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MODULE CATEGORIES OVER GRADED FUSION

CATEGORIES

EHUD MEIR AND EVGENY MUSICANTOV

Abstract. Let C be a fusion category which is an extension of
a fusion category D by a finite group G. We classify module
categories over C in terms of module categories over D and
the extension data (c,M,α) of C. We also describe functor
categories over C (and in particular the dual categories of C).
We use this in order to classify module categories over the
Tambara Yamagami fusion categories, and their duals.
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1. Introduction

Let C be a fusion category. We say that C is an extension of the fusion
category D by a finite group G if C is graded by the group G in such a way
that C1 = D. In [5] Etingof et. al. classified extension of a given fusion
category D by a given finite group G. Their classification is given by a triple
(c,M,α), where c : G→ Pic(D) is a homomorphism, M belongs to a torsor
over H2(G, inv(Z(D))), and α belongs to a torsor over H3(G, k∗). The group
Pic(D) is the group of invertible D-bimodules (up to equivalence), and the
group inv(Z(D)) is the group of (isomorphism classes of) invertible objects
in the center Z(D) of D.

Let us recall briefly the construction from [5]. Suppose that we are
given a classification data (c,M,α). The corresponding category C will be
⊕

g∈G c(g) as a D-bimodule category. If we choose arbitrary isomorphisms

c(g) ⊠D c(h) → c(gh) for the tensor product in C, the multiplication will
1
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2 EHUD MEIR AND EVGENY MUSICANTOV

not necessarily be associative. This non associativity is encoded in a coho-
mological obstruction O3(c) ∈ Z3(G, inv(Z(D))). The element M belongs
to C2(G, inv(Z(D))), and should satisfy ∂M = O3(c) (that is- it should be
a “solution” to the obstruction O3(c)). If we change M by a coboundary,
we get an equivalent solution. Therefore, the choice of M is equivalent to
choosing an element from a torsor over H2(G, inv(Z(D))). Given c and M ,
we still have one more obstruction in order to furnish from C a fusion cate-
gory. This obstruction is the commutativity of the pentagon diagram, and
is given by a four cocycle O4(c,M) ∈ Z4(G, k∗). The element α belongs to
C3(G, k∗), and should satisfy ∂α = O4(c,M). We think of α as a solution to
the obstruction O4(c,M). Again, if we change α by a coboundary, we will
get an equivalent solution. Therefore, the choice of α can be seen as a choice
from a torsor over H3(G, k∗).

We shall write C = D(G, c,M,α) to indicate the fact that C is an extension
of D by G given by the extension data (c,M,α), and we shall assume from
now on that C = D(G, c,M,α).

In this paper we shall classify module categories over C in terms of module
categories over D and the extension data (C,M,α).

Our classification of module categories will follow the lines of the classifi-
cation of [5]. We will begin by proving the following structure theorem for
module categories over C.

Proposition 1.1. Let L be an indecomposable module category over C. There
is a subgroup H < G, and an indecomposable CH =

⊕

a∈H Ca module category

N which remains indecomposable over D such that L ∼= IndCCH (N ) , C ⊠CH
N .

This proposition enables us to reduce the classification of C-module cate-
gories to the classification of CH -module categories which remains indecom-
posable over D, where H varies over subgroups of G.

In order to classify such categories we will go, in some sense, the other way
around. We will begin with an indecomposable D-module category N , and
we will ask how can we equip N with a structure of a CH module category.

As in the classification in [5], the answer will also be based upon choosing
solutions to certain obstruction (in case it is possible). We will begin with
the observation, in Section 2, that we have a natural action of G on the set
of (equivalence classes of) indecomposable D-module categories. This action
is given by the following formula

g · N = Cg ⊠D N .

If N has a structure of a CH -module category, then the action of CH on N
will give an equivalence of D-module categories h · N ∼= N for every h ∈ H.
In other words- N will be H-invariant. We may think of the fact that N
should be H-invariant as the “zeroth obstruction” we have in order to equip
N with a structure of a CH -module category.

In case N is H-invariant, we choose equivalences ψa : Ca ⊠D N → N
for every a ∈ H. We would like these equivalences to give us a structure
of a CH -module category on N . As one might expect, not every choice of
equivalences will do that. If N has a structure of a CH -module category,
we will see in Section 4 that we have a natural action of H on the group
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Γ = AutD(N ). In case we only know that N is H-invariant, we only have an
outer action of H on Γ (i.e. a homomorphism ρ : H → Out(Γ)). The first
obstruction will thus be the possibility to lift this outer action to a proper
action.

Once we overcome this obstruction (and choose a lifting Φ for the outer
action), our second obstruction will be the fact that the two functors

F1, F2 : Ca ⊠D Cb ⊠D ⊠N → N

defined by
F1(X ⊠ Y ⊠N) = (X ⊗ Y )⊗N

and
F2(X ⊠ Y ⊠N) = X ⊗ (Y ⊗N)

should be isomorphic. We will see that this obstruction is given by a certain
two cocycle O2(N , c,H,M,Φ) ∈ Z2(H,Z(AutD(N ))). A solution for this
obstruction is an element v ∈ C1(H,Z(AutD(N ))) that should satisfy ∂v =
O2(N , c,H,M,Φ).

Our last obstruction will be the fact that the above functors should be not
only isomorphic, but they should be isomorphic in a way which will make the
pentagon diagram commutative. This obstruction is encoded by a three co-
cycle O3(N , c,H,M,Φ, v, α) ∈ Z3(H, k∗). A solution β for this obstruction
will be an element of C2(H, k∗) such that ∂β = O3(N , c,H,M,Φ, v, α).

We can summarize our main result in the following proposition:

Proposition 1.2. An indecomposable module category over C is given by a
tuple (N ,H,Φ, v, β), where N is an indecomposable module category over D,
H is a subgroup of G which acts trivially on N , Φ : H → Aut(AutD(N ))
is a homomorphism, v belongs to a torsor over H1(H,Z(AutD(N ))), and β
belongs to a torsor over H2(H, k∗).

We shall denote the indecomposable module category which corresponds
to the tuple (N ,H,Φ, v, β) by M(N ,H,Φ, v, β). In order to classify mod-
ule categories, we need to give not only a list of all indecomposable module
categories, but also to explain when does two elements in the list define equiv-
alent module categories. We will see in Section 6 that if M(N ,H,Φ, v, β)
is any indecomposable module category, g ∈ G is an arbitrary element and
F : Cg ⊠D N ≡ N ′ is an equivalence of D-module categories (where N ′ is
another indecomposable D-module category), then F gives rise to a tuple
(N ′, gHg−1,Φ′, v′, β′) which defines an equivalent C-module category. Our
second main result is the following:

Proposition 1.3. Two tuples (N ,H,Φ, v, β) and (N ′,H ′,Φ′, v′, β′) deter-
mine equivalent C-module categories if and only if the second tuple is defined
by the first tuple and by some equivalence F as above.

We shall prove proposition 1.3 in Section 6. We will also decompose this
condition into a few simpler ones: we will see, for example, by considering
the case g = 1, that we can change Φ to be tΦt−1, where t is any conjugation
automorphism of AutD(N ).

In Section 7 we will describe the category of functors FunC(N ,M) where
N and M are two module categories over C. We will see that we can view this
category as the equivariantization of the category FunD(N ,M) with respect
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to an action of G. We will also be able to prove the following criterion of C to
be group theoretical. C is a group theoretical if and only if there is a pointed
D-module category N , i.e., D∗

N is pointed, stable under the G-action , i.e.,
for every g ∈ G, Cg ⊠D N ∼= N as D-module categories.

A theorem of Ostrik says that any indecomposable module category over a
fusion category D is equivalent to a category of the form ModD−A, of right
A-modules in the category D, where A is some semisimple indecomposable
algebra in the category D. In other words- any module category has a
description by objects which lie inside the fusion category D. In Section 8 we
will explain how we can understand the obstructions and their solutions, and
also the functor categories, by intrinsic description; that is- by considering
algebras and modules inside the categories D and C.

This description will be much more convenient for calculations. It will
also enables us to view the first and the second obstruction in a unified way.
Indeed, in Section 8 we will show that we have a natural short exact sequence

1 → Γ → Λ → H → 1

and that a solution for the first two obstructions is equivalent to a choice
of a splitting of this sequence (and therefore, we can solve the first two
obstructions if and only if this sequence splits). We will also show, following
the results of Section 8, that two splittings which differ by conjugation by
an element of Γ will give us equivalent module categories. We mention that
we could have derive this short exact sequence and this result without using
algebras and modules inside our categories, but it would have been more
complicated.

In Section 9 we shall give a detailed example. We will consider the Tam-
bara Yamagami fusion categories, C = T Y(A,χ, τ). In this case C is an
extension of the category V ecA, where A is an abelian group, by the group
Z2.

2. Preliminaries

In this section, C will be a general fusion category and D a sub-fusion
category of C. We recall some basic facts about module categories over C
and D. For a more detailed discussion on these notions, we refer the reader
to [1] and to [4]. Let N be a module category over C. If X,Y ∈ ObN , then
the internal hom of X and Y is the unique object of C which satisfies the
formula

HomC(W,HomC(X,Y )) = HomN (W ⊗X,Y )

for every W ∈ ObC. For every X ∈ ObN the object HomC(X,X) has a
canonical algebra structure. We say that X generates N (over C) if N is the
smallest sub C-module-category of N which contains X. For every algebra
A in C, modC − A, the category of right A-modules in C, has a structure of
a left C-module category.

A theorem of Ostrik says that all module categories are of this form:

Theorem 2.1. (see [1]) Let N be a module category, and let X be a generator
of N over C. We have an equivalence of C-module categories N ∼= ModC −
Hom(X,X) given by F (Y ) = Hom(X,Y ).
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Next, we recall the definition of the induced module category. If N is
a D-module category, IndCD(N ) is a module category over C which satisfies
Frobenius reciprocity. This means that for every C-module category R we
have that

FunC(Ind
C
D(N ),R) ∼= FunD(N ,R).

The next lemma proves that the induced module category always exists.
It will also gives us some idea about how the induced module category “looks
like”.

Lemma 2.2. Suppose that N ∼= modD −A for some algebra A ∈ ObD. Then
A can also be considered as an algebra in C, and IndCD(N ) ∼= modC −A.

Proof. Let us prove that Frobenius reciprocity holds. For this, we first need
to represent R in an appropriate way. We choose a generator X of R over

D. It is easy to see that X is also a generator over C. Then, by Ostrik’s
Theorem we have that R ∼= modC −HomC(X,X) over C, and R ∼= modD −
HomD(X,X) over D. If we denote HomC(X,X) by B, then it is easy to see
by the definition of Hom that HomD(X,X) ∼= BD, where BD is the largest
subobject of B which is also an object of D (since D is a fusion subcategory
of C, this is also a subalgebra of B). By another theorem of Ostrik (see
[1]), we know that FunC(modC − A,modC − B) ∼= bimodC − A − B. Using
the theorem of Ostrik again, we see that FunD(N ,R) ∼= bimodDA − BD.
One can verify that the functor which sends an A−BD bimodule Z in D to
Z ⊗BD

B gives an equivalence between the two categories.
�

Remark 2.3. The fact that the induction functor is an equivalence of categories
arise from the fact that for such a B, the equivalence between the categories
modD −BD and modC −B is given by X 7→ X ⊗BD

B.

One can show that the induced module category is also equivalent to
C ⊠D N .

In particular, we have the following:

Corollary 2.4. Let N be a module category over C. Suppose that X is a
generator of N over C, and that the algebra A = Hom(X,X) is supported
on D. Then N ∼= IndCD(modD −A).

3. Decomposition of the module category over the trivial

component subcategory. The zeroth obstruction

We begin by considering the action of G on D-module categories. For
every g ∈ G, Cg is an invertible D-bimodule category. Therefore, if N is an
indecomposable D-module category, the category Cg ⊠D N is also indecom-
posable. It is easy to see that we get in this way an action of G on the set of
(equivalence classes of) indecomposable D-module categories. Let now L be
an indecomposable C-module category. We can consider L also as a module
category over D. We claim the following:

Lemma 3.1. As a D-module category, L is G-invariant.

Remark 3.2. For this lemma, we do not need to assume that L is indecom-
posable.
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Proof. We have the following equivalence of D-module categories

Cg ⊠D L ∼= Cg ⊠D (C ⊠C L) ∼=

(Cg ⊠D C)⊠C L ∼= (Cg ⊠D ⊕a∈GCa)⊠C L ∼=

(⊕a∈GCga)⊠C L ∼= C ⊠C L ∼= L.

This proves the claim.
�

If H is a subgroup of G, we have the subcategory CH =
⊕

h∈H Ch of C,
which is an extension of D by H. We claim the following:

Proposition 3.3. There is a subgroup H < G, and an indecomposable CH
module category N which remains indecomposable over D such that L ≡
IndCCH (N ).

Proof. Suppose that L decomposes over D as

L =
n

⊕

i=1

Li.

For every g ∈ G, we have seen that the action functor defines an equivalence
of categories Cg ⊠D L ∼= L. Since

Cg ⊠D L ∼=

n
⊕

i=1

Cg ⊠D Li,

we see that G permutes the index set {1, . . . , n}. This action is transitive,
as otherwise L would not have been indecomposable over C. Let H < G be
the stabilizer of L1. Then N = L1 is a CH -module category which remains
indecomposable over D. Let X ∈ ObL1 be a generator of L over C (any
nonzero object would be a generator, as L is indecomposable over C). By
the fact that the stabilizer of L1 is H, it is easy to see that HomC(X,X) is
contained in CH . The rest of the lemma now follows from corollary 2.4.

�

So in order to classify indecomposable module categories over C, we need
to classify, for every H < G, the indecomposable module categories over CH
which remain indecomposable over D. For every indecomposable module
category L over C, we have attached a subgroup H of G and an indecom-
posable CH module category L1 which remains indecomposable over D. The
subgroup H and the module category L1 will be the first two components
of the tuple which corresponds to L. Notice that we could have chosen any
conjugate of H as well.

4. The first two obstructions

Let L, N = L1 and H be as in the previous section. For every a ∈ H
we have an equivalence of D-module categories ψa : Ca ⊠D N ∼= N given by
the action of CH on N . Suppose on the other hand that we are given an
H-invariant indecomposable module category N over D. Let us fix a family
of equivalences {ψa}a∈H , where ψa : Ca ⊠ N → N . Let us see when does
this family comes from an action of CH on N .
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We know that the two functors

CH ⊠ CH ⊠N
m⊠1N→ CH ⊠N

·
→ N

and

CH ⊠ CH ⊠N
1CH⊠(·)
→ CH ⊠N

·
→ N

should be isomorphic. It is easy to see that the two functors

CH ⊠D CH ⊠D N
m⊠1N→ CH ⊠D N

·
→ N

and

CH ⊠D CH ⊠D N
1CH⊠(·)
→ CH ⊠D N

·
→ N

should also be isomorphic. Since the action of CH on N is given by the
action of D together with the ψa’s, this condition translates to the fact that
for every a, b ∈ H the two functors

Ca ⊠D Cb ⊠D N
Ma,b⊠1N

→ Cab ⊠D N
ψab→ N

and

Ca ⊠D Cb ⊠D N
1Ca⊠ψb→ Ca ⊠D N

ψa
→ N

should be isomorphic. We can express this condition in the following equiv-
alent way- for every a, b ∈ H, the autoequivalence of N as a D-module
category

Ya,b = N
ψ−1
a→ Ca ⊠D N

1Ca⊠ψ
−1

b→ Ca ⊠D Cb ⊠D N

Ma,b⊠1N
→ Cab ⊠D N

ψ−1

ab→ N

should be isomorphic to the identity autoequivalence. We shall decompose
this condition into two simpler ones.

Consider the group Γ = AutD(N ), where by AutD we mean the group of
D-autoequivalences (up to isomorphism) of N . For a ∈ H and F ∈ Γ define
a · F ∈ Γ as the composition

N
ψ−1
a→ Ca ⊠D N

1Ca⊠F→ Ca ⊠D N
ψa
→ N .

We get a map Φ : H → Aut(Γ) given by Φ(g)(F ) = h · F . This map de-
pends on the choice of the ψa’s and is not necessary a group homomorphism.
However, the following equation does hold for every a, b ∈ H:

Φ(a)Φ(b) = Φ(ab)CYa,b , (4.1)

where we write Cx for conjugation by x ∈ Γ.
Notice that ψa is determined up to composition with an element in Γ, and

that by changing ψa to be ψ′
a = γψa, for γ ∈ Γ, we change Φ(a) to be

Φ(a)cγ ,

where by cγ we mean conjugation by γ. Equation 4.1 shows that the com-
position ρ = πΦ, where π is the quotient map π : Aut(Γ) → Out(Γ) does
give a group homomorphism. Notice that by the observation above, ρ does
not depend on the choice of the ψa’s, but only on c, N and H. We have the
following

Lemma 4.1. If the ψa’s arise from an action of CH on N , then the map Φ
is a group homomorphism.
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Proof. This follows from the fact that by the discussion above, if the ψa’s
arise from an action of CH on N , then Ya,b is trivial for every a, b ∈ H, and
by Equation 4.1 we see that Φ is a group homomorphism.

