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THE VARIETY OF REDUCTIONS FOR A REDUCTIVE SYMMETRIC PAIR

MICHAËL LE BARBIER GRÜNEWALD

Abstract. We define and study the variety of reductions for a reductive sym-
metric pair (G, θ), which is the natural compactification of the set of the Cartan
subspaces of the symmetric pair. These varieties generalize the varieties of re-
ductions for the Severi varieties studied by Iliev and Manivel, which are Fano
varieties.

We develop a theoretical basis to the study these varieties of reductions, and
relate the geometry of these variety to some problems in representation theory.
A very useful result is the rigidity of semi-simple elements in deformations of
algebraic subalgebras of Lie algebras.

We apply this theory to the study of other varieties of reductions in a com-
panion paper, which yields two new Fano varieties.

1. Introduction

The problem of classifying all complex analytic compactifications of Cn which
have second Betti number b2 = 1, also known as irreducible compactifications, was
stated by Hirzebruch [1]. An irreducible compactification is always a Fano vari-
ety, and classifiying the former ones is, surprisingly, not easier than classifying
the later ones. Indeed, the classifications of the irreducible compactifications of
dimension 1, 2 and 3 came as specializations of the classifications of the Fano
varieties of the corresponding dimension. For the dimension 4 or above, there is
at the current time no classification of the irreducible compactifications available
and no classification of the Fano varieties. The irreducible compactifications of
the affine spaces of dimension less than 3 are the projective spaces P1, P2 and P3,
the quadric Q3, and two Fano varieties which have b3 = 0 and respective Fano
index 1 and 2. See Müller-Stach [2] for a short description of these varieties and
an account on other results about compactifications of affine spaces.

As pointed out in [1], the fundamental homogenous spaces of reductive groups
are examples of compactifications of the affine space, but new examples are very
hard to find and seem to always show up as finite families. This lack of examples
hinders the efforts aimed at the classification of Fano varieties or even that of
irreducible compactifications of affine spaces. In this paper we associate to any
reductive symmetric pair (G, θ), where G is a reductive complex group and θ an
involution of G, its variety of reductions R. Some of these varieties were previously
obtained by different means, and studied by Ranestad and Schreyer [3] and Iliev
and Manivel [4]. At the present time, the study of seven of these varieties of
reductions R has been carried out, revealing that all of them are normal Fano va-
rieties, and the smooth ones are even compactifications of the affine space which
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have b2 = 1. This observation is our main motivation for defining the varieties of
reductions: the study of many of the low-dimensional ones may be carried out,
and yield other compactifications of affine spaces or Fano varieties.

We study here general properties of varieties of reductions for symmetric pairs,
and use this theory in a companion paper [5] to study three more examples of
variety of reductions (two of them count in the number seven mentioned above).
While we were primarily interested in developping tools and methods suited to
the practical study of examples, it turned out that the general theory presents
interesting aspects in its own right and relates to other problems in the represen-
tation theory of complex Lie groups. We now define the varieties of reductions
and then outline the results of our study.

1.1. Variety of reductions for a symmetric pair. A reductive symmetric pair (G, θ)
has a reductive group G as its first member and an involution θ of G as its second
member. These pairs occur in the study of real forms of complex reductive groups
and symmetric spaces, and they were classified using many different invariants,
see S. Araki [6], A. G. Helminck [7], and T. Springer [8], for instance. To such a
pair we attach its connected fixed point group K = (Gθ)◦, which is reductive, and
the decomposition of the Lie algebra g of G as eigenspaces for the involution θ′

tangent to θ at the unit element of G:

g = g(θ′)1 ⊕ g(θ′)−1 = k⊕ p.

This decomposition is called the Cartan decomposition of g, and p the anisotropic
space of the symmetric pair. We will use [9] by Kostant and Rallis and [10] by Tau-
vel and Yu as references for results about the operation of K in the anisotropic
space p.

1.2. Definition. A Cartan subspace of p is a linear subspace a of g that is contained
in p and in some Cartan subalgebra of g, and that is maximal in the family of such
subspaces ordered by the inclusion.

Any two Cartan subspaces of p are K-conjugated [9, Theorem 1]. Their com-
mon dimension r is the rank of the symmetric pair (G, θ) and their set Ro is
a K-orbit in the Grassmann variety G(r, p) of r-planes in p.

1.3. Definition. The variety of reductions R for the symmetric pair (G, θ) is the
closure in G(r, p) of the set Ro of all Cartan subspace of p.

It is customary, while sometimes ambiguous, to write (G, K) for (G, θ) when
referring to a particular symmetric pair. We stick to this usage, and emphasize
that the Cartesian square G×G of a reductive group G is turned into a symmet-
ric pair by the involution swapping its two factors. Ranestad and Schreyer [3]
have shown that the variety of reductions for the symmetric pairs (SLn, SOn) are
smooth only for n ≤ 5. Iliev and Manivel [4] studied the varieties of reductions for
the symmetric pairs (SL3, SO3), (SL3 × SL3, SL3), (SL6, Sp6) and (E6, F4). These
four symmetric pairs occur as structure symmetries for the four simple Jordan
algebras of rank 3 [4]. In [5] we study the varieties of reductions for (SL4, SO4),
and for the Cartesian squares of Sp4 and G2.

1.4. Abelian subalgebras. In the small rank cases [4, 11, 5] the variety A of all
r-dimensional subalgebras of g contained in p is not larger than R, but we show
the
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Theorem (5.3, 9.7). Every point in R is the Lie algebra of a subgroup of G. If G has
large enough rank, then A contains a point that is not the Lie algebra of a subgroup of G.

In general R is a strict irreducible component of A. We also show that A

consists of infinitely many orbits, while there is still no evidence that the same
can happen for R.

Abelian subalgebras of g have been extensively studied, by Schur, Malcev, Pa-
nyushev and others, but very little is known about the geometry of A. An enu-
meration of its irreducible components is not even at hand. Further investigations
may confirm that the study of R is easier than the one of A is.

1.5. Rigidity of anisotropic subtori. One of our main result (4.6) states that, if a0
is the degeneration of the conjugates of a subalgebra a1 of g contained in p under
the operation of K, then the semi-simple elements of a0 are rigid. This means that
they are the limits of the semi-simple elements in the conjugates of a1. This rigid-
ity theorem enables us to study varieties of reductions through their subvarieties
of reductions (see below), but also to contribute to the theory of decomposition
classes. Decomposition classes for a reductive symmetric pair generalize Jordan
types for GLn. They were introduced by Bohro and Kraft [12] to study sheets in
Lie algebras. As an application of our rigidity theorem, we show the

Proposition (B.1). The closure of a decomposition class is a union of decomposition
classes.

