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KOHNEN’S LIMIT PROCESS FOR

REAL-ANALYTIC SIEGEL MODULAR FORMS

KATHRIN BRINGMANN, MARTIN RAUM, AND OLAV K. RICHTER

Abstract. Kohnen introduced a limit process for Siegel modular forms that produces
Jacobi forms. He asked if there is a space of real-analytic Siegel modular forms such that
skew-holomorphic Jacobi forms arise via this limit process. In this paper, we initiate the
study of harmonic skew-Maass-Jacobi forms and harmonic Siegel-Maass forms. We improve
a result of Maass on the Fourier coefficients of harmonic Siegel-Maass forms, which allows
us to establish a connection to harmonic skew-Maass-Jacobi forms. In particular, we answer
Kohnen’s question in the affirmative.

1. Introduction

Jacobi forms occur in the Fourier expansion of Siegel modular forms of degree 2, a fact
that played an important part in the proof of the Saito-Kurokawa conjecture (see Maass
[21, 22, 23], Andrianov [1], Zagier [32], and Eichler and Zagier [10]). The theory of Jacobi
forms has grown enormously since then leading to beautiful applications in many areas of
mathematics and physics. Several of these applications rely on real-analytic Jacobi forms,
and it has been necessary to investigate such forms in detail (see Skoruppa [29, 30], Berndt
and Schmidt [2], Pitale [27], the first and third author [5], and more recently [4]). For
instance, the real-analytic Jacobi forms in Zwegers [33] are examples of harmonic Maass-
Jacobi forms [4] that are absolutely vital to the theory of mock theta functions. These
real-analytic Jacobi forms also impact the theory of Donaldson invariants of CP2 that are
related to gauge theory (see for example Göttsche and Zagier [13], Göttsche, Nakajima,
and Yoshioka [12], and Malmendier and Ono [24]), and they emerge in recent work on the
Mathieu moonshine (see for example Eguchi and Ooguri and Tachikawa [9]).

The interplay of holomorphic Jacobi forms and holomorphic Siegel modular forms is well
understood, but the analogous situation for real-analytic forms is still mysterious and only
partial progress has been made. For example, current work of Dabholkar, Murthy, and
Zagier [7] on quantum black holes and mock modular forms features mock Jacobi forms
(which can also be viewed as holomorphic parts of harmonic Maass-Jacobi forms [4, 5]) that
occur as Fourier coefficients of meromorphic Siegel modular forms. Kohnen [15, 16] suggests
a completely different approach to connect real-analytic Jacobi forms and Siegel modular
forms. We use Kohnen’s approach to shed more light on the relation of Jacobi forms and
Siegel modular forms in the real-analytic world. Let F be a real-analytic Siegel modular
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form of degree 2 with Fourier-Jacobi expansion

F (Z) =
∑

m∈Z

φm(τ, z, y
′) e2πimx

′

,(1)

where throughout the paper, Z = ( τ z
z τ ′ ) ∈ H2 (the Siegel upper half space of degree 2) with

τ = x + iy, z = u + iv, and τ ′ = x′ + iy′. In general, φm is not a Jacobi form due to the
dependence on y′. However, in the special case that F in (1) is Maass’ [19] nonholomorphic
Siegel Eisenstein series of degree 2 and of type (12 , k− 1

2), Kohnen [15, 16] employs the limit

(2) L(φm) := lim
δ→∞

e
δ
2 e

2πm v2

y φm

(
τ, z,

δ

4πm
+
v2

y

)
(m > 0)

to produce skew-holomorphic Jacobi forms of weight k and index m. Naturally, he asks if
there is a space of real-analytic Siegel modular forms such that the limit (2) always yields
skew-holomorphic Jacobi forms. Note also that if F is a holomorphic Siegel modular form of
weight k, then (2) gives precisely them-th Fourier-Jacobi coefficient of F , i.e., a holomorphic
Jacobi form of weight k and index m.

In this paper, we consider the space M̂k of harmonic Siegel-Maass forms of weight k (see
Definition 1), which are real-analytic Siegel modular forms of degree 2 and of type (12 , k− 1

2)
that are annihilated by the matrix-valued Laplace operator Ω 1

2
,k− 1

2
(defined in (4)). Recall

that in the degree one case, Bruinier’s and Funke’s [6] operator ξk maps harmonic weak
Maass forms of weight k to weakly-holomorphic modular forms of weight 2 − k, and the
kernel of the map ξk consists of weakly-holomorphic modular forms of weight k. In (6) we

define the corresponding operator ξ
(2)
1
2
,k− 1

2

for Siegel-Maass forms, which provides a duality

between the weights k and 3− k (analogous to the situation of the Jacobi forms in Section
3 and in [5]), and forms in the kernel are analogs of “holomorphic” Siegel-Maass forms. In

Section 3, we introduce the space Ĵskk,m of harmonic skew-Maass-Jacobi forms of weight k and

index m (see Definition 2), which contains the space Jskk,m of skew-holomorphic Jacobi forms
of weight k and index m. We use Kohnen’s limit process to prove the following theorem,

which connects Ĵskk,m and M̂k, and in particular, answers Kohnen’s question. Throughout
this paper we assume that k is an odd integer such that k 6= 1, 3.

Theorem 1. Let F ∈ M̂k with Fourier-Jacobi expansion as in (1), and if k > 3 assume

that ξ
(2)
1
2
,k− 1

2

(F ) = 0. Let m > 0. If k > 3, then y
1
2
−kL

(
detY k− 1

2 φm
)
∈ Jskk,m, and if k < 0,

then y
1
2
−kL

(
detY k− 1

2 φm
)
∈ Ĵskk,m.

The paper is organized as follows. In Section 2, we review differential operators for Siegel
modular forms and we sharpen a result by Maass on the Fourier expansions of Siegel modular
forms that are annihilated by Ω 1

2
,k− 1

2
. In Section 3, we discuss harmonic skew-Maass-Jacobi

forms. In Section 4, we explore Kohnen’s limit process and we prove Theorem 1.

2. Differential operators for Siegel modular forms

Maass [19] (see also [20]) introduces differential operators for Siegel modular forms of
degree n. In this paper, we focus on real-analytic Siegel modular forms of degree 2 and we
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only review the relevant results of Maass. Let us start with some standard notation. Let
M2(C) be the set of 2 × 2 matrices with entries in C and let I2 ∈ M2(C) be the identity
matrix. If A ∈ M2(C), then tr(A) denotes the trace of A. Moreover, let Sp2(R) be the
symplectic group of degree 2 and let Z = ( τ z

z τ ′ ) = X + iY ∈ H2 be a typical variable. As
usual, if M =

(
A B
C D

)
∈ Sp2(R) and Z ∈ H2, then we set

M ◦ Z := (AZ +B)(CZ +D)−1.

