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REPRESENTATION OF UNITY BY BINARY FORMS

SHABNAM AKHTARI

Abstract. In this paper, it is shown that if F (x, y) is an irreducible binary
form with integral coefficients and degree n ≥ 3, then provided that the abso-
lute value of the discriminant of F is large enough, the equation F (x, y) = ±1
has at most 11n− 2 solutions in integers x and y. We will also establish some
sharper bounds when more restrictions are assumed. These upper bounds
are derived by combining methods from classical analysis and geometry of
numbers. The theory of linear forms in logarithms plays an essential role in
studying the geometry of our Diophantine equations.

1. Introduction

Let F (x, y) = anx
n+an−1x

n−1y+ . . .+a0y
n be an irreducible binary form with

rational integer coefficients and n ≥ 3. We will study Nn, the number of solutions
to the equation

(1) F (x, y) = ±1,

in integers x and y. We will regard (x, y) and (−x,−y) as one solution. So we may
only count the solutions with y ≥ 0. But how large can Nn be? Let p be a prime
and consider the following irreducible form

F1(x, y) = xn + p(x− y)(2x− y) . . . (nx− y).

It is easy to see that F1(x, y) = 1 has the following n solutions

(1, 1), (1, 2), . . . , (1, n).

Thus a linear upper bound of the shape cn is best possible except for the determi-
nation of c. We will show that

Theorem 1.1. Let F (x, y) be an irreducible binary form with integral coefficients
and degree n ≥ 3. Then the Diophantine equation |F (x, y)| = 1 has at most 11n−2
solutions in integers x and y, provided that the absolute value of the discriminant
of F is greater than D0, where D0 = D0(n) is an effectively computable constant.
Moreover, assume that the polynomial F (x, 1) has r real roots and 2s non-real roots
(r + 2s = n). Then |F (x, y)| = 1 has at most 11r + 4s− 1 solutions in integers x
and y.

We remark here that D0 can be computed effectively in terms of n, the degree
of F . Indeed, we may take D0 = 222(n + 1)10nn. Theorem 4.6 gives an algorithm
to compute D0.

In the above theorem, we supposed that F is irreducible. We will see in Section 2,
that when F is reducible, the situation is simpler. LetD be the discriminant of form
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F (it is defined in Section 3). Note that the condition |D| > D0(n) is a restriction,
because we know for binary form F ∈ Z[x, y] of degree n and discriminant D 6= 0,
we have the following sharp bound (see [13]):

(2) n ≤ 3 + 2 (log |D|) / log 3.
In Section 3, we will see how Theorem 1.1 gives an upper bound for the number

of integral solutions to F (x, y) = ±1 when F has a small discriminant.
One may conjecture that the number of solutions may be estimated in terms of

r the number of real solutions of F (x, 1) = 0. This is not the case. For example,
let n be an even integer and p a prime number. If we put

F (x, y) = xn + p(x− y)2(2x− y)2 . . . (
n

2
x− y)2

then F (x, y) is irreducible and F (x, 1) = 0 has no real root. However, F (x, y) = 1
has the following solutions:

(1, 1), (1, 2), . . . , (1,
n

2
).

In Proposition 5.1, we will show that the number of solutions (x, y) with large
enough y can be estimated in terms of r.

In 1909, Thue [23] derived the first general sharpening of Liouville’s theorem on
rational approximation to algebraic numbers, proving, if θ is algebraic of degree
n ≥ 3 and ǫ > 0, that there exists a constant c(θ, ǫ) such that

∣

∣

∣

∣

θ − p

q

∣

∣

∣

∣

>
c(θ, ǫ)

q
n
2 +1+ǫ

for all p ∈ Z and q ∈ N. It follows almost immediately, if F (x, y) is an irreducible
binary form in Z[x, y] of degree at least three and h a nonzero integer, that the
equation

(3) F (x, y) = h

has only finitely many solutions in integers x and y. Equation (3) is called a Thue
equation.

For any nonzero integer h let ω(h) denote the number of distinct prime factors

of h. In 1933, Mahler [17] proved that equation (3) has at most C
1+ω(h)
1 solutions

in co-prime integers x and y, where C1 is a positive number that depends on F
only. In 1987, Bombieri and Schmidt [5] showed that the number of solutions of
F (x, y) = h in co-prime integers x and y is at most

C2 n
1+ω(h),

where C2 is an absolute constant. Further they showed that C2 may be taken 215 if
n is sufficiently large. Note that this upper bound is independent of the coefficients
of the form F ; a result of this flavour was first deduced in 1983 by Evertse [9]. In
the introduction of [5], Bombieri and Schmidt comment that their argument can
be used to prove a more general result. For example, if Nn is the corresponding
bound in the special case h = 1, one obtains Nnn

ω(h) as a bound in the general
case. For this reason we will focus on the equation |F (x, y)| = 1.

The effective solution of an arbitrary Thue equation has its origin in Baker’s [3]
theorem that says that if κ > n + 1, then every integer solution (x, y) of equation
(3) satisfies

max{|x|, |y|} < C3 exp log
κ |h|
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where C3 is an effectively computable constant depending only on n, κ and the
coefficients of F .

Evertse and Győry (see [9] and [11]) have studied the Thue inequality

(4) 0 < |F (x, y)| ≤ h.

Define, for 3 ≤ n < 400

(N(n), δ(n)) =

(

6n7(
n
3),

5

6
n(n− 1)

)

and for n > 400

(N(n), δ(n)) = (6n, 120(n− 1)) .

They prove that if

|D| > hδn exp(80n(n− 1)),

then the number of solutions to (4) in co-prime integers x and y is at most N(n).
Győry [14] also shows, for binary form F of degree n ≥ 3, that if 0 < a < 1 and

|D| ≥ nn(3.5nh2)(2(n−1)/(1−a)),

then the number of solutions to (4) in co-prime integers x and y is at most 25n+
(n+ 2)

(

2
a + 1

4

)

, and if F is reducible then at most 5n+ (n+ 2)
(

2
a + 1

4

)

.
A great reference in this field is a work of Stewart [22]. We will follow many

arguments from [22] here. A consequence of Stewart’s main theorem in [22] is that
if the discriminant D of F is non-zero and

|D|1/n(n−1) ≥ |h| 2
n+ǫ ,

then the number of pairs of co-prime integers (x, y) for which F (x, y) = h holds is
at most

1400

(

1 +
1

8ǫn

)

n.

Bennett [4] and Okazaki [20] have obtained very good upper bounds for the
number of solutions to cubic Thue equations. Some upper bounds are given for the
number of integral solutions to quartic Thue equations in [1] and [2]. Throughout
this paper we may assume n, the degree of our binary form, is greater than 4.

We will use methods from [22] to give upper bounds on the number of “small”
solutions to (1). Then, in Section 6, we will generalize some ideas from [20, 2] to
associate a transcendental curve φ(x, y) to the binary form F (x, y). Introducing this
curve will give us the opportunity to bring the theory of linear forms in logarithms
in.

2. Reducible Forms

Let us take a brief interlude from the principal matter at hand to discuss the
much simpler situation where the form F (x, y) is reducible over Z[x, y]. In general,
equation (1) may have infinitely many integral solutions; F (x, y) could, for instance,
be a power of a linear or indefinite binary quadratic form that represents unity. If
F (x, y) is a reducible form, however, we may very easily derive a stronger version
of our main theorem under the assumption that F (x, 1) has at least two distinct
zeros.

Suppose that F (x, y) is reducible and can be factored over Z[x, y] as follows

F (x, y) = F1(x, y)F2(x, y),
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with deg(F1) ≤ deg(F2) and F1 irreducible over Z[x, y]. Therefore, the following
equations must be satisfied:

(5) F1(x, y) = ±1

and

(6) F2(x, y) = ±1.

This means the number of solutions to (1) is no more than the minimum of number
of solutions to (5) and (6).

First suppose that F1 is a linear form. Then the equation (6) can be written as
a polynomial of degree at most n − 1 in x and therefore there are no more than
2(n− 1) complex solutions to above equations.

Now let us suppose that F1 is a quadratic form. Using Bézout’s theorem from
classical algebraic geometry concerning the number of common points of two plane
algebraic curves, we conclude that (1) has at most 4(n− 2) integral solutions.

