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ON THE IDEAL TRIANGULATION GRAPH OF A

PUNCTURED SURFACE

MUSTAFA KORKMAZ AND ATHANASE PAPADOPOULOS

Abstract. We study the ideal triangulation graph T (S) of a punctured
surface S of finite type. We show that if S is not the sphere with at
most three punctures or the torus with one puncture, then the natural
map from the extended mapping class group of S into the simplicial
automorphism group of T (S) is an isomorphism. We also show that
under the same conditions on S, the graph T (S) equipped with its nat-
ural simplicial metric is not Gromov hyperbolic. Thus, from the point
of view of Gromov hyperbolicity, the situation of T (S) is different from
that of the curve complex of S.
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1. Introduction

In this paper, S is a connected orientable surface of finite type, of genus
g ≥ 0 without boundary and with n ≥ 1 punctures. We shall assume that
the Euler characteristic χ(S) of S is negative. The mapping class group of S,
denoted by Mod(S), is the group of isotopy classes of orientation-preserving
homeomorphisms of S. The extended mapping class group of S, Mod∗(S),
is the group of isotopy classes of all homeomorphisms of S.

We denote by S the surface obtained from S by filling in the punctures.
Thus, S is a closed surface of genus g. The punctures can also be considered
as distinguished points on S, and we denote by B ⊂ S this set of distin-
guished points. An arc in S (or in S) is the image in S of a closed interval
whose interior is homeomorphically embedded in S \B and whose endpoints
are on B. An arc in S (or in S) is said to be essential if it is not homotopic
(relative to B) to a point in S.

All homotopies of arcs considered in this paper are relative to their end-
points. An ideal triangulation (or, for short, a triangulation) of S is a max-
imal collection of disjoint essential arcs that are pairwise non-homotopic.
An essential arc that belongs to a triangulation will also be called an edge
of that triangulation. A triangulation will sometimes be identified with the
union of its edges, and will therefore be considered as a subset of S. A face
of a triangulation ∆ is a connected component of the complement of ∆ in
S (or the closure of such a component), and it will also be called a triangle.

An elementary move is the operation of obtaining a triangulation from
a given one by removing an edge and replacing it by a distinct edge. If a
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2 MUSTAFA KORKMAZ AND ATHANASE PAPADOPOULOS

is the edge that is removed, then we shall say that the elementary move is
performed on a.

a

a∗

Figure 1. The edge a is a non-exchangeable arc in a triangula-
tion, and a∗ is its dual edge.

An edge a in a triangulation ∆ is said to be exchangeable if one can
perform on ∆ an elementary move, obtaining a new triangulation in which
a is replaced by an edge distinct from a. Otherwise, the edge is said to be
non-exchangeable. It follows from the classification of surfaces that an edge
in a triangulation ∆ is non-exchangeable if and only if it joins two distinct
punctures and if this edge is in the closure of a unique face of ∆. In this
case, there is a well-defined edge a∗ in ∆ which is associated to a, which we
call the edge dual to a, and which is the third edge of the unique triangle of
∆ to which a belongs. This situation is described in Figure 1.

In this paper, we study the ideal triangulation graph of S. This is the
simplicial graph T (S) whose vertices are isotopy classes of triangulations of
S in which an edge connects two vertices whenever these two vertices differ
by an elementary move. The extended mapping class group Mod∗(S) acts
naturally on T (S) by simplicial automorphisms. We prove the following.

Theorem 1.1. Let S be a connected orientable surface with at least one
puncture. If S is not a sphere with at most three punctures or a torus with
one puncture, then the natural homomorphism Mod∗(S) → Aut(T (S) is an
isomorphism.

Note that the hypothesis on S made in this theorem, combined with the
condition χ(S) ≤ −1, is equivalent to χ(S) ≤ −2.

The proof of Theorem 1.1 involves the consideration of the arc complex
of S. This is the abstract simplicial complex, denoted by A(S), whose k-
simplices, for each k ≥ 0, are the collections of k + 1 distinct isotopy classes
of essential arcs on S which can be represented by pairwise disjoint arcs on
this surface. The ideal triangulation graph has been studied in [2] and [3].
The arc complex has been studied in [6], [7] and [5]. The idea of the proof
of Theorem 1.1 follows a general scheme that was used in [4] and [9].