�

So c,N and H determines a homomorphism ρ : H → Out(Γ). We thus
see that in order to give N a structure of a CH -module category, we need to
give a lifting of ρ to a homomorphism to Aut(Γ). The first obstruction is
thus the possibility to lift ρ in such a way.

Suppose then that we have a lifting, that is- a homomorphism Φ : H →
Aut(Γ) such that πΦ = ρ. To say that Φ is a homomorphism is equivalent to
say that we have chosen the ψa’s in such a way that CYa,b = Id, or in other
words- in such a way that for every a, b ∈ H, Ya,b is in Z(Γ), the center of Γ.

Notice that after choosing Φ, we still have some liberty in changing the
ψa’s. Indeed, if we choose ψ′

a = γaψa, where γa ∈ Z(Γ) for every a ∈ H, we
still get the same Φ, and it is easy to see that every ψ′

a that will give us the
same Φ is of this form.

In order to furnish a structure of a CH -module category on N , we need
Ya,b to be not only central, but trivial. A straightforward calculation shows
now that the function H × H → Z(Γ) given by (a, b) 7→ Ya,b is a two
cocycle. If we choose a different set of isomorphisms ψ′

a = γaψa where γa ∈
Z(Γ), we will get a cocycle Y ′ which is cohomologous to Y . So the second
obstruction is the cohomology class of the two cocycle (a, b) 7→ Ya,b. We
shall denote this obstruction by O2(N , c,H,M,Φ) ∈ Z2(H,Z(Γ)). Notice
that this obstruction depends linearly on M in the following sense: we have
a natural homomorphism of groups ξ : inv(Z(D)) → Γ, given by the formula

ξ(T )(N) = T ⊗N

(that is- ξ(T ) is just the autoequivalence of acting by T , or if we identify Z(D)
with the category of D-bimodule endofunctors of the regular D-bimodule
and thus inv(Z(D) is identified with the group of isomorphisms classes of D-

automorphisms, then ξ(T )(N) is given by N
∼= // D ⊠D N

T⊠DN// D ⊠D N
∼= // N

). It can be seen that if we would have chosen M ′ = Mζ, where ζ ∈
Z2(G,Z(D)), then we would have changed O2 to be O2res

G
H(ξ∗(ζ)).

In conclusion- we saw that if N is a D-module category upon which H
acts trivially, then we have an induced homomorphism ρ : H → Out(Γ).
The first obstruction to define on N a structure of a CH -module category is
the fact that ρ should be of the form πΦ where Φ : H → Aut(AutD(N )) is a
homomorphism. After choosing such a lifting Φ we get the second obstruc-
tion, which is a two cocycle O2(N , c,H,M,Φ) ∈ Z2(H,Z(Γ)). A solution to
this obstruction will be an element v ∈ C1(H,Z(Γ)) which satisfies

∂v = O2(N , c,H,M,Φ).

We will see later, in Section 8, that to find a solution for the first and for the
second obstruction is the same thing as to find a splitting for a certain short
exact sequence. We will also see why two solutions v and v′ which differs
by a coboundary give equivalent module categories (and therefore we can
view the set of possible solutions, in case it is not empty) as a torsor over
H1(H,Z(Γ)).
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5. The third obstruction

So far we have almost defined a CH -action on N , by means of the equiv-
alences ψa : Ca ⊠D N → N . The solutions for the first and for the second
obstruction ensures us that for every a, b ∈ H the two functors

F1 : Ca ⊠D Cb ⊠D N
Ma,b⊠1N

→ Cab ⊠D N
ψab→ N

and

F2 : Ca ⊠D Cb ⊠D N
1Ca⊠ψb→ Ca ⊠D N

ψa
→ N

are isomorphic.
For every a, b ∈ H, let us fix an isomorphism η(a, b) : F1 → F2 between

the two functors. In other words, for every X ∈ Ca, Y ∈ Cb and N ∈ N we
have a natural isomorphism

η(a, b)X,Y,N : (X ⊗ Y )⊗N → X ⊗ (Y ⊗N).

Since F1 and F2 are simple as objects in the relevant functor category (they
are equivalences), the choice of the isomorphism η(a, b) is unique up to scalar,
for every a, b ∈ H.

The final condition for N to be a CH -module category is the commutativity
of the pentagonal diagram. In other words, for every a, b, d ∈ H, and every
X ∈ Ca, Y ∈ Cb, Z ∈ Cd and N ∈ N , the following diagram should commute:

(X ⊗ (Y ⊗ Z))⊗N
η(a,bd)X,Y⊗Z,N // X ⊗ ((Y ⊗ Z)⊗N)

η(b,d)Y,Z,N
��

((X ⊗ Y )⊗ Z)⊗N

αX,Y,Z

OO

η(ab,d)X⊗Y,Z,N

**TTTTTTTTTTTTTTTT

X ⊗ (Y ⊗ (Z ⊗N))

(X ⊗ Y )⊗ (Z ⊗N)

η(a,b)X,Y,Z⊗N

44jjjjjjjjjjjjjjjj

This diagram will always be commutative up to a scalar O3(a, b, d) which
depends only on a, b and d, and not on the particular objects X,Y,Z and N .
One can also see that the function (a, b, d) 7→ O3(a, b, d) is a three cocycle on
H with values in k∗, and that choosing different η(a, b)’s will change O3 by
a coboundary. We call O3 = O3(N , c,H,M,Φ, v, α) ∈ H3(H, k∗) the third
obstruction. A solution to this obstruction is equivalent to giving a set of
η(a, b)’s such that the pentagon diagram will be commutative. We will see
in the next section that by altering η by a coboundary we will get equivalent
module categories. Thus, we see that the set of solutions for this obstruction
will be a torsor over the group H2(H, k∗) (in case a solution exists). Notice
that this obstruction depends “linearly” on α, in the sense that if we would
have change α to be αζ where ζ ∈ H3(G, k∗), then we would have changed
the obstruction by ζ. In other words:

O3(N , c,H,M,Φ, v, αζ) = O3(N , c,H,M,Φ, v, α)resGH (ζ).

This ends the proof of Proposition 1.2.
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6. The isomorphism condition

In this section we answer the question of when does the C-module cate-
gories M(N ,H,Φ, v, β) and M(N ′,H ′,Φ′, v′, β′) are equivalent.

Assume then that we have an equivalence of C-module categories

F : M(N ,H,Φ, v, β) → M(N ′,H ′,Φ′, v′, β′).

Let us denote these categories by M and M′ respectively. Then F is also
an equivalence of D-module categories. Recall that as D-module categories,
M splits as

⊕

g∈G/H

Cg ⊠D N .

A similar decomposition holds for M′.
By considering these decompositions, it is easy to see that F induces an

equivalence of D-module categories between Cg⊠DN and N ′ for some g ∈ G.
Let us denote the restriction of F to Cg ⊠D N as a functor of D-module
categories by tF . We can reconstruct the tuple (N ′,H ′,Φ′, v′, β′) from tF in
the following way: We have already seen that N ′ is equivalent to Cg ⊠D N
and that the stabilizer subgroup of the category N ′ will be H ′ = gHg−1.

Let us denote by Γ′ the group AutD(N
′). We have a natural isomorphism

ν : Γ → Γ′ given by the formula

ν(t) : N ′ F
−1

→ Cg ⊠D N
1⊠t
→→ Cg ⊠D N

F
→ N ′.

Using the functor tF and the map ν we can see that the map

ρ′ : gHg−1 → Out(Γ′)

which appears in the construction of the second module category is the com-
position

gHg−1 cg
→ H

ρ
→ Out(Γ) → Out(Γ′),

where the last morphism is induced by ν. The map Φ′ which lifts ρ′ will
depend on Φ in a similar fashion. The same holds for the second obstruction
and its solution.

For the third obstruction, the situation is a bit more delicate. Since F
is a functor of C-module categories, we have, for each a ∈ H, a natural
isomorphism between the functors

Cgag−1 ⊠D (Cg ⊠D N )
1⊠F
→ Cgag−1 ⊠D N ′ ·

→ N ′

and

Cgag−1 ⊠D (Cg ⊠D N )
·
→ Cg ⊠D N

F
→ N ′

For any a ∈ H, the choice of the natural isomorphism is unique up to
a scalar. A direct calculation shows that if we change the natural isomor-
phisms by a set of scalars ζa, we will get an equivalence M(N,H,Φ, v, β) →
M(N ′,H ′,Φ′, v′, β′′) where β′′ = β′∂ζ. This is the reason that cohomologous
solutions for the third obstruction will give us equivalent module categories.

In conclusion, we have the following:

Proposition 6.1. Assume that we have an isomorphism F : M(N ,H,Φ, v, β) →
M(N ′,H ′,Φ′, v′, β′) Then there is a g ∈ G such that F will induce an equiva-
lence of D-module categories Cg⊠DN → N ′, and the data (N ′,H ′,Φ′, v′, β′)
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can be reconstructed from tF in the way described above (β′ will be recon-
structable only up to a coboundary) .

Remark 6.2. We do not have any restriction on tF . In other words, given
tF : Cg ⊠D N → N ′ we can always reconstruct the tuple (N ′,H ′,Φ′, v′, β′)
in the way described above.

We would like now to “decompose” the equivalence in the theorem into
several steps. The first ingredient that we need in order to get an equivalence
is an element g ∈ G such that Cg ⊠D N ≡ N ′.

Consider now the case where this ingredient is trivial, that is- g = 1,
N = N ′ and H = H ′. In that case tF is an autoequivalence of the D-module
category N . Let us denote by ψa : Ca⊠DN → N and by ψ′

a : Ca⊠DN → N
the structural equivalences of the two categories (where a ∈ H). Since F is
an equivalence of C-module categories, we see that the following diagram is
commutative:

Ca ⊠D N
ψa //

1⊠tF
��

N

tF
��

Ca ⊠D N
ψ′
a // N

and a direct calculation shows that Φ and Φ′ satisfy the following formula:

Φ′(a)(V ) = tFΦ(a)(t
−1
F V tF )t

−1
F (6.1)

where V is any element in Γ.
Another way to write Equation 6.1 is Φ′ = ctFΦc

−1
tF

, where by ctF we
mean the automorphism of Γ of conjugation by tF . In other words- this
shows that we have some freedom in choosing Φ, and if we change Φ in the
above fashion, we will still get equivalent categories.

Consider now the case where also Φ = Φ′. This means that for every a ∈ H
the element tFΦ(a)(tF )

−1 is central in Γ. A direct calculation shows that
the function r defined by r(a) = tFΦ(a)(tF )

−1 is a one cocycle with values
in Z(Γ), and that v/v′ = r. Notice in particular that by choosing arbitrary
tF ∈ Z(Γ) we see that cohomologous solutions to the second obstruction will
give us equivalent categories. However, we see that more is true, and it might
happen that non cohomologous v and v′ will define equivalent categories.

Last, if the situation is that tF = Φ(a)(tF ) for every a ∈ H, the only
way in which we can alter the tuple (and still get an equivalent category)
(N ,H,Φ, v, β) will be, as we have seen earlier, to change β by a coboundary.

7. Functor categories as equivariantization categories

In this section we shall describe the category of C-functors between the
module categories M(N ,H,Φ, v, β) and M(N ′,H ′,Φ′, v′, β′). For simplicity
we shall denote these categories as M1 and M2 respectively.

Consider the category FunD(M1,M2). This is a k-linear category which
by Theorem 2.16 in [4] is semisimple.

Lemma 7.1. There is a natural G-action FunD(M1,M2) induced by the
structure C-module categories on M1 and M2.
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Proof. There are D-module equivalences ψg : Cg⊠DM1
∼= M1 and φg : Cg⊠D

M2
∼= M2. Let F : M1 → M2 be a D-module morphism, we define Tg ∈

Aut⊗(FunD(M1,M2) to be the following functor M1

ψ−1
g // Cg ⊠D M1

IdCg⊠DF
// Cg ⊠D M2

φg // M2

. The composition of the 2-arrows in the following diagram defines a natural
isomorphism µg1,g2 : Tg1 ◦ Tg2

∼= Tg1g2

M1

ψ−1

g1//

=

��

Cg1 ⊠D M1

ψ−1

g2// Cg1 ⊠D Cg2 ⊠D M1
F //

∼=

��rz mmmmmmmmmmmmmmmmmmmmmmmmmmmm

mmmmmmmmmmmmmmmmmmmmmmmmmmmm

Cg1 ⊠D Cg2 ⊠D M2

φg2 //

∼=

��u} ss
s
s
s
s
s
s
s
s
s
s
s
s
s
s
s
s
s
s

s
s
s
s
s
s
s
s
s
s
s
s
s
s
s
s
s
s
s
s

Cg1 ⊠D M2

φg2 // M2

=

��rz mmmmmmmmmmmmmmmmmmmmmmmmmmmm

mmmmmmmmmmmmmmmmmmmmmmmmmmmm

M1

ψ−1

g1·g2 // Cg1·g2 ⊠D M1
F // Cg1·g2 ⊠D M2

φg1·g2 // M2

�

Since we have a G-action on FunD(M1,M2), we can talk about the equiv-
ariantization FunD(M1,M2)

G. By definition, an object in FunD(M1,M2)
G

is a pair (F, {Tg}g∈G), where Tg : g · F → F are natural equivalences which
satisfy a certain coherence condition (for the exact definition, see for example
[3]). Let F : M1 → M2 be a D-module functor. A structure on C-module
functor on F induces a structure a G-equivariant object, are vica versa.

Let us conclude this discussion by the following lemma:

Lemma 7.2. The category FunC(M1,M2) is equivalent to the equivarianti-
zation FunD(M1,M2)

G of the category FunD(M1,M2) with respect to the
aforementioned G-action.

Remark 7.3. Assume that the ground field k is of characteristic 0. Let M
be an indecomposable C-module category. Although C∗

M , FunC(M,M) is
a fusion category, FunD(M,M) is, in general, only a multifusion category,
because, M may decompose as D-module category. Equivariantization has
only been defined in context of fusion categories, however, the definition in
context of multifusion categories is mutatis mutandis. Notice that is case of
multifusion equivariantization we don’t always have the Rep(G) subcategory
supported on the trivial object.

In the next section we will give an intrinsic description of the functor
categories, as categories of bimodules.

8. An intrinsic description by algebras and modules

The goal of this Section is to explain more concretely the action of the
grading group on indecomposable module categories, the action of the grad-
ing group on AutD(N ), the obstructions and their solutions.

In [1] Ostrik showed that any indecomposable module category over a
fusion category C is equivalent as a module category to the categoryModC−A
for some semisimple indecomposable algebra A in C. In this section we will
realize all the objects described in the previous sections by using algebras
and modules inside C. As before, we assume that C =

⊕

g∈G Cg, we denote

C1 by D and AutD(N ) by Γ.
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8.1. The action of G on indecomposable module categories. Assume
that A is a semisimple indecomposable algebra inside D. Let N =ModD−A
be the category of right A-modules inside D. We denote by ModCg −A the
category of A-modules with support in Cg. We claim the following:

Lemma 8.1. We have an equivalence of D-module categories Cg ⊠D N ≡
ModCg −A.

Proof. We have already seen in Section 2 that we have an equivalence of
C-module categories

C ⊠D N ≡ModC(A)

which is given by X ⊠M 7→ X ⊗M . As a D-modules category, the left
hand category decomposes as

⊕

g∈G Cg ⊠D N and the right hand category

decomposes as
⊕

g∈GModCg−A. It is easy to see that the above equivalence
translates one decomposition into the other, and therefore the functor Cg⊠D

N →ModCg −A given by X ⊠M 7→ X ⊗M is an equivalence of D-module
categories.

�

Next, we understand how we can describe functors by using bimodules.

Lemma 8.2. Let N = ModD − A and N ′ = ModD − A′, and let g ∈ G.
Then every functor F : N → Cg ⊠D N ′ is of the form F (T ) = T ⊗A Y for
some A−A′ bimodule Y with support in Cg, here we identify Cg ⊠D N ′ with
ModCg −A′ as above.

Proof. The proof follows the lines of the remark after Proposition 2.1 of [2].
We simply consider F (A). The multiplication map A ⊗ A → A gives us
a map A ⊗ F (A) → F (A), thus equipping F (A) with a structure of a left
A-module. We now see that F (A) is indeed an A− A′ bimodule. Since the
category N is semisimple the functor F is exact. Since every object in N s
a quotient of an object of the form X ⊗A for some X ∈ C, we see that F is
given by F (T ) = T ⊗A F (A).

�

Remark. Notice that by applying the (2-)functor Cg−1 ⊠D− we see that every
functor Cg ⊠D N ′ → N is given by tensoring with some A′ − A bimodule
with support in Cg−1 .

