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THE EXPLICIT EQUIVALENCE BETWEEN THE STANDARD AND THE LOGARITHMIC
STAR PRODUCT FOR LIE ALGEBRAS

C. A. ROSSI

ABSTRACT. The purpose of this short note is to establish an explicit equivalence between the two star products * and
*1og ON the symmetric algebra S(g) of a finite-dimensional Lie algebra g over a field K > C of characteristic 0 associated
with the standard angular propagator and the logarithmic one: the differential operator of infinite order with constant
coefficients realizing the equivalence is related to the incarnation of the Grothendieck—Teichmiiller group considered
by Kontsevich in [8, Theorem 7).

1. INTRODUCTION

For a general finite-dimensional Lie algebra g over a field K o C, we consider the symmetric algebra S(g).

Deformation quantization ¢ la Kontsevich [9] permits to endow A = S(g) with an associative, non-commutative
product *: the universal property of the Universal Enveloping Algebra (shortly, from now on, UEA) U(g) and a
degree argument imply that there is an isomorphism of associative algebras Z from (A, «) to (U(g),-). The algebra
isomorphism Z has been characterized explicitly in [9, Subsection 8.3] and [II] as the composition of the Poincaré—
Birkhoff-Witt (shortly, from now on, PBW) isomorphism (of vector spaces) with an invertible differential operator
with constant coefficients and of infinite order associated to the well-known Duflo element \/j(e) in the completed
symmetric algebra §( g*). The case of nilpotent Lie algebras, where the aforementioned invertible differential operator
equals simply the identity, has been considered in great detail in [7], where the author has discussed the relationship
between deformation quantization and the Baker—Campbell-Hausdorff formula.

In this short note, which takes inspiration from recent results [IL2] on the singular logarithmic propagator proposed
by Kontsevich in [, Subsection 4.1, F)], we discuss the relationship between the star products « and %1 on A, where
*log 1S the star product associated with the logarithmic propagator.

The two star products = and %1, on A are obviously equivalent because of the fact that both associative algebras
(A, *) and (A, *10¢) are isomorphic to the Universal Enveloping Algebra (U(g),-) of g in virtue of degree arguments.

We produce here the explicit form of the equivalence between * and *,s via a translation-invariant, invertible
differential operator of infinite order on A depending on the odd traces of the adjoint representation of g: more
precisely, we provide an explicit formula relating (A, x1og) with (U(g),-) via the PBW isomorphism, which we then
compare with the previous one relating (A, «) with (U(g),-).

The main result is a consequence of the logarithmic version of the formality result in presence of two branes from [4]
and the application discussed in [3] (“Deformation Quantization with generators and relations”). Here a caveat is
necessary: we do not prove here the general logarithmic formality in presence of two branes, which is quite technical
and involved (deserving to it a separate and more detailed treating). Here, we just discuss the main features and
provide explicit formulee with a sketch of the main technicalities.

The present result provides a different insight to the incarnation of the Grothendieck—Teichmiiller group in defor-
mation quantization considered in [8, Theorem 7]. Observe that, quite differently from [§], here odd traces of the
adjoint representation of g appear non-trivially, because we are not dealing with the Chevalley—Eilenberg cohomology
of g with values in A.

Acknowledgments. We thank J. LofHer for many useful discussions, for the careful reading of a first draft of the
present note and for many useful suggestions.

2. NOTATION AND CONVENTIONS

We consider a field Ko C.

We denote by g a finite-dimensional Lie algebra over K of dimension d; by {z;} we denote a K-basis of g. With g
we associate the (linear) Poisson variety X = g* over K: the basis {z;} defines a set of global linear coordinates over
X, and the Kirillov—Kostant Poisson bivector field 7 on X can be written as 7 = ffjxkaﬁj, where we have omitted
wedge product for the sake of simplicity, and Z denote the structure constants of g w.r.t. the basis {;}.
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We denote by ad(e) the adjoint representation of g on itself; further, for n > 1, we denote by ¢, (e) the element of
S(g*) defined via c,(x) = trg(ad(e)™).
Finally, ¢(e) and I'(e) denote the Riemann {-function and the I'-function respectively.