In the proof of Theorem 1.1, we shall use the following analogue of that
theorem for the arc complex, which was obtained by Irmak and McCarthy:

Theorem 1.2. ([5]) Let S be a connected orientable surface with at least
one puncture. If the surface S is not a sphere with at most three punctures
or a torus with one puncture, then the natural homomorphism Mod∗(S) →
Aut(A(S)) is an isomorphism.
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The graph T (S) is the one-skeleton of the simplicial complex dual to the
arc complex A(S). Thus, any automorphism of A(S) induces an automor-
phism of the graph T (S). But since T (S) is a strict subcomplex of the dual
complex of A(S), its automorphism group could a priori be larger than the
automorphism group of A(S). Theorem 1.1 shows that this is not the case.

There are three special cases of surfaces that admit ideal triangulations
and that are excluded by the hypothesis of Theorem 1.1: the cases of a sphere
with two or three punctures and the case of a torus with one puncture. Let
us briefly discuss these cases.

If S is a sphere with two punctures, then T (S) consists of only one vertex,
hence its automorphism group is trivial. But the extended mapping class
group Mod∗(S) is isomorphic to Klein’s four group, the direct sum of two
cyclic groups of order two. Thus, the natural homomorphism Mod∗(S) →
Aut(T (S)) is surjective and not injective.

If S is a sphere with three punctures, then any ideal triangulation of S has
three vertices, three edges and two faces. The simplicial complex T (S) is a fi-
nite graph, homeomorphic to a tripod. The center of the tripod corresponds
to the ideal triangulation of S in which every edge is exchangeable, and the
three other vertices of T (S) correspond to ideal triangulations in which ex-
actly one edge is exchangeable. The automorphism group Aut(T (S)) of
T (S) is isomorphic to the permutation group on three elements (the three
vertices of valency one of the tripod). The mapping class group of S is also
isomorphic to the permutation group on three element (the three punctures
of S), and the natural homomorphism Mod(S) → Aut(T (S)) is an isomor-
phism. The natural homomorphism Mod∗(S) → Aut(T (S)) is surjective
and its kernel is the center of Mod∗(S), which is a cyclic group of order two.

If S is a torus with one puncture, then the ideal triangulation graph
T (S) is a regular infinite tree in which every vertex has valency 3. The
automorphism group of such a tree is uncountable. To see this, we consider
the set of one-sided infinite sequences of letters on the alphabet {f, n}. This
set of sequences is uncountable, and it can be injected in the simplicial
automorphism group of the tree. Such an injection can be done by choosing
a base point of the tree, then embedding the set of one-sides sequences as the
set of simplicial geodesic rays starting at that base point, and finally defining
for each such geodesic ray an automorphisms of the tree by interpreting the
letter f as a flip, and the letter n as no flip. Thus, in the case considered,
the natural homomorphism Mod∗(S) → Aut(T (S)) is highly non-surjective
since the extended mapping class group Mod∗(S) is countable.

By declaring that the length of each edge is one, we may consider T (S)
as a metric space. With this metric, the length of a simplicial path between
two vertices is the number of edges in that path. It is now natural to ask
whether T (S) is Gromov-hyperbolic.

Theorem 1.1 implies the following:

Theorem 1.3. Let S be a connected orientable surface with at least one
puncture. Suppose that S is not a sphere with at most three punctures or
a torus with one puncture. Then the ideal triangulation graph of S is not
Gromov-hyperbolic.
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Proof. The action of the extended mapping class group Mod∗(S) on the ver-
tices of T (S) is free, since a homeomorphism of S which fixes the homotopy
class of an ideal triangulation is homotopic to the identity. The action of
Mod∗(S) on T (S) is co-compact, since up to homeomorphisms, there are
only finitely homotopy classes of ideal triangulations on any surface of finite
type. This is because the surface S equipped with any ideal triangulation
is obtained by gluing 4g − 4 + 2n triangles along edges, and there are only
finitely many ways to glue such a finite set of triangles to get a triangu-
lated surface. Thus, if T (S) were Gromov-hyperbolic, then Mod∗(S) would
be word-hyperbolic (see [1]). But under the hypotheses of the theorem,
the extended mapping class group Mod∗(S) is not word-hyperbolic, since it
contains free abelian groups of rank ≥ 2. �

We note that in the cases excluded in the hypothesis of Corollary 1.3, the
situations are as follows:

• If S is a sphere with one puncture, then the triangulation graph T (S) is
empty.

• If S is a sphere with two punctures, then T (S) consists of only one vertex,
hence it is hyperbolic.

