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CENTERS AND HOMOTOPY CENTERS IN ENRICHED MONOIDAL

CATEGORIES.

MICHAEL BATANIN AND MARTIN MARKL

Abstract. We consider a theory of centers and homotopy centers of monoids in monoidal
categories which themselves are enriched in duoidal categories. The duoidal categories (in-
troduced by Aguillar and Mahajan under the name 2-monoidal categories) are categories
with two monoidal structures which are related by some, not necessary invertible, coherence
morphisms. Centers of monoids in this sense include many examples which are not ‘classical.’
In particular, the 2-category of categories is an example of a center in our sense. Examples of
homotopy center (analogue of the classical Hochschild complex) include the Gray-category
Gray of 2-categories, 2-functors and pseudonatural transformations and Tamarkin’s homo-
topy 2-category of dg-categories, dg-functors and coherent dg-transformations.
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2 M. BATANIN AND M. MARKL

1. Introduction

This paper grew up from our attempts to comprehend a construction by D. Tamarkin

in [36] which answers a question: what do dg-categories, dg-functors, and coherent up to all

higher homotopies dg-transformations, form? In the process we discovered that the most

natural language which allows easy development of such a construction is a generalization

to the enriched categorical context of the classical Hochschild complex theory for algebras.

Enrichment, however, should be understood in a more general sense. In this paper we

therefore want to set up some basic definitions and constructions of the proposed theory of

enrichment and the corresponding theory of centers and the Hochschild complexes. In the

sequel [9] we will consider homotopical aspects of the theory of the Hochschild complexes.

The higher dimensional generalization of our theory will be addressed in yet another paper.

Classically, the Hochschild complex of an associative algebra can be understood as its

derived or homotopical center. Our theory generalizes this point of view by extending the

notions of center and homotopy center to a much larger class of monoids. Of course, the

classical center construction and the Hochschild complex are special cases of the center in

our sense. But, perhaps, the most striking feature of our theory is that the 2-category of

categories is an example of our center construction as well. An example of a homotopy

center is then the symmetric monoidal closed category Gray of 2-categories, 2-functors and

pseudonatural transformations [22]. Tamarkin’s homotopy 2-category of dg-categories, dg-

functors and their coherent natural transformations is also an example of the homotopy

center. In some philosophical sense, we have here a new understanding of the center as a

universal method for (higher dimensional) enrichment. Other nontrivial examples of duoidal

categories and centers are presented in the lecture notes of Ross Street concerning invariants

of 3-dimensional manifolds [34].

Let us now provide more detail about where we enrich. Classically, we can enrich over

any monoidal category D . However, monoidal D-enriched categories make sense only if D

has some degree of commutativity, more precisely, we need D to be braided. It was observed

by Forcey in [20] that we can slightly weaken this requirement. It is enough for D to be

2-fold monoidal in his sense. Even Forcey’s conditions can be weaken. It is enough for D

to be 2-monoidal in Aguillar-Mahajan sense [1]. In our paper we call such a D a duoidal

category.1 In a duoidal category we have two tensor products with the corresponding unit

objects making D a monoidal category in two different ways. In addition, we require that

these two tensor products are related by a not necessary invertible middle interchange law

and that the unit objects also satisfy some interesting coherence relations.

1This terminology was proposed by Ross Street and we found it very convenient. The terminology of [1]
suffers from the existence of a similarly sounding terminology of Balteanu, Fiedorowicz, Schwänzl, and Vogt
[3], and Forcey [20].
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CENTERS AND HOMOTOPY CENTERS 3

Let D be such a duoidal category. To incorporate the theory of the Hochschild complex,

we also assume that D itself is enriched over a base closed symmetric monoidal category V.

In this situation one can consider a monoidal category K enriched in D (and the underlying

category of K is a monoidal V -category). Then we could define a monoid in K in a usual

way as an object equipped with a unit and an associative multiplication. But, unexpectedly,

such a monoid notion is in general not correct – it amounts to a monoid in the underlying

monoidal category. We introduce a new notion of a monoid in K by adding more unitary

operations which makes all theory nontrivial (all these operations coincide if D is a braided

monoidal category, so their multitude is not visible in the classical theory). Then for a

monoid M in K we define a cosimplicial object in D which is an analogue of the classical

Hochschild cosimplicial complex of an algebra. If we fix a cosimplicial object δ in V , we

can take a kind of geometric realization of the cosimplicial Hochschild complex. This is an

object CH δ(M, M) from D and this is our definition of the δ-center of a monoid. If δ is the

constant object δn = I (the unit of V ), then the δ-center is called the center. Notice that

the δ-center of a monoid lives in D , not in K. When V,D and K have compatible model

structures, we also define a homotopy center CH (M, M) of M by using an appropriate cofibrant

and contractible δ and a fibrant replacement of M.

In the classical theory we know that the center of a monoid is a commutative monoid. We

have an analogue of this statement in our settings: the center of a monoid in K is a duoid

(double monoid in the terminology of [1]) in D . The homotopy version of this statement is

the following: there is a canonical action of a contractible 2-operad on the homotopy center

of a monoid in K. This is an analogue of Deligne’s conjecture for the classical Hochschild

complex. Tamarkin’s main result from [36] is a special case of this Deligne’s conjecture

applied to a particular monoid in a monoidal category J(O,Chain) constructed in Section 10.

The classical Deligne’s conjecture follows from this statement by a theorem from [5] if D is

a symmetric monoidal category. In this paper we set up a version of the theory of 2-operads

which allows a precise formulation of such a statement. A proof of this form of Deligne’s

conjecture will be given in [9].

Finally, let us say a few words about possible further directions. One interesting and

almost obvious possibility is to replace duoidal categories by n-oidal categories. An n-oidal

category is a category with n monoidal structures related by interchange morphisms and

various coherence morphisms between unit objects which satisfy some coherence relations [1].

Many results of our paper admit more or less obvious generalization to the n-oidal case. In

particular, we can consider n-oids in n-oidal categories and centers and homotopy centers of

n-oids.

Conjecture ((n+1)-oidal Deligne’s conjecture). There is a canonical action of a contractible

(n+ 1)-operad on the homotopy center of an n-oid N which lifts the (n+ 1)-oid structure on

the center of N.

[tam.tex] [September 19, 2011]



4 M. BATANIN AND M. MARKL

Analogously to Tamarkin’s theorem, this conjecture answers a question: what do n-

categories enriched in a symmetric monoidal model category V form? This conjecture

should imply also the n-dimensional form of the classical Deligne conjecture [28] via the

results of [6, 5]. We hope to address the proof of these conjectures in the near future.

Another very interesting direction is a construction of the so-called semistrict n-categories.

In the theory of higher dimensional categories it is highly desirable to have some sort of a

minimal model of the theory of weak n-categories. Many important statements in higher

category theory, like the equivalences amongst almost all definitions of weak n-categories,

or the Grothendieck hypothesis on algebraic models of n-homotopy types [16], will follow

naturally once we have at hands a well developed theory of semistrict n-categories. So far,

however, a good notion of semistrict n-category is known only for n ≤ 3. For n = 2, it is the

category of strict 2-categories. For n = 3 it is the category of Gray-categories [22]. Both

these categories are examples of enrichment over a closed symmetric monoidal category which

comes from our homotopical center construction (see Examples 81 and 82). Combining the

results of [10] with the approach of our paper, we hope to be able to construct an analogue

of the Gray tensor product for all dimensions and therefore a good theory of semistrict

n-categories. This is currently a work in progress with M. Weber and D.-C. Cisinski [11].

Acknowledgment. We would like to express our thanks to C. Berger, D.-C. Cisinski,

S. Lack, R. Street, D. Tamarkin and M. Weber for many enlightening discussions.

2. Monoidal V -categories and duoidal V -categories

We fix from the beginning a complete and cocomplete closed symmetric monoidal category

(V,⊗, I). Its underlying category is denoted UV. For objects X, Y of an V -enriched category

A, we denote by A(X, Y ) ∈ V the enriched hom and by UA(X, Y ) := UV
(
I,A(X, Y )

)
the

set of homomorphism in the underlying category.

2.1. Monoidal V -categories. It is classical [19] that V -categories, V -functors and V -

natural transformations form a 2-category Cat(V ). Moreover, this 2-category is a symmetric

monoidal 2-category with respect to the tensor product ×V of V -categories:

Ob(K ×V L) := Ob(K)×Ob(L),

(K ×V L)
(
(X, Y ), (Z,W )

)
:= K(X,Z)⊗V L(Y,W ).

The unit for this tensor product is the category 1 which has one object ∗ and 1(∗, ∗) = I.

When V = Set we will use the notation Cat for Cat(V ). The underlying category functor

provides then a symmetric lax-monoidal 2-functor

U : Cat(V )→ Cat.

[September 19, 2011] [tam.tex]



CENTERS AND HOMOTOPY CENTERS 5

Recall that, for any monoidal 2-category or, more generally, for a monoidal bicategory there

exists a concept of a pseudomonoid, i.e. of an object equipped with a coherently associative

multiplication and a coherent unit which generalizes the notion of a monoidal category [29].

Definition 1. A monoidal V -category is a pseudomonoid in Cat(V ).

So, the definition is the usual definition of a monoidal category, but we require the tensor

product to be a V -functor and the coherence constraint to be V -natural.

Definition 2. A lax-monoidal V -functor between monoidal V -categories K = (K, �K , eK)

and L = (L, �L, eL) consists of

(i) a V -functor F : K → L,

(ii) a V -natural transformation

φ : F (X)�LF (Y )→ F (X �KY )

and a morphism

φe : eL → F (eK)

which satisfy the usual coherence conditions.

A lax-monoidal functor is called strong monoidal if φ and φe are isomorphisms and it is

called strict monoidal if they are identities.

Monoidal V -categories, lax-monoidal V -functors and their monoidal V -transformations

form a 2-category 1Catlax(V ). It is a monoidal 2-category with respect to the tensor prod-

uct ×V . Analogously, we have monoidal 2-subcategories

1Catstrict(V ) ⊂ 1Cat(V ) ⊂ 1Catlax(V )

of strict monoidal and strong monoidal functors.

2.2. Duoidal V -categories.

Definition 3. A duoidal V -category is a pseudomonoid in 1Catlax(V ). Explicitly, a duoidal

V -category is a quintuple D = (D , �0, �1, e, v) such that

(i) (D , �0, e) and (D , �1, v) are monoidal V -categories, equipped with

(ii) a V -natural interchange transformation

(X �1Y )�0(Z �1W )→ (X �0Z)�1(Y �0W ),

(iii) a map

e→ e�1e,

(iv) a map

v�0v → v,

[tam.tex] [September 19, 2011]



6 M. BATANIN AND M. MARKL

(v) and a map

e→ v.

The above data enjoy the coherence properties listed in [1, Definition 2.1], namely the asso-

ciativity meaning that the diagrams

❄❄

❄❄

✲

✲

(
A�0(C �0E)

)
�1

(
B �0(D�0F )

)

(A�1B)�0

(
(C �0E)�1(D�0F )

)

(A�1B)�0

(
(C �1D)�0(E �1F )

)

(
(A�0C)�0E

)
�1

(
(B �0D)�0F

)

(
(A�0C)�1(B �0D)

)
�0(E �1F )

(
(A�1B)�0(C �1D)

)
�0(E �1F )

❄❄

❄❄

✲

✲

(A�0D)�1

(
(B �0E)�1(C �0F )

)

(A�0D)�1

(
(B �1C)�0(E �1F )

)

(
A�1(B �1C)

)
�0

(
D�1(E �1F )

)

(
(A�0D)�1(B �0E)

)
�1(C �0F )

(
(A�1B)�0(D�1E)

)
�1(C �0F )

(
(A�1B)�1C

)
�0

(
(D�1E)�1F

)

commute, and the unitality meaning the commutativity of

(e�0A)�1(e�0B)A�1B

(e�1e)�0(A�1B)e�0(A�1B)

✲
❄

✻

✲

(A�0e)�1(B �0e)A�1B

(A�1B)�0(e�1e)(A�1B)�0e

✲
❄

✻

✲

(v �1A)�0(v�1B)A�0B

(v �0v)�1(A�0B)v�1(A�0B)

✲

✻✻

✛

(A�1v)�0(B �1v).A�0B

(A�0B)�1(v�0v)(A�0B)�1v

✲

✻✻

✛

In the above diagrams, A, . . . , F are objects of D and the arrows are induced by the structure

operations of D in an obvious way. Moreover, we require the units e, v to be compatible in

the sense that v is a monoid in (D , �0, e) and e a comonoid in (D , �1, v).

Remark 4. Observe that (v) is redundant as the interchange map (ii) with A = D = e and

B = C = v gives exactly (v).

Definition 5. A duoidal category D is called strict if both monoidal categories (D , �0, e)

and (D , �1, v) are strict monoidal categories.

Example 6. Pseudomonoids in 1Cat(V ) are the same as braided monoidal V -categories [24].

Any braided monoidal V -category can be considered as a duoidal V -category in which two

tensor products and two units coincide.

[September 19, 2011] [tam.tex]



CENTERS AND HOMOTOPY CENTERS 7

Example 7. The iterated 2-monoidal categories of Balteanu-Fiedorowicz-Schwänzl-Vogt [3]

are strict duoidal categories for which e = v.

Example 8. Forcey’s 2-fold monoidal categories are duoidal categories for which (iii) and

(iv) are isomorphisms.

Example 9. If D is a duoidal V -category, then its underlying category U(D) is a duoidal

Set-category which we simply call a duoidal category. The duoidal categories are exactly the

2-monoidal categories in the original sense of [1].

Definition 10. A lax-duoidal V -functor between duoidal V -categories D = (D , �0, �1, e, v)

and D ′ = (D ′, �′
0, �

′
1, e

′, v′) consists of

(i) a V -functor F : D → D ′,

(ii) V -natural transformation

φ : F (A)�′
0F (B)→ F (A�0B)

and a morphism

φe : e
′ → F (e)

which makes F a lax-monoidal functor from (D , �0, e) to (D ′, �′
0, e

′),

(iii) a V -natural transformation

γ : F (A)�′
1F (B)→ F (A�1B)

and a morphism

γv : v
′ → F (v)

which makes F a lax-monoidal functor from (D , �1, v) to (D ′, �′
1, v

′)

and which enjoy coherence properties from [1, Definition 6.44]. Namely, we require the

commutativity of the diagrams

❄❄

❄❄

✲

✲

F
(
(A�0C)�1(B �0D)

)

F
(
(A�1B)�0(C �1D)

)

F (A�1B)�′
0F (C �1D)

(F (A�0C)�
′
1(F (B �0D)

(
(F (A)�′

0F (C)
)
�

′
1

(
(F (B)�′

0F (D)
)

(
(F (A)�′

1F (B)
)
�

′
0

(
(F (C)�′

1F (D)
)

❄
F (e)�′

1F (e)e′ �′
1e

′

F (e�1e)F (e)e′

✲

✻

✲✲

✻

F (v)�′
0F (v)v′ �′

0v
′

F (v�0v)F (v)v′

✲

✻

✛✲

v′,e′

F (v)F (e)

✲

✻✻

✲

where A,B,C,D are objects of D and the meaning of the arrows is clear.

