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Abstract

We describe (braided-)commutative algebras with non-degenerate mul-
tiplicative form in certain braided monoidal categories, corresponding to
abelian metric Lie algebras (so-called Drinfeld categories). We also de-
scribe local modules over these algebras and classify commutative algebras
with finite number of simple local modules.
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1 Introduction

Motivated by applications for representation theory of vertex operator algebras
in this paper we systematically study commutative algebras and their local
modules in Drinfeld categories of abelian metric Lie algebras.
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In [2] Drinfeld associated to a non-degenerate invariant bilinear form (metric)
on a Lie algebra an infinitesimal deformation of the canonical tensor structure
on its representation category. This infinitesimal deformation is no longer a
symmetric monoidal category. The deformed commutativity constraint is only
a braiding. It was also explained in [2] how these (Drinfeld) categories are
related to representation categories of the quantisations of Lie algebras.

It is well-known that a metric on a Lie algebra gives rise to an affinisation of
(a central extension of the Lie algebra of Laurent polynomials with coefficients
in) the original Lie algebra. The category of representations of the affinisation
has a tensor structure given by the so-called fusion product. It was explained
in [5] how the induction functor links the Drinfeld category of a simple Lie
algebra (with the Cartan-Kiling metric) with the representation category of its
affinisation. In this case the infinitesimal deformation form [2] becomes a global
one (on a certain subcategory of the Drinfeld category). Another class of metric
Lie algebras for which the infinitesimal deformation form [2] becomes global is
the class of abelian metric Lie algebras. Corresponding Drinfeld categories are
related to categories of modules over Heisenberg vertex operator algebras [7].

It is known (see [6]) that commutative algebras in the representation cate-
gory of a vertex operator algebra correspond to extensions of this vertex oper-
ator algebra. Moreover the category of representations of an extended algebra
coincides with the category of so-called local modules over the corresponding
commutative algebra.

Here we study commutative algebras and their local modules in Drinfeld cat-
egories of abelian Lie algebras. After recalling basic facts about commutative
algebras in braided monoidal categories (section 2) and Drinfeld categories (sec-
tion 3) we classify commutative algebras which posses a non-degenerate bilinear
form, compatible with the multiplication and have trivial invariants (section
4). We prove (theorem 4.4) that such algebras correspond to subgroups in the
abelian metric Lie algebra, such that the restriction of the metric is integer
valued and even. Then we turn to local modules over commutative algebras
(section 5). We show that the category of local modules has a grading, com-
patible with the tensor product, (proposition 5.3) and characterise the trivial
component of this grading (proposition 5.4). We also construct invertible mod-
ules sitting in every non-trivial graded component (proposition 5.6). All this
together with some technical tools developed in the appendix allows us to clas-
sify commutative algebras with finite number of simple local modules (section
6).

If not stated otherwise all linear algebra constructions will be assumed linear
over the ground field k which is algebraically closed of characteristic zero.
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2 Commutative algebras in braided categories

and their local modules

This is a preliminary section, where we recall basic facts about commutative
algebras in braided monoidal categories and their modules.

An (associative, unital) algebra in a monoidal category C is a triple (A, µ, ι)
consisting of an object A ∈ C together with a multiplication µ : A⊗A→ A and
a unit map ι : 1 → A, satisfying associativiy

µ(µ⊗ I) = µ(I ⊗ µ),

and unit
µ(ι⊗ I) = I = µ(I ⊗ ι)

axioms. Where it will not cause confusion we will be talking about an algebra
A, suppressing its multiplication and unit maps.

A left module over an algebra A is a pair (M, ν), where M is an object of C
and ν : A⊗M →M is a morphism (action map), such that

ν(µ⊗ 1) = ν(1⊗ ν).

A homomorphism of left A-modules M → N is a morphism f : M → N in C
such that

νN (1 ⊗ f) = fνM .

Left modules over an algebra A ∈ C together with module homomorphisms form
a category AC.

Now let C be a braided monoidal category with the braiding cX,Y : X⊗Y →
Y ⊗X (see [4] for definition). An algebra A in C is commutative if µcA,A = µ.

It was shown in [9] that the category AC of left modules over a commutative
algebra A is monoidal with respect to the tensor productM⊗AN over A, which
can be defines as a coequaliser

M ⊗A N M ⊗Noo M ⊗A⊗N
(νM1)(cM,A1)

mm
1νNqq

A (right) module (M, ν) over a commutative algebra A is local if and only if
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the diagram

M ⊗A
ν //

cM,A

��

M

A⊗M
cA,M // M ⊗A

ν

OO

commutes. Denote by ClocA the full subcategory of CA consisting of local modules.
The following result was established in [9] (see also [6]).

Proposition 2.1. The category ClocA is a full monoidal subcategory of AC. More-
over, the braiding in C induces a braiding in AC

loc.

We call a commutative algebra A in a balanced category C balanced if θA =
1A, where θ is the balancing twist in C. It was proved in [6] (see also [3]) that
the balancing twist θM of a local module M over a balanced algebra A is a
homomorphism of A-modules, i.e. the category ClocA of local modules over a
balanced algebra is naturally balanced.

3 Drinfeld categories

This is also a preliminary section where we recall the construction of our cat-
egories of interest, the so-called Drinfeld categories, associated to metric (and,
more generally, Casimir) Lie algebras.

A Lie algebra g is called Casimir if it is equipped with a g-invariant sym-
metric bi-tensor Ω ∈ g⊗2:

[x⊗ 1 + 1⊗ x,Ω] = 0.

A finite dimensional Lie algebra g is metric if it is equipped with a non-
degenerate symmetric bilinear form (-, -):g⊗ g → k, which is g-invariant

([x, y], z) + (y, [x, z])) = 0, x, y, z ∈ g.

We will denote by Ω ∈ g⊗ g its Casimir element, i.e. unique element with the
property

∑

i

Ω1
i (Ω

2
i , x) = x =

∑

i

(x,Ω1
i )Ω

2
i ,

where
∑

i Ω
1
i ⊗ Ω2

i = Ω. In particular Ω can be written as
∑

i ui ⊗ ui where ui
is an orthonormal bases of g, i.e. (ui, uj) = δi,j . Note that a metric Lie algebra
is a Casimir Lie algebra.