Furthermore, for functions G : H2 → C and for fixed α, β ∈ C such that α − β ∈ Z, we
define the slash operator

(3)
(
G
∣∣
(α, β)

M
)
(Z) := det(CZ +D)−α det(CZ +D)−β G(M ◦ Z)

for all M =
(
A B
C D

)
∈ Sp2(R).

2.1. Casimir operators. It is well known that the center of the universal enveloping al-
gebra of Sp2(R) is generated by 2 elements, the Casimir elements. Their images under the
action in (3) yield a quadratic and a quartic Casimir operator, which generate the C-algebra
of invariant differential operators with respect to the action in (3). Maass (see §8 in [20]) de-
termines this algebra and we now introduce some more notation to give the explicit formulas
of these invariant differential operators in Maass [20]. Let

∂Z :=

(
∂τ

1
2∂z

1
2∂z ∂τ ′

)
and ∂Z :=

(
∂τ

1
2∂z

1
2∂z ∂τ ′

)
,

where ∂w := ∂
∂w = 1

2

(
∂
∂a − i ∂∂b

)
and ∂w := ∂

∂w = 1
2

(
∂
∂a + i ∂∂b

)
for any complex variable

w = a+ ib. Set

Kα := αI2 + (Z − Z)∂Z , Λβ := −βI2 + (Z − Z)∂Z ,

and

Ωα,β := Λ
β−

3
2
Kα + α(β − 3

2)I2(4)

= −4Y t(Y ∂Z)∂Z − 2iβY ∂Z + 2iαY ∂Z .

Finally, if A
(1)
α,β := Ωα,β − α(β − 3

2 )I2, then

H
(α,β)
1 := tr

(
A

(1)
α,β

)
and

H
(α,β)
2 := tr

(
A

(1)
α,β A

(1)
α,β

)
− tr

(
Λβ A

(1)
α,β

)
+ 1

2tr
(
Λβ
)
tr
(
A

(1)
α,β

)

are two Casimir operators that generate the C-algebra of invariant differential operators
with respect to the action in (3).

Remark. Nakajima [25] (apparently unaware of the Theorem on p. 116 of [20]) gives the
two invariant differential operators with respect to the action in (3) when α = β = 0. The

quadratic operator in [25] coincides (up to a constant factor) with H
(0,0)
1 , but unfortunately,

the quartic operator in [25] is incorrect. This was verified with Singular and Plural [8, 17]
and the computer code is posted on the author’s homepages. Note also that the Fourier series
expansions of Siegel-Maass forms in Niwa [26] rely on the differential operators of [25].
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Of particular interest is the operator

(5) C(α,β) := Nβ−1Mα,

where Mα and Nβ are the raising and lowering operators, respectively, of Maass [19]. Recall
that

Mα := α(α − 1
2 ) + (α− 1

2)
(
(τ − τ)∂τ + (z − z)∂z + (τ ′ − τ ′)∂τ ′

)
+ det(Z − Z)(∂τ∂τ ′ − 1

4∂
2
z )

and Nβ := iMβi with i(G)(Z) := G(−Z) for any G : H2 → C. A direct computation shows
that

C(α,β) = H
(α,β)
2 +

(
H

(α,β)
1

)2
+ 1

2(1 + α− β)H
(α,β)
1 .

Theorem 1 connects skew-holomorphic Jacobi forms and more generally, harmonic skew-
Maass-Jacobi forms (see Section 3) with real-analytic Siegel modular forms of type (12 , k− 1

2).

Therefore, we focus on the case α = 1
2 and in this case we write H1 := H

( 1
2
,k− 1

2
)

1 , H2 :=

H
( 1
2
,k− 1

2
)

2 , and C := C( 1
2
,k− 1

2
). Note that C = ξ

(2)
3−k,0 ξ

(2)
1
2
,k− 1

2

, where

ξ
(2)
k,0 := det(Y )k−

3
2 N0 and ξ

(2)
1
2
,k− 1

2

:= det(Y )k−
3
2 M 1

2
(6)

are higher dimensional generalizations of Bruinier’s and Funke’s [6] operator ξk.
In the spirit of Borel [3], it is natural to consider real-analytic Siegel modular forms that are

eigenfunctions of the two Casimir operatorsH1 andH2. Without further restrictions it seems
quite hopeless to explicitly describe the Fourier expansions of such forms. Nevertheless, we
can use the Laplace operator Ω 1

2
,k− 1

2
in (4) to define a subspace of such real-analytic Siegel

modular forms, which allows us to explicitly determine their Fourier coefficients.

2.2. Siegel-Maass forms. Imamoḡlu and the third author [14] consider Siegel-Maass forms
of degree n that are annihilated by the Maass operator Mn−1

2
. If n = 2, then such forms are

in the kernel of ξ
(2)
1
2
,k− 1

2

in (6) and hence (in light of the degree 1 case in [6]), they are analogs

of “holomorphic” Siegel-Maass forms. However, there are also Siegel-Maass forms that play
a key role in the proof of Theorem 1 (see Theorem 4), and which are not in the kernel of

ξ
(2)
1
2
,k− 1

2

(see Proposition 2). Our following definition includes such examples of Siegel-Maass

forms.

Definition 1. A harmonic Siegel-Maass form of weight k on Γ := Sp2(Z) is a real-analytic
F : H2 → C satisfying the following conditions:

(1) For all M ∈ Γ, F |( 1
2
, k− 1

2
)M = F .

(2) We have that Ω 1
2
,k− 1

2
(F ) = 0.

(3) We have that |F (Z)| ≤ C tr(Y )N for some C > 0 and N ∈ N.

Let M̂k denote the space of such harmonic Siegel-Maass forms of weight k.
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Remarks.

(1) Maass [19] essentially shows that if G : H2 → C satisfies Ωα,β(G) = 0, then G is
annihilated by all invariant differential operators with no constant term for the slash

action |(α,β) (for a representation theoretic proof of this fact see [28]). Hence M̂k is
a subspace of the space of real-analytic Siegel modular forms that are eigenfunctions
of both Casimir operators H1 and H2.

(2) One cannot use the Koecher principle to remove condition (3), since there are har-
monic Siegel-Maass forms that have singularities at the Satake boundary of the Siegel
upper half space (see Proposition 1 in the case that k < 0).

(3) Note that holomorphic Siegel modular forms of weight k are annihilated by the matrix-
valued Laplace operator Ωk,0.

