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BROKEN LEFSCHETZ FIBRATIONS AND

SMOOTH STRUCTURES ON 4-MANIFOLDS

R. İNANÇ BAYKUR

Abstract. The broken genera are orientation preserving diffeomorphism in-
variants of closed oriented 4-manifolds, defined via broken Lefschetz fibrations.
We study the properties of the broken genera invariants, and calculate them for
various 4-manifolds, while showing that the invariants are sensitive to exotic
smooth structures.

1. Introduction

Broken Lefschetz fibrations are generalizations of Lefschetz fibrations on smooth
4-manifolds, which are allowed to have indefinite fold singularities along embedded
circles in addition to Lefschetz type singularities on a discrete set. In the recent
past, there has been a flurry of activity around broken Lefschetz fibrations, ex-
tending ideas stemmed in symplectic geometry and gauge theory on one end by
Auroux-Donaldson-Katzarkov, and Perutz [1, 27], and employing handlebody and
singularity theories to suggest new ways to study the topology of 4-manifolds on
the other end by the author, Saeki, Gay-Kirby, Lekili, Akbulut-Karakurt, Williams,
Hayano, and others [2, 4, 5, 6, 7, 8, 9, 17, 18, 19, 20, 14, 15, 23, 28, 29]. Given any
surjective map from a closed oriented 4-manifold X to the 2-sphere, there exists
a rather special broken Lefschetz fibration on X within the same homotopy class,
with only connected fibers and no exceptional spheres contained on the fibers, with
at most one circle of indefinite fold singularities whose image in the base is embed-
ded, and where all the Lefschetz critical points lie on fibers with the highest genera.
These are called simplified broken Lefschetz fibrations (SBLF in short), and consti-
tute an important subfamily of broken Lefschetz fibrations, allowing one to study
the underlying topology effectively. (See for instance [4, 5, 6, 7, 17, 18, 19, 20].)
The underlying topology of a simplified broken Lefschetz fibrations is rather simple:
It is either a relatively minimal genus g Lefschetz fibration over the 2-sphere, or it
decomposes as a relatively minimal genus g Lefschetz fibration over a 2-disk, a triv-
ial genus g− 1 bundle over a 2-disk, and a fibered cobordism in between prescribed
by a single round handle [4].

Given a closed smooth oriented 4-manifoldX and a homology class α ∈ H2(X ;Z)

with α2 = m ≥ 0, let X̃ ∼= X#mCP2 be the blow-up of X at m points and
α̃ = ι∗(α)−

∑
i ei, where ι is the inclusion into X̃ of the complement of the blown-

up points in X and ei are the homology classes of the exceptional spheres. The
broken genus of (X,α) is the smallest non-negative integer g among the genera of

all possible SBLFs on X̃ whose fibers represent the class α̃, which we denote by
g(X,α). The broken genus series of X , denoted by Sg(X), is a formal sum in the
integral group ring Z[H2(X)], defined as

Sg(X) =
∑

α∈H2(X) , α2=0

g(X,α) tα +
∑

β∈H2(X) , β2>0

g(X, β) tβ .
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We then define the broken genus of X , denoted by g(X), as the smallest coefficient
that appears in the first series on the right hand side. As shown in the next section,
the broken genus of such a pair (X,α), the broken genus series, and the broken genus
of X are all orientation preserving diffeomorphism invariants.

The purpose of this article is two-fold: We aim to initiate a study of smooth
structures on 4-manifolds (and smooth embeddings of surfaces) via broken genus
invariants. Our second goal is to suggest a systematic framework for the rapidly
growing literature on the topology of broken Lefschetz fibrations on 4-manifolds
by considering SBLFs of fixed genus. We are going to use both handlebody and
singularity theory arguments at times, whichever comes handy depending on the
context. Clearly, in either case we essentially work with maps with prescribed sin-
gularities, i.e Morse or indefinite generic singularities. The freedom of choice we
give ourselves to switch between the two approaches rests in the following distinc-
tion: The former approach has the advantage of explicitly prescribing the fibration
and the topology of the underlying 4-manifold, whereas the latter approach is more
useful for implicit modifications of given fibrations whenever one only needs to keep
track of some rough information such as the genus of the fibration. In particular,
simplified purely wrinkled fibrations (SPWF in short) studied by Williams [29],
which have similar topological properties as SBLFs except for having cusps instead
of Lefschetz singularities, appear in several intermediary steps of our arguments.
Since one can turn SBLFs into SPWFs in a straightforward fashion, all of our work
here can be rephrased in terms of simplified purely wrinkled fibrations easily.

The organization of the article and a summary of the results are as follows:

In Section 2, we review the well-definedness of the broken genera invariants and
give various preparatory results. In Sections 3 and 4, we present some calculational
tools and provide many calculations of the broken genera of 4-manifolds, both using
handlebody and singularity theory arguments. We get lower and upper bounds on
the broken genera, which vary from purely topological (i.e. based solely on the
homeomorphism type) bounds (Lemmas 7 and 8) to smooth ones (Propositions 11
and 13, Theorem 16). Here we show that the broken genera invariants can attain
arbitrarily large values (Proposition 10), even on pairs in a fixed homeomorphism
class (Theorem 23).

In Section 4, we show how broken genera invariants are sensitive to exotic smooth
structures on various 4-manifolds, most remarkably, on standard simply connected
4-manifolds. Theorem 18 calculates the broken genera of standard simply-connected
4-manifold blocks, and in particular, presents many examples of SBLFs. Theo-
rem 20 and Corollary 22 (and also Theorem 23) demonstrate that the broken genera
of exotic simply-connected 4-manifolds are higher, relying on Freedman’s topolog-
ical classification of simply-connected 4-manifolds and on Seiberg-Witten theory.
The results contained in this section, and more specifically the construction of genus
one simplified broken Lefschetz fibrations have been promised for some time and
were presented by the author during the Four Dimensional Topology Conference in
Hiroshima in 2010.

It has been asked by various authors ([27, 3, 29]) whether or not this sort
of invariants encode information regarding the minimal genus representative of a
2-dimensional homology class on a 4-manifold. Section 5 contains a discussion on
this topic, where we focus on showing how broken genus relates to and differ from
minimal genus. The final section lists some related open problems.
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2. Preliminaries and background results

Let X and Σ be compact connected oriented manifolds (with or without bound-
ary) of dimension four and two, respectively, and f : X → Σ be a smooth surjective
map with f−1(∂Σ) = ∂X . The map f is said to have a Lefschetz singularity at a
point x contained in a discrete set C = Cf ⊂ Int(X), if around x and f(x) one can
choose orientation preserving charts so that f conforms the complex local model

(u, v) → u2 + v2 .

The map f is said to have an indefinite fold or round singularity along an embedded
1-manifold Z = Zf ⊂ Int(X) \ C if around every z ∈ Z, there are coordinates
(t, x1, x2, x3) with t a local coordinate on Z, in terms of which f can be written as

(t, x1, x2, x3) → (t, x21 − x22 − x23) .

We call the image f(Z) ⊂ Int(Σ) the round image. A broken Lefschetz fibration is
then defined as a smooth surjective map f : X → Σ which is submersion everywhere
except for a finite set of points C and a finite collection of circles Z ⊂ X \C, where
it has Lefschetz singularities and round singularities, respectively. In particular, it
is an honest surface bundle over ∂Σ.