[tam.tex] [September 19, 2011]



8 M. BATANIN AND M. MARKL

We call a lax-duoidal functor strong if φ, φe, γ, γv are isomorphisms. A strong duoidal

functor is strict if these isomorphisms are identities.

Definition 11 ([1], Definition 6.46). A duoidal transformation φ : F → G between two

lax-duoidal functors is a natural transformation between F and G as functors, which is a

monoidal transformation with respect to two lax-monoidal structures on F and G.

Duoidal categories, lax-duoidal (strong, strict) duoidal functors and their duoidal trans-

formations form a 2-category 2Catlax(V ) (2Cat(V ), 2Catstrict(V )).

2.3. Duoids in duoidal V -categories. The following definition coincides with the defini-

tion of a double monoid given in [1].

Definition 12. A duoid in a duoidal V -category D is a lax-duoidal V -functor

D : 1→ D .

A morphism between duoids is a duoidal transformation between corresponding duoidal

lax-functors.

It is easy to see that a duoid D is given by an object D ∈ D together with

(i) a structure of a monoid

D�0D→ D , e→ D

with respect to the first monoidal structure, and

(ii) a structure of a monoid

D�1D→ D , v → D

with respect to the second monoidal structure.

This data should satisfy the following conditions:

(⋆) The map v → D is a monoid morphism with respect to the first structure and

(⋆⋆) the diagram
(D�1D)�0(D�1D)

❄

✲

✲

❅
❅❅❘

�
��✒

D�0D

D

(D�0D)�1(D�0D) D�1D

commutes.

Example 13. If D is a braided monoidal category then a duoid in D is the same as a

commutative monoid.

[September 19, 2011] [tam.tex]



CENTERS AND HOMOTOPY CENTERS 9

Example 14. The second unit v ∈ D is a duoid in D with the first monoid structure given

by the canonical morphism v �0v → v and with the second monoid structure given by the

canonical isomorphism v�1v → v.

Example 15. Duoids in the duoidal category Sp2(C ,K) (see Section 6) are K-enriched

2-categories whose 1-truncation is the category C .

Any lax-duoidal V -functor F : D → D ′ maps duoids in D to duoids in D ′. If D is a duoid

in a duoidal V -category D then D is also a duoid in the underlying duoidal category U(D).

We will use the notation u(D) for this duoid and will call it the underlying duoid of D.

2.4. Coherence for duoidal V -categories. Duoidal V -categories are algebras of a 2-

monad on the 2-category Cat(V ). The forgetful 2-functor 2Cat(V )→ Cat(V ) reflects equiv-

alences by [15], hence, the following definition makes sense:

Definition 16. A strong duoidal V -functor F is a duoidal equivalence if it is a V -equivalence

of the underlying V -categories. Two duoidal V -categories are called duoidal equivalent if

there is a duoidal equivalence between them.

Theorem 17. Every duoidal V -category is duoidal equivalent to a strict duoidal V -category.

Before we prove the theorem, we introduce the following auxiliary terminology. Let us

call a double monoidal V -category a category C equipped with two monoidal structures

(C , �0, e) and (C , �1, v) without any relations between two structures. We call a double

monoidal V -category strict if both monoidal structures are strict. Likewise, we have a notion

of double monoidal strong functor and equivalence between double monoidal V -categories.

Lemma 18. Any double monoidal V -category is equivalent to a strict double monoidal V -

category.

Proof. Any strict monoidal V -category is an algebra of the nonsymmetric operad M =

{M(n)}n≥0 in Cat(V ) such that M(n) is, for each n, the terminal category. A monoidal V -

category is an algebra of another operadMc in Cat(V ). There is an operadic map π :Mc → M

recalled below which is an adjoint V -equivalence in each arity (operadic weak equivalence).

One can prove thatMc is a cofibrant resolution ofM in the category of nonsymmetric operads

in Cat(V ) equipped with a model structure developed in [33] and [30]. Here we consider the

model structure on V for which weak equivalences are isomorphisms. These data allow to

prove the coherence result for monoidal V -categories (using bar-construction, for example).

More generally, one can prove by the same method that given a weak equivalence ξ : A→

B of Cat(V )-operads, every A-algebra is equivalent to an algebra of the form ξ∗(X), where

ξ∗ is the restriction functor induced by ξ.

[tam.tex] [September 19, 2011]



10 M. BATANIN AND M. MARKL

Remark 19. One can prove that the adjunction between categories of algebras induced by

ξ is in fact a Quillen equivalence.

Observe now that a double monoidal V -category is an algebra of the operadMc

∐
Mc and

a strict double monoidal V -category is an algebra of M
∐
M. Therefore, the lemma will be

proved if we establish that coproduct π
∐
π is a weak equivalence of operads. This follows

from the following explicit description of this coproduct.

A bicolored binary planar tree is a planar tree whose vertices have valencies three or one

and have two colors white and black. A planar tree l without vertices (and, therefore, without

coloring) is also considered as a binary bicolored tree. Let BTree be the set of isomorphism

classes of bicolored binary trees with n-leaves. The sequence BTree := {BTree(n)}n≥0 is an

operad in Set – the free operad on two 0-operations and two binary operations. A subtree

S of a bicolored binary tree T is called monocolored if all its vertices have the same colors.

Any monocolored subtree belongs to a unique maximal monocolored subtree.

An alternating bicolored planar tree is a planar tree whose vertices have valencies one or

greater or equal than three and have two colors – white and black. It also must satisfy the

following condition: there is no edge connecting two vertices of the same color. The tree l is

also considered as an alternating bicolored tree. Leaves and roots of an alternating bicolored

tree inherit the color by the following rule: a leaf (a root) has white (black) color if the

unique vertex to which the leaf (the root) is attached has white (black) color.

Let ATree(n) be the set of isomorphism classes of alternating bicolored trees with n-leaves.

The sequence ATree := {ATree(n)}n≥0 forms an operad. The operadic multiplication is given

by grafting if we graft a tree to a leaf of another tree and the color of this leaf is different

from the color of the root. In the case the colors coincide, we graft and contract the edge

which has the endpoints of the same color. The unit of this operad is l.

There is an obvious operadic map F : BTree → ATree. For a bicolored binary tree T , the

tree F (T ) is obtained by contracting all maximal monocolored subtrees of T to corollas and

preserving the colors.

We make ATree a Cat(V )-operad by considering ATree(n) as a discrete V -category. Like-

wise, we make BTree a Cat(V )-operad by requiring that we have a unique isomorphism

between two bicolored binary trees if and only if their imaged under F coincide. It is easy

to see that F is indeed a weak equivalence of Cat(V )-operads. Indeed, one can easily check

that Mc

∐
Mc ≃ BTree and M

∐
M ≃ ATree by considering generators and relations in

these operads. Moreover, F ≃ π
∐
π, which completes the proof. �

Proof of Theorem 17. Let D be a duoidal category. It has an underlying double monoidal

category D. By Lemma 18, one can find a strict double monoidal category D′ and a double

monoidal equivalence F : D → D′. Using this equivalence one can transport the duoidal

[September 19, 2011] [tam.tex]



CENTERS AND HOMOTOPY CENTERS 11

structure from D to D′ without altering the tensor products and units in D′. In this way we

obtain a strict duoidal category D ′ and F is lifted to a duoidal equivalence F ′ : D → D ′. �

Remark 20. Our proof of Lemma 17 was based on the fact that the coproduct of two weak

equivalences of Cat(V )-operads is again a weak equivalence. This statement is a ‘non-abelian’

version of the Künneth formula for augmented dg-operads proved as Theorem 21 of [32].

3. D-categories and monoidal D-categories

If D is a duoidal category we will denote Cat(D) the 2-category of (D , �0, e)-enriched

categories. It was observed by Forcey [20] that Cat(D) can be equipped with a monoidal

structure. The tensor product ×1 of two D-categories K and L is given by the cartesian

product on the objects level and

(K ×1 L)((X, Y ), (Z,W )) = K(X,Z)�1L(Y,W ), for a, c ∈ S, b, d ∈ P .

The unit for this tensor product is the category 1v which has one object ∗ and 1v(∗, ∗) = v.

Definition 21. A monoidal D-category K = (K,⊙, η) is a pseudomonoid in the monoidal

2-category (Cat(D),×1, 1v).

So we have a D-functor ⊙ : K ×1 K → K fulfilling the expected associativity up to a D-

natural transformation, and a D-functor η : 1v → K. By abusing notations we will denote

η the value of η on the unique object of 1v.

A pseudomonoid structure therefore implies the existence of a monoid morphism

(1) v → K(η, η)

and interchange morphisms

K(X, Y )�1K(Z,W )→ K(X ⊙ Z, Y ⊙W )

satisfying various coherence conditions.

Every D-category K has an underlying V -category UK, with the same objects and mor-

phisms given by

UK(X, Y ) = D(e,K(X, Y )), X, Y ∈ K.

This gives a 2-functor

U : Cat(D)→ Cat(V ).

This is actually a lax-monoidal 2-functor. To see this we have to specify a transformation

UK ×V UL → U(K ×1 L).

On the object level this is an identity and on the morphisms level we have

(UK ×V UL)((X, Y ), (Z,W )) = UK(X,Z)⊗V UL(Y,W ) =
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= D(e,K(X,Z))⊗V D(e,L(Y,W ))→ D(e�1e,K(X,Z)�1L(Y,W ))→

→ D(e, (K ×1 L)((X, Y ), (Z,W )) = U(K ×1 L)((X, Y ), (Z,W )).

In this calculation we used the fact that �1 is a V -functor and that e is a comonoid with

respect to �1. The unit constraint

1→ 1v

amounts to a morphism IV → D(e, v) which corresponds to the canonical morphism e→ v

in D . We leave the verification of coherence conditions to the reader.

Proposition 22. The 2-functor U maps monoidal D-categories to monoidal V -categories.

Proof. This is a direct consequence of lax-monoidality of U . �

Definition 23. A lax-monoidal functor F from a monoidal D-category (K,⊙, η) to a

monoidal D-category (L, ⋄, ι) is a D-functor F : K → L equipped with a D-natural trans-

formation:

F (X) ⋄ F (Y )→ F (X ⊙ Y )

and a morphism

ι→ F (η)

which make F a lax-monoidal functor between underlying monoidal V -categories and which

satisfy the following additional coherence condition:

L(FX ⋄ FZ, F (X ⊙ Z))�0L(F (X ⊙ Z), F (Y ⊙W ))

L(FX ⋄ FZ, F (Y ⊙W ))

L(FX ⋄ FZ, FY ⋄ FW )�0L(FY ⋄ FW,F (Y ⊙W ))

e�0K(X ⊙ Z, Y ⊙W )

(L(FX, FY )�1L(FZ, FW ))�0e

K(X ⊙ Z, Y ⊙W )

K(X, Y )�1K(Z,W )

L(FX, FY )�1L(FZ, FW )

✻
❄

❄
✻

❍❍❍❍❍❥✟✟✟✟✟✯

✟✟✟✟✟✯❍❍❍❍❍❥

As usual, we call a lax-monoidal D-functor strong (strict) if its coherence constrains are

isomorphisms (identities).

Definition 24. A monoidal D-transformation between two lax-monoidal D-functors is a

D-natural transformation which is a monoidal transformation between their underlying lax-

monoidal V -functors.
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Monoidal D-categories, lax-monoidal (strong, strict) D-functors and their monoidal D-

transformations form a 2-category 1Catlax(D) (1Cat(D), 1Catstrict(D)). Every lax-monoidal

D-functor between monoidal D-categories induces a lax-monoidal V -functor between the

underlying monoidal V -categories. The same is true for D-transformations.

Remark 25. The 2-category 1Cat(D) is not a monoidal 2-category. To make it monoidal,

we need one more tensor product on D which would make it a trioidal category. If this is

the case, the underlying V -category functor

U : 1Cat(D)→ 1Cat(V )

would be even a monoidal 2-functor.

Theorem 26. Every monoidal D-category is equivalent in 1Cat(D) to a strict monoidal

D-category.

Proof. This follows from a general theorem of S. Lack about strictification of pseudomonoids

in a Gray-monoid [29]. In our situation, the monoidal 2-category (Cat(D),×1, 1v) is not

a Gray-monoid but can be replaced by an equivalent Gray-monoid due to the tricategorical

coherence theorem of Gordon-Power-Street [22]. �

Due to this coherence theorem we will assume that all objects of 1Catlax(D), 1Cat(D) and

1Catstrict(D) are strict monoidal D-categories.

Definition 27. A D-enriched 2-category is a category enriched over (Cat(D),×1, 1v).

Remark 28. As in the classical situation, we can identify a strict monoidal D-category with

a D-enriched 2-category with one object. On the other hand, if C is a D-enriched 2-category

and x is an object of C, then C(x, x) ∈ Cat(D) is a monoidal D-category.

3.1. Monoids in monoidal D-categories. Let (K,⊙, η) be a monoidal D-category. The

category 1v is canonically a monoidal D-category (the tensor product is given by the structure

isomorphism v�1v → v).

Definition 29. A monoid in K is a lax-monoidal D-functor

M : 1v → K.

A morphism f : M→ N of monoids is a monoidal transformation. More explicitly, a monoid

in K is given by an object M ∈ K together with:

(i) a morphism (neutral element) in K

i : η → M,

which is, by definition, a morphism ν : e→ K(η, M) in D ,
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(ii) a morphism in K (multiplication)

m : M⊙ M→ M

that is, a morphism µ : e→ K(M⊙ M, M) in D and

(iii) a morphism in D (the unit)

u : v → K(M, M).

This last unusual piece of data comes from the requirements that M is a D-functor. These

data should satisfy the following axioms:

(⋆) i and m make M a monoid in UK,

(⋆⋆) u is a monoid morphism in D , and

(⋆⋆⋆) the following diagram commutes:

v e�0v

�
�
��✒

❆
❆
❆❆❯

✲ ✲

✲✲

❅
❅
❅❅❘

�
�
��✒

K(M⊙ M, M)�0K(M, M)

v �1v K(M⊙ M, M)

K(M, M)�1K(M, M) (K(M, M)�1K(M, M))�0e K(M⊙ M, M⊙ M)�0K(M⊙ M, M)

∼= µ�0u

u�1u

⊙�0u

A monoid morphism is a morphism f : M → N in K (i.e. a morphism φ̄ : e → K(M, N) in D)

which satisfies the usual requirements for monoids morphism, and

(⋆⋆⋆⋆) the following diagram commutes:

v�0e
✻

❄

✲

✲

❅
❅❅❘

�
��✒

K(M, M)�0K(M, N)

v K(M, N).

e�0v K(M, N)�0K(N, N)

∼=

∼=

Monoids and their morphisms form the category Mon(K).

3.2. K-enriched categories. Classically, a monoid in a monoidal category C is the same

as a one object C-enriched category. We now introduce K-enriched categories in a way that

this property is preserved.

Definition 30. A K-enriched category M consists of a set of objects M0 and, for each two

objects x, y ∈ M0, an object M(x, y) ∈ K. The structure morphisms are:
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(i) for each object x ∈ M0, a morphism in K

i(x) : η → M(x, x),

(ii) for any x, y, z ∈ M0 a morphism

m(x, y, z) : M(x, y)⊙ M(y, z)→ M(x, z),

(iii) and, for any two objects x, y ∈ M0, a morphism in D

u(x, y) : v → K(M(x, y), M(x, y)).