1.6. Orbit theory for the varieties of reductions. While the theory is still in-
complete, there is some open subset of R whose orbits we understand well, by
comparing them to decomposition classes in g.

Sending a point x ∈ g to its centralizer, we define a rational map C from g to R.

Proposition (3.7, 3.15, 3.16). The map C enjoys the following properties:

(1) Its pointwise image is an open subset Rr of the smooth locus of R.
(2) The pre-image of an orbit O0 in Rr is a decomposition class D0 in g.
(3) If D1 is a decomposition class in g containing D0 in its closure, then C is defined

at any point of D1 and the image of D1 is an orbit containing O0 in its closure.

The problem of describing the genericity relations between decomposition
classes is much easier than the analogous problem for orbits.

The previous proposition describes a bunch of orbits of low-codimension in R,
but two important questions remain: What is the codimension of the comple-
ment of the image of C? How intricated are the combinatorics of the orbits in
this complement? The variety of reductions for (SL4, SO4) is smooth, while the
centralizer map is not surjective. In the varieties of reductions for the Cartesian
squares of Sp4 and G2, the image of the centralizer map equals the smooth locus,
and its complement has codimension 2.

While we are not yet able to answer these questions, we noticed an interesting
structure in the family of varieties of reductions, described in terms of subvarieties
of reductions.

Let a be a Cartan subalgebra of g, a′ a subalgebra of a and G′ its centralizer.
Let R′ denote the closure of G′a in R. As the data (a, a′) runs through all its
possible values, R′ describes the set of subvarieties of reductions of R. Note
that if G′ is smaller than G, the variety R′ is isomorphic to the variety of Cartan
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reductions for the derived group of G′, which has smaller rank than G. We can
now state our

Theorem (6.4 and its corollaries). Let x0 be a point of R. Then:
(1) x0 is contained in a strict subvariety of reductions of R if, and only if, it contains

a non-nilpotent element of g.
(2) A point x1 is more general than x0 in R if, and only if, any subvariety of re-

ductions R′ containing x0 also contains a G-conjugate of x1 that is more general
than x0 in R′.

Hence, if we are able to describe orbits in all the subvarieties of reductions
of R, and there is only a finite number of isomorphism classes of them, we can
as well describe orbits in the open subset of R whose complement is

Rn = { u ∈ R | every u ∈ u is nilpotent } .

Proposition (5.5). The subvariety Rn of R contains the closed orbits of R.

We may learn soon how to enumerate the closed orbits of R, but the de-
tailed orbit theory of Rn remains very mysterious. In particular we do not know
whether it can contain infinitely many K-orbits or not.

1.7. Partial positivity of the anticanonical class. The minimal rational curves
in R are the lines of the natural projective embedding of R that are contained
in R. We can describe the generic ones in terms of the roots of the operation of a
on g. This description is precise enough to let us study the deformations of such
a line, find explicit free curves contained in the smooth locus of R and compute
the intersection of the anticanonical class on these lines:

Corollary (8.10). Let a ∈ Ro be a general point of R and ∆ a line through a contained
in R. Let m be the dimension of the maximal linear subspace of R through a containing ∆.
If ∆ is contained in the smooth locus of R, then

−Kr · ∆ = m + 1

where Kr is the canonical class of the smooth locus of R.

This intersection number is always positive, it equals 3 when R is a variety
of Cartan reductions. When R has Picard number one and its canonical class is a
Cartier divisor, this yields the Fano index of R.

The open orbit in R is affine since the stabilizer of a point therein is reductive,
its complement is therefore a union of divisors. In the examples we studied [5],
the complement of the image Ro of C has codimension at least 2—the codimen-
sion 2 occuring for the variety of Cartan reductions for G2. This means that the
image of the centralizer map carries enough information to describe the Picard
group of R. In the general theory, it is possible to bound by above the dimension
of the orbit of a point outside of Ro, but narrowing our attention to Ro we would
miss a divisor in R \Ro swept out by a continuous family of small dimensional
orbits, if such a divisor exists. Hence the flaws in our orbit theory of R obstructs
our understanding of the Picard group of R.
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2. Variety of reductions for a symmetric pair

2.1. Variety of reductions. Let (G, θ) be a reductive symmetric pair with rank r
and G(r, p) the Grassmann variety of r-planes in p.

2.2. Definition. We call the set Ro of Cartan subspaces of p the set of ordinary
reductions for the symmetric pair (G, θ). Its closure R in G(r, p) is the variety of
reductions for (G, θ), and Rs = R \Ro is the set of special reductions.

The variety of reductions depends only of the isogeny class of G, not of its
fundamental group.

Recall that Grassmann varieties are embedded in projective spaces of some
exterior powers, in particular a reduction a ∈ R of which a ∈ ar is a basis has
image [a1 ∧ · · · ∧ ar ] ∈ P(Λrp).

2.3. Variety of anisotropic subalgebras. The variety R of reductions for a reduc-
tive symmetric pair is a subvariety of the variety A of all anisotropic subalgebras
of g of dimension r.

Let Ar : Λrp → k⊗ Λr−2p be the linear map whose value on the decompos-
able r-multivector x1 ∧ · · · ∧ xr is

Ar(x1 ∧ · · · ∧ xr) = ∑
1≤i<j≤l

[xi, xj]⊗ x1 ∧ · · · ∧ x̂i ∧ · · · ∧ x̂j ∧ · · · ∧ xr

where terms with a hat above shall be discarded. The kernel Ker Ar of Ar is a
linear subspace of P(Λrp) meeting G(r, p) along the set of subalgebras of g of
dimension r contained in p.

2.4. Definition. The variety of anistropic subalgebras for the reductive symmet-
ric pair (G, θ) is the section A of G(r, p) with Ker Ar in P(Λrp).

When the symmetric pair associated to a reductive group is under considera-
tion, we call A the variety of abelian subalgebras for the given group. We illustrate
the presumable complexity of A in section (9).

2.5. Roots relative to an ordinary reduction. Let a be an ordinary reduction and
let Φ be the set of weights of a in g. The decomposition of g into weight spaces
relative to a is

(2.1) g = cg(a)⊕
⊕

α∈Φ

g(a)α
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where cg(a) is the centralizer of a in g and g(a)α the weight space for the char-
acter α of a. The following propositions enable us to work with the decomposi-
tion (2.1), for a proof, see Tauvel and Yu [10, 37.5.3, 36.2.1, 38.2.7, 38.7.2].

