norms ‖ · ‖

l
.

Theorem 3.2 (Jørgensen-Moore). Let G be a connected simply-connected Lie group,
whose corresponding Lie algebra is denoted gR. Let π0 be a continuous representation
of G on H′. Set L0 := dπ0(gR). Let D := C∞(π0). Let S0 be a set of Lie generator
for L0. Let f : S0 → A∞(D) be such that S := {A + f(A), A ∈ S0} generates a finite
dimensional Lie algebra L. Then the representation L can be integrated into a continuous
representation π of G such that dπ(gR) = L.

To apply the theorem to our situation, we set S0 := {iHj, Xj , Yj, 0 ≤ j ≤ n − 1}. The
Hilbert space is H, the dense subset is

D :=







u =
∑

k∈Zn
≥0

uke(k) ∈ H

∣
∣
∣
∣
∣
∣
∣

∑

k∈Zn
≥0

|k|N uke(k) ∈ H, ∀ N ∈ Z≥0







.

The function f is given by the formulae (2). At this point, we need to check that the
image of f is in A∞(D), i.e. to check that the operators defined on D by formulae (2)
are bounded for all the norms ‖ · ‖

l
. As f(iHj) = f(Xj) = f(Yj) = 0 for j ≥ 1, we only

need to consider the three operators f(iH0), f(X0) and f(Y0). As f(iH0) is a scalar
operator, the boundedness is clear. We have to prove it for f(X0) and f(Y0). First we
note the following:

Lemma 3.3. The operators f(X0) and f(Y0) are bounded for all the norms ‖ · ‖
l

if and
only if the operators f(E0) and f(F0) are.

Proof. This is clear since X0 and Y0 are linear combination of E0 and F0 and vice-
versa. �

Lemma 3.4. The operators f(E0) and f(F0) are bounded for all the norms ‖ · ‖
l

if and

only if they are bounded for all the norms constructed using the set S̃0 := {Hj, Ej , Fj , 0 ≤
j ≤ n − 1} instead of S0.

Proof. Again, this follows from the fact that we can express the elements of S0 as linear
combinations of those in S̃0 and vice-versa. �
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Proposition 3.5. The operators f(E0) and f(F0) are bounded for all the norms ‖ · ‖
l
.

Proof. From the lemma 3.4, we can use the norms ‖ · ‖
l

constructing from the set S̃0.
We prove the lemma by induction on l for f(E0). The proof for f(F0) is analogous. Let
u :=

∑
uke(k) ∈ D. Then

‖f(E0)u‖2 =
∑

k

|uk|2|m−
k |2‖e(k − ǫ1)‖2

=
∑

k|k1>0

|uk|2|m−
k |2‖e(k)‖2 |k| + n − 2

k1

=
∑

k|k1>0

|uk|2‖e(k)‖2 × k1(|k| + n − 2)

(
µ(|k| − 1)

µ(|k|)
− 1

)2

≤ sup
k|k1>0

{

k1(|k| + n − 2)

(
µ(|k| − 1)

µ(|k|)
− 1

)2
}

×
∑

k

|uk|2‖e(k)‖2

= sup
k|k1>0

{

k1(|k| + n − 2)

(
µ(|k| − 1)

µ(|k|)
− 1

)2
}

× ‖u‖2.

Using an asymptotic development of
(

µ(|k|−1)
µ(|k|) − 1

)2
we easily see that the above supre-

mum is finite, thus proving that f(E0) is bounded for ‖ · ‖
0
. Assume now that f(E0) is

bounded for the norms ‖ · ‖
l

for 0 ≤ l ≤ M − 1.

Let A1, . . . , AM be elements in S̃0. Let u ba as above and consider the expression
‖A1 · · · AM f(E0)u‖2. Since A1 · · · AM is a weight vector in the enveloping algebra, the
vectors A1 · · · AM e(k) are mutually orthogonal. Therefore, we have

‖A1 · · · AM f(E0)u‖2 =
∑

k

|uk|2|m−
k |2‖A1 · · · AM e(k − ǫ1)‖2.(4)

Now from formulae (2), it is clear that

A1 · · · AM e(k) = PA1···AM
(k)e(k + l(A1 · · · AM )),

where PA1···AM
(k) is a polynomial in (k1, . . . , kn), product of M monomials of degree 1.

For brevity, we shall denote it by P (k) in the sequel. Moreover l(A1 · · · AM ) ∈ Z
n and

|l(A1 · · · AM )| :=
n∑

j=1

|l(A1 · · · AM )j| is a non negative integer smaller than 2M , since for

any A ∈ S̃0, the vector Ae(k) is either a multiple of e(k) or a multiple of e(k ± ǫ1) or a
multiple of e(k ± ǫj ± ǫj+1). In the sequel, we denote l(A1 · · · AM ) simply by l.