Let us also recall the simplest types of singularities for smooth maps. Let y ∈
Int(X) be a point where rank(dfy) < 2. The map f : X → Σ is said to have a fold
singularity at a point y ∈ Int(X), if around y and its image one can choose local
coordinates so that the map is given by

(t, x1, x2, x3) 7→ (t,±x21 ± x22 ± x23),

and a cusp singularity if instead the map is locally given by

(t, x1, x2, x3) 7→ (t, x31 + tx1 ± x22 ± x23).

We say that y is a definite fold point if all the coefficients of x2i , i = 1, 2, 3 in the first
local model is of the same sign. It is called an indefinite fold point otherwise. From
a special case of Thom’s transversality theorem it follows that any smooth map
from an n-dimensional manifold to a 2-manifold, for n ≥ 2, can be approximated
arbitrarily well by a map with only fold and cusp singularities [25]. A smooth
map f : X → Σ with only fold and cusp singularities is called a generic map. The
singular set of f is a finite set of circles, which are composed of finitely many cusp
points and a finite collection of arcs and circles of fold singularities. From the very
definitions we see that round singularities are circles of indefinite fold singularities.
As the set of generic maps is open and dense in C∞(X,Σ) topologized with the
C∞ topology, any broken Lefschetz fibration can be homotoped to a map with only
fold and cusp singularities.

As shown in [28, 5], any generic map from a closed orientable 4-manifold to the
2-sphere can be homotoped to a broken Lefschetz fibrations over Σ = S2, and thus,
these fibrations are found in abundance. Moreover, any given framed surface F
with trivial normal bundle in X can be chosen to be a fiber of such a fibration
[5, 14]. We will say that (X,α) admits a broken Lefschetz fibration whenever there
is a broken Lefschetz fibration on X whose fiber is in the homology class of α. Note
that α2 = 0 is therefore a necessary condition.

Whenever there is a fiber in X containing a self-intersection −1 sphere, it can be
blown-down to obtain a new broken Lefschetz fibration on X ′ without destroying
the fibration structure on the rest. We will therefore focus on relatively minimal
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broken Lefschetz fibrations (possibly on non-minimal 4-manifolds, which do not
contain such fiber components.

Simplified broken Lefschetz fibrations make up a subfamily of broken Lefschetz
fibrations subject to the following additional conditions: The base surface of the
fibration is S2, the round image is connected (possibly empty) and the round image
is embedded, the fibration is relatively minimal, and whenever Z 6= ∅, all the fibers
are connected and all the Lefschetz singularities lie over the 2-disk component of
S2 \ f(Z) over which fibers have higher genera. As we will see below, in any
homotopy class of a surjective map from a given closed oriented 4-manifold X to
S2, there exists a simplified broken Lefschetz fibration. The fibration is composed of
three pieces when the round locus is non-empty: If we take an annular neighborhood
A of the round image avoiding the Lefschetz singularities, then decomposing the
base as S2 = D2 ∪ A ∪ D2 we get a genus g − 1 surface bundle over D2, called
the lower side, a genus g Lefschetz fibration over D2, called the higher side, and a
round cobordism in between composed of only one round handle. It is then easy to
give a handlebody decomposition of X prescribing this simplified broken Lefschetz
fibration, as shown in [4]. The genus g of the higher side of an SBLF f : X → S2

is called the genus of f .1 Similarly, simplified purely wrinkled fibrations make up a
subfamily of indefinite generic maps mimicking the conditions we had for SBLFs:
The base surface is S2, the singular locus is a connected 1-manifold with embedded
image which is smooth everywhere except at the images of a non-empty set of
cusp points, and all the fibers are connected. These fibrations were introduced and
studied by Williams in [29].

There are various topological modifications of broken Lefschetz fibrations and
indefinite generic maps defined via handlebody operations or homotopy moves be-
tween generic maps without definite folds. For the details of these moves we will
employ in this article, the author is advised to turn to [4, 5] and [23, 29].

We start with a few observations:

Lemma 1. If (X,α) admits a genus g broken Lefschetz fibration with non-empty
round locus, then (X,α) admits a homotopic genus g broken Lefschetz fibration with
all the Lefschetz singularities on the higher side.

Proof. The proof of this was given in [4] for near-symplectic broken Lefschetz fi-
brations, that is, for broken Lefschetz fibrations with the additional property that
there is a second cohomology class evaluating non-trivially on every fiber compo-
nent. The same proof can be adapted mutatis mutandis to this general setup. �

Lemma 2. If (X,α) admits a genus g SBLF with non-empty round locus, then
(X#CP2, α̃) where the class α̃ represents the image of α under the homomorphism

induced by the inclusion map X \D4 →֒ X̃, also admits a genus g SBLF. If (X,α)
admits a genus g broken Lefschetz fibration with non-empty round locus, meeting all
the additional conditions listed for SBLFs but the relative minimality, then (X,α)
admits a genus g SBLF as well.

1A word of caution here: We define the genus of the SBLF as the genus of the higher side fiber,
which is in agreement with [7, 17, 18, 19, 20] and is equal to the genus of an honest Lefschetz
fibration. The same goes for SPWFs. Unlike in [29], our broken genus invariant picks up its value
among these higher side genera.
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Proof. The first claim is best seen from the handle decomposition of the SBLF on
X whose fiber is in the homology class of α. Blowing-up X adds a (−1)-framed
unknotted 2-handle to the handle diagram, which can be slid over the 0-framed
2-handle of the round 2-handle so that it is now attached to the fiber as a Lefschetz
handle. (See Figure 3 for an example.) If we have a broken Lefschetz fibration which
is not relatively minimal, then the Lefschetz 2-handles contributing the excep-
tional spheres on the fibers would have null-homotopic vanishing cycles. These are
(−1)-framed unknotted 2-handles which do not link with the 1-handles of the stan-
dard handlebody diagram, so we can apply the same trick above so as to get an
SBLF of the same genus. �

Lemma 3. If (X,α) admits a broken Lefschetz fibration with connected round locus
and embedded round image, then it also admits a homotopic SBLF (which possibly
has fibers of different genera).

Proof. The homotopy in question to obtain a broken Lefschetz fibration with con-
nected fibers is presented in [5], as a result of the flip-and-slip move introduced
there. (See Figure 1.) If the round locus is empty, one can locally introduce a
“button” described in [27, 4] (equivalently, introduce a “birth” singularity and turn
the two cusps into Lefschtez singularities as in [23, 29]). We can then apply the
previous lemma to guarantee the relative minimality of the fibration. �

Σg1+g2
Σg1+g2

Σg1+g2

Σg1

∐
Σg2

Σg1+g2+1

Σg1+g2+1

Σg1+g2+1

Σg1+g2−1

or

Σg1

∐
Σg2

Σg1+g2−1

or

Figure 1. “Flip and slip” move. On the left: The disk neighborhood

of the round image of the original fibration with either disconnected

fibers or with fibers of smaller genera in the interior. After two flips we

get the fibration in the middle, and then slide the indefinite fold arc as

indicated by the dashed arrow. On the right: The resulting fibration

after the slip, where the four cusps are turned into Lefschetz critical

points. The arrows indicate the direction of the fiberwise 2-handle at-

tachments.

