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Abstract

We apply the full centre construction, defined in [4], to algebras in and
module categories over categories of representations of Hopf algebras.
We obtain a compact formula for the full centre of a module algebra over
a Hopf algebra.
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1 Introduction

Motivated by algebraic structures appearing in Rational Conformal Field The-
ory (see [6]) we studied in [4] a construction associating to an algebra in a
monoidal category a commutative algebra (full centre) in the monoidal centre
of the monoidal category. In loc.cit. we established Morita invariance of this
construction by extending it to module categories.

In this note we apply the full centre construction to algebras in monoidal
categories H-Mod of modules over a Hopf algebra H (H-module algebras for
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short). It is known (see section 4 and references therein) that the monoidal
centre of the category of modules over a Hopf algebra H is equivalent to the
category of Yetter-Drinfeld modules over H . The main result of this note (the-
orem 5.3) gives a closed formula for the full centre of an H-algebra:
Theorem (Main). Let A be an H-module algebra.
Then its full centre Z(A) of an H-module algebra A coincides with the cen-
traliser CA#H(A). The Yetter-Drinfeld structure (H-action and H-coaction) on
CA#H(A) has the form:

h(
∑

i

ai#gi) =
∑

(h),i

h(2)(ai)#S
2(h(3))giS(h(1)),

ψ(
∑

i

ai#gi) =
∑

i,(gi)

S−1((gi)(2))⊗ ai#(gi)(1),

where
∑

i ai#gi ∈ CA#H(A).
For the definition of the smash product see section 3.

As an immediate corollary of the properties of the full centre established in
[4] we have the following (corollary 5.4):
The centraliser CA#H(A) is a commutative algebra in the braided category
YD(H) of Yetter-Drinfeld modules over H .
Moreover, the centraliser CA#H(A) is invariant with respect to Morita equiva-
lences in H-Mod, i.e. if A and B are two H-algebras andM is a B-A-bimodule,
equipped with compatible H-action, which induce an equivalence between cat-
egories of modules M⊗A- : A(H-Mod) → B(H-Mod) then CA#H(A) and
CB#H(B) are isomorphic as algebras in YD(H).

In particular, by examining the case Z(k) we recover a result from [2] that the
opposite algebraHop of a Hopf algebra is a commutative algebra in the category
of Yetter-Drinfeld modules for H if we equip it with the adjoint H-action and
H-coaction given by the coproduct.

We conclude by applying our main theorem to the cases of group Hopf
algebra and its dual.

Throughout the paper we freely use definitions and results from [4].

2 String diagrams conventions

All Hopf algebras will be assumed to have invertible antipodes. Although we will
frequently use Sweedler’s notations for comultiplication and coaction, most of
our computations will be done using string diagrammatic presentation. We read
string diagrams from top to bottom. The string diagrams for multiplication,
comultiplication, unit, counit, and antipode are:

◦
??

? ��� ◦
��

� ??
? ◦ ◦ ◦
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respectively. The fact that the comultiplication is a homomorphism of alge-
bras (or the fact that multiplication is a homomorphism of coalgebras) has the
following diagrammatic form:

◦

◦

◦������� ◦
??

??
??

?
=

◦
??

?? ����

◦
��

�� ??
??

The antipode axioms have the form:

◦

◦

◦

=

◦

◦

=

◦

◦

◦

The proof of the following auxiliary statement is an example of string dia-
gram arguments.

Lemma 2.1. The following identity holds for any element g, h of a Hopf algebra
H: ∑

(gS(h(1)))(1)h(2) ⊗ (gS(h(1)))(2) =
∑

(g)

g(1) ⊗ g(2)S(h).

Proof.

◦
//

//
//

//

◦

◦�
��
�

��
�� //

//
//

//

◦��

◦��

����

=
◦

◦

◦rrrrrrr

◦
◦

◦

◦

LLL
LLL

LL

=
◦

◦
◦��

◦�����

◦
◦

◦
??

??
??

??
??