(4) The space M̂k is invariant under the action of the Hecke operators (for details on

Hecke operators, see Chapter IV of [11]): If F ∈ M̂k and T is a Hecke operator,
then the definition of the Hecke operator implies that F |T satisfies (1) and (3) of
Definition 1. The covariance property of Ω 1

2
,k− 1

2
(see §8 of [20]) shows that F |T

satisfies (2) of Definition 1.

Examples of harmonic Siegel-Maass forms can be constructed via the Poincaré-Eisenstein
series

(7) Pk,s(Z) :=
∑

M∈Γ∞\Γ

(
(detY )s|( 1

2
, k− 1

2
)M

)
(Z),

where Γ∞ :=
{(

A B
C D

)
∈ Γ |C = 0

}
.

Remark. Note that Pk,s = (detY )sEs+ 1
2
,s+k− 1

2
, where Eα,β is Maass’ [19, 20] non-

holomorphic Eisenstein series. We find that Pk,s converges absolutely if 2Re(s) + k > 3.
Maass [19] also showed that Eα,β is in the kernel of Ωα,β (provided that α − β ∈ 2Z and
Re(α+ β) > 3).

Proposition 1. If s = 0 (k > 3) or s = 3
2 − k (k < 0), then Pk,s ∈ M̂k.

Proof: A direct computation shows that

Ω 1
2
,k− 1

2
((detY )s) = −s

(
s−

(
3
2 − k

))
(detY )sI2

and the covariance of Ω 1
2
,k− 1

2
proves that Ω 1

2
,k− 1

2
(Pk,s) = 0 for s = 0 and s = 3

2 − k. Finally,
(3) of Definition 1 is satisfied for Es+ 1

2
,s+k− 1

2
and hence also for Pk,s. �

Remark. Proposition 1 in combination with Remarks (1) after Definition 1 implies that
C(Pk,s) = 0 for s = 0 and s = 3

2 − k. It is easy to verify that C(Pk,s) = 0 also for s = −1
2

(k > 4) and s = 2− k (k < 1).

Our final result in this subsection gives the image of Pk,s under ξ
(2)
1
2
,k− 1

2

if s = 0 and

s = 3
2 − k. In particular, if s = 3

2 − k, then Pk,s is not a Siegel-Maass form as in [14].
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Proposition 2. If s = 0, then Pk,s is already annihilated by ξ
(2)
1
2
,k− 1

2

. If s = 3
2 − k, then

ξ
(2)
1
2
,k− 1

2

(Pk,s) =
(
k − 3

2

)
(k − 2)E3−k,

where E3−k is the usual holomorphic Siegel-Eisenstein series of weight 3− k.

Proof: A direct computation shows that

M 1
2

(
(detY )s

)
= s(s+ 1

2)(detY )s

which proves the claim. �

2.3. Fourier series expansions. Maass [19] determines the Fourier series expansions of
functions that are in the kernel of Ωα,β. We will first recall Maass’ result (where we have
slightly changed the notation of some variables to avoid confusion with our earlier notation),
and then we will improve it in the case of harmonic Siegel-Maass forms.

Theorem 2 ([19]). Let G(Z) = a(Y, T ) ei tr(TX), where T is a real symmetric 2×2-matrix,
and suppose Ωα,β(G) = 0 where α+ β 6= 1, 3

2 , 2. Write

Y =
√
detY

(
(x2 + y

2)y−1
xy

−1

xy
−1

y
−1

)

and
u := tr(Y T ), v :=

(
tr(Y T )

)2 − 4 det(Y T ).

Then a(Y, T ) is given as follows:

(a) If T = 0, then

(8) a(Y, 0) = φ(x, y) detY
1
2
(1−α−β) + c1 detY

3
2
−α−β + c2,

where c1, c2 ∈ C and φ(x, y) is an arbitrary solution (analytic for y > 0) of the wave
equation

y
2(φxx + φyy)− (α+ β − 1)(α + β − 2)φ = 0.

(b) If rank (T ) = 1, T ≥ 0, then

(9) a(Y, T ) = φ(u) detY
3
2
−α−β + ψ(u),

where φ and ψ are confluent hypergeometric functions that satisfy the following differ-
ential equations

uφ′′ + (3− α− β)φ′ + (α− β − u)φ = 0

uψ′′ + (α+ β)ψ′ + (α− β − u)ψ = 0.

In particular, there are four linear independent solutions a(Y, T ) in this case.

(c) If rank (T ) = 2, T > 0, then

(10) a(Y, T ) =
∞∑

n=0

gn(u)v
n (|v| < u

2),

where the functions gn(u) are recursively defined by

4(n + 1)2ugn+1 + ug′′n + 2(2n + α+ β)g′n + (2(α − β)− u)gn = 0
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and

g0(u) = u
1−α−β ψ(u), with ψ′(u) =

1

u
φ(u), and

φ′′ =

(
1 +

2(β − α)

u
+

(α+ β − 1)(α + β − 2)

u2

)
φ.

In particular, there are three linear independent solutions a(Y, T ) in this case.

(d) If rank (T ) = 2, T indefinite, then

a(Y, T ) =
∞∑

n=0

hn(v)u
n (u2 < v),

where the functions hn(v) are recursively defined by

(n+ 2)(n + 1)hn+2 + 4vh′′n + 4(α+ β + n)h′n − hn = 0

and

(α− β)h1 = 8v2h′′′0 + 4(2 + 3α+ 3β)vh′′0

+ (4(α + β)2 + 2(α+ β − 1)− 2v)h′0 − (α+ β)h0,

(β − α)h0 = 2vh′1 + (α+ β)h1.

In particular, there are four linear independent solutions a(Y, T ) in this case.

Finally, any solution for the data {α, β, T} is also a solution for the data {β, α,−T}.

We now recall some standard special functions, which are needed to state our results in
the next theorem and remarks. Let Mν,µ and Wν,µ be the usual M -Whittaker function and
W -Whittaker function, respectively, which are solutions to the differential equation

∂2

∂w2
f(w) +

(
−1

4
+
ν

w
+

1
4 − µ2

w2

)
f(w) = 0.

For fixed ν and µ we have the following asymptotic behavior as y → ∞

(11) Mν,µ(y) ∼
Γ(1 + 2µ)

Γ(µ− ν + 1
2)
y−νe

y
2 and Wν,µ(y) ∼ yνe−

y
2 ,

where Γ(·) is the Gamma-function. As usual, let Γ(a, y) :=
∫∞
y e−wwa−1 dw denote the

incomplete Gamma-function. If y → ∞, then

(12) Γ (a, y) ∼ ya−1e−y .