For example, a simple Lie algebra has a unique up to a scalar metric struc-
ture, given by the Cartan-Killing form (the trace form in the adjoint repre-
sentation). Another example comes from an abelian Lie algebra with a non-
degenerate symmetric bilinear from (which in this case is automatically invari-
ant). It can be shown that a general metric algebra is an orthogonal sum of a
semisimple Lie algebra and a solvable Lie algebra, and that a solvable metric Lie
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algebra is an iterated double extension of a one dimensional metric Lie algebra
(see [8] for details).

It was shown in [2] that over the formal power series k[[h]] the category
of representations Rep(g) of a Casimir Lie algebra g can be equipped with a
structure of braided monoidal category, where the tensor product is the original
tensor product of representations (g-modules) and the braiding given by

cM,N (m⊗ n) = eπihΩ(n⊗m), m ∈M,n ∈ N, M,N ∈ Rep(g). (1)

It turns out, that for the coherence axioms for braiding to work, one needs to
deform the associativity constraint as well:

αL,M,N(l⊗(m⊗n)) = Φ((l⊗m)⊗n), l ∈ L,m ∈M,n ∈ N, L,M,N ∈ Rep(g).
(2)

A solution for Φ (the so-called Drinfeld associator) was found in [2], which is a
formal (non-commutative) power series in hΩ12 and hΩ23. Here Ω12 = Ω ⊗ 1
and Ω23 = 1 ⊗ Ω are elements of U(g)⊗3. Moreover, it was shown in [2] that
Φ(hΩ12, hΩ23) is the exponent of a formal power Lie series in hΩ12 and hΩ23,
in particular it depends only on iterated commutators of hΩ12 and hΩ23.
To be precise it is not enough to work with k[[h]]-modules with g-action. To
make formulas (1),(2) work we need to consider the categoryReph(g) of modules
over U(g)[[h]]. We denote by Ch(g,Ω) the category Reph(g) with the braided
monoidal structure given by (1),(2). We will call it Drinfeld category corre-
sponding to a Casimir Lie algebra g. Note that the Drinfeld category Ch(g,Ω)
comes equipped with a balancing structure, with the balancing twist defined by

θM (m) = eπihωm, m ∈M, M ∈ Rep(g).

Here ω = µ(Ω) ∈ U(g) is the quadratic Casimir (the image of Ω under the
multiplication map µ : U(g)⊗ U(g) → U(g) of the universal enveloping algebra
of g. Indeed, the identity

∆(ω)− ω ⊗ 1− 1⊗ ω = 2Ω

implies the balancing axiom.
It happens quite often that (after suitably redefining Rep(g)) the formal

parameter h in Drinfeld category Ch(g,Ω) can be specialized to a number c ∈ k.
For example if g is a simple Lie algebra then, restricting to the categoryRepfd(g)
of finite dimensional g-modules, one can set h to be any non-rational number
c ∈ k and define braided monoidal category Cc(g,Ω). Moreover the category
Cfdc (g,Ω) is equivalent to the category of finite dimensional representation of

the quantum universal enveloping algebra Uq(g), where q = e
πi
c [5].

Another series of examples is provided by nilpotent metric Lie algebras. In
that case Drinfeld associator is the exponent of a Lie polynomial in hΩ12 and
hΩ23. As well as the phase in (1) the action of this exponent is well defined on
finite dimensional g-modules, and hence on modules, with every cyclic submod-
ule being finite dimensional. The following provides an intrinsic characterisation
of such g-modules.
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We call a module V over a Lie algebra g locally finite if for any x ∈ g and
for any v ∈ V there is a polynomial f(t) such that f(x)v = 0.

Lemma 3.1. A g-module M is locally finite if and only if for any m ∈ M the
cyclic submodule U(g)m is finite dimensional.

Proof. If U(g)m is finite dimensional then so is gm. In particular a linear
combination of xim is zero.

Conversely, choose a basis {x1, ..., xn} in g. By Poincare-Birkhoff-Witt the-
orem U(g)m is spanned by {xi11 ...x

in
n m|i1, ..., in ∈ Z≥0}. We are going to show

that ij , j = 1, ..., n are all bounded. By local finiteness of a g-module M the
span of {xinn m} is finite dimensional, i.e. in is bounded say in ≤ sn. For any

in = 1, ..., sn the span {x
in−1

n−1 x
in
n m} is again finite dimensional. By continuing

this argument we get that {xi11 ...x
in
n m|i1, ..., in ∈ Z≥0} is finite dimensional.

In particular, tensor product of locally finite modules is locally finite. For
a nilpotent Lie algebra g we will denote by Cc(g,Ω) the category of locally
finite g-modules with the braided monoidal structure given by (1),(2) where h
is replaced by c ∈ k×. Note that Cc(g,Ω) = C1(g, cΩ). In particular, for abelian
g the category Cc(g,Ω) does not depend on c (since all metric structures on an
abelian Lie algebra are equivalent). Thus for abelian g we will denote Cc(g,Ω)
simply by C(g,Ω).

4 Commutative algebras in Drinfeld categories

of abelian Lie algebras

Let h be an abelian metric Lie algebra with the non-degenerate form (-, -) and
the Casimir Ω. Let C(h,Ω) be the corresponding Drinfeld category, i.e. the cat-
egory of locally finite h-modules with ordinary tensor product and associativity
constraint and with the braiding defined by

cM,N (m⊗ n) = eπiΩ(n⊗m), m ∈M,n ∈ N. (3)

Any locally finite h-module V can be written as a sum

V =
⊕

x∈h

Vx,

where Vx = {v ∈ V | (y − (y, x)1)nyv = 0, ∀y ∈ h} is a generalised eigenspace
with the character (x, -) ∈ h∗. Indeed, for any v ∈ V , the space Ṽ = U(g)v is
finite dimensional by lemma 3.1. Hence, Ṽ ⊂

⊕

x∈h Vx ⊂ V , and the statement
follows.