8.2. The outer action of H on the group AutD(N ). The first two

obstructions. Assume, as in the rest of the paper, that we have a subgroup
H < G and a module category N =ModD −A, and assume that Fh : N ∼=
Ch ⊠D N for every h ∈ H. It follows from Lemma 8.2 that this equivalence
is of the form Fh(M) =M ⊗AAh for some A−A bimodule Ah with support
in Ch. The fact that this functor is an equivalence simply means that the
bimodule Ah is an invertible A − A bimodule. In other words- there is
another A−A bimodule Bh (whose support will necessary be in Ch−1) such
that Ah ⊗A Bh ∼= Bh ⊗A Ah ∼= A. By Lemma 8.2 we can identify the group
Γ = AutD(N ) with the group of isomorphisms classes of invertible A − A
bimodules with support in D.

Denote by Λ the group of isomorphisms classes all invertible A−A bimod-
ules with support in CH . Since every invertible A−A bimodule is supported
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on a single grading component, we have a map p : Λ → H which assigns to
an invertible A−A bimodule the graded component it is supported on. We
thus have a short exact sequence

1 → Γ → Λ → H → 1. (8.1)

Using this sequence, we can understand the outer action ofH on AutD(N ),
and the first and the second obstruction. The outer action is given in the
following way: for h ∈ H, choose an invertible A − A bimodule Ah with
support in Ch. Choose an inverse to Ah and denote it by A−1

h . Then the
action of h ∈ H on some invertible bimodule M with support in D is the
following conjugation:

h ·M = Ah ⊗AM ⊗A A
−1
h .

This action depends on the choice we made of the invertible bimodule Ah.
The first obstruction is the possibility to lift this outer action to a proper

action. In other words, it says that we can choose the Ah’s in such a way
that conjugation by Ah⊗Ah′ is the same as conjugation by Ahh′ , or in other
words, in such a way that for every h, h′ ∈ H, the invertible bimodule

Bh,h′ = Ah ⊗A Ah′ ⊗A A
−1
hh′

will be in the center of Γ (again- we identify Γ with the group of invertible
bimodules with support in D). A solution for the first obstruction will be a
choice of a set of such bimodules Ah.

The second obstruction says that the cocycle (h, h′) 7→ Bh,h′ is trivial in
H2(H,Z(AutD(N )). This simply says that we can change Ah to be Ah⊗ADh

for some Dh ∈ Z(AutD(N )), in such a way that

(Ah ⊗A Dh)⊗A (Ah′ ⊗A Dh′)⊗A (Ahh′ ⊗A Dhh′)
−1 ∼= A

as A-bimodules. A solution for the second obstruction will be a choice of
such a set Dh of bimodules.

It is easier to understand the first and the second obstruction together:
we have one big obstruction- the sequence 8.1 should split, and we need to
choose a splitting. First, if the sequence splits, then we can lift the outer
action into a proper action, and we need to choose such a lifting. Then, the
obstruction to the splitting with the chosen action is given by a two cocycle
with values in the center of Γ. Thus, a solution for both the first and the
second obstruction will be a choice of bimodules Ah for every h ∈ H such
that the support of Ah is in Ch and such that Ah ⊗A Ah′ ∼= Ahh′ for every
h, h′ ∈ H. Following the line of Section 6, we see that we are interested in
splittings only up to conjugation by an element of Γ.

8.3. The third obstruction. Assume then that we have a set of bimodules
Ah as in the end of the previous subsections. We would like to understand
now the third obstruction.

Recall that we are trying to equip N with a structure of a CH -module
category. By Ostrik’s Theorem (see [1]), there is an object N ∈ N such
that A ∼= HomD(N,N) where by HomD we mean the internal Hom of N ,
where we consider N as a D-module category. So far we gave equivalences
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Fh : N → Ch⊠DN . If N were a CH -module category via the choices of these
equivalences, then the internal CH -Hom, Ã = HomCH (N,N) would be

Ã =
⊕

h∈H

Ah.

We thus see that to give on N a structure of a CH -module category is
the same as to give on Ã a structure of an associative algebra. For every
h, h′ ∈ H, choose an isomorphism of A − A bimodules Ah ⊗A Ah′ → Ahh′ .
Notice that since these are invertible A−A bimodules, there is only one such
isomorphism up to a scalar.

Now for every h, h′, h′′ ∈ H, we have two isomorphisms (Ah ⊗A Ah′) ⊗A

Ah′′ → Ahh′h′′ , namely

(Ah ⊗A Ah′)⊗A Ah′′ → Ahh′ ⊗A Ah′′ → Ahh′h′′

and

(Ah ⊗A Ah′)⊗A Ah′′ → Ah ⊗A (Ah′ ⊗A Ah′′) → Ah ⊗A Ah′h′′ → Ahh′h′′ .

This two isomorphisms differ by a scalar b(h, h′, h′′). The function (h, h′, h′′) 7→
b(h, h′, h′′) is a three cocycle which is the third obstruction. A solution to the
third obstruction will thus be a choice of isomorphisms Ah ⊗A Ah′ → Ahh′
which will make Ã an associative algebra. Once we have such a choice, we
can change it by some two cocycle to get another solution.

8.4. Functor categories. We end this section by giving an intrinsic de-
scription of functor categories. Assume that we have two module categories
M1 = M(N ,H,Φ, v, β), and M2 = M(N ′,H ′,Φ′, v′, β′). Let us denote H ′

by K. As we have seen in the previous subsections, if N ∼=ModD −A1 and
N ′ ∼=ModD −B1, then M1

∼=ModC −A and M2
∼=ModC −B, where A is

an algebra of the form ⊕h∈HAh, and a similar description holds for B.
The functor category FunC(M1,M2) is equivalent to the category of A−

B-bimodules in C. Since A and B have a graded structure, we will be able
to say something more concrete on this category.

Let X be an indecomposable A−B-bimodule in C. It is easy to see that
the support of X will be contained inside a double coset of the form HgK
for some g ∈ G. Since the bimodules Ah and Bk are invertible, it is easy to
see that the support will be exactly this double coset.

Consider now the g-component Xg of X. As can easily be seen, this is an
A1 − B1-bimodule. Actually, more is true. Consider the category C ⊠ Cop.
Inside this category we have the algebra

(AB)g = ⊕x∈H∩gKg−1Ax ⊠Bg−1x−1g

with the multiplication defined by the restricting the multiplication from
A ⊠ B ∈ C ⊠ Cop . The category C is a C ⊠ Cop-module category in the
obvious way, and we have a notion of an (AB)g-module inside C.

Lemma 8.3. The category of (AB)g-modules inside C is equivalent to the
category of A−B-bimodules with support in the double coset HgK.

Proof. If X is an A − B-bimodule with support in HgK, then Xg is an
(AB)g-module via restriction of the left A-action and the right B-action.
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Conversely, if V is an (AB)g-module inside C, we can consider the induced
module

(A⊠B)⊗(AB)g V.

This is an A−B-bimodule, and one can see that the two constructions gives
equivalences in both directions.

�

Remark. This is a generalization of Proposition 3.1 of [2], where the same
situation is considered for the special case that C = V ecωG and D = 1.

In conclusion, we have the following

Proposition 8.4. The functor category FunC(M1,M2) is equivalent to the
category of A − B-bimodules. Each such simple bimodule is supported on a
double coset of the form HgK, and the subcategory of bimodules with support
in HgK is equivalent to the category of (AB)g-modules inside C.

9. An example: classification of modules categories over the

Tambara Yamagami fusion categories and dual categories

Our second example will be C = T Y(A,χ, τ), the Tambara Yamagami
fusion categories. Let A be a finite group. Let RA be the fusion ring with
basis A ∪ {m} whose multiplication is given by the following formulas:
g · h = gh, for every g, h ∈ A
g ·m = m · g = m and
m ·m =

∑

g∈A g.

In [7] Tambara and Yamagami classified all fusion categories with the above
fusion ring. They showed that if there is a fusion category C whose fusion
ring is RA then A must be abelian. They also showed that for a given A
such fusion categories can be parametrized (up to equivalence) by pairs (χ, τ)
where χ : A×A→ k∗ is a nondegenerate symmetric bicharacter, and τ is a
square root (either positive or negative) of 1

|A| . We denote the corresponding

fusion category by T Y(A,χ, τ).
The category T Y(A,χ, τ) is naturally graded by Z2. The trivial compo-

nent is V ecA and the nontrivial component, which we shall denote by M,
has one simple object m. M with its left(right) module structure over the
trivial component is rank one, hence, the associativity constraints of V ecA
are trivial. In [5] the authors described how the Tambara Yamagami fusion
categories corresponds to an extension data of V ecA by the group Z2. We
shall explain now the classification of module categories over T Y(A,χ, τ)
given by our construction.

9.1. Getting started. We begin by recalling how module categories over
V ecA look like. Since A is abelian and the associativity constraints are triv-
ial, module categories over V ecA are parametrized (up to equivalence) by
pairs (H,ψ) where H < A and ψ ∈ H2(H, k∗). We can think of the corre-
sponding module category M(H,ψ) as the category of right kψH-modules
inside V ecA.

The first two parameters for a module category over T Y(A,χ, τ) are an
indecomposable module category M(H,ψ) over V ecA and a subgroup of Z2.
The group Z2 has only two subgroups- itself and the trivial subgroup. If
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we take the trivial subgroup, then all other parameters and obstructions
are trivial. We thus get in this way all module categories of the form
IndCV ecA(M(H,ψ)). By Section 6 it is easy to see that two such distinct

module categories M(H,ψ) and M(H ′, ψ′) will be equivalent if and only if
σ · M(H,ψ) ≡ M(H ′, ψ′), where we denote by σ the nontrivial element of
the grading group Z2.

If we have a module category whose parametrization begins with (M(H,ψ),Z2, . . .)
then σ ·M(H,ψ) ≡ M(H,ψ). In order to classify module categories over C
we thus need to understand what is σ·M(H,ψ) and when does σ·M(H,ψ) ≡
M(H,ψ). We shall do so by using the intrinsic description from Section 8.
We shall also use the intrinsic description in order to understand the ob-
structions and their solutions.

9.2. The action of σ on indecomposable module categories and rep-

resentations of twisted abelian group algebras. Let N = M(H,ψ) =
ModV ecAk

ψH. As explained in Section 8, the module category M⊠V ecA N
can be described as the category of right kψH-modules with support in the
category M, here M is the nontrivial grading component of T Y(A,χ, τ). A
kψH-module with support in M is of the form m ⊗ V where V is a vector
space which is a kψH-module in the usual sense. So the category M⊠V ecAN
is equivalent, as an abelian category, to the category of kψH-modules in the
usual sense.

We shall describe now a parametrization of the simple kψH-modules. Let
kψH = ⊕h∈HUh. The multiplication in kψH is given by the rule UhUk =
ψ(h, k)Uhk. Denote by R = Rad(ψ) the subgroup of all h ∈ H such that Uh
is central in kψH.

As the field k is algebraically closed of characteristic zero and H is abelian,
the data that stored in the cocycle ψ is simply the way in which the Uh’s
commute. More precisely- define the following alternating form on H:

ξψ(a, b) = ψ(a, b)/ψ(b, a).

It turns out (see [6]) that the assignment ψ 7→ ξψ depends only on the
cohomology class of ψ, and that it gives a bijection between H2(H, k∗) and
the set of all alternating forms on H. The elements of R can be described as
those h ∈ H such that ξψ(h,−) = 1. As can easily be seen, ξψ is the inflation
of an alternating form on H/R. It follows easily that ψ is the inflation of a
two cocycle ψ̄ on H/R.

It can also be seen that ξψ̄ is nondegenerate on H/R and that kψ̄H/R ∼=

Mn(k) where n =
√

|H/R|. It follows that kψ̄H/R has only one simple mod-
ule (up to isomorphism) which we shall denote by V1 (i.e, ψ̄ is non degenerate
on H/R). By inflation, V1 is also a kψH-module. Let ζ be a character of H,
and let kζ be the corresponding one dimensional representation of H. Then
kζ ⊗ V1 is also a simple module of kψH, where H acts diagonally. It turns
out that these are all the simple modules of kψH, and that Vζ1

∼= Vζ2 if and
only if the restrictions of ζ1 and ζ2 to R coincide.

The simple modules of kψH are thus parametrized by the characters of R
(we use here the fact that the restriction from the character group of H to
that of R is onto). For every character ζ of R, we denote by Vζ the unique
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simple module of kψH upon which R acts via the character ζ. So the simple
kψH-modules with support in M are of the form m⊗ Vζ .

Let us describe Va ⊗ (m ⊗ Vζ). It can easily be seen that this is also a
simple module, so we just need to understand via which character R acts on
it. Using the associativity constraints in T Y(A,χ, τ), we see that for v ∈ Vζ
and r ∈ R we have

(Va ⊗m⊗ v) · Ur = χ(a, r)Va ⊗ (m⊗ v · Ur) = χ(a, r)ζ(r)Va ⊗m⊗ v.

This means that Va⊗ (m⊗ Vζ) = m⊗ Vζχ(a,−). So the stabilizer of Vζ is the

subgroup of all a ∈ A such that χ(a, r) = 1 for all r ∈ R, i.e., it is R⊥ (by
⊥ we mean with respect to χ. It follows that M⊠V ecA N is equivalent to a

category of the form M(R⊥, ψ̃). Where ψ̃ is some two cocycle.

Let us figure out ψ̃. If a ∈ R⊥, then the restriction of χ(a,−) to H
is a character which vanishes on R. Therefore, there is a unique (up to
multiplication by an element of R) element ta ∈ H such that ξψ(ta,−) =
χ(a,−). It follows that there is an isomorphism ra : Va⊗ (m⊗V1) → m⊗V1
which is given by the formula Va ⊗ (m⊗ v) 7→ m⊗ (v · Uta). Now for every

a, b ∈ R⊥, ψ̃(a, b) should make the following diagram commute:

(Va ⊗ Vb)⊗ (m⊗ V1)

rab
��

// Va ⊗ (Vb ⊗ (m⊗ V1))
rb // Va ⊗ (m⊗ V1)

ra

��
m⊗ V1

ψ̃(a,b) // m⊗ V1

An easy calculation shows that this means that ψ̃(a, b) = ψ(tb, ta). We
thus have the following result:

Lemma 9.1. We have σ ·M(H,ψ) ≡ M(R⊥, ψ̃) where R is the radical of ψ

and ψ̃ is described above.

Suppose now that σ · M(H,ψ) ≡ M(H,ψ). This means that Rad(ψ) =
H⊥. The bicharacter χ defines by restriction a pairing on H × H, and
by dividing out by H⊥, we get a nondegenerate symmetric bicharacter
χ̄ : H/H⊥ × H/H⊥ → k∗. It is easy to see that the assignment h 7→ th
that was described above induces an automorphism s of H/H⊥ which satis-

fies χ̄(a, b) = ξψ̄(s(a), b). The fact that ψ̃ = ψ means that ξψ̄(s(b), s(a)) =

ξψ̄(a, b). Equivalently, this means that χ̄(a, b) = ξψ̄(s(a), b) = ξψ̄(s(b), s
2(a)) =

χ̄(b, s2(a)) and since χ̄ is nondegenerate, this is equivalent to the fact that
s2 = Id.

In summary:

Lemma 9.2. We have σ · M(H,ψ) ≡ M(H,ψ) if and only if the following
two conditions hold:

1.H⊥ < H.
2.There is an automorphism s of order 2 of H/H⊥ such that (a, b) 7→

χ̄(s(a), b) is an alternating form. The inflation of this alternating form to
H will be ξψ.
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9.3. The vanishing of the first obstruction and invertible bimod-

ules with support in V ecA. Assume now that we have a module category
M(H,ψ) such that σ ·M(H,ψ) ≡ M(H,ψ). Let s be an automorphism as
in Lemma 9.2. In order to explain the first and the second obstruction for
furnishing a T Y(A,χ, τ)-module category structure on M(H,ψ), we need
to consider the group of invertible kψH-bimodules in C. As we have seen
in Section 8, such an invertible bimodule with support in V ecA (M) corre-
sponds to a functor equivalence F : N → N (F : M ⊠V ecA N → N ). The
functor is given by tensoring with the invertible bimodule.

Let us first classify invertible kψH-bimodules with support in V ecA. Their
description was given in Ostrik’s paper [2]. We recall it briefly.

If a ∈ A and λ is a character on H, we define the bimodule Ma,λ to be

⊕h∈HVah,

where the action of kψH is given by

Uh · Vah′ · Uh′′ = ψ(h, h′)λ(h)ψ(hh′ , h′′)Vahh′h′′ .

Choose now coset representatives a1, . . . , ar of H in A. Proposition 3.1 of
[2] tells us that the modules Mai,λ where i = 1, . . . r and λ ∈ Ĥ are all

the invertible kψH bimodules, and each invertible bimodule with support in
V ecA appears in this list exactly once.