Given a closed oriented 4-manifold X , and a self-intersection zero homology class
α ∈ H2(X), we can now prove that the invariants g(X,α), Sg(X), and g(X) are
well-defined. The existence of an SBLF for a given pair (X,α) appears in [29], the
proof of which we will outline here for completeness:
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One can represent α by an embedded orientable surface F which has a trivial
tubular neighborhood. The work of Gay-Kirby [14] shows that there exists an
achiral broken Lefschetz fibration with only connected fibers, having F as one of its
regular fibers, and satisfying the following properties: The fibration is injective on
its critical set, the image of the round singularity is bi-directed, that is it is composed
of circles which are all parallel to the equator (which is composed of only regular
values this time) contained in the interior of a big annular tubular neighborhood B
of the equator, where B does not contain the images of any Lefschetz critical points,
and such that the genera of the fibers only decrease when we trace the preimages
over an oriented arc in B connecting the equator to either one of the boundary
components while intersecting the image of each round singular circle only once.

We can then eliminate the negative Lefschetz singularities using the handlebody
argument in [6] or the singularity theory argument in [23]. By pushing the Lefschetz
singularities to the higher side of each round image using Lemma 1, we obtain a
bi-directed broken Lefschetz fibration whose all Lefschetz critical points lie in a
neighborhood of an annular neighborhood of the equator of S2. As shown in [29],
one can then employ the flip and slip move of [5] and the inverse merge move of [23]
so as to reduce the number of round circles to one. Then Lemma 2 above hands us
a simplified broken Lefschetz fibration. Although these moves may (and typically
will) alter the topology of fibers, they keep the homology class of the fiber intact.
Hence, there always exists a simplified broken Lefschetz fibration on X whose fiber
is in the homology class [F ] = α.

We can now define the broken genera invariants: Let X be a closed smooth
oriented 4-manifold and α be a homology class in H2(X ;Z) with α2 = m ≥ 0. Let

X̃ ∼= X#mCP2 be the blow-up of X at m points and let α̃ ∈ H2(X̃;Z) denote
the homology class ι∗(α)−

∑
i ei. Here ι is the inclusion of X minus the blown-up

points into X̃, and ei are the homology classes of the exceptional spheres. We
define the broken genus of (X,α) as the smallest non-negative integer g among the

genera of all possible SBLFs on X̃ whose fibers represent the class α̃, and denote
it by g(X,α). The broken genus series of X , denoted by Sg(X), is defined as the
following formal sum in the integral group ring Z[H2(X)]

Sg(X) =
∑

α∈H2(X) , α2=0

g(X,α) tα +
∑

β∈H2(X) , β2>0

g(X, β) tβ ,

and splits naturally as the sum of two power series on the right, which we will
denote by S0

g(X) and S+
g (X). We then define the broken genus of X , denoted by

g(X), as the smallest coefficient that appears in S0
g(X).

Clearly g(X,α), Sg(X) and g(X) are all well-defined. Let ψ : X ′ → X be a
diffeomorphism. If f : X → S2 is an SBLF with a regular higher side fiber F , then
F ′ = ψ−1(F ) is a regular higher side fiber of the SBLF f ′ = f ◦ ψ : X ′ → X
with [F ′] = ψ−1

∗
([F ]). This concludes our claim that broken genera invariants are

smooth invariants.

Remark 4. The name simplified broken Lefschetz fibrations went through some
evolution since it was first introduced in [4] by the author, which is worth clarifying
here: Without the assumption on connectedness or relative minimality of fibers,
they were first shown to exist on blow-ups of all 4-manifolds with b+ > 0, namely
on near-symplectic 4-manifolds, which were the focus of [4]. The connectedness of
fibers were later shown in [5], again for near-symplectic broken Lefschetz fibrations,
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which follows from applying Lemma 3 in this setup. Williams worked out an al-
gorithm for employing flip and slip and inverse merge moves as we reviewed above
to get the existence of SBLFs (without the assumption on relative minimality) on
arbitrary closed oriented 4-manifolds [29]. More recently in [7, 17, 18], relative
minimality assumption was added when studying these fibrations.

Remark 5. The trivial homology class does not always give rise to an SBLF
with the smallest broken genus, that is, g(X, 0) is not necessarily equal to g(X).
For instance, any S2-bundle over S2 has a homologically essential fiber. So for
X = S2 × S2 or CP2#CP2, g(X, 0) > g(X) = 0.

Remark 6. As mentioned in the Introduction, the present work does not deal
with the possible connection between broken Lefschetz fibrations and the classical
minimal genus problem for a given second homology class in a 4-manifold X . To the
author of the current article it seems most convenient to stay in the near-symplectic
setting when addressing the minimal genus problem, and therefore pursuing this
connection through a study of S+

g (X) above. We plan to take up this problem
elsewhere.

3. Bounds for broken genera invariants

There are several bounds one can get on the broken genus based solely on the
topological type. We will note a few of them here.

Lemma 7. If X admits a genus g SBLF with k Lefschetz singularities, then
e(X) = 4− 4g + k if round locus is empty, and e(X) = 6− 4g + k, otherwise.

Proof. If the round locus is empty, then X decomposes into D2 × Σg and a genus
g Lefschetz fibration over D2. The latter admits a handlebody description with k
2-handles attached to D2 × Σg, so e(X) = 2(2− 2g) + k = 4− 4g + k.

If the round locus is non-empty, then X decomposes into three pieces instead,
D2 × Σg−1, a round cobordism, and a genus g Lefschetz fibration over D2. Since
the round cobordism has euler characteristic zero, we get

e(X) = 2− 2(g − 1) + 2− 2g + k = 6− 4g + k .

�

Lemma 8. Let f : X → S2 be a genus g SBLF with k Lefschetz critical points.
Then 2g ≥ b1(X) ≥ 2g−k−2 and 2g ≥ b1(X) ≥ 2g−k−1 if f admits a section. If
the round locus is empty, then the bounds on the right improve to b1(X) ≥ 2g−k−1
and 2g − k, respectively.

Proof. As shown in [4], a genus g SBLF gives rise to a handlebody decomposition
of X with 2g 1-handles and k + 3 2-handles, where the rest of the handles are of
higher index. Here, k of these 2-handles are Lefschetz 2-handles, one is for the fiber
of the higher side, one comes from the round 2-handle, and one last 2-handle is
pulled back from the lower side. The 2-handle for the fiber goes over each 1-handle
algebraically zero times. If there is a section, then the last 2-handle can be seen to be
unlinked with all the 1-handles. If we have an honest Lefschetz fibration instead,
then we get a similar handlebody decomposition with 2g 1-handles, and k + 2
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2-handles, without the 2-handle of the round 2-handle. Using these handlebody
decompositions to calculate the first homology, we get the desired inequalities. �

Remark 9. Using similar arguments as in the proof of above lemma, it is easy
to get constraints on the broken genus relying solely on π1(X), which however
depends on the group of course. Such bounds would be handy when addressing the
Problem 28 we rise at the end of our paper.

We see that any non-negative integer value can be attained as the broken genus
of some 4-manifold:

Proposition 10. g(S2 × Σg) = g for any non-negative integer g.