• If S is a sphere with three punctures, then its triangulation graph is
compact, and therefore hyperbolic.

• If S is a torus with one puncture, then its triangulation graph is hyperbolic
since, as we recalled above, it is a tree.

Theorem 1.3 says that the large-scale geometry of the triangulation graph
of S is different from that of the curve complex, which, by a result of Masur
and Minsky, is hyperbolic.

2. Squares and pentagons in T (S)

To simplify notation, we shall often identify an arc or a triangulation on
S with its isotopy class.

We shall use two special classes of simplicial closed paths in T (S), and
we now describe them.

A square in T (S) is a simple closed (that is, injective) path in this graph
consisting of four edges, as represented in Figure 2. In this figure, elemen-
tary moves are performed on exchangeable edges a and c, whose images
under these moves are denoted, respectively, by a′ and c′. Note that the
existence of such an elementary move implies that the interiors of the faces
containing a and c in the surface S are disjoint. The move is also represented
diagrammatically as follows:

〈a, c〉 ↔ 〈a, c′〉 ↔ 〈a′, c′〉 ↔ 〈a′, c〉 ↔ 〈a, c〉.

In this notation, a symbol such as 〈a, c〉 ↔ 〈a, c′〉 represents an elementary
move between two triangulations, the first one having a and c among its
edges and the second one having a and c′ among its edges, and where the
move is performed on c, which is transformed into c′. All other edges remain
unchanged.

A pentagon in T (S) is a simple closed path in T (S) of length five, repre-
sented diagrammatically in Figure 3. In that figure, at each vertex, we have
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indicated the name of a pair of edges, one which remains invariant after
a move represented by an edge adjacent to that vertex, and one which is
transformed by that move into an edge whose name appears in the label of
the corresponding adjacent vertex. This move is also represented diagram-
matically as follows:

〈a, b〉 ↔ 〈a, e〉 ↔ 〈e, d〉 ↔ 〈d, c〉 ↔ 〈c, b〉 ↔ 〈b, a〉.

Lemma 2.1. There are no closed paths of length three in T (S).

Proof. Assume there exists such a path and let us represent it by a diagram

〈a, b〉 ↔ 〈b, c〉 ↔ 〈c, a〉 ↔ 〈a, b〉

in which a and c are distinct arcs and where the double arrows represent, as
before, elementary moves, that is, the arc a is transformed into the arc c by
the first move, and so on. But the existence of the moves 〈a, b〉 ↔ 〈b, c〉 and
〈a, b〉 ↔ 〈c, a〉 imply a = b, a contradiction. This proves the lemma. �

Lemma 2.2. Every simple closed path of length four in T (S) is a square
(that is, it is of the form described in Figure 2).

Proof. Consider a simple closed path of length four in T (S), and let us label
it as

〈a, b〉 ↔ 〈a, c〉 ↔ 〈c, d〉 ↔ 〈d, e〉 ↔ 〈a, b〉.

Then, the existence of the last move implies that either d = a, or d = b, or
e = a, or e = b. We analyze each case separately.

aa

a′a′
c

c

c′

c′

Figure 2. A square in the triangulation graph.

〈a, b〉

〈a, e〉

〈e, d〉〈d, c〉

〈c, b〉

Figure 3. A pentagon in the triangulation graph.
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• The case d = a is excluded, because of the existence of the move 〈a, c〉 ↔
〈c, d〉.

• If d = b then we get two moves 〈b, e〉 ↔ 〈a, b〉 and 〈c, b〉 ↔ 〈b, e〉 which
give a = c, which is excluded since we have a vertex labelled 〈a, c〉 in the
path.

• If e = a then we get two moves 〈a, b〉 ↔ 〈a, c〉 and 〈a, d〉 ↔ 〈a, b〉 which
gives d = c, which is excluded since we have a vertex labelled 〈c, d〉 in the
path.

• The remaining case is e = b, which labels the simple closed path in the
following way:

〈a, b〉 ↔ 〈a, c〉 ↔ 〈c, d〉 ↔ 〈d, b〉 ↔ 〈a, b〉,

which is of the form represented in Figure 2.

�

Lemma 2.3. Every simple closed path of length five in T (S) is a pentagon
(that is, it is of the form described in Figure 3).

Proof. The proof is by inspection, like the proof of Lemma 2.2 (and it uses
Lemma 2.1). �

In the next two lemmas, and later in the paper, if ∆ and ∆′ are two
triangulations of S connected by an edge in T (S), then the notation ∆−∆′

will be used to denote (the isotopy classes of) the edge in ∆ that is not in
∆′.