We call the subset

l(V ) = {x ∈ h| Vx 6= 0} ⊂ h

the support of V .
The following is a strictification of lemma (3.1).
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Lemma 4.1. For V, U ∈ C(h,Ω)

(V ⊗ U)x =
⊕

y+z=x

Vy ⊗ Uz.

Proof. By lemma 3.1 we have

V ⊗ U =
⊕

x∈h

(V ⊗ U)x.

On the other hand, V =
⊕

y∈h Vy , U =
⊕

z∈h Uz and hence

V ⊗ U =
⊕

y,z∈h

Vy ⊗ Uz.

Taking into account that for any v ∈ V , u ∈ U , x, h ∈ h and any y, z ∈ h such
that x = y + z we have

(h− (x, h)1)N (v ⊗ u) =
N
∑

k=0

(

N
k

)

(h− (y, h)1)kv ⊗ (h− (z, h)1)N−ku,

we conclude that Vy ⊗ Uz ⊂ (V ⊗ U)x. Since the subspaces (V ⊗ U)x and
(V ⊗ U)x′ do not intersect if x 6= x′, the statement follows.

An algebra A in the category C(h,Ω) is an associative algebra with an h-
action by derivations. It follows from lemma (4.1) that the decomposition

A =
⊕

x∈l(A)

Ax (4)

into the sum of generalised eigenspaces is an algebra grading, i.e. AxAy ⊂ Ax+y.
A bilinear form β : A⊗A→ k on an algebra A is called multiplicative if

β(ab, c) = β(a, bc), ∀a, b, c ∈ A.

Proposition 4.2. Let A be an algebra in the category C(h,Ω) with a non-
degenerate multiplicative bilinear form and with the trivial subalgebra of invari-
ants Ah = k. Then l = l(A) is a subgroup of h and A is isomorphic to a skew
group algebra k[l, α] for some 2-cocycle α : l × l → k×, i.e. A is spanned by
ex, x ∈ l with multiplication

exey = α(x, y)ex+y. (5)

The h-action has a form:

y(ex) = (x, y)ex, ∀x ∈ l, y ∈ h. (6)
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Proof. We are going to show first that the presence of a non-degenerate multi-
plicative bilinear form together with the condition Ah = k force homogeneous
elements with respect to the grading (4) to be invertible. Indeed, multiplica-
tivity of a non-degenerate form implies that it is compatible with the grading,
in particular for any x ∈ l the restriction β:Ax ⊗ A−x → k is non-degenerate.
From the other side, multiplicativity of β and the condition Ah = k imply that
for a ∈ Ax, b ∈ A−x

ab = β(ab, 1)1 = β(a, b)1.

By non-degeneracy of β for any non-zero a there is b such that β(a, b) = 1.
Hence b = a−1. Now we can show that generalised eigenspaces Ax are at most
one-dimesional. Indeed for non-zero a, b ∈ Ax we have that b−1a = λ1 for some
λ ∈ k. Thus a = λb.

By choosing non-zero elements ex ∈ Ax for x ∈ l we see that the multiplica-
tion should have a form (5) for some non-zero α : l × l → k×. Associativity of
the multiplication implies that α is a normalised 2-cocycle.

Finally, being unique (up to a scalar) generalized eigenvector with a given
character, ex has to be a genuine eigenvector, i.e. the h-action on it has to have
a form (6).

An algebra A in C(h,Ω) is commutative if

µ(eπiΩ(b⊗ a)) = ab, ∀a, b ∈ A. (7)

First we calculate the effect of Casimir on tensor product of eigenvectors.

Lemma 4.3. Let a, b ∈ A are such that

z(a) = (x, z)a, z(b) = (y, z)b, ∀z ∈ h.

Then
Ω(b⊗ a) = (x, y)b⊗ a, ω(a) = (x, x)a.

Proof. Writing Ω =
∑

i xi ⊗ xi in the orthonormal basis for the form (xi, xj) =
δi,j we get

Ω(b⊗ a) =
∑

i

xi(b)⊗ xi(a) =
∑

i

(y, xi)(x, xi)(b ⊗ a) = (x, y)(b ⊗ a)

and
ω(a) =

∑

i

xixi(a) =
∑

i

(x, xi)(x, xi)a = (x, x)a.

It is well known that up to an isomorphism the skew group algebra k[l, α]
depend only on the cohomology class of the cocycle α.

Here we assume that our ground field k is the field of complex numbers C.

8



Theorem 4.4. A commutative algebra A in the braided category C(h,Ω), which
has a non-degenerate multiplicative bilinear form and has trivial subalgebra of
invariants Ah = k, has a form k[l, α], where l is a subgroup of h such that the
restriction of the form on l is integer and even

(x, y) ∈ Z, (x, x) ∈ 2Z, x, y ∈ l.

The cohomology class of the cocycle α (and hence the isomorphism class of
k[l, α]) is uniquely defined by the condition:

α(x, y)

α(y, x)
= eπi(x,y). (8)

Proof. Putting a = ex and b = ey in the equation (7) and using lemma 4.3 we
get

α(x, y)ex+y = exey = eπi(x,y)eyex = α(y, x)eπi(x,y)ex+y,

which gives equation (8). By setting x = y we have that eπi(x,x) = 1 for all
x ∈ l, which means that (x, x) must be an even integer. This implies that (x, y)
is an integer for any x, y ∈ l since

(x, y) =
1

2
((x+ y, x+ y)− (x, x) − (y, y)).

By the exact sequence of universal coefficients:

0 // Ext(l, k×) // H2(l, k×) // Hom(Λ2
Z
l, k×) // 0

The group k× = C× = C/Z is divisible, hence Ext(l, k×) = 0 (see [1]) and the
cohomology class of α is uniquely defined by its skew-symmetrisation.