3. AN EQUIVALENCE OF STAR PRODUCTS INCARNATING THE GROTHENDIECK—TEICHMULLER GROUP

For g as in Section [2] we consider the Poisson algebra A = K[X] = S(g) endowed with the linear Kirillov—Kostant
Poisson bivector field .

Starting from 7, we construct two distinct non-commutative, associative products x and o on A, and we
construct then an explicit equivalence between them: this equivalence is related to the Grothendieck—Teichmiiller
group GRT (or better, to its Lie algebra grt) in an explicit way, which points out the relationship between the
logarithmic propagator and the GRT-group.

3.1. Explicit formulse for the products x and ... Let X = K% and {z;} a system of global coordinates on X,
for K in Section

For a pair (n,m) of non-negative integers, by G, ,, we denote the set of admissible graphs of type (n,m): an
element T of G,, ,, is a directed graph with n, resp. m, vertices of the first, resp. second type, such that i) there is
no directed edge departing from any vertex of the second type and i) T' admits whether multiple edges nor short
loops (i.e. given two distinct vertices v;, i = 1,2, of " there is at most one directed edge from vy to ve and there is
no directed edge, whose endpoint coincides with the initial point). By E(I") we denote the set of edges of I" in Gy, 1.

We denote by Cy ,, the configuration space of n points in the complex upper half-plane H* and m ordered points

on the real axis R modulo the componentwise action of rescalings and real translations: provided 2n +m -2 > 0,
+

Cy.m is a smooth, oriented manifold of dimension 2n +m - 2. We denote by émm a suitable compactification a

la Fulton-MacPherson introduced in [9, Section 5]: C:;m is a compact, oriented, smooth manifold with corners of
dimension 2n + m — 2. We will be interested mostly in its boundary strata of codimension 1.
We denote by w, resp. wieg the closed, real-valued 1-form
1
2mi

1 Z1—Z
w(z1,22) = %darg(zi - ZZ), resp. wiog(21,%2) =

21— 2
_1—2), (21,22) € (H' UR)?, 2z; # 29,
Z1 22

dlog(

where arg(e) denotes the [0,27)-valued argument function on C~ {0} such that arg(i) = 7/2, and log(e) denotes the
corresponding logarithm function, such that log(z) = In(|z|) + iarg(z).

The 1-form w extends to a smooth, closed 1-form on 6;0, such that ¢) when the two arguments approach to
each other in H*, w equals the normalized volume form dy on S! and ii) when the first argument approaches R, w
vanishes.

On the other hand, wi, extends smoothly to all boundary strata of U;_O (e.g. through a direct computation,
one sees that wiog vanishes, when its first argument approaches R and coincides with w when the second argument
approaches R) except the one corresponding to the collapse of its two arguments in H*, where it has a complex pole
of order 1.

The standard propagator w has been introduced and discussed in [9, Subsection 6.2]; the logarithmic propagator
Wiog has been first introduced in [8, Subsection 4.1, F)].

We introduce Tpory(X) = A[61,...,04], A = C*(X), where {0;} denotes a set of graded variables of degree 1,
which commute with A and anticommute with each other (one may think of §; as J; with a shifted degree). We
further consider the well-defined linear endomorphism 7 of Tpo1y (X )®? of degree —1 defined via

T =0y, ® Oy,,

where of course summation over repeated indices is understood. We set w, = w ® 7 and similarly for w!°®.
With I' in G,, ,,, such that |[E(T')|=2n+m -2, v;,i=1,...,n, elements of Ty, (X) and aj, j =1,...,m, elements
of A, we associate two maps Ur, Z/{lLOg via