◦ =

=

◦

◦
◦��

◦����

◦��

◦

◦

◦ =

◦

◦
◦��

◦

◦

◦
44

44
44

44
44

44
4

◦ =

◦

◦

◦

◦
44

44
44

44
44

44
4

◦

3



3 Algebras in and module categories over cate-

gories of representations of Hopf algebras

Recall (e.g. from [5]) that the category H-Mod of (left) modules over a Hopf
algebraH is monoidal, with respect to the tensor product of (underlying) vector
spaces. Indeed, the coproduct of H gives rise to an H-module structure on the
tensor product X ⊗ Y of two H-modules:

h(x⊗ y) = ∆(h)(x ⊗ y) =
∑

(h)

h(1)x⊗ h(2)y, h ∈ H,x ∈ X, y ∈ Y.

This monoidal structure allows us to define certain algebraic structures in the
category H-Mod.
An algebra in the category H-Mod (or an H-module algebra for short) is an
associative algebra A with a left H-module structure, such that

h(ab) =
∑

(h)

h(1)(a)⊗ h(2)(b), h ∈ H, a, b ∈ A.

A (left) module over an H-module algebra A in H-Mod is a left A-module M
together with a left H-module structure, such that

h(am) =
∑

(h)

h(1)(a)⊗ h(2)(m), h ∈ H, a ∈ A,m ∈M. (1)

The category A(H-Mod) of left modules over an H-module algebra A in H-Mod

is a right module category over H-Mod, i.e. there is a categorical pairing

A(H-Mod)×H-Mod→ A(H-Mod), (M,X) 7→ M ⊗X,

with the diagonal (left) H-module structure on M ⊗X and the (left) A-action:

A⊗M ⊗X →M ⊗X, a⊗m⊗ x 7→ am⊗ x.

For an H-algebra A define the smash product A#H as follows. As a vec-
tor space the smash product A#H is the tensor product of A and H (with
decomposable tensor denoted by a#h). The multiplication in A#H is given by

(a#g)(b#h) =
∑

(g)

ag(1)(b)#g(2)h, g, h ∈ H, a, b ∈ A.

The following statement is well-known to the specialists (see Paragraph 1.7 of
[10]).

Lemma 3.1. The category A(H-Mod) coincides with the category A#H-Mod

of (left) modules over the smash product A#H.
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Proof. The A#H-module structure on a left module M over an H-module al-
gebra A in H-Mod is given by (a#h)m = ah(m). Conversely, the embeddings
A,H → A#H :

a 7→ a#1, h 7→ 1#h

allow us to define A- and H-module structures on an A#H-module, compatible
in the way (1).

Note that for any H-module algebra A the smash product B = A#H is a
(right) H-comodule algebra, i.e. that it is equipped with a homomorphism of
algebras ψ : B → B ⊗H , which is a (right) H-comodule structure. Indeed, the
map ψ : A#H → A#H ⊗H can be defined as follows:

a#h 7→
∑

(h)

a#h(1) ⊗ h(2).

Note also that the category of modules B-Mod over an H-comodule algebra is
a right module category over H-Mod:

B-Mod×H-Mod→ B-Mod, (M,X) 7→M ⊗X,

where the B-module structure on M ⊗X has the form:

b(m⊗ x) =
∑

(b)

b(0)m⊗ b(1)x.

Here ψ(b) =
∑

(b) b(0) ⊗ b(1) ∈ B ⊗H .

Example 3.2. Regular module category.

The category H-Mod can always be considered as a right module category
over itself (it also can be realised as the category of modules in H-Mod over
the trivial H-module algebra k). The category EndH-Mod(H-Mod) of H-Mod-
invariant endofunctors of H-Mod coincides with H-Mod. Indeed, any H-Mod-
invariant endofunctor ofH-Mod is determined by its value on the monoidal unit
k.

Similarly the category H-Comod of left H-comodules is a right module cat-
egory over itself (again it also can be realised as the category of modules in
H-Comod over the trivialH-comodule algebra k). The category EndH-Comod(H-Comod)
of H-Comod-invariant endofunctors of H-Comod coincides with H-Comod.