Corollary 4.5. Isomorphism classes of commutative algebras A in the braided
category C(h,Ω), which have a non-degenerate multiplicative bilinear form and
have trivial subalgebra of invariants Ah = k, are in one to one correspondence
with subgroups l ⊂ h such that the restriction of the form on l is integer and
even

(x, y) ∈ Z, (x, x) ∈ 2Z, x, y ∈ l. (9)

5 Local modules in Drinfeld categories of abelian

Lie algebras

Let A be a commutative algebra in C(h,Ω). A left A-module in C(h,Ω) is local
if

µ(e2πiΩ(a⊗m)) = am, ∀a ∈ A,m ∈M. (10)

The following is a generalization of lemma 4.3.
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Lemma 5.1. Let A be an algebra and M be a left A-module in C(h,Ω). Let
a ∈ A is such that z(a) = (x, z)a, for all z ∈ h. Then

Ω(a⊗m) = a⊗ x(m), ∀m ∈M.

Proof. Writing Ω =
∑

i xi ⊗ xi in the orthonormal basis for the form (xi, xj) =
δi,j we get

Ω(a⊗m) =
∑

i

xi(a)⊗ xi(m) = a⊗ (
∑

i

(x, xi)xi(a)) = a⊗ x(m).

Let l ⊂ h and α be as in theorem 4.4.

Lemma 5.2. A module M over the commutative algebra k[l, α] in the braided
category C(h,Ω) is local if and only if M is semisimple as an l-module:

M =
⊕

χ∈l∨

Mχ, Mχ = {m ∈M | x(m) = χ(x)m, ∀x ∈ l} (11)

and for Mχ 6= 0 the character χ:l → k has integer values: χ(l) ⊂ Z.
The algebra action permutes the components as follows:

exMχ =Mχ+(x,-).

Proof. Putting a = ex in the equation (10) and using lemma 5.1 we get exm =
exe

2πix(m), which means that for x ∈ l the operator e2πix is the identity on M .
Thus M is semisimple as a l-module with the characters as in (11).

For m ∈Mχ and y ∈ l we have

y(exm) = y(ex)m+ exy(m) = (x, y)exm+ χ(y)exm.

We define the support of a local k[l, α]-module M as

supp(M) = {χ ∈ Hom(l,Z)| Mχ 6= 0}.

By lemma 5.2 the support of a local A-module is a union of l-orbits in Hom(l,Z)
with respect to l-action on Hom(l,Z) given by the homomorphism

l → Hom(l,Z), x 7→ (x, -).

Now we are going to present the group of l-orbits in Hom(l,Z) in a slightly dif
and only iferent way. Define

l# = {x ∈ h| (x, l) ⊂ Z}.
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The commutative diagram

h h∗ // // Hom(l, k)

l#
?�

O

// Hom(l,Z)
?�

O

implies that the homomorphism l# → Hom(l,Z) is surjective. Clearly its kernel
is l⊥ = {x ∈ h| (x, l) = 0}. Thus Hom(l,Z) can be identified with l#/l⊥. If the
form has integer values on l, the group l embeds in l# and the cokernel of the
map l → Hom(l,Z) is l#/(l+ l⊥).

Proposition 5.3. Let A be k[l, α]. The category AC(h,Ω)
loc has a monoidal

grading by the group l#/(l+ l⊥) :

AC(h,Ω)
loc =

⊕

X∈l#/(l+l⊥)

AC(h,Ω)
loc
X , (12)

where the category AC(h,Ω)
loc
X is the full subcategory of AC(h,Ω)

loc, consisting of
modules M with support X (or rather the corresponding l-orbit in Hom(l,Z)).

Proof. Clearly the support of an indecomposable local k[l, α]-module is an or-
bit, which provides the decomposition (12). To establish monoidality of the
grading we need to show that the tensor product M ⊗A N of local modules
M ∈ AC(h,Ω)

loc
X , N ∈ AC(h,Ω)

loc
Y belongs to AC(h,Ω)

loc
X+Y . This follows from

the following inclusion of eigenspaces Mχ ⊗Nξ ⊂ (M ⊗N)χ+ξ.

Note that the kernel of the restriction (-, -)|l⊥ coincides with l⊥ ∩ l⊥⊥. Note
also that the double orthogonal l⊥⊥ coincides with the vector subspace of h

generated by l. Thus the induced form on l = l⊥/(l⊥ ∩ l⊥⊥) is non-degenerate.
Let Ω be the Casimir of this form on l.

Now we are ready to characterise the degree 0 component of the category of
local modules.

Proposition 5.4. The category AC(h,Ω)
loc
0 is equivalent, as a braided monoidal

category, to the Drinfeld category C(l,Ω).

Proof. We will prove the proposition by constructing two braided equivalences:

AC(h,Ω)
loc
0 → A0C(h/l

⊥⊥,Ω′) → C(l,Ω).

First we will prove that the category AC(h,Ω)
loc
0 is equivalent, as a braided

monoidal category, to the category A0C(h/l
⊥⊥,Ω′) of modules over the group

algebraA0 = k[l∩l⊥] in the Drinfeld category C(h/l⊥⊥,Ω′). Here Ω′ = (f⊗f)(Ω)
is the image of the Casimir Ω ∈ h⊗2 under the epimorphism f : h → h/l⊥⊥.

By the definition of the subcategory AC(h,Ω)
loc
0 a local A-moduleM belongs

to AC(h,Ω)
loc
0 if and only if its eigenspace decomposition, as an l-module, has a

form
M =

⊕

x∈l⊥

Mx, Mx = {m ∈M | y(m) = (x, y)m ∀y ∈ l}. (13)

11



Note that the A-action amounts to: exMy =Mx+y.
Define a functor AC(h,Ω)

loc
0 → A0C(h/l

⊥⊥,Ω′) by an assignment M 7→ M0,
where M0 = {m ∈ M | z(m) = 0 ∀z ∈ l} = M l is the space of l-invariants
(which coincides with the space of l⊥⊥-invariants). The A-action on M gives a
A0-action on M0. Note that A0 coincides with the subalgebra of A, spanned
by et with t ∈ l ∩ l⊥. Since the form is zero on l ∩ l⊥, A0 is isomorphic to the
(untwisted) group algebra k[l ∩ l⊥].