These data satisfy the obvious analogs of the axioms for monoids where, in the monoid

coherence condition (⋆⋆⋆), we have to replace K(M, M)�1K(M, M) by

K(M(x, y), M(x, y))�1K(M(y, z), M(y, z)).

The rest of the diagram is clear.

Analogously, one can define K-functors and K-natural transformations. So, a K-functor

F : M → N is given by a map of objects and an effect in D on morphisms expressed as

a structure morphism

(2) fe(x, y) : e→ K(M(x, y), N(F (x), F (y)), x, y ∈ M0,

satisfying the usual conditions and an obvious analogue of the extra coherence diagram

(⋆⋆⋆⋆) in which we have to replace M by M(x, y) and N by N(F (x), F (y)).

Remark 31. We can replace the structure morphism (2) by the morphism

(3) fv(x, y) : v → K(M(x, y), N(F (x), F (y)), x, y ∈ M0,

defined as the composite

v ≃ e�0v
fe �0u

−−−→ K
(
M(x, y), N(F (x), F (y)

)
�0K

(
N(F (x), F (y)), N(F (x), F (y)

)
−→

−→ K
(
M(x, y), N(F (x), F (y)

)
.

We can reconstruct fe from fv by precomposing with e→ v.

It is not difficult to check that K-enriched categories, their K-functors and K-natural

transformations form a 2-category which we will denote Cat(K). By abusing the notation,

we will also denote by Cat(K) the 1-truncation of Cat(K), i.e. the ordinary category of

K-categories and K-functors when it does not lead to confusion.

With the definitions above we can identify a monoid in K with a K-category with one

object. This identification gives a functor

Σ : Mon(K)→ Cat(K).
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16 M. BATANIN AND M. MARKL

4. Operads in duoidal categories

It is customary and convenient in the classical operad theory to assume that the base

symmetric monoidal category is strict. This is possible due to MacLane coherence theorem.

We follow this tradition and assume that our base duoidal category D is strict. Theorem 17

justifies this assumption.

The notion of a 2-fold operad in a 2-fold monoidal category was introduced by Forcey,

Siehler and Sowers in [21]. Our notion of a duoidal category is weaker than Forcey’s 2-fold

monoidal category, so we need a slight modification of their definition.

Definition 32. A collection A = {A(n)}n≥0 of objects of D is a Forcey 1-operad if, for each

integers n ≥ 1, k1, . . . , kn ≥ 0, one is given a morphism

(4) γ :
(
A(k1)�1 · · · �1A(kn)

)
�0A(n)→ A(k1 + · · ·+ kn),

fulfilling the obvious version of the associativity for a nonsymmetric operad. One also requires

a D-map j : e→ A(1) (the unit) such that the diagrams

(�k
1e)�0A(k)

❄

✛ e�0A(k)

❄

(�k
1A(1))�0A(k) ✲ A(k)

�
k
1j �0id

γ

and

✲

✟✟✟✟✟✟✟✟✯

❄

A(k)�0e A(k)

A(k)�0A(1)

id �0j γ

∼=

commute for each k ≥ 0. Morphisms of Forcey 1-operads are morphism of the underlying

collections compatible with all structure operations.

We, therefore, have a category of Forcey 1-operads in D . Every Forcey 1-operad determines

a right action of A on A(0) in the sense that there are morphisms (�k
1A(0))�0A(k) →

A(0), k ≥ 1, which satisfy the usual conditions for operad action.

Definition 33. A 1-operad in a duoidal category D is a Forcey 1-operad in D equipped

with a left v-module structure v�0A(0) → A(0) with respect to �0 on A(0) such that it

makes A(0) a (v, A)-bimodule in the sense that the following diagram commutes:

∼=
v�0(�

k
1A(0))�0A(k)(�k

1v)�0(�
k
1A(0))�0A(k)

(
�

k
1(v �0A(0))

)
�0A(k)

❄

✲✲

✲

v�0A(0)

❄

(�k
1A(0))�0A(k) ✲ A(0).
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Remark 34. As it is clear from these definitions, 1-operads and Forcey 1-operads differ only

in the treatment of composition (4) for n = 0. If we agree that �
0
1 = v and add the n = 0

case of γ to Definition 32, we will obtain exactly Definition 33.

Example 35. The associativity 1-operad Ass in D is given by Ass(n) = v, with the unit

and multiplication given by canonical morphisms e→ v and v�0v → v.

Example 36. The Forcey 1-operad As is given by As(n) = e. The unit is obvious. The

multiplication is defined as the composition

(e�1 . . . �1e︸ ︷︷ ︸
n

)�0e ≃ (e�1 . . . �1e︸ ︷︷ ︸
n

))�0((v�1 . . . �1v︸ ︷︷ ︸
n−1

�1e)→

→ (e�0v)�1 . . . �1(e�0v)︸ ︷︷ ︸
n−1

�1(e�0e) ≃ v�1 . . . �1v︸ ︷︷ ︸
n−1

�1e ≃ e.

For n = 1 we have just the canonical isomorphism

e�0e→ e.

Example 37. If D is a braided monoidal category, then a 1-operad in D is a classical

nonsymmetric operad. In this case there is no difference between Forcey operads and 1-

operads.

4.1. Endomorphism operads and algebras of operads. Let (K,⊙, η) be a (strict)

monoidal D-category.

Definition 38. The endomorphism 1-operad of an object X ∈ K is determined by:

EndX(n) = K(⊙
nX,X)

with the obvious multiplication and unit data. The only unusual data is the action of v on

EndX(0) = K(η,X) given by the composition of the structure maps

v�0EndX(0)→ K(η, η)�0K(η,X)→ K(η,X) = EndX(0).

Since the monoid K(η, η) acts on K(η,X), we have also an action of v via the morphism of

monoids (1).

Definition 39. An algebra of a 1-operad A is an object X of a duoidal category K equipped

with a 1-operad morphism k : A→ EndX .

We define now the V -enriched category of algebras for a 1-operad A. To shorten the

notations, we denote for two objects X, Y ∈ K and n ≥ 0,

EX(n) = EndX(n), EY (n) = EndY (n), EX,Y (n) = K(⊙
nX, Y ).

Let now X, Y be two A-algebras and let knX : A(n) → EX(n), k
n
Y : A(n) → EY (n) be

components of their structure morphisms. By definition, they are morphisms

knX : IV → D(A(n), EX(n)), k
n
Y : IV → D(A(n), EY (n))
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in V . For any n ≥ 0, we have obvious actions

EX(n)�0EX,Y (1)
a0−→ EX,Y (n)

a1←− EX,Y (1)�0EY (n).

Now we define, using a0, for each n a morphism d0n : D(e, EX,Y (1))→ D(A(n), EX,Y (n)) in V

D(e, EX,Y (1))→ IV ⊗V D(e, EX,Y (1))→ D(A(n), EX(n))⊗V D(e, EX,Y (1))→

→ D(A(n)�0e, EX(n))�0EX,Y (1))→ D(A(n), EX,Y (n)).

Similarly we define d1n : D(e, EX,Y (1)) → D(A(n), EX,Y (n)) using a1. Finally, we define the

V -enriched Hom from X to Y as the equalizer of the products of d0n and d1n,

D(e, EX,Y (1))
❥
✯

∏

n≥0

D(A(n), EX,Y (n)).

It is easy to see that the above construction defines a V -enriched category of algebras of A.

As usual, the category of algebras of A is just the underlying category of this V -category.

Analogously one can define V -category of algebras of any Forcey operad.

Proposition 40. The category of algebras of the Forcey 1-operad As is isomorphic to the

category of monoids in the underlying category UK. The category of algebras of the 1-operad

Ass is isomorphic to the category of monoids in K.

Proof. The first statement of the proposition is classical. Let us prove the second statement.

Let M be an algebra of Ass. It is obvious that the structure algebra map Ass → EndM is

given by the following three maps in D :

(i) the ‘neutral element’ ν : v → K(η, M),

(ii) the ‘unit’ u : v → K(M, M), and

(iii) the ‘multiplication’ µ : v → K(M⊙ M, M),

such that the diagrams (5a)–(5e) of maps in D below are commutative.

(5a)

✲

❄

❄
✻

✻
✲

✻

❄

v �0v ∼= (v�1v)�0v

v �0e ∼= v

v �0v ∼= (v�1v)�0v

K(M⊙ (M⊙ M), M⊙ M)�0 K(M⊙ M, M)

K(M⊙ (M⊙ M), M)

K((M⊙ M)⊙ M, M)

K((M⊙ M)⊙ M, M⊙ M)�0 K(M⊙ M, M)

⊙(u�1µ)�0µ

◦

∼=

◦

⊙(µ�1u)�0µ

(5b)

✲

❄

✻

✲

❄

✻

v�0v ∼= (v�1v)�0v K(e⊙ M, M⊙ M)�0 K(M⊙ M, M)

K(M, M) ∼= K(e⊙ M, M) ∼= K(M⊙ e, M)

K(M⊙ e, M⊙ M)�0 K(M⊙ M, M)v�0v ∼= (v�1v)�0v

v

⊙(ν �1u)�0µ

◦

◦

⊙(u�1ν)�0µ

u ✲
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(5c)

✲

❄

✻

✲

❄

✻

v �0v K(M⊙ M, M)�0 K(M, M)

K(M⊙ M, M)

K(M⊙ M, M⊙ M)�0 K(M⊙ M, M)(v�1v)�0v

v

µ�0u

◦

◦

⊙(u�1u)�0µ

µ ✲

(5d)

✲

❄❄

v �0v K(e, M)�0 K(M, M)

K(e, M)v

ν �0u

◦

u ✲

(5e)

✲

❄❄

v �0v K(M, M)�0 K(M, M)

K(M, M)v

u�0u

◦

u ✲

Using the map e → v of Definition 3(v), one defines the morphisms ν ∈ UK(e, M), µ ∈

UK(M⊙ M, M) and u ∈ UK(M, M) of the underlying category as the compositions

ν := e→ v
ν
→ K(e, M), µ := e→ v

µ
→ K(M⊙ M, M) and u := e→ v

u
→ K(M, M).

Diagram (5d) extends into

✲

❄❄

v�0ve�0v ✲

❍❍❍❍❍❍❨ ∼=

K(e, M)�0 K(M, M)

K(e, M)v

ν �0u

◦

ν ✲

which shows that ν is determined by the composition ν �0u of the top two horizontal maps,

i.e. by ν and u. Similarly one proves, using (5c), that µ is determined by µ and u. Finally, (5e)

implies that u equals the unit map of the underlying category.

From (5a) and (5b) one concludes that (M, µ, ν) is a unital monoid in the underlying

category UK. Diagram (5d) asserts that u is a monoid morphism. From (5c) one gets the

last coherence condition:

(6)

✲

❄

✻

✲
❄

✻

e�0v K(M⊙ M, M)�0 K(M, M)

K(M⊙ M, M)

K(M⊙ M, M⊙ M)�0 K(M⊙ M, M)(v�1v)�0e

µ�0u

◦

◦

⊙(u�1u)�0µ

∼=

This shows that Ass-algebras determine a monoid in K. The opposite implication is now

obvious as well as the statement about the isomorphism of categories. �
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5. Center, δ-center and homotopy center of a monoid

5.1. Multiplicative 1-operads in duoidal categories. In the following definition, Ass

is the 1-operad in D = (D , �0, �1, e, v) introduced in Example 35.

Definition 41. A 1-operad A in a duoidal category D is multiplicative if it is equipped with

a 1-operad map Ass→ A.

By definition, a multiplicative structure on A is given by a system v → A(n), n ≥ 0, of D-

morphisms satisfying appropriate compatibility conditions. Let ∆ be the classical simplicial

category whose objects are finite ordinals [n] = {0, . . . , n}, n ≥ 1, and morphisms in ∆(m,n)

are order-preserving set maps {0, . . . , m} → {0, . . . , n}.

Proposition 42. Each multiplicative operad A determines a cosimplicial object A : ∆→ D

in D whose value at n ∈ ∆ is A(n).

Proof. Assume that the multiplicative structure of A is given by a system mn : v → A(n),

n ≥ 0, of D-maps. We define the cosimplical structure on A by specifying the actions of the

standard generating maps of ∆. The coboundary d0 : A(n)→ A(n+ 1) is the composition

A(n)∼=
(
v�1A(n)

)
�0e→

(
v�1A(n)

)
�0v

(m1 �1id) �0m2

−−−−−−−−−→
(
A(1)�1A(n)

)
�0A(2)

γ
→ A(n+1),

where the second map uses the canonical morphism c : e → v. Likewise, dn+1 : A(n) →

A(n + 1) is the composition

A(n)∼=
(
A(n)�1v

)
�0e→

(
A(n)�1v

)
�0v

(id �1m1) �0m2

−−−−−−−−−→
(
A(n)�1A(1)

)
�0A(2)

γ
→ A(n+1).

For 1 ≤ i ≤ n, the map di : A(n)→ A(n + 1) is the composition

A(n) ∼= e�0A(n)
c �0id

−−−→ v �0A(n) ∼= (�n
1v)�0A(n)

fi �0id

−−−→

fi �0id

−−−→
(
�

i−1
1 A(1)�1A(2)�

n−i
1 A(1)

)
�0A(n)

γ
→ A(n+ 1),

where fi := �
i−1
1 m1 �1m2 �

n−i
1 m1. The cosimplicial degeneracies si : A(n + 1) → A(n),

0 ≤ i ≤ n, are the compositions

A(n + 1) ∼= e�0A(n+ 1)
c �0id

−−−→ v�0A(n+ 1) ∼= (�n+1
1 v)�0A(n + 1)

gi �0id

−−−→

gi �0id

−−−→
(
�

i
1A(1)�1A(0)�

n−i
1 A(1)

)
�0A(n + 1)

γ
→ A(n),

where gi := �
i
1m1 �1m0 �

n−i
1 m1. �
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5.2. Hochschild object, center and homotopy center. Assume that D is complete as

a V -category. By [26, Theorem 3.73] this is equivalent to D having small conical limits and

V -cotensors. The last condition means that, for any a ∈ V and y ∈ D , there exists an object

ya ∈ D such that

D(x, ya) ≃ V
(
a,D(x, y)

)

naturally for all x ∈ D . We also fix a cosimplicial object δ : ∆→ V in V . Then one defines

the δ-totalization of a cosimplicial object φ : ∆→ D as the V -enriched end

Totδ(φ) :=

∫

n∈∆

φ(n)δ(n) ∈ D .

Let A be a multiplicative 1-operad in D . By Proposition 42, it determines a cosimplicial

object in D (denoted again by A).

Definition 43. The Hochschild δ-object of a multiplicative 1-operad A is defined as

CH δ(A) := Totδ(A).

The endomorphism operad EndM of a monoid M in a D-monoidal category K is, by Propo-

sition 40, a multiplicative 1-operad in D .

Definition 44. The δ-center of a monoid M is defined as

CH δ(M, M) := CH δ(EndM).