(uF(’Yla o 7’Yn)) (a1®"'®am) = Um+n (L‘*

n,m

wWrr(11® - ®Yy, ®a; @+ ® am)), Wy = H Wre, Wre =T (W)®Te,
eeE(T)

7. being the graded endomorphism of Tpely (X)) which acts as 7 on the two factors of Tyery(X) corresponding
to the initial and final point of the edge e, and fim+rn denotes the multiplication map from o1, (X )™ to Thory (X),
followed by the natural projection from Ty, (X) onto A by setting 6; =0, i =1,...,d; L{llﬂog is defined as in the
previous formula by replacing overall w by wig.
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We may re-write both Ur and Z/lllf’g splitting the form-part and the polydifferential operator part as

U (1,3 9m)) (@1 ® @ am) = 1 (Br (1, -+ s 90 )) (@1, -+ s ), wF:fC wr,

n,m

(Llllqog(fyl,...,’yn)) (a1®---®am):w?g(Bp(fyl,...,fyn))(al,...,am), w?g:./cw w?g.

n,m

The polydifferential parts of Ur and LIILOg are equal, while the corresponding integral weights cor and w}o € are different.

Theorem 3.1. For a Poisson bivector field m on X and a formal parameter h, the formule
3 hm ° .
(1) fl *h f2 = Z _| Z (Z/IF(Ww' . 77T))(f17f2)7 fl *log,h f2 = Z _| Z (ull"g(ﬂ-a' .. aﬂ—))(flan)a fi € Aa 1= ]-a27
—_—

n>0 ™" TeG, o ———r’ n>0 ™" TeG, o
n n

define Ky = K[h]-linear, associative products on Ap = A[h].

The first expression in (I]) has been proved to be well-defined (i.e. all integrals converge) and to yield an associative
product as a corollary of the Formality Theorem [9, Theorem 6.4].

On the other hand, a Formality Theorem in presence of w'°® has been proved recently in [IL2], from which follows
that the second expression in () is a well-defined, associative product. Appendix B contains a sketch of the technical
arguments explained in detail in [T},2].

3.2. Relationship between x, x,, and the UEA of g. We now restrict our attention to X = g*, for g as in
Section [2, endowed with the Kirillov—Kostant Poisson bivector .

Degree reasons imply that the products in () restrict to Ap, A = S(g), and that the h-dependence of both of them
is in fact polynomial: therefore, we may safely set A = 1, and we use the short-hand notation * and x5z on A.

With g, we associate its UEA (short for Universal Enveloping Algebra) (U(g),-); we denote by PBW the sym-
metrization isomorphism (of vector spaces) from A to U(g).

Theorem 3.2. For g as in Section[d, there exist isomorphisms of associative algebras I and Tiog from (A, *) and
(A, *10g) respectively to (U(g),-), which are explicitly given by

(2) Z=PBWo+/j(e), Ziog =PBWojr(e),
where \/j(e) and jr(e) are elements of S(g*) defined via

— 1-eadl@)) 1 ¢(2n)
(3) \/j(x) = \J detg(T) = exp(—zcl(x) + Z WCQn(IE)) s

.23) n>1

(4) Jr(z) = exp(_lcl(x) + Z %cn(x)) _ \/j(—a:) exp(z ¢(2n+1)

4 n>2 1 n>1 (2n + 1)(271—2‘)2n+1

Con+l (x)) , TEg,

where both elements of the completed symmetric algebra §(g*) are regarded as invertible differential operators with
constant coefficients and of infinite order on A.
(We will comment at the end of the proof on the (improperly) adopted notation for both expressions @) and @).)

Proof. The identity on the left-hand side of (2)) has been proved in [9, Subsection 8.3] by means of the compatibility
between cup products; a different proof has been presented in [3], Subsection 3.2]. We will adopt the strategy proposed
in [3] Subsection 3.2] to prove the identity on the right-hand side, to which we refer for more details.

Let us momentarily re-introduce the formal parameter £, and consider the corresponding h-formal Poisson bivector
h.