If deg(F1) ≥ 3 then Theorem 1.1 will give us an upper bound for the number of
integral solutions to (5), and therefore to (1).

3. Equivalent Forms

Our approach depends on the fact that if we transform F by the action of an
element of GL2(Z) the problem of counting solutions remains unchanged, while the
Diophantine approximation properties of F can change very drastically. Let

A =

(

a b
c d

)

and define the binary form FA by

FA(x, y) = F (ax+ by , cx+ dy).

If the determinant of matrix A is equal to ±1 then we say that FA and −FA are
equivalent to F .

Suppose that A ∈ GL2(Z) and (x, y) is a solution of (1) in integers x and y.
Then

A

(

x
y

)

=

(

ax+ by
cx+ dy

)

and (ax+ by, cx+ dy) is a solution of FA−1(x, y) = ±1 in integers x and y.
Let F be a binary form that factors in C as

n
∏

i=1

(αix− βiy).

The discriminant DF of F is given by

DF =
∏

i<j

(αiβj − αjβi)
2.

Observe that for any 2× 2 matrix A with integer entries

(7) DFA
= (detA)n(n−1)DF .

We denote by NF the number of solutions in integers x and y of the Diophantine
equation (1). If F1 and F2 are equivalent then NF1 = NF2 and DF1 = DF2 .
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Let p be a prime number and put

A0 =

(

p 0
0 1

)

, Aj =

(

0 −1
p j

)

for j = 1, . . . , p. Then we have

Z2 = ∪p
j=0AjZ

2.

Therefore the number of solutions of (1) is at most NF0 +NF1 + . . .+NFp
, where

Fj(x, y) = FAj
(x, y).

Note that by (7),
∣

∣

∣
DFAj

∣

∣

∣
≥ pn(n−1).

Therefore, if N is an upper bound for the number of solutions to (1) for binary
forms F with |DF | ≥ pn(n−1) then (p+1)N will be an upper bound for the number
of solutions to |F (x, y)| = 1 when F has a nonzero discriminant.

Assume that F (x, y) = ±1 has a solution (x0, y0). Then there is a matrix A in
GL2(Z) for which A−1(x0, y0) is (1, 0). Therefore, (1, 0) is a solution to

FA(x, y) = ±1.

We conclude that either FA or −FA is a monic form. From now on we will assume
that the binary form F (x, y) in Theorem 1.1 is monic.

4. Heights

In this section we give a brief review of the theory of height functions of poly-
nomials and binary forms.

For the polynomial G(x) = c(x−β1) . . . (x−βn) with c 6= 0, the Mahler measure
M(G) is defined by

M(G) = |c|
n
∏

i=1

max(1, |βi|).

Mahler [16] showed, for polynomial G of degree n and discriminant D, that

(8) M(G) ≥
(

D

nn

)
1

2n−2

.

The Mahler measure of an algebraic number α is defined as the Mahler measure of
the minimal polynomial of α over Q.

For an algebraic number α, the (naive) height of α, denoted by H(α), is defined
by the following identities.

H(α) = H (f(x)) = max (|an|, |an−1|, . . . , |a0|)
where f(x) = anx

n + . . .+ a1x+ a0 is the minimal polynomial of α over Z.
We have

(9)

(

n

⌊n/2⌋

)−1

H(α) ≤ M(α) ≤ (n+ 1)1/2H(α).

We will use transformations in GL2(Z) to dispense with a technical hypothesis
about the height of F . We call the polynomials f(x) and f∗(x) ∈ Z strongly
equivalent if f∗(x) = f(x+ a) for some a ∈ Z. Two algebraic integers α and α′ are
called strongly equivalent if their minimal polynomials are strongly equivalent.
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Proposition 4.1. (Győry [13]) Suppose that f(x) is a monic polynomial in Z[x]
with degree n ≥ 2 and non-zero discriminant D. There is a polynomial f∗(x) ∈ Z

strongly equivalent to f(x) so that

H (f∗(x)) < exp{n4n12 |D|6n8} < exp exp{4 (log |D|)13}.

For polynomial f(x) = anx
n+. . .+a1x+a0 with degree n and integer coefficients,

put

L(f) = |an|+ . . .+ |a1|+ |a0| .
Mahler [15] showed that

(10) 2−nL(f) ≤ M(f) ≤ L(f).

Define the absolute logarithmic height of an algebraic number as follows. Let α1

be a root of F (x, 1) = 0 and Q(α)σ the embeddings of Q(α) in C, 1 ≤ σ ≤ n. For
ρ ∈ Q(α), we respectively have n Archimedean valuations of Q(α):

|ρ|σ =
∣

∣

∣
ρ(σ)

∣

∣

∣
, 1 ≤ σ ≤ n.

We enumerate simple ideals of Q(α) by indices σ > n and define non-Archimedean
valuations of Q(α) by the formulas

|ρ|σ = (Norm p)−k,

where

k = ordp(α), p = pσ, σ > n,

for any ρ ∈ Q(α)∗. Then we have the product formula :

∞
∏

1

|ρ|σ = 1, ρ ∈ Q(α)∗.

Note that |ρ|σ 6= 1 for only finitely many ρ. We should also remark that if σ2 = σ̄1,
i.e.,

σ2(x) = σ̄1(x) for x ∈ Q(α),

then the valuations | . |σ1 and | . |σ2 are identical. We define the absolute logarithmic
height of α as

h(α) =
1

2n

∞
∑

σ=1

|log |α|σ| .

This height is called absolute because it is independent of the field in which the
number α lies.

The following Lemmata about the height of algebraic numbers will be helpful
later.

Lemma 4.2. For every non-zero algebraic number α, we have h(α−1) = h(α). For
algebraic numbers α1, . . . , αn, we have

h(α1 . . . αn) ≤ h(α1) + . . .+ h(αn)

and

h(α1 + . . .+ αn) ≤ logn+ h(α1) + . . .+ h(αn).

Proof. See [7] for a proof. �
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Lemma 4.3. (Voutier [24]) Suppose α is a non-zero algebraic number of degree n
which is not a root of unity. If n ≥ 2 then

h(α) =
1

n
logM(α) >

1

4n

(

log logn

logn

)3

.

Lemma 4.4. (Mahler [16]) If a and b are distinct zeros of polynomial P (x) with
degree n, then we have

|a− b| ≥
√
3(n+ 1)−nM(P )−n+1,

where M(P ) is the Mahler measure of P .

In the following lemma we approximate the size of f ′(α) in terms of the discrim-
inant and heights of f , where f ′ is the derivative of the polynomial f and α is a
root of f = 0.

Lemma 4.5. Let f(x) = anx
n + . . . + a1x + a0 be an irreducible polynomial of

degree n and with integral coefficients. Suppose that αm is a root of f(x) = 0. For
f ′(x) the derivative of f , we have

2−(n−1)2 |Df |
M(f)2n−2

≤ |f ′(αm)| ≤ n(n+ 1)

2
H(f) (max(1, |αm|))n−1 ,

where Df is the discriminant, M(f) is the Mahler measure and H(f) is the naive
height of f .

Proof. The right hand side inequality is trivial by noticing that

f ′(x) = nanx
n−1 + . . .+ a1x.

To see the left hand side inequality, observe that for αi, αj , two distinct roots of
f(x), we have

|αi − αj | ≤ 2max(1, |αi|)max(1, |αj |).
Then

|f ′(αm)| =
n
∏

i=1,i6=m

|αi − αm| ≥
n
∏

i=1,i6=m

|αi − αm|
max(1, |αi|)max(1, |αm|)

≥ 2n−1−n(n−1)
n
∏

j=1

n
∏

i=1,i6=j

|αi − αj |
max(1, |αi|)max(1, |αj |)

= 2−(n−1)2 |DF |
M(F )2n−2

.

�

Suppose that K is an algebraic number field of degree d over Q embedded in C. If
K ⊂ R, we put χ = 1, and otherwise χ = 2. We are given numbers γ1, . . . , γn ∈ K∗

with absolute logarithmic heights h(γj), 1 ≤ j ≤ n. Let log γ1 , . . . , log γn be
arbitrary fixed non-zero values of the logarithms. Suppose that

Aj ≥ max{dh(γj), | log γj |}, 1 ≤ j ≤ n.