If δ = I is the constant cosimplicial object that equals I ∈ V for all n, then the δ-center

Z(M) := CH I(M, M) will be called the center of M. Notice that, in general, the center of a

monoid in K lives in the category D , not in K. It is not difficult to see that the center of a

monoid M is given by the following equalizer in D :

(7) Z(M)→ K(η, M)
❥
✯ K(M, M).

Example 45. A trivial example of a monoid in K is the unit object η. It is obvious from

(7) that Z(η) = K(η, η) and that K(η, η) is a duoid in D .

Theorem 46. Let A be a multiplicative operad and δ = I. Then the Hochschild object

CH I(A) has the canonical structure of a duoid in D. In particular, the center of a monoid

M ∈ K has a canonical structure of a duoid in D .

Proof. We describe the structure morphisms for the duoid CH I(A). To construct a morphism

CH I(A)�0CH I(A)→ CH I(A)

it is enough to construct a morphism CH I(A)�0CH I(A) → A(0) which equalizes the

coboundary operators d0, d1 : A(0)→ A(1). One can take the composite

CH I(A)�0CH I(A)
π �0π

−−−→ A(0)�0A(0)
d0 �0d0
−−−→ A(1)�0A(1)→ A(1)

s0→ A(0),
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in which π : CH I(A)→ A(0) is the canonical map. Observe that, since π equalizes d0 and d1,

instead of d0 �0d0, one could have taken, in the above composition, di �0dj with arbitrary

i, j ∈ {0, 1}. Analogously, we construct a morphism

CH I(A)�1CH I(A)→ CH I(A)

using the composite

CH I(A)�1CH I(A)→ A(0)�1A(0) ≃
(
A(0)�1A(0)

)
�0e→

→
(
A(0)�1A(0)

)
�0v →

(
A(0)�1A(0)

)
�0A(2)→ A(0).

We define the unit

v → CH I(A)

for the second product using the composite

v → A(1)
s0→ A(0)

and the unit for the first product by composing

e→ v → CH I(A).

We leave a long, tedious, but straightforward verification of the correctness of our definitions,

as well as the verification of the duoid axioms to the reader. �

C. Barwick developed in [2] a notion of a model category enriched in a monoidal model

category. We can easily adapt his definition to the situation of an enrichment over a duoidal

category. So, let us assume that V is a monoidal model category, the category D is a model

category which is a monoidal model V -category for each of the monoidal structures on D ,

and K is a D-monoidal model category. In this case one can speak about a standard system

of simplices for V in the sense of [14, Definition A.6] (see also [7], Section 3.5). Let δ be such

a standard system of simplices for V. We also assume that there is a model structure on the

category of monoids in K and Fb(M) is a fibrant replacement for a monoid M.

Definition 47. The δ-center CH δ

(
Fb(M), F b(M)

)
will be called the homotopy center of M and

will be denoted CH (M, M).

Remark 48. The homotopy aspects of the theory of the center are out of the scope of this

paper and will be considered in the sequel [9]. We will show there that, under some, not

very restrictive, technical conditions the notion of homotopy center does not depend (up to

homotopy) on the standard system of simplices we use (see Example 52 for illustration).

This justifies our terminology.
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Example 49. Let V = Set and let D be a closed braided monoidal category, i.e D is enriched

over itself. Then the center of a monoid M in D is the equalizer

Z(M)→ M ≃ D(e, M)
❥
✯ D(M, M).

where the two arrows are induced by the left and right multiplication in M. Therefore, Z(M)

is the classical center of M.

Example 50. Let V = D = K = Cat. A monoid M in Cat is a strict monoidal category.

Let δ be the cosimplicial object in Cat whose n-th space is equal to the chaotic groupoid

with n + 1 objects. This is a standard system of simplices in Cat if we equip Cat with a

Joyal-Tirney model structure for which weak equivalences are categorical equivalences. In

this model structure all objects in Cat are fibrant, hence the δ-center of M is its homotopy

center and is equal to the Joyal-Street center of M [24].

Example 51. If we use, in the previous example, δ which in dimension n equals to the free

category on a linear graph with n+ 1 objects

•0 → •1 → . . .→ •n−1 → •n

then the δ-center of M is its lax-center (or colax if we reverse the orientation in δ), see [18].

Example 52. Let k be a commutative ring and let V = D = K = Chain the category

of chain complexes of k-modules. Let δ := C∗(∆
•), the complex of normalized simplicial

chains on the standard simplicial simplex ∆•. This δ is a standard system of simplices. The

δ-center of a monoid M (i.e. a unital differential graded algebra) is its normalized Hochschild

complex. It is the homotopy center of M.

Instead of δ given by normalized chains we can take δ̃ = Lani(δun), the left Kan extension

of δun : ∆in → Chain given by un-normalized chains. Here i : ∆in ⊂ ∆ is the subcategory of

injections. As follows from [8, Proposition A.6] and the discussion in the appendix to that

paper, the δ̃-center of M will be the unnormalized Hochschild complex of M. It is classical that

CHδ(M) is weakly equivalent to CHδ̃(M).

6. The duoidal category Sp2(C ,D)

Let us fix a small (with respect to some universe U) category C with the set of objects

C0, set of arrows C1, source and target maps sC , tC : C1 → C0, and the identity map

iC : C0 → C1. We also fix a duoidal V -category D = (D , �0, �1, e, v) as in Definition 3.

We assume, in addition, that D has small products and coproducts and both �0 and �1

commute with coproducts in each variable.
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Remark 53. In our applications we often assume that C is a large category with respect to

U such as the category of small categories. This is not, however, a big obstacle. Let U′ ⊃ U

be a bigger universe with respect to which the set of objects of C is a small set i.e. C0 ∈ U
′.

There is a standard procedure in enriched category theory described in [26, Section 3.11]

known as the universe enlargement which allows to embed a symmetric monoidal category V

in an essentially unique manner to a larger symmetric monoidal category V ′ in a way that

this embedding preserves all limits and colimits which exist in V , but V ′ also admits large

(with respect to U) limits and colimits which are small with respect to U
′.

This embedding is based on the argument of Day [17] which uses the convolution tensor

product (Day convolution) on the presheaf category SET V op

. Here SET is a version of the

category of sets based on the universe U
′. It is not difficult to check that Day’s argument

works equally well for a duoidal category D so we can embed D to a larger duoidal category

D ′ which admits all necessary limits and colimits. Due to this consideration, we can always

assume that V and D are large enough to form limits and colimits we need.

Definition 54. A globe (in C ) is a diagram

(8) glb (A,B; f, g) :=
g

f

BA
✒

❘
,

where A,B ∈ C0 are objects of C and f, g : A→ B their morphisms.

For G as in (8) we set s(G) := f , t(G) := g, S(G) := A and T (G) := B (the source, target,

supersource and supertarget of G, respectively). We will often need the ‘trivial’ globes

G(A) := glb (A,A; idA, idA) =
idA

idA

AA
✒

❘
, A ∈ C0, and(9a)

G(f) := glb (A,B; f, f) =
f

f

BA
✒

❘
, f : A→ B ∈ C1.(9b)

Definition 55. Let D be a duoidal V -category as above. A span D-object over C (or simply

a span object) is a system Y = {YG} of objects of D indexed by globes in C . A morphism

F : Y ′ → Y ′′ of span objects is a system of morphisms {FG ∈ D(Y ′
G
, Y ′′

G
)} indexed by globes

in C .

We denote by Sp2(C ,D) or simply by Sp2 if C and D are understood, the V -category of

span D-objects over C and their morphisms.
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Example 56. If D = V is the category Set of sets, a span Set-object, or a span set for

short, is the same as a diagram of sets

(10)

Y

st
✠❘

C1

sCtC
✠❘

C0

in which sC s = sC t and tC t = tC s. Indeed, for Y is as in the above diagram, we define the

fiber over a globe G as

(11) YG := {y ∈ Y ; s(y) = s(G), t(y) = t(G)}.

The system {YG} of fibers is then a span set in the sense of Definition 55.

On the other hand, any collection YG of sets indexed by globes in C assembles into the

disjoint union Y :=
⋃

G
YG. The maps s, t : Y → C1 defined by s(y) := s(G), t(y) := t(G) for

y ∈ YG, are then as in diagram (10).

We call the composition S := sC s : Y → C0 (resp. T := tC t : Y → C0) the supersource

(resp. the supertarget) map.

Convention 57. We will visualize span D-objects as diagrams (10) even when D is a general

duoidal category so the disjoint union Y :=
⋃

G
YG does not have a formal sense. We can

then think of Y as of a set fibered over the globes in C , with the fibers objects of D .

6.1. The first monoidal structure. Let Sp2 = Sp2(C ,D) be as in Definition 55. For span

objects Yi = {Yi,G} ∈ Sp2, i = 1, 2, define Y1 ×0 Y2 = {(Y1 ×0 Y2)G} ∈ Sp2 by

(12) (Y1 ×0 Y2)G :=
∐

G1,G2

Y1,G1 �0Y2,G2,

where the coproduct is taken over all globes G1,G2 that decompose G in the sense that

T (G1) = S(G2) and

s(G) = s(G2)s(G1), t(G) = t(G2)t(G1) (the composition in C ).

If we think of Y1 and Y2 in terms of diagrams (10), then Y1 ×0 Y2 is the pullback

(13)

�
��✠

❅
❅❅❘

❅
❅❅❘

�
��✠

❅❅��

Co

tt ss

Y1 Y2

Y1 ×0 Y2

.
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The above construction clearly extends into a functor ×0 : Sp2 × Sp2 → Sp2. Let 0 ∈ D

be the initial object and recall that e ∈ D is the unit for �0. Denote by 10 = {10G} ∈ Sp2

the object defined by

10G :=

{
e, if G is the globe G(A) in (9a) for some A ∈ C0, and
0, otherwise.

It is easy to see that 10 is a two-sided unit for ×0. Observe that, if D = V = Set, then 10 is

given by the diagram

C0

iCiC
✠❘

C1 .

sCtC
✠❘

C0

6.2. The second monoidal structure. For span V -objects Yi = {Yi,G} ∈ Sp2, i = 1, 2,

define Y1 ×1 Y2 = {(Y1 ×1 Y2)G} ∈ Sp2 by

(14) (Y1 ×1 Y2)G :=
∐

G1,G2

Y1,G1 �1Y2,G2,

where �1 is the second monoidal structure of D and the coproduct is taken over all globes

G1,G2 such that

(15) s(G) = s(G1), t(G1) = s(G2) and t(G) = t(G2).

In terms of diagrams (10), Y1 ×1 Y2 is the pullback

�
��✠

❅
❅❅❘

❅
❅❅❘

�
��✠

❅❅��

C1

t s

Y1 Y2

Y1 ×1 Y2

which has to be compared to the pullback (13) defining the×0-product. Let 11 = {11G} ∈ Sp2

be the object with

11G :=

{
v, if G is the globe G(f) of (9b) for some A

f
→ B ∈ C1, and

0, otherwise.
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In the diagrammatic language, 11 is the diagram

C1

idid
✠❘

C1

sCtC
✠❘

C0

.

It is clear that 11 is a two-sided unit for ×1. To construct the canonical map 11 ×0 11 → 11,

observe that (11 ×0 11)G 6= 0 only if G = G(f) for some morphism f in C , in which case one

has the composition

(16) (11 ×0 11)G(f) =
∐

f=f2f1

11G(f1) �011G(f2) =
∐

f=f2f1

v�0v −→
∐

f=f2f1

v,

in which the last arrow is the map (iv) of Definition 3. We define the component (11×011)G →

11G of the structure map 11 ×0 11 → 11 as the composition of the map (16) with the folding

map
∐

f=f2f1
v → v = 11G if G = G(f) for some f , and as the unique map 0 → 0 in the

remaining cases.

It is clear that, for the object 10 defined in Subsection 6.1, (10×110)G 6= 0 only if G = G(A)

for some A ∈ C0, in which case

(10 ×1 10)G(A) = e�1e.

We define the structure map 10 → 10 ×1 10 to be the map induced, in the obvious way, by

(iii) of Definition 3.

Let us describe the interchange law (A×1B)×0 (C ×1D)→ (A×0C)×1 (B×0D). From

the definitions (12) and (14) of the products ×0 and ×1 we get that

(A×1 B)×0 (C ×1 D)G =
∐

(Gu
1 ,G

u
2 ,G

d
1,G

d
2)∈LG

(AGu
1
�1BGd

1
)�0(CGu

2
�1DGd

2
),

where LG is the set of all globes Gu
1 ,G

u
2 ,G

d
1,G

d
2 such that

T (Gu
1) = S(Gu

2), T (G
d
1) = S(Gd

2), s(G) = s(Gu
2)s(G

u
1), t(G) = t(Gd

2)t(G
d
1) and(17a)

t(Gu
1) = s(Gd

1), t(G
u
2) = s(Gd

2).(17b)

The ‘configuration’ of the globes (Gu
1 ,G

u
2 ,G

d
1,G

d
2) ∈ LG is schematically depicted as

G
d
2

G
u
2

G
d
1

G
u
1

.✒
❘

✒
❘ ✲✲
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It is equally clear that

(A×0 C)×1 (B ×0 D)G =
∐

(Gu
1 ,G

u
2 ,G

d
1,G

d
2)∈RG

(AGu
1
�0CGu

2
)�1(BGd

1
�1DGd

2
),

where RG is the set of all globes Gu
1 ,G

u
2 ,G

d
1,G

d
2 satisfying (17a), but instead of (17b), a weaker

condition

s(Gu
2)s(G

u
1) = t(Gd

2)t(G
d
1).

It is clear that LG ⊂ RG. A ‘configuration’ that belongs to RG but not to LG is portrayed

below:

❘
✸
✲✲

G
d
2

G
u
2

G
d
1

G
u
1

.✒
❘✲

The G-component of the interchange law is defined as the map of coproducts induced by the

inclusion LG →֒ RG of the indexing sets, precomposed with the map
∐

(Gu
1 ,G

u
2 ,G

d
1,G

d
2)∈LG

(AGu
1
�1BGd

1
)�0(CGu

2
�1DGd

2
) −→

∐

(Gu
1 ,G

u
2 ,G

d
1,G

d
2)∈LG

(AGu
1
�0CGu

2
)�1(BGd

1
�1DGd

2
)

induced by the interchange law in D .

Theorem 58. The object Sp2(C ,D) = (Sp2(C ,D),×0,×1, 10, 11) constructed above is a

duoidal V -category in the sense of Definition 3. Suppose moreover that D is V -complete.

Then Sp2(C ,D) is also V -complete.

Proof. We leave the proof of the first part as an exercise. If V is complete, it is clear that

Sp2(C ,D) has all conical limits. Let us prove that Sp2(C ,D) has V -cotensors if D has.