Proof. The manifold X = S2×Σg admits the trivial SBLF of genus g, which is the
genus g surface bundle obtained by projection onto the first factor. If X admits an
SBLF of genus h, then by Lemma 7 we get 4− 4g = e(X) ≥ 4− 4h+ k, so h ≥ g,
completing the proof. �

This result can be generalized drastically, if we focus on getting a lower bound
for the broken genus of a pair (X,α). This follows from the symplectic Thom
conjecture, proved by Morgan, Szabó and Taubes [26], and thus provides a lower
bound based on the smooth topology:

Proposition 11. If X admits a symplectic form for which there is an embedded
symplectic surface F in X representing α ∈ H2(X), then g(X,α) = g(F ). In
particular, if (X,α) admits a Lefschetz fibration on X with a homologically essential
fiber F (in particular whenever g(F ) 6= 1 or the critical locus is non-empty), then
g(X,α) = g(F ).

Proof. The first statement follows from the main theorem of Morgan, Szabó and
Taubes in [26], who proved that a symplectic surface F in a symplectic 4-manifoldX
has the smallest genus among all surfaces that are in the same homology class. (The
case b+(X) = 1 was shown earlier by Li and Liu [24].) When we have a Lefschetz
fibration with a homologically essential fiber, the Thurston-Gompf construction
gives a symplectic form on X making any fiber F symplectic. �

We now turn to getting some upper bounds on the broken genus of a 4-manifold
by looking at some topological operations which would allow us to get new SBLFs
from old. Naturally, many of these modifications will be through indefinite generic
maps. So we are going to express many of our intermediate results in terms of
SPWFs, which has the additional advantage of translating many of our later results
to the context of SPWFs with ease.

Lemma 12. If (X,α) admits a genus g SPWF, then it admits a genus g SBLF. If
it admits a genus g SBLF, then it admits a genus g + 1 SPWF.

Proof. The first claim follows from eliminating each cusp singularity by introducing
a Lefschetz critical point on the higher genus side using the unsinking move [23, 29].
(See Figure 2.) Then the additional constraints met by the SPWF translates to
those required for an SBLF. The second claim is proved as in the previous section
based on an algorithm of Williams’: We first perturb each Lefschetz singularity
locally to an indefinite singular circle with three cusps. We can then inverse merge
all these to get only one circle with many cusps, lying entirely on the higher side
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Σg−1 Σg Σg−1 Σg Σg−1 Σg Σg+1
Σg+1

Σg+1 Σg

Figure 2. The first two figures: The base diagram of a genus g SPWF

drawn with three cusps, and a genus g SBLF obtained from it after

“unsinking” the cusps and trading them with Lefschetz critical points.

The second, third, and fourth figures: A genus g SBLF drawn with

three Lefschetz critical points turned into a genus g + 1 SPWF. After

perturbing all the Lefschetz critical points into indefinite singular circles

with three cusps on each, we get the second figure from the right. After

inverse merging all these singular circles that come from the Lefschetz

critical points into one, and applying a flip and slip to the far left disk

region without eliminating the cusps, we obtain the figure on the far

right. We can then inverse merge the two indefinite circles with cusps

to pass to a genus g + 1 SPWF with five cusps.

of the original fibration. Next we apply the flip and slip move without turning the
resulting cusps into Lefschetz singularities. Thus we have an indefinite generic map
on X whose base diagram is as follows: On the far left and far right it has fibers of
genera g+1, and in the middle it has fibers of genera g, where the two circles with
cusps have cusps facing each other (Figure 2). Merging these two circles into one
results in a genus g + 1 SPWF. We finally note that α, the homology of the fiber
class, does not change during these homotopy moves. �

It immediately follows that:

Proposition 13. If g(X,α) = g for α2 = 0, then g − 1 ≤ g(X̄, α) ≤ g + 1.

Proof. Observe that the local model for cusp and fold singularities is not oriented, so
any genus g SPWF on X gives rise to a genus g SPWF on X̄ where the fibers are in
the same homology class. From Lemma 12, g(X,α) = g implies that (X,α) admits
a genus g+1 SPWF, and thus so does (X̄, α). In turn, we get an SBLF for (X̄, α),
implying that g(X̄, α) ≤ g + 1. Using the same trick, we see that g(X̄, α) ≤ g − 2
would lead to a contradiction to our assumption that g(X,α) = g. �

Remark 14. The ±1 discrepancy between the broken genera of (X,α) and (X̄, α)
cannot be removed; there are many pairs (X,α) with g(X̄, α) = g(X,α) +m, for
each m = −1, 0, 1. For instance, consider the genus one SBLFs on S4 and CP2

in Figure 3. Since neither one of these manifolds is ruled, they can only admit
SBLFs of positive genera and with fibers representing the trivial homology class.
Clearly (S̄4, 0) can be supported by the same SBLF, which realizes the smallest
broken genus. On the other hand, from Lemma 7 we see that a genus one SBLF
on CP2 would have a single Lefschetz singularity. It is easy to see that the only
essential embedded curve that the monodromy of the higher side prescribed by a
single Dehn twist along a non-separating curve a on T 2 can fix (in order to hand



10 R. İ. BAYKUR

0

⋃
3 − h

0

4 − h

k

0

⋃
3 − h

0

4 − h

k

-1

Figure 3. On the left: The genus one SBLF on S4. The twisted

gluing of the round cobordism to the higher side along T 3 causes the

2-handle from the lower side to be pulled back to the higher side so that

it links with the 2-handle of the higher genus fiber once. Its framing k,

determined by the twisting, does not change the underlying topology.

On the right: The genus one SBLF on CP
2, as an example of a blow-up

of an SBLF with non-empty round locus.

us a round 2-handle cobordism) is parallel to a. This gives an embedded sphere of
self-intersection −1, which is impossible for CP2.

We can now generalize the argument we gave in the proof of Lemma 2 to obtain:

Proposition 15. Let (X,α) admit a genus g SBLF with non-empty round locus
(resp. with non-empty round locus and with at least one Lefschetz critical point)
and let M be #aCP2#bCP2 for any a, b ≥ 0 (resp. #r(S2 × S2) for any r ≥ 0).
Then (X#M, α̃) where the class α̃ represents the image of α under the homomor-
phism induced by the inclusion map X \D4 →֒ X#M , admits a genus g+1 SBLF.

Proof. Let (X, f) be a genus g SBLF on (X,α) with non-empty round locus.
If M = #aCP2#bCP2, we can add a many (+1)-framed and b many (−1)-framed
unknotted 2-handles to the standard handle diagram of (X, f) and slide all of them
over the 0-framed 2-handle of the round 2-handle as in the proof of Lemma 2, so
that their vanishing cycles lie on the fiber with (+1)- and (−1)-framings, respec-
tively. This describes an achiral SBLF on X#M , with a negative and b positive
new Lefschetz singularities introduced to the original SBLF (X, f). We can then
follow the proof of Lemma 12 first to turn this genus g achiral SBLF into a genus
g + 1 SPWF, and then the latter into a genus g + 1 SBLF, supporting (X#M, α̃)
as in the statement.

When M = #r(S2 × S2), this time we add r pairs of 0-framed unknots to the
standard diagram of (X, f), where each pair links once. We can then slide these
pairs of 2-handles over a Lefschetz 2-handle so that each becomes a pair of unlinked
positive and negative Lefschetz handles. (This modification is nothing but the one
observed in [16], Example 8.4.6, now performed in the BLF setting.) Once again,
this yields a genus g + 1 SBLF supporting (X#M, α̃). �
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We are going to conclude this section by showing that there is an additive upper
bound on connected sums, which will serve as a strong calculational tool.