Example 3.3. V ect as a module category.

The forgetful functor H-Mod → Vect turns Vect into a module category
over H-Mod. This category coincides with the category of modules in H-Mod

over the H-module algebra H∗, with the (regular) H-action

h(l)(g) = l(gh), l ∈ H∗, g, h ∈ H.

The category EndH-Mod(Vect) of H-Mod-invariant endofunctors of Vect coin-
cides with H-Comod. Indeed, any H-Mod-invariant endofunctor F of Vect is

5



given by its value F (k), which has a natural structure ofH-comodule (for details
see e.g. [8], theorem 5).

Similarly the forgetful functor H-Comod → Vect turns Vect into a module
category over H-Comod. This time the category coincides with the category
of modules in H-Comod over the H-comodule algebra H , with the (regular)
H-coaction given by the comultiplication.
The category EndH-Comod(Vect) of H-Comod-invariant endofunctors of Vect
coincides with H-Mod. Indeed, any H-Comod-invariant endofunctor F of Vect
is given by its value F (k), which has a natural structure of H-module.

The two examples above are extreme cases of the following situation. Let
H → F be an epimorhism of Hopf subalgebra. The induction functor indHF :H-Comod→
F -Comod is monoidal and in particular makes F -Comod a module category over
H-Comod. Here we describe this module category as the category of modules
in H-Comod over an H-comodule algebra. The algebra has the following form

A(H,F ) = {h ∈ H | ∆(h) ∈ H ⊗ F},

with the H-coaction given by ∆.
The functor F-Comod→ AH-Comod sends an F -comodule N with F -comodule
structure ψ:N → F ⊗N into

(H ⊗N)F = {x ∈ H ⊗ L| (1⊗ t)(∆⊗ 1)(x) = (1⊗ ψ)(x), ∀f ∈ F}.

The H-comodule structure on (H ⊗N)F has the form h ∗ x = x(S(h)⊗ 1).

4 Monoidal centre. Yetter-Drinfeld modules and

Drinfeld double

Here, after recalling (e.g. from [5]) the descriptions of the monoidal centre
Z(H-Mod) in terms of Yetter-Drinfeld modules and Drinfeld double, we look
at commutative algebras in Z(H-Mod).

A Yetter-Drinfeld module over a Hopf algebra H is a left H-module M with
a left H-comodule structure, satisfying the following compatibility condition:

∑

(h),(m)

h(1)m(−1) ⊗ h(2)m(0) =
∑

(h),(m)

(h(1)m)(−1)h(2) ⊗ (h(1)m)(0), (2)

which in diagrammatic notation has the form:

◦

◦

◦��������� ◦
??

??
??

??
?

=

◦

◦

◦
◦
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Later on we will need the following equivalent form of the Yetter-Drinfeld con-
dition (2):

∑

(hm)

(hm)(−1) ⊗ (hm)(0) =
∑

(h),(m)

h(1)m(−1)S(h(3))⊗ h(2)m(0) (3)

which has the following string presentation:

◦

◦

◦

◦

◦

◦ ◦

=
◦

◦

and can be proved by the following sequence of moves:

◦

◦

◦

◦

◦

◦ ◦

=

◦

◦

◦

◦

◦�������� ◦
??

??
??

??

◦ =

◦
◦

◦

◦

◦
◦ ◦ =

=

◦

◦

◦

◦

◦

◦

◦ =

◦

◦

◦

◦

◦
OOOOOO

◦

ooooooo

=
◦

◦

The condition (2) is preserved by the tensor product (of modules and co-
modules):

◦

◦
''
''
''
''
''
''
''

◦

◦

◦

◦

◦

◦��������������

=

◦

◦

◦

◦��������

◦

◦
77

77
77

77

◦

◦

=

◦

◦

◦

◦

◦

◦

◦

◦

=
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=

◦

◦

◦

◦

◦

◦

◦
??