By a more careful analysis we can get to the following description of the
group of invertible bimodules: we have a homomorphism ξ : H → Ĥ given
by h 7→ ξψ(h,−). Then the group E of all invertible bimodules with support
in V ecA can be described as the pushout which appears in the following
diagram:

H

ξ
��

// A

��
Ĥ // E

The group E is thus also isomorphic to the group AutV ecA(M(H,ψ)).
Notice that the group E abelian. This means that Aut(E) = Out(E) and
the first obstruction vanishes; to give a homomorphism Z2 → Out(E) is the
same thing as to give an automorphism Z2 → Aut(E). This also means that
we do not have a choice of a “solution” in here, and that we have a proper,
not outer, action of Z2 on E from the beginning.

9.4. The group of all invertible bimodules. Since M(H,ψ) is σ-invariant,

we see by Section 8 that the group Ẽ of (isomorphism classes of) invertible
kψH bimodules in C is given as an extension

1 → E → Ẽ → Z2 → 1.

Moreover, we have seen that the second obstruction is the cohomology class
of this extension in H2(Z2, E), and that a solution to the second obstruction
is a splitting of this sequence, up to conjugation by an element of E.

Now suppose that we have an invertible kψH bimodule X with support in
M. Then any other invertible kψH bimodule with support in M will be of
the form X ⊗kψH e, where e ∈ E. The action of σ on E will be conjugation
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by X (as we have seen earlier, this is well defined and not depend on X as
the group E is abelian), and the second obstruction will be the possibility to
choose X in such a way that X ⊗kψH X ∼= kψH (that is- X2 is the identity
in the group of invertible bimodules).

We begin by choosing X explicitly. It should be of the form X = m⊗ V ,
where V is both a left and a right kψH bimodule. The interaction between
the left structure and the right structure is given by the formula

(Uh · v) · Uh′ = χ(h, h′)Uh · (v · Uh′). (9.1)

The fact that X is invertible implies that V has to be simple as a left and
as a right kψH-module. Take V to be V1 from Subsection 9.2. we need to
define on V a structure of a left kψH-module. We know that

(v · Uth) · Uh′ = χ(h, h′)(v · Uh′)Uth .

By Equation 9.1 and by the simplicity of V , we see that this means that we
must have Uh · v = ν(h)v · Uth for some set of scalars {ν(h)}h∈H . An easy
calculation shows that these scalars should satisfy the equation

ν(ab)ψ(a, b) = ν(a)ν(b)ψ(tb, ta)

for every a, b ∈ H. In other words-

∂ν(a, b) = ψ(a, b)/ψ(tb, ta). (9.2)

Since N is σ-invariant, we do know that the cocycles ψ(a, b) and ψ(tb, ta)
are cohomologous, and therefore such a function ν exists. Notice that we
have some freedom in choosing ν- we can change it to be νη where η is some
character on H. It is easy to see by this construction that the invertible kψH
bimodules are parametrized by pairs (φ, ν) where φ is a character of H⊥ by
which it acts from the right on the module, and ν is a function which satisfy
the equation

∂ν(a, b) = ψ(a, b)/ψ(ta, tb)φ(tabt
−1
a t−1

b ).

When φ = 1, this equation is exactly Equation 9.2. We denote the corre-
sponding invertible bimodule by X(φ, ν). It is easy to see that the restriction
of ν to H⊥ is a character. We fix an invertible bimodule X for which φ = 1,
and for which the restriction of ν to H⊥ is the trivial character (we use
here the fact that we can alter ν by a character of H and the fact that any
character of H⊥ can be extended to a character of H).

9.5. The action of σ on E, and the second obstruction. We would like
to understand now what is the bimodule σ(Uai,λ). We have the equation

X ⊗kψH Uai,λ = σ(Uai,λ)⊗kψH X.

A similar calculation to the calculations we had so far reveals the fact that if
X is given by (1, ν) then Uai,λ⊗kψH X is given by (χ(ai,−), νλχ−1(ai, t−)),
while X ⊗kψH Uai,λ is given by (λ−1, νχ−1(ai,−)λ(t(−))). From these two
formulas we can derive an explicit formula for the action of σ on E. It follows
that if σ(Uai,λ) = Uaj ,µ then j is the unique index which satisfies λ−1 =

χ(aj ,−) on H⊥, and µ is given by the formula µ = χ−1(ai,−)λ(t−)χ(ai, t−).
Let us find now the second obstruction. For this, we just need to calculate

X ⊗kψH X. Consider first X ⊗X. It is isomorphic to V ⊗ V ⊗
⊕

a∈A(Va)

Let us divide this out first by the action of H⊥. If h ∈ H⊥ we see that
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we divide V ⊗ V ⊗ Va by v ⊗ w − χ(a, h)v ⊗ w. If a /∈ H then there is an
h ∈ H⊥ such that χ(a, h) 6= 1. Therefore the support of X ⊗kψH X will be
V ecH . Since V is simple as a left and as a right kψH-module, it is easy to
see that V ⊗kψH V is one dimensional. We thus see that X ⊗kψH X ∼= U1,λ

for some character λ. A direct calculation shows that λ(h) = ν(h)ν(th).
This means that the second obstruction is the character λ, as an element of
H2(Z2, E) = Eσ/im(1 + σ) (recall that Ĥ is a subgroup of E).

Suppose that the second obstruction does vanish, and suppose that we
have a solution X(ω, η). In other words X(ω, η) ⊗kψH X(ω, η) ∼= kψH. A
direct calculation similar to the one we had above shows that the restriction
of ω to H⊥ coincide with η. Recall from Section 8 that if Uai,λ is any invert-

ible kψH-bimodule with support in V ecA, then this solution is equivalent
to the solution Uai,λ ⊗kψH X(ω, η) ⊗kψH U−1

ai,λ
. A direct calculation shows

that U1,η ⊗kψH X(ω, η) ⊗kψH U−1
1,η = X(ω′, 1) where ω(H⊥) = 1. It follows

that we can assume without loss of generality that the solution is of the form
X(ω, 1).

As we have seen above, X(ω, 1)⊗2 ∼= kψH if and only if ω(h)ω(th) = 1
for every h ∈ H. So the second obstruction vanishes if and only if there is a
function ν which satisfies equations 9.2 and also the equation

ν(h)ν(th) = 1 (9.3)

for every h ∈ H. It might happen, however, that we will have two different
solutions ν and ν ′, that will be equivalent- that is, there will be an invertible
kψH bimodule Uai,λ such that Uai,λ ⊗kψH X(1, ν)⊗kψH U−1

ai,λ
∼= X(1, ν ′). A

careful analysis shows that this happen if and only if the following condition
holds: there is a character η on H which vanishes on H⊥, such that

ν(h)/ν ′(h) = η(h)/η(th). (9.4)

In conclusion- the second obstruction is the existence of a function ν which
satisfy Equations 9.2 and 9.3. and two such functions ν and ν ′ give equivalent
solutions if and only if there is a character η of H which vanishes on H⊥ and
which satisfies Equation 9.4.

9.6. The third obstruction. As explained in Section 8, after solving the
second obstruction, we can think about the third obstruction in the follow-
ing way: we have an invertible kψH bimodule X with support in M, and
X ⊗kψH X ∼= kψH. We would like to turn kψH ⊕X into an algebra. The
only obstruction for that (and this is the third obstruction) is that the multi-
plication on X⊗X⊗X might be associative only up to a scalar. This scalar
is the third obstruction, considered as an element of H3(Z2, k

∗) = {1,−1}.
Following the work of Tambara (see [6]), we see that this sign is the sign of
the following expression

Σh∈Hν(h)τ.

If the third obstruction vanishes, we only have one possible solution, as
H2(Z2, k

∗) = 1, since we have assumed that k is algebraically closed.

9.7. Dual categories. In this subsection we shall give a general description
of the dual categories of T Y(A,χ, τ).
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We begin with module categories of the form L = M(N , 1,Φ, v, β). In
this case, L ∼= ModC − kψH for some H < A and some two cocycle ψ. We
have described above the category of kψH-bimodules with support in V ecA.
We have seen that it will be a pointed category with an abelian group of
invertible objects, which we have described in Subsection 9.3. Consider now
the kψH-bimodules with support in M. Following previous calculations, we
see that such a bimodule is given by a vector space V which is both a left
and a right kψH-module, and the interaction between the left and the right
structure is given by the formula

(Uh · v) · Uh′ = χ(h, h′)Uh · (v · Uh′). (9.5)

We can think of such modules as kθ[H×H]-modules, where θ is a suitable two
cocycle. By this point of view, the isomorphism classes of indecomposable
modules is in bijection with the characters of Rad(θ) < H × H. Let us
denote the indecomposable module which corresponds to a character ζ of
Rad(θ) by Vζ . A routine and tedious calculation shows us that the group of

invertible kψH-bimodules with support in V ecA acts on the modules with
support in M via the following formulas:

Uai,λ ⊗B Vζ = V(λ,χ(ai,−))ζ

Vζ ⊗B Uai,λ = V(χ−1(ai,−),λ−1)ζ

We know that the dual category is graded by Z2 in the obvious sense. We
use this fact in order to conclude the following multiplication formula:

Vζ ⊗B Vη =
⊕

(ai,λ)

Uai,λ

where by t∗(η) we mean the composition of η with the map H×H → H×H
given by (h1, h2) 7→ (h2, h1). Notice that by the analysis done in Section 8
and by the observation that the group of invertible bimodules with support
in V ecA acts transitively on the set {Vζ}, we see that the dual is pointed if
and only if the category L is σ-invariant.

We consider now module categories of the second type. By this we mean
categories of the form L = M(N , 〈σ〉,Φ, v, β). Assume that L = Mod −
V ecAM(H,ψ) over V ecA. Then σ(H,ψ) = (H,ψ) and we have an action
of σ on the abelian group E of invertible bimodules with support in V ecA.
We have an equivalence of fusion categories (V ecA)

∗
L
∼= V ecωE for some three

cocycle ω ∈ H3(E, k∗)
We have seen in Section 7 that the dual (C)∗L will be the equivariantiza-

tion of this category with respect to the action of Z2. If, for example, we
would have known that ω = 1, then this equivariantization would have been
equivalent to the representation category of the group Z2⋉ Ê In general, the
description of this category is not much harder.

We conclude by observing that T Y(A,χ, τ) is group theoretical if and
only if there is a pair (H,ψ) such that σ(H,ψ) = (H,ψ). This gives an
alternative proof of the fact that T Y(A,χ, τ) is group theoretical if and only
if the metric group (A,χ) has a Lagrangian subgroup[6, Corollary 4.9].
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MODULE CATEGORIES OVER GRADED FUSION CATEGORIES

EHUD MEIR AND EVGENY MUSICANTOV

Abstract. Let C be a fusion category which is an extension of a fu-
sion category D by a finite group G. We classify module categories
over C in terms of module categories over D and the extension data
(c,M, α) of C. We also describe functor categories over C (and in
particular the dual categories of C). We use this in order to classify
module categories over the Tambara Yamagami fusion categories,
and their duals.

1. Introduction

Let C be a fusion category. We say that C is an extension of the fusion category
D by a finite group G if C is faithfully graded by the group G in such a way that
Ce = D. In [4] Etingof et. al. classified extension of a given fusion category D
by a given finite group G. Their classification is given by a triple (c,M, α), where
c : G→ Pic(D) is a homomorphism, M belongs to a torsor over H2(G, inv(Z(D))),
and α belongs to a torsor over H3(G, k∗). The group Pic(D) is the group of
invertible D-bimodules (up to equivalence), and the group inv(Z(D)) is the group
of (isomorphism classes of) invertible objects in the center Z(D) of D.

Let us recall briefly the construction from [4]. Suppose that we are given a clas-
sification data (c,M, α). The corresponding category C will be

⊕

g∈G c(g) as a D-

bimodule category. If we choose arbitrary isomorphisms c(g)⊠Dc(h) → c(gh) for the
tensor product in C, the multiplication will not necessarily be associative. This non
associativity is encoded in a cohomological obstruction O3(c) ∈ Z3(G, inv(Z(D))).
The element M belongs to C2(G, inv(Z(D))), and should satisfy ∂M = O3(c)
(that is- it should be a “solution” to the obstruction O3(c)). If we change M by a
coboundary, we get an equivalent solution. Therefore, the choice of M is equivalent
to choosing an element from a torsor over H2(G, inv(Z(D))). Given c and M , we
still have one more obstruction in order to furnish from C a fusion category. This
obstruction is the commutativity of the pentagon diagram, and is given by a four
cocycle O4(c,M) ∈ Z4(G, k∗). The element α belongs to C3(G, k∗), and should
satisfy ∂α = O4(c,M). We think of α as a solution to the obstruction O4(c,M).
Again, if we change α by a coboundary, we will get an equivalent solution. There-
fore, the choice of α can be seen as a choice from a torsor over H3(G, k∗).

We shall write C = D(G, c,M, α) to indicate the fact that C is an extension of D
by G given by the extension data (c,M, α), and we shall assume from now on that
C = D(G, c,M, α).

In this paper we shall classify module categories over C in terms of module
categories over D and the extension data (C,M, α).

Our classification of module categories will follow the lines of the classification of
[4]. We will begin by proving the following structure theorem for module categories
over C.

1
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Theorem 1. Let L be an indecomposable module category over C. There is a
subgroup H < G, and an indecomposable CH =

⊕

a∈H Ca module category N which

remains indecomposable over D such that L ∼= IndCCH (N ) , C ⊠CH N .

This proposition enables us to reduce the classification of C-module categories to
the classification of CH -module categories which remains indecomposable over D,
where H varies over subgroups of G.

In order to classify such categories we will go, in some sense, the other way
around. We will begin with an indecomposable D-module category N , and we will
ask how can we equip N with a structure of a CH module category.

As in the classification in [4], the answer will also be based upon choosing solu-
tions to certain obstruction (in case it is possible). We will begin with the obser-
vation, in Section 3, that we have a natural action of G on the set of (equivalence
classes of) indecomposable D-module categories. This action is given by the fol-
lowing formula

g · N = Cg ⊠D N .

If N has a structure of a CH -module category, then the action of CH on N will
give an equivalence of D-module categories h · N ∼= N for every h ∈ H . In other
words- N will be H-invariant. We may think of the fact that N should be H-
invariant as the “zeroth obstruction” we have in order to equip N with a structure
of a CH-module category.

In case N is H-invariant, we choose equivalences ψa : Ca ⊠D N → N for every
a ∈ H . We would like these equivalences to give us a structure of a CH -module
category on N . As one might expect, not every choice of equivalences will do that.
If N has a structure of a CH-module category, we will see in Section 4 that we
have a natural action of H on the group Γ = AutD(N ). In case we only know that
N is H-invariant, we only have an outer action of H on Γ (i.e. a homomorphism
ρ : H → Out(Γ)). The first obstruction will thus be the possibility to lift this outer
action to a proper action.

Once we overcome this obstruction (and choose a lifting Φ for the outer action),
our second obstruction will be the fact that the two functors

F1, F2 : Ca ⊠D Cb ⊠D ⊠N → N

defined by

F1(X ⊠ Y ⊠N) = (X ⊗ Y )⊗N

and

F2(X ⊠ Y ⊠N) = X ⊗ (Y ⊗N)

should be isomorphic. We will see that this obstruction is given by a certain two
cocycle O2(N , c,H,M,Φ) ∈ Z2(H,Z(AutD(N ))). A solution for this obstruction
is an element v ∈ C1(H,Z(AutD(N ))) that should satisfy ∂v = O2(N , c,H,M,Φ).

Our last obstruction will be the fact that the above functors should be not
only isomorphic, but they should be isomorphic in a way which will make the
pentagon diagram commutative. This obstruction is encoded by a three cocycle
O3(N , c,H,M,Φ, v, α) ∈ Z3(H, k∗). A solution β for this obstruction will be an
element of C2(H, k∗) such that ∂β = O3(N , c,H,M,Φ, v, α).

We can summarize our main result in the following theorem:

Theorem 2. An indecomposable module category over C is given by a tuple (N , H,Φ, v, β),
where N is an indecomposable module category over D, H is a subgroup of G which
acts trivially on N , Φ : H → Aut(AutD(N )) is a homomorphism, v belongs to a
torsor over H1(H,Z(AutD(N ))), and β belongs to a torsor over H2(H, k∗).
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We shall denote the indecomposable module category which corresponds to the
tuple (N , H,Φ, v, β) by M(N , H,Φ, v, β). In order to classify module categories,
we need to give not only a list of all indecomposable module categories, but also
to explain when does two elements in the list define equivalent module categories.
We will see in Section 6 that if M(N , H,Φ, v, β) is any indecomposable module
category, g ∈ G is an arbitrary element and F : Cg ⊠D N ≡ N ′ is an equivalence
of D-module categories (where N ′ is another indecomposable D-module category),
then F gives rise to a tuple (N ′, gHg−1,Φ′, v′, β′) which defines an equivalent C-
module category. Our second main result is the following:

Theorem 3. Two tuples (N , H,Φ, v, β) and (N ′, H ′,Φ′, v′, β′) determine equiva-
lent C-module categories if and only if the second tuple is defined by the first tuple
and by some equivalence F as above.