Theorem 16. Let fi : Xi → S2 be a genus gi SPWF with a section Si, for i = 1, 2.
Then there exists an SPWF (resp. SBLF) f : X = X1#X2 → S2 of genus g1 + g2
with a section S. If αi is the homology class of the fiber of the SPWF (resp. SBLF)
fi, then the homology class of the fiber of f is (ι1)∗α1 + (ι2)∗α2, where ιi is the
inclusion Xi \D4 →֒ X1#X2.

Proof. By assumption, we can remove the tubular neighborhood of a higher genus
(resp. lower genus) fiber of f1 : X1 → S2 (resp. of f2 : X2 → S2) so that the
restriction of f1 (resp. f2) to the complement admits a disk section D1 (resp. D2)
which restricts to a trivial 1-braid on the boundary S1 × Σg1 (resp. S1 × Σg2−1).
We can moreover isotope all the self-intersection points of these sections so that
they are contained in these fiber neighborhoods. We can now perform a “large”
version of the connected sum operation of [27, 4] along these two disk sections:
We take out the disk fibered tubular neighborhoods of each Di and identify
D1 × ∂D2 with D2 × ∂D2 so as to extend the fibrations on the rest. The lo-
cal model for the round 2-handle cobordism from the trivial boundary fibrations
on S1 × Σg1#Σg2−1 to S1 × (Σg1 ⊔ Σg2−1) is the same as the one for the usual
connected sum operation, along which we identify ∂D1 × D2 with ∂D2 × D2 so
that the underlying topological modification amounts to gluing X1 \ D1 ×D2 and
X2 \ D2 ×D2 along their boundaries, resulting in X = X1#X2.

Σg1

∐
Σg2−1Σg1+g2−1 Σg1+g2−2 Σg1+g2−1 Σg1

∐
Σg2−1 Σg1+g2−1 Σg1+g2−2

Figure 4. On the left: The base diagram for the fibration we get after

the “large” connected sum along the disk sections. The singular circle

coming from f1 is depicted with three cusps and that of f2 with two.

On the right: The base diagram after inverse merging the two indefinite

singular circles with cusps.

We obtain a new fibration on X = X1#X2 as depicted on the left in Figure 4.
The fibers over the four regions are as follows: On the far left, we have disconnected
fibers of genera g1 and g2 − 1 over the 2-disk, where the fibration restricts to
trivial surface bundles on each piece. Over the neighboring annular region we
have connected fibers of genera g1 + g2 − 1. We have the simple round singularity
introduced by the connected sum operation in between these two regions. Over the
next neighboring annular region we have fibers of genera g1 + g2 − 2. The fibered
cobordism between these two annular regions comes from the singular circle of f1
in X1. Finally, on the far right, we have a disk region over which fibers have genera
g1 + g2 − 1. The fibered cobordism between this disk region and its neighboring
annular region comes from the singular circle of f2 in X2. There are cusps on both
sides of the third region pointing inwards.
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We now proceed as follows: We can first combine the two singular circles with
cusps on the right by inverse merging them along an arc between a cusp point on
each which projects to an embedded arc on the base. At this point we have an
indefinite generic map with a base diagram as given on the right in Figure 4. The
fibers over the three regions are as follows: The region on the far left is the same as
the far left region of the previous fibration, over which we have disconnected fibers
of genera g1 and g2− 1. The region on the far right has fibers of genera g1+ g2− 2.
The annulus region has fibers of genera g1 + g2 − 1, and all the cusp points are
contained on the singular circle on its right, pointing into the disk region.

We can now employ the flip and slip move to both ends of this fibration, without
eliminating the cusp points at the end. We now have three regions for this fibration,
where the fibers on the far left and far right are both connected and of genera g1+g2,
and the cusps are pointing into the annular region in the middle. Inverse merging
these two singular circles with cusps, we obtain a genus g1+g2 SPWF onX . Clearly,
we can turn all the cusps into Lefschetz critical points at the end to obtain a genus
g1 + g2 SBLF on X as well.

A push-off of the section Si of fi : Xi → S2 for each i = 1, 2 will give rise to
a section of f : X → S2 at the end, since all the homotopies involved above can
be performed away from Si. As for the last assertion on the homology of the new
fiber, observe that in the very first step of our construction, the homology of the
fiber over the far left region is represented by the disjoint union of the inclusion of
the fibers of f1 and f2. The following homotopy moves keep this homology class
intact. �

One of the subtleties in modifying SBLFs as in Theorem 16 is due to the fact
that the singular circle of the fibration may not contain cusps nor could be turned
into one without increasing the genus. Although an indefinite cusp point can be
turned into a Lefschetz critical point, this trade does not always work backwards.
One can sink a Lefschetz critical point into an indefinite fold singular circle and
introduce a new cusp point, if for a nearby reference fiber the vanishing cycle of the
Lefschetz singularity and the vanishing cycle of the indefinite fold circle intersect
transversally at one point. In this case, we are going to call this Lefschetz critical
point sinkable —to an indicated (part of an) indefinite fold circle when it is not an
SBLF. The next corollary now follows from the proof of the above theorem in a
straightforward way, as we keep pushing the Lefschetz critical points to the higher
sides:

Corollary 17. Let fi : Xi → S2 be a genus gi SBLF with a section Si, for i = 1, 2.
Let f1 : X1 → S2 have non-empty round locus and a sinkable Lefschetz critical
point. Then there exists an SBLF f : X = X1#X2 → S2 of genus g1 + g2, if
(X2, f2) has empty round locus or a sinkable Lefschetz critical point, and of genus
g = g1 + g2 + 1 otherwise. If αi is the homology class of the fiber of the SBLF
fi, then the homology class of the fiber of f is (ι1)∗α1 + (ι2)∗α2, where ιi is the
inclusion Xi \D4 →֒ X1#X2.

When the genus g1 SBLF f1 : X1 → S2 has no round locus or no sinkable Lefschetz
critical point, after a single birth or flip and slip move, we can switch to a genus
g1 + 1 SBLF and apply the corollary.
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4. Broken genera and exotic simply-connected 4-manifolds

Freedman’s seminal work in [13], together with Donaldson’s diagonalization re-
sult [10], allows us to pin down the homeomorphism type of a simply-connected
4-manifold by looking at its intersection form. In particular a non-spin simply-
connected 4-manifold is homeomorphic to aCP2#bCP2 for some a, b, and if spin,
assuming that the 11/8 conjecture holds, it is homeomorphic to mK3#n(S2 × S2)
with one of the orientations. Our first theorem in this section calculates the broken
genera of these standard simply-connected 4-manifolds:

Theorem 18. The only 4-manifolds with broken genus zero are S2 × S2 and
CP2#CP2. The 4-manifolds S4, #r(S2 × S2) for r ≥ 2, aCP2#bCP2 for
a ≥ 0, b ≥ 1 except for a = b = 1, and K3, all have broken genus one. The
4-manifolds #mCP2, for m ≥ 1, and K3 have broken genus two.

Proof. The first statement is obvious; see Remark 14 above. So any manifold
admitting a genus one SBLF has broken genus one, unless it is diffeomorphic to
S2 × S2 or CP2#CP2. We immediately see that the broken genera of S4, CP2 (see
Figure 3), and K3 are one.