A quasi-inverse functor A0C(h/l
⊥⊥,Ω′) → AC(h,Ω)

loc
0 sends N into A⊗A0 N

with the h-action: z(a⊗ n) = z(a)⊗ n+ a⊗ z(n) and the A-action: a(b⊗ n) =
ab⊗n. The A-module A⊗A0N is clearly local, since the l-action on N is trivial.
The monoidal structure of this functor is given by

(A⊗A0 N)⊗A (A⊗A0 L) → A⊗A0 (N ⊗ L), (a⊗ n)⊗A (b⊗ l) 7→ ab⊗ n⊗ l.

Since N l = 0 and Al = k, the natural inclusion N → (A ⊗A0 N)l (induced by
the unit element of A) is an isomorphism. The map A⊗A0M

l →M (induced by
the A-action) is an isomorphism because of the special shapes of the eigenspace
decomposition (13) and the A-action. Indeed it follows from the comparison of
decompositions for A⊗A0 M

l and M :

(A⊗A0 M
l)x = ex ⊗M l → exM

l =Mx.

The fact, that the functor AC(h,Ω)
loc
0 → A0C(h/l

⊥⊥,Ω′) is braided, can be
checked directly. Indeed it transforms the braiding cM,N(m⊗m) = eπiΩ(n⊗m)
in AC(h,Ω)

loc
0 into

cMl,Nl(m⊗ n) = eπi(f⊗f)(Ω)(n⊗m),

where as before f :h → h/l⊥⊥ is the quotient map.
Now we construct a functor

A0C(h/l
⊥⊥,Ω′) → C(l,Ω) (14)

by sending a k[l ∩ l⊥]-module N into the space Nl∩l⊥ = N/
∑

t∈l∩l⊥(1− et)(N)
of coinvariants. Since l⊥ acts trivially on A0, the l⊥/(l⊥ ∩ l⊥⊥)-action on N
descents to Nl∩l⊥ . The natural map (N ⊗A0 P )l∩l⊥ → Nl∩l⊥ ⊗ Pl∩l⊥ defines a
monoidal structure.

Rather than constructing a quasi-inverse to the functor (14) (which would
involve a delicate choice of sections for certain maps) we will prove that this
functor is fully faithful and surjective on objects. To prove that the functor is
surjective on objects, choose a section σ:h/l⊥⊥ → l of the embedding of abelian
Lie algebras l = (l⊥⊥ + l⊥)/l⊥⊥ → h/l⊥⊥. This will allow us to extend an l-
module structure on Q to a h/l⊥⊥-module structure. Then the free A0-module
A0⊗Q (with the diagonal h/l⊥⊥-action) will have a property (A0⊗Q)l∩l⊥ = Q.
This establishes surjectivity on objects as well as fullness. To show that the
functor (14) is faithful we need to prove that if for a A0- and h/l⊥⊥-linear map
f : N → P between A0-modules in C(h/l⊥⊥,Ω′) the induced map of coinvariants
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fl∩l⊥ :Nl∩l⊥ → Pl∩l⊥ is zero then f is zero. In other words if the image of f is
in

∑

t∈l∩l⊥(1 − et)(P ) then f is zero. The last follows from lemma 5.5, since
im(f) is an h-module.

Lemma 5.5. Let P be an A0-modules in C(h/l⊥⊥,Ω′). Then the only h-module
inside

∑

t∈l∩l⊥(1− et)(P ) is the zero subspace.

Proof. Let J ⊂
∑

t∈l∩l⊥(1 − et)(P ) be an h-module. Assume that J is non
zero and write an element of J as

∑

t∈l∩l⊥(1 − et)(pt) with (at least one of)
pt 6∈

∑

t∈l∩l⊥(1− et)(P ). The identity (with z ∈ h)

z(
∑

t∈l∩l⊥

(1− et)(pt))−
∑

t∈l∩l⊥

(1 − et)(z(pt)) =
∑

t∈l∩l⊥

(t, z)et(pt)

shows that the right hand side is in J . By varying z (and solving a linear system)
we can see that et(pt) belongs to J for all t, which is in contradiction with our
assumption. Hence J = 0.

Define a bimultiplicative function c:l# × l# → k× by c(x, y) = eπi(x,y). Let
G(l#) be the category of finite dimensional l#-graded vector spaces. Define a
brading on G(l#) by means of c and denote this braided monoidal category by
G(l#, c) (cf. Appendix).

Proposition 5.6. There is a braided monoidal functor G(l#, c) → AC(h,Ω)
loc

such that the image of [x] belongs to AC(h,Ω)
loc
X , where X is the coset of x.

Proof. For x ∈ h define an h-module A(x) as a span of {exy , y ∈ l} with the
h-action:

z(exy) = (z, x+ y)exy .

Define an A-action on A(x) by eue
x
y = α(u, y)exu+y, which turns A(x) into a

A-module in C(h,Ω). Indeed,

z(eu)e
x
y + euz(e

x
y) = (u, z)eue

x
y + (x + y, z)eue

x
y

coincides with

z(eue
x
y) = α(u, y)z(euu+y) = α(u, y)(u+ x+ y, z)exu+y

Clearly the module A(x) has the following eigenspace decomposition A(x) =
⊕y∈lA(x)(x+y,-). In particular, for x ∈ l# the A-module A(x) is local and

belongs to the subcategory AC(h,Ω)
loc
X where X is the l+ l⊥-coset of x.

Now we need to calculate tensor products A(x) ⊗A A(y) for x, y ∈ h. The map

φx,y : A(x) ⊗A(y) → A(x + y), exu ⊗ eyv 7→ α(u, v)e−πi(x,v)ex+yu+v

is obviously h-linear. It has a property

φx,y(ewe
x
u ⊗ eyv) = φx,y(e

πi(w,x+u)(exu ⊗ ewe
y
v)).