Let k be such that P (k − ǫ1) 6= 0 and k1 6= 0. If P (k) = 0 then there is 1 ≤ j ≤ M

such that Aj = H1. This is proved by induction on M using the action of S̃0 given by

formulae (2). In particular, if k1 6= 0, P (k) 6= 0 and P (k − ǫ1) 6= 0, then |P (k−ǫ1)|
|P (k)| is

well-defined and is bounded by a number depending on M only.
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Now we write

‖A1 · · · AM f(E0)u‖2 =
∑

k | A1 · · · AM e(k) 6= 0,

A1 · · · AM e(k − ǫ1) 6= 0

|uk|2|m−
k |2‖A1 · · · AM e(k − ǫ1)‖2

+
∑

k |A1 · · · AM e(k) = 0,

A1 · · · AM e(k − ǫ1) 6= 0

|uk|2|m−
k |2‖A1 · · · AM e(k − ǫ1)‖2.(5)

Let us work with the first sum. We can rewrite it in the following form:

∑

|uk|2|m−
k |2

‖A1 · · · AM e(k − ǫ1)‖2

‖A1 · · · AM e(k)‖2
‖A1 · · · AM e(k)‖2.

This in turn is equal to:

∑

|m−
k |2

|P (k − ǫ1)|2

|P (k)|2
‖e(k + l − ǫ1‖2

‖e(k + l)‖2
× |uk|2‖A1 · · · AM e(k)‖2.

Therefore we have:
∑

|m−
k |2

|P (k − ǫ1)|2

|P (k)|2
‖e(k + l − ǫ1‖2

‖e(k + l)‖2
× |uk|2‖A1 · · · AM e(k)‖2

≤ sup

{

|m−
k |2

|P (k − ǫ1)|2

|P (k)|2
‖e(k + l − ǫ1‖2

‖e(k + l)‖2

}
∑

‖A1 · · · AM uke(k)‖2

≤ sup

{

|m−
k |2

|P (k − ǫ1)|2

|P (k)|2
‖e(k + l − ǫ1‖2

‖e(k + l)‖2

}

‖A1 · · · AM u‖2

≤ sup

{

|m−
k |2

|P (k − ǫ1)|2

|P (k)|2
‖e(k + l − ǫ1‖2

‖e(k + l)‖2

}

× ‖u‖2
M .

We must now prove that sup
{

|m−
k |2 |P (k−ǫ1)|2

|P (k)|2
‖e(k+l−ǫ1‖2

‖e(k+l)‖2

}

is bounded by a number inde-

pendent of l (but possibly depending on M). From previous remarks, it is sufficient to

prove that |m−
k |2 ‖e(k+l−ǫ1)‖2

‖e(k+l)‖2 is bounded. Since |l| ≤ 2M , this is an easy consequence of

the explicit expression for m−
k .

Let us now investigate the second sum in (5), assuming it is not empty. As we already
mentioned, there is an index j such that Aj = H1. Then using commutation relations in
the enveloping algebra, we have:

A1 · · · AM = A′
1 · · · A′

M−1H1 + A′′
1 · · · A′′

M−1.

Therefore, we have:
∑

k |A1···AM e(k)=0, A1···AM e(k−ǫ1)6=0

|uk|2|m−
k |2‖A1 · · · AM e(k − ǫ1)‖2

≤
∑

|uk|2|m−
k |2

(

‖A′
1 · · · A′

M−1H1e(k − ǫ1)‖2 + ‖A′′
1 · · · A′′

M−1e(k − ǫ1)‖2
)

≤
(∑

|uk|2|m−
k |2(k1 − k2 − 1)2‖A′

1 · · · A′
M−1e(k − ǫ1)‖2

)

+ ‖A′′
1 · · · A′′

M−1f(E0)u‖2

≤ sup{(k1 − k2 − 1)2} × ‖A′
1 · · · A′

M−1f(E0)u‖2 + ‖A′′
1 · · · A′′

M−1f(E0)u‖2
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The second sum is by induction smaller than ‖f(E0)‖2
M−1

×‖u‖2
M−1

. For the first sum, the

induction shows that ‖A′
1 · · · A′

M−1f(E0)u‖2 ≤ ‖f(E0)‖2
M−1

× ‖u‖2
M−1

. Thus, it suffices

to prove that (k1 − k2 − 1)2 is bounded. Since A1 · · · AM e(k) = 0, there is an integer j

such that

Aj = H1, H1Aj+1 · · · AM e(k) = 0 and Aj+1 · · · AM e(k) 6= 0.

But then Aj+1 · · · AM e(k) = C × e(k + l′) for some non zero constant C. As above
|l′| ≤ 2M . Thus H1e(k + l′) = 0, which means that (k + l′)1 = (k + l′)2 or also
k1 − k2 − 1 = l′1 − l′2 − 1. And we have |l′1 − l′2 − 1| ≤ |l′| + 1 ≤ 2M + 1, proving thus that
sup{(k1 − k2 − 1)2} is bounded by a number depending on M only.