To g, we may attach two natural quadratic algebras, A and B = A(g*): observe that, in the present framework, A
is concentrated in degree 0, while B is non-negatively graded. It is well-known that A and B are Koszul algebras,
and moreover they are Koszul dual to each other.

We consider then the (graded) algebras Ap, Bp, over the ring K[2]. With the formal Poisson structure hAm, we
associate the product *io 5 via the formality quasi-isomorphism u'es.

On the other hand, we may consider the A-formal Fourier dual quadratic vector field A7 = h fj@iﬁj@gk, borrowing
previous notation for the graded basis {6;} of B, on By, (AT is the h-shifted Chevalley—Eilenberg differential dp, on
Bp). Thus, the triple (By,dp, A) is a dg algebra over K[A]: the graded formality quasi-isomorphism V in [B, Appendix
A] admits a logarithmic version V%8 simply by replacing everywhere w by Wiog, and the MC element Vlos (h7) endows
By, with the Ao-structure over K[A] given by A + V'°8(A%). Degree arguments and the fact that the logarithmic
integral weight wif & associated to the graph I' in depicted in Figure [ ¢), is trivial yield that the only non-trivial
Taylor components of the aforementioned A..-structure are dp and A, thus deformation quantization produces out
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of the graded commutative algebra (B, A) the h-shifted Chevalley—Eilenberg complex (Bp,dp,A). The computation
of the said weight wi? & has been performed in [2, Lemma 6.8]: it follows from Stokes’ Theorem [3.7] Appendix B.

We refer to Appendix A for a very quick review of the needed A-structures in the forthcoming discussion.

We regard A and B as unital A.-algebras: in [4, Subsection 6.2] a non-trivial Ae-A-B-bimodule structure on
K =K has been explicitly constructed, which restricts to the standard augmentation A- and B-module structure and
such that L4 : A - Endp. (K) is an Ac-quasi-isomorphism.

Observe that we may also consider Ae-algebras and Ao-bimodules over the ring K[#], and all previous definitions
and constructions apply to this setting as well. In particular, we may regard (Ap, *10g,5) and (Bp,dp,A) are Aco-
algebras over K[A].

Lemma 3.3. There exists an h-formal flat deformation Kp = K[h] of the Ae-A-B-bimodule K as an Aco-(Ap, *10g,h)-
(Bp, dp, A)-bimodule.

Sketch of proof of LemmalZ3 Let us consider the first quadrant Q™" in C, with which we associate the configuration
space C3 g o of two distinct points in Q™" modulo rescalings. We define on C3  ; the closed, complex-valued 1-form

).

We denote by 6;0’0 the compactified version @ la Fulton-MacPherson of Cj , see [6, Subsection 3.1] for a
complete description thereof and of its boundary stratification. The 1-form (B]) has the following properties:
1) when both arguments of o.);;’g_ approach R*) resp. iR*, wfro’g_ = Wipgs TESP. wfro’g_ = Wipg, Where wip, = wiog and
Wiog = 0 (Wlog), 0 being the involution of C3 given by (21, 22) = (22,21);

- 1 Z1+ 2
(5) w;;’g (21,22) = leog SR

(21—Z221+Z2)
™

1
z - = dlog(
21— R2 21+ 29

™

Z1+ 22

1) wfrog vanishes, when its initial, resp. final point, approaches ¢{R*, resp. R*, or the origin;
) w;; ’g_ has a simple pole of order 1 along the boundary stratum S! x Cf,o,o of 6;0’0 corresponding to the
collapse of its two arguments to a single point in @**, and the S'-piece of the corresponding regularization
(see [2, Subsubsection 2.1.1] or Appendix B) equals the normalized volume form of S*. There is also a C ¢ o-
piece in the regular part, whose presence justifies the fact that the logarithmic counterpart of the form:ility
result for two branes requires admissible graphs with short loops, see also later on.
Properties i)-iii) can be checked by direct computations using local coordinates as in the proof of [4, Lemma 5.4],
with due modifications because of the pole.