13



Indeed, by 2-cocycle property of α and since eπi(u,w) = α(u,w)α(w, u)−1

φx,y(ewe
x
u ⊗ eyv) = α(w, u)φx,y(e

x
w+u ⊗ eyv) = α(w, u)α(w + u, v)e−πi(x,v)ex+yw+u+v

coincides with

φx,y(e
πi(w,x+u)(exu ⊗ ewe

y
v) = eπi(w,x+u)φx,y(e

x
u ⊗ α(w, v)eyw+v) =

α(w, v)α(u,w + v)eπi(w,x+u)e−πi(x,w+v)ex+yw+u+v.

Thus the map φx,y factors through the map A(x) ⊗A A(y) → A(x + y). Using
the relation ewe

x
u⊗e

y
v = eπi(w,x+u)(exu⊗ewe

y
v), valid in A(x)⊗AA(y), we can see

that the map φx,y : A(x)⊗AA(y) → A(x+ y) is an isomorphism. For x, y, z ∈ h

maps φ fit into a commutative diagram

A(x) ⊗A A(y)⊗A A(z)
φx,y1 //

1φy,z

��

A(x+ y)⊗A A(z)

φx+y,z

��
A(x) ⊗A A(y + z)

φx,y+z // A(x + y + z)

Indeed, the top-right composition acts as

exu ⊗ eyv ⊗ ezw 7→ α(u, v)e−πi(x,v)ex+yu+v ⊗ ezw 7→

α(u, v)α(u + v, w)e−πi((x,v)+(x+y,w))ex+y+zu+v+w,

while the left-bottom composite has a form

exu ⊗ eyv ⊗ ezw 7→ α(v, w)eπi(y,w)exu ⊗ ey+zu+w 7→

α(v, w)α(u, v + w)eπi((y,w)+(x,v+w))ex+y+zu+v+w.

Hence we have a monoidal functor G(l#) → AC(h,Ω)
loc, which is in fact a braided

functor. Indeed, the diagram

A(x) ⊗A A(y)
φx,y //

cA(x),A(y)

��

A(x + y)

c(x,y)1

��
A(y)⊗A A(x)

φy,x // A(x + y)

commutes:
the top-right composition acts as

exu ⊗ eyv 7→ α(u, v)eπi(x,v)ex+yu+v 7→ α(u, v)eπi((x,v)+(x,y))ex+yu+v,

which coincides with the action of the left-bottom composite

exu ⊗ eyv 7→ eπi(x+u,y+v)eyv ⊗ exu 7→ α(v, u)eπi((x+u,y+v)+(y,v))ex+yu+v.

This gives us the desired braided monoidal functor [x] 7→ A(x).

14



Remark 5.7.

Note that for x ∈ l the local A-module A(x), defined in the proof of propo-
sition 5.6, is isomorphic to A. Indeed define a map ψx:A(x) → A by exu 7→
α(u, x)ex+u. While h-linearity of ψx is obvious, A-linearity follows from 2-
cocycle property of α, which implies that

ψx(eve
x
u) = ψx(α(v, u)e

x
v+u) = α(v, u)α(v + u, x)ex+v+u

coincides with

evψx(e
x
u) = evα(u, x)ex+u = α(u, x)α(v, u + x)ex+v+u.

Moreover, for x, y ∈ l the diagram

A(x) ⊗A A(y)
φx,y //

ψxψy

��

A(x+ y)

ψx+y

��
A⊗A A

µ // A

commutes up to multiplication by α(x, y). Indeed the top-right composition has
the effect

exu ⊗A e
y
v 7→ α(u, v)eπi(x,v)ex+yu+v 7→ α(u, v)eπi(x,v)α(u + v, x+ y)ex+y+u+v,

while the left-bottom composition acts as

exu⊗Ae
y
v 7→ α(u, x)α(v, y)ex+u⊗Aey+v 7→ α(u, x)α(v, y)α(x+u, y+v)ex+u+y+v .

The ratio of the coefficients

α(u, x)α(v, y)α(x + u, y + v)α(u, v)−1α(u+ v, x+ y)−1eπi(x,v)

is equal to

α(x, y)eπi((v,y)+(x+y,v)+(x,v))d(α)(u, x, y + v)d(α)(x, y, v)−1d(α)(u, v, x + y)−1,

where
d(α)(x, y, z) = α(x, y)α(x + y, z)α(y, z)−1α(x, y + z)−1

equals 1 by the 2-cocycle property of α.

6 Finite categories of local modules

Here we describe commutative algebras A = k[l, α] which have only finite num-
ber of simple local modules. By proposition 5.4 the category of local modules

AC(h,Ω)
loc contains the Drinfeld category C(l,Ω), where l = l⊥/(l⊥ ∩ l⊥⊥). For

a non-zero l the category C(l,Ω) has a continues family of simple objects. Thus
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for A, to have only finite number of simple local modules we need to assume
that l = 0, which motivates the following definition.

We call a subgroup l ⊂ h coisotropic if l⊥ ⊂ l⊥⊥.
Now we show that for a coisotropic l the category of local A-modules is

equivalent to the category of vector spaces graded by l#/(l+ l⊥). To formulate
the result we need to describe the quadratic function on l#/(l+ l⊥) controlling
the associativity and braiding constraints.

We choose a section σ:l#/(l+l⊥) → l# and define a function q:l#/(l+l⊥) → k×

by q(X) = eπi(σ(X),σ(X)). Note that q does not depend on the choice of the
section.

Proposition 6.1. Let l ⊂ h be a coisotropic subgroup and α be a 2-cocycle of l
satisfying the conditions of theorem 4.4. Then the category AC(h,Ω)

loc of local
modules over the commutative algebra A = k[l, α] is equivalent, as a braided
monoidal category, to the category G(l#/(l + l⊥), q) of l#/(l+ l⊥)-graded vector
spaces, with the associativity and the braiding defined by q.

Proof. By proposition 5.3 the category AC(h,Ω)
loc is a braided monoidal cat-

egory, graded by the group l#/(l + l⊥). By proposition 5.4, for coisotropic l,
the degree 0 component is trivial, i.e. AC(h,Ω)

loc
0 is equivalent to the category

of vector spaces Vect . By proposition 5.6 we have a braided monoidal functor
G(l#, c) → AC(h,Ω)

loc, compatible with the grading. Finally isomorphisms from
remark 5.7 allow us to apply theorem 6.5 from the appendix.