Now consider the linear form

L = b1 log γ1 + . . .+ bn log γn,
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with b1, . . . , bn ∈ Z and with the parameter

B = max{1,max{bjAj/An : 1 ≤ j ≤ n}}.
For brevity we put

Ω = A1 . . . An,

C(n) = C(n, χ) =
16

n!χ
en(2n+ 1 + 2χ)(n+ 2)(4n+ 4)n+1

(

1

2
en

)χ

,

C0 = log(e4.4n+7n5.5d2 log(en)),

W0 = log(1.5eBd log(ed)).

The following is the main result of [19].

Proposition 4.6 (Matveev [19]). If log γ1, . . . , log γn are linearly independent over
Z and bn 6= 0, then

log |L| > −C(n)C0W0d
2Ω.

5. Steps of the Proof of Theorem 1.1

Suppose that (x, y) is an integral solution to (1). We will assume that F is
monic, as we may. Then we have

(x− α1y)(x− α2y) . . . (x− αny) = ±1.

Therefore, for some α ∈ {α1, α2, . . . , αn},
|x− αy| ≤ 1.

Definition. We say the pair of solution (x, y) is related to α if

α ∈ {α1, α2, . . . , αn}
and

|x− αy| = min
1≤j≤n

|x− αjy| .

Let F (x, y) be a binary form of degree n ≥ 5, discriminant D, with |D| > D0 and
Mahler measure M(F ), where D0 is an effectively computable constant depending
only on n (see the statement of Theorem 1.1). We will assume that all coefficients
of F are integer and F (x, 1) = 0 has r real roots and 2s non-real roots (r+2s = n).
Here we describe briefly the steps of our proof to the main result of this manuscript,
Theorem 1.1.

In the following steps, we fix a root of F (x, 1) = 0 and estimate the number of
solutions related to that root from above. Let α be a complex root of F (x, 1) = 0
and ᾱ be its complex conjugate. For integers x and y we have

|x− αy| = |x− ᾱy| .
Hence, a solution (x, y) of (1) is related to α if and only if it is related to ᾱ. It is,
therefore, sufficient to count the number of solutions related to one of α and ᾱ.

Proposition 5.1. For binary form F (x, y) with integer coefficients and degree n, let
α be a non-real root of F (x, 1) = 0. If a pair of integer (x, y) satisfies F (x, y) = ±1
and is related to α then

(11) |y| ≤ (n+ 1)2
(n−1)2

n

(√
3 |D|

)1/n
M(F )3−3/n,
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Proof. Let α = r + it, with t 6= 0, be a non-real root of F (x, 1) = 0. If a solution
(x, y) of (1) is related to α then ᾱ, the complex conjugate of α is also a root of
F (x, 1) = 0 and we have

∣

∣

∣

∣

x

y
− α

∣

∣

∣

∣

=

∣

∣

∣

x
y − α

∣

∣

∣
+
∣

∣

∣

x
y − ᾱ

∣

∣

∣

2
≥ |α− ᾱ|

2
.

Moreover, if β 6= α is a root of F (x, 1) = 0 then

∣

∣

∣

∣

x

y
− β

∣

∣

∣

∣

≥

∣

∣

∣

x
y − α

∣

∣

∣
+
∣

∣

∣

x
y − β

∣

∣

∣

2
≥ |β − α|

2
.

Thus

1

|y|n =

∣

∣

∣

∣

x

y
− α

∣

∣

∣

∣

∏

αi 6=α

∣

∣

∣

∣

x

y
− αi

∣

∣

∣

∣

≥ |α− ᾱ|
2

∏

αi 6=α

|α− αi|
2

= |α− ᾱ| |f ′(α)| 2−n.

By Lemma 4.4,

|α− ᾱ| ≥
√
3(n+ 1)−nM(F )−n+1.

This, together with Lemma 4.5, shows that

1

|y|n ≥
√
3(n+ 1)−n2−(n−1)2 |D|

M(f)3n−3
.

This completes our proof. �

Repeating an argument of Stewart [22] and using our assumption that absolute
value of the discriminant of F is large in terms of its degree, in Section 7 we will
show that there are at most 5(r + s) solutions (x, y) with 0 < y ≤ M(F )2.

Lemma 7.5 and 7.6 give an upper bound 2r + s for the number of solutions

(x, y) with M(F )2 < y < M(F )1+(n−1)2 . To prove Lemma 7.5 we will appeal to a
classical inequality of Lewis and Mahler (see Lemma 7.4).

For a non-real root α of F (x, 1) = 0, Proposition 5.1 says that we only need to
count the solutions (x, y) related to α with

|y| ≤ (n+ 1)2(n−1)2/n

√
3 |D|1/n

M(F )3−3/n.

The solutions with larger y must be related to a real root of F (x, 1) = 0.
Our approach to count the number of possibly remaining solutions differs from

the approach of Bombieri-Schmidt [5] and Stewart [22]. In Section 6, we will define
a logarithmic map φ(x, y). Some geometric properties of this curve lead us to obtain
an exponential gap principle in Section 9. This new type of gap principle, together
with Baker theory of linear forms in logarithms (see Proposition 4.6), will be used
in Section 10 to establish an upper bound 2r for the number of solutions (x, y) with

y ≥ M(F )1+(n−1)2 .
For some technical reasons, particularly to estimate quantities in Proposition 4.6

while counting the number of solutions (x, y) with y ≥ M(F )1+(n−1)2 , we will need



10 SHABNAM AKHTARI

to exclude a set of solutions from our search. This set is called A and is defined in
section 7. The set A contains 2r + 2s− 2 “small” solutions.

Hence, under the assumption of Theorem 1.1, there can not exist more than
11r + 4s− 2 to equation (1).

6. The Logarithmic Curve φ(x, y)

In order to count the number of “large” solutions to F (x, y) = 1, many mathe-
maticians including Bombieri and Schmidt [5] and Stewart [22] followed and refined
a general method inaugurated by Siegel and Mahler. The general line of attack to
the problem of counting “large” solutions deals rather efficiently with solutions
x, y to F (x, y) = 1, provided that max(|x|, |y|) is larger than a certain power of
the height of F . We will, in contrast, associate a transcendental curve φ(x, y) to
the binary form F (x, y). However, the reason in success of both our method and
the more classical method of Siegel and Mahler lies in the fact that x

y is a good

approximation to a root of the equation F (x, 1) = 0 when either x or y is large
enough.

Let D be the discriminant of the binary form F (x, y) and f(x) = F (x, 1). Define,
for m ∈ {1, 2, . . . , n},

(12) φm(x, y) = log

∣

∣

∣

∣

∣

D
1

n(n−2) (x− yαm)

(f ′(αm))
1

n−2

∣

∣

∣

∣

∣

and

(13) φ(x, y) = (φ1(x, y), φ2(x, y), . . . , φn(x, y)) .

We will estimate the size of f ′(αm) from below in order to give an upper bound
on the size of φ(x, y).

Lemma 6.1. Suppose that F is a monic binary form satisfying the conditions in
Theorem 1.1. Then (1, 0) is a solution to the equation |F (x, y)| = 1 and

‖φ(1, 0)‖ ≤ n log
(

|D|
1

n(n−2)M(F )
2n−2
n−2

)

,

Proof. By the definition of φ in (13),

‖φ(1, 0)‖ ≤
n
∑

m=1

log

∣

∣

∣

∣

∣

D
1

n(n−2)

|f ′(αm)|
1

n−2

∣

∣

∣

∣

∣

Lemma 4.5 estimates |f ′(αm)|
1

n−2 as follows,

|f ′(αm)| ≥ 2−(n−1)2 |D|
M(F )2n−2

.

Since DF is large, definitely larger than 2−(n−1)2 , we have

|f ′(αm)| ≥ 1

M(F )2n−2
.

This completes our proof. �

Lemma 6.2. Suppose that (x, y) is a solution to the equation |F (x, y)| = 1 for the
binary form F in Theorem 1.1. Suppose that

|x− αiy| = min
1≤j≤n

|x− αjy| .
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Then

‖φ(x, y)‖ ≤ (n+ 1)2

4
log

1

|x− αiy|
+ n log

(

|D|
1

n(n−2)M(F )
2n−2
n−2

)

,

where ‖.‖ is the Euclidean norm.