The explicit formule for the A.-bimodule structure d’;(i on K can be obtained from the ones for the corresponding
Aso-structure on Kp, constructed in [4, Section 7] by replacing w*~ by its logarithmic counterpart (H): also for later
computations, we frequently and implicitly refer to [4, Section 7].

The convergence of the logarithmic integral weights appearing in the As-bimodule structure, as well as the Ao.-
property itself, will be shown in a forthcoming paper in their full generality: still, we refer to the arguments sketched
in the Appendix B for a proof of the convergence of the logarithmic integral weights (see also [2, Proposition 4.2]),
while the Le.-property follows by means of Stokes’ Theorem B.7] (see [I, Theorem 1.8]), with some due modifications
which arise from the regular parts of the 4-colored logarithmic propagators involved.

Observe that, in view of the properties of (B, if we set h = 0, we recover the Ae-A-B-bimodule structure on K
from [3]. a

In particular, [3, Proposition 2.4, Lemma 2.5 and Theorem 2.7] are valid in their full generality in the logarithmic
framework as well: in particular, there is an algebra isomorphism

(6) L35+ (Ans*iogn) = T(0)/ (T(0) ® (@i ® 2~ ) @ v~ hlwg, 2]+ dyi=1,....d) @ T(g)) [h] = (Un(a).),

where Up(g) is the UEA of the h-shifted Lie algebra g, = g, with Lie bracket h[e,e].

The algebra isomorphism (@) is a particular case of the logarithmic version of Shoikhet’s conjecture [12] about
deformation quantization with generators and relations.

Again, degree reasons imply that we may safely set A =1 in (@), which in particular implies that Lklog yields an
algebra isomorphism from (A, *1o¢) to (U(g),-).

Lemma 3.4. The algebra isomorphism L114,10g can be computed explicitly and equals Liog.
Sketch of the proof of Lemma[3-) The quasi-isomorphism Lklog is explicitly given by the formula
LY (a)™(1,b1, - . b)) = A (a1, 1, b1, b)),

where one must think of d};m as of d}(:n for h=1, and a; in A, and b; in B,i=1,...,m.
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FIGURE 1.  4) The unique admissible graph of type (2,0) and two directed edges; i) an admissible
graph T of type (3,1,3) contributing to L}'°%.

Using the graphical definition of the deformed Ao.-A-B-bimodule structure specified by the Taylor components
d];’(’l in [4, Subsections 6.2, 7.1 and 7.2], we consider an admissible graph T" of type (n,1,m) with n vertices of the
first type (i.e. in @**), 1 vertex of the second type on {R* and m ordered vertices of the second type on R; I' may
have short loops at vertices of the first type, no edge may depart from the vertex on ‘{R* and no edge may arrive
at a vertex on R. From any vertex of the first type depart exactly two directed edges, whence |E(T")| = 2n + m.
The multidifferential operator associated to an admissible graph T of type (n,1,m) as before is analogous to the one
appearing in the construction of ({): b; in B, i =1,...,m, is regarded as a polyderivation with constant coefficients
on A, while a short loop corresponds to the divergence operator on Tpory (X) w.r.t. the constant volume form on X.
The corresponding integral weight w}? &% is obtained by associating with an edge between two distinct vertices,
resp. a short loop at a vertex of the first type, the closed 1-form (&) on C3 (), resp. the exact 1-form darg(e)/(4)

. . 1 - 1 -
on Cf (¢ then one integrates the corresponding closed form w7 of degree 2n+m over C}' | .. The form w?®™

. ol log,+,—
extends to a complex-valued, real analytic closed form of top degree on C,, ; ,,,, whence @ ?® ™" converges.