Altogether, we have proved that:

‖A1 · · · AM f(E0)u‖2 ≤ C(M) × ‖u‖2
M

,

for some constant C(M) depending on M only (Note here that ‖u‖
M−1

≤ ‖u‖
M

). As a
consequence, we get

‖f(E0)u‖
M

≤
√

C(M)‖u‖
M

,

proving that f(E0) is bounded for the norm ‖ · ‖
M

. �

Corollary 3.6. Let a ∈ C \ Z≥0. Then the representation Ha of g integrates into a
continuous representation of G on the Hilbert space H.

Remark 3.7. Let a ∈ Z≥0. Define a representation Ha as above by restricting the index
set of k to those k ∈ Z

n
≥0 such that |k| ≤ a. Then Ha is indeed a representation and is

finite dimensional. Therefore it also integrates into a continuous representation of G on
some Hilbert space.

3.4. Unitarisability. We now know a whole family of continuous representation of G.
We should ask then which of these are unitary. If the representation Ha is unitary then
the infinitesimal action given by the Lie basis {iHj(a), Xj(a), Yj(a)} should be given
by skew-symmetric operators. In other word, we should have (iHj(a))∗ = −iHj(a),
Xj(a)∗ = −Xj(a) and Yj(a)∗ = −Yj(a). Using the expression of the Hj(a), Ej(a), Fj(a)
in term of this basis, it is equivalent to have Hj(a)∗ = Hj(a), Ej(a)∗ = Fj(a) for j > 0
and E0(a)∗ = −F0(a). As Hj(a) is a diagonal operator, it is selfadjoint if and only if
its eigenvalues are real. This imposes a ∈ R. Remember that the representation that
we started with is unitary. So it only remains to prove f(Ej)∗ = f(Fj) for j > 0 and
f(E0)∗ = −f(F0). The first condition is trivial since f(Ej) = f(Fj) = 0. To check the
second condition, we need to compare 〈f(F0)e(k), e(l)〉 and −〈e(k), f(E0)e(l)〉. They are
equal for all k and l if and only if a ∈ R<0.

Proposition 3.8. The continuous representation Ha of G is unitary if and only if a ∈
R<0.

Remark 3.9. When a ∈ Z≥0, the representation Ha constructed in the remark 3.1 is
not unitary (unless a = 0) since it has finite dimension greater than 1 and G is not a
compact group.
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3.5. SU(p, q) case. Let 1 ≤ p ≤ n. Set q = n + 1 − p. Let Gp,q denote the universal
cover of SU(p, q). The complex Lie algebra g = sl(n + 1,C) is the complexification of
the Lie algebra of Gp,q. Moreover, Gp,q contains a compact subgroup Kp,q isomorphic to
SU(p) × SU(q), whose complexified Lie algebra is isomorphic to the semisimple part of
lp−1. Let us now give the classification of all simple infinite dimensional degree 1 modules
coming from a continuous representation of Gp,q on some Hilbert space.

Theorem 3.10. Let V be a simple infinite dimensional weight g-module of degree 1.
Then V integrates into a continuous representation of Gp,q on a Hilbert space if and only
if

(1) Either V or its contragredient is isomorphic to N(a, 0, . . . , 0) (for a ∈ C \ Z≥0)
or to N(−1, m, 0, . . . , 0) (for m ∈ Z≥0), in case p = 1.

(2) Either V or its contragredient is isomorphic to N(−1, . . . , −1, a) (for a ∈ C\Z<0)
or to N(−1, . . . , −1, −1 − m, 0) (for m ∈ Z≥0), in case p = n.

(3) Either V or its contragredient is isomorphic to N(−1, . . . , −1
︸ ︷︷ ︸

p

, m, 0, . . . , 0) (for

m ∈ Z≥0) or to N(−1, . . . , −1
︸ ︷︷ ︸

p−1

, −1−m, 0, . . . 0) (for m ∈ Z≥0), in case 1 < p < n.

Moreover, the corresponding representation of Gp,q is unitary if and only if

(1) Either V or its contragredient is isomorphic to N(a, 0, . . . , 0) (for a ∈ R<0) or to
N(−1, m, 0, . . . , 0) (for m ∈ Z≥0), in case p = 1.

(2) Either V or its contragredient is isomorphic to N(−1, . . . , −1, a) (for a ∈ R>0)
or to N(−1, . . . , −1, −1 − m, 0) (for m ∈ Z≥0), in case p = n.

(3) Either V or its contragredient is isomorphic to N(−1, . . . , −1
︸ ︷︷ ︸

p

, m, 0, . . . , 0) (for

m ∈ Z≥0) or to N(−1, . . . , −1
︸ ︷︷ ︸

p−1

, −1−m, 0, . . . 0) (for m ∈ Z≥0), in case 1 < p < n.