For v ∈ V and Y = {YG} ∈ Sp2(C ,D) put Y v := {Y v
G
} ∈ Sp2(C ,D), where Y v

G
is the

V -cotensor of YG ∈ D . Let us verify that this formula defines a cotensor in Sp2(C ,D). For

X = {XG} ∈ Sp2(C ,D) one has

Sp2(X, Y
v) ∼=

∏
G

D(XG, Y
v
G
) ∼=

∏
G
V
(
v,D(XG, YG)

)
∼= V

(
v,
∏

G
D(XG, YG)

)

∼= V
(
v, Sp2(X, Y )

)

as required. �

Observe that, if D = V , i.e. if �0 = �1 = ⊗ and e = v = I, then the structure map

10 → 10 ×1 10 of Sp2(C ,D) is an isomorphism. Also, the assumption of the second part of

Theorem 58 is satisfied, therefore the category Sp2(C ,D) has cotensors.

Example 59. If C is the one-object, one-morphism category, the duoidal category Sp2(C ,D)

is isomorphic to the basic duoidal category D .
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Example 60. If D = Set, then Sp2(C ,D) is the category of derivation schemes introduced

by R. Street in [35]. If, in addition, C is the free category on a graph G, then Sp2(C ,D) is

the category of 2-computads in the sense of Street, whose 1-truncation is G.

7. Span categories and span operads

From now on we will assume that D = (D , �0, �1, e, v) is a duoidal category which is

V -complete, has coproducts, and both monoidal structures in D preserve coproducts in each

variable.

Definition 61. A span D-category is a category enriched over the V -monoidal category

Sp2 = (Sp2(C ,D),×0, 10).

By expanding the above definition, one sees that a span category A consists of a class

Ob(A) of objects and of span D-sets A(E, F) given for any E, F ∈ Ob(A), equipped with the

composition

(18a) ◦ : A(E, F)G �0A(F, G)F → A(E, G)FG (a map in D)

defined for all objects E, F, G ∈ Ob(A) and globes G, F satisfying S(F) = T (G). In (18a), FG

denotes the globe glb (S(G), T (F); s(F)s(G), t(F)t(G)). Still more explicitly, the compositions

are D-maps

(18b) ◦ : A(E, F)
g

f

BA
✸
s �0A(E, F)

l

h

CB
✸
s → A(E, F)

lg

hf

BA
✸
s ,

defined for arbitrary A,B,C ∈ C0 and f, g, h, l ∈ C0 for which the globes in the above display

make sense.

The operation ◦ is assumed to fulfill the standard associativity whenever the iterated

composition is defined. We also require, for each E ∈ Ob(A), the unit map iE ∈ A(E, E)

having the standard unitality property with respect to the composition ◦.

Convention 62. As usual, by a map in an enriched category we understand a map in the

underlying category (recalled below). So iE is in fact a map in

Sp2
(
10,A(E, E)

)
∼=

∏

A∈C0

D(e,A(E, E)G(A)), (cartesian product in V )

where G(A) is the trivial globe (9a). Because D is V -enriched, we still have to descent one

more step and interpret iE as an element of the set

UV
(
I,

∏

A∈C0

D(e,A(E, E)G(A))
)
, (cartesian product of sets)

where UV is the underlying category of V . This convention will be used throughout the rest

of the paper.
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If we interpret span objects as diagrams (10), a span category appears as a ‘partial’

category, in which the categorial composition φ ◦ψ of ψ ∈ A(E, F) and φ ∈ A(F, G) is defined

only if T (ψ) = S(φ). One then has

s(φ ◦ ψ) = s(φ)s(ψ) and t(φ ◦ ψ) = t(φ)t(ψ),

which implies T (φ ◦ ψ) = T (φ) and S(φ ◦ ψ) = S(ψ). The unit iE is then represented by

a map iE : C0 → A(E, E) with siE = tiE = iC such that

φ ◦ iE(S(φ)) = iF(T (φ)) ◦ φ = φ,

for all φ ∈ A(E, F) and E, F ∈ Ob(A).

The underlying category of a span (= Sp2-enriched) categoryA is defined in the usual man-

ner as the V -enriched category UA with the same set of objects, and morphism UA(E, F) :=

Sp2(10,A(E, F)). It follows from definition that

UA(E, F) =
∏

A∈C0

D
(
e,A(E, F)G(A)

)
, (the product in V )

where G(A) is the trivial A-globe (9a). In the diagrammatic interpretation (10) of span

objects one has

UA(E, F) := {λ : C0 → A(E, F); sλ = tλ = iC }.

So, the underlying category UA of a span W -category A is a V -enriched category. It

therefore has its own underlying category U2A := U(UA), which is this time an ordinary

category (no enrichment). Objects of a span category A are isomorphic if and only if they

are isomorphic as objects of U2A.

Example 63. If C is the initial one-object, one-morphism category, then span D-categories

over C are ordinary (D , �0, e)-enriched categories.

7.1. Monoidal span-categories. Monoidal categories over a duoidal category were intro-

duced in Section 3. Here we address the particular case of the duoidal category Sp2(C ,D).

The 1-product of span D-categories A1 and A2 over C is the span V -category A1 ×1 A2 over

C whose class of objects is the cartesian product Ob(A1)×Ob(A2). The morphisms are

(19a) (A1 ×1 A2)(E1 × E2, F1 × F) := A1(E1, F1)×1 A2(E2, F2).

Explicitly, for a globe G and objects Ei, Fi ∈ Ai, i = 1, 2, we have

(19b) (A1 ×1 A2)(E1 × E2, F1 × F)G :=
∐

G1,G2

A1(E1, F1)G1 �1A2(E2, F2)G2 ,

with the coproduct over all globes G1,G2 as in (15).

Loosely speaking, the set of morphisms (A1 ×1 A2)(E1 × E2, F1 × F2) is generated by the

products φ1 �1φ2 ∈ A1(E1, F1)�1A2(E2, F2) satisfying t(φ1) = s(φ2), see Figure 1. The
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φ2φ1

t(φ1) = s(φ2)

Figure 1. The source-target conditions for generators φ1 �1φ2 ∈ A1(E1, F1)�1A2(E2, F2).

categorical composition is defined componentwise in the obvious manner. One clearly has,

for span categories A1, A2 and A3, an isomorphism

(A1 ×1 A2)×A3
∼= A1 ×1 (A2 ×A3),

but, in general, A1 ×1 A2 6∼= (A2 ×1 A1). The category 1v with one object 1 and the span

set of morphisms 1v(1, 1) := v is the unit for the multiplication ×1.

Definition 64. A span monoidal D-category is a Sp2(C ,D)-monoidal category in the sense

of Definition 21.

Observation 65. The functor η : 1v → K in Definition 21 is specified by an object e := η(1)

together with a C1-family of D-morphisms v → K(e, e)G(f), with G(f) as in (9b).

7.2. Span operads.

Definition 66. A span operad is a 1-operad, in the sense of Definition 33, in the duoidal

category Sp2(C ,D).

Expanding the above definition, we see that a span operad is an Sp2-collection X =

{X(n)}n≥0 such that, for n ≥ 1, k1, . . . , kn ≥ 0, and globes G, Gi, 1 ≤ i ≤ n, that satisfy

S(G) = T (G1) = · · · = T (Gn)

and

t(G1) = s(G2), t(G2) = s(G3), . . . , t(Gn−1) = s(Gn),

one has a D-map

(20) γ :
(
X(k1)G1 �1 · · · �1X(kn)Gn

)
�0X(n)G −→ X(k1 + · · ·+ kn)G(G1,...,Gn),

where G(G1, . . . ,Gn) := glb (S(G), T (G1); s(G)s(G1), t(G)t(Gn)), satisfying May’s associativ-

ity (which, in this case, includes also the distributivity law in D) whenever the iterated

compositions are defined.

An operad unit is given by a map2 j ∈ Sp2
(
e,X(1)

)
, i.e. by maps jG(A) ∈ D

(
e,X(1)G(A)

)
,

A ∈ C0, such that

γ(x, jG(B), . . . , jG(B)) = x and γ(jG(A), x1) = x1,

for each x ∈ X(n), x1 ∈ X(1) and A,B ∈ C0 such that S(x) = B and T (x1) = A.

2In the sense of Convention 62.
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xnx2x1

x

T (xn) = S(x)T (x2) = S(x)T (x1) = S(x)

· · · = s(xn)t(x2) =t(x1) = s(x2)

Figure 2. The source-target conditions of elements for which γ(x, x1, . . . , xn)
is defined. The composition is assumed from the bottom to the top.

Informally, a span operad is a ‘partial’ operad with the composition γ(x, xn, . . . , x1) defined

only if the source and target conditions

S(x) = T (x1) = · · · = T (xn)

and

t(x1) = s(x2), t(x2) = s(x3), . . . , t(xn−1) = s(xn),

are satisfied, see Figure 2.

Example 67. If C is the one object, one morphism category, then a span operad is a

1-operad in the duoidal category D in the sense of Definition 33.

Example 68. If D = V = Set, we immediately see from the above explicit description that

a span operad is exactly a fc-operad of Leinster [31] with discrete graph of colors

C0

idid
✠❘

C0

whose 0-truncation is Id-operad C .

Example 69. According to Example 35, one has a span operad Ass with Ass(n) := 11 for

n ≥ 0. There is also a Forcey span-operad As with As(n) := 10. If C is the initial one-object

one-arrow category and D = V , then Ass and As coincide and are the non-Σ operads for

unital associative V -algebras.

Example 70. Each object E of a span monoidal category (A,⊙, e) determines the span

endomorphism operad EndE = {EndE(n)}n≥0 with EndE(n) := A(E
⊙n, E). We put, by defini-

tion, E⊙0 := e so EndE(0) = A(e, E). The structure operations are given in an obvious way.

The operadic unit j : e→ EndE(1) = A(E, E) is the unit map of the category A.
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8. The monoidal span category J(O,K)

In this section we describe a construction providing examples of span categories. More

precisely, we us fix a monoidal D-category K = (K,⊙, η) which admits coproducts and ⊙

preserves them in each variable. Let us fix also a functor O : C → Set. We will construct a

monoidal span category J(O,K) which will play the rôle of the basis monoidal category for

the construction of the Tamarkin complex.

Let Gl(C ) be a category of globes in C , that is, the category whose set of objects is C0 and

whose set of arrows is the set of globes in C . The composition and identities are obvious.

Let F : Gl(C )→ Cat(D) be a functor. The enriched version of the Grothendieck construc-

tion
∫
F is the category whose objects are pairs (A,X) where A ∈ C0 and X is an object of

F (A). The enriched hom
∫
F
(
(A,X), (B, Y )

)
is defined as

∐

G∈Gl(C )(A,B)

F (B)
(
F (G)(X), Y

)
.

There is a projection π0 : (
∫
F )0 → C0. One therefore has a span category Γ(F ) whose

objects are sections of the map π0 : (
∫
F )0 → C0. Given two such sections E, F, one puts

Γ(F )(E, F) :=
∐

A,B∈C0

∫
F
(
E(A), F(B)

)

with the obvious structure of a span D-object. The composition and identities are obvious.

Now we will construct a canonical spanification functor Sp(O,K) : Gl(C ) → Cat(D) out

of a functor O : C → Set and a monoidal D-category K. The objects of the category

Sp(O,K)(A) are K-spans of the form

(22) ��✠ ❅❅❘
O(A) O(A)

X
s t , A ∈ C0,

i.e. collections X = {X(a′, a′′)} of objects of K indexed by elements a′, a′′ ∈ O(A). The

D-enriched homs in Sp(O,K)(A) are given by

Sp(O,K)(A)(X, Y ) :=
∏

a′,a′′∈O(A)

K
(
X(a′, a′′), Y (a′, a′′)

)
.

It is easy to see that the monoidal D-structure ⊙ of K induces a monoidal D-structure ⊙⋆

on Sp(O,K)(A) by the formula

(23) (X⊙⋆ Y )(a′, a′′) :=
∐

a∈O(A)

X(a′, a)⊙ Y (a, a′′).

For a globe as in (8), the functor Sp(O,K)(G) maps a span (22) to the span

O(B)
O(f)
←− O(A)

s
← X

t
→ O(A)

O(g)
−→ O(B).
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So we have a span category Γ(Sp(O,K)). This category is the main ingredient for the

construction of the Tamarkin complex, so we describe it explicitly.

To simplify the notation, we will denote O by (̃−) : C → Set and Γ(Sp(O,K)) will be

denoted J(O,K). Objects of J(O,K) are C0-families of K-enriched spans

(24) ��✠ ❅❅❘
Ã Ã

EA
s t , A ∈ C0,

i.e. families E = {EA(a
′, a′′)}, a′, a′′ ∈ Ã, A ∈ C0, E(a′, a′′) ∈ K. The span D-sets of

morphisms J(O,K)(E, F) = {J(O,K)(E, F)G} have fibers the products

(25) J(O,K)(E, F)
g

f

BA
✸
s :=

∏

a′,a′′∈Ã

K
(
EA(a

′, a′′), FB(f̃(a
′), g̃(a′′)

)

of D-enriched homs in K. Less formally, (25) is the set of dashed arrows in the commutative

diagram

�
�

��✠

❅
❅❘

❅
❅❘

�
�

��✠
✲

✲

Ã B̃

B̃Ã

✲EA FB

f̃

g̃

s s
t t

The structure maps (18b) are then compositions of the dashed arrows in

❅
❅❘

�
�

��✠
✲

✲

C̃

C̃

✲ GC

h̃

l̃

s
t

�
�

��✠

❅
❅❘

❅
❅❘

�
�

��✠
✲

✲

Ã B̃

B̃Ã

✲FA EB

f̃

g̃

s s
t t

In terms of the fibers, the structure maps are compositions of the maps in the following

display:
∏

a′,a′′∈Ã

K
(
EA(a

′, a′′), FB(f̃(a
′), g̃(a′′))

)
�0

∏

b′,b′′∈B̃

K
(
FB(b

′, b′′), GC(h̃(b
′), l̃(b′′))

)

↓
∏

a′,a′′∈Ã

K
(
EA(a

′, a′′), FB(f̃(a
′), g̃(a′′))

)
�0K

(
FB(f̃(a

′), g̃(a′′)), GC(h̃f (a
′)), l̃g(a′′))

)

↓
∏

a′,a′′∈Ã

K
(
EA(a

′, a′′),GC(h̃f (a
′), l̃g(a′′))

)
.

The upper map above is the canonical one and the lower map is the categorial composition

in K. The unit map iE in Sp2(e, J(O,K)(E, E) is the the product in
∏

A∈C0

D
(
e, J(O,K)(E, E)G(A)

)
=

∏

A∈C0

∏

a′,a′′∈Ã

D
(
e,K(EA(a

′, a′′), EA(a
′, a′′))

)
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of the enriched units iE(a′,a′′) ∈ D
(
e,K(EA(a

′, a′′), EA(a
′, a′′))

)
of the category K.

Example 71. The following particular case will be relevant to our interpretation of the

Tamarkin construction addressed in Section 10. Let C be the category of small dg-categories,

K = D = V = Chain and O : C → Set be the object functor. The objects of the

corresponding category J(O,K) will then be collections of chain complexes E = {EA(a
′, a′′)},

indexed by objects a′, a′′ ∈ A of dg-categories A ∈ C0.

We will often drop the indices A,B,C, ... ∈ C0 and write simply {E(a′, a′′)} instead of

{EA(a
′, a′′)}, &c.

Let us prove that the category J(O,K) constructed above has a natural monoidal structure.