We shall prove Theorem 3 in Section 6. We will also decompose this condition
into a few simpler ones: we will see, for example, by considering the case g = 1,
that we can change Φ to be tΦt−1, where t is any conjugation automorphism of
AutD(N ).

In Section 7 we will describe the category of functors FunC(N ,M) where N and
M are two module categories over C. We will prove a Mackey type decomposition
theorem, and we will also see that we can view this category as the equivariantiza-
tion of the category FunD(N ,M) with respect to an action of G. We will also be
able to prove the following criterion of C to be group theoretical: C is a group theo-
retical if and only if there is a pointed D-module category N (i.e., D∗

N is pointed),
stable under the G-action, i.e., for every g ∈ G, Cg ⊠D N ∼= N as D-module cat-
egories. We shall also explain why this is a reformulation of the criterion which
appears in [5].

A theorem of Ostrik says that any indecomposable module category over a fusion
category D is equivalent to a category of the form ModD − A, of right A-modules
in the category D, where A is some semisimple indecomposable algebra in the
category D. In other words- any module category has a description by objects
which lie inside the fusion category D. In Section 8 we will explain how we can
understand the obstructions and their solutions, and also the functor categories,
by intrinsic description; that is- by considering algebras and modules inside the
categories D and C.

This description will be much more convenient for calculations. It will also
enables us to view the first and the second obstruction in a unified way. Indeed, in
Section 8 we will show that we have a natural short exact sequence

1 → Γ → Λ → H → 1

and that a solution for the first two obstructions is equivalent to a choice of a
splitting of this sequence (and therefore, we can solve the first two obstructions if
and only if this sequence splits). We will also show, following the results of Section
8, that two splittings which differ by conjugation by an element of Γ will give us
equivalent module categories.

In Section 9 we shall give a detailed example. We will consider the Tambara
Yamagami fusion categories, C = T Y(A,χ, τ). In this case C is an extension of the
category V ecA, where A is an abelian group, by the group Z2.

Remark. During the final stages of the writing of this paper it came to our attention
that Cesar Galindo is working on a paper with similar results. We would like to
remark that our results and his were obtained independently.
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2. Preliminaries

In this section, C will be a general fusion category and D a fusion subcategory
of C. We recall some basic facts about module categories over C and D. For a more
detailed discussion on these notions, we refer the reader to [7] and to [3]. Let N
be a module category over C. If X,Y ∈ ObN , then the internal hom of X and Y
is the unique object of C which satisfies the formula

HomC(W,HomC(X,Y )) = HomN (W ⊗X,Y )

for every W ∈ ObC. For every X ∈ ObN the object HomC(X,X) has a canonical
algebra structure. We say that X generates N (over C) if N is the smallest sub
C-module-category of N which contains X . For every algebra A in C, modC − A,
the category of right A-modules in C, has a structure of a left C-module category.

A theorem of Ostrik says that all module categories are of this form:

Theorem 4. (see [7]) Let N be a module category, and let X be a generator of N
over C. We have an equivalence of C-module categories N ∼= ModC −Hom(X,X)
given by F (Y ) = Hom(X,Y ).

Next, we recall the definition of the induced module category. If N is a D-
module category, IndCD(N ) is a module category over C which satisfies Frobenius
reciprocity. This means that for every C-module category R we have that

FunC(Ind
C
D(N ),R) ∼= FunD(N ,R).

The next lemma proves that the induced module category always exists. It will
also gives us some idea about how the induced module category “looks like”.

Lemma 5. Suppose that N ∼= modD −A for some algebra A ∈ ObD. Then A can
also be considered as an algebra in C, and IndCD(N ) ∼= modC −A.

Proof. Let us prove that Frobenius reciprocity holds. For this, we first need to
represent R in an appropriate way. We choose a generator X of R over D. It is
easy to see that X is also a generator over C. Then, by Ostrik’s Theorem we have
that R ∼= modC − HomC(X,X) over C, and R ∼= modD − HomD(X,X) over D.
If we denote HomC(X,X) by B, then it is easy to see by the definition of Hom
that HomD(X,X) ∼= BD, where BD is the largest subobject of B which is also an
object of D (since D is a fusion subcategory of C, this is also a subalgebra of B). By
another theorem of Ostrik (see [7]), we know that FunC(modC − A,modC − B) ∼=
bimodC − A − B. Using the theorem of Ostrik again, we see that FunD(N ,R) ∼=
bimodD(A−BD). One can verify that the functor which sends an A−BD bimodule
Z in D to Z ⊗BD

B gives an equivalence between the two categories. �

Remark 6. The fact that the induction functor is an equivalence of categories arise
from the fact that for such a B, the equivalence between the categories modD−BD

and modC −B is given by X 7→ X ⊗BD
B.

One can show that the induced module category is also equivalent to C ⊠D N .

In particular, we have the following:

Corollary 7. Let C be a fusion category and let D be a fusion subcategory of C. Let
N be a module category over C. Suppose that X is a generator of N over C, and
that the algebra A = Hom(X,X) is supported on D. Then N ∼= IndCD(modD −A).

3. Decomposition of the module category over the trivial

component subcategory. The zeroth obstruction

We begin by considering the action of G on D-module categories. For every g ∈
G, Cg is an invertible D-bimodule category. Therefore, if N is an indecomposable
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D-module category, the category Cg ⊠D N is also indecomposable. It is easy to
see that we get in this way an action of G on the set of (equivalence classes of)
indecomposable D-module categories. Let now L be an indecomposable C-module
category. We can consider L also as a module category over D. We claim the
following:

Lemma 8. As a D-module category, L is G-invariant.

Remark 9. For this lemma, we do not need to assume that L is indecomposable.

Proof. We have the following equivalences of D-module categories

Cg ⊠D L ∼= Cg ⊠D (C ⊠C L) ∼=

(Cg ⊠D C)⊠C L ∼= (Cg ⊠D ⊕a∈GCa)⊠C L ∼=

(⊕a∈GCga)⊠C L ∼= C ⊠C L ∼= L.

This proves the claim. �

If H is a subgroup of G, we have the subcategory CH =
⊕

h∈H Ch of C, which is
an extension of D by H . We claim the following:

Proposition 10. There is a subgroup H < G, and an indecomposable CH module
category N which remains indecomposable over D such that L ≡ IndCCH (N ).

Proof. Suppose that L decomposes over D as

L =

n
⊕

i=1

Li.

For every g ∈ G, we have seen that the action functor defines an equivalence of
categories Cg ⊠D L ∼= L. Since

Cg ⊠D L ∼=

n
⊕

i=1

Cg ⊠D Li,

we see that G permutes the index set {1, . . . , n}. This action is transitive, as oth-
erwise L would not have been indecomposable over C. Let H < G be the stabilizer
of L1. Then N = L1 is a CH-module category which remains indecomposable over
D. Let X ∈ ObL1 be a generator of L over C (any nonzero object would be a
generator, as L is indecomposable over C). By the fact that the stabilizer of L1 is
H , it is easy to see that HomC(X,X) is contained in CH . The rest of the lemma
now follows from corollary 7. �

So in order to classify indecomposable module categories over C, we need to clas-
sify, for every H < G, the indecomposable module categories over CH which remain
indecomposable over D. For every indecomposable module category L over C, we
have attached a subgroup H of G and an indecomposable CH module category L1

which remains indecomposable over D. The subgroup H and the module category
L1 will be the first two components of the tuple which corresponds to L. Notice
that we could have chosen any conjugate of H as well.

4. The first two obstructions

Let L, N = L1 and H be as in the previous section. For every a ∈ H we have an
equivalence of D-module categories ψa : Ca⊠DN ∼= N given by the action of CH on
N . Suppose on the other hand that we are given an H-invariant indecomposable
module category N over D. Let us fix a family of equivalences {ψa}a∈H , where
ψa : Ca ⊠ N → N . Let us see when does this family comes from an action of CH
on N .
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We know that the two functors

CH ⊠ CH ⊠N
m⊠1N→ CH ⊠N

·
→ N

and

CH ⊠ CH ⊠N
1CH⊠(·)
→ CH ⊠N

·
→ N

should be isomorphic.
Since the action of CH on N is given by the action of D together with the ψa’s,

this condition translates to the fact that for every a, b ∈ H the two functors

Ca ⊠D Cb ⊠D N
Ma,b⊠1N

→ Cab ⊠D N
ψab→ N

and

Ca ⊠D Cb ⊠D N
1Ca⊠ψb→ Ca ⊠D N

ψa
→ N

should be isomorphic. We can express this condition in the following equivalent
way- for every a, b ∈ H , the autoequivalence of N as a D-module category

Ya,b = N
ψ−1

a→ Ca ⊠D N
1Ca⊠ψ

−1

b→ Ca ⊠D Cb ⊠D N

Ma,b⊠1N
→ Cab ⊠D N

ψ−1

ab→ N

should be isomorphic to the identity autoequivalence. We shall decompose this
condition into two simpler ones.

Consider the group Γ = AutD(N ), where by AutD we mean the group of D-
autoequivalences (up to isomorphism) of N . For a ∈ H and F ∈ Γ define a ·F ∈ Γ
as the composition

N
ψ−1

a→ Ca ⊠D N
1Ca⊠F→ Ca ⊠D N

ψa
→ N .

We get a map Φ : H → Aut(Γ) given by Φ(g)(F ) = h · F . This map depends on
the choice of the ψa’s and is not necessary a group homomorphism. However, the
following equation does hold for every a, b ∈ H :

Φ(a)Φ(b) = Φ(ab)CYa,b , (4.1)

where we write Cx for conjugation by x ∈ Γ.
Notice that ψa is determined up to composition with an element in Γ, and

that by changing ψa to be ψ′
a = γψa, for γ ∈ Γ, we change Φ(a) to be Φ(a)cγ ,

where by cγ we mean conjugation by γ. Equation 4.1 shows that the composition
ρ = πΦ, where π is the quotient map π : Aut(Γ) → Out(Γ) does give a group
homomorphism. Notice that by the observation above, ρ does not depend on the
choice of the ψa’s, but only on c, N and H . We have the following

Lemma 11. Let N be H-invariant D-module category. There is a well defined
group homomorphism ρ : H → Out(Γ). If the ψa’s arise from an action of CH on
N , then the map Φ described above is a group homomorphism.

Proof. This follows from the fact that by the discussion above, if the ψa’s arise from
an action of CH on N , then Ya,b is trivial for every a, b ∈ H , and by Equation 4.1
we see that Φ is a group homomorphism. �

So c,N and H determines a homomorphism ρ : H → Out(Γ). We thus see that
in order to give N a structure of a CH -module category, we need to give a lifting
of ρ to a homomorphism to Aut(Γ). The first obstruction is thus the possibility to
lift ρ in such a way.

Suppose then that we have a lifting, that is- a homomorphism Φ : H → Aut(Γ)
such that πΦ = ρ. To say that Φ is a homomorphism is equivalent to say that we
have chosen the ψa’s in such a way that CYa,b = Id, or in other words- in such a
way that for every a, b ∈ H , Ya,b is in Z(Γ), the center of Γ.
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Notice that after choosing Φ, we still have some liberty in changing the ψa’s.
Indeed, if we choose ψ′

a = γaψa, where γa ∈ Z(Γ) for every a ∈ H , we still get the
same Φ, and it is easy to see that every ψ′

a that will give us the same Φ is of this
form.

In order to furnish a structure of a CH -module category on N , we need Ya,b to
be not only central, but trivial. A straightforward calculation shows now that
the function H × H → Z(Γ) given by (a, b) 7→ Ya,b is a two cocycle. If we
choose a different set of isomorphisms ψ′

a = γaψa where γa ∈ Z(Γ), we will get
a cocycle Y ′ which is cohomologous to Y . So the second obstruction is the coho-
mology class of the two cocycle (a, b) 7→ Ya,b. We shall denote this obstruction
by O2(N , c,H,M,Φ) ∈ Z2(H,Z(Γ)). Notice that this obstruction depends lin-
early on M in the following sense: we have a natural homomorphism of groups
ξ : inv(Z(D)) → Γ, given by the formula

ξ(T )(N) = T ⊗N

(that is- ξ(T ) is just the autoequivalence of acting by T ) It can be seen that if we
would have chosen M ′ =Mζ, where ζ ∈ Z2(G,Z(D)), then we would have changed
O2 to be O2res

G
H(ξ∗(ζ)).

In conclusion- we saw that if N is a D-module category upon which H acts
trivially, then we have an induced homomorphism ρ : H → Out(Γ). The first
obstruction to define on N a structure of a CH-module category is the fact that
ρ should be of the form πΦ where Φ : H → Aut(AutD(N )) is a homomorphism.
After choosing such a lifting Φ we get the second obstruction, which is a two cocycle
O2(N , c,H,M,Φ) ∈ Z2(H,Z(Γ)). A solution to this obstruction will be an element
v ∈ C1(H,Z(Γ)) which satisfies

∂v = O2(N , c,H,M,Φ).

We will see later, in Section 8, that to find a solution for the first and for the
second obstruction is the same thing as to find a splitting for a certain short exact
sequence. We will also see why two solutions v and v′ which differs by a coboundary
give equivalent module categories (and therefore we can view the set of possible
solutions, in case it is not empty, as a torsor over H1(H,Z(Γ)).

5. The third obstruction

So far we have almost defined a CH -action on N , by means of the equivalences
ψa : Ca ⊠D N → N . The solutions for the first and for the second obstruction
ensures us that for every a, b ∈ H the two functors

F1 : Ca ⊠D Cb ⊠D N
Ma,b⊠1N

→ Cab ⊠D N
ψab→ N

and

F2 : Ca ⊠D Cb ⊠D N
1Ca⊠ψb→ Ca ⊠D N

ψa
→ N

are isomorphic.
For every a, b ∈ H , let us fix an isomorphism η(a, b) : F1 → F2 between the two

functors. In other words, for every X ∈ Ca, Y ∈ Cb and N ∈ N we have a natural
isomorphism

η(a, b)X,Y,N : (X ⊗ Y )⊗N → X ⊗ (Y ⊗N).

Since F1 and F2 are simple as objects in the relevant functor category (they are
equivalences), the choice of the isomorphism η(a, b) is unique up to a scalar, for
every a, b ∈ H .

The final condition for N to be a CH -module category is the commutativity of
the pentagonal diagram. In other words, for every a, b, d ∈ H , and every X ∈ Ca,
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Y ∈ Cb, Z ∈ Cd and N ∈ N , the following diagram should commute:

(X ⊗ (Y ⊗ Z))⊗N
η(a,bd)X,Y⊗Z,N // X ⊗ ((Y ⊗ Z)⊗N)

η(b,d)Y,Z,N

��
((X ⊗ Y )⊗ Z)⊗N

αX,Y,Z

OO

η(ab,d)X⊗Y,Z,N

))TTTTTTTTTTTTTTT
X ⊗ (Y ⊗ (Z ⊗N))

(X ⊗ Y )⊗ (Z ⊗N)

η(a,b)X,Y,Z⊗N

55jjjjjjjjjjjjjjj

This diagram will always be commutative up to a scalarO3(a, b, d) which depends
only on a, b and d, and not on the particular objects X,Y, Z and N . One can also
see that the function (a, b, d) 7→ O3(a, b, d) is a three cocycle on H with values
in k∗, and that choosing different η(a, b)’s will change O3 by a coboundary. We
call O3 = O3(N , c,H,M,Φ, v, α) ∈ H3(H, k∗) the third obstruction. A solution
to this obstruction is equivalent to giving a set of η(a, b)’s such that the pentagon
diagram will be commutative. We will see in the next section that by altering η by
a coboundary we will get equivalent module categories. Thus, we see that the set
of solutions for this obstruction will be a torsor over the group H2(H, k∗) (in case a
solution exists). Notice that this obstruction depends “linearly” on α, in the sense
that if we would have change α to be αζ where ζ ∈ H3(G, k∗), then we would have
changed the obstruction by ζ. In other words:

O3(N , c,H,M,Φ, v, αζ) = O3(N , c,H,M,Φ, v, α)resGH (ζ).

This ends the proof of Theorem 2.

6. The isomorphism condition

In this section we answer the question of when does the C-module categories
M(N , H,Φ, v, β) and M(N ′, H ′,Φ′, v′, β′) are equivalent.

Assume then that we have an equivalence of C-module categories

F : M(N , H,Φ, v, β) → M(N ′, H ′,Φ′, v′, β′).

Let us denote these categories by M and M′ respectively. Then F is also an
equivalence of D-module categories. Recall that as D-module categories, M splits
as

⊕

g∈G/H

Cg ⊠D N .