Lemma 2.4. Consider a square in T (S), represented as ∆1 ↔ ∆2 ↔ ∆3 ↔
∆4 ↔ ∆1. Then we have ∆1 − ∆4 = ∆2 − ∆3.

Proof. This can be checked on Figure 2. �

Lemma 2.5. Consider a pentagon in T (S), represented as ∆1 ↔ ∆2 ↔
∆3 ↔ ∆4 ↔ ∆5 ↔ ∆1. Then we have ∆1 − ∆5 = ∆2 − ∆3.

Proof. This can be checked on Figure 3. �

3. Proof of Theorem 1.1

Let f : T (S) → T (S) be a simplicial automorphism. We associate to f a

simplicial automorphism f̃ : A(S) → A(S), defined as follows.
Let a be an essential arc on S. We choose a triangulation ∆ in which

a is an exchangeable edge. Such a triangulation always exists. Since a is
exchangeable in ∆, we can perform an elementary move on a, replacing it by
an arc a′. Let ∆a be the triangulation obtained from ∆ by this elementary
move. Since f is simplicial, the triangulations f(∆) and f(∆a) (like ∆ and
∆a) are joined by an edge in T (S). In other words, the two triangulations

f(∆) and f(∆a) differ by an elementary move. We then define f̃(a) to be
the edge that is in f(∆) but not in f(∆a). In short, we have

f̃(a) = f(∆) − f(∆a).

We now prove the following:
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Proposition 3.1. The map f̃ : A(S) → A(S) is well-defined. That is,

for any vertex a in A(S), the arc f̃(a) is independent of the choice of the
triangulation ∆ in which a is exhangeable.

Proof. Denoting a triangulation as the set of its edges, let ∆ = {a, c1, . . . , ck}
and ∆′ = {a, c′1, . . . , c

′

k
} be two different triangulations used in the definition

of f̃(a).
Let R be the surface S cut along a. There are two cases for the surface

R:

(1) R has two boundary components coming from the curve a, and in
this case there is one distinguished point on each of these boundary
components, coming from the puncture at the endpoints of a. This
occurs when the arc a joins one puncture of S to itself.

(2) R has one boundary component, with two distinguished points on
that boundary. This occurs when a joins two distinct punctures on
S.

The triangulations ∆ and ∆′ naturally induce triangulations on R, with
the labelling by edges, {a1, a2, c1, . . . , ck} and {a1, a2, c

′

1, . . . , c
′

k
}, where the

edge a has been replaced by two edges a1 and a2. In Case 1, each of the
edges a1 and a2 appears on a boundary component of R, and in Case 2, the
union of the edges a1 and a2 forms the boundary component of R, and there
are two distinguished points on that boundary component.

In each case, we can join the two triangulations induced on R by ∆ and
∆′ by a finite sequence of elementary moves on R, in such a way that the two
distinguished points and the two edges a1 and a2 on R are left fixed by these
elementary moves. This follows from Harer’s result on the connectedness of
the triangulation graph of a surface with boundary and with distinguished
points on boundary components. (See [2]; the result is also cited in [3].)

Now gluing a1 to a2 back gives a simplicial path in T (S) joining ∆ to ∆′

such that each triangulation in this path contains a as an edge. We denote
the sequence of triangulations in this path by

(1) ∆ = ∆0,∆1, . . . ,∆l = ∆′.

We can assume that this path is simple.
We shall use the following:

Lemma 3.2. We can assume that we can choose the path (1) in such a way
that the edge a is exchangeable in each triangulation representing a vertex
of this path.

Proof. Suppose there is a vertex in the path (1) that represents a triangula-
tion in which a is not exchangeable, and let ∆i be the triangulation repre-
sented by the first such vertex, after the vertex ∆. Then, ∆i+1 (respectively
∆i−1) is the triangulation represented by the vertex after (respectively be-
fore) ∆i. Note that since a is exchangeable in ∆ and in ∆′, we have 1 ≤ i < l.
There are two possibilities for the vertex joining ∆i and ∆i+1, and they are
represented respectively in Figure 4 (a) and (b).