We are going to prove that g(#r(S2 ×S2)) = 1 by induction. We claim that for
each r ≥ 2, there exists a genus one SBLF on #r(S2 × S2) with non-empty round
locus, with sinkable Lefschetz critical points, and with a section. Since S2 × S2

admits a genus zero bundle with a section, by Corollary 17, #2(S2 × S2) admits a
genus one SBLF satisfying all the conditions listed above. We can then induct on
r ≥ 2 by invoking Corollary 17 again.

For a = b > 1, one can prove the analogous result for aCP2#bCP2 in the same
way as above. However to realize all possible pairs of a, b, we will take a different
approach. We are going to first show by induction that for each a ≥ 2, #aCP2#CP

2

admits a genus one SBLF with non-empty round locus, with sinkable Lefschetz
critical points, and with a section. After that, using Lemma 2, we can get genus
one SBLFs on any blow-up of aCP2#CP2.

Start with any genus zero bundle on CP2#CP2 with a section. Introduce a birth
to get a genus one SBLF on CP2#CP2 with two Lefschetz critical points, which
are clearly sinkable. (See Figure 5.) We can locally replace one of these Lefschetz
critical points with a round singular circle after the operation given in Example 3
of [1]. For a chosen small disk neighborhood of the Lefschetz critical value, the
new round singularity is introduced so that its image is an embedded curve parallel
to the boundary of this disk and the fibers in the interior are of smaller genera.
Importantly, for a reference fiber on the boundary of this disk, the vanishing cycle
of this new round 2-handle is precisely the vanishing cycle of the old Lefschetz
critical point. As shown in [1], this amounts to an anti-blow-up at the Lefschetz
critical point, that is the new 4-manifold we get is a connected sum of the old one
with CP2. We can certainly perform this operation away from the section so that
it embeds as a section of the new fibration.

At this point we have an SBLF with three regions: In the middle we have a
genus one Lefschetz fibration with one Lefschetz critical point, and on the sides we
have two S2 bundles which are round 2-handle cobordant to the fibration in the
middle. (See Figure 5.) Tracing the initial configuration of curves given by the birth
throughout these steps, we can see that the vanishing cycles of the round 2-handles
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Figure 5. On the left: The local model after birth. The vanishing

cycles of the two Lefschetz singularities and the round 2-handle lie on

the once punctured torus as depicted in the handle diagram. The round

2-handle, as a union of a 2-handle and a 3-handle, is given in red. On the

right: The broken Lefschetz fibration on 2CP2#CP
2, before simplifying

it to get an SBLF.

intersect at one point on a reference fiber in the middle. Therefore, one can perform
the inverse merge move to mash these two round circles into one [23, 29]. Hence we
get a genus one SBLF on 2CP2#CP2 with a section and with a sinkable Lefschetz
singularity. By applying the same procedure as above, this time without the birth
and starting with the anti-blow-up modification along a sinkable Lefschetz critical
point, we can induct on a to get the desired genus one SBLF on aCP2#CP2, for
any a ≥ 2. This completes the genus one case.

Analyzing the possible monodromies, Hayano shows in [17] that #mCP2 does
not admit genus one SBLFs. Since #mCP2 admits a genus one SBLF for each
m ∈ Z+, #mCP2 admits a genus two SBLF by Proposition 13, realizing its broken
genus. On the other hand, another result of Hayano’s is that if a simply-connected
spin 4-manifold admits a genus one SBLFs with non-empty round locus, then it has
zero signature [18]. Clearly K3 does not admit a genus one Lefschetz fibration, nor
does it admit a genus one broken Lefschetz fibration. However, it admits a genus
two SBLF, again by Proposition 13. �

Remark 19. Extending the well-known classification of genus one Lefschetz fibra-
tions, Seiichi Kamada and the author obtained a classification of genus one SBLFs
in [7]. (Also see Hayano’s work [17] for SBLFs with less than six Lefschetz critical
points.) Low genera SBLFs on some of the above 4-manifolds were given in [7], [17]
and [19], using explicit monodromy and handlebody descriptions followed by rather
lengthy Kirby calculus. The first two articles show that there are other genus one
SBLFs on standard non-simply-connected 4-manifolds.

Corollary 20. Let X be a simply-connected 4-manifold with b+(X) > 1, not dif-
feomorphic to an elliptic surface. If X has a non-trivial Seiberg-Witten invariant,
then g(X) > 1.

Proof. As shown in [7], any simply-connected 4-manifold X admitting a genus
one SBLF is either an elliptic surface or decomposes as a connected sum of CP2s
with CP2s after a certain number of blow-ups. In the latter case, our assumption
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b+(X) > 1 implies that we get more than one copy of CP2 in such a decomposi-
tion, which would yield the vanishing of the Seiberg-Witten invariant. However, if
X has a non-trivial Seiberg-Witten invariant, then so does any blow-up of it. So
g(X) > 1. �

Remark 21. The reader will notice that the proof of the above corollary has a cer-
tain formalism, which allows us to rephrase the corollary, say by using 4-dimensional
Ozsváth-Szabó invariants or Bauer-Furuta’s stable cohomotopy Seiberg-Witten in-
variants instead.

Coupling the classification of genus one SBLFs in [7] and Corollary 20, we get:

Corollary 22. Any symplectic 4-manifold which is neither elliptic nor homeomor-
phic to a rational surface has broken genus greater than one.

Proof. The only symplectic 4-manifolds that appear in the classification of genus
one SBLFs are the elliptic surfaces S2 × T 2, E(n), and possibly some exotic
mCP2#nCP2s. (See [7], Corollary 14.) Since any symplectic 4-manifold X with
b+(X) > 1 has non-trivial Seiberg-Witten invariant, Corollary 20 rules out the
possibility m > 1. �

In Proposition 10 we showed that the broken genus invariant could take arbitrar-
ily high integer values by calculating the invariant on a family of non-homeomorphic
4-manifolds. Our next theorem is an analogue of it for pairs, which is however
sharper, as we show that there is a family of pairs (Xn, αn) all in the same home-
omorphism class (i.e. the homeomorphisms match the homology classes as well),
whose broken genera get arbitrarily high.

Theorem 23. There is an infinite family of pairs (Xn, αn), n ∈ Z+, all homeo-
morphic to (K3, α), where α is the homology class of an elliptic fiber, such that no
two of these 4-manifolds are diffeomorphic and g(Xn, αn) can take arbitrarily high
integer values. Moreover, we can choose Xn so that they are all symplectic or none
admits a symplectic structure.

Proof. Let K be a genus g knot in S3, where g is the smallest genus of a Seifert
surface for K. If MK is the 3-manifold obtained by a 0-surgery on K with respect
to this minimal genus Seifert surface, then it inherits a circle valued Morse function
with only index one and two critical points such that the smallest genus among
all the regular fibers is g. If K is a fibered knot, then we can assume that the
Morse function has no critical points. We extend this Morse function to a broken
Lefschetz fibration with no Lefschetz singularities from S1 ×MK to T 2 by identity
on the first S1 component. Here S1 times the meridian of K (viewed in MK)
gives a self-intersection zero torus SK which is a section of the broken Lefschetz
fibration avoiding the singular set. We can compose this broken Lefschetz fibration
with a double branched covering from T 2 to S2 so that the four branched points
of the latter are disjoint from the round image of the former on T 2. So we get a
mixed fibration with round singularities and four multiple fibers of multiplicity two
—where the two disjoint regular fiber components meet. Moreover, SK becomes a
2-section of this fibration, intersecting each fiber component at one point.