2.6. Proposition. The centralizer of a in g is the direct sum of a and the centralizer of a
in k.

2.7. Proposition. The set Φ is a root system.

We emphasize that this root system may not be reduced, however the root
system relative to the symmetric pair of a reductive group is the root system of
the reductive group itself, and is thus always reduced.

Since θ′ swaps g(a)α and g(a)−α, the Cartan decomposition and the weight
spaces decomposition are not comparable. It is thus useful to introduce the sub-
spaces

(2.2) p(a)α = (g(a)α ⊕ g(a)−α) ∩ p and k(a)α = (g(a)α ⊕ g(a)−α) ∩ k.

These subspaces satisfy the relations p(a)α = p(a)−α, k(a)α = k(a)−α, and p(a)α ⊕
k(a)α = g(a)α ⊕ g(a)−α. We can then decompose k and p in the following manner:

(2.3) k = m⊕
⊕

α∈Φ+

k(a)α

where m = ck(a) is the reductive Lie algebra centralizing a in k;

(2.4) p = a⊕
⊕

α∈Φ+

p(a)α.

The spaces k(a)α and p(a)α are not stable under a but are swapped by it: we
have ad(a)k(a)α = p(a)α and ad(a)p(a)α = k(a)α. This allows us to compute the
dimension of R:

2.8. Proposition. The dimension of R is dim p− r.

3. Regular orbits and the incidence diagram

3.1. Incidence variety. Let J be the incidence variety associated to R:

J = { (u, u) ∈ R× p | u ∈ u } .

The projections of J to p and R are respectively denoted by π and τ. Notice that,
since the tautological fibre bundle on G(r, p) is locally trivial, the morphism τ is
open.

3.2. Centralizer map. An element u ∈ p is regular when the dimension of its cen-
tralizer C(u) in p is minimal. It is then an r-dimensional subalgebra of g and the
map C is a well-defined morphism from R to A. We call regular a reduction
in Rr = C(R), or a K-orbit through a regular reduction.

We write S for the set of semi-simple elements in p, and N for the set of
nilpotent ones. The set Ro = R∩ S of ordinary elements in p that are both regular
and semi-simple is an open subset of R, dense in p. The set of r-dimensional
subspaces of p containing an ordinary element is an open subspace of G(r, p).
This implies the following

3.3. Proposition. The variety R of reductions for a reductive symmetric pair is an
irreducible component of the variety A of anisotropic subalgebras for this pair.
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3.4. Corollary. The centralizer of any regular element is a reduction, that is, C maps R
to R.

3.5. Incidence diagram. The incidence variety and the centralizer map fit to-
gether in the incidence diagram:

J
ւ ց

P(p) 99K R

and the centralizer map C equals τ ◦ π−1 above R. We use these constructions to
explore the variety of reductions.

3.6. Regular orbits are contained in the smooth locus. The centralizer map
parametrizes an open and smooth subset of R:

3.7. Theorem. The set Rr = C(R) of regular reductions is an open subset of R, con-
tained in the smooth locus.

Proof. The subset of G(r, p) of subspaces meeting R is open, which implies the
truth of the first statement. We now study the smoothness.

Let u0 ∈ R, we study the tangent space to A at u = C(u0). We choose a
supplementary subspace v to u in p and identify the affine neighbourhood of u in
the Grassmann variety G(r, p) consisting of points admitting v for supplementary
with the space A = L(u, v) of linear maps from u to v. A point a ∈ A belongs
to A if, and only if for all (u1, u2) ∈ u2

[u1 + a(u1), u2 + a(u2)] = 0;

the linear equations of TuA are therefore

(3.1) [u1, a(u2)] = [u2, a(u1)]

for all (u1, u2) ∈ u2. We narrow our attention to the subset of the linear equations
of TuA obtained by letting u2 = u0. Note that u is precisely the kernel of the re-
striction of ad(u0) to p, hence, once u1 is given there is at most one value of a(u1)
satisfying (3.1). The tangent space is thus parametrised by a subspace of the set of
images a(u0), when a varies in A and TuA ⊂ v. But dim TuA ≥ dimuA ≥ dimR

and dimR = dim v (2.8). We conclude that dim TuA = dimuA = dimR. The
regular reductions are thus contained in the smooth locus of R. �

3.8. Review of decomposition classes. The centralizer map puts the K-orbits in
its image in correspondence with decomposition classes in R. Decomposition
classes generalize the familiar Jordan types in sln to every symmetric pairs. They
are discussed by Bohro and Kraft [12], Broer [13] and Tauvel and Yu [10]. We
briefly review elements of this discussion, referring to [10] for further details.

3.9. Definition. Let u and v be two elements in p with respective Chevalley-
Jordan decomposition u = us + un and v = vs + vn. They have the same decompo-
sition class when there exists g ∈ K such that g · cp(us) = cp(vs) and gun = vn.

This defines an equivalence relation on p. We write D for the associated par-
tition and D(u) for the element of D containing u. Notice that decomposition
classes are punctured cones in p, so that their projectivizations define a partition
of the projective space P(p).
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This relation is equivalently described with double centralizers. The double cen-
tralizer of u ∈ p is

c2
p(u) = { v ∈ p | ∀w ∈ cp(u) [v, w] = 0 } .

This is the set of elements in p whose centralizer in p contains cp(u). Chevalley’s
theorem implies that

(3.2) c2
p(u)o = { v ∈ p | cp(v) = cp(u) }

is a dense open subset of c2
p(u).

3.10. Proposition ([10, 38.8.3, 39.5.1 and 39.5.4]). For two elements in p, the follow-
ing statements are equivalent.

(1) They have the same decomposition class.
(2) Their centralizers in p are K-conjugate.
(3) Their double centralizers in p are K-conjugate.

3.11. Corollary ([10, 39.5.5]). The decomposition class D(u) of u ∈ p is K · c2
p(u)o.

This is an irreducible locally closed subvariety of p.

3.12. Proposition ([10, 39.5.6]). The set D of decomposition classes in p is finite.

Thus, decomposition classes form a finite partition of p into locally closed sets.
It follows that any irreducible subvariety X of p or P(p) is the closure of X ∩DX
in X, for a unique decomposition class DX ∈ D. We say DX is the dominant
decomposition class in X.

If u is regular, semi-simple or nilpotent, elements of D(u) are regular, semi-
simple or nilpotent, and we call D(u) a regular, semi-simple or nilpotent decom-
position class.

In B.1 we use our rigidity theorem 4.6 to prove that the closure of a decompo-
sition class is a union of decomposition classes.