Proof. Since |F (x, y)| =
∏

1≤j≤n |x− αjy| = 1 and |x− αiy| = min1≤j≤n |x− αjy| ,
we have |x− αiy| ≤ 1. Let us assume that

∣

∣x− αsjy
∣

∣ ≤ 1, for 1 ≤ j ≤ p

and

|x− αbky| > 1, for 1 ≤ k ≤ n− p,

where 1 ≤ p, sj, bk ≤ n. Since

|x− αiy| = min
1≤j≤n

|x− αjy| ,

we have
∣

∣log
∣

∣x− αsjy
∣

∣

∣

∣ ≤ |log |x− αiy|| .
We also have

∏

k

|x− αbky| =
1

∏

j

∣

∣x− αsjy
∣

∣

.

Therefore, for any 1 ≤ k ≤ n− p, we have

log |x− αbky| ≤ p log
1

|x− αiy|
.

From here and the definition of φ(x, y) (see (13)), we conclude that

‖φ(x, y)‖ ≤
n
∑

m=1

log

∣

∣

∣

∣

∣

D
1

n(n−2)

|f ′(αm)|
1

n−2

∣

∣

∣

∣

∣

+ (n− p)p |φi(x, y)| + p |φi(x, y)|

=

n
∑

m=1

log

∣

∣

∣

∣

∣

D
1

n(n−2)

|f ′(αm)|
1

n−2

∣

∣

∣

∣

∣

+
(

(n+ 1)p− p2
)

|φi(x, y)| .

The function f(p) = (n+ 1)p− p2 assumes its maximum value (n+1)2

4 at p = n+1
2 .

To complete the proof we use our estimate in Lemma 6.1. �

Lemma 6.3. Let F be an irreducible monic binary form of degree n. Suppose that

(x, y) is a solution to the Thue equation F (x, y) = ±1 with y ≥ M(F )1+(n−1)2 .
Then

‖φ(1, 0)‖ < ‖φ(x, y)‖ .

Proof. Let α1, . . ., αn be the roots of F (z, 1) = 0. Then

(
x

y
− α1) . . . (

x

y
− αn) =

±1

yn
.

There must exist a root αj so that
∣

∣

∣

x
y − αj

∣

∣

∣
≥ 1

y . By Lemma 4.5 and since y ≥

M(F )1+(n−1)2 , the absolute value of the term φj(x, y) alone exceeds n log
(

|D|
1

n(n−2)M(F )
2n−2
n−2

)

.

By Lemma 6.1, our proof is complete. �
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Let U be the unit group of the algebraic number field Q(α). We define the
mapping τ on U to be the obvious restriction of the embedding of Q(α) in Cn; i.e.
τ : u 7−→ (σ1(u), σ2(u) . . . σn(u)), where σi(u) are algebraic conjugates of u. By
Dirichlet’s unit theorem, we have a sequence of mappings

(14) τ : U → V ⊂ Cn

and

(15) log : V → Λ,

where Λ is a (r + s − 1)-dimensional lattice in Rn and the mapping log is defined
as follows.
For (x1, . . . , xn) ∈ V , let

log(x1, x2, . . . , xn) := (log |x1|, log |x2|, . . . , log |xn|).
Suppose that {λ2, . . . , λr+s} is a system of fundamental units of Q(α). Then

log (τ(λ2)) , . . . , log (τ(λr+s)) form a basis for the lattice Λ. Moreover, every basis
for Λ is associated with a system of fundamental units of Q(α). So we will fix a
system of fundamental units {λ2, . . . , λr+s} so that log (τ(λ2)) , . . . , log (τ(λr+s))
are respectively first to r + s− 1-th successive minima of the lattice Λ (see [6], for
the definition of successive minima). Therefore,

‖log (τ(λ2))‖ ≤ . . . ≤ ‖log (τ(λr+s))‖ ,
where ‖.‖ is the Euclidean norm. If (x, y) is a pair of solution to (1) then x−αiy

x−αjy
is

a unit in Q(αi, αj) and we may write

(16) φ(x, y) = φ(1, 0) +

r+s
∑

k=2

mk log (τ(λk)) , mk ∈ Z.

7. Layers of Solutions

As we defined in Section 5, a solution (x, y) is said to be related to αi if

|x− αiy| = min
1≤j≤n

|x− αjy| .

Fix a positive real number Y0. Let us first find a bound for the number of
solutions (x, y) with 0 < y ≤ Y0. We may suppose that F (x, y) is a monic form
with integral coefficients and has the smallest Mahler measure among all equivalent
monic forms. Following Stewart [22] and Bombieri and Schmidt [5], we will estimate
the number of solutions (x, y) to (1) for which 0 < y ≤ Y0. For binary form

F (x, y) = (x − α1y) . . . (x − αny)

put
Li(x, y) = x− αiy

for i = 1, . . . , n. Then

Lemma 7.1. Suppose F is a monic binary form with integral coefficients. Then
for every solution (x, y) of (1) we have

1

Li(x, y)
− 1

Lj(x, y)
= (βj − βi)y,

where β1,. . . , βn are such that the form

J(u,w) = (u− β1w) . . . (u− βnw)
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is equivalent to F .

Proof. This is Lemma 4 of [22] and Lemma 3 of [5], by taking (x0, y0) = (1, 0). �

For every solution (x, y) 6= (1, 0) of (1), fix j = j(x, y) with

|Lj(x, y)| ≥ 1.

Then, by Lemma 7.1,

(17)
1

|Li(x, y)|
≥ |βj − βi||y| − 1.

For complex conjugate β̄j of βj , where j = j(x, y), we also have

1

|Li(x, y)|
≥ |β̄j − βi||y| − 1.

Hence
1

|Li(x, y)|
≥ |Re(βj)− βi||y| − 1,

where Re(βj) is the real part of βj . We now choose an integer m = m(x, y) with
|Re(βj)− βj | ≤ 1/2, and we obtain

(18)
1

|Li(x, y)|
≥
(

|m− βi| −
1

2

)

|y| − 1,

for i = 1, . . . , n.
For 1 ≤ i ≤ n, Let Xi be the set of solutions to (1) with 1 ≤ y ≤ Y0 and

|Li(x, y)| ≤ 1
2y .

Remark 1. When αk and αl are complex conjugates, Xl = Xk and therefore
we only need to consider r + s different sets Xi.

Remark 2. If a solution (x, y) with 1 ≤ y ≤ Y0 is related to αi then (x, y) ∈ Xi.

Remark 3. A solution (x, y) may belong to more than one set Xi.

Lemma 7.2. Suppose (x1, y1) and (x2, y2) are two distinct solutions in Xi with
y1 ≤ y2. Then

y2
y1

≥ 2

7
max(1, |βi(x1, y1)−m(x1, y1)|).

Proof. This is Lemma 5 of [22] and Lemma 4 of [5]. �

Lemma 7.3. Suppose (x, y) is a solution to (1) with y > 0 and |Li(x, y)| > 1
2y .

Then

|m(x, y)− βi(x, y)| ≤
7

2
.

Proof. This is Lemma 6 of [22]. �

By Lemma 7.1 the form

J(u,w) = (u− β1w) . . . (u− βnw)

is equivalent to F (x, y) and therefore the form

Ĵ(u,w) = (u− (β1 −m)w) . . . (u− (βn −m)w)
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is also equivalent to F (x, y). Therefore, since we assumed that F has the smallest
Mahler measure among its equivalent forms, we get

(19)

n
∏

i=1

max(1, |β1(x, y)−m(x, y)|) ≥ M(F ).

For each set Xi that is not empty, let (x(i), y(i)) be the element with the largest
value of y. Let X be the set of solutions of (1) with 1 ≤ y ≤ Y0 minus the elements
(x(1), y(1)), . . . , (x(r+s), y(r+s)). Suppose that, for integer i, the set Xi is non-empty.
Index the elements of Xi as

(x
(i)
1 , y

(i)
1 ), . . . , (x(i)

v , y(i)v ),

so that y
(i)
1 ≤ . . . ≤ y

(i)
v (note that (x

(i)
v , y

(i)
v ) = (x(i), y(i))). By Lemma 7.2

2

7
max

(

1,
∣

∣

∣
βi(x

(i)
k , y

(i)
k )
∣

∣

∣

)

≤
y
(i)
k+1

y
(i)
k

for k = 1 . . . , v − 1. Hence
∏

(x,y)∈X
⋂

Xi

2

7
max

(

1,
∣

∣

∣
βi(x

(i)
k , y

(i)
k )
∣

∣

∣

)

≤ Y0.