A similar decomposition holds for M′.
By considering these decompositions, it is easy to see that F induces an equiv-

alence of D-module categories between Cg ⊠D N and N ′ for some g ∈ G. Let us
denote the restriction of F to Cg ⊠D N as a functor of D-module categories by tF .
We can reconstruct the tuple (N ′, H ′,Φ′, v′, β′) from tF in the following way: We
have already seen that N ′ is equivalent to Cg⊠DN and that the stabilizer subgroup
of the category N ′ will be H ′ = gHg−1.

Let us denote by Γ′ the group AutD(N
′). We have a natural isomorphism ν :

Γ → Γ′ given by the formula

ν(t) : N ′ F
−1

→ Cg ⊠D N
1⊠t
→ Cg ⊠D N

F
→ N ′.

Using the functor tF and the map ν we can see that the map

ρ′ : gHg−1 → Out(Γ′)
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which appears in the construction of the second module category is the composition

gHg−1 cg
→ H

ρ
→ Out(Γ) → Out(Γ′),

where the last morphism is induced by ν. The map Φ′ which lifts ρ′ will depend on
Φ in a similar fashion. The same holds for the second obstruction and its solution.

For the third obstruction, the situation is a bit more delicate. Since F is a
functor of C-module categories, we have, for each a ∈ H , a natural isomorphism
between the functors

Cgag−1 ⊠D (Cg ⊠D N )
1⊠F
→ Cgag−1 ⊠D N ′ ·

→ N ′

and

Cgag−1 ⊠D (Cg ⊠D N )
·
→ Cg ⊠D N

F
→ N ′

For any a ∈ H , the choice of the natural isomorphism is unique up to a scalar.
A direct calculation shows that if we change the natural isomorphisms by a set
of scalars ζa, we will get an equivalence M(N,H,Φ, v, β) → M(N ′, H ′,Φ′, v′, β′′)
where β′′ = β′∂ζ. This is the reason that cohomologous solutions for the third
obstruction will give us equivalent module categories.

In conclusion, we have the following:

Proposition 12. Assume that we have an isomorphism F : M(N , H,Φ, v, β) →
M(N ′, H ′,Φ′, v′, β′) Then there is a g ∈ G such that F will induce an equivalence
of D-module categories Cg ⊠D N → N ′, and the data (N ′, H ′,Φ′, v′, β′) can be
reconstructed from tF in the way described above (β′ will be reconstructible only up
to a coboundary) .

Notice that we do not have any restriction on tF . In other words, given any
tF : Cg ⊠D N → N ′ we can always reconstruct the tuple (N ′, H ′,Φ′, v′, β′) in the
way described above.

We would like now to “decompose” the equivalence in the theorem into several
steps. The first ingredient that we need in order to get an equivalence is an element
g ∈ G such that Cg ⊠D N ≡ N ′.

Consider now the case where this ingredient is trivial, that is- g = 1, N = N ′

and H = H ′. In that case tF is an autoequivalence of the D-module category N .
Let us denote by ψa : Ca ⊠D N → N and by ψ′

a : Ca ⊠D N → N the structural
equivalences of the two categories (where a ∈ H). Since F is an equivalence of
C-module categories, we see that the following diagram is commutative:

Ca ⊠D N
ψa //

1⊠tF

��

N

tF

��
Ca ⊠D N

ψ′
a // N

and a direct calculation shows that Φ and Φ′ satisfy the following formula:

Φ′(a)(V ) = tFΦ(a)(t
−1
F V tF )t

−1
F (6.1)

where V is any element in Γ.
Another way to write Equation 6.1 is Φ′ = ctFΦc

−1
tF , where by ctF we mean the

automorphism of Γ of conjugation by tF . In other words- this shows that we have
some freedom in choosing Φ, and if we change Φ in the above fashion, we will still
get equivalent categories.

Consider now the case where also Φ = Φ′. This means that for every a ∈ H the
element tFΦ(a)(tF )

−1 is central in Γ. A direct calculation shows that the function
r defined by r(a) = tFΦ(a)(tF )

−1 is a one cocycle with values in Z(Γ), and that
v/v′ = r. Notice in particular that by choosing arbitrary tF ∈ Z(Γ) we see that
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cohomologous solutions to the second obstruction will give us equivalent categories.
However, we see that more is true, and it might happen that non cohomologous v
and v′ will define equivalent categories.

Last, if the situation is that tF = Φ(a)(tF ) for every a ∈ H , we will have
the same (N , H,Φ, v), but β might be different. We have seen that if β and β′

are cohomologous they will define equivalent categories, but it might happen that
noncohomologous β and β′ will define equivalent categories as well.

7. Functor categories

In this section we are going to describe the category of functors between module
categories over an extension in terms of module categories over the trivial compo-
nent of the extension. We prove a categorical analogue of Mackey’s Theorem and
we give a criterion for an extension to be group theoretical. In addition, given that
C is a G-extension of D, we describe the category FunC(M1,M2) of C-module func-
tors as an equivariantization of the category FunD(M1,M2) of D-module functors
with respect to G.

7.1. Mackey’s Theorem for module categories. Let C be a G-extension of D.
For any subset S ⊆ G denote the subcategory

⊕

g∈SCg by CS . If S is a subgroup of
G then CS is a fusion subcategory. Let H and K be subgroups of G and let N be
a CK-module category. We prove now a categorical version of Mackey’s Theorem.

Theorem 13. (C ⊠CK N )|CH
∼=

⊕

HgK CH ⊠CHg N
g, where Hg = H ∩ gKg−1 and

N g = (CgK ⊠CK N )|Hg is CHg -module category and the sum is over all the double
cosets.

Proof. First, consider the transitive H×Kop-action on HgK. The stabilizer of g is
{(gkg−1, k−1)|k ∈ K, gkg−1 ∈ H}. Hence, CHgK is isomorphic to CH ⊠CHg CgK as
(CH , CK)-bimodule category. Next, (C⊠CK N )|CH

∼=
⊕

HgK CHgK ⊠CK N where the

sum is over all the double cosets. Finally CHgK ⊠CK N ∼= (CH ⊠CHg CgK)⊠CK N∼=
CH ⊠CHg (CgK ⊠CK N )= CH ⊠CHg N

g. �

Remark 14. The above theorem could be stated in the original Mackey’s Theorem
language, namely resGH ind

G
K(N ) ∼=

⊕

HgK indHHgres
K
Hg (N

g). One notices that the
proof of the theorem uses only basic consideration about double cosets.

7.2. Functor categories. Assume that we have two module categories M1 =
M(N , H,Φ, v, β), and M2 = M(N ′, H ′,Φ′, v′, β′). Let us denote H ′ by K. Our
goal is to calculate FunC(M1,M2) in terms of functor categories over D. We have

FunC(M1,M2) = FunC(C ⊠CH N , C ⊠CK N ′).

By Frobenious reciprocity

FunC(C ⊠CH N , C ⊠CK N ′) ∼= FunCH (N , (C ⊠CK N ′)|CH ).

Since a module category is, by definition, a semisimple category every functor has
both a left adjoint and a right adjoint. Taking left adjoints (right adjoints) gives
us an equivalence of the corresponding functor categories.

Thus we obtain the following equivalence by taking left adjoints

FunCH (N , (C ⊠CK N ′)|CH )
∼= FunCH ((C ⊠CK N ′)|CH ,N ).

By Mackey’s Theorem for module categories we have

FunCH ((C ⊠CK N ′)|CH ,N ) ∼= FunCH (
⊕

HgK

CH ⊠CHg N
′g,N )
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and

FunCH (
⊕

HgK

CH ⊠CHg N ′g,N ) ∼=
⊕

HgK

FunCHg (N
′g,N|CHg ).

Finally, by taking right adjoints, we end up with the following

Proposition 15. In the above notations

FunC(M1,M2) ∼=
⊕

HgK

FunCHg (N|CHg ,N
′g).

7.3. A criterion for an extension to be group theoretical. Let C be a fusion
category. Recall that a C-module category M is called pointed if C∗

M, the dual
category with respect to M , is pointed. We say that C is group theoretical in case
C has a pointed module category. As can easily be seen, C is pointed if and only if
it has an indecomposable module category N such that any simple C-linear functor
F : N → N is invertible.

We now prove a criterion for an extension category to be group theoretical.

Theorem 16. Let C be a G-extension of D. C is group theoretical if and only if
D has a pointed module category N which is G-stable, namely, for every g ∈ G,
N ∼= Cg ⊠D N .

Proof. Suppose N is a pointedG-stable D-module category. Consider M = C⊠DN .
By Frobenious reciprocity we have

FunC(M,M) ∼= ⊕g∈GFunD(N , Cg ⊠D N ).

Since for any g ∈ G it holds that Cg ⊠D N ∼= N and since all simple functors in
FunD(N ,N ) are invertible, we see that the same happens in FunC(M,M), that
is- M is pointed over C and C is group theoretical.

Conversely, suppose that C is group theoretical and suppose M is an inde-
composable pointed C-module category. We thus know that any simple functor
F : M → M is invertible. We also know that there is a subgroup H < G and an in-
decomposable CH-module category N such that M ∼= C⊠CHN = ⊕gH∈G/HCg⊠DN
Since M is indecomposable, it is easy to see that for every g ∈ G there is some
simple C-endofunctor F : M → M such that F (N ) ⊆ Cg ⊠D N . But such a func-
tor must be invertible, and it follows that F induces an equivalence of D module
categories N ∼= Cg ⊠D N . Thus N is G-invariant.

Next, we would like to prove that D∗
N is pointed. By Frobenius reciprocity we

have FunC(M,M) ∼= ⊕gH∈G/HFunCH (N , Cg⊠N ) Thus the category FunCH (N ,N )
is a sub-fusion category of the pointed category FunC(M,M) and is therefore
pointed. We have a forgetful functor FunCH (N ,N ) → FunD(N ,N ) which is
known to be onto (see Proposition 5.3 of [3]). This implies that FunD(N ,N ) is
pointed, as required. �

Remark 17. The above criterion is actually equivalent to the one given in Corollary
3.10 of [5], namely, C is group theoretical if and only if Z(D) contains a G-stable
Lagrangian subcategory. In order to explain why the two conditions are equivalent,
recall first the definitions of a Lagrangian subcategory and of the action of G on
Z(D). A Lagrangian subcategory of Z(D) is a subcategory E such that E ′ = E
(see Section 3.2 of [1] for the definition of ’). The action of G on Z(D) is defined
as follows: the center Z(D) can be considered as FunD⊠Dop(D,D), the category of
D-bimodule endofunctors of D. Given an element g ∈ G and a D-bimodule functor
F : D → D, the functor g(F ) : D → D is defined via

D
∼= // Cg ⊠D D ⊠D Cg−1

1⊠DF⊠D1 // Cg ⊠D D ⊠D Cg−1

∼= // D .
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In Theorem 4.66 of [1] it was proved that there is an equivalence between Lagrangian
subcategory of Z(D) and pointed D module categories. Since G acts on the center
of D, it also acts on the set of Lagrangian subcategories of Z(D). Let N be a D-
module category and let L be the corresponding Lagrangian subcategory of Z(D).
From the above definition of the G action on Z(D) it is possible to see that for any
g ∈ G, the lagrangian subcategory which corresponds to g · N is g · L. Therefore,
Z(D) admit a G-stable Lagrangian subcategory if and only if D has a pointed
G-stable module category.

7.4. Functor categories as equivariantizations. In this subsection we shall de-
scribe the category of C-module functors between the module categoriesM(N , H,Φ, v, β)
and M(N ′, H ′,Φ′, v′, β′). For simplicity we shall denote these categories as M1

and M2 respectively.
Consider the category FunD(M1,M2). This is a k-linear category which by

Theorem 2.16 of [3] is semisimple.

Lemma 18. There is a natural G-action on FunD(M1,M2) induced by the struc-
ture of C-module categories on M1 and M2.

Proof. There are D-module equivalences ψg : Cg⊠DM1
∼= M1 and φg : Cg⊠DM2

∼=
M2, for every g ∈ G, defined by the C-module structure on M1 and M2. Let
F : M1 → M2 be a D-module morphism, we define g · F to be the following
functor

M1

ψ−1

g // Cg ⊠D M1

IdCg⊠DF// Cg ⊠D M2
φg // M2 .

One can easily check that this defines an action of the group G on the category
FunD(M1,M2) in the sense of [2]

�

Since we have a G-action on FunD(M1,M2), we can talk about the equivari-
antization FunD(M1,M2)

G. By definition, an object in FunD(M1,M2)
G is a

pair (F, {Tg}g∈G), where Tg : g · F → F are natural equivalences which satisfy a
certain coherence condition (for the exact definition, see [2]). Let F : M1 → M2

be a D-module functor.
To give F : M1 → M2 a structure of a C-module functor is the same thing as

to give, for every g ∈ G, a natural isomorphism between the functors Cg ⊠D M1 →

M1
F
→ M2 and Cg ⊠D M1

1⊠F
→ Cg ⊠D M2 → M2. It can easily be seen that this

is equivalent to give F a structure of an object in the equivariantization category.
Let us conclude this discussion by the following

Proposition 19. The category FunC(M1,M2) is equivalent to the equivarianti-
zation FunD(M1,M2)

G of the category FunD(M1,M2) with respect to the afore-
mentioned G-action.

Remark 20. Let M be an indecomposable C-module category. Although C∗
M ,

FunC(M,M) is a fusion category, FunD(M,M) is, in general, only a multifusion
category because M might be decomposable as D-module category. Equivarianti-
zation has only been defined in the context of fusion categories. However, the
definition in context of multifusion categories is mutatis mutandis. Notice that is
case of multifusion equivariantization we don’t always have the Rep(G) subcategory
supported on the trivial object.

In the next section we will give an intrinsic description of the functor categories,
as categories of bimodules.
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8. An intrinsic description by algebras and modules

The goal of this section is to explain more concretely the action of the grading
group on indecomposable module categories, the action of the grading group on
AutD(N ), the obstructions and their solutions.

In [7] Ostrik showed that any indecomposable module category over a fusion
category C is equivalent as a module category to the category ModC −A for some
semisimple indecomposable algebra A in C. In this section we will realize all the
objects described in the previous sections by using algebras and modules inside C.
As before, we assume that C =

⊕

g∈G Cg, we denote C1 by D and AutD(N ) by Γ.

8.1. The action of G on indecomposable module categories. Assume that
A is a semisimple indecomposable algebra inside D. Let N = ModD − A be the
category of right A-modules inside D. We denote by ModCg − A the category of
A-modules with support in Cg. We claim the following:

Lemma 21. We have an equivalence of D-module categories Cg⊠DN ≡ModCg−A.

Proof. We have already seen in Section 2 that we have an equivalence of C-module
categories

C ⊠D N ≡ModC(A)

which is given by X ⊠ M 7→ X ⊗ M . As a D-modules category, the left hand
category decomposes as

⊕

g∈G Cg ⊠D N and the right hand category decomposes

as
⊕

g∈GModCg − A. It is easy to see that the above equivalence translates one
decomposition into the other, and therefore the functor Cg ⊠D N → ModCg − A
given by X ⊠M 7→ X ⊗M is an equivalence of D-module categories. �

Next, we understand how we can describe functors by using bimodules.

Lemma 22. Let N =ModD−A and N ′ =ModD−A′, and let g ∈ G. Then every
functor F : N → Cg⊠DN ′ is of the form F (T ) = T ⊗AY for some A−A′ bimodule
Y with support in Cg, here we identify Cg ⊠D N ′ with ModCg −A′ as above.

Proof. The proof follows the lines of the remark after Proposition 2.1 of [8]. We
simply consider F (A). The multiplication map A ⊗ A → A gives us a map A ⊗
F (A) → F (A), thus equipping F (A) with a structure of a left A-module. We now
see that F (A) is indeed an A − A′ bimodule. Since the category N is semisimple
the functor F is exact. Since every object in N s a quotient of an object of the
form X ⊗A for some X ∈ C, we see that F is given by F (T ) = T ⊗A F (A). �

Remark. Notice that by applying the (2-)functor Cg−1 ⊠D − we see that every
functor Cg ⊠D N ′ → N is given by tensoring with some A′ − A bimodule with
support in Cg−1 .

8.2. The outer action of H on the group AutD(N ). The first two ob-

structions. Assume, as in the rest of the paper, that we have a subgroup H < G
and a module category N = ModD − A, and assume that Fh : N ∼= Ch ⊠D N
for every h ∈ H . It follows from Lemma 22 that this equivalence is of the form
Fh(M) =M ⊗AAh for some A−A bimodule Ah with support in Ch. The fact that
this functor is an equivalence simply means that the bimodule Ah is an invertible
A−A bimodule. In other words- there is another A−A bimodule Bh (whose sup-
port will necessary be in Ch−1) such that Ah ⊗A Bh ∼= Bh ⊗A Ah ∼= A. By Lemma
22 we can identify the group Γ = AutD(N ) with the group of isomorphisms classes
of invertible A−A bimodules with support in D.