3.13. Genericity relation for regular orbits. We want to describe the genericity
relation for orbits in R, that is, which orbits lie in the closure of which. An
orbit O1 is more general than an orbit O0 when O0 lies in the closure of O1;
similarly, a decomposition class D1 is more general than a decomposition class D0
when D0 is contained in the closure of D1.

Through the centralizer map, the genericity relation for regular orbits reduces
to the genericity relation for decomposition classes.

3.14. Proposition. The image of a regular decomposition class through the centralizer
map is a regular K-orbit of R.

This is a reformulation of the equivalence between (1) and (2) in (3.10). We are
then allowed to speak of the decomposition class associated with a regular orbit:
it is its inverse image through the centralizer map.

3.15. Proposition. Let RI and RII be orbits in R. If RI is more general than RII
and RII is regular, then RI is regular and its decomposition class is more general than the
one of RII.

Proof. Let pI be the projection τ(π−1(RI)) of RI through the incidence diagram
of R (3.1), and pII the projection of RII. Note that RII being regular, pII is a
decomposition class and is thus irreducible (3.11).
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The morphism π is continuous, so that π−1(RI) contains π−1(RII) in its clo-
sure; the morphism τ is open, so that pI = τ(π−1(RI)) contains pII in its closure.
Let q be an irreducible component in pI degenerating onto pII. The decomposition
class Dq dominant in q is more general than pII, it is thus regular and RI is the
regular K-orbit C(q) in R. �

3.16. Corollary. Two regular orbits compare in the same way than their corresponding
regular decomposition classes do.

Proof. One implication is the previous proposition, the converse follows from the
equivalence of (1) and (2) (3.10) and the continuity of the centralizer map C . �

To put it another way, the centralizer map C induces an increasing isomor-
phism between the ordered set of regular decomposition classes in p and the
ordered set of regular orbits in the variety of reductions for a symmetric pair.

3.17. Irregular locus. The irregular locus W is the complement p \ R of the set
of regular elements. It was proven by Veldkamp [14] for the symmetric pair
associated to the Cartesian square of a group that the irregular locus W is the
set of points where the reductive quotient φ : p → p // K fails to be submersive.
However it remains unknown wether these equations span the ideal of W or
not. We noticed that these equations are geometrically realized by the centralizer
map (3.18 below). This could be helpful to determine if the ideal they span is
reduced or not, or if the caracterization of the irregular locus given by Veldkamp
extends to the symmetric setting.

We define the Jacobian morphism Jφ associated to the reductive quotient φ :
p → p// K by

Jφ : p× Λrp → C
(x, ξ) 7→ ΛrTxφ(ξ).

It is a homogeneous morphism, thus Jφ ∈ SNp∗ ⊗ Λrp∗ for some N. The restric-
tion to p of a non degenerate bilinear form on g that is invariant under G and θ is
definite and K-invariant. Hence we can see Jφ as a K-invariant rational map

Jφ : P(p) 99K P(Λrp)

by identifying p with its dual.

3.18. Proposition. The Jacobian morphism Jφ coincides with the centralizer map C .

Proof. Let a be a Cartan subspace of p, a ∈ ar a basis of a and x a regular element
of a. We write g′ the centralizer of a in g and k′ = g′ ∩ k, p′ = g′ ∩ p′, so that ad x
is a linear automorphism of g′ exchanging k′ and p′.

Now let ξ = ξ1 ∧ · · · ∧ ξr be a decomposed r-vector divisible by a vector ξ1
belonging to p′. If f is a K-invariant function and ǫ → 0, we have

f (exp(ǫ(ad x)−1ξ1)x) = f (x) = f (x)− ǫTx f (ξ1) + o(ǫ).

Hence Tx f (ξ1) = 0 and Jφ(x, ξ) = 0 when ξ is divisible by an element of p′. Now
the reductive quotient is submersive at the regular element x [9, Theorem 13] so
that Jφ(x, a1 ∧ · · · ∧ ar) 6= 0. This shows that Jφ and C agree on R. �
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4. Rigidity of anisotropic tori

4.1. Review of stability. Concepts familiar to the geometric invariant theory
show up in the study of degeneracies of semi-simple elements. Let us recall
the appropriate definitions and facts.

4.2. Definition. Let K be a reductive group, V a finite dimensional representa-
tion of V and X ⊂ P(V) a quasi-projective variety stable under the operation
of K. A point [v] of X is called

• semi-stable if there exists a K-invariant non-constant homogeneous poly-
nomial that does not vanish at v;

• poly-stable if it is semi-stable and the K-orbit of [v] is closed in the set of
semi-stable elements of X;

• stable if it is poly-stable and has finite stabilizer in K;
• unstable if it is not semi-stable.

When X is closed subvariety of P(V), its semi-stable, poly-stable, stable or
unstable points are the points of P(V) of the same kind, belonging to X. We say a
non-zero vector v ∈ V is semi-stable, poly-stable, stable or unstable, according to
the nature of [v]. The following proposition is a basic result in geometric invariant
theory:

4.3. Proposition. Let X be a closed subvariety of P(V) stable under the operation of K.
Then:

(1) The point [v] is semi-stable if, and only if, 0 does not belong to the closure of
the K-orbit of v in V.

(2) The point [v] is poly-stable if, and only if, the K-orbit of v is closed in V.

According to [9] these propositions can be rephrased the following way in the
setting of reductive symmetric pairs:

• the set of unstable elements in p is precisely the set N of nilpotent ele-
ments, with 0 removed;

• the set of poly-stable elements is the set S of semi-simple elements, with 0
removed;

• the set of semi-stable but not poly-stable elements is precisely the set of
elements with non-zero semi-simple part and non-zero nilpotent part;

• the set of stable elements is not empty if, and only if, the rank of the
symmetric pair (G, θ) equals the rank of reductive group G; in this case
the set of stable elements is the set of anisotropic semi-simple elements
whose centralizer in p is a Cartan subspace of g.

The following property of anisotropic algebras is remarkable with respect to
stability theory: for any anisotropic algebra a, the set S(a) of poly-stable elements
of a (with zero added), and the set N (a) of unstable elements of a (idem) are vector
subspaces of a.

4.4. Degeneracies of anisotropic algebras. We introduce a language suited to
our study of degeneracies. Let K be a group acting on a complete variety X. We
consider a point x1 ∈ X and a degeneration x0 of x1, that is, a point belonging to
the closure in X of the orbit Kx1. There exists an irreducible smooth curve Co in K
such that x0 belongs to the closure of Cox1, and we only consider degenerations
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along such curves. In the study of the degeneration along the curve Co, it is
convenient to introduce the points at infinity of Co.