Let pFq be the generalized hypergeometric series

pFq(a1, . . . , ap; b1, . . . , bq; z) :=
∑

n

(a1)n · · · (ap)n
(b1)n · · · (bq)n

zn

n!
,

where (a)n := a(a + 1)(a + 2)...(a + n − 1) is the Pochhammer symbol. The asymptotic
behavior of the generalized hypergeometric function is quite complicated (see for example
§5.11 of [18]), and we only remark here that the generalized hypergeometric function growths
rapidly for generic parameters.
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Our next theorem sharpens Theorem 2 in the case of harmonic Siegel-Maass forms. Note
that the exponentials of the Fourier series expansions in Theorem 2 and Theorem 3 differ
by 2π.

Theorem 3. Let F (Z) =
∑

T

a(Y, T )e2πi tr(TX) ∈ M̂k. As in Theorem 2 we write

u := tr(Y T ) and v :=
(
tr(Y T )

)2 − 4 det(Y T ),

and c1, c2 ∈ C are always constants. Then a(Y, T ) is given as follows:

(a) If T = 0, then

(13) a(Y, 0) = c1 detY
3
2
−k + c2,

which is in the kernel of ξ
(2)
1
2
,k− 1

2

if and only if c1 = 0.

(b) If rank (T ) = 1, T ≥ 0, then two of the four fundamental solutions of (b) in Theorem 2
do not occur. Any Fourier coefficient that occurs is of the form

c1 u
k−2 detY

3
2
−k e2πuΓ(2− k, 4πu) + c2 u

− k
2W 1−k

2
, k−1

2
(4πu),

and ξ
(2)
1
2
,k− 1

2

(
a(Y, T )e2πi tr(TX)

)
= 0 if and only if c1 = 0.

(c) If rank (T ) = 2, T > 0, then two of the three fundamental solutions of (c) in Theorem 2
do not occur. Any Fourier coefficient that occurs is of the form

c1

∞∑

n=0

gn(2πu) (4π
2
v)n

with gn as in (c) of Theorem 2 and

g0(u) = u
1−k

∫ ∞

u

ũ
−1W1−k,(sgnk)(k− 3

2
)(2ũ) dũ,

and ξ
(2)
1
2
,k− 1

2

(
a(Y, T )e2πi tr(TX)

)
= 0 if and only if c1 = 0.

(d) If rank (T ) = 2, T indefinite, then three of the four fundamental solutions of (d) in
Theorem 2 do not occur.

Before we prove Theorem 3 we give the additional solutions (computed with Mathematica)
of Theorem 2 that do not occur in Theorem 3.

Remarks. (b) If rank (T ) = 1, T ≥ 0, then the two additional fundamental solutions
are:

u
k−2e2πu and

{
e−2πu

1F1(−1
2 + k; k; 4πu) if k > 3,

u
1−ke−2πu

1F1(
1
2 ; 2 − k; 4πu) if k < 0.



KOHNEN’S LIMIT PROCESS 9

(c) If T > 0, then the two additional solutions arise via

g0(u) = u
1−k

and

g0(u) = u
1−k

∫ ∞

u

ũ
−1M1−k,(sgnk)(k− 3

2
)(2ũ) dũ.

(d) If rank (T ) = 2, T indefinite, then the three additional fundamental solutions for h1 are
different when k > 3 and k < 0. If k > 3 they are:

1F2

(
1
2 ;

1+k
2 , 1 + k

2 ;π
2
v
)
, v

−k
2 1F2

(
1−k
2 ; 12 , 1 − k

2 ;π
2
v
)

and

(π2v)
1−k
2 1F2

(
1− k

2 ;
3
2 ,

3−k
2 ;π2v

)
−
(
1− k

2

)
)k−1

2
Γ
(
3−k
2

)
(
3
2

)
k−1
2

(
k−1
2

)
!

1F2

(
1
2 ;

1+k
2 , 1 + k

2 ;π
2
v
)
.

Note that the second solution above is a Laurent polynomial in v
−
1
2 .

If k < 0, then the three additional fundamental solutions for h1 are given by

v

1−k
2 1F2

(
1− k

2 ;
3
2 ,

3−k
2 ;π2v

)
, v

3
2−k2F3

(
1, 2 − k; 52 − k, 2− k

2 ,
5−k
2 ;π2v

)
and

1F2

(
1
2 ;

1+k
2 , 1 + k

2 ;π
2
v
)
−

(
1
2

)
1−k
2
Γ
(
k+1
2

)
(
1 + k

2

)
1−k
2

(
1−k
2

)
!

(
π2v
)1−k

2
1F2

(
1− k

2 ;
3
2 ,

3−k
2 ;π2v

)
.

Individual generalized hypergeometric series may not be not defined for some k, but
linear combinations of generalized hypergeometric series can be analytically continued
for such k, and we always refer to their analytic continuations.

Proof of Theorem 3: We used Mathematica to find the explicit solutions for a(Y, T )
in Theorem 2. It is easy to see that the functions in (a), (b), and (c) of Theorem 3 and the
functions in (b) and (c) of the remarks to Theorem 3 are indeed solutions, and also that the
functions in (a), (b), and (c) of Theorem 3 yield solutions that satisfy the growth condition
(3) of Definition 1. The case where T is indefinite is more complicated. We will first verify
directly that the functions in (d) of the remarks to Theorem 3 are solutions. Then we will
show that no linear combination of the solutions given in the remarks to Theorem 3 satisfies
the growth condition (3) of Definition 1. Finally, we will show that for T > 0 and k > 3 any

possible nontrivial solution is not in the kernel of ξ
(2)
1
2
,k− 1

2

.

The computations are quite involved and where partially performed with the help of
Sage [31] and Singular [8]. The computer code is posted on the author’s homepages.

Let T be indefinite. We confirm that the functions in (d) of the remarks to Theorem 3 are
solutions for a(Y, T ) in Theorem 2 by showing that for generic k the following generalized
hypergeometric series are the solutions for h1(v) in (d) of Theorem 2:

1F2

(
1
2 ;

1+k
2 , 1 + k

2 ;
v
4

)
, v

−
k
2 1F2

(
1−k
2 ; 12 , 1 − k

2 ;
v
4

)
,

v

1−k
2 1F2

(
1− k

2 ;
3
2 ,

3−k
2 ; v4

)
, and v

3
2−k2F3

(
1, 2− k; 52 − k, 2− k

2 ,
5−k
2 ; v4

)
.

(14)



10 KATHRIN BRINGMANN, MARTIN RAUM, AND OLAV K. RICHTER

We will need the following Lemma on generalized hypergeometric series with parameters
a = a1, . . . , ap and b = b1, . . . , bq, where ai, bj ∈ C[k].