Proof. First, remark that given any continuous representation π of Gp,q on a Hilbert
space, its restriction to Kp,q splits into a direct sum of finite dimensional representations
(possibly with infinite multiplicities). Therefore, the corresponding g-module should
also split into a direct sum of finite dimensional lp-modules. In other word, a necessary
condition is that the underlying g-module is a (g, lp)-module of finite type. Therefore, by
proposition 2.5, V or its contragredient should be isomorphic to the asserted modules.

(1) In case p = 1, we already know from corollary 3.6, that N(a, 0, . . . , 0) does
integrate into a continuous representation of G1. Moreover from proposition
3.8, we know that this representation is unitary exactly when a ∈ R<0. Now,
the module N(−1, m, 0, . . . , 0) is a highest weight module with highest weight
λm = (−1 − m, m, 0, . . . , 0) ∈ Z

n. This is clearly an analytically integral weight,
and dominant with respect to the positive roots of l0. It is then straightforward
to check that it is the underlying g-module of the holomorphic discrete series of
SU(1, n) corresponding to the parameter λm.

(2) The case p = n is of course identical to the previous one up to a relabeling of the
simple roots.
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(3) The intermediate case 1 < p < n is easy, since the possible underlying g-
modules all correspond to holomorphic discrete series, their parameter being
(0, . . . , 0, −1 − m, m, 0, . . . , ) or (0, . . . , 0, m, −1 − m, 0, . . . , 0).

�

3.6. SL(n,R) case. Assume that n ≥ 3. Let Gn denote the universal cover of SL(n,R).
Its complexified Lie algebra is also g = sl(n,C). The compact Lie group Kn = SO(n) is
a subgroup of Gn.

Theorem 3.11. Let V be a simple weight g-module. Then V can be integrated into a
continuous representation of Gn on a Hilbert space if and only if V is finite dimensional.

Proof. Assume V can be integrated into a continuous representation of Gn in a Hilbert
space. The complexified Lie algebra of Kn contains the vectors Ej + Fj . By lemma 2.2,
these vectors should act locally finitely on V . Let Vλ be a weight space of V . Denote
by αj the weight of Ej . Then Ej + Fj : Vλ → Vλ+αj

⊕ Vλ−αj
. Therefore Ej + Fj is

locally finite if and only if both Ej and Fj are. Then the module is finite dimensional as
asserted. The converse is obvious. �

4. Type C case

Let n be a positive integer. Let p and q be positive integers such that p + q = n. In
this section, we consider the groups Sp(n,R) and Sp(p, q) and their universal cover Gn

and Gp,q. They contain the compact subgroup Kn and Kp,q isomorphic to SU(n) and
SP (p) × Sp(q) respectively (see for instance [10]). Denote by g the Lie algebra sp(n,C).

Theorem 4.1. Let V be a simple infinite dimensional weight g-module of degree 1. Then

(1) V cannot integrate into a continuous representation of Gp,q on a Hilbert space.
(2) V integrates into a continuous representation of Gn on a Hilbert space if and only

if V or its contragredient is isomorphic to M(−1, . . . , −1) or M(−1, . . . , −1, −2).
In this case, the corresponding representation of Gn is simple and unitary, and
isomorphic to the even or odd part of the metaplectic representation or its con-
tragredient.

Proof. The proof is analogous to the proof of theorem 3.10. In the case of Gp,q, the
complexified Lie algebra of Kp,q is the Lie algebra lp whose roots with respect to the
standard Cartan subalgebra of g are (see [10, Appendix C])

{±2ǫl, ±(ǫj ± ǫk) : 1 ≤ l ≤ p, 1 ≤ j 6= k ≤ p}

⊔{±2ǫl, ±(ǫj ± ǫk) : p + 1 ≤ l ≤ p + q, p + 1 ≤ j 6= k ≤ p + q}.

The module V should be a (g, lp)-module of finite type. Using an analogue of proposition
2.5, we see that V or its contragredient should be a highest weight module. The simple
infinite dimensional highest weight module of degree 1 have been classified by Benkart,
Britten, Lemire [1, Proposition 3.6]. They are only two: their highest weights are −1

2ωn

and ωn−1 − 3
2ωn respectively. It is then easy to check that the possible modules are not

(g, lp)-module of finite type.
The case of Gn is analogous. The complexified Lie algebra of Kn is the Lie algebra l

whose roots are
{±(ǫj ± ǫk) : 1 ≤ j 6= k ≤ n − 1}.
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Once again, V or its contragredient should be isomorphic to a highest weight module.
It is then well-known that these two highest weight modules correspond to the even and
odd part of the metaplectic representation (see e.g. [11]). �
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