The fact that 7 is a linear bivector field implies that a vertex of the first type of I' can be the endpoint of at

most one edge. Moreover, the degree of w?g’J”_ equals 2n + Y7 [bj|, where [b;| denotes the degree of b; as a constant

polyderivation on A, whence Y72, [b;| = m. Dimensional reasons for wi?g“”_ imply that |b;| =1, j =1,...,m: namely,
if |b;] > 2, for i =1,...,m, then |b;| = 0, for ¢ # j, whence I' would have a 0-valent vertex of the second type. In other
words, there would exist a point on a 1-dimensional manifold, along which no form is integrated, yielding a trivial
integral weight.

Furthermore, from any vertex of the first type may depart at most one edge to the only vertex on iR* (otherwise,
wiﬂog’h_ would contain a square of (B])). Let now p denote the number of edges from vertices of the first type hitting
the only vertex on iR*: then, obviously, p < n. With any edge or short loop of T' is associated a derivative w.r.t.
{z;}: the degree in A of the multidifferential operator equals n— (2n—p)—j = -n—j+p >0, where 0 < j < m denotes
the number of edges starting from vertices on R and hitting vertices of the first type, thus p > n + j. It follows
immediately that j =0 and p = n, i.e. edges from vertices on R may arrive only at the unique vertex on iR, and from
any vertex of the first type exactly one edge hits the said vertex on ¢{R*, while the other edge may hit any vertex of
the first type (including the initial point itself of the given edge).

Thus, a general admissible graph I' of type (n,1,m) is the disjoint union of wheel-like graphs with spokes pointing
towards the unique vertex on :R* and a graph with single edges starting from ordered vertices on R and hitting the
unique vertex on iR*, as in Figure [l 7).

The behavior of () along the boundary strata of 6;0_0 implies that the multidifferential operators associated
with admissible graphs with no vertices of the first type contribute to the symmetrization isomorphism PBW from
A to U(g), see also [3 Subsection 4.2].

On the other hand, the wheel-like graphs sum up to yield exactly the invertible differential operator of infinite
order and with constant coefficients specified by jr(e) in S(g*), once we have computed the logarithmic integral
weights of the wheel-like graphs.

For this, we use the strategy adopted in [I3] Appendix B], where we replace w*~ by its logarithmic counterpart
w;; .

lg\/lore precisely, the discussion in the first part of Appendix B implies that Stokes’ Theorem[3.7] Appendix B, applies
to differential forms associated with a wheel-like graphs with n + 1 vertices as before. The boundary conditions for
wf;’g_ and the regularization morphism imply the graphical relation among logarithmic integral weights depicted in
Figure 2l for n = 3. Observe that we have adopted the lazy convention for the signs: however, signs behave exactly as
in [I3] Appendix B], because of regularization morphism does not alter signs.
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FI1GURE 2.  Graphical representation of the relation between weights of wheel-like graphs.

The second and third integral weights have to be understood w.r.t. the logarithmic propagator wi,s and on
configuration spaces 6;; +1,0 of distinct points in H.

The integral weight of a wheel-like graph as in the third term has been computed explicitly in [I0, Appendix AJ;
it remains to prove that the integral weight of a wheel-like graph as in the second term vanishes. This is, in turn, a
consequence of a more general Vanishing Lemma for logarithmic integral weights.

Lemma 3.5. Let I' be an admissible graph of type (n,m) with |[E(T')| =2n+m -2, n > 2, admitting a vertex of the
first type which is the starting point of no edge.
log

Then, the corresponding logarithmic integral weight wy> vanishes.

Proof. We may safely assume, because of the standard dimensional argument, that the vertex v of the first type from
which no edge departs is the endpoint of [ > 2 edges.

Observe first that wi,e depends holomorphically on its second argument. Further, since n > 2, we may e.g. fix to 7
the coordinate corresponding to some vertex vy # v of the first type; let us denote by z, the coordinate corresponding
to the vertex v.