Lemma 1. Suppose D is an order D linear differential operator on smooth functions of
v. Assume that D has coefficients in C[v, k], and that these coefficients have maximal degree
mv in v. If l ∈ Z and all bj ’s are either positive or nonintegral, then

D v
l
pFq(a;b; v) = 0

if and only if the t-th coefficients (l − D ≤ t ≤ l + D + mv) of D v
l
pFq(a;b; v) vanish as

functions of k.

Proof: It suffices to prove that

D v
l
pFq(a;b; v) = v

l−D
(
pFq(a+D;b+D; v)p1 + p2

)

for some p1, p2 ∈ C(k)[v] of degree at most 2D +mv. Without loss of generality let D = ∂iv
with i ∈ {0, . . . ,D} and, in particular, mv = 0.

We proceed by mathematical induction on D. The case D = 0 is clear. Suppose D =
c1∂vD̃+c2 for some constants c1, c2 and an order D−1 operator D̃. By induction hypothesis
we have

D̃ v
l
pFq(a;b; v) = v

l−D+1
(
pFq(a+D − 1;b+D − 1; v)p̃1 + p̃2

)
,

where p̃1, p̃2 have maximal degree 2D− 2. The definition of the generalized hypergeometric
functions implies the relations

v
l
pFq(a;b; v) = v

l−1
(∏

i

ai
∏

j

b−1
j

)
(v+ v

2
pFq(a+ 1;b+ 1; v))

and

∂v v
l
pFq(a;b; v) = v

l−1

((∏

i

ai
∏

j

b−1
j

)
v pFq(a+ 1;b + 1; v) + l pFq(a;b; v)

)
,

which yield the claim. �

Lemma 1 allows us to reduce the proof to a computation of finitely many coefficients in a
series expansion with respect to v. Note that the defining differential equations for h0 and
h1 in (d) of Theorem 2 imply

0 =− 16v3 ∂4vh1 − 32(k + 2)v2 ∂3vh1 − 4(5k2 + 15k + 7− v)v ∂2vh1

− 2(2k3 + 5k2 + k − 2− 2kv − 2v) ∂vh1 + (2k − 1)h1 .
(15)

By Lemma 1, we only need to verify that 11 (D = 4,mv = 3) coefficients of the left hand
side of (15) vanish if h1 is any of the generalized hypergeometric functions in (14). With
the help of Sage [31] we found that these coefficients vanish indeed, which proves that the
functions in (14) are solutions for h1(v) in (d) of Theorem 2.

Now we show that no linear combination of the functions in (b), (c), and (d) of the remarks
to Theorem 3 occurs as a solution for a(Y, T ). First, we also have to exclude the solution to
the wave equation in (8).
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Consider T = 0. If U ∈ GL2(Z), then F ( tUZU) = (detU)kF (Z) = ±F (Z). Hence
a(Y, 0) = ±a( tUY U, 0), and we used Sage [31] and Singular [8] to show that the solution in
(8) reduces to (13).

For the remaining cases we will analyze the growth of Fourier coefficients. Note that if

F (Z) =
∑

T a(Y, T )e
2πi tr(TX) ∈ M̂k, then

a(Y, T ) =

∫

R3

F (Z)e−2πitr(TX) dX,

and condition (3) of Definition 1 implies that a(Y, T ) does not grow rapidly.
Consider rank (T ) = 1. The asymptotic behavior of the exponential function and gener-

alized hypergeometric series show that no linear combination of the functions in (b) of the
remarks to Theorem 3 occurs as a solution for a(Y, T ).

To treat the case T > 0 we will need the following lemma (see also [28]), which uses the
valuation of a Laurent polynomial in u normalized by

valup := max{l ∈ Z : u−lp ∈ C[u]}.
Lemma 2. Suppose that a sequence of Laurent polynomials ln in u satisfies a recursion

of the form

ln+1 =

D∑

d=0

pn,d l
(d)
n ,

where D ≥ 0, l
(d)
n is the d-th derivative of ln, and pn,d are Laurent polynomials in u with

degu pn,0 = 0 and degu pn,d < d for d 6= 0. Assume that the valuation of all pn,d is uniformly

bounded, and let V be a lower bound on valu(pn,d)−d. Suppose that (n|V |)d pn,d has uniformly
bounded coefficients as n → ∞. If the leading coefficients of l0 and pn,0 are positive, then
there is a constant κ such that the series

∞∑

n=0

ln ·
(
u

κ

)n
(16)

is well-defined as a formal Laurent series, and such that (16) has bounded coefficients.
If, in addition,

(17)

(
n− i+#{(d, j) : (pñ,d)j 6= 0 for some ñ} − 1

n− i

)

·
(
|V |+ |Dl|+ (Dl − Vl)

)n−i
( n+j∏

n′=j+1

(pn′,0)0

)(
max

(d,j)6=(0,0)
hd,j

)n−i

is bounded for n ≥ 1, j ≥ degu l0, and 0 ≤ i ≤ min{n,degu l0−valul0}, where the first factor
of (17) is the usual binomial coefficient and

hd,j :=

(
n+j∑

n′=0

(n′ + 1)d
∣∣(pn′,d)j

∣∣
(pn′,0)0

) 1
d−j

,
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then κ can be chosen such that all coefficients of uj with j > degu l0 in (16) are positive. In
particular, in this case (16) grows rapidly as u → ∞.

Proof: We prove the first part of Lemma 2 and for brevity we only sketch the quite
technical proof of the second part (for more details see [28]).

Write (p)j for the jth coefficient of a polynomial p. Set Dl := degu l0. The assumptions
imply that degu ln ≤ Dl and that the leading coefficient of ln is positive. Let b ≥ 1 be a

bound of
(
|valu(l0)|+

(
Dl− valu(l0)

)
+(n+1)|V |

)d ∑
d,j

∣∣(pn,d)j
∣∣ for all n. The valuation of

ln is bounded from below by valu(l0) + nV . Let B be a bound of the absolute values of the
coefficients of l0. Then an induction establishes that the absolute value of the coefficients
of ln is less than B bn. Choosing κ := 2b shows that the Laurent series (16) is well-defined.
Moreover, the jth coefficient of (16) is bounded by 2B, since

∣∣∣∣
∞∑

n=0

(ln)j−n
κn

∣∣∣∣ ≤
∞∑

n=0

Bbn

κn
≤ 2B.