Denote by Λ the group of isomorphisms classes all invertible A − A bimodules
with support in CH . Since every invertible A−A bimodule is supported on a single
grading component, we have a map p : Λ → H which assigns to an invertible A−A
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bimodule the graded component it is supported on. We thus have a short exact
sequence

1 → Γ → Λ → H → 1. (8.1)

Using this sequence, we can understand the outer action of H on AutD(N ), and
the first and the second obstruction. The outer action is given in the following way:
for h ∈ H , choose an invertible A−A bimodule Ah with support in Ch. Choose an
inverse to Ah and denote it by A−1

h . Then the action of h ∈ H on some invertible
bimodule M with support in D is the following conjugation:

h ·M = Ah ⊗AM ⊗A A
−1
h .

This action depends on the choice we made of the invertible bimodule Ah.
The first obstruction is the possibility to lift this outer action to a proper action.

In other words, it says that we can choose the Ah’s in such a way that conjugation
by Ah ⊗ Ah′ is the same as conjugation by Ahh′ , or in other words, in such a way
that for every h, h′ ∈ H , the invertible bimodule

Bh,h′ = Ah ⊗A Ah′ ⊗A A
−1
hh′

will be in the center of Γ (again- we identify Γ with the group of invertible bimodules
with support in D). A solution for the first obstruction will be a choice of a set of
such bimodules Ah.

The second obstruction says that the cocycle (h, h′) 7→ Bh,h′ is trivial inH2(H,Z(AutD(N )).
This simply says that we can changeAh to be Ah⊗ADh for someDh ∈ Z(AutD(N )),
in such a way that

(Ah ⊗A Dh)⊗A (Ah′ ⊗A Dh′)⊗A (Ahh′ ⊗A Dhh′)−1 ∼= A

as A-bimodules. A solution for the second obstruction will be a choice of such a set
Dh of bimodules.

It is easier to understand the first and the second obstruction together: we
have one big obstruction- the sequence 8.1 should split, and we need to choose a
splitting. First, if the sequence splits, then we can lift the outer action into a proper
action, and we need to choose such a lifting. Then, the obstruction to the splitting
with the chosen action is given by a two cocycle with values in the center of Γ.
Thus, a solution for both the first and the second obstruction will be a choice of
bimodules Ah for every h ∈ H such that the support of Ah is in Ch and such that
Ah ⊗A Ah′ ∼= Ahh′ for every h, h′ ∈ H . Following the line of Section 6, we see that
we are interested in splittings only up to conjugation by an element of Γ.

8.3. The third obstruction. Assume then that we have a set of bimodules Ah as
in the end of the previous subsections. We would like to understand now the third
obstruction.

Recall that we are trying to equip N with a structure of a CH -module cate-
gory. By Ostrik’s Theorem (see [7]), there is an object N ∈ N such that A ∼=
HomD(N,N) where by HomD we mean the internal Hom of N , where we consider
N as a D-module category. So far we gave equivalences Fh : N → Ch ⊠D N . If N
were a CH -module category via the choices of these equivalences, then the internal
CH -Hom, Ã = HomCH (N,N) would be

Ã =
⊕

h∈H

Ah.

We thus see that to give on N a structure of a CH -module category is the same
as to give on Ã a structure of an associative algebra. For every h, h′ ∈ H , choose
an isomorphism of A − A bimodules Ah ⊗A Ah′ → Ahh′ . Notice that since these
are invertible A−A bimodules, there is only one such isomorphism up to a scalar.
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Now for every h, h′, h′′ ∈ H , we have two isomorphisms (Ah ⊗A Ah′)⊗A Ah′′ →
Ahh′h′′ , namely

(Ah ⊗A Ah′)⊗A Ah′′ → Ahh′ ⊗A Ah′′ → Ahh′h′′

and

(Ah ⊗A Ah′)⊗A Ah′′ → Ah ⊗A (Ah′ ⊗A Ah′′) → Ah ⊗A Ah′h′′ → Ahh′h′′ .

This two isomorphisms differ by a scalar b(h, h′, h′′). The function (h, h′, h′′) 7→
b(h, h′, h′′) is a three cocycle which is the third obstruction. A solution to the third
obstruction will thus be a choice of isomorphisms Ah ⊗A Ah′ → Ahh′ which will
make Ã an associative algebra. Once we have such a choice, we can change it by
some two cocycle to get another solution.

8.4. Functor categories. We end this section by giving an intrinsic description of
functor categories. Assume that we have two module categoriesM1 = M(N , H,Φ, v, β),
and M2 = M(N ′, H ′,Φ′, v′, β′). Let us denote H ′ by K. As we have seen
in the previous subsections, if N ∼= ModD − A1 and N ′ ∼= ModD − B1, then
M1

∼= ModC − A and M2
∼= ModC − B, where A is an algebra of the form

⊕h∈HAh, and a similar description holds for B.
The functor category FunC(M1,M2) is equivalent to the category of A − B-

bimodules in C. Since A and B have a graded structure, we will be able to say
something more concrete on this category.

Let X be an indecomposable A − B-bimodule in C. It is easy to see that the
support of X will be contained inside a double coset of the form HgK for some
g ∈ G. Since the bimodules Ah and Bk are invertible, it is easy to see that the
support will be exactly this double coset.

Consider now the g-component Xg of X . As can easily be seen, this is an
A1 − B1-bimodule. Actually, more is true. Consider the category C ⊠ Cop. Inside
this category we have the algebra

(AB)g = ⊕x∈H∩gKg−1Ax ⊠Bg−1x−1g

with the multiplication defined by the restricting the multiplication from A⊠B ∈
C ⊠ Cop . The category C is a C ⊠ Cop-module category in the obvious way, and we
have a notion of an (AB)g-module inside C.

Lemma 23. The category of (AB)g-modules inside C is equivalent to the category
of A−B-bimodules with support in the double coset HgK.

Proof. If X is an A − B-bimodule with support in HgK, then Xg is an (AB)g-
module via restriction of the left A-action and the right B-action. Conversely, if V
is an (AB)g-module inside C, we can consider the induced module

(A⊠B)⊗(AB)g V.

This is an A−B-bimodule, and one can see that the two constructions gives equiv-
alences in both directions. �

Remark. This is a generalization of Proposition 3.1 of [8], where the same situation
is considered for the special case that C = V ecωG and D = 1. Also, notice that the
decomposition to double cosets is the one which appears in Theorem [?]

In conclusion, we have the following

Proposition 24. The functor category FunC(M1,M2) is equivalent to the cat-
egory of A − B-bimodules. Each such simple bimodule is supported on a double
coset of the form HgK, and the subcategory of bimodules with support in HgK is
equivalent to the category of (AB)g-modules inside C.
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9. A detailed example: classification of modules categories over the

Tambara Yamagami fusion categories and their dual categories

As an example of our results, we shall now describe the module categories over
the Tambara Yamagami fusion categories C = T Y(A,χ, τ) and the corresponding
dual categories. Let A be a finite group. Let RA be the fusion ring with basis
A ∪ {m} whose multiplication is given by the following formulas:

g · h = gh, ∀g, h ∈ A

g ·m = m · g = m

m ·m =
∑

g∈A

g

In [10] Tambara and Yamagami classified all fusion categories with the above fusion
ring. They showed that if there is a fusion category C whose fusion ring is RA then
A must be abelian. They also showed that for a given A such fusion categories
can be parameterized (up to equivalence) by pairs (χ, τ) where χ : A × A → k∗ is
a nondegenerate symmetric bicharacter, and τ is a square root (either positive or
negative) of 1

|A| . We denote the corresponding fusion category by C := T Y(A,χ, τ).

The category C is naturally graded by Z2 = 〈σ〉. The trivial component is
V ecA (with trivial associativity constraints) and the nontrivial component, which
we shall denote by M, has one simple object m. In [4] the authors described how
the Tambara Yamagami fusion categories corresponds to an extension data of V ecA
by the group Z2. We shall explain now the classification of module categories over
T Y(A,χ, τ) given by our parameterization.

Since A is an abelian group and the associativity constraints in V ecA are trivial,
module categories over V ecA are parameterized by pairs (H,ψ) where H < A is a
subgroup and ψ ∈ H2(H, k∗). We shall denote the corresponding module category
by M(H,ψ). As explained in Section 3, we have a natural action of Z2 = 〈σ〉 on
the set of equivalence classes of module categories over V ecA. We shall describe
this action in Subsection 9.1.

Recall that the second component in the parameterization of a module category
is a subgroup of the grading group. If this subgroup is the trivial subgroup, then
we will just have a category which is induced from V ecA. It is easy to see that such
categories decompose over V ecA to the direct sum of two indecomposable module
categories. In that case, all the obstructions and solutions will be trivial. If this
subgroup is Z2 itself, we will have a C-module category structure on M(H,ψ) for
some H and some ψ. In that case, it must hold that σ(H,ψ) = (H,ψ), and we may
have some nontrivial obstructions and solutions.

The rest of this section will be devoted to analyze the action of σ and the
obstructions and their solutions (for the case in which we have obstructions). We
will also describe the relations of our result with the result of Tamabra on fiber
functors on Tamabara Yamagami categories, and also describe the dual categories.

We would like now to describe the main result of this section. We will split
our main classification result into two proposition, according to the subgroup of Z2

which appears in the parameterization. Our first proposition follows in a straight
forward way from the discussion in the previous sections

Proposition 25. Module categories over C whose parameterization begins with
(M(H,ψ), 1, . . .) are the induced categories IndCV ecA(M(H,ψ)). We will have an

equivalence of C module categories IndCV ecA(M(H,ψ)) ∼= IndCV ecA(M(H ′, ψ′)) if
and only if (H,ψ) = (H ′, ψ′) or if (H,ψ) = σ(H ′ψ′).
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In order to describe the other case, we need some notations. Suppose that
H < A is a subgroup which contains H⊥ (the subgroup perpendicular to H with
respect to χ). If we denote by H̄ := H/H⊥, then χ induces a non-degenerate
symmetric bicharacter χ̄ : H̄ × H̄ → k∗. If ψ ∈ H2(H, k∗) satisfies Rad(ψ) = H⊥

(the definition of rad(ψ) is given in Subsection 9.1), then ψ is the inflation of a
nondegenerate two cocycle ψ̄ on H̄. We will usually not distinguish between ψ and
ψ̄.

Proposition 26. For M(H,ψ) to have a structure of a C module category, it is
necessary that σ(H,ψ) = (H,ψ). This implies that Rad(ψ) = H⊥ < H. If this
holds, then C-module categories structures on M(H,ψ) are parameterized by pairs
(s, ν) where s : H/H⊥ → H/H⊥ is an involutive automorphism, and ν : H/H⊥ →
k∗ is a function which satisfy for every a, b ∈ H/H⊥

χ̄(a, b) = ψ(s(a), b)/ψ(b, s(a))

∂ν(a, b) = ψ(a, b)/ψ(s(b), s(a))

ν(a)ν(s(a)) = 1

sign(
∑

s(a)=a

ν(a)) = sign(τ)

Two such pairs (s, ν) and (s′, ν′) will give equivalent module category structures on
M(H,ψ) if and only if s = s′ and there exist a character φ : H/H⊥ → k∗ such
that ν(h)/ν′(h) = η(h)/η(s(h)).

9.1. The action of σ on indecomposable module categories and repre-

sentations of twisted abelian group algebras. Recall that the V ecA module
category N = M(H,ψ) is the category of right modules over the algebra kPψH
inside V ecA. We would like to understand the V ecA module category M⊠V ecA N .

As explained in Section 8, this module category can be described as the category
of right kψH-modules with support in the category M, the nontrivial grading
component of C. A kψH-module with support in M is of the form m ⊗ V where
V is a vector space which is a kψH-module in the usual sense. So the category
M⊠V ecA N is equivalent, at least as an abelian category, to the category of kψH-
modules in V ec.

We would like to describe M⊠V ecAN as a module category of the form M(H ′, ψ′)
for some H ′ < A and some two cocycle ψ′ ∈ H2(H ′, k∗). In order to do so, we
begin by describing the simple kψH modules in V ec (they will correspond to the
simple objects in M ⊠V ecA N ).

Let kψH = ⊕h∈HUh. The multiplication in kψH is given by the rule UhUk =
ψ(h, k)Uhk. Denote by R = Rad(ψ) the subgroup of all h ∈ H such that Uh is
central in kψH .

As the field k is algebraically closed of characteristic zero and H is abelian, the
data that stored in the cocycle ψ is simply the way in which the Uh’s commute.
More precisely- let us define the following alternating form on H :

ξψ(a, b) = ψ(a, b)/ψ(b, a).

It turns out (see [9]) that the assignment ψ 7→ ξψ depends only on the cohomol-
ogy class of ψ, and that it gives a bijection between H2(H, k∗) and the set of all
alternating forms on H . The elements of R can be described as those h ∈ H such
that ξψ(h,−) = 1. As can easily be seen, ξψ is the inflation of an alternating form
on H/R. It follows easily that ψ is the inflation of a two cocycle ψ̄ on H/R.

It can also be seen that ξψ̄ is nondegenerate on H/R and that kψ̄H/R ∼=Mn(k)

where n =
√

|H/R|. It follows that kψ̄H/R has only one simple module (up to
isomorphism) which we shall denote by V1 (i.e, ψ̄ is non degenerate on H/R). By
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inflation, V1 is also a kψH-module. Let ζ be a character of H , and let kζ be the
corresponding one dimensional representation of H . Then kζ ⊗ V1 is also a simple
module of kψH , where H acts diagonally. It turns out that these are all the simple
modules of kψH , and that Vζ1

∼= Vζ2 if and only if the restrictions of ζ1 and ζ2 to
R coincide.

The simple modules of kψH are thus parameterized by the characters of R (we
use here the fact that the restriction from the character group of H to that of R
is onto). For every character ζ of R, we denote by Vζ the unique simple module
of kψH upon which R acts via the character ζ. So the simple kψH-modules with
support in M are of the form m⊗ Vζ .

In order to understand the structure of M⊠V ecA N as a V ecA module category,
let us describe Va ⊗ (m ⊗ Vζ) for a ∈ A. It can easily be seen that this is also a
simple module, so we just need to understand via which character R acts on it.
Using the associativity constraints in T Y(A,χ, τ), we see that for v ∈ Vζ and r ∈ R
we have

(Va ⊗m⊗ v) · Ur = χ(a, r)Va ⊗ (m⊗ v · Ur) = χ(a, r)ζ(r)Va ⊗m⊗ v.

This means that Va ⊗ (m ⊗ Vζ) = m ⊗ Vζχ(a,−). So the stabilizer of Vζ is the

subgroup of all a ∈ A such that χ(a, r) = 1 for all r ∈ R, i.e., it is R⊥. It follows

that M ⊠V ecA N is equivalent to a category of the form M(R⊥, ψ̃). Where ψ̃ is
some two cocycle.

Let us figure out what is ψ̃. If a ∈ R⊥, then the restriction of χ(a,−) to H is a
character which vanishes on R. Therefore, there is a unique (up to multiplication
by an element of R) element ta ∈ H such that ξψ(ta,−) = χ(a,−). It follows that
there is an isomorphism ra : Va⊗ (m⊗V1) → m⊗V1 which is given by the formula

Va ⊗ (m ⊗ v) 7→ m ⊗ (v · Uta). Now for every a, b ∈ R⊥, ψ̃(a, b) should make the
following diagram commute:

(Va ⊗ Vb)⊗ (m⊗ V1)

rab

��

// Va ⊗ (Vb ⊗ (m⊗ V1))
rb // Va ⊗ (m⊗ V1)

ra

��
m⊗ V1

ψ̃(a,b) // m⊗ V1

An easy calculation shows that this means that ψ̃(a, b) = ψ(tb, ta). We thus have
the following result:

Lemma 27. We have σ ·M(H,ψ) ≡ M(R⊥, ψ̃) where R is the radical of ψ and ψ̃
is described above.

Suppose now that σ · M(H,ψ) ≡ M(H,ψ). This implies that Rad(ψ) = H⊥.
The bicharacter χ defines by restriction a pairing on H ×H , and by dividing out
by H⊥, we get a nondegenerate symmetric bicharacter χ̄ : H/H⊥ ×H/H⊥ → k∗.
It is easy to see that the assignment h 7→ th that was described above induces an
automorphism s of H/H⊥ which satisfies

χ̄(a, b) = ξψ̄(s(a), b). (9.1)

The fact that ψ̃ = ψ means that ξψ̄(s(b), s(a)) = ξψ̄(a, b). Equivalently, this means

that χ̄(a, b) = ξψ̄(s(a), b) = ξψ̄(s(b), s
2(a)) = χ̄(b, s2(a)) and since χ̄ is nondegener-

ate, this is equivalent to the fact that s2 = Id.
In summary:

Lemma 28. We have σ · M(H,ψ) ≡ M(H,ψ) if and only if the following two
conditions hold:

1.H⊥ < H.
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2.There is an automorphism s of order 2 of H/H⊥ such that (a, b) 7→ χ̄(s(a), b)
is an alternating form, and the inflation of this alternating form to H is ξψ.