For (x, y) in X but not in Xi we have, by Lemma 7.3,

2

7
max

(

1,
∣

∣

∣
βi(x

(i)
k , y

(i)
k )
∣

∣

∣

)

≤ 1.

Thus
∏

(x,y)∈X

2

7
max

(

1,
∣

∣

∣
βi(x

(i)
k , y

(i)
k )
∣

∣

∣

)

≤ Y0.

Let |X| be the cardinality of X. Comparing the above inequality with (19), we
obtain

(20)

((

2

7

)n

M(F )

)|X|
≤ Y r+s

0 ,

for we have r + s different Xi . Therefore, by (8), we have
(

2

7

)n

M(F ) ≥ M(F )θ.

Here θ = θ(D) may be taken equal to 1
2 , for the discriminant D is assumed to be

very large. From here and by (20),

|X| ≤ (r + s) log Y0

θ logM(F )
.

Thus, when Y0 = M(F )2 and DF is large enough, we have |X| < 4(r + s). Con-
sequently, there are at most 5(r + s) solutions (x, y) with 0 < y ≤ M(F )2. We
should remark here that we repeat Stewart’s [22] approach for counting solutions
with small y and no improvement has taken place in estimating θ. The reason that
our value for θ is smaller is that we are working with forms with larger discriminant.

In order to count the number of solutions (x, y) withM(F )2 < y < M(F )1+(n−1)2 ,
we will need the following refinement of an inequality of Lewis and Mahler:
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Lemma 7.4. Let F be a binary form of degree n ≥ 3 with integer coefficients and
nonzero discriminant D. For every pair of integers (x, y) with y 6= 0

min
α

∣

∣

∣

∣

α− x

y

∣

∣

∣

∣

≤ 2n−1nn−1/2 (M(F ))
n−2 |F (x, y)|

|D|1/2|y|n ,

where the minimum is taken over the zeros α of F (z, 1).

Proof. This is Lemma 3 of [22]. �

Lemma 7.5. Let F (x, y) be a binary form with integgral coefficients, degree n and
discriminant D, where |D| ≥ D0(n). Suppose that αi is a real root of F (z, 1) = 0.
Then related to αi, there are at most 2 solutions for equation (1) in integers x and

y with M(F )2 < y < M(F )1+(n−1)2 .

Proof. Assume that (x1, y1), (x2, y2) and (x3, y3) are three distinct solutions to (1)
and all related to αi with y3 > y2 > y1 > M(F )2. By Lemma 7.4, for j = 1, 2, we
have

∣

∣

∣

∣

xj+1

yj+1
− xj

yj

∣

∣

∣

∣

≤ 2nnn−1/2 (M(F ))n−2

|D|1/2|yj |n
.

Since (x1, y1), (x2, y2) and (x3, y3) are distinct solutions, for j = 1, 2, we have
|xj+1yj − xjyj+1| ≥ 1. Therefore,

∣

∣

∣

∣

1

yjyj+1

∣

∣

∣

∣

≤
∣

∣

∣

∣

xj+1

yj+1
− xj

yj

∣

∣

∣

∣

≤ M(F )n−2

|yj |n
.

This is because we assumed that |D| is large. Thus,

(21)
yn−1
j

M(F )n−2
≤ yj+1.

Following Stewart [22], we define δj , for j = 1, 2, 3, by

yj = M(F )1+δj .

By (8), M(F ) > 1 and so (21) implies that

(n− 1)δj ≤ δj+1.

From here, we conclude that

y3 ≥ M(F )1+(n−1)2 .

In other words, related to each real root αi, there are at most 2 solutions in x and

y with M(F )2 < y < M(F )1+(n−1)2 . �

Lemma 7.6. Let F (x, y) be a binary form with integral coefficients, degree n and
discriminant D, where |D| ≥ D0(n). Suppose that αi is a non-real root of F (z, 1) =
0. Then related to αi, there exists at most 1 solution to equation (1) in integers x

and y with M(F )2 < y < M(F )1+(n−1)2 .

Proof. Assume that (x1, y1) and (x2, y2) are two distinct solutions to (1) and all
related to αi, a non-real root of F (z, 1) = 0, with y2 > y1 > M(F )2. Similar to
(21) in the proof of Lemma 7.5, we have

yn−1
1

M(F )n−2
≤ y2.
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This contradicts (11), since y1 > M(F )2 and M(F ) is large. Therefore, related
to each non-real αi, there is at most 1 solutions in x and y with M(F )2 < y <

M(F )1+(n−1)2 . �

So we conclude that there are at most 7r + 6s solutions (x, y) with 0 < y <

M(F )1+(n−1)2 to equation (1) when F (z, 1) = 0 has r real roots and 2s non-real
ones.

Stewart [22] invented the above method to count all solutions with y > M(F )2.
He obtained the bound

n

(

4 +
log 331890

log(n− 1)

)

for the number of solutions to (1) with y > M(F )2 (see page 815 of [22]). Our

method allows us to save the summand log 331890
log(n−1) . This gives us a better bound for

binary forms with smaller degree.
The rest of paper is devoted to count the number of solutions (x, y) with y ≥

M(F )1+(n−1)2 . As we commented in Section 5, we need to consider this case only
when we study the solutions (x, y) related to the real roots of F (x, 1) = 0.

Lemma 7.7. For every fixed integer m, there are at most 2r + 2s − 2 solutions
(x, y) to (1) for which in (16), mr+s = m.

Proof. Let S be the (r + s− 1)-dimensional affine space of all vectors

φ(1, 0) +

r+s
∑

i=2

µi log (τ(λi)) (µi ∈ R).

Let µr+s = m. Then the points

φ(1, 0) +

r+s−1
∑

i=2

µi log (τ(λi)) +m log (τ(λr+s))

form an (r+ s− 2)-dimensional hyperplane S1 of S. Put f(t) = F (t, 1). For t ∈ R,
define y(t) and x(t) as follows:

y(t) := |f(t)|−1/n,

x(t) := ty(t).

Similar to φ(x, y), we define the curve φ(t) on R:

φ(t) = (φ1(t), φ2(t), . . . , φn(t)) ,

where, for 1 ≤ m ≤ n,

φm(t) = log

∣

∣

∣

∣

∣

D
1

n(n−2) (x(t) − αmy(t))

|f ′(αm)|
1

n−2

∣

∣

∣

∣

∣

.

Observe that for an integral solution (x, y) to (1) and φ(x, y) defined in (13), we
have

φ(x, y) = φ

(

x

y

)

.

Let ~N = (N1, . . . , Nn) ∈ S be the normal vector of S1. Then the number of
times that the curve φ(t) intersects S1 equals the number of solutions in t to

(22) ~N.φ(t) = 0.
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We have

lim
t→α+

i

log |t− αi| = −∞

and

lim
t→α−

i

log |t− αi| = −∞.

Note that if αi is a non-real root of F (x, 1) then ᾱi, the complex conjugate of αi is
also a root and we have

log |t− αi| = log |t− ᾱi|.
If α1, . . . , αr are the reals roots and αr+1, . . . , αr+s, αr+s+1, . . . , αr+2s are non-real

roots with αr+s+k = ᾱr+k, then the derivative d
dt

(

~N.φ(t)
)

can be written as P (t)
Q(t) ,

where Q(t) = (t− α1) . . . (t− αr)(t− αr+1) . . . (t− αr+s) and P (t) is a polynomial
of degree r + s − 1. Therefore, the derivative has at most r + s − 1 zeros and
consequently, the equation (22) can not have more than 2r + 2s− 2 solutions. �

Definition of the set A. Assume that equation (1) has more than 2r+ 2s− 2
solutions. Then we can list (1, 0) and 2r + 2s− 3 other solutions (xi, yi) (1 ≤ i ≤
2r + 2s− 3), so that ‖φ(xi, yi)‖ are the smallest among all ‖φ(x, y)‖, where (x, y)
varies over all non-trivial pairs of solutions. We denote the set of all these 2r+2s−2
solutions by A.