To prove the second part, we will need to determine how the coefficients of ln (n > 0)
depend on those of l0. We decompose pn,d into monomials, and with a slight abuse of
notation we write (the non-commutative product)

(ln)j =

(( ∏

n′<n

∑

dn′ , j′
n′

(pn′,dn′
)j′

n′

u
j′
n′ ∂

dn′

u

)∑

i

(l0)i u
i

)

j

,

where one first differentiates with respect to ∂d0u , then ∂d1u , etc. For each contribution,∑
n′

(
dn′ − j′n′

)
is bounded by i−j. If (pn′,dn′

)j′
n′

6= 0 and
(
dn′ , j′n′

)
6= (0, 0), then dn′ −j′n′ >

0, and we find that the jth coefficient of ln only depends on (l0)i by means of “products”

(pn,dn)j′n u
j′n ∂dnu · · · (pn′,dn′

)j′
n′

u
j′
n′ ∂

dn′

u · · · (p0,d0)j′0 u
j′0 ∂d0u (l0)i u

i,

with at most i−j pairs
(
dn′ , j′n′

)
different from (0, 0). The proof proceeds by using a refined

version of this idea and by giving an upper bound on the number these products. �

Consider T > 0. Set v = 0 in
∑∞

n=0 gn(2πu) (4π
2
v)n and use condition (3) of Definition 1

to see that g0 is of moderate growth. The solution φ(u) = 0 to the differential equation
in (c) of Theorem 2 gives g0(u) := c u1−k for some c ∈ C. Let l0(u) := u

1−k and ln := gn
as in (c) of Theorem 2. We find that the hypotheses of Lemma 2 are satisfied (for details
see [28]). Choose κ according to the second part of Lemma 2, such that

∑∞
n=0 ln(u)

(
u
κ

)n
is

well-defined. In particular, we can choose κ such that
∑∞

n=0 ln(u) v
n grows rapidly as u → ∞,

where v = u
κ . The M -Whittaker function is another solution to the differential equation in

(c) of Theorem 2, but M1−k,(sgnk) (k− 3
2
)(2ũ) grows rapidly as ũ → ∞. We conclude that the

solutions to g0 in (c) of the remarks to Theorem 3 lead to rapidly growing Fourier coefficients
a(Y, T ), which proves the case T > 0.

Consider the case T indefinite. We will need the following lemma.

Lemma 3. Suppose that k < 0. The ratio of the coefficient of vn of the power series
expansion

(v4 )
3
2
−k

2F3

(
1, 2− k; 52 − k, 2− k

2 ,
5−k
2 ; v4

)



KOHNEN’S LIMIT PROCESS 13

and the coefficient of vn of the power series expansion

(v4)
− k

2 1F2

(
1−k
2 ; 12 , 1− k

2 ;
v
4

)

tends to zero as n→ ∞.
In particular, any linear combination of the first and the second generalized hypergeometric

series in (d) of the remarks to Theorem 3 grows rapidly as v → ∞.

Proof: The second generalized hypergeometric function of Lemma 3 equals, up to a
polynomial,

(v4)
3
2
−k

1F2

(
2− k; 2− k

2 ,
5−k
2 ; v4

)
.

This allows us to compute the ratio of the coefficients of vñ, which tends to zero as ñ→ ∞.
The rapid growth of the linear combinations of the generalized hypergeometric series in

Lemma 3 follows, since the coefficients of said linear combinations are almost all positive or
almost all negative. �

We now argue that for every k ∈ Z the three fundamental solutions given in (d) of the
remarks to Theorem 3 lead to rapidly growing Fourier coefficients a(Y, T ). If the solution is
a Laurent polynomial, then this follows from Lemma 2. If not, it follows by setting u = 0 in
(d) of Theorem 2 and the fact that nonpolynomial generalized hypergeometric series grow
rapidly towards infinity.

If k ≥ 3, then the space of solutions for h1 in (d) of the remarks to Theorem 3 is spanned by
two polynomials and a generalized hypergeometric series. In fact, the first and third solution
given in (d) of the remarks to Theorem 3 are, up to polynomials, multiples of each other.
This can be seen by analyzing the Laurent series expansion of both solutions with respect
to v (see [28] for more details). Any solution that occurs must be a linear combination of
the two polynomials only, since otherwise, a(Y, T )|u=0 grows rapidly. On the other hand,
nonvanishing polynomial solutions lead to rapidly growing a(Y, T ) by Lemma 2, as in the
case of T > 0. Hence neither of the three solutions can occur.

We have to use a different argument if k < 0. Lemma 3 shows that any nonzero linear
combination of the second and third solution grows rapidly. Lemma 2 allows us to exclude
the first solution, which coincides, up to a polynomial, with a multiple of the third solution.
This yields the claim.

Finally, if T > 0 and k > 3, then we will employ the asymptotic behavior of g0 to show

that any possible nontrivial solution for a(Y, T ) is not in the kernel of ξ
(2)
1
2
,k− 1

2

. We need to

consider φ to obtain the asymptotic behavior of g0. For generic k the solutions for φ are the
two generalized hypergeometric series

e−ũũk−1
1F1(1; 4 − 2k; ũ) and

e−ũũ2−k1F1(2k − 2; 2k − 2; ũ).

The following calculations can be performed with Sage [31]. The Laurent series expansions
of the solutions to φ around ũ = 0 yield Laurent series expansions of

∫
ũ
−1φ(2ũ) dũ, i.e., (up

to additive constants) Laurent series expansions of ψ. We can consider these Laurent series
expansions as asymptotic expansions for ψ as u → 0+. Consequently, we may multiply the

resulting expansions for (∂Z a(Y, I2)e
2πitrX) e−2πitrX by detY k− 1

2 ∼ (u2 )
2k−1.
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Not all generalized hypergeometric series here are defined for integral k, but linear com-
binations admit analytic continuations (for details see [28]). One finds that a linear com-

bination of the generalized hypergeometric series above can only be in the kernel of ξ
(2)
1
2
,k− 1

2

if the limit of the asymptotic expansion of the linear combination of the corresponding g0
tends to zero. An inspection of the initial exponent of this expansion shows that this is not
the case.

�

3. Harmonic skew-Maass-Jacobi forms

The classical Jacobi forms in Eichler and Zagier [10] are holomorphic functions. More
generally, the Maass-Jacobi forms in Berndt and Schmidt [2], Pitale [27], and in [4, 5]
are real-analytic functions that are eigenfunctions of differential operators invariant under
the action of the extended real Jacobi group. Another important class of Jacobi forms
are Skoruppa’s [29, 30] skew-holomorphic Jacobi forms, which are real-analytic in τ ∈ H,
holomorphic in z ∈ C, and annihilated by the heat operator

Lm := 8πim∂τ − ∂zz.

We now introduce necessary notation to define harmonic skew-Maass-Jacobi forms, which
are real-analytic extensions of skew-holomorphic Jacobi forms.