Let C be the smooth completion of Co. The points in C \ Co are called points
at infinity. Since X is complete, the rational map sending c ∈ Co to cx1 extends to
a regular map on C and, by a slight abuse of notation, we write cx1 for the image
of c under this map even for c lying in C \ C0. Now let c0 be a point at infinity
whose image is x0. We say that Co is an arc in K pushing x1 toward x0, and c0 is a
point at infinity taking x1 to x0.

The way semi-simple elements of an anisotropic algebra behave when it is
deformed by the operation of K is described by the following theorem. It has
many interesting consequences, such as 4.6, 6.4 and B.1.

4.5. Theorem. Let a1 be an l-dimensional anisotropic subalgebra and a0 ∈ G(l, p) lying
in the closure of the K-orbit through a1. Let Co be an arc in K pushing a1 toward a0
and c0 a point at infinity taking a1 to a0.

Then, unless a0 only contains nilpotent elements, there exists a semi-stable element s0
in a0 and a semi-stable element s1 in a1 pushed toward s0 by Co and brought to s0 by c0.

Moreover, if a1 is closed under the Chevalley-Jordan decomposition, then a0 is closed
under the Chevalley-Jordan decomposition as well, and for each semi-simple element s0
in a0 there exists a semi-simple element s1 in a1 that is brought to s0 by c0.

Proof. We denote by R0 the local ring of Co at c0, m0 its maximal ideal and ǫ a
local parameter of Co at c0. According to (A.8) there exists a basis x of a1, a basis y
of a0, a r-uple n of integers and a r-uple η ∈ (m0 ⊗ p)r such that for all k

cxk = ǫnk(yk + ηk).

If all of the yk are nilpotent, then a0 purely consists of nilpotent elements. Hence,
we assume that for some integer k the vector yk is semi-stable and let f be a K-
invariant function, homogeneous of degree N > 0, that does not vanish at yk. We
compute

f (xk) = ǫNnk f (yk + ηk),

and show that nk = 0. On the one hand, the function f (xk)/ f (yk + ηk) is regular
at c0, which implies nk ≥ 0. On the other hand, the non zero function f (xk)ǫ

−Nnk

is regular at c0, which implies nk ≤ 0. Thus nk equals zero and f does not vanish
at xk. We conclude that cxk converges to yk when c approaches c0 and xk is
semi-stable.

We now proceed to the proof of the second part of the statement and assume
that a1 is closed under the Chevalley-Jordan decomposition. According to (A.9)
we may assume that each of the xk is either semi-simple or nilpotent. We show
that each of the yk is either semi-simple or nilpotent.

The image of N in P(p) is closed, hence xk ∈ N implies yk ∈ N . We now
assume that xk is semi-simple. If yk is not nilpotent, then nk = 0 as before and
we have xk = yk + ηk. Hence cxk converges toward yk as c approaches c0. But xk
is semi-simple and its orbit is closed, so yk is semi-simple and conjugated to xk.
Thus each yk is either semi-simple or nilpotent, which implies that the anisotropic
subalgebra a0 of dimension l spanned by the yk is closed under the Chevalley-
Jordan decomposition.
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Last, if s0 ∈ a0 is semi-simple, it is a linear combination s0 = ∑k∈Ks Yk
0 yk of the

semi-simple yk’s, whose set of indice is Ks ⊂ { 1, . . . , l }. Hence the translates cs1

of s1 = ∑k∈Ks Yk
0 xk converge toward s0 as c approaches c0. �

If a l-dimensional anisotropic subalgebra a1 of g degenerates on a0, the semi-
simple elements subsisting in a0 can be rigidified, that is, there exists an equivalent
degeneration leaving these semi-simple elements untouched:

4.6. Corollary (Rigidity of anisotropic tori). Let a1 be a l-dimensional anisotropic
subalgebra closed under Chevalley-Jordan decomposition, a0 ∈ G(l, p) lying in the closure
of the K-orbit through a1 and Co be an arc in K pushing a1 toward a0 and c0 a point at
infinity taking a1 to a0. Let S(a0) be the linear subspace of a0 spanned by its semi-simple
elements. Then there exists a K-conjugate a′1 of a1 containing S(a0) and a degeneracy
curve in the centralizer CK(S(a0)) of S(a0) in K pushing a′1 toward a0.

This corollary is a consequence of 4.5 and the following general lemma dealing
with degeneracies of orbits:

4.7. Lemma (Straightening of degeneracies). Let K be a connected group and X and Y
be two K-varieties. Let x1 be a point in X and x0 a point belonging to the closure of the K-
orbit through x1, and let y1 a point in Y. Let Co be a degeneracy curve in K pushing x1
toward x0 and c0 a point at infinity taking x1 to x0. If c0 takes y1 to a conjugate y0 = hy1,
then there exists a degeneracy curve in the identity component of the stabilizer of y0 in K
pushing hx1 to x0, and a point at infinity taking hx1 to x0.

Proof. The rational map sending c to cy1 is regular at c0 and c0y1 is a conju-
gate y0 = hy1 of y1. Let C(c0) = Co ∪ { c0 } and define

Z = { (g, c) ∈ K × C(c0) | gcy1 = y0 } .

The map cy1 is regular at c0, and its value belongs to the orbit of y1, thus (1, c0) ∈
Z belongs to the closure of the inverse image W of Co under the projection of Z
to C(c0). Let D be a degeneracy curve in W containing (1, c0) in its closure. Then
the image (Co)′ of W under the map sending (g, c) ∈ Z to gch−1 ∈ K is contained
in the centralizer of y0 ∈ K and pushes hx1 toward x0. This map extends to
a regular map at (1, c0) whose image is a point at infinity for (Co)′ taking hx1
to x0. �

5. Algebraicity of reductions

5.1. Degeneracies of subgroups. The fact that each point in the variety of reduc-
tions is the Lie algebra of an algebraic subgroup of G is a consequence of the
following general observation:

5.2. Proposition. Let G be an algebraic group and H ⊂ G × B an irreducible family of
subvarieties of G over a basis B. If the generic member of H is a subgroup of G, then each
member of H is a subgroup of G.