The important property of A is that for every solution (x0, y0) ∈ A and every

solution (x, y) 6∈ A to (1) with y ≥ M(F )1+(n−1)2 , by Lemma 6.3 and the definition,
we have

‖φ(x0, y0)‖ ≤ ‖φ(x, y)‖ .

Corollary 7.8. Let (x, y) 6∈ A be a solution to (1) with y ≥ M(F )1+(n−1)2 . Then

‖log (τ(λ2))‖ ≤ . . . ≤ ‖log (τ(λr+s))‖ ≤ 2 ‖φ(x, y)‖ .

Proof. Since we have assumed that ‖log (τ(λ2))‖ ≤ . . . ≤ ‖log (τ(λr+s))‖, it is
enough to show that ‖log (τ(λr+s))‖ ≤ 2 ‖φ(x, y)‖. By Lemma 7.7, there is at least
one small solution (x0, y0) ∈ A so that

φ(x, y) − φ(x0, y0) =
r+s
∑

i=2

ki log (τ(λi)) ,

with kn 6= 0. Since {log (τ(λi))} is a reduced basis for the lattice Λ in (15), by
Lemma 6.3 and from the definition of A we conclude that

‖log (τ(λr+s))‖ ≤ ‖φ(x, y) − φ(x0, y0)‖ ≤ 2 ‖φ(x, y)‖ .

�

Lemma 7.9. Suppose (x, y) 6∈ A. Then

‖φ(x, y)‖ ≥ 1

2
log

(

|D|
1

n(n−1)

2

)

.
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Proof. Let (x′, y′) ∈ A be a pair of solutions to equation (1) and αi and αj be two
distinct roots of the polynomial F (x, 1). We have

∣

∣

∣
eφi(x

′,y′)−φi(x,y) − eφj(x
′,y′)−φj(x,y)

∣

∣

∣
=

∣

∣

∣

∣

x′ − y′αi

x− yαi
− x′ − y′αj

x− yαj

∣

∣

∣

∣

=
|αi − αj | |xy′ − yx′|
|x− yαi||x− yαj |

≥ |αi − αj |
|x− yαi||x− yαj |

.

The last inequality follows from the fact that |xy′ − yx′| is a non-zero integer. Since
|φi| < ‖φ‖ and ‖φ(x′, y′)‖ < ‖φ(x, y)‖, we may conclude

(

2e2‖φ(x,y)‖
)

n(n−1)
2 ≥

∏

1≤i<j≤n

∣

∣

∣
eφi(x

′,y′)−φi(x,y) − eφj(x
′,y′)−φj(x,y)

∣

∣

∣

≥
∏

1≤i<j≤n

∣

∣

∣

∣

x′ − y′αi

x− yαi
− x′ − y′αj

x− yαj

∣

∣

∣

∣

≥
∏

1≤i<j≤n

|αi − αj |
|x− yαi||x− yαj |

=
√

|D|.

�

8. Distance Functions

Suppose that (x, y) 6= (1, 0) is a solution to (1) and let t = x
y . We have

φ(x, y) = φ(t) =

n
∑

i=1

log
|t− αi|

|f ′(αi)|
1

n−2

bi,

where,

bi =
1

n
(−1, . . . ,−1, n− 1,−1, . . . ,−1).

Without loss of generality, we will suppose that the pair of solution (x, y) is related
to αn;

|x− αny| = min
1≤j≤n

|x− αjy| .

We may write

(23) φ(x, y) = φ(t) =
n−1
∑

i=1

log
|t− αi|

|f ′(αi)|
1

n−2

ci + Enbn,

where, for 1 ≤ i ≤ n− 1,

(24) ci = bi +
1

n− 1
bn, En = log

|t− αn|
|f ′(αn)|

1
n−2

− 1

n− 1

n−1
∑

i=1

log
|t− αi|

|f ′(αi)|
1

n−2

One can easily observe that, for 1 ≤ i ≤ n,

(25) ci ⊥ bn, and ‖ci‖ =

√
n2 − 3n+ 2

n− 1
.
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Lemma 8.1. Let

Ln =

{

n−1
∑

i=1

log
|αn − αi|
|f ′(αi)|

1
n−1

ci + zbn, z ∈ R

}

.

Suppose that (x, y) is a solution to (1) with

|x− αny| = min
1≤j≤n

|x− αjy| and y > M(F )1+(n−1)2 .

Then the distance between φ(x, y) and the line Ln is less than

1

M(F )n(n−1)
exp

(−4 ‖φ(x, y)‖
(n+ 1)2

)

.

Proof. The distance between φ(x, y) and Ln is equal to
∥

∥

∥

∥

∥

n−1
∑

i=1

log
|t− αi|
|αn − αi|

ci

∥

∥

∥

∥

∥

,

where t = x
y . We will show that when i 6= n− 1,

∣

∣

∣

∣

log
|t− αi|
|αn − αi|

∣

∣

∣

∣

<
|t− αn|

mini6=j{|αj − αi|}
,

We will consider two cases |t−αi| > |αn−αi| and |t−αi| ≤ |αn−αi|. First assume
that |t− αi| > |αn − αi|. We have

∣

∣

∣

∣

log
|t− αi|
|αn − αi|

∣

∣

∣

∣

= log
|t− αi|
|αn − αi|

≤ log

( |t− αn|
|αn − αi|

+ 1

)

<
|t− αn|
|αi − αn|

.

Now assume that |t− αi| ≤ |αn − αi|. Then
∣

∣

∣

∣

log
|t− αi|
|αn − αi|

∣

∣

∣

∣

= log
|αn − αi|
|t− αi|

≤ log

( |t− αn|
|t− αi|

+ 1

)

<
|t− αn|
|αi − t| .

Note that, since we assumed t is closer to αn,

|αi − t| ≥ |αi − t|+ |αn − t|
2

≥ |αi − αn|
2

.

Hence, we obtain

(26)

∣

∣

∣

∣

log
|t− αi|
|αn − αi|

∣

∣

∣

∣

< 2
|t− αn|

m
,

where m = mini6=j{|αj − αi|}. This, together with (25), gives
∥

∥

∥

∥

∥

n−1
∑

i=1

log
|t− αi|
|αn − αi|

ci

∥

∥

∥

∥

∥

<
2
√

n(n2 − 3n+ 2)

n− 1

|u|
m

,

where u = t− αn. Using (8), we obtain

(27)

∥

∥

∥

∥

∥

n−1
∑

i=1

log
|t− αi|
|αn − αi|

ci

∥

∥

∥

∥

∥

<
2M(F )n−1(n+ 1)n

√

n(n2 − 3n+ 2)√
3(n− 1)

|u|.

We shall estimate |u| now. From Lemma 6.2 we have

‖φ(x, y)‖ − n log
(

|D| 1
n(n−2)M(F )

2n−2
n−2

)

≤ (n+ 1)2

4
log

1

|x− αny|
,
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which implies

log |yu| < −4 ‖φ(x, y)‖
(n+ 1)2

+
4n

(n+ 1)2
log
(

|D| 1
n(n−2)M(F )

2n−2
n−2

)

.

Therefore,

|u| < exp

(−4 ‖φ(x, y)‖
(n+ 1)2

) exp
(

4n
(n+1)2 log

(

|D| 1
n(n−2)M(F )

2n−2
n−2

))

|y|

Comparing this with (27), since we took n ≥ 5 and |y| > M(F )1+(n−1)2 , our proof
is complete. �

For 3 distinct roots of F (x, 1) = 0, say αi, αj and αn, let us define

Ti,j(t) := log

∣

∣

∣

∣

(t− αi)(αn − αj)

(t− αj)(αn − αi)

∣

∣

∣

∣

,

so that for a pair of solution (x, y) 6= (1, 0),

Ti,j(x, y) = Ti,j(t) = log

∣

∣

∣

∣

αn − αi

αn − αj

∣

∣

∣

∣

+ log

∣

∣

∣

∣

t− αj

t− αi

∣

∣

∣

∣

= log |λi,j |+
r+s
∑

k=2

mk log

∣

∣

∣

∣

λk

λ′
k

∣

∣

∣

∣

,(28)

where t = x
y , λi,j = αn−αi

αn−αj
, mk = mk(x, y) ∈ Z, and for 2 ≤ k ≤ r + s, λk are

the fundamental units of number field Q(αi) and σ(λk) = λ′
k are the fundamental

units of the number field Q(αj) and index σ is the Q-isomorphism from Q(αi) to
Q(αj) such that σ(αi) = αj . The function T (x, y) cries out to be treated by Baker’s
theory of linear forms in logarithms. For this we will wait till the very last part of
the paper, Section 10, where we estimate |Ti,j | from below. The following lemma
gives an upper bound upon |Ti,j |.