Let ΓJ := SL2(Z) ⋉ Z2 be the Jacobi group. For fixed integers k and m, define the
following slash operator on functions φ : H× C → C :

(
φ
∣∣sk
k,m

A
)
(τ, z)

:= φ

(
aτ + b

cτ + d
,
z + λτ + µ

cτ + d

)
(cτ + d)1−k |cτ + d|−1 e

2πim

(

− c(z+λτ+µ)2

cτ+d
+λ2τ+2λz

)

(18)

for all A =
[(

a b
c d

)
, (λ, µ)

]
∈ ΓJ. Note that (18) can be extended to an action |sk,Rk,m of the

extended real Jacobi group on C∞ (H× C). The center of the universal enveloping algebra
of the extended real Jacobi group is generated by a linear element and a cubic element,

the Casimir element. The linear element acts by scalars under |sk,Rk,m and the action of the

Casimir element under |sk,Rk,m is given (up to the constant 8πim
(
5
8 +

3(1−k)−(1−k)2

2 +1− 2k
)
=

8πim
(
21
8 − 5k+k2

2

)
) by the following differential operator:

Csk
k,m :=− 2(τ − τ)2∂τLm + (2k − 1)(τ − τ)Lm

+ 2(1 − k)(τ − τ)∂zz + 2(τ − τ)(z − z)∂zzz

− 16πim(τ − τ)(z − z)∂τz + 8πim(1− k)(z − z)∂z

+ 2(τ − τ)2∂τzz +
(
4πim(z − z)2 + (τ − τ)

)
∂zz + 2(τ − τ)(z − z)∂zzz .

In particular, Csk
k,m commutes with the action in (18), i.e., if A ∈ ΓJ, then

(
Csk
k,mφ

) ∣∣sk
k,m

A = Csk
k,m

(
φ
∣∣sk
k,m

A
)
.
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Definition 2. A real-analytic function φ : H× C → C is a harmonic skew-Maass-Jacobi
form of weight k and index m > 0 if the following conditions hold:

(1) For all A ∈ ΓJ, φ
∣∣sk
k,m

A = φ.

(2) We have that Csk
k,m(φ) = 0.

(3) We have that φ(τ, z) = O
(
eaye2πmv

2/y
)

as y → ∞ for some a > 0, and where

y = Im(τ) and v = Im(z).

We are especially interested in harmonic skew-Maass-Jacobi forms, which are holomorphic

in z; we denote the space of such forms by Ĵskk,m.

Remarks.

(a) One finds that every φ ∈ Ĵskk,m has a Fourier expansion of the form

φ(τ, z) =y
3
2
−k
∑

n,r∈Z
D=0

c0(n, r)qnζr

+
∑

n,r∈Z
D≫−∞

c+(n, r)e−
πDy
m qnζr +

∑

n,r∈Z
D≪∞

c−(n, r)H

(
πDy

2m

)
e−

πDy
2m qnζr.

(19)

Here D := r2 − 4mn and H(w) := e−w
∫∞
−2w e

−tt
1
2
−kdt converges for k < 3

2 and has a

holomorphic continuation in k if w 6= 0 and if w < 0, then H(w) = e−w Γ(32 − k,−2w)
(see also page 55 of [6]).

(b) If c0(n, r) = 0 and c−(n, r) = 0 in (19), then φ is a weak skew-holomorphic Jacobi
form as in [5]. If, in addition, c+(n, r) = 0 for all D < 0 (resp. D ≤ 0), then φ is
a skew-holomorphic Jacobi form (resp. skew-holomorphic Jacobi cusp form) of weight
k and index m as in [29, 30]. We denote the spaces of weak skew-holomorphic Jacobi
forms and skew-holomorphic Jacobi forms, each of weight k and index m, by Jsk!k,m and

Jskk,m, respectively.

(c) The harmonic Maass-Jacobi forms in [5] are real-analytic functions φ : H × C → C

which are in the kernel of Ck,m := 1
8πim

(
y

1
2
−kCsk

1−k,my
k− 1

2 + 2k − 1
)
and invariant under

the usual Jacobi slash-operator
∣∣
k,m

. Recall that
∣∣
k,m

is as in (18), except that (cτ +

d)1−k |cτ + d|−1 in (18) is replaced by (cτ + d)−k. Note also that C
1
2
,m = 1

8πimCsk
1
2
,m
.

(d) Bruinier and Funke’s differential operator ξk plays an important role in the theory of
harmonic weak Maass forms. The differential operator ξk,m in [5] is the corresponding

operator for harmonic Maass-Jacobi forms, and there is also an analogous operator ξskk,m
for harmonic skew-Maass-Jacobi forms. Specifically, note that

Dsk
− :=

y2

4πm
Lm
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is a “lowering” operator, i.e., if φ is a smooth function on H×C and if A ∈ ΓJ, then
(
Dsk

− φ
) ∣∣sk

k−2,m
A = Dsk

−

(
φ
∣∣sk
k,m

A
)
.

Set

(20) ξskk,m := yk−
5
2Dsk

− =
yk−

1
2

4πm
Lm.

Then a direct computation shows that

ξskk,m : Ĵskk,m → J!3−k,m,

where J!k,m denotes the space of weak Jacobi forms of weight k and index m (see also

[5]). The main results of [5] can be extended to harmonic skew-Maass-Jacobi forms.
Specifically, one can define skew-Maass-Jacobi-Poincaré series, which are mapped under
ξskk,m to holomorphic Jacobi-Poincaré series and which satisfy Zagier-type dualities when
k is replaced by 3− k.

4. Kohnen’s limit process

In this section, we will first employ Kohnen’s work [16] to find the limit (2) in case of the
Poincaré-Eisenstein series Pk,s in (7) for s = 0 and s = 3

2 − k. This will then allow us to

perform the limit process for arbitrary F ∈ M̂k and to prove Theorem 1.

Theorem 4. Let φm(τ, z, y
′) be the m-th Fourier-Jacobi coefficient of Pk,s(Z) as in (1).

If m > 0, then the limit in (2) exists for s = 0, k > 3 and for s = 3
2 − k, k < 0, and we have:

(a) If s = 0 and k > 3, then y
1
2
−kL

(
detY k− 1

2 φm
)
∈ Jskk,m.

(b) If s = 3
2 − k and k < 0, then y

1
2
−kL

(
detY k− 1

2 φm
)
∈ Ĵskk,m.

Moreover, the limits in (a) and (b) are not identically zero (k is odd by assumption).