Let X = K3 and F be a regular elliptic fiber. One can construct K3 as the
double branched cover along a singular set which is the union of four disjoint copies
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of S2 × {pt} and four disjoint copies of {pt} × S2, desingularized at the 16 dou-
ble points in a standard way. Precomposing the branched covering map with the
projection on to each factor of S2 × S2 gives a holomorphic “horizontal” and a
“vertical” elliptic fibration, each with four multiple fibers with multiplicity two.
Regarding the vertical fibration as the one that perturbs to the standard elliptic
fibration on X , we see that any regular torus fiber of it is a self-intersection zero
2-section of the horizontal fibration.

Lastly, let XK be the 4-manifold obtained from X by a knot surgery along F
and using the knot K. This construction can be viewed as a generalized fiber
sum of X and S1 ×MK along F and SK . We can view this as a sum along the
2-sections of the two fibrations, matching the two fibrations on the complements
while aligning the four multiple fibers of the same multiplicity. This results in a
mixed fibration which is locally holomorphic around the multiple fibers and have
only round singularities in the complement. We can perturb this fibration so that
the multiple fibers give rise to Lefschetz singularities as argued in [12], handing us
a broken Lefschetz fibration with fibers of genera 2g + 1, and higher if K is non-
fibered. When K is fibered, we obtain a genuine genus 2g + 1 Lefschetz fibration.
Otherwise, it is not simplified, but can be homotoped to one, which is a sure deal
by Williams’ main theorem [29].

A crucial observation is that any regular fiber T of the standard elliptic fibration
on X which is disjoint from F we used in our construction above intersects the fiber
F of the resulting broken Lefschetz fibration on XK at two points positively.

We are now ready to describe the families (Xn, αn) we will use. Let Kn be
a knot with the degree of its symmetrized Alexander polynomial equal to n, and
set Xn = XKn

. Recall that the knot genus is bounded below by the degree of
the symmetrized Alexander polynomial, and this bound is sharp when the knot
is fibered. Let fn : Xn → S2 be the simplified broken Lefschetz fibration with a
regular fiber Fn one gets by the construction we described above. This is an honest
genus 2n+ 1 Lefschetz fibration when K is fibered. Let αn ∈ H2(Xn) denote the
homology class of the fiber of this fibration. Note that n = 0 yields X = X0 and the
standard elliptic fibration f = f0, whose regular fiber F is in the class α = α0. We
can choose the generators of H2(X) so that two of them are the classes represented
by a regular fiber F and a (−2)-section of the standard elliptic fibration on it. Thus
there is an isomorphism between the intersection forms of XK and X matching the
generator αn with α, which can be realized by a smooth h-cobordism, as shown
by C.T.C Wall. It then follows from Freedman’s work [13] that this h-cobordism
can be topologically turned into a trivial product cobordism, giving us the claimed
homeomorphisms from (Xn, αn) to (X,α) for any n ≥ 1.

All Seiberg-Witten basic classes of XK are multiples of one cohomology class,
namely the Poincaré dual of [T ] ∈ H2(XK) —viewed as the image of [T ] in H2(X \
νF ) under the obvious inclusion. The Seiberg-Witten invariant of XK is equal to
∆K(t), where t = exp(2PD([T ])) and ∆K is the symmetrized Alexander polynomial
of K [11]. Since each Kn has a symmetrized Alexander polynomial of degree n,
we immediately see that Xn

∼= Xm if and only if n = m, since otherwise the
Seiberg-Witten invariants of Xn and Xm differ.

We can choose all Kn fibered, thus for each n, we have a genus 2n+1 Lefschetz
fibration fn : Xn → S2, which can be supported by a symplectic structure. By
Proposition 11, g(Xn, αn) = 2n+1, which constitutes a strictly increasing sequence
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for n ∈ Z+. So (Xn, αn) make up the symplectic family in the statement of the
theorem, where for each n, we constructed the SBLF realizing the broken genus for
(Xn, αn) above.

If we instead choose all Kn non-fibered and with non-monic degree n sym-
metrized Alexander polynomials, then we get the second promised family of (Xn, αn),
which do not admit symplectic structures. To see this, suppose that (Xn, αn) admits
some genus h SBLF, with a regular fiber H . So [H ] = αn = [Fn]. From the knot
surgery formula for the Seiberg-Witten invariants above we see that 2nPD([T ]) is
a Seiberg-Witten basic class for Xn. By the Seiberg-Witten adjunction inequality,

−χ(H) ≥ [H ]2 + |2n [T ] · [H ]| ,

which implies 2h−2 ≥ 4n. That is h ≥ 2n+1, so g(Xnαn) ≥ 2n+1 gets arbitrarily
large for n sufficiently large. �

5. Broken genus versus minimal genus

Given a closed oriented 4-manifold X and α ∈ H2(X ;Z), let mg(α) denote the
minimal genus of α, the smallest genus among the genera of all possible closed
orientable surfaces in X representing α. For α2 ≥ 0, for which both invariants
are defined, it is clear that mg(α) gives a lower bound for g(α). As we noted in
Proposition 11, if X admits a Lefschetz fibration of genus g 6= 1 with a regular fiber
representing the homology class α, then g(α) = mg(α) = g. Thus this inequality is
sharp.

The minimal genus is a smooth invariant which is insensitive to the orientation
of the ambient 4-manifold, that is, mg(α) is unchanged under orientation reversal
of X . Since we only allow Lefschetz singularities compatible with the orientation
on the ambient 4-manifold, it should be expected that g(α), for a class α2 = 0,
would behave differently under the orientation reversal. Indeed, Proposition 13
along with Remark 14 demonstrate that this discrepancy occurs but in a rather
controlled way: The difference between g(α) in X and X̄ can be −1, 0, or 1, where
all these possible values can be realized.

We can compare the broken genus and minimal genus for pairs (X,α) and (X ′, α′)
related to each other in more general ways than just the orientation reversal on the
same smooth manifold. In particular we can compare the difference g(α)−mg(α) to
g(α′)−mg(α′), so as to see if the minimal genus coupled with a certain equivalence
between (X,α) and (X ′, α′) would determine the broken genus.

(i) Given X and X ′ closed oriented 4-manifolds for which we have an isomorphism
φ : H2(X) ∼= H2(X

′), along with α ∈ H2(X) and α′ = φ∗(α) ∈ H2(X
′), one can

compare the difference between the broken genus and the minimal genus for pairs
(X,α) and (X ′, α′). We claim that such an equivalence does not provide any bound
on the discrepancy between the broken and minimal genera of the matching classes.
For example, set X = S2 × S2 and X ′ = S2 × Σg and let φ be an isomorphism
between their second homologies matching the class α = [S2 × {pt}] in X with the
class α′ = [S2×{pt}] in X ′. Proposition 10 shows that the smallest broken genus of
any class in S2 ×Σg is g. So we have mg(α) = mg(α′) = 0, and g(α) = 0, whereas
g(α′) ≥ g can be made arbitrarily large, by choosing g large.
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(ii) We can restrict the above setting further and look at 4-manifolds X and X ′

for which there is an isomorphism between their cohomology rings, inducing an
isomorphism φ : H2(X) ∼= H2(X

′) matching α with α′ = φ∗(α). It is still not hard
to find examples where a discrepancy —greater than one— occurs. For instance, let
X be S4 or #mCP

2, and X ′ be a non-diffeomorphic 4-manifold whose cohomology
ring is isomorphic to that of X . There are infinitely many homology 4-spheres with
non-trivial fundamental groups, which would yield to such examples. It is clear that
here the only candidate for a fiber class of an SBLF is the trivial class α = 0 = α′,
which has minimal genus zero in any 4-manifold. We know from Theorem 18 that
g(X, 0) = 1, and moreover that g(X ′, 0) > 1, since the classification result of [7]
tells that if X ′ were to admit a genus one SBLF, then after blow-ups it would
decompose as a connected sum of CP2s and CP2s with an indefinite intersection
form. Hence, g(α)−mg(α) = 1 whereas g(α′)−mg(α′) ≥ 2.