Proof. The algebraic subgroups of G are precisely the subvarieties H of G such
that the restriction of the morphism ψ : G × G → G defined by ψ(g1, g2) = g1g−1

2
maps H × H in H. Let

Bo = { b ∈ B | Hb is a subgroup of G }
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and Ho the restriction of H to Bo, and assume that Bo is dense in B. Since H
is irreducible, Ho is dense therein. Hence ψ−1(H) contains H×H, the closure
of Ho ×Ho. �

5.3. Corollary. Any point of the variety of reductions is the Lie algebra of an algebraic
subgroup of G.

Proof. Let a0 be a point of R, a1 a Cartan subspace of p and Co a degeneracy
curve in K pushing a1 toward a0. We denote by A1 be the connected subgroup
of G whose Lie algebra is a1, by Ḡ a projective completion of G and by C a smooth
completion of Co. We consider the family V ⊂ Ḡ × P(p)× C obtained by taking
the closure of

V o = { (g, [x], c) ∈ G × P(p)× Co | g ∈ cA1 and x ∈ ca1 } .

Let c0 be a point of C taking a1 to a0. The fiber Vc0 projects on Ḡ as a set meeting G
along a subgroup A0 of G (5.2), and on P(p) as the projectivization of a0. Hence
the Lie algebra of A0 contains a0. But the family V over C is flat, since the curve C
is smooth [15, 9.7], and the dimensions of A1 and a1 agree [15, 9.5]. �

5.4. Nilpotence of closed orbits. Degeneracies in the varieties of reductions ul-
timately turn each semi-simple dimension into a nilpotent one, except of course
those belonging to the center of g:

5.5. Proposition. If G is semi-simple, then a point in a closed orbit of R is contained
in the nilpotent cone N of g.

Proof. Let u be a reduction belonging to a closed K-orbit in R, and P its stabi-
lizer in K. The Lie algebra u is algebraic (5.3) and abelian, it follows from the
Chevalley-Jordan-decomposition that the set S(u) of semi-simple elements of u

and the set N (u) of nilpotent elements of u are supplementary linear subspaces
of u. The stabilizer in K of S(u) hence contains P. It is thus both a reductive and
a parabolic subgroup of K, so it equals K. This yields S(u) = 0. �

6. Subvarieties of reductions

6.1. Variety of reductions and derivation. To the reductive symmetric pair (G, θ)
corresponds a symmetric pair whose group is the derived group G′ of G. Since G′

is stabilized by any automorphism of G, the involution θ restricts to G′, turn-
ing (G′, θ) into a semi-simple symmetric pair.

6.2. Proposition. Let (G, θ) be a symmetric pair and G′ the derived group of G. Let K′

be the adjoint form of the identity component of the fixed points group of (G′, θ). Let R
be the variety of reductions for (G, θ) and R′ the one for (G′, θ). Let p′ be the space of
anisotropic vectors of (G, θ) belonging to the Lie algebra of G′, and pZ those belonging to
the Lie algebra of the center of G. Then:

(1) The groups K and K′ have the same orbits in R.
(2) The maps p : R → R′ and j : R′ → R defined by

p(u) = u∩ p′ and j(v) = v⊕ pZ

are inverse K′-invariant isomorphisms.
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Proof. To establish the first claim, we replace G with its adjoint form so that G is
the direct product of its derived group G′ and its center ZG. Now Gθ = (G′)θ ×
Zθ

G, and since Zθ
G lies in the kernel of the map Gθ → Aut(R), the map K →

Aut(R) factors through K′.
To prove the second claim, it is sufficient to show that for any u ∈ R,

(6.1) u = (u∩ p′)⊕ pZ

holds. We notice that any reduction contains pZ. The infinitesimal anisotropic
center pZ is pointwise fixed by K, thus it is is enough to remark that any ordinary
reduction contains it, which follows from the maximality condition. Now p =
p′ ⊕ pZ and (6.1) holds. �

We may narrow our study of varieties of reductions for reductive symmetric
pairs down to semi-simple symmetric pairs. However, reductive symmetric pairs
appear naturally as symmetric pairs associated with centralizers of anisotropic
tori.

6.3. Subvarieties of reductions. Let a ∈ Ro an ordinary reduction and ã ⊂ a

a subspace of a. The centralizer CG(ã) is a θ-stable reductive subgroup of G,
thus (CG(ã), θ) is a reductive symmetric pair whose rank equals the rank of (G, θ).
Since cg(ã) ⊂ g, the variety R(ã) of reductions for the reductive symmetric
pair (CG(ã), θ) is a natural subvariety of the variety R of reductions for the re-
ductive symmetric pair (G, θ). It is naturally isomorphic to the variety of reduc-
tions (C′

G(ã), θ) whose group is the derived group of CG(ã).

6.4. Proposition. Let ã be a subspace of an ordinary reduction and R(ã) ⊂ R the
variety of reductions for the symmetric pair (CG(ã), θ). Then

R(ã) = { u ∈ R | u ⊃ ã } .

Proof. The variety of reductions R(ã) is a priori a subset of the right hand side.
The reciprocal inclusion follows from (4.6). �

6.5. Definition. The reductive symmetric pair centralizing ã is the reductive sym-
metric pair (CG(ã), θ). The variety of reductions containing ã is the variety of reduc-
tions R(ã) of (CG(ã), θ). The subvarieties of reductions of R are the subvarieties
of the form R(ã). We write K(ã) the adjoint form of the identity component of
the fixed points group CG(ã)

θ . Recall that this is the group whose action on R(ã)
we are interested in.

Note that the space ã is tangent to the center of CG(ã). Hence the semi-simple
symmetric pair associated to (CG(ã), θ) (6.2) has smaller rank than (G, θ). The
following propositions are immediate consequences of the rigidity of ã (4.6).

6.6. Proposition. Let R(ã) be a subvariety of reductions of R and O an orbit of K in R,
whose codimension is k. Then O∩R(ã) is an orbit of CK(ã) in R(ã) whose codimension
is k. In particular O ∩R(ã) is a finite union of orbits of K(ã).

6.7. Proposition. Let R(ã) be a subvariety of reductions of R and a0 a point of R(ã).
If O is a K-orbit in R containing a0 in its closure, then O contains an orbit of K(ã)
in R(ã) containing a0 in its closure.

6.8. Proposition. Let a1 and a0 be two reductions, and let us assume that a0 is not
contained in the nilpotent cone N of p. Then, the following statements are equivalent.
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(1) The K-orbit in R containing a1 is more general than the one containing a0.
(2) For any subvariety of reductions R(ã) containing a0, there exists a K-conjugate

of a1 in R(ã) whose K(ã)-orbit is more general than the one of a0.
(3) There exists a subvariety of reductions R(ã) containing a0 and a K-conjugate

of a1 in R(ã) whose K(ã)-orbit is more general than the one of a0.