Lemma 8.2. Let (x, y) be a pair of solution to (1) with |y| > M(F )1+(n−1)2 . Then
there exists a pair (i, j) for which

|Ti,j(x, y)| <

√

2
n−2

M(F )n(n−1)
exp

(−4 ‖φ(x, y)‖
(n+ 1)2

)

.

Proof. Let us define

βi =

{

αi if i ≤ n− 1
βi−n+1 if i ≥ n.
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Note that

n−2
∑

k=1

n−1
∑

i=1

log2
∣

∣

∣

∣

(t− βi)(αn − βi+k)

(αn − βi)(t− βi+k)

∣

∣

∣

∣

= 2(n− 2)
n−1
∑

i=1

log2
∣

∣

∣

∣

t− αi

αn − αi

∣

∣

∣

∣

− 4
∑

j 6=i
j 6=n

log

∣

∣

∣

∣

t− αi

αn − αi

∣

∣

∣

∣

log

∣

∣

∣

∣

t− αj

αn − αj

∣

∣

∣

∣

= 2(n− 2)

n−1
∑

i=1

log2
∣

∣

∣

∣

t− αi

αn − αi

∣

∣

∣

∣

− 2

n−1
∑

i=1

log

∣

∣

∣

∣

t− αi

αn − αi

∣

∣

∣

∣

∑

j 6=i
j 6=n

log

∣

∣

∣

∣

t− αj

αn − αj

∣

∣

∣

∣

= 2(n− 2)

n−1
∑

i=1

log2
∣

∣

∣

∣

t− αi

αn − αi

∣

∣

∣

∣

− 2

n−1
∑

i=1

log

∣

∣

∣

∣

t− αi

αn − αi

∣

∣

∣

∣

log

∣

∣

∣

∣

αn − αi

ynf ′(αn)(t− αn)(t− αi)

∣

∣

∣

∣

= (2n− 2)

n−1
∑

i=1

log2
∣

∣

∣

∣

t− αi

αn − αi

∣

∣

∣

∣

− 2 log

∣

∣

∣

∣

1

ynf ′(αn)(t− αn)

∣

∣

∣

∣

n−1
∑

i=1

log

∣

∣

∣

∣

t− αi

αn − αi

∣

∣

∣

∣

= (2n− 2)

n−1
∑

i=1

log2
∣

∣

∣

∣

t− αi

αn − αi

∣

∣

∣

∣

− 2 log2
∣

∣

∣

∣

1

ynf ′(αn)(t− αn)

∣

∣

∣

∣

On the other hand, it follows from the proof of Lemma 8.1 that the distance between
φ(x, y) and the line

Ln =

n−1
∑

i=1

log
|αn − αi|
|f ′(αi)|

1
n−1

ci + zbn, z ∈ R,

is equal to
∥

∥

∥

∑n−1
i=1 log |t−αi|

|αn−αi|ci
∥

∥

∥
. Further, by the definition of ci in (24), we have

∥

∥

∥

∥

∥

n−1
∑

i=1

log
|t− αi|
|αn − αi|

ci

∥

∥

∥

∥

∥

2

=

∥

∥

∥

∥

∥

n−1
∑

i=1

log

( |t− αi|
|αn − αi|

)

− 1

n− 1

∣

∣

∣

∣

log
1

ynf ′(αn)(t− αn)

∣

∣

∣

∣

ei

∥

∥

∥

∥

∥

2

=

n−1
∑

i=1

log2
( |t− αi|
|αn − αi|

)

− 1

n− 1

∣

∣

∣

∣

log
1

ynf ′(αn)(t− αn)

∣

∣

∣

∣

=

n−1
∑

i=1

log2
∣

∣

∣

∣

t− αi

αn − αi

∣

∣

∣

∣

− 1

n− 1
log

∣

∣

∣

∣

1

ynf ′(αn)(t− αn)

∣

∣

∣

∣

n−1
∑

i=1

log

∣

∣

∣

∣

t− αi

αn − αi

∣

∣

∣

∣
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where {ei} is the standard basis for Rn−1. So, there must be a pair (i, j), for
which the following holds:

log2
∣

∣

∣

∣

(t− αi)(αn − αj)

(t− αj)(αn − αi)

∣

∣

∣

∣

<
1

(n− 1)(n− 2)

n−2
∑

k=1

n−1
∑

i=1

log2
∣

∣

∣

∣

(t− βi)(αn − βi+k)

(αn − βi)(t− βi+k)

∣

∣

∣

∣

=

=
2(n− 1)

(n− 1)(n− 2)

∥

∥

∥

∥

∥

n−1
∑

i=1

log
|t− αi|
|αn − αi|

ci

∥

∥

∥

∥

∥

2

.

Therefore, by Lemma 8.1

|Ti,j(x, y)| =
∣

∣

∣

∣

log

∣

∣

∣

∣

(t− αi)(αn − αj)

(t− αj)(αn − αi)

∣

∣

∣

∣

∣

∣

∣

∣

<

√

2
n−2

M(F )(n−2)(n−3)
exp

(−4 ‖φ(x, y)‖
(n+ 1)2

)

.

�

9. Exponential Gap Principle

Here our goal is to prove

Theorem 9.1. Suppose that (x1, y1), (x2, y2) and (x3, y3) are three pairs of non-
trivial solutions to (1) with

|xj − αnyj| ≤ 1,

for j ∈ {1, 2, 3}. If r1 ≤ r2 ≤ r3 then

r3 > M(F )n(n−1) exp

(

4r1
(n+ 1)2

)
√
3

256

(

log log n

logn

)6

,

where rj = ‖φ(xj , yj)‖.

Proof. Suppose that (x1, y1), (x2, y2) and (x3, y3) are three pairs of non-trivial
solutions to (1). We note that three point φ1 = φ(x1, y1), φ2 = φ(x2, y2) and
φ3 = φ(x3, y3) form a triangle ∆. The length of each side of ∆ is less than 2r3.
Lemma 8.1 shows that the height of ∆ is at most

2

M(F )n(n−1)
exp

( −4r1
(n+ 1)2

)

.

Therefore, the area of ∆ is less than

(29)
4

M(F )n(n−1)
r3 exp

( −4r1
(n+ 1)2

)

.

To estimate the area of ∆ from below, we note that x − αiy is a unit in Q(αi)
when (x, y) is a pair of solution to (1). This is because

F (x, y) = (x− α1y)(x− α2y) . . . (x− αny) = ±1.

Define the vector ẽ as follows

ẽ = φ(x1, y1)− φ(x2, y2) =

(

log

∣

∣

∣

∣

x1 − α1y1
x2 − α1y2

∣

∣

∣

∣

, . . . , log

∣

∣

∣

∣

x1 − αny1
x2 − αny2

∣

∣

∣

∣

)

.
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Since x1 − αiy1 and x2 − αiy2 are units in Q(αi), by Lemma 4.3 we have

‖ẽ‖ ≥ nh(α1) >
1

4

(

log logn

log n

)3

.

Now we can estimate each side of ∆ from below to conclude that the area of the
triangle ∆ is greater than √

3

64

(

log logn

logn

)6

.

Comparing this with (29) we conclude that

4

M(F )n(n−1)
r3 exp

( −4r

(n+ 1)2

)

>

√
3

64

(

log log n

logn

)6

.

The result is immediate from here. �

Remark. If all the roots of polynomial F (x, 1) are real then we can use the
following lower bound for the size of vector ẽ:

‖ẽ‖ ≥ n log2
1 +

√
5

2

(see exercise 2 on page 367 of [21]). Now an argument similar to the proof of
Theorem 9.1 shows that in this case,

r3 >
M(F )n(n−1)

2
exp

(

4r1
(n+ 1)2

)
√
3

8
n2 log4

1 +
√
5

2
.