The functor ⊙⋆ : J(O,K) ×1 J(O,K) → J(O,K) assigns to objects E1 = {E1(a
′, a′′)} and

E2 = {E2(a
′, a′′)} of J(O,K) the object E1⊙⋆ E2 = {(E1⊙⋆ E2)(a

′, a′′)} ∈ J(O,K) where in the

right hand side we use the ‘local’ product defined by (23). Informally, E1⊙⋆ E2 is the C0-family

of the pull-backs

��✠ ❅❅❘
Ã Ã

E1
s t ��✠ ❅❅❘

Ã

E2 .
s t

��✠ ❅❅❘

E1⊙⋆ E2

Before we explain how the functor ⊙⋆ acts on morphisms, we need to expand some defini-

tions. For objects E1, E2, F1, F2 ∈ J(O,K) and a globe G = glb (A,B; f, g) ∈ Gl(C ), one sees

that the fiber (J(O,K)×1J(O,K))(E1×E2, F1×F2)G of the mapping space in J(O,K)×1J(O,K)

equals

∐

l∈C (A,B)


 ∏

a′1,a
′′

1∈Ã

K
(
E1(a

′
1, a

′′
1), F1(f̃(a

′
1), l̃(a

′′
1))

)
�1

∏

a′2,a
′′

2∈Ã

K
(
E2(a

′
2, a

′′
2), F2(l̃(a

′
2), g̃(a

′′
2))

)

 ,

since all globes G1, G2 such that t(G1) = s(G2) as in (19b) have the form

G1 = glb (A,B; f, l) , G2 = glb (A,B; l, g) ,

for some l : A→ B ∈ C1. On the other hand, the fiber J(O,K)(E1⊙⋆ E2, F1⊙⋆ F2)G of the hom

space in J(O,K) equals
∏

a′,a′′∈Ã

K
( ∐

a∈Ã

E1(a
′, a)⊙ E2(a, a

′′),
∐

a∈Ã

F1(f̃(a
′), a)⊙ F2(a, g̃(a

′′))
)
.

To define the functor ⊙⋆ on morphisms, one needs to specify, for objects E1, E2, F1, F2 ∈

J(O,K) and a globe G as above, a D-morphism

⊙⋆ : (J(O,K)×1 J(O,K))(F1 × F2, E1 × E2)G → J(O,K)(F1⊙⋆ F2, E1⊙⋆ E2)G.
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One defines this D-morphism as the composition of the canonical maps

∐

l∈C (A,B)


 ∏

a′1,a
′′

1∈Ã

K
(
E1(a

′
1, a

′′
1), F1(f̃(a

′
1), l̃(a

′′
1))

)
�1

∏

a′2,a
′′

2∈Ã

K
(
E2(a

′
2, a

′′
2), F2(l̃(a

′
2), g̃(a

′′
2))

)



↓
∐

l∈C (A,B)

∏

a′1,a
′′

1 ,a
′

2,a
′′

2∈Ã

(
K
(
E1(a

′
1, a

′′
1), F1(f̃(a

′
1), l̃(a

′′
1))

)
�1 K

(
E2(a

′
2, a

′′
2), F2(l̃(a

′
2), g̃(a

′′
2))

))

↓
∐

l∈C (A,B)

∏

a′1,a
′′

1 ,a
′

2,a
′′

2∈Ã

K
(
E1(a

′
1, a

′′
1)⊙ E2(a

′
2, a

′′
2), F1(f̃(a

′
1), l̃(a

′′
1))⊙ F2(l̃(a

′
2), g̃(a

′′
2))

)

↓
∐

l∈C (A,B)

∏

a′1,a,a
′′

2∈Ã

K
(
E1(a

′
1, a)⊙ E2(a, a

′′
2), F1(f̃(a

′
1), l̃(a))⊙ F2(l̃(a), g̃(a

′′
2))

)

↓
∏

a′1,a,a
′′

2∈Ã

K
(
E1(a

′
1, a)⊙ E2(a, a

′′
2),

∐

a′∈Ã

F1(f̃(a
′
1), a

′)⊙ F2(a
′, g̃(a′′2))

)

↓
∏

a′,a′′∈Ã

K
( ∐

a∈Ã

E1(a
′, a)⊙ E2(a, a

′′),
∐

a∈Ã

F1(f̃(a
′), a)⊙ F2(a, g̃(a

′′))
)
.

Observe the necessity of the source-target condition t(G1) = l = s(G2) for the existence of

the above composed map.

The first piece of data specifying the unit functor η : 1→ J(O,K) as in Observation 65 is

the object e = {e(a′, a′′)} ∈ J(O,K) defined by

(26) e(a′, a′′) :=

{
η, if a′ = a′′, and
0, otherwise.

In the diagrammatic language, e is the span

��✠ ❅❅❘
Ã Ã

Ã
id id .

To define v → J(O,K)(e, e)G(f), notice that, for f ∈ C1,

J(O,K)(e, e)G(f) =
∏

a′,a′′∈Ã

K(e(a′, a′′), e(f̃(a′), f̃(a′′)) ∼=
∏

a∈Ã

K(η, η).

With this identification, the D-morphism v → J(O,K)(e, e)G(f) is the product of the D-

morphisms v → K(η, η) of (1).

The underlying category UJ(O,K) has the same objects as J(O,K), i.e. families of K-spans

E = {EA}, A ∈ C0, as in (24). We leave as an exercise to prove that UJ(O,K)(E, F) consists

[September 19, 2011] [tam.tex]



CENTERS AND HOMOTOPY CENTERS 37

C0-families {ϕA : EA → FA} of morphisms of K-enriched spans, with the componentwise

composition. By Proposition 22, UJ(O,K), is a monoidal D-category.

9. Factorization of functors, and monoids in J(O,K)

In this section we analyze a correspondence between monoids in the span monoidal cate-

gory J(O,K) introduced and further studied in Section 8, and factorizations of the defining

functor O = ˜ : C → Set. Let Grph(K)0 be the set of K-enriched graphs, i.e. objects

��✠ ❅❅❘
S S

A
s t

in which S is a set and A a collection of objects of K indexed by S × S. Suppose that the

object map (̃−)0 : C0 → Set0 of the functor (̃−) : C → Set factorizes as

(27a)

C0 Set0

Grph(K)0

❄
✲

(̃−)0

vrt0

✚
✚
✚
✚
✚✚❃

L0

where vrt0 assigns to each K-graph its set of vertices. This factorization determines a dis-

tinguished object of J(O,K), namely the C0-family M = {MA}, with MA := L0(A), for A ∈ C0.

Suppose that there is a map F0 : C0 → Cat(K)0 assigning to each object A ∈ C0 a small

K-category F0A such that (̃−)0 : C0 → Set0 further factorizes as

(27b)

C0 Set0

Cat(K)0 Grph(K)0

✻

✲

❄
✲

(̃−)0

vrt0

gr0

F0

where gr 0 is the underlying graph map.

Proposition 72. Suppose that the map (̃−)0 : C0 → Set0 factorizes as in (27b). Then

the distinguished object M ∈ J(O,K) constructed above is a monoid in the underling cate-

gory UJ(O,K).

Proof. A monoid structure on M is given by Sp2-maps µ : e→ J(O,K)(M⊙⋆ M, M) and ν : e→

J(O,K)(e, M). It is an exercise on definitions that these maps are given by specifying, for

each A ∈ C0, elements

µ
G(A) ∈

∏

a′,a,a′′∈Ã

K
(
F0A(a

′, a)⊙ F0A(a, a
′′), F0A(a

′, a′′)
)

and νG(A) ∈
∏

a∈Ã

K
(
η, F0A(a, a)

)
,
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where G(A) is as in (9a). Since F0A is a K-category with the set of objects Ã, one can take

as µ
G(A) the element determined by the K-category composition of F0A and as νG(A) the

element determined by the K-category identities of F0A. One easily verifies that this choice

gives a monoid in UJ(O,K). �

Assume that the factorization (27b) is induced by a factorization

(27c)

C Set

Cat(K) Grph(K)

✻

✲

❄
✲˜

vrt

gr

F

of the functor ˜ : C → Set via functors . One then has

Proposition 73. Suppose that the functor ˜ : C → Set factorizes via functors as in (27c).

Then the object M ∈ J(O,K) is a monoid, in the sense of Definition 29, in the span-monoidal

category J(O,K).

Proof. Since factorization (27c) implies factorization (27b) M has, by Proposition 72, an

induced structure of a monoid in UJ(O,K). By Proposition 40, it remains to specify an

Sp2-map u : v → J(O,K)(M, M). Such a map is determined by a choice, for each A
f
→ B ∈ C1,

of an element

uG(f) ∈
∏

a′,a′′∈Ã

D
(
v,K

(
FA(a′, a′′), FB(f(a′), f(a′′))

))
,

where G(f) is as in (9b). We take as uG(f) the product of the D-maps F (f)v of (3) determining

the functor F (f) : FA→ FB. �

The correspondences described above can be organized into the scheme:

functor ˜ : C → Set 7−→ category J(O,K)

factorization (27a) 7−→ object of J(O,K)

factorization (27b) 7−→ monoid in the underlying category UJ(O,K)

factorization (27c) 7−→ monoid in J(O,K)

The table above can be ‘categorified’ as follows. Let us denote by Fct1(O) the category

whose objects are factorizations L0 as in (27a) and whose morphisms L′
0 → L′′

0 are C0-

families {αA : L′
0(A) → L′′

0(A)} of graph morphisms. Likewise, let Fct2(O) be the category

whose objects are factorizations F0 as in (27b) and morphisms F ′
0 → F ′′

0 are C0-families

{βA : F ′
0(A) → F ′′

0 (A)} of K-functors. Finally, let Fct3(O) be the category of functors F as

in (27c), and their natural transformations.
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Proposition 74. One has the following natural isomorphisms of categories:

Fct1(O) ∼= the underlying category UJ(O,K) of J(O,K),

Fct2(O) ∼= the category of monoids in UJ(O,K),

Fct3(O) ∼= the category of monoids in J(O,K).

The correspondence O → J(O,K) behaves functorially as well:

Proposition 75. The correspondence O 7→ J(O,K) extends to a contravariant functor J(K)

from the category of functors [C , Set] and their natural transformations to the category of

monoidal span D-categories and their span D-functors.

Proof. To prove the proposition, we need to construct in a functorial manner, for an arbitrary

natural transformation Φ : O1 → O2 of functors O1, O2 : C → Set, a span-functor Φ∗ :

J(O2)→ J(O1).

Let E = {EA(a
′, a′′)}, A ∈ C0, a

′, a′′ ∈ O2(A), be an object of J(O2,K). We then define

Φ∗
E ∈ J(O1,K) to be the object Φ∗

E = {Φ∗
EA(b

′, b′′)}, A ∈ C0, b
′, b′′ ∈ O1(A), with

Φ∗
EA(b

′, b′′) := EA(ΦA(b
′),ΦA(b

′′)),

where ΦA : O1(A) → O2(A) is the set map induced by the transformation Φ. To finish the

definition of Φ∗ we need to specify, for each globe in C and each E, F ∈ J(O2,K), a D-map

J(O2,K)(E, F)
g

f

BA
✸
s −→ J(O1,K)(Φ

∗
E,Φ∗

F)
g

f

BA
✸
s .

Expanding definitions, we see that we need to construct a D-map from the product

(28)
∏

a′,a′′∈O2(A)

D
(
EA(a

′, a′′), FB(O2(f)(a
′), O2(g)(a

′′)
)

to the product
∏

b′,b′′∈O1(A)

D
(
EA(ΦA(b

′),ΦA(b
′′), FB(ΦBO1(f)(b

′),ΦBO1(g)(b
′′)
)
.

Since, of course, ΦBO1(f)(b
′) = O2(f)(ΦA(b

′)) and ΦBO1(g)(b
′′) = O2(g)(ΦA(b

′′)), the prod-

uct in the last display equals

(29)
∏

b′,b′′∈O1(A)

D
(
EA(ΦA(b

′),ΦA(b
′′), FB(O2(f)(ΦA(b

′)), O2(g)(ΦA(b
′′))

)
,

so we need to construct a map from the product (28) to the product (29). We take the map

induced by the map

ΦA × ΦA : O1(A)× O1(A)→ O2(A)×O2(A)

of the indexing sets. It is not difficult to verify that the above constructions indeed assemble

into a span D-functor Φ∗ : J(O2,K)→ J(O1,K). �
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10. Tamarkin complex of a functor F : C → Cat(K)

Let F : C → Cat(K) be a functor. Then we have factorization (27c) and therefore

a distinguished monoid M(F ) ∈ J(O,K). Let δ : ∆→ V be a fixed cosimplicial object in V.

Definition 76. The Tamarkin complex of a functor F : C → Cat(K) relative to δ is the

δ-center CH δ(F, F ) := CH δ(M(F ), M(F )).

Example 77. Let C = 1. A functor C : 1 → Cat(K) picks up a K-category C. Let δ = I

so the δ-center of a monoid is its center. Then CH δ(C, C) can be identified with the duoid

of K-natural transformations of the identity functor Id : C → C. If K = D = V , we get the

classical center of C.

Example 78. Take, in the previous example, K = D = V = Chain and δ as in Example 52.

Then CH δ(C, C) is the classical Hochschild complex of the dg-category C [25].

The following result shows that the Tamarkin complex is a powerful tool for constructing

enrichments.

Theorem 79. Let C = Cat(K) and F = Id : Cat(K) → Cat(K). Let again δ = I. Then

CH δ(Id , Id) is a duoid in Sp2(C ,D) (i.e. a D-enriched 2-category) with the property that

its underlying duoid u
(
CH δ(Id , Id)

)
is equal to Cat(K), the 2-category of K-categories, K-

functors and K-natural transformations.

Proof. Direct verification. �

From now on we will use the notation Cat(K) for the D-enriched 2-category ofK-categories,

K-functors and K-natural transformations. Theorem 79 provides a classical interpretation

of the center of a monoid as the object of natural transformations of the identity functor.

Indeed, if M is a monoid in K, then Σ(M) is a one object K-category. Remark 28 shows that

Cat(K)(Σ(M),Σ(M))

is a monoidal D-category with the unit object given by the identity functor Id .

Corollary 80. The following four duoids in D are naturally isomorphic:

(1) the center Z(M) of a monoid M in K,

(2) the center Z(Id) in Cat(K)
(
Σ(M),Σ(M)

)
,

(3) the duoid Cat(K)
(
Σ(M),Σ(M)

)
(Id , Id) in D and

(4) the duoid CH I

(
Σ(M),Σ(M)

)
(see Example 77).

Proof. By Example 45, Z(Id) ∈ D equals Cat(K)(Σ(M),Σ(M))(Id , Id). On the other hand, we

establish by direct calculation that this object coincides with the equalizer (7) and, therefore,

is the center Z(M). �
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Example 81. If K = D = V = Set, then CH I(Id , Id) is the 2-category of categories Cat

with its cartesian closed structure. On the other hand, if we define δ : ∆→ Set in dimension

n as the set {0, . . . , n} with the obvious coface and codegeneracy operators, then CH δ(Id , Id)

is the sesquicategory of categories, functors and their unnatural transformations (so it is Cat

with its second closed symmetric monoidal structure [27]).