??
??

??
? ◦

��
��

��
��

��

=

◦

◦

◦

◦

◦

◦

◦

◦

=

◦

◦

◦

◦

◦

◦

◦

◦

thus making YD(H) a monoidal category. Moreover this category is braided,
with the braiding

cM.N(m⊗ n) =
∑

(m)

m(−1)n⊗m(0),

which graphically is represented by the picture: ◦
??

?
??

?

◦
��

���
�

�������

�������

����
����

??
??

??
??

??

??
??

??
??

??

It is invertible with the inverse given by
The hexagon (triangle) axioms take the shape:

◦
??

?
??

?

??
??

??
??

??

??
??

??
??

??
◦
◦

��
���
�

����������

���������� ◦
��

���
�

����������

����������
=

◦
??

?
??

?

◦
??????

◦
��

���
�

����������

����������
??

??
??

?

??
??

??
?◦

��
��

��
�

��
��

��
�

�������

�������

◦
??

?
??

?

??
??

??
??

??

??
??

??
??

??
◦
◦

����������

����������

��
���
�

◦

???
???

??
??

??
??

??

??
??

??
??

??

= ◦
??

??
??

?

??
??

??
?

◦
��

���
�

◦������

�������

�������
◦

???
???

??
??

??
??

??

??
??

??
??

??

??
??

??
?

??
??

??
?

The importance of Yetter-Drinfeld modules come from the fact that YD(H)
is equivalent to the monoidal centres Z(H-Mod), Z(H-Comod).
The functor Z(H-Mod) → YD(H) sends (Z, z) ∈ Z(H-Mod) into the H-
module with the H-coaction ψ(z) = zH(z⊗1). Here zX : Z⊗X → X⊗Z is the
half braiding of (Z, z) ∈ Z(H-Mod) and zH is its specialisation on H ∈ H-Mod.
Conversely, the functor YD(H) → Z(H-Mod) defines a half braidingM ⊗X →
X ⊗M

m⊗ x 7→
∑

(m)

m(−1)x⊗m(0)

on a Yetter-Drinfeld module M . H-linearity of the half braiding is equivalent
to the condition (2), see [5] fo details.
Similarly, the functor Z(H-Comod) → YD(H) sends (Z, z) ∈ Z(H-Mod) into

8



the H-comodule with the H-action hz = (ε⊗ 1)zH(z ⊗ h). Here zX : Z ⊗X →
X ⊗Z is the half braiding of (Z, z) ∈ Z(H-Comod) and zH is its specialisation
on H ∈ H-Comod and ε : H → k is the counit.
Conversely, the functor YD(H) → Z(H-Comod) defines a half braiding M ⊗
L→ L⊗M

m⊗ l 7→
∑

(l)

m(0) ⊗ S(m(−1))m

on a Yetter-Drinfeld module M .
For a finite dimensional H the category YD(H) can be realised as the cat-

egory D(H)-Mod of modules over a Hopf algebra D(H), the Drinfeld double
of H . As a vector space D(H) is the tensor product H ⊗ H∗ (with elements
denoted by hl, l ∈ H∗, h ∈ H). Moreover H and H∗ are Hopf subalgebras of
D(H). The multiplication and comultiplication are given by

lh =
∑

(h)

h(2)l(h(1)-S(h(3))), ∆(hl) =
∑

(l),(h)

h(1)l(1) ⊗ h(2)l(2).

Indeed the H-module part of a Yetter-Drinfeld module M correspond to the
action of H ⊂ D(H), while the H-coaction comes from the action of H∗ ⊂
D(H). The consequence (3) of the compatibility condition (2) implies the above
formula for the product in D(H) (again see [5] for details).

To make a distinction with the commutativity in Vect we call a commutative
algebra A in YD(H) quantum commutative. Explicitly, an algebra A ∈ YD(H)
is quantum commutative if

ab =
∑

(a)

a(−1)(b)a(0), a, b ∈ A,

where a 7→
∑

(a) a(−1) ⊗ a(0) ∈ H ⊗A is the comodule structure on A.

