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The main result presented here is Theorem 6 which gives an explicit formula for
the variation of the derivative of the spectral zeta function at zero for any convex
polygonal domain. In forthcoming work [1], we shall use this to derive an explicit
formula for the zeta-regularized determinant of the Laplacian. Let Q C R? be a
convex polygonal domain with n sides. The Euclidean Laplacian Ag on £ with
Dirichlet boundary condition has eigenvalues
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By Weyl’s Law, the spectral zeta function
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is holomorphic on the half plane {9s > 1}. The heat trace
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TrHq(t) = Z et

k=1
is related to the zeta function by
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(0.1) Ca(s) = —/ t~1Tr Hq(t)dt.
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The heat trace admits an asymptotic expansion as time tends to zero computed

in [3]

1] Ié‘ﬂl 7% —of _aft
(0.2) TrHq(t) = Z = O(e=°/).

Above, q; is the interior angle at the i*" vertex, and |Q|, |0Q| denote respectively
the area of Q2 and the length of the boundary 9€2. We note that the constant c is
bounded below by a constant computed in [5].

It follows from (0.1), (0.2), and the meromorphic continuation of the Gamma
function that ¢ admits a meromorphic continuation to the complex plane which is
regular at 0. The zeta-regularized determinant is defined to be

det(Agq) = e~ (),

It is straightforward to compute that ¢(0) is the coefficient of t° in (0.2). Conse-
quently, for X € (0,00), the zeta function transforms under scaling of the domain
by A as follows

(a(0) = ¢a(0) log A + (o (0).

The determinant therefore scales by

det(Acq) = ¢ 2O det(Ag).
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For smoothly bounded domains, the coefficient of t in the small-time asymptotic
expansion of the heat trace is a topological invariant, namely one sixth of the Euler
characteristic [3]. Therefore, the extrema of the determinant are well defined on
convex smoothly bounded domains of fixed area. For polygons, this is no longer
the case.

Lemma 1. Let R be a convex n-gon with all angles equal, and let P be a convex
n-gon whose angles are not all equal. Assume R and P both have unit area. Then,
(1) 3 a > 0 such that det (Agr) > det (Agp),
(2) b > 0 such that det (AbR) < det (Abp),
(3) 3 ¢ > 0 such that det (A.r) = det (Acp).

The proof is a straightforward calculation and is left to the reader. (]
We are therefore motivated to define a spectral invariant which is well-defined
on the moduli space of convex n-gons.

Proposition 0.1. Let M, be the moduli space of convex n-gons, which is the
space of all similarity classes of convex n-gons. Then, the following function is
well defined on M,,.

1
f(P)=Z5(0)— §Zp(0)10g Area(P), P € M,,.
For more details, see [1].

1. PRELIMINARY VARIATIONAL FORMULAE

Consider a conformal variation of the Euclidean metric g — €27¢g, where o is
a smooth function. A computation analogous to those in [4] gives the following
variational formula for ¢’(0),

(L.1) 3¢'(0) = =v0¢(0) + C(o0),

where ~ is Euler’s constant, v = I'(1), and C(o) is the constant term in the trace
of 200 H. The coeflicients in the short-time asymptotic expansion of the heat trace
(0.2) can be computed by integrating a corresponding local expansion defined by
the curvature and its derivatives [3]. To compute C(o), we may integrate the
product of 260 with the local heat trace expansion. Since the curvature vanishes
identically away from the corners, only the corners contribute to C(c). We may
therefore compute the contribution to C(o) from each vertex and sum over the
vertices.
A fixed half-strip with the standard Euclidean metric,

T= (—O0,0]m X [07 Hya 9Eucl = d$2 + dyQa
can be conformally mapped onto the sector
S =(0,a"te, x 0,0]¢,  gEuel = dr? + r2d¢? = €2 (dx? + dy?),

where the coordinates and conformal factor o are

1 _
y:f7 $:—og(ra) /\, o =xa+ A\
« «@
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The conformal factor ¢ is a smooth function of x which depends on the two
parameters, & and A. The total differential of the conformal factor ¢ with respect
to the parameters o and A,

logr +loga — A

o=z da+ d)\= do + dA.

o
Formula (2.5) in [5] gives the Green’s function for a sector of opening angle «
(see also [3] p. 44). The inverse Laplace transform, denoted L1, of the Green’s
function is the heat kernel. Let

C(a) :/ rlogrdr/ dozL_l{ / smh( a)xd:z},
0 0 sinh ax

and let

7 log & 0 aloga e 72 — o?
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The angles and side lengths of a convex polygonal domain P cannot be varied
independently, but must satisfy certain constraints. The interior angles {o;} ,
must sum to m(n — 2), and the scale factors at each vertex {A\;}_; together with
a global scale factor A\ are related by

Ai = Ao — Z(W —a;)log |pi — pjl
J#i
where the points {pj 1 lie on the unit circle. We then have the following.

Theorem 6. Let P be a convex n-gon in the plane with interior angles {ou}lq,
and let A(ay), C(a;), and \; be defined as above. For a conformal variation of P
which maps P onto a Euclidean n-gon, the conformal variation of ((0) is

5 C; %) s <ZA ) (f;l) (e + (ﬁu — ) (i )\0)>> .

=1

In forthcoming work, we use Theorem 1 to compute an explicit formula for
the function f defined in Proposition 1 and study the extrema of this spectral
invariant in the spirit of [4]. We shall also apply our results to surfaces with
conical singularities. Useful ideas for this work were inspired by [2]; the above
result is a correction of a similar formula in [2].
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