10. Linear Forms in Logarithms

Let σ be the Q-isomorphism from Q(αi) to Q(αj) such that σ(αi) = αj . Suppose
that there are three solutions (x1, y1), (x2, y2), (x3, y3) to (1) satisfying the following
conditions

(xl, yl) 6∈ A,

yl > M(F )1+(n−1)2

and

|xl − αnyl| = min
1≤i≤n

|xl − αiyl| l ∈ {1, 2, 3}.

Assume that r1 ≤ r2 ≤ r3, where rj = ‖φ(xj , yj)‖. We will apply Matveev’s lower
bound to

Ti,j(x3, y3) = Ti,j(t3) = log

∣

∣

∣

∣

αn − αi

αn − αj

∣

∣

∣

∣

+ log

∣

∣

∣

∣

t3 − αj

t3 − αi

∣

∣

∣

∣

= log |λi,j |+
r+s
∑

k=2

nk log

∣

∣

∣

∣

λk

λ′
k

∣

∣

∣

∣

,

where (i, j) is chosen according to Lemma 8.2, t3 = x3

y3
and nk = nk(x3, y3) ∈ Z. In

order to apply Proposition 4.6, we shall find appropriate values for the quantities
Ak and B in the Proposition. Since Proposition 4.6 gives a better lower bound for
linear forms in fewer number of logarithms, we will assume that λi,j and λk

λ′

k

are

multiplicatively independent and Ti,j(x5, y5) is a linear form in r + s logarithms.
Recall that r + s ≤ r + 2s = n.
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Let λ be a unit in the number field Q(αi) and λ′ be its corresponding algebraic
conjugate in Q(αj). Let d be the degree of Q(αi, αj) over Q. Then λ/λ′ is a unit
in Q(αi, αj) and

dh

(

λ

λ′

)

=
1

2

∣

∣

∣

∣

log

(

τ

(

λ

λ′

))∣

∣

∣

∣

1

=
1

2
|log (τ(λ))|1 +

1

2
|log (τ(λ′))|1

= nh(λ) + nh(λ′).

We also have

h(λ′) = h(λ) =
1

2n
|log (τ(λ))|1 .

Here | |1 is the L1 norm on Rs+t−1 and mappings τ and log are defined in (14) and
(15). So we have

h(λ) =
1

2n
|log (τ(λ))|1 ≤

√
2

2n
‖log (τ(λ))‖ ,

where ‖.‖ is the L2 norm on Rr+s−1 . So when λ is a unit

(30) max{dh( λ
λ′ ),

∣

∣

∣

∣

log(
λ

λ′ )

∣

∣

∣

∣

} ≤
√
2 ‖log (τ(λ))‖ .

Therefore, by Corollary 7.8 we may choose the values Ak so that

Ak ≤ 2
√
2r1, for 2 ≤ k ≤ r + s.

Let d1 be the degree of Q(αi, αj , αn) over Q. Then d1 ≤ n(n − 1)(n − 2). We
shall find a value for A1 that is at least max{dh(γ1), | log γ1|} (see the statement of
Proposition 4.6). The following Lemma allows us to take

A1

d1
= 2 log 2 +

4√
n
r1.

Lemma 10.1. Let F be a binary form of degree n at least 3 and with integral

coefficients. Assume (x, y) is a solution to (1) with y > M(F )1+(n−1)2 . Then we
have

h

(

αk − αi

αk − αj

)

≤ 2 log 2 +
4√
n
‖φ(x, y)‖.

Proof. Let, βi = x− yαi. We have

αk − αi

αk − αj
=

βk − βi

βk − βj
.

Thus, Lemma 4.2 implies that

(31) h

(

αk − αi

αk − αj

)

≤ 2 log 2 + 4h(βk).

Set vi = log |βi| = φi(x, y)−φi(1, 0) for i = 1, 2, . . . n and ~v = (v1, v2, . . . , vn). Since
βk is a unit, we have

h(βk) =
1

2n

n
∑

i=1

|vi| =
1

2n
(s1, s2, . . . , sn) · ~v
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for some s1, s2, . . . , sn ∈ {+1,−1}. Noting that ‖(s1, s2, . . . , sn)‖ =
√
n, we get

h(βk) ≤
1

2
√
n
‖~v‖.

On the other hand, by Lemma 6.3 we have

‖~v‖ ≤ ‖φ(x, y)‖+ ‖φ(1, 0)‖ ≤ 2‖φ(x, y)‖.
This, together with (31), completes the proof. �

Put
B = max {1,max{bkAk/A1 : 1 ≤ k ≤ r + s}} .

To estimate B, we note that since we have chosen τ(λk) (2 ≤ k ≤ r + s) so that
they are successive minima for the lattice Λ (see Section 6), we have

mk ‖log τ(λk)‖ ≤ ‖φ(x3, y3)‖ + ‖φ(1, 0)‖ < 2 ‖φ(x3, y3)‖ .
Hence, we may take B ≤ r3, since A1 > 2. We estimate other values of the
quantities in Proposition 4.6 as follows:

d ≤ n!,

Cn ≤ 60 exp(n)(n+ 1)n+122n+2(n+ 2)(n+ 5/2)n2

n!
,

C0 ≤ 4 logn!,

W0 ≤ 2 log r3.

Proposition 4.6 implies that

logTi,j(x3, y3) > −K log r3r
r+s
1

> −K log r3r
n
1 ,

where the constant K can be taken equal to

(32) 480 exp(n)(n+ 1)n+127n+3/2(n+ 2)(n+ 5/2)n5/2(n− 1)(n− 2)n! log(n!).

Comparing this with Lemma 8.2, we have

− log
(

M(F )n(n−1)
)

+ log

(

√

2

n− 2

)

+
−4r3

(n+ 1)2
> −K log r3r

n−1
1 ,

By Lemma 7.9 and since |D| > D0(n), the value r3 is large enough to satisfy

r
e−1
e

3 <
r3

log r3
.

So we may find a constant K1 depending only on n (see the values of C(n), C0 and
W0 in Proposition 4.6) so that

r3 < K1 r
e

e−1n

1 .

Notice that K1 may be chosen equal to
(

(n+ 1)2

4
K

)
e

e−1

By Lemma 9.1, we have

M(F )n(n−1) exp

(

4r1
(n+ 1)2

)
√
3

256

(

log logn

logn

)6

< K1 r
1.6n
1
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This is a contradiction, as in the above inequality the left hand side is greater than
the right hand side. Hence, related to a root of F (x, 1) = 0, there are at most 2 solu-

tions (x, y) 6∈ A, with y > M(F )1+(n−1)2 . To see the contradiction, one can consider

two different cases. If 4r1
(n+1)2 > e

e−1n
e

e−1 then exp
(

4r1
(n+1)2

)

> 4r1
(n+1)2 and by (8) and

since |D| ≥ 222(n + 1)10nn, the value M(F )n(n−1)
√
3

256

(

log logn
logn

)6

exceeds the rest

of right hand side. If 4r1
(n+1)2 ≤ e

e−1n
e

e−1 then the value M(F )n(n−1)
√
3

256

(

log log n
logn

)6

alone exceeds the right hand side.
Remark. To estimate the value of A1 we proved Lemma 10.1. Having the

inequality

h

(

αn − αi

αn − αj

)

≤ 2 log 2 + 4h(αn)

in hand, one may attempt to bound the logarithmic height of α, a root of F (x, 1) =
0, in terms of the discriminant of F . To do so recall that we have assumed that the
binary form F has the smallest Mahler measure among all equivalent forms that
are monic. We need this assumption to obtain an upper bound for the number of
small solutions (see (20)). We also have

h(α) =
1

n
logM(α) ≤ 1

n
log
(

(n+ 1)1/2H(α)
)

.

Therefore, we can apply Proposition 4.1 to our selected form F and assume that
for each root α of F (x, 1) = 0, we have

h(α) ≤ 1

n
log
(

(n+ 1)1/2 exp{n4n12 |D|6n8}
)

.

This will provide an explicit value for A1. Should one wish to use this to establish
a contradiction similar as above, one has to start with 5 solutions (instead of 3)
and after the contradiction, concludes that there are at most 4 solutions (instead
of 2) with large y related to each root.
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