(iii) Lastly, we can look at homeomorphic pairs of 4-manifoldsX and X ′ and classes
α and α′ matched under this homeomorphism. In Theorem 23, we studied families
of non-symplectic (Xn, αn) which are all homeomorphic to (K3, [T ]), where T is
an elliptic fiber in K3. In this construction, one can use a carefully chosen circle
valued Morse function without extrema on the complement of the non-fibered knot
K of genus g so as to produce a broken fibration (without Lefschetz critical points)
S1×MK → T 2 with smallest fiber genus g, which in turn hands us a non-simplified
broken Lefschetz fibration on XK which has fibers of genus 2g + 1. The Seiberg-
Witten calculation in the proof of Theorem 23 shows that this is indeed the minimal
genus of the resulting homology class of the fiber. However, since the 4-manifoldXK

cannot be symplectic, we cannot have a Lefschetz fibration (of genus 2g+1 or else)
on it, implying that the broken genus of this class would be larger than its minimal
genus. Setting (X,α) = (K3, [T ]), and (X ′, α′) = (Xn, αn) for any one of these
examples, we see that the difference g(α)−mg(α) = 0, whereas g(α′)−mg(α′) > 0.

It might be conceptually helpful to note that given a closed oriented 4-manifold
X and a surface F which is a minimal genus representative for a class α ∈ H2(X)
with α2 = 0, one can always obtain a non-simplified broken Lefschetz fibration
for (X,α) so that F is a fiber of the resulting fibration. See for instance [5], or
Section 2 where we sketched Gay-Kirby construction [14] followed by an elimination
of achiral points. Such a construction provides no a priori upper bound on the
highest genus fiber (even when all the fibers are connected so as to make sense of
this). Nevertheless, the lowest possible genus of a fiber of a general broken Lefschetz
fibration on (X,α) is a smooth invariant, which is the same as the minimal genus
of α as the above argument demonstrates. With this in mind, we can compare the
lowest possible genus of a fiber of a general broken Lefschetz fibration to that of a
simplified one (which differs from our broken genus invariant by at most one) on
pairs (X,α) and (X ′, α′).

The examples we produced under various equivalences (i)-(iii) above show that
the difference between the lowest possible genera of simplified broken Lefschetz
fibrations and of arbitrary broken Lefschetz fibrations on (X,α) and the same dif-
ference on (X ′, α′) can still be: arbitrarily large under the equivalence in (i), and is
at least one under the equivalence in (ii). For the families given in (iii), our current
arguments do not suffice to show that the difference is still non-zero. However,
we predict that for a family of non-fibered knots for which a circle valued Morse
function as above requires at least k ≥ 1 index one critical points, the number k
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would provide a lower bound for the discrepancy between lowest genus of a sim-
plified broken Lefschetz fibration and that of a general broken Lefschetz fibration,
whereas this difference is zero for (K3, [T ]). In any account, it is interesting to note
that if this difference were to be constant for all homeomorphic pairs (X,α) and
(X ′, α′), then the arguments in (ii) above would imply that there are no exotic S4s,
or #mCP2s.

6. Related questions and problems

We finish with a few related problems.

Problem 24. Is there any closed oriented simply-connected 4-manifold X admit-
ting a genus one simplified broken Lefschetz fibration and is not diffeomorphic to
any one of the 4-manifolds given in Theorem 18?

Remarkably, from the signature zero condition Hayano obtained for spin genus one
SBLFs in [18] it follows that the answer to this question is “No” if the 4-manifold
is spin. In the light of the classification of genus one SBLFs in [7] and Corollary
20 above, the question comes down to the existence of an exotic #mCP

2#nCP2

which, after a number of blow-ups, completely decomposes as a connected sum of
CP2s and CP2s, and has trivial Seiberg-Witten invariants if m > 1.

Thinking of the simply-connected 4-manifolds that appear in Theorem 18 as the
summands of standard 4-manifolds realizing all homeomorphism classes of simply-
connected 4-manifolds (modulo 11/8 conjecture), it remains to determine the bro-
ken genera of the following family of 4-manifolds. Recall that the connected sum
of K3 and K3 dissolves as #22(S2 × S2).

Problem 25. Find the broken genera of #mK3#n(S2 ×S2), for m+n ≥ 2, with
each orientation.

Note that by Proposition 15, this problem essentially boils down to determining
the genera of #mK3, for m ≥ 2.

Any smooth 4-manifoldX ′ homeomorphic to the K3 surface has g(X ′) ≥ g(K3).
Moreover, the classification of genus one Lefschetz fibrations, together with Hayano’s
signature zero condition for spin genus one SBLFs with non-empty round locus,
shows that the equality holds only if X is diffeomorphic to K3. If T is a regular
elliptic fiber of the standard fibration on K3, then g(K3) = g(K3, [T ]) = 1. So
for any pair (X ′, α′) homeomorphic to g(K3, [T ]), we have g(X ′, α′) ≥ g(K3, [T ]),
and the equality holds only if (X ′, α′) is diffeomorphic to (K3, [T ]). Clearly, the
same holds for the homology class of the fiber of the “dual” elliptic fibration on
K3. (Smoothly, these “dual” fibrations are the horizontal and vertical fibrations
discussed in the proof of Theorem 23.)

Problem 26. Let X ′ be a smooth (resp. symplectic) 4-manifold and ψ : K3 → X ′

be a homeomorphism. Is it true that for any α′ (resp. for any α′ represented by an
embedded symplectic surface) in H2(X

′), we have g(X ′, α′) ≥ g(K3, ψ−1
∗

(α′))?

A close look at the families of exotic K3 surfaces constructed in the proof of
Theorem 23 shows that while for some homology classes the difference between
broken genera can be arbitrarily large, it can remain the same for the others.
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Let G be a finitely presented group. We can define a non-negative integer valued
invariant of this group G via broken genera: We set the broken genus of G, denoted
by g(G), as the smallest broken genus among the broken genera of all possible
closed oriented 4-manifolds with fundamental group G. This gives —yet another—
invariant of finitely presented groups via smooth 4-manifolds. (See [22] for an
overview, and [21] for a similar invariant defined via Lefschetz fibrations.) At least
at the first glance, this invariant seems more computable than many others appeared
in the literature before, yet to be seen how fine it is. We can summarize what we
have shown so far:

Proposition 27. Let G be a finitely presented group. The only genus zero group
is the trivial group. The only genus one groups are Z, Zm, Z× Z, or Z× Zm. For
the surface group G = π1(Σg), we have g(G) = g.

A natural problem within this context is:

Problem 28. Determine g(G) for a given finitely presented group.
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