Then, the differential form wlpo € vanishes, because it depends only holomorphically on z, and there is no non-trivial
form of top degree on ﬁfm which is holomorphic in one complex coordinate. O

Lemma obviously applies to wheel-like graph as in the second term of Figure [2, and, because of the previous
computations, yields the claim of Lemma [3.4] O

Lemma [3:4] is proved, and this, in turn, yields the desired claim about the explicit expression for the algebra
isomorphism relating the logarithmic star product *1,; on A and the associative product on U(g). O

As remarked before the proof of Lemma 3.5 the computation of the weights corresponding to the contributions
coming from wheel-like graphs is found in [I0, Appendix A], whence we deduce both expressions @) and (@) in the
form of exponentials of convergent power series, whose coefficients depend on ((e). Furthermore, it is well-known
that c¢; is a derivation of both x and o,z on A. Therefore, by suitably changing the first coefficient, the invertible
differential operators in (B) and (@) are obtained (up to the coefficient of ¢1, which may be chosen freely) from the

functions
B _ C(QTL) 2n | _ _l BQn 2n
v/ \/ exp( T A )t )p( 177 & anyen)t” )

1 _ C(n) n\| _ . C(2n+1) n+1
{1+ 55) _exp(m+ 2 nomiy ) Vi) e"p(z @ D@ )

n>1 n>1

where v denotes the FEuler—-Mascheroni constant, and B,,, n > 2, denotes the n-th Bernoulli number. Observe that
the constant v appears mainly for aesthetical reasons.

Therefore, a bit improperly, we may use the reciprocal I'-function with shifted argument to construct the isomor-
phism Zjog: in fact, up to the term of first order (whose coefficient may be chosen freely because ¢; is a derivation
for both products * and *1og), the exponential of the power series in (@) coincides with the function first considered
in [8 Subsection 4.6] in a discussion about incarnations of the GRT group. The very same expression has been
re-discovered in [I0, Subsection 4.9] in the framework of exotic Loo-automorphisms of Tpo1y (X)) and their connection
with the GRT group.

As an immediate corollary of Theorem B.2] for a Lie algebra g as in Section [ the star products in (I]) on A are
equivalent w.r.t. the invertible differential operator with constant coefficients and of infinite order associated with
the element of S(g) given by

2n +1
eXp( D @ E(l)(Qm';Q”*l cgml(a:)) , TEQ.

n>1




THE EXPLICIT EQUIVALENCE BETWEEN... 7

Let us remark that a more conceptual approach to the Lie algebra grt in the framework of deformation quantization
can be found in the fundamental paper [14], in particular in [I4, Subsections 7.4, 7.5], where modifications of the
Duflo element via elements of grt have been discussed in details.

Remark 3.6. We finally observe that Lemma B.5] generalizes to the logarithmic framework the results of [11]: we only
point out that the our Vanishing Lemma applies to a wider variety of situations.

APPENDIX A: A VERY QUICK REVIEW OF A,,-STRUCTURES

Let C be a graded vector space over K: C'is called an A.-algebra, if the coassociative coalgebra T(C[1]) cofreely
cogenerated by C[1] ([e] being the degree-shifting functor on graded vector spaces) with counit admits a coderivation
dc of degree 1, whose square vanishes. Similarly, given two A-algebras (C,d¢), (E,dg) over K, a graded vector
space M over K is an A.-C-E-bimodule, if the cofreely cogenerated bi-comodule T(C[1]) ® M[1] ® T(E[1]) with
natural left- and right-coactions is endowed with a bi-coderivation dj;, whose square vanishes.

Observe that, in view of the cofreeness of T(C[1]) and T(C[1]) ® M[1] ® T(E[1]), to specify d¢, dg and dps
is equivalent to specify its Taylor components dg. : C[1]®" - C[1], d} : E[1]®" - E[1], n > 1, and dﬁ/’[l (C[1]%F ®
M[1]® E[1]® - M[1], k,1 > 0, all of degree 1: the condition that d¢, dg and dys square to 0 is equivalent to an
infinite family of quadratic identities between the respective Taylor components.