7. Special reductions

The set Rs = R \Ro of special reductions is the complement of an affine open
set in a projective variety, hence it is a divisor in R. This divisor is hard to
describe in the general setting: we can not even count its irreducible components.
We are however able to show that it is cut out by a smooth quadric of the ambiant
space (7).

7.1. Bilinear algebra and exterior algebra. A symmetric bilinear form b on a
finite dimensional vector space E induces a symmetric bilinear form Λrb on the r-
th exterior power of E. On two decomposed r-vectors u1 ∧ · · · ∧ ur and v1 ∧
· · · ∧ vr this bilinear form evaluates to the determinant of the matrix with coeffi-
cients b(ui, vj). When b is regular, so is Λrb.

7.2. Special reductions. The Killing form b of the reductive Lie algebra g is pre-
served by automorphisms of g. Consequently, the characteristic spaces k and p

of θ′ are orthogonal, since they are also supplementary, the restriction of b to any
of them is regular. The quadratic form q associated to Λrb on P(Λrp) defines a
smooth quadric Q.

7.3. Proposition. The set Rs of special reductions is the intersection of the variety of
reductions R with the quadric Q.

To begin with, we state a proposition and two lemmas.

7.4. Proposition ([10, 37.5.2]). The bilinear form induced by the Killing form on a
Cartan subspace of p is regular.

7.5. Lemma. The bilinear form induced by the Killing form on an anisotropic subalgebra
of p containing a nilpotent element is degenerate.

Proof. Let u be an anisotropic subalgebra of p containing a nilpotent element n.
Since u is abelian, endomorphisms ad u ◦ ad n are nilpotent for each u ∈ u, so
that b(u, n) = 0. Hence n lies in the kernel of the restriction of b to u. �

7.6. Lemma. An anisotropic algebra contains a nilpotent element, unless it is an ordinary
reduction.

Proof of the lemma. Let u ∈ A be an anisotropic subalgebra of g of dimension r and
let a be a Cartan subspace of g containing the semi-simple parts of the elements
of u. The Chevalley-Jordan-decomposition induces a linear map u → a whose
kernel is the set of nilpotent elements in u. Since cp(a) = a (2.6) the image of this
linear map has rank r only if u = a. �

Proof of 7.3. It follows from the previous lemmas that the set of reductions u for
which the restriction of the Killing form to u is degenerate is exactly the set of
special reductions. These points are also the ones where q vanishes, so that Rs =
R∩ Q. �
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8. Partial positivity of the anticanonical class

8.1. Linear subspaces of Grassmann varieties. Recall that linear subspaces of
P(Λrp) contained in G(r, p) are precisely the Grassmann subvarieties of G(r, p)
which are also projective spaces. Grassmann subvarieties of G(r, p) are the sets

Γ(v,w) = { u ∈ G(r, p) | v ⊂ u ⊂ w }

where v and w are linear subspaces of p. Its dimension is dim (u/v) dim (w/u),
and it is a linear space precisely when dim (u/v) = 1 or when dim (w/u) = 1.

8.2. Maximal linear subspaces of varieties of reductions. Let us recall that a
singular torus of S is a torus whose centralizer in G is not a maximal torus. We
say an anisotropic reductive algebra is singular when its centralizer in p is not a
Cartan subspace. Maximal singular anisotropic reductive algebras are the kernels
of the roots of g relative to some Cartan subspace a (2.1).

8.3. Proposition. Let z be a maximal singular anisotropic reductive algebra. The sub-
space Γ(z) = Γ(z, cp(z)) of G(r, p) is contained in R, it pass through all points in Ro
containing z.

Proof. Let a be a Cartan subspace containing z and α a root of g relative to a

whose kernel is z. The open subset Ro of the irreducible component R of A meets
at a the linear space Γ(z) contained in A. This linear space is therefore contained
in R. �

8.4. Theorem. The linear subspaces Γ(z) are maximal among the linear subspaces of R
passing through a general point.

Proof. Let a ∈ Ro be a general point of R, and Γ = Γ(v,w) a linear subspace of R
passing through a. We shall see that v needs to be a maximal singular anisotropic
reductive algebra in order to let Γ be maximal.

Assume that v has codimension greater than two in a, each pair in a× v has
its members belonging to a point of Γ, now Γ ⊂ A, hence v ⊂ cp(a). But cp(a) =
a (2.6) and Γ = { a } is not maximal.

Assume now that v has codimension one in a. Since Γ ⊂ A, we have v ⊂ cp(w).
But this centralizer is

a⊕
⊕

p(a)α

where the sum extends over the set of positive roots α relative to a which vanish
on v. In order to let w be strictly bigger than a, this set of roots must not be empty.
There also exists a root α whose kernel contains v, and for dimension reasons v =
Ker α is a maximal singular anisotropic reductive subalgebra. Thus Γ ⊂ Γ(v),
but Γ is maximal, it equals Γ(v). In case cp(v) = a for each codimension one
subspace v in a, the root system of p relative to a is empty and p = a: R is a point
and Γ(v) is maximal. �

8.5. Corollary. Through a general point a of R passes a finite number of maximal
linear subspaces of R, meeting transversally in a. The intersection of any two of these
subspaces is a.

This follows from the decomposition (2.4). Notice that these linear subspaces
do not need to share a common dimension. However, we can make this picture
more accurate in the case of the variety of Cartan reductions for a reductive group.
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8.6. Corollary. Let R be the variety of Cartan reductions for a reductive group of rank r
and dimension 2m + r. Through a general point of R passes m projective planes, any two
of them meeting transversally in this point.

8.7. Proposition. A general line contained in R is contained in the smooth locus of R.

Proof. We show that a general line is contained in the image of the centralizer
map (3.7). Such a line is contained in a space Γ(z), hence we can replace R by the
variety of reductions for the pair (C′

G(z), θ), whose group is the derived group
of the centralizer of z in G (see 6.4, 6.2). We are then reduced to the case of a
reductive symmetric pair of rank one, where R = P(p). The generic nilpotent
element is regular [9, Theorem 3], so that the irregular locus has codimension at
least 2 in R = P(p): a generic line will miss it. �

8.8. Canonical class.

8.9. Proposition. Let X be a smooth algebraic variety quasi homogeneous under the
action of an algebraic group G. For any smooth rational curve C in X touching the open
orbit of X, the Hilbert scheme H parametrising deformations of C in X is smooth at [C].

Proof. We show that the second cohomology group H1(NC/X) of the normal
bundle to C in X vanishes, which occurs only if the Hilbert scheme is smooth
at [C] [16, Theorem 2.6].