Following [4, 8] define for a not necessarily commutative algebra A ∈ YD its left
centre by

Cl(A) = {a ∈ A| ab =
∑

(a)

a(−1)(b)a(0), ∀b ∈ A}.

The fact that this is a submodule and subcomodule (and hence a subobject in
YD(H)) of A follows from H-(co)liearity of the braiding in YD(H). The fact
that this is a quantum commutative subalgebra of A follows from its definition
(see also [4] for a general categorical explanation).

5 Full centre

The forgetful functor F :Z(H-Mod) → H-Mod corresponds to the forgetful
functor YD(H) → H-Mod. Here we describe its right adjoint, which is an
important technical statement needed for the proof of the main result of the
paper. Note that this right adjoint was described in [1] (corollary 2.8) (see also
Proposition 1 of [9] and Paragraph 7 of [11]). Here we add a proof for the sake
of completeness.

9



Proposition 5.1. The forgetful functor YD(H) → H-Mod has a right adjoint
R(-) = H ⊗ -:H-Mod → YD(H), where H-action and H-coaction on R(N) =
H ⊗N have the form:

h(g⊗n) =
∑

(h)

h(1)gS(h(3))⊗h(2)n, ψ(g⊗n) =
∑

(g)

g(1)⊗g(2)⊗n ∈ H⊗H⊗N.

The adjunction natural transformations

αM :M → RF (M), βL:FR(L) → L

are given by the comodule structure on an object of M ∈ YD(H) and by the
counit respectively:

αM (m) =
∑

(m)

m(−1) ⊗m(0), βN (h⊗ n) = ε(h)n.

In particular, the adjunction morphism β is epi.

Proof. The string diagrams of H-action and H-coaction on R(N) = H⊗N have
the form:

◦

◦

◦

◦

◦ ◦

◦

The Yetter-Drinfeld condition (2) for these action and coaction can be proved
as follows:

◦

◦

◦













◦
◦

◦
77

77
77

77

◦

◦
◦

=

◦

◦

◦

◦











 ◦
44

44
44

44
44

44

◦

◦

◦

◦
=

◦

◦

◦

◦

◦

◦

◦
=

then by lemma 2.1
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=

◦

◦

◦

◦

◦

◦

◦

◦
◦

=

◦

◦

◦

◦

◦
◦

◦

◦ ◦

The H-linearity of β is transparent:

◦

◦

◦
◦

◦

◦ ◦

= ◦

◦

The H-colinearity of αM is equivalent to the coassociativity of the H-comodule
structure of M . The H-linearity of α follows from the identity (3).

The adjunction axioms for α and β follow from the counit axiom.

Remark 5.2.

For a finite dimensional H the forgetful functor Z(H-Mod) → H-Mod cor-
responds to the restriction functor D(H)-Mod→ H-Mod along the embedding
H → D(H). In particular it has a right adjoint

R(-) = HomH(D(H), -):H-Mod→ D(H)-Mod,

which due to the (multiplicative) decomposition D(H) = H.H∗, coincides with
the adjoint functor from proposition 5.1:

HomH(D(H), -) = HomH(H.H∗, -) = Hom(H∗, -) = H ⊗ -.

As a right adjoint to a monoidal functor the functor R:H-Mod → YD(H)
has a lax (op)monoidal structure R(M) ⊗ R(N) → R(M ⊗ N) (e.g. see [4]),
which in our case has the form

H ⊗M ⊗H ⊗N → H ⊗M ⊗N, g ⊗m⊗ h⊗ n 7→ gh⊗m⊗ n.

11



In particular the functor R sends anH-module algebraA into an algebraR(A) =
H ⊗ A in the monoidal category YD(H), where the multiplcation in H ⊗ A is
just the tensor product multiplication:

(g ⊗ a)(h⊗ b) = gh⊗ ab, g, h ∈ H, a, b ∈ A.