The first possibility (top of Figure 4 (a)) is when the elementary move
that takes ∆i to ∆i+1 involves an edge that is on the boundary of a triangle
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having the edge a∗ (the dual of a) as an edge. (Note that we exclude the
case where the elementary move is performed on the edge a∗, since in that
case we recover the triangulation ∆i−1 as a result, but we assumed the path
is simple.) In this case, we replace the subpath ∆i−1 ↔ ∆i ↔ ∆i+1 by the
path ∆i−1 ↔ ∆′

i
↔ ∆′

i+1 ↔ ∆i+1 represented in the bottom of Figure 4 (a).
The second possibility (top of Figure 4 (b)) is when the elementary move

that takes ∆i to ∆i+1 involves an edge that is not on the boundary of a
triangle whose boundary contains a∗. In Figure 4 (b), we have symbolically
represented that elementary move on a quadrilateral that is disjoint from a

and a∗. In that case, we replace the subpath ∆i−1 ↔ ∆i ↔ ∆i+1 by the
path ∆i−1 ↔ ∆′

i
↔ ∆i+1 represented in Figure 4 (b).

In each case, each vertex of the new simplicial path that joins ∆ to ∆′

contains a as an edge, and the number of occurrences of vertices in this path
in which a is non-exchangeable has been reduced by one. This allows us, by
induction, to obtain a path joining ∆ and ∆′ in T (S), in which every vertex is
represented by a triangulation that contains a and where a is exchangeable.

This proves Lemma 3.2
�

∆i−1

∆i−1

∆i

∆i

∆i+1

∆i+1

∆′

i

∆′

i ∆′

i+1

(a)

(b)

Figure 4. Replacing a path in which each vertex contains a by
a path where at each vertex a is an exchangeable edge.
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We now continue with the proof of Proposition 3.1.
Note that the closed paths in T (S) that are represented in Figure 4 (a)

and (b) are a pentagon and a square.

To prove that f̃ is well-defined, by Lemma 3.2 it suffices to consider the
case where ∆ and ∆′ are joined by an edge in T (S).

By reordering the edges of the triangulation ∆, we can assume that c1 is
the vertex that is transformed by the elementary move that takes ∆ to ∆′.
We use as before the notation ∆ ↔ ∆′, with ∆ = 〈a, c1〉 and ∆′ = 〈a, c′1〉,
to denote this elementary move, in which c′1 is the image of c1. Edges other
than c1 are unchanged. We distinguish two cases:

(a) (b)

a c′1

a′

d

c1

Figure 5. The star in the right hand side figure corresponds to
a pentagon relation.

Case 1.— In the triangulation ∆, a and c1 are two edges of a common
triangle (see Figure 5 (a)). Then, since S is not a torus with one puncture
or a sphere with three punctures, the edge joining ∆ and ∆′ in T (S) belongs
to a pentagon in this graph. This follows from the fact that both a and c1

are exchangeable, and it can be seen diagrammatically in Figure 5 (b), where
the sequence of elementary moves representing the pentagon relation is:

〈a, c1〉 ↔ 〈a, c′1〉,↔ 〈c′1, d〉,↔ 〈d, a′〉,↔ 〈a′, c1〉,↔ 〈c1, a〉.

Let P denote this pentagon. Since f : T (S) → T (S) is simplicial, the
image f(P) of P by f is again a pentagon (Lemma 2.3). In the pentagon P,
the triangulation 〈a, c1〉 is labelled ∆, the triangulation 〈a′, c1〉 is labelled
∆a, the triangulation 〈a, c′1〉 is labelled ∆′ and the triangulation 〈d, c′1〉 is
labelled ∆′

a. We then have, by Lemma 2.5 applied to the pentagon f(P),

f(∆) − f(∆a) = f(∆′) − f(∆′

a).

This completes the proof of the fact the f̃(a) is well-defined in Case 1.
Case 2.— In the triangulation ∆, a and c1 are not edges of the same
triangle. In this case, we can perform elementary moves on a and c1 inde-
pendently from each other, and we obtain the following square in T (S):

〈a, c1〉 ↔ 〈a, c′1〉,↔ 〈a′1, c
′

1〉,↔ 〈a′, c1〉,↔ 〈a, c〉.

Similarly to the preceding case, the triangulation 〈a, c1〉 is labelled ∆, the
triangulation 〈a′, c1〉 is labelled ∆a, the triangulation 〈a, c′1〉 is labelled ∆′

and the triangulation 〈a′1, c
′

1〉 is labelled ∆′

a, and we get again, this time
using Lemma 2.4,

f(∆) − f(∆0) = f(∆′) − f(∆′

0).
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This shows that f̃(a) is well-defined in each case.
This completes the proof of Proposition 3.1.