Example 82. Let K = D = V = Cat with its cartesian closed monoidal structure and

δ be as in Example 50. Let F = Id : Cat(Cat) → Cat(Cat). Then CH δ(Id , Id) is the

Gray-category Gray of 2-categories, 2-functors and pseudonatural transformations [22].

Example 83. Replacing δ from (50) by δ from (51), we obtain a nonsymmetric version

of Gray which consists of 2-categories, 2-functors and lax-natural (or colax-natural if we

change the orientation in δ) transformations [23].

We end up this section by showing that when K = D = V is the category Chain of chain

complexes, C is the category Cat(Chain) of small dg-categories, F = Id : Cat(Chain) →

Cat(Chain) and δ is again as in Example 52, the resulting Tamarkin complex indeed coincides

with the original Tamarkin’s construction Rhom(−,−) from [36, Definition 3.0.2]. Let us

recall its definition.

For small dg-categories A, B and dg-functors f, g : A→ B, one defines, for each n ≥ 0,

homn(f, g) :=
∏

a0,...,an∈A

Chain
(
A(a0, a1)⊗ · · · ⊗ A(an−1, an), B(f(a0), g(an))

)
,

with the product taken over all (n+1)-tuples (a0, . . . , an) of objects of A. As shown in [36],

the objects homn(f, g) assemble into the cosimplicial chain complex hom∗(f, g).

Let O = (̃−) : Cat(Chain) → Set be the object functor. As explained in Exam-

ple 71, the corresponding category J(O,Chain) consists of collections of chain complexes

E = {EA(a
′, a′′)}, indexed by objects a′, a′′ ∈ A of small dg-categories A.

Theorem 73 therefore gives a distinguished monoid M in the span-monoidal category

J(O,Chain). The monoid M = {MA(a
′, a′′)} has a simple explicit description. For A ∈ C , one

has

MA(a
′, a′′) := A(a′, a′′),

the Chain-enriched hom-functor in A. To specify a monoid structure of M, one needs to

choose, for any dg-category A ∈ C and any dg-functor f : A→ B ∈ C , the following three

pieces of data:

µ
G(A) ∈

∏

a′,a,a′′∈A

Chain
(
A(a′, a)⊗ A(a, a′′), A(a′, a′′)

)

νG(A) ∈
∏

a∈A

Chain
(
k, A(a, a)

)
, and

uG(f) ∈
∏

a′,a′′∈A

Chain
(
A(a′, a′′), B(f(a′), f(a′′))

)
.
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The element µG(A) is given by the enriched composition in A, νG(A) by the enriched unit and

uG(f) is part of the definition of the Chain-enriched functor f .

One can consider, as in Definition 38, the endomorphism 1-operad EndM of M. The monoid

structure of M is, by Proposition 40, equivalent to a 1-operad map Ass → EndM, i.e. EndM

is a multiplicative operad in the sense of Definition 41. By Proposition 42, EndM therefore

carries a natural structure of a cosimplicial object in Chain. The following statement of this

section is now obvious:

Theorem 84. Let f, g : A→ B be dg-functors between dg-categories. Then the cosimplicial

hom-functor hom•(f, g) defined in [36] and recalled above, is the fiber over the globe

(30)
g

f

BA
✒

❘

of the cosimplicial span-object associated to the multiplicative endomorphism 1-operad EndM

of the distinguished monoid M in the span-monoidal category J(O,Chain).

Tamarkin defined, in [36], the right derived hom-functor Rhom(f, g) as the totalization

|hom•(f, g)| of the cosimplicial hom-functor hom•(f, g). In the terminology of Subsec-

tion 5.2, |hom•(f, g)| is therefore the G-fiber, where G is the globe in (30), of CH δ(Id , Id).

11. The Deligne conjecture in monoidal D-categories

For n a positive integer, n-operads are higher analogs of (nonsymmetric) operads. Their

pieces have arities given by trees with n-levels. While ordinary operads live in monoidal cat-

egories, n-operads live in augmented monoidal n-globular categories. We begin this section

by introducing, for n = 0, 1, 2, a simplified version of n-operads tailored for the needs of the

present paper. A general approach can be found in [4]. The relation between our restricted

case and the general one is addressed in Remark 92.

11.1. 2-operads and their algebras in duoidal V -categories. Let us recall the definition

of the category Ωk of k-trees, for k ≤ 2. The category of 0-trees Ω0 is the terminal category 1.

Its unique object is denoted U0.

The category of 1-trees Ω1 is the category of finite ordinals (n) := {1, . . . , n}, n ≥ 0, and

their order-preserving maps. As usual, we interpret {1, . . . , n} for n = 0 as the empty set.

The terminal object of Ω1 is denoted U1 := (1). When the meaning is clear from the context,

we will simplify the notation and denote the object (n) ∈ Ω1 simply by n.

Notice that Ω1 is isomorphic to the ‘algebraic’ version ∆alg of the basic simplicial category

∆, i.e. to ∆ augmented by the empty set, and can be characterized as the free strict monoidal

category generated by a monoid. The category Ω1 can also be interpreted as the subcategory
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of open maps of Joyal’s (skeletal) category of intervals I, whereas ∆ is isomorphic to Iop,

see [12, Section 2].

The definition of the category Ω2 of 2-trees is more involved. A 2-tree T is a morphism

t : n→ m in Ω1. Leaves of height 2 of the tree T are, by definition, elements from {1, . . . , n}.

Leaves of height 1 of T are those elements i ∈ {1, . . . , m} for which t−1(i) = ∅. The set of all

leaves of the tree T has a natural linear order defined by counting leaves when we are going

around the tree in the clockwise direction.

There are exactly two 2-trees with one leaf. The tree U2 := (1→ 1) has one leaf of height

2 while the tree zU1 := (0 → 1) has one leaf of height 1. The tree z2U0 := (0 → 0) has no

leaves. A map of 2-trees

(31) σ : T = (n→ m)→ S = (p→ q)

is a commutative diagram of maps in Set:

{1, . . . , n}

❄

✲

✲

t

s

σ1σ2

{1, . . . , m}

❄
{1, . . . , p} {1, . . . , q}

such that

(i) σ1 is order preserving and

(ii) for any i ∈ {1, . . . , m}, the restriction of σ2 to t−1(i) is order preserving.

We denote by Ω2 the category of 2-trees . Its terminal object is the tree U2 = (1→ 1). The

category Ω2 is a monoidal category with the structure + given by the fiberwise ordinal sum

(gluing the roots of 2-trees in geometric terms). The unit of this monoidal product is z2U0.

Remark 85. There are obvious truncation functors

(32) Ω2
∂
→ Ω1

∂
→ Ω0.

If we consider them as the source-target functors s = t = ∂, then (32) becomes a strict

monoidal 2-globular category i.e. the 2-categorical object in Cat. It can be characterized as

being the free strict monoidal globular 2-category generated by an internal 2-category [13].

Similarly, one can characterize the strict monoidal 1-globular category

Ω1
∂
→ Ω0

as the free strict monoidal globular 1-category generated by an internal 1-category. Notice

that this universal property is an ‘extension’ of the universal property of ∆alg since any strict

monoidal category can be considered as a one object monoidal globular 1-category [4].
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Any morphism of 2-trees σ : T → S as in (31) has its fibers . Given a leaf i ∈ {1, . . . , p} of

height 2, the restriction of t determines an order preserving map

ti : σ
−1
2 (i)→ σ−1

1 (s(i))

which we consider as a 2-tree and call the fiber over the leaf i. In the case of a leaf j ∈

{1, . . . , q} of height 1, σ−1
1 (j) is an ordered subset of {1, . . . , m} which determines a 1-tree

in Ω1, the fiber over the leaf j. With a slight abuse of notation, we will denote this fiber by

σ−1
1 (j) and use the same convention throughout the rest of this section.

Since the set of leaves of S has a natural linear order, the set of fibers of σ also inherits

this order. So, for a σ : T → S we will denote T1, . . . , Tk the set of its fibers in this order.

Let us fix n ∈ {0, 1, 2}.

In item (⋆) of the next definition we consider the composition T
σ
→ S

ω
→ R of maps of

n-trees, n ≤ 2. We will use the following notation. Let S1, . . . , Sk be the fibers of ω and

Ti := σ−1(Si), 1 ≤ i ≤ k. Denote also by σi : Ti → Si the restriction σ|Ti
and Ti,1, . . . , Ti,mi

the fibers of σi. Clearly T1, . . . , Tk are precisely the fibers of the composition ωσ and

{T1,1, . . . , T1,m1 , . . . , Tk,1, . . . , Tk,mk
}

the set of fibers of σ.

In the following definition where V = (V,⊗, I) is the basic monoidal category, we introduce

our restricted version of n-operads. The terminology will be justified in Remark 92.

Definition 86. Let 0 ≤ n ≤ 2. An n-operad in V (n) is a collection A(T ), T ∈ Ωi , i ≤ n, of

objects of V equipped with the following structure:

(i) morphisms ξi : I → A(Ui) , i ≤ n (the units);

(ii) for every morphism σ : T → S in Ωi, i ≤ n, with fibers T1, . . . , Tk a morphism

mσ : A(T1)⊗ · · · ⊗ A(Tk)⊗A(S)→ A(T ) (the multiplication).

The structure operations are required to satisfy the following conditions.

(⋆) For any composite T
σ
→ S

ω
→ R, the associativity diagram

⊗

1≤i≤k

A(Ti,•)⊗ A(S•)⊗ A(R)

❄

✻ mωσ

≃

mσ

id ⊗mω

⊗k

i=1 mσi
⊗ id

❄

✻

✲

✲
⊗

1≤i≤k

(
A(Ti,•)⊗A(Si)

)
⊗ A(R)

⊗

1≤i≤k

A(Ti,•)⊗ A(S)

A(T•)⊗A(R)

A(T )
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in which

A(S•) := A(S1)⊗ · · · ⊗ A(Sk),

A(Ti,•) := A(Ti,1)⊗ · · · ⊗A(Ti,mi
), 1 ≤ i ≤ k, and

A(T•) := A(T1)⊗ · · · ⊗ A(Tk);

commutes.

(⋆⋆) For the identity σ = id : T → T , the diagram

✛

❄

A(Ui0)⊗ · · · ⊗ A(Uin)⊗A(T ) I ⊗ · · · ⊗ I ⊗ A(T )

A(T )

✘✘✘✘✘✘✘✘✘✘✘✾ id

mid

commutes.

(⋆⋆⋆) For 0 ≤ i ≤ n and the unique morphism T → Ui in Ωi, the diagram

✛

❄

A(T )⊗A(Ui) A(T )⊗ I

A(T )

✏✏✏✏✏✏✏✏✏✮
id

commutes.

Example 87. A 0-operad in V (0) consists of an object A(U0). The structure maps equip it

with a monoid structure in V .

Example 88. A 1-operad A in V (1) is given by a nonsymmetric operad A′ in V (which is the

same as a 1-operad in V if we interpret V as a duoidal category) with A′(k) := A((k)), k ≥ 0,

and a monoid A(U0). The map of 1-trees id : (0)→ (0) induces an operadic multiplication

A(U0)⊗ A((0))→ A((0))

which equips A′(0) with a A(U0)-module structure. This structure is compatible with the

rest of the operadic structure of A′ as in Definition 33 with v replaced by A(U0).

Definition 89. The 0-operad Ass0 defined as the monoid I ∈ V . The classical associativity

1-operad Ass1 is such that Ass1(T ) := I for each n-tree T , n ≤ 1. Similarly, we define the

2-operad Ass2 with Ass2(T ) := I for any n-tree T , n ≤ 2, with all structure maps being the

canonical isomorphisms.

Definition 90. Let k < n. The restriction of an n-operad A on Ωi, i ≤ k, is a k-operad

trk(A) in V
(k) called the k-truncation of A.

Definition 91. An n-operad in V (n) is called 0-terminal if tr0(A) = Ass0. An n-operad in

V (n) is called 1-terminal if tr1(A) = Ass1.

Nonsymmetric operads in V are therefore exactly 0-terminal 1-operads in V (1).
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Remark 92. According to [4], general n-operads live in augmented monoidal n-globular

categories. The above notion of an n-operad in V (n) is the specialization of this general

notion to the augmented monoidal n-globular category V (n) defined, for n ≤ 2, as follows.

The category V (0) is just the category V with its monoidal structure. The category V (1)

is the following monoidal 1-globular category: in dimension 0 we have V, in dimension 1 we

have V × V . The source and target functors coincide and equal to the projection on the

second variable. The functor z : V → V × V is defined by z(x) = (I, x). The monoidal

structure is induced the by monoidal structure of V in an obvious manner.

To construct V (2), we add to V (1) the product V ×V ×V in dimension 2, with the projection

to the second and third coordinates as its 1-source and 1-target functors. We leave to the

interested reader to describe the rest of the augmented monoidal structure of V (2).

Remark 93. There is another construction of an augmented monoidal n-globular category

associated with a symmetric monoidal category V. This augmented monoidal n-globular cat-

egory ΣnV has terminal category 1 in dimensions strictly less than n and V in dimension n.

An n-operad in Σn was called (n − 1)-terminal operad in V [6]. The relation between our

terminology here and the terminology of [6] is following.

There is a globular functor Σn(V )→ V (n) which in dimension k < n sends a unique object

of 1 to the (k+1)-tuple (I, . . . , I) and in dimension n it sends an object X ∈ V to the tuple

(X, I, . . . , I). It is not hard to check that this is an augmented monoidal globular inclusion.

An n-operad in V (n) is (n − 1)-terminal in the present terminology if it takes values in the

subcategory Σn(V ). Therefore, our terminology is compatible with the terminology of [6].

A 2-tree T = (n
t
→ m) is called pruned if t is an epimorphism. Equivalently, a 2-tree is

pruned if all its leaves are in height 2. Any 2-tree T contains the maximal pruned subtree

ι : T (p) → T1. It is obvious that the fibers of ι are U2 or z2U0. For any 1-terminal 2-operad

A one therefore has the morphism

(33) A(T )→ I ⊗ · · · ⊗ I ⊗ A(T )→ A(U2)⊗ · · · ⊗ A(U2)⊗A(T )→ A(T (p)).

Definition 94. A 1-terminal 2-operad is pruned if (33) is an isomorphism for any T ∈ Ω2.

If C is a V -category, then with every object X ∈ C we can associate a 0-operad EndX0,

which is just the endomorphism monoid C (X,X).

Let now E = (E , �, e) be a monoidal V -category. For any object X ∈ E we will define

its endomorphism 1-operad EndX1 in V (1). To do this, we introduce the tensor power of X

as follows.

(0) With a unique 0-tree U0 we associate its tensor power as

XU0 := e.
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(1) With a 1-tree n ∈ Ω1 we associate the tensor power

Xn := X � · · · �X︸ ︷︷ ︸
n

with the convention

X0 = XzU0 := e.

The definition of Xn above looks tautological, but notice that n abbreviates (n) ∈ Ω1.

Definition 95. The endomorphism 1-operad of X ∈ E is given by

EndX1(T ) := E (XT , XUi),

where T ∈ Ωi, i = 0, 1.