In [4] we derived a formula (theorem 5.4) expressing the full centre in terms of
the right adjoint R to the forgetful functor F : Z(C) → C. The condition for
this formula to work was epimorphity of the adjunction morphism

βX : FR(X) → X, U ∈ Z(C), X ∈ C.

In our case the adjunction map is epi (by proposition 5.1), which allows us to
get the main result of this note.

Theorem 5.3. The full centre Z(A) of an H-module algebra A coincides with
the centraliser CA#H(A). The Yetter-Drinfeld structure (H-action and H-
coaction) on CA#H(A) has the form:

h(
∑

i

ai#gi) =
∑

(h),i

h(2)(ai)#S
2(h(3))giS(h(1)),

ψ(
∑

i

ai#gi) =
∑

i,(gi)

S−1((gi)(2))⊗ ai#(gi)(1),

where
∑

i ai#gi ∈ CA#H(A).

Proof. By [4] we can identify Z(A) with the left centre Cl(R(A)). By the def-
inition of left centre (see section 4),

∑
i gi ⊗ ai belongs to Cl(R(A)) if for all

h ∈ H , b ∈ A

∑

i

gih⊗ aib =
∑

i,(gi)

(gi)(1)(h⊗ b).((gi)(2) ⊗ ai) =

∑

i,(gi)

((gi)(1)hS((gi)(3))⊗ (gi)(2)(b)).((gi)(4) ⊗ ai) =
∑

i,(gi)

(gi)(1)h⊗ (gi)(2)(b)ai

or simply if ∑

i

gi ⊗ aib =
∑

i,(gi)

(gi)(1) ⊗ (gi)(2)(b)ai,

which is equivalent to the condition

∑

i

gi ⊗ bai =
∑

i,(gi)

(gi)(1) ⊗ aiS((gi)(2))(b), (4)

Note that this is exactly the commutation condition between
∑

i ai#S(gi) and
b#1 in A#H :

(b#1)(
∑

i

ai#S(gi)) =
∑

i

bai#S(gi),

12



which corresponds to the left hand side of (4), coincides with

(
∑

i

ai#S(gi))(b#1) =
∑

i,(S(gi))

aiS(gi)(1)(b)#S(gi)(2) =
∑

i,(gi)

aiS((gi)(2))(b)#S((gi)(1)),

which corresponds to the right hand side of (4).
The form of the Yetter-Drinfeld structure follows from the formulas in proposi-
tion 5.1. Indeed, H-action on R(A) = H ⊗A (and hence on Cl(R(A))) reads

h(
∑

i

gi ⊗ ai) =
∑

i,(h)

h(1)giS(h(3))⊗ h(2)(ai).

Hence for the corresponding element of CA#H(A) we have

h(
∑

i

ai#S(gi)) =
∑

i,(h)

h(2)(ai)#S(h(1)giS(h(3))) =

∑

(h),i

h(2)(ai)#S
2(h(3))S(gi)S(h(1)).

Similarly H-coaction for an element of R(A) = H ⊗A (and hence of Cl(R(A)))
has a form

ψ(
∑

i

gi ⊗ ai) =
∑

i,(gi)

(gi)(1) ⊗ (gi)(2) ⊗ ai ∈ H ⊗R(A).

Hence for the corresponding element of CA#H(A) we have

ψ(
∑

i

ai#S(gi)) =
∑

i,(gi)

(gi)(1) ⊗ ai#S((gi)(2)) =

∑

i,(gi)

S−1S((gi)(1))⊗ ai#S((gi)(2)) =
∑

i,(S(gi))

S−1((S(gi))(2))⊗ ai#(S(gi))(1).

It follows from the proof of theorem 5.3 that the map

A#H → H ⊗A, a#h 7→ S−1(h)⊗ a

induces a homomorphism (embedding) of algebras CA#H(A) → H ⊗ A. In
particular, composing this homomorphism with ε ⊗ 1 : H ⊗ A → A we get a
homomorphism CA#H(A) → A, which is the canonical homomorphism Z(A) →
A from [4].