�

The following naturality formula will be useful.

Proposition 3.3. For any ideal triangulation ∆ = {c0, c1, . . . , ck}, we have

f(∆) = {f̃(c0), f̃(c1), . . . , f̃(ck)}.

Proof. It suffices to prove that f(∆) ⊂ {f̃(c0), f̃(c1), . . . , f̃(ck)}. Let a be
any (homotopy class of) edge in ∆. If a is exchangeable, then it follows from

the definition of f̃ that f̃(a) is in the simplex f(∆). Assume now that a is
not exchangeable, and let a∗ be its dual edge. Then a∗ is exchangeable in
∆. Let ∆′ = ∆a∗ be the ideal triangulation obtained from ∆ by exchanging
the edge a∗. Finally, let ∆′

a be the ideal triangulation obtained from ∆′ by
exchanging the edge a. Since there is an edge in T (S) joining ∆ to ∆′, and
an edge in T (S) joining ∆′ to ∆′

a, and since f is simplicial, there is an edge
in T (S) joining f(∆) to f(∆′), and an edge in T (S) joining f(∆′) to f(∆′

a).

By definition, f̃(a) belongs to the triangulation f(∆′). Then, the edge f̃(a)

is transformed by the move f(∆′) ↔ f(∆′

a). Therefore, f̃(a) is not an edge

of f(∆′

a). But since f̃(a) is not transformed by the move f(∆) ↔ f(∆′), we

conclude that f̃(a) is an edge of f(∆). �

Corollary 3.4. The map f̃ : A(S) → A(S) is simplicial.

Proposition 3.5. If f and h are two automorphisms of T (S), then f̃h = f̃ h̃.

Proof. Let a be (the isotopy class of) an arc on S. We show that f̃h(a) =

f̃(h̃(a)).
Let ∆ = {a, c1, c2, . . . , ck} be a triangulation in which a is exchangeable

and let ∆′ = {a′, c1, c2, . . . , ck} be the triangulation obtained from ∆ by an

elementary move on a. Then, h̃(a) = h(∆) − h(∆′), and f̃h(a) = fh(∆) −
fh(∆′).

Since the map h : T (S) → T (S) is simplicial and since the triangulation
∆ is related to ∆′ in T (S) by an edge, the triangulation h(∆) is also related

to the triangulation h(∆′) by an edge. Since h(∆) contains the arc h̃(a) as

an exchangeable arc, we can use h(∆) and h(∆′) to define f̃(h̃(a)), and we
obtain:

f̃(h̃(a)) = f (h(∆)) − f
(
h(∆′)

)

= (fh)(∆) − (fh)(∆′)

= f̃h(a).

This completes the proof.
�

Proposition 3.6. For any automorphism f ∈ Aut(T (S)), the associated

map f̃ : A(S) → A(S) is an automorphism.
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Proof. Let h = f−1 ∈ Aut(T (S)) be the inverse of f . By Proposition 3.5,

we have f̃ h̃ = Ĩ = h̃f̃ , where I is the identity map of T (S). Now from the

definitions, the map Ĩ : A(S) → A(S) associated to I is the identity map

of A(S). Thus, f̃ has an inverse, which shows that f̃ : A(S) → A(S) is a
bijection.

Since f̃ is also simplicial by Corollary 3.4, it is an automorphism of A(S).
�

Finally, we prove the following theorem which, together with Theorem
1.2, implies Theorem 1.1.

Theorem 3.7. Suppose the surface S is not a sphere with at most three
punctures or a torus with one puncture. Then the map φ : Aut(T (S)) →

Aut(A(S)) defined by f 7→ f̃ is an isomorphism.

Proof. Given the propositions that we already proved, it remains to show is
that φ is bijective.

We first show that φ is onto. Let h be an arbitrary element in Aut(A(S)).
By the result of Irmak McCarthy mentioned above (Theorem 1.2), h is
induced by a homeomorphism H : S → S, which induces an automorphism

f of T (S), and this automorphism satisfies f̃ = h. Thus, φ is onto.
Now we show that f is one-to-one. Let f be an element of Aut(T (S))

such that f̃ is the identity automorphism of A(S). Then, by Proposition
3.3, f acts trivially on T (S). Thus, f is one-to-one. This completes the
proof of the theorem. �
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