Note that the group Hom(l,Z) is torsion free. Since the vector space
Hom(l,Z) ⊗Z k = Hom(l, k) ⊂ h is finite dimensional, the group Hom(l,Z)
is a free abelian of finite rank. Hence the group l#/(l+ l⊥) is finitely generated
and as such is a sum of a finite abelian and a free abelian group of finite rank.
The rank coincides with the dimension of the vector space l#/(l+ l⊥)⊗Z k. We
can identify the vector space l#/(l+ l⊥)⊗Z k with the cokernel of the map

l⊥⊥ → Hom(l, k), x 7→ (x, -). (15)

Note the dimension of the cokernel of (15) equals the dimension of its kernel
l⊥⊥ ∩ l⊥. Thus the group l#/(l+ l⊥) is finite if and only if l⊥⊥ ∩ l⊥ = 0. For a
coisotropic l it means that l⊥ = 0. In particular l, as a subgroup of Hom(l,Z),
is a free abelian group. The short exact sequence

0 → l⊥ → h → Hom(l, k) → 0

shows that in coisotropic case Hom(l, k) = h, i.e. l is a lattice in h.
Thus we have the following.

Corollary 6.2. The commutative algebra A = k[l, α] has (up to isomorphism)
a finite number of simple local modules if and only if l ⊂ h is an even lattice. In
that case the category AC(h,Ω)

loc is equivalent, as a braided monoidal category,
to the category G(l#/l, q) of l#/l-graded vector spaces, with the associativity and
the braiding defined by q.

16



Appendix. Graded monoidal categories

Here we recall basic facts about gradings on monoidal categories in general and
braided monoidal categories of group-graded vector spaces in particular.

LetH be a group. AnH-grading on a monoidal category C is a decomposition
C = ⊕h∈HCh such that for X ∈ Cf , Y ∈ Cg the tensor product X ⊗ Y belongs
to Cfg.

Simplest examples of graded monoidal categories are provided by the fol-
lowing construction. For a group H denote by G(H) the category of finite
dimensional H-graded vector spaces. Tensor product of H-graded vector spaces
can be equipped with the H-grading

(V ⊗ U)h =
⊕

fg=h

Vf ⊗ Ug.

This makes the category G(H) monoidal. Clearly it is H-graded with Vf belong-
ing to G(H)f ≃ Vect . We will also be interested in braidings on the categories
G(H).

Now let H be an abelian group and c : H ×H → k× be a bi-multiplicative
function (multiplicative in each variable). It is straightforward to see that

cV,U (v ⊗ u) = c(f, g)(u⊗ v), v ∈ Vf , u ∈ Ug

defines a braiding on G(H). We will denote by G(H, c) the corresponding braided
monoidal category.

Note that G(H, c) is not the most general braided monoidal category struc-
ture on the category of graded vector spaces. In full generality such structures
were classified in [4]. Here we formulate the result. A general solution for the
associativity constraint for the tensor product ofH-graded vector spaces is given
by a (normalised) 3-cocycle a : H ×H ×H → k×:

aV,U,W (v ⊗ (u⊗ w)) = a(f, g, h)(v ⊗ u)⊗ w, v ∈ Vf , u ∈ Ug, w ∈ Wh.

A braiding, compatible with the associativity given by a corresponds to a func-
tion c : H ×H → k×:

cV,U (v ⊗ u) = c(f, g)u⊗ v, v ∈ Vf , u ∈ Ug.

Hexagon coherence axioms for the braiding c are equivalent to the equations:

a(g, h, f)c(f, gh)a(f, g, h) = c(f, h)a(g, f, h)c(f, g),

a(h, f, g)−1c(fg, h)a(f, g, h)−1 = c(f, h)a(f, h, g)−1c(g, h).

The pair (a, c) is called an abelian 3-cocycle. Up to braided monoidal equiv-
alence the braided monoidal category corresponding to (a, c) depends only on
the (abelian) cohomology class of (a, c), which is determined by the quadratic
function q(f) = c(f, f). Recall (e.g. from [4]) that a function q : H → k×
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is quadratic if and only if q(f−1) = q(f) for all f ∈ H and the function
σ : H ×H → k×

σ(f, g) = g(fg)q(f)−1q(g)−1

is multiplicative in each argument (a so-called bi-character). In other words
braided equivalence classes of braided monoidal structures on the category of
H-graded vector spaces correspond to quadratic functions on H . We will denote
by G(H, q) a representative of the class corresponding to the quadratic function
q.

Now we are ready to study the situation we have in section 5. Let F :G(H, c) →
C be a braided monoidal functor. Let K ⊂ H be a subgroup and for each x ∈ K
let ψx:F ([x]) → I be an isomorphism (we will assume that ψ0 is the identity or
rather unit isomorphism of the functor F ). Being an automorphism of the unit
object of C the (counterclockwise) composition of arrows of the diagram

F ([x]⊗ [y])
F[x],[y] // F ([x])⊗ F ([y])

ψxψy

��
F ([x+ y])

ψx+y // I

is a multiple of the identity. Let α(x, y) be the coefficient. Then we have the
following properties for α : K ×K → k×.