Corollary 5.4. The centraliser CA#H(A) is a commutative algebra in the
braided category YD(H) of Yetter-Drinfeld modules over H.
Moreover, the centraliser CA#H(A) is invariant with respect to Morita equiv-
alences in H-Mod, i.e. if A and B are two H-algebras and M is a B-A-
bimodule, equipped with compatible H-action, which induce an equivalence be-
tween categories of modules M⊗A- : A(H-Mod) → B(H-Mod) then CA#H(A)
and CB#H(B) are isomorphic as algebras in YD(H).
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Proof. It follows from the general properties of the full centre, established in
[4].

Due to Morita invariance (and more general definition given in [4], which
works for module categories) it is preferable to talk about full centre of a module
category rather than a full centre of an algebra.

As examples we treat the cases of regular module category and of the module
category Vect with the module structure given by the forgetful functor.

Example 5.5. Full centre of the regular module category.

As a module category over itself H-Mod can be identified with the cat-
egory of modules in H-Mod over the trivial H-algebra k. Thus by theo-
rem 5.3 the full centre Z(H-Mod) = Z(k) coincides with Hop with the ad-
joint H-action g(h) =

∑
(g) g(1)hS(g(2)) and H-coaction given by the coprod-

uct (which is isomorphic to the Yetter-Drinfeld structure from theorem 5.3 by
the anti-isomorphism S). This can also be deduced from the fact that the
functor Z(H-Mod) → EndH-Mod(H-Mod) coincides with the forgetful functor
YD(H) → H-Mod. Of course the fact that it is a quantum commutative algebra
is well known (see for e.g. [2]).

Example 5.6. Full centre of V ect as a module category.

The forgetful functor H-Mod→ Vect allows us to look at Vect as a module
category over H-Mod, which can be identified with the category of modules in
H-Mod over the H-module algebra H∗ (see example 3.3 for a description of
H-module algebra structure for H∗). Thus the full centre Z(Vect) = Z(H∗)
can be identified with the centraliser CH∗#H(H∗). If H is finite dimensional
the answer can be simplified: in this case CH∗#H(H∗) coincides with H∗. It
can be seen in at least two ways. According to [7] the homomorphism

θ : H∗#H → End(H∗), θ(l#h)(m) = lh(m), h ∈ H, l,m ∈ H∗

is an isomorphism. Thus the centraliserCH∗#H(H∗) coincides with EndH∗(H∗) =
(H∗)op.
Alternatively we can use the fact that the functor Z(H-Mod) → EndH-Mod(Vect)
coincides with the forgetful functor YD(H) → H-Comod, which in the case of
finite dimensional H coincides with the functor D(H)-Mod → H∗-Mod, in-
duced by the embedding H∗ → D(H). Then we can apply example 5.5 since
D(H) = D(H∗) and the embedding H∗ → D(H) coincides with the embedding
H∗ → D(H∗).

6 Examples

Here we apply the formula from theorem 5.3 to the cases when H is a group
Hopf algebra k[G] or its dual k(G). Note that a k[G]-module algebra A (a G-
algebra) is just an (associative, unital) algebra with an action of G by algebra
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automorphisms. Similarly, a k(G)-module algebra is just a G-graded algebra,
i.e. a G-graded vector space A = ⊕g∈GAg with multiplication, which preserves
grading AfAg ⊂ Afg. Indeed Ag = pgA, where pg ∈ k(G) is a δ-function on G
with the support at g. We denote by |a| the degree (in G) of a homogeneous
element a ∈ A, i.e. a ∈ A|a|.

We start with recalling (for example from [4]) a description of the monoidal
centre Z(k[G]-Mod) = Z(k(G)-Mod). We call a G-action on a vector space
V compatible with a G-grading V = ⊕g∈GVg if f(Vg) = Vfgf−1 . The following
result is well-know.