APPENDIX B: ON THE LOGARITHMIC PROPAGATOR(S)

Let us review the main results of [11[2] for the convenience of the reader by pointing out the main technical details.
Convergence of the integral weights w}? &, for T admissible of type (n,m) and |E(T")| = 2n+m—2 in the logarithmic
case follows from the fact that the integrand wiﬂog on C!  extends to a complex-valued, real analytic form of top

n,m

degree on the compactified configuration space U;’m.

We must prove that wlpo ¢ extends to all boundary strata of U;m: because of the boundary properties of wiog (i.e.

wiog has a pole of order 1 along the stratum corresponding to the collapse of its two arguments inside H*), the main
technical point concerns the extension to boundary strata describing the collapse of clusters of at least two points in
H* at different “speeds” to single points in H*.

By introducing polar coordinates (p;, i), ¢ = 1,...,k, for each cluster of collapsing points near such a boundary
stratum, the possible poles in wiﬂog take the form

L dpi, dpi

. +-i=1,.0,k,
2mi p; 2m

where --- denotes a complex-valued, real analytic 1-form. The angle differential dp; appears without a factor p; only
when paired to the corresponding singular logarithmic differential dp;/p;: since w;o € has top degree and because of
skew-symmetry of products of 1-forms, the singular logarithmic differential dp;/p; must be always paired with p;dep;,
coming from the complex-valued, real analytic parts of the factors of wiﬂog. The polar coordinates appear naturally by
choosing a global section of the trivial principal G5 = R* x C-bundle Conf,, of the configuration space of n points in C,
n > 2, which identifies it with S* x Conf,,_o(C ~ {0,1}): such a space appears naturally for any cluster of points, the
angle coordinates are associated with the S!-factors and the strata are re-covered by setting the radius coordinates
to 0. The detailed discussion of this topic can be found in the proof of [2], Proposition 5.2].

These arguments can be slightly adapted to w;og, for T' admissible of type (n,k,1) and |E(T")| =2n+k+1-1, where

Wieg is Teplaced by wfro’g_: namely, w;; ’g_ on C;,k,z extends to a complex-valued, real analytic form of top degree on
—+

Cn k,l*

Similar arguments imply that w;og, for I' admissible of type (n,m) or (n,k,l) and |[E(T')|=2n+m -3 or |E(T)| =
2n+k+1-2, yield complex-valued forms on 6:;771 or 6;’ %, With poles of order 1 along the boundary. Moreover, their
formal regularizations along boundary strata of codimension 1 extend to complex-valued, real analytic forms of top
degree on those boundary strata: the regularization morphism here formally sets to 0 the logarithmic differentials
dp;/pi, whenever p; = 0. The detailed version of these arguments can be found in [2, Proposition 5.3].

Theorem 3.7. Let X be a compact, oriented manifold with corners of degree d > 2. Further, consider an element w
of Q471(X), which satisfies the two additional properties:
1) its exterior derivative dw is a complex-valued, real analytic form of top degree on X, and
i1) the regularization Regyx (w) along the boundary strata 0X of codimension 1 of X is a complez-valued, real
analytic form on 0X.
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Then, the integrals of dw over X and the integral of Regyx (w) over 0X exist and the following identity holds true:

de:LXRegaX(w).

In the assumptions of Theorem B2, Q¢~1(X) denotes the space of differential forms w on X of degree d - 1 which

have the form )
w = Z %a& +n
i=1 Ti

in every local chart of X for which X = (R;)? xR?, p+¢q=d, and w;, n, i =1,...,p, are complex-valued, real analytic
forms on X. The proof of Theorem 3.7l as well as of other variants of Stokes’ Theorem in presence of singularities,
can be found in [T, Subsection 2.3].

Since w;o € is closed and because of the previous arguments, Stokes’ Theorem[3.7]applies to w;o ¢ whence the associa-
tivity of *1og (more generally, the Lo -relations for the logarithmic formality quasi-isomorphism and its corresponding
version in presence of two branes).
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