Lemma 6.3. The function α is a normalised 2-cocycle such that

α(x, y)α(y, x)−1 = c(x, y), ∀x, y ∈ K.
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Proof. The 2-cocycle property follows from the commutativity of the diagram:

F ([x][y][z])

F ([x][y])F ([z])

F[x][y],[z]

<<yyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyy

F ([x+ y])F ([z])
��
��
��

��
��
��

I

ψx+yψz

��
��

I

α(x,y)1

��8
88

88
88

88
88

88
88

88
8

F ([x])F ([y])F ([z])

F[x],[y]1

��9
99

99
99

99
99

99
99

99
99

99
99

99
99

99
99

99
99

99
99

I
ψxψyψznn\\\\\\\

F ([x+ y + z])
\\\\

I
ψx+y+z

--[[[[[

α(x+y,z)1

II�������������

I

α(x,y+z)1

��
α(y,z)1

99ttttttttttttttttttt

F ([x])F ([y + z])

F[x][y][z]

��9
99

99
99

99
99

99
99

99
99

99
99

99
99

99
99

99
99

99
99

F ([x])F ([y + z])
�������

�������

ψxψy+z

RR&&&&
1F[y],[z]

<<xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

The property α(x, y)α(y, x)−1 = c(x, y) follows from the commutativity of the
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diagram:

F ([x][y])
F[x],[y] //

MMMMMMMMMM

MMMMMMMMMM

F (c[x],[y])

��

F ([x])F ([y])

cF ([x]),F ([y])

��

ψxψy

����
��
��
��
��
��
��
��
��
��
��
�

F ([x+ y])
ψx+y

$$II
II

II
II

II

c(x,y)1

��

I α(x,y)1

��>
>>

>>
>>

>

c(x,y)1

��

I

I
α(y,x)1

@@�������

F ([x+ y])

ψx+y

::uuuuuuuuuu

F ([y][x])

qqqqqqqqqq

qqqqqqqqqq F[y],[x] // F ([y])F ([x])

ψyψx

WW///////////////////////

Now we construct a reduction F :G(H/K, q) → C of the functor F , i.e. a
braided monoidal functor which fits in a commutative diagram of functors

G(H, c)

F

$$II
II

II
II

II

��

C

G(H/K, q)
F

::uuuuuuuuuu

(16)

Proposition 6.4. Let F :G(H, c) → C be a braided monoidal functor. Let K ⊂
H be a subgroup and for each x ∈ K let ψx:F ([x]) → I be an isomorphism
(with ψ0 = 1). Let s : H/K → H be a section of the quotient map. Then
the function q : H/K → k×, defined by q(X) = c(s(X), s(X)) is quadratic.
Moreover, there is a braided monoidal functor F :G(H/K, q) → C, making the
diagram of functors (16) commutative.

Proof. Define the functor F by F ([X ]) = F ([s(X)]). Define the (pre-)monoidal
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structure F [X],[Y ]:F ([X ]⊗ [Y ]) → F ([X ])⊗ F ([Y ]) by

F ([X ][Y ])
F [X],[Y ] // F ([X ])F ([Y ])

KKKKKKKKKK

KKKKKKKKKK

F ([X + Y ])

ssssssssss

ssssssssss
F ([s(X)])F ([s(Y )])

F ([s(X + Y )])

KKKKKKKKKK

KKKKKKKKKK
F ([s(X)][s(Y )])

F[s(X)],[s(Y )]

OO

F ([θ(X,Y ) + s(X) + s(Y )])

LLLLLLLLLL

LLLLLLLLLL
F ([θ(X,Y )])F ([s(X)][s(Y )])

ψθ(X,Y )1

99ssssssssss

F ([θ(X,Y )][s(X)][s(Y )])

F[θ(X,Y )],[s(X)][s(Y )]

99rrrrrrrrrr

Here θ:H/K⊗H/K → K is the 2-cocycle associated with the section s: θ(X,Y ) =
s(X + Y )− s(X)− s(Y ).

Note that to construct a braided monoidal structure on G(H/K), fitting in
the diagram (16), it is enough to have a pair of functions: a : H/K ×H/K ×
H/K → k× and c : H/K ×H/K → k× such that the diagrams

F ([X ][Y ][Z])
F [X],[Y ][Z]//

a(X,Y,Z)1

��

F ([X ])F ([Y ][Z])
1F [Y ],[Z]

))SSSSSSSSSSSSSSS

F ([X ])F ([Y ])F ([Z])

F ([X ][Y ][Z])
F [X][Y ],[Z]// F ([X ][Y ])F ([Z])

F [X],[Y ]1

55kkkkkkkkkkkkkkk

F ([X ][Y ])

c(X,Y )1

��

F [X],[Y ] // F ([X ])F ([Y ])

cF ([X]),F ([Y ])

��
F ([Y ][X ])

F [Y ],[X] // F ([Y ])F ([X ])

commute. Indeed, pentagon and hexagon axioms for a, c will be fulfilled auto-
matically.

By substituting our choice for F [X],[Y ] in to the two diagrams above we get
the following answers for a, c:

a(X,Y, Z) = c(s(X), θ(Y, Z))α(θ(X,Y + Z), θ(Y, Z))α(θ(X + Y, Z), θ(Y, Z))−1,
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c(X,Y ) = c(s(X), s(Y )).

In particular the quadratic function associated to the pair a, c is

q(X) = c(s(X), s(X))

In the remaining part of this section we will characterise those graded cate-
gories, which are tensor products of the trivial degree component and a category
of graded vector spaces.

We call two objects X and Y in a braided monoidal categorymutually trans-
parent if and only if the double braiding is trivial on them:

cY,XcX,Y = 1.

Two subcategories A and B of a braided monoidal category are mutually trans-
parent if and only if for anyX ∈ A and Y ∈ B X and Y are mutually transparent
objects.

Theorem 6.5. Let C = ⊕X∈G/KCX be a G/K-graded braided monoidal cat-
egory. Suppose that there exists a braided monoidal functor F : G(G, c) → C
such that F ([x]) ∈ Cx (here we identify x with its coset modulo K) and such
that F ([x]) being transparent with Ce. Suppose also that there are isomorphisms
ψx : F ([x]) → I with the identity object for every x ∈ K. Then as braided
monoidal category

C ≃ Ce ⊠ G(G/K, q),

where q is defined as in proposition 6.4.

Proof. By proposition 6.4 the monoidal functor F : G(G, c) → C together with
isomorphisms ψ induces a braided monoidal functor F : G(G/K, c) → C, which
together with the braided monoidal embedding Ce → C gives a grading pre-
serving braided monoidal functor Ce ⊠ G(G/K, q) → C. To see that it is an
equivalence it is enough to note that for an arbitrary x ∈ G/K any object X of
Cx can be written as X ⊗ F ([x])−1 ⊗ F ([x]) and that X ⊗ F ([x])−1 belongs to
Ce.
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