Proposition 6.1. The monoidal centre Z(k[G]-Mod) is isomorphic, as braided
monoidal category, to the category Z(G), whose objects are G-graded vector
spaces X = ⊕g∈GXg together with a compatible G-action and with morphisms,
which are graded and action preserving homomorphisms of vector spaces. The
tensor product in Z(G) is the tensor product of G-graded vector spaces with the
G-action defined by

f(x⊗ y) = f(x) ⊗ f(y), x ∈ X, y ∈ Y. (5)

The monoidal unit is I = Ie = k with trivial G-action.
The braiding is given by

cX,Y (x⊗ y) = f(y)⊗ x, x ∈ Xf , y ∈ Y. (6)

For Z ∈ Z(G) and U ∈ C(G) the half-braiding zU : Z ⊗ U → U ⊗ Z is given by

zU (z ⊗ u) = u⊗ g−1(z), u ∈ Ug. (7)

As an immediate application we have the following (see [3] for details). An
algebra in the category Z(G) is a G-graded associative algebra C together with
a G-action such that

f(ab) = f(a)f(b), a, b ∈ C. (8)

An algebra C in the category Z(G) is commutative iff

ab = f(b)a, ∀a ∈ Cf , b ∈ C. (9)

Now we are ready to describe full centres of G-algebras.

Proposition 6.2. The full centre Z(A) ∈ Z(G) of a G-algebra has the G-
grading Z(A) = ⊕g∈GZg(A), where

Zg(A) = {x ∈ A| xa = g(a)x ∀a ∈ A}

with the G-action, induced from A.
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Proof. An element
∑

g∈G xg#gof A#k[G] commutes with a#1 iff for any g ∈ G

we have axg = xgg(a). Indeed,

[
∑

g∈G

xg#g, a#1] =
∑

g∈G

(xgg(a)− axg)#g.

The degree of xg is g−1. Indeed,

ψ(
∑

g∈G

xg#g) =
∑

g∈G

g−1 ⊗ xg#g.

Finally note that axg = xgg(a) for xg ∈ Zg−1 is equivalent to xga = g−1(a)xg .

Full centres of G-graded algebras are described by the following statement.

Proposition 6.3. Let A be a G-graded algebra. The full centre of A as an object
of Z(G) is the subspace of the space of functions G → A with homogeneous
values:

Z(A) = {z : G→ A| az(g) = z(hg)a, ∀a ∈ Ah}.

The G-grading on Z(A) is given by

Z(A)f = {z ∈ Z(A)| |z(g)| = g|z(e)|g−1 = gfg−1}.

The G-action is g(z)(f) = z(g−1f).
The map Z(A) → A is the evaluation z 7→ z(e).

Proof. An element
∑

g∈G z(g)#pg of k(G)#A commutes with a#1 ∈ Ah#1 iff
az(g) = z(hg)a for all f ∈ G. Indeed, since for a ∈ Ah

(z#pg)(a#1) =
∑

uv=g

zpu(a)#pv = za#ph−1g

we have
[
∑

g∈G

z(g)#pg, a#1] =
∑

g∈G

(z(hg)a− az(g))#pg.

To write the G-action on Z(A) note that since

ψ(
∑

g∈G

z(g)#pg) =
∑

g,u,v∈G
uv=g

pu−1 ⊗ z(g)#pv,

we have
g(
∑

f∈G

z(f)#pf) =
∑

f∈G

z(f)#pgf =
∑

f∈G

z(g−1f)#pf .

To verify the grading condition note that

pg(
∑

f∈G

z(f)#pf) =
∑

f,g1,g2,g3∈G
g1g2g3=g

pg2(z(f))#pg3pfpg−1

1

=
∑

f∈G

pfgf−1(z(f))#pf .

Thus
∑

f∈G z(f)#pf is homogeneous of degree g iff |z(f)| = fgf−1.
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Remark 6.4.

The descriptions of full centres for G-graded and G-algebras obtained above
are in complete agreement with the corresponding results of [4] (section 9).
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