Let now D be a duoidal V -category. For any objectX ∈ D we will define its endomorphism

2-operad EndX2 in V (2). To do this, we define first the tensor power of an object X .

(0) With a unique 0 tree U0 we associate the tensor power

XU0 := e;

(1) With a 1-tree n ∈ Ω1 we associate the tensor power

Xn := v�0 · · · �0v︸ ︷︷ ︸
n

with the convention

X0 = XzU0 := e.

(2) With a 2-tree T we associate the tensor power XT as follows. Let T = (n
t
→ m) 6=

z2U0 and let ni := t−1(i) for 1 ≤ i ≤ m. Then we put

XT := (X �
n1
1 )�0 · · · �0(X

�
nm
1 ).

We use here the convention that X �
0
1 := v. We complete the definition by putting

Xz2U0 := e.

We believe that the ‘ideological’ portrait of XT in Figure 3 clarifies our definition.

Definition 96. The endomorphism 2-operad of X ∈ D is given by

EndX2(T ) = D(XT , XUi),

where T ∈ Ωi, i = 0, 1, 2.

Lemma 97. The collection EndX2(T ), T ∈ Ωi, i = 0, 1, 2, has a natural structure of a 2-

operad in V (2).
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Figure 3. An ‘ideological’ picture of XT . Leaves of height 2 (resp. 1) are
decorated by X (resp. v). The decorations of vertices of height 2 (resp. 1) are
then multiplied by �1 (resp. �0), with the �1-multiplication performed first.

Proof. We construct first the units ξi : I → EndX2(Ui), i = 0, 1, 2. We have EndX2(U0) =

D(XU0 , XU0) = D(e, e), and we define ξ0 := id e : I → D(e, e). Analogously we define

ξ1 := idv : I → D(v, v) and ξ2 := idX : I → D(X,X).

The 0-truncation of EndX is clearly the endomorphism monoid of e ∈ D . The 1-truncation

is the endomorphism operad of the monoid v ∈ D with the obvious multiplication.

To define the multiplication with respect to morphisms of 2-trees, we begin with the special

case when the codomain of σ : T → S has the form S = (k → 1). We will say that such a

tree is a suspension of the 1-tree k. If k = 0, then T = (0→ m) and the unique fiber of σ is

equal to the 1-tree m. We define the operadic multiplication as the composite in D :

D(v �0 · · · �0v︸ ︷︷ ︸
m

, v)⊗D(v,X)→ D(v �0 · · · �0v︸ ︷︷ ︸
m

, X).

Suppose k > 0 and T = (n → m). Then the fiber over a leaf i ∈ {1, . . . , k} has the form

Ti = (ti : ni → m). For j ∈ {1, . . . , m} let nij := t−1
i (j). There is then a canonical morphism

(34) Xσ : XT → XT1 �1 · · · �1X
Tk .

To see it, we observe that

XT ∼=
(
(X �

n1,1
1 )�1 · · · �1(X

�
nk,1
1 )

)
�0 . . . �0

(
(X �

n1,m
1 )�1 · · · �1(X

�
nk,m
1 )

)
,

and

XTi ∼= (X �
ni,1
1 )�0 · · · �0(X

�
ni,m
1 ), 1 ≤ i ≤ k.

We define Xσ as the interchange morphism

XT ∼=
(
(X �

n1,1
1 )�1 · · · �1(X

�
nk,1
1 )

)
�0 · · · �0

(
(X �

n1,m
1 )�1 · · · �1(X

�
nk,m
1 )

)
−→

−→
(
(X �

n1,1
1 )�0 · · · �0(X

�
n1,m
1 )

)
�1 · · · �1

(
(X �

nk,1
1 )�0 · · · �0(X

�
nk,m
1 )

)
∼=

∼= XT1 �1 · · · �1X
Tk .
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The operadic multiplication mσ : EndX2(T1)⊗ · · · ⊗ EndX2(Tk)⊗ EndX2(S)→ EndX2(T )

is now defined as the composition

D(XT1 , X)⊗ · · · ⊗D(XTk , X)⊗D(XS, X)→

→ D(XT1 �1 · · · �1X
Tk , X �

k
1 )⊗D(X �

k
1 , X)→

→ D(XT , XS)⊗D(XS, X)→ D(XT , X).

The first map in the above composition exists because �1 is a V -functor, the second map is

induced by Xσ.

Let now S be a general 2-tree. If S = z2U0 then σ = id z2U0
andmσ is simply the composite

D(e, e)⊗D(e,X)→ D(e,X).

Let S 6= z2U0. Then S is canonically the ordinal sum of trees, S = P1 + · · · + Pl, where

Pi is, for 1 ≤ i ≤ l , a suspension of a 1-tree ki. Moreover, there obviously exist 2-trees

Q1, . . . , Ql such that T = Q1+ · · ·+Ql and σ : T → S is the sum σ = σ1+ · · ·+σl, for some

σi : Qi → Pi, 1 ≤ i ≤ l. We denote Ti,j the fiber of σ over a leaf j ∈ Pi.

Observe that XT = XQ1 �0 · · · �0X
Ql and XS = XP1 �0 · · · �0X

Pl. We now define

Xσ : XT → (XT1,1 �1 · · · �1X
T1,k1 )�0 · · · �0(X

Tl,1 �1 · · · �1X
Tl,kl )

as the product Xσ = Xσ1 �0 · · · �0X
σl . Finally, we define the operadic multiplication mσ as

D(XT1,1 , X)⊗ · · · ⊗D(XTl,kl , X)⊗D(XS, X)→

→ D(XT1,1 �1 · · · �1X
T1,k1 , XP1)⊗ · · · ⊗D(XTl,1 �1 · · · �1X

Tl,kl , XPl)⊗D(XS, X)→

→ D
(
(XT1,1 �1 · · · �1X

T1,k1 )�0 · · · �0(X
Tl,1 �1 · · · �1X

Tl,kl ), XS
)
⊗D(XS, X)→

→ D(XT , XS)⊗D(XS, X)→ D(XT , X).

We used again that �0 and �1 are V -functors. We leave the tedious but obvious verification

of the associativity of thus defined operadic multiplication to the reader. �

Observe that the 1-truncation of the 2-operad EndX2 is the endomorphism 1-operad of the

monoid v ∈ (D , �0, e). So we have a canonical operadic map

kv : Ass1 → tr1(EndX2).

Definition 98. An algebra of a pruned 2-operad A in V (2) is an object X ∈ D equipped

with a map of 2-operads

k : A→ EndX2

such that tr1(k) = kv.

As in Subsection 4.1, one can show that A-algebras form a V -category. Notice also that

a more precise name for algebras in Definition 98 would be 1-terminal A-algebras, but we

opted for a simpler terminology.
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Example 99. We leave as an exercise for the reader to show that algebras of Ass2 are

exactly duoids in D .

A proof of the following theorem will be given in [9]:

Theorem 100. Let δ be a fixed cosimplicial object in V. Then there is a pruned 2-operad

CoendTam2(δ) with a canonical action on CH δ(A) for any multiplicative 1-operad A in D.

In particular, such an action exists on the δ-center CH δ(M, M) of a monoid M in a monoidal

D-category.

If δ = I, then CoendTam2(δ) = Ass2 and the action of CoendTam2(δ) recovers the canonical

duoid structure on CH I(A) constructed in Theorem 46.

Remark 101. The notation CoendTam2(δ) comes from [7]. In that paper the authors devel-

oped techniques of condensation of symmetric colored operads. The operad CoendTam2(δ) is

also a condensation, but we condense a colored 2-operad Tam2 instead of a colored symmetric

operad. The colored operad Tam2 was actually constructed by Tamarkin in [36]. A different

and short description of Tam2 can be found in [7, page 25].

11.2. Deligne’s conjecture for δ-center of a monoid. Algebras of contractible 1-operads

in Chain are known as A∞-algebras. In fact, we usually replace an action of a contractible 1-

operad by a minimal cofibrant resolution of Ass1 to get a canonical notion of an A∞-algebra.

We use the same philosophy and think about algebras of a contractible 2-operad in V (2) as

duoids in D up to all higher homotopies (see Example 99).

Definition 102. Let V be a monoidal model category and n ≤ 2. An (n − 1)-terminal n-

operad A equipped with an operad map A→ Assn is called contractible if, for each n-tree T ,

the map A(T )→ Assn(T ) = I is a weak equivalence.

Theorem 103. Let V be a monoidal model category and δ be a standard system of simplices

for V such that the lattice path operad is strongly δ-reductive in the sense of [7, Definition 3.7].

Then the operad CoendTam2(δ) is contractible. In particular, the δ-center CH δ(M, M) of a

monoid M in a monoidal D-category is an algebra of a contractible 2-operad.

Corollary 104 (duoidal Deligne’s conjecture). There is a canonical action of a contractible

2-operad on the homotopical center of a monoid M which lifts the duoid structure on the

center of M.

Theorem 104 has been proved by Tamarkin in [36] for the particular case of the Tamarkin

complex of the functor

Id : Cat(Chain)→ Cat(Chain)

thus answering the question ‘what do DG-categories form?’ in the title of that paper. The

proofs of Theorems 103 and 104 will be addressed in [9].

[September 19, 2011] [tam.tex]



CENTERS AND HOMOTOPY CENTERS 51

11.3. Relation to the classical Deligne’s conjecture. Let D be a cocomplete symmetric

monoidal category. Then e = v in D and, for any X ∈ D and a 2-tree T , one clearly

has XT ∼= XT (p)
. This implies that EndX2 satisfies condition (33). The operad EndX2 is,

however, not 1-terminal, so it is not pruned in the sense of Definition 94. But one can still

construct a modified pruned endomorphism 2-operad EndX2 together with an operadic map

EndX2 → EndX2 which is an isomorphism for all trees of height 2. The operad EndX2 is

determined by these conditions uniquely. Moreover, any morphism from a pruned 2-operad

A to EndX2 can be factorized through EndX2.

The operad EndX2 is the endomorphism 2-operad of X in the monoidal 2-globular cate-

gory Σ2V . Therefore, the results of [5, 6] are applicable and an action A→ EndX2 of A on

X is equivalent to a (classical) action of the symmetric operad sym2(A) on X .

If V is a monoidal model category satisfying the requirements of Theorem 8.6 or 8.7 of

[5] and A is a contractible cofibrant 2-operad, then the symmetrization sym2(A) has the

homotopy type of the little 2-disks operad [5]. So we have

Theorem 105. If D is a symmetric monoidal V -category and the assumptions of Theo-

rem 103 are satisfied, then CH δ(A) of a multiplicative operad A in D admits a structure

of an algebra of a E2-operad. In particular, such an action exists on the homotopy center

CH (M, M) of a monoid M in a monoidal model D-category.

This form of Deligne’s conjecture generalizes the classical one. As a corollary we have

Corollary 106. The Hochschild complex of the dg-category C (see Example 78) is an algebra

of an E2-operad. In particular, if C = ΣA for a unital associative algebra A, we get the

classical Deligne conjecture for the Hochschild complex of A.
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Hochschild cochains. Séminaire et Congrès, Collection SMF, 26, pp.1-33, 2011.
[9] M.A. Batanin, C. Berger and M. Markl. Operads of natural operations II: Tamarkin complex and homo-

topy center. Work in progress.

[tam.tex] [September 19, 2011]

http://arxiv.org/abs/0708.2067


52 M. BATANIN AND M. MARKL

[10] M.A. Batanin, D.-C. Cisinski and M. Weber. The lifting theorem for multitensors.
Preprint arXiv:1106.1979, 2006.

[11] M.A. Batanin, D.-C. Cisinski and M. Weber. Higher Gray tensor products. Work in progress.
[12] M.A. Batanin, M. Markl. Crossed interval groups and operations on the Hochschild cohomology. Preprint

arXiv:0803.2249, March 2008.
[13] M.A. Batanin, R. Street. The universal property of the multitude of trees. Journal of Pure and Appl.

Algebra, 154, 2000, 3-13.
[14] C. Berger, I. Moerdijk. The Boardman-Vogt resolution of operads in monoidal model categories. Topol-

ogy, 45, 807-849, 2006.
[15] R. Blackwell, G.M. Kelly and A.J. Power. Two-dimensional monad theory. Journal of Pure and Appl.

Alg., 59, 1989, 1-41.
[16] D.-C. Cisinski. Batanin higher groupoids and homotopy types. Cont. Math., 431 (2007), 187-202.
[17] B. Day. On closed categories of functors. Lecture Notes in Math., vol. 137, Springer Verlag 1970, 1–38.
[18] B. Day, R. Street. Centres of monoidal categories of functors. Cont. Math., 431 (2007), 171-186.
[19] S. Eilenberg, G.M. Kelly. Closed categories. In Proc. Conf. Categorical Algebra (La Jolla, Calif., 1965),

pages 421–562. Springer, New York, 1966.
[20] S. Forcey. Enrichment over iterated monoidal categories. Algebraic and Geometric Topology 4 (2004),

95–119.
[21] S. Forcey, J. Siehler and E.S. Sowers. Combinatorial n-fold monoidal categories and n-fold operads.

Preprint arXiv:0411.5561, 2011.
[22] R. Gordon, A.J. Power and R. Street. Coherence for tricategories, Memoirs AMS, 558, 1995.
[23] J.W. Gray. Formal category theory: adjointness in 2-categories. Lecture Notes in Math., vol. 391,

Springer Verlag 1974.
[24] A. Joyal, R. Street. Braided tensor categories. Adv. in Math. 102, 1993, 20–78.
[25] B. Keller. Derived invariance of higher structures on the Hochschild complex. Preprint available at:

math.jussieu.fr/˜keller/publ/dih.dvi.
[26] G.M. Kelly, Basic concepts of enriched category theory. London Mathematical Society Lecture Note

Series, 64 , 1982.
[27] F. Foltz, G.M. Kelly and C. Lair. Algebraic categories with few monoidal biclosed structures or none.

Journal of Pure and Appl. Alg., 17:171-177, 1980.
[28] M. Kontsevich. Operads and motives in deformation quantization. Lett. Math. Phys. 48(1) (1999),

35–72.
[29] S. Lack. A coherent approach to pseudomonads. Adv. in Math., 152, 179-202, 2000.
[30] S. Lack. Homotopy-theoretic aspects of 2-monads. Journal of Homotopy and Related Structures, 2(2),

229-260, 2007.
[31] T. Leinster. Higher categories, Higher operads. London Mathematical Society Lecture Note Series, 298,

Cambridge University Press, Cambridge, 2004.
[32] M. Markl. Homotopy algebras are homotopy algebras. Forum Mathematicum, 16(1):129–160, January

2004.
[33] F. Muro. Homotopy theory of non-symmetric operads. Preprint arXiv:1101.1634, 2001.
[34] R. Street. Monoidal category theory for manifold invariants. Lecture notes, UCL 2011, available at

www.maths.mq.edu.au/˜street/Lecture4.pdf
[35] R. Street. Categorical Structures. Handbook of Algebra, Elsevier, v.1, 529-577, 1996.
[36] D.E. Tamarkin. What do dg-categories form? Compositio Math., 143:1335–1358, 2007.

Macquarie University, NSW 2109, Australia

E-mail address : michaelbatanin@mq.edu.au
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