9.2. The vanishing of the first obstruction and invertible bimodules with

support in V ecA. Assume now that we have a module category M(H,ψ) such
that σ·M(H,ψ) ≡ M(H,ψ). We would like to describe all module categories whose
classification data begins with (M(H,ψ),Z2, . . .). In other words- we would like to
describe all possible ways (if any) to furnish a structure of a C module category on
M(H,ψ).

So let s be an automorphism as in Lemma 28. In order to explain the first
obstruction for furnishing a T Y(A,χ, τ)-module category structure on M(H,ψ),
we need to consider the group of invertible kψH-bimodules in T Y(A,χ, τ). As we
have seen in Section 8, such an invertible bimodule with support in V ecA (M)
corresponds to a functor equivalence F : N → N (F : M ⊠V ecA N → N ). The
functor is given by tensoring with the invertible bimodule.

Let us first classify invertible kψH-bimodules with support in V ecA. Their de-
scription was given in Ostrik’s paper [8]. We recall it briefly.

If a ∈ A and λ is a character on H , we define the bimodule Ma,λ to be

⊕h∈HVah,

where the action of kψH is given by

Uh · Vah′ · Uh′′ = ψ(h, h′)λ(h)ψ(hh′, h′′)Vahh′h′′ .

Choose now coset representatives a1, . . . , ar of H in A. Proposition 3.1 of [8]

tells us that the modules Mai,λ where i = 1, . . . r and λ ∈ Ĥ are all the invertible
kψH bimodules, and each invertible bimodule with support in V ecA appears in this
list exactly once.

By a more careful analysis we can get to the following description of the group of
invertible bimodules: we have a homomorphism ξ : H → Ĥ given by h 7→ ξψ(h,−).
Then the group E of all invertible bimodules with support in V ecA can be described
as the pushout which appears in the following diagram: (see Theorem 5.2 of [6] for
a more general result)

H

ξ

��

// A

��
Ĥ // E

The group E is thus also isomorphic to the group AutV ecA(M(H,ψ)). Notice
that the group E is abelian. A solution to the first obstruction is a lifting of the
natural map (see Section 4) Z2 → Out(E) to a map Z2 → Aut(E) But since E is
abelian, Out(E) = Aut(E), so this problem is trivial, and it has only one solution.
So we have a proper (and not just outer) action of Z2 on E.

9.3. The group of all invertible bimodules and the second obstruction.

Since M(H,ψ) is σ-invariant, we see by Section 8 that the group Ẽ of (isomorphism
classes of) invertible kψH bimodules in C is given as an extension

Σ : 1 → E → Ẽ → Z2 → 1.

Moreover, we have seen that the second obstruction is the cohomology class of this
extension in H2(Z2, E), and that a solution to the second obstruction is a splitting
of this sequence, up to conjugation by an element of E.

So our next goal is to understand if the sequence Σ splits. For this, we would
like to understand the structure of the group Ẽ better, and for this reason, we
will describe now the invertible kψH bimodules with support in M (these are the
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elements of Ẽ which goes to the nontrivial element in Z2). We begin by choosing
such an invertible bimodule X explicitly. It should be of the form X = m ⊗ V ,
where V is both a left and a right kψH module. The interaction between the left
structure and the right structure follows from the associativity constraints and is
given by the formula

(Uh · v) · Uh′ = χ(h, h′)Uh · (v · Uh′). (9.2)

The fact that X is invertible implies that V has to be simple as a left and as a right
kψH-module. Assume that V is Vφ from Subsection 9.1 as a right kψH module,
where φ is some character of H⊥. We need to define on V a structure of a left
kψH-module. By Equation 9.1 we know that

(v · Uth) · Uh′ = χ(h, h′)(v · Uh′)Uth .

By Equation 9.2 and by the simplicity of V , we see that this means that we must
have

Uh · v = ν(h)v · Uth (9.3)

for some set of scalars {ν(h)}h∈H . An easy calculation shows that these scalars
should satisfy the equation

ν(ab)ψ(a, b) = ν(a)ν(b)ψ(tb, ta)φ(tatbt
−1
ab )

for every a, b ∈ H . In other words-

∂(νφ(t−)) = ψ(a, b)/ψ(tb, ta). (9.4)

Since N is σ-invariant, we do know that the cocycles ψ(a, b) and ψ(tb, ta) are
cohomologous, and therefore such a function ν exists. Notice that we have some
freedom in choosing ν- we can change it to be νη where η is some character on
H . It is easy to see by this construction that the invertible kψH bimodules with
support in M are parameterized by pairs (φ, ν) where φ is a character of H⊥ by
which it acts from the right on the module, and ν is a function which satisfy the
equation

∂ν(a, b) = ψ(a, b)/ψ(ta, tb)φ(tabt
−1
a t−1

b ).

We denote the corresponding invertible bimodule byX(φ, ν). It is possible to choose
ψ and th in such a way that will assure us that ν|H⊥ is a character (for example-
take ψ an inflation of a cocycle on H/H⊥ and take th = 1 for h ∈ H⊥. We will
thus assume henceforth that this is the case.

We fix an invertible bimodule X for which φ = 1, and for which the restriction
of ν to H⊥ is the trivial character (we use here the fact that we can alter ν by a
character ofH and the fact that any character ofH⊥ can be extended to a character
of H). It is also easy to see that we can choose φ as we wish because for every
choice of φ, Equation 9.4 will have a solution. One last remark- notice that in that
case, where H⊥ acts trivially from the left and from the right, Equation 9.3 implies
that ν(h) depends only on the coset of h in H⊥. We can thus consider ν also as a
function from H/H⊥ to k∗.

In conclusion- we have fixed an invertible bimodule X with support in M upon
which H⊥ acts trivially from the left and from the right. Any other invertible
bimodule with support in M will be of the form X ⊗kψH e for some e ∈ E. The
action of the nontrivial element σ of Z2 on E will be conjugation by X , and the
second obstruction is the possibility to choose an e ∈ E such that

(X ⊗ e)⊗kψH (X ⊗ e) ∼= kψH.
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9.4. The action of σ on E, and an explicit calculation of the second ob-

struction. We would like to understand now the action of σ on E. This in turn
will help us to understand the second obstruction.

As we have seen, a general element in E will be a bimodule of the form Uai,λ.
So we would like to understand what is the bimodule σ(Uai,λ).

We have the equation

X ⊗kψH Uai,λ = σ(Uai,λ)⊗kψH X.

A similar calculation to the calculations we had so far reveals the fact that if X
is given by (1, ν) then Uai,λ ⊗kψH X is given by (χ(ai,−), νλχ−1(ai, t−)), while
X ⊗kψH Uai,λ is given by (λ−1, νχ−1(ai,−)λ(t−). From these two formulas we can
derive an explicit formula for the action of σ on E. It follows that if σ(Uai,λ) = Uaj,µ
then j is the unique index which satisfies λ−1 = χ(aj ,−) on H⊥, and µ is given by
the formula µ = χ−1(ai,−)λ(t−)χ(aj , t−).

Let us find now the second obstruction. For this, we just need to calculate
Q := X ⊗kψH X . Consider first X ⊗X . It is isomorphic to V ⊗ V ⊗

⊕

a∈A(Va).

The bimodule Q is the quotient of X ⊗X when we divide out the action of kψH .
Let us divide out first by the action of H⊥. If h ∈ H⊥ we see that we divide

V ⊗ V ⊗ Va by v ⊗ w − χ(a, h)v ⊗ w. If a /∈ H then there is an h ∈ H⊥ such
that χ(a, h) 6= 1. Therefore the support of X ⊗kψH X will be V ecH . Since V is
simple as a left and as a right kψH-module, it is easy to see that V ⊗kψH V is one
dimensional. We thus see that X ⊗kψH X ∼= U1,λ for some character λ. A direct
calculation shows that λ(h) = ν(h)ν(th). This means that the second obstruction

is the character λ, as an element of H2(Z2, E) = Eσ/im(1 + σ) (recall that Ĥ is a
subgroup of E).

Suppose that the second obstruction does vanish, and suppose that we have
a solution X(φ, ν). In other words X(φ, ν) ⊗kψH X(φ, ν) ∼= kψH . A direct cal-
culation similar to the one we had above shows that the restrictions of φ and
ν to H⊥ coincide. Recall from Section 8 that if Uai,λ is any invertible kψH-
bimodule with support in V ecA, then this solution is equivalent to the solution
Uai,λ ⊗kψH X(φ, ν) ⊗kψH U−1

ai,λ
. Extend the character νH⊥ to a character η of H .

A direct calculation shows that U1,η⊗kψH X(φ, ν)⊗kψH U
−1
1,η = X(1, ν′). It follows

that we can assume without loss of generality that φ = 1.
As we have seen above, X(φ, ν)⊗2 ∼= kψH if and only if ν(h)ν(th) = 1 for every

h ∈ H . So the second obstruction vanishes if and only if there is a function ν which
satisfies equations 9.4 and also the equation

ν(h)ν(th) = 1 (9.5)

for every h ∈ H. It might happen, however, that we will have two different solutions
ν and ν′, that will be equivalent- that is, there will be an invertible kψH bimodule
Uai,λ such that Uai,λ⊗kψHX(1, ν)⊗kψH U

−1
ai,λ

∼= X(1, ν′). A careful analysis shows
that this happen if and only if the following condition holds: there is a character η
on H which vanishes on H⊥, such that

ν(h)/ν′(h) = η(h)/η(th). (9.6)

In conclusion- the second obstruction is the existence of a function ν : H →
H/H⊥ → k∗ which satisfy Equations 9.4 and 9.5. and two such functions ν and ν′

give equivalent solutions if and only if there is a character η of H which vanishes
on H⊥ and which satisfies Equation 9.6.

9.5. The third obstruction. As explained in Section 8, after solving the second
obstruction, we can think about the third obstruction in the following way: we have
an invertible kψH bimodule X with support in M, and X ⊗kψH X ∼= kψH . We
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would like to turn kψH ⊕ X into an algebra in C. The only obstruction for that
(and this is the third obstruction) is that the multiplication on X ⊗X ⊗X might
be associative only up to a scalar. This scalar is the third obstruction, considered
as an element of H3(Z2, k

∗) = {1,−1}. Following the work of Tambara (see [9]),
we see that this sign is the sign of the following expression

∑

a∈H/H⊥

ν(h)τ.

If the third obstruction vanishes, we only have one possible solution, asH2(Z2, k
∗) =

1, since we have assumed that k is algebraically closed. This finishes the proof of
Proposition 26

9.6. Relation to the Tambara’s Work. In [9], Tambara classified all fiber func-
tors on T Y(A,χ, τ). In the language of module categories, he classified all module
categories over T Y(A,χ, τ) of rank 1. In the language of our classification, he de-
scribed all module categories whose parameterization begins with (M(A,ψ),Z2, . . .)
for some ψ.

There is a deeper connection between our result and the result of Tambara, as
we will show now. Assume that we have a module category over T Y(A,χ, τ) whose
classification begins with (M(H,ψ),Z2, . . .). Then, as we have seen, H⊥ < H , and
χ induces a nondegenerate symmetric bicharacter χ̄ in H̄ := H/H⊥. We thus have
another Tambara Yamagami fusion category D := T Y(H̄, χ̄, τ̄ ), where τ̄ has the
same sign as τ . In order to explain the connection, we first recall the following
theorem of Tambara (Proposition 3.2 in [9])

Theorem 29. Fiber functors on D correspond to triples (s, ψ, ν) which satisfies
the following coherence conditions:

χ̄(a, b) = ξψ(s(a), b)

∂ν(a, b) = ψ(a, b)/ψ(s(a), s(b))

ν(a)ν(s(a)) = 1

sign(
∑

s(a)=a

ν(a)) = sign(τ)

Two such triples (s, ψ, ν) and (s′, ψ′, ν′) will give equivalent fiber functors if and
only if s = s′ and there exist a function φ : H/H⊥ → K such that ψ = ∂φψ′ and
ν(h)/ν′(h) = φ(h)/φ(s(h))

Remark 30. This is not exactly the original formulation in Tambara’s paper, but
it is equivalent.

The following lemma is now an easy corollary from Proposition 26 and the above
theorem.

Lemma 31. There is a one to one correspondence between equivalence classes of
fiber functors on D which corresponds to triples which contains the two cocycle ψ and
module categories over C whose parameterization begins with (M(H,ψ),Z2, . . .).

The Lemma says that we have a correspondence between fiber functors on one
Tambara Yamagami category and some module categories oevr another Tambara
Yamagami category. However, we do not know about a plausible explanation of
why it happens.

We can now use the results of Tambara to obtain another description of our
module categories. Indeed, in his paper Tamabara gave several description of fiber
functors of D. Applying Theorem 3.5 from [9], we get the following
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Corollary 32. Let T Y(A,χ, τ), M(H,ψ) be as above. Assume that H⊥ < H and
that Rad(ψ) = H⊥. Then the different ways to put on M(H,ψ) a T Y(A,χ, τ)-
module structure are parameterized by pairs (s, µ) where s is an involutive auto-
morphism of H/H⊥, and µ : H̄s/H̄s → k∗ satisfy

χ̄(a, b) = ξψ(s(a), b)

µ(a)µ(b)/µ(ab) = χ̃(a, b)

sign(µ) = sign(τ)

Here H̄s is the subgroup of s-invariant elements, H̄s is the subgroup of elements of
the form as(a), The map χ̃ is the induced bilinear form on H̄s/H̄s (one of Tambara’s
result is the fact that this is indeed well defined), and sign(µ) is the sign of µ as a
quadratic map (It is quite easy to show that H̄s/H̄s is a vector space over Z2 and
therefore we can talk about this sign). See Tambara’s paper [9] for more details.

9.7. Dual categories. In this subsection we shall give a general description of the
dual categories of T Y(A,χ, τ). First recall (see [3]) that if L ∼= ModC − L is a
module category over a fusion category C, where L is an algebra in C, then the dual
category (C)∗L is equivalent as a fusion category to the category of L-bimodules in
C.

We begin with duals with respect to module categories of the form L = M(N , 1,Φ, v, β).
In this case, L ∼=ModC − kψH for some H < A and some two cocycle ψ. We have
described above the category of kψH-bimodules with support in V ecA. We have
seen that it is a pointed category with an abelian group of invertible objects, which
we have described in Subsection 9.2. Consider now the kψH-bimodules with sup-
port in M. Following previous calculations, we see that such a bimodule is given by
a vector space V which is both a left and a right kψH-module, and the interaction
between the left and the right structure is given by the formula

(Uh · v) · Uh′ = χ(h, h′)Uh · (v · Uh′). (9.7)

We can think of such modules as kθ[H × H ]-modules, where θ is a suitable two
cocycle. By this point of view, the isomorphism classes of indecomposable modules
is in bijection with the characters of Rad(θ) < H × H . Let us denote the inde-
composable module which corresponds to a character ζ of Rad(θ) by Vζ . A routine
and tedious calculation shows us that the group of invertible kψH-bimodules with
support in V ecA acts on the modules with support in M via the following formulas:

Uai,λ ⊗B Vζ = V(λ,χ(ai,−))ζ

Vζ ⊗B Uai,λ = V(χ−1(ai,−),λ−1)ζ

We know that the dual category is graded by Z2 in the obvious sense. We use this
fact in order to conclude the following multiplication formula:

Vζ ⊗B Vη =
⊕

(λ,χ(ai,−))t∗(η)=ζ

Uai,λ

where by t∗(η) we mean the composition of η with the map H × H → H × H
given by (h1, h2) 7→ (h2, h1). Notice that by the analysis done in Section 8 and
by the observation that the group of invertible bimodules with support in V ecA
acts transitively on the set {Vζ}, we see that the dual is pointed if and only if the
category L is σ-invariant.

We consider now module categories of the second type. By this we mean cate-
gories of the form L = M(N , 〈σ〉,Φ, v, β). Assume that L =Mod−V ecAM(H,ψ)
over V ecA. Then σ(H,ψ) = (H,ψ) and we have an action of σ on the abelian group
E of invertible bimodules with support in V ecA. We have an equivalence of fusion
categories (V ecA)

∗
L
∼= V ecωE for some three cocycle ω ∈ H3(E, k∗).
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We have seen in Section 7 that the dual (C)∗L will be the equivariantization of
this category with respect to the action of Z2. If, for example, we would have
known that ω = 1, then this equivariantization would have been equivalent to the
representation category of the group Z2 ⋉ Ê In general, the description of this
category is not much harder.

We conclude by observing that T Y(A,χ, τ) is group theoretical if and only if
there is a pair (H,ψ) such that σ(H,ψ) = (H,ψ). This gives an alternative proof
of the fact that T Y(A,χ, τ) is group theoretical if and only if the metric group
(A,χ) has a Lagrangian subgroup (see Corollary 4.9 of [5]).
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