Proof: Let k′ ∈ Z and let s′ ∈ C such that Re(s′) > 3−k′

2 . Kohnen [16] considers

(21) Ek′,s′(Z) :=
∑

M∈Γ∞\Γ

(
(detY )s

′ |(k′, 0)M
)
(Z),

and he points out (see p. 85 of [16]) that applying the limit process (2) to Ek′,s′ yields a
finite linear combination of Jacobi-Poincaré series of the form

(22) Pk′,m,s′(τ, z) :=
∑

A∈ΓJ
∞
\ΓJ

(
ys

′
∣∣
k′,m

A
)
(τ, z).

Here ΓJ
∞ :=

{[(
1 η
0 1

)
, (0, n)

]
| η, n ∈ Z

}
and

∣∣
k′,m

is again the usual Jacobi slash-operator.

(a) If s′ = k − 1
2 and k′ = 1 − k (k > 3), then E1−k,k− 1

2
(Z) = (detY )k−

1
2Pk,0(Z) and

applying the limit process (2) gives a finite linear combination of the form

P1−k,m,k− 1
2
(τ, z) = yk−

1
2

∑

A∈ΓJ
∞
\ΓJ

(
1
∣∣sk
k,m

A
)
(τ, z)

︸ ︷︷ ︸
:=φ(τ,z)

,
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where φ ∈ Jskk,m is the usual skew-holomorphic Jacobi-Eisenstein series, which does not vanish

(k is odd).

(b) If s′ = 1 and k′ = 1− k (k < 0), then E1−k,1(Z) = (detY )k−
1
2Pk, 3

2
−k(Z) and applying

the limit process (2) gives a finite linear combination of the form

P1−k,m,1(τ, z) = yk−
1
2

∑

A∈ΓJ
∞
\ΓJ

(
y

3
2
−k
∣∣sk
k,m

A
)
(τ, z)

︸ ︷︷ ︸
:=ψ(τ,z)

.

It is easy to check that ψ ∈ Ĵskk,m. Finally, ψ is not identically zero, since

ξskk,m(ψ) = (32 − k)
∑

A∈ΓJ
∞
\ΓJ

(
1
∣∣
3−k,m

A
)
(τ, z)

is a nonvanishing holomorphic Jacobi form of weight 3− k and index m. �

Now we give the proof of our main result.

Proof of Theorem 1. Let F (Z) =
∑

T a(Y, T )e
2πi tr(TX) ∈ M̂k with Fourier-Jacobi expansion

as in (1), and suppose that ξ
(2)
1
2
,k− 1

2

(F ) = 0 if k > 3. Write T = ( n r
r m ) and assume that

m > 0. Note that if the limit φ := y
1
2
−kL

(
detY k− 1

2 φm
)
exists, then it follows easily that φ

satisfies conditions (1) and (3) of Definition 2. Moreover, if rank (T ) = 2, then a(Y, T ) has
only one fundamental solution by Theorem 3.

Consider the case T > 0. If k < 0, then the Fourier coefficients a(T ) (for T > 0) of the
usual holomorphic Siegel-Eisenstein series of weight 3 − k are nonzero and Proposition 2
implies that the Fourier coefficients b(Y, T ) (T > 0) of the Poincaré-Eisenstein series P

k,
3
2−k

are nonzero. Hence a(Y, T ) = λ · b(Y, T ) for some λ ∈ C and Theorem 4 yields the desired

result. If k > 3, then a(Y, T ) = 0 due to the assumption ξ
(2)
1
2
,k− 1

2

(F ) = 0. Note that this

assumption is necessary to our argument, since the Fourier coefficients b(Y, T ) of Pk,0 (for
k > 3) vanish for T > 0 as can be seen from their integral representations in §18 of [20] or

from the fact that ξ
(2)
1
2
,k− 1

2

(
Pk,0

)
= 0 (Proposition 2).

Consider the case T indefinite. Theorem 4 asserts that Kohnen’s limit process applied to
Pk,s yields a nonvanishing skew-holomorphic Jacobi form if s = 0, k > 3 and a nonvanishing

harmonic skew-Maass Jacobi if s = 3
2 −k, k < 0. Thus, there exists an indefinite T ′ = ( ∗ ∗

∗ m′ )
with m′ > 0 such that the coefficient a(Y, T ′) is a scalar multiple of a nonzero Fourier
coefficient of the Poincaré-Eisenstein series Pk,0 if k > 3 or P

k,
3
2−k

if k < 0, and Theorem 4

yields the desired result for this particular T ′. We have to show that the limit y′ → ∞ of
a(Y, T ) exp(2πimτ ′) exists for all indefinite T . Observe that every indefinite index T with
m > 0 can be written as T = HT ′ tH for some real, invertible, upper triangular matrix
H. One finds that the traces and determinants of ( tHYH)T ′ and Y (HT ′ tH) = Y T are
equal, and Theorem 3 implies that a( tHYH,T ′) = a(Y,HT ′ tH) = a(Y, T ). Furthermore, if
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( ∗ ∗
∗ d )22 := d, then T ′

22(
tHZH)22 ∼ (HT ′ tH)22Z22 = mτ ′ as y′ → ∞. Hence,

lim
y′→∞

a(Y, T ) exp(2πimτ ′) = lim
y′→∞

a(Y,HT ′ tH) exp(2πi(HT ′ tH)22Z22)

= lim
y′→∞

a( tHYH,T ′) exp(2πiT ′
22(

tHZH)22)

exist.
It remains to consider the case with rank (T ) = 1, T ≥ 0. The explicit formula for a(Y, T )

in (b) of Theorem 3 and the asymptotic behavior of the incomplete Gamma function (12)
and the W -Whittaker function (11) imply that

y
1
2
−kL

(
detY k− 1

2 a(Y, T )e2πi(nx+2ru)
)

= c1
(4π)1−k

m y
3
2
−ke2πi(nτ+2rz) + c2

(4π)
1−k
2

mk− 1
2
e2πi(nτ+2rz),

(23)

where c1, c2 ∈ C are the constants in (b) of Theorem 3. Observe that the right hand side

of (23) is in the kernel of Csk
k,m and we conclude that y

1
2
−kL

(
detY k− 1

2 φm
)
∈ Ĵskk,m. If, in

addition, k > 3, then ξ
(2)
1
2
,k− 1

2

(F ) = 0 and hence c1 = 0 by (b) of Theorem 3. Finally, the

second term on the right hand side of (23) is in the kernel of the heat operator, i.e., if k > 3,
then the right hand side of (23) is a Fourier coefficient of a skew-holomorphic Jacobi form.

We conclude that if k > 3, then y
1
2
−kL

(
detY k− 1

2 φm
)
∈ Jskk,m.

�
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