Let θ : g× X → TX be the morphism obtained by restricting the map tangent
to the group action G × X → X. (Recall that X is embedded in TX via the zero
section.) Partial application of θ gives a global section θa : X → TX of the tangent
bundle from any a ∈ g, and at any point x in the open orbit Xo of X under G,
the stalk (TX)x of the tangent bundle is generated by these global sections. Thus,
the restriction of the tangent bundle of X to Co = Xo ∩ C is globally generated
and NC/X|Co

is generated by global sections of NC/X.
Since C and X are smooth, the normal sheaf to C in X is locally free. It splits

as
NC/X = O(a1)⊕ · · · ⊕ O(ar)

for some integer vector a ∈ Zr , and O(1) being the tautological bundle on C ≃ P1.
If ai is negative, the bundle O(ai) has no global sections, and at any point c ∈ Co,
global sections span at most a hyperplane in NC/X|c. Therefore the the ai’s are
non negative and thus H1(NC/X) = 0. �

8.10. Corollary. Let a ∈ Ro be a general point of R and ∆ a line through a contained
in R. Let m be the dimension of the maximal linear subspace of R through a containing ∆.
If ∆ is contained in the smooth locus of R, then

−Kr · ∆ = m + 1

where Kr is the canonical class of the smooth locus of R.

8.11. Remark. The hypothesis on ∆ is always satisfied when this line is suffi-
ciently general (8.7). When the variety of Cartan reductions for a reductive group
is under consideration, we have −Kr · ∆ = 3, for any such line.

Proof. According to the Riemann-Roch formula,

χ(N∆/R) = c1(N∆/R) + rk(N∆/R)(1 − g(∆)),
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the rank rk(N∆/R) is dimR− dim ∆ and the genus g(∆) of ∆ ≃ P1 vanishes. We
compute:

c1(N∆/R) = c1(TR|∆)− c1(T∆)

= c1(det TR|∆)− c1(O(2))

= −Kr · ∆ − 2.

By (8.9) the Hilbert scheme H[∆] parametrising deformations of ∆ in R is smooth
at [∆]. Its dimension at [∆] is h0(N∆/R) and h1(N∆/R) = 0. The Riemann-Roch
formula eventually yields

h0(N∆/R) = −Kr · ∆ + dimR− 3.

We compute the dimension h0(N∆/R) of H∆] another way. Put

Z =
{

(a, A) ∈ R×H[∆]

∣

∣

∣
a ∈ A

}

.

The Z component (a, ∆) belongs to, projects to a subset of R containing Ro with
general fiber of dimension m − 1, while this same component projects to H[∆]

with general fiber of dimension 1. We can then compute

dimR+ m − 1 = 1 + h0(N∆/R)

hence Kr · ∆ = −m − 1. �

9. Variety of anisotropic algebras

In this section, the symmetric pair associated to the Cartesian square of a sim-
ple group G of rank r is under consideration.

9.1. Rough estimate of the dimension of a nilpotent orbit. We say an orbit O
in A is nilpotent if it is the orbit of an abelian algebra contained in the nilpotent
cone N of g.

9.2. Proposition. The dimension of a nilpotent orbit in A is less than dim G − r − 2,
unless G has type A1.

Proof. Let B be a Borel subgroup of G, u the Lie algebra of its unipotent radical
and v an abelian subalgebra of u with dimension r—any nilpotent orbit in A

contains such a v. We bound from below the dimension of the normalizer of v

in g by the dimension of the normalizer nu(v) of v in u, thus obtaining a bound
from above for the dimension of the orbit through v.

According to the Lie-Kolchin theorem, endomorphisms of u/v adjoint to el-
ements in v share a common nilvector, so dim nu(v)/v ≥ 1. Assume that this
dimension is 1, and let v be the generic element of v, and v′ the endomorphism
of u/v adjoint to v. Since v is generic, Ker v′ = nu(v)/v has dimension 1 and v′ is
a cyclic nilpotent endomorphism, whose Jordan normal form consists of a single
block. The dimension of nu(v)/v thus equals the degree of the minimal poly-
nomial of v′. The endomorphism of u adjoint to the generic element of u has
minimal polynomial of degree h − 1, where h is the Coxeter number of G. Since
this minimal polynomial also vanishes at v′, we have

dim nu(v)/v ≤ h − 1.
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Table 1. Number of positive roots and Coxeter numbers

Type n/2 h h + r − 1
Ar r(r + 1)/2 r + 1 2r
Br r2 2r 3r − 1
Cr r2 2r 3r − 1
Dr r(r − 1) 2r − 2 3r − 3
E6 36 12 17
E7 63 12 18
E8 120 30 37
F4 24 12 15
G2 6 6 7

Let n/2 = dim u be the number of positive roots of G, the former inequality
gives n/2 ≤ h + r − 1 and from the table 1 (see Bourbaki [17]) we infer this
inequality is only possible when G has type A1, A2, A3, B2 or G2. Type A1 is not
to be considered, types A2 and A3 have their variety of Cartan reductions studied
by Iliev and Manivel [4, 11], and the remaining ones are studied in [5]. �

9.3. Infinitely many orbits. Iliev and Manivel [11] established that A consists
of infinitely many orbits, using the Grassmann variety associated with maximal
nilpotent abelian subalgebras in gln for n ≥ 6. Malcev [18] classified abelian
subalgebras of maximal dimension in simple Lie algebras, allowing us to adapt
the previous argument to show the

9.4. Proposition. The variety A of abelian algebras consists of infinitely many G-orbits
if G has one of the following types:

Ar (r ≥ 5) Br (r ≥ 4) Cr (r ≥ 5) Dr (r ≥ 6) E7 E8.

Proof. Let r be the rank of our semi-simple group, n its number of roots, m
the largest dimension an abelian unipotent subalgebra of g can have, and m an
abelian unipotent subalgebra with this dimension. Let v be an abelian subal-
gebra of g contained in m. On the one hand, v lies in the nilpotent cone of g,
according to (9.2) the G-orbit through v in A has dimension less than r − 2. On
the other hand, the set of all possible v is the Grassmann variety G(r,m), which
has dimension r(m − r). We conclude by an explicit computation that when-
ever r(m − r) > r − 2, the action of G on A must have infinitely many orbits. �

9.5. Theorem (Malcev). Each simple Lie algebra with the exclusion of B4, D4 and G2
has up to automorphisms only one commutative subalgebra of maximal dimension with
nilpotent elements. This dimension equals [ 1

4 (r − 1)2] for the algebra Ar (r > 2) (brack-
ets stand for the integer part of their argument), 1

2 r(r − 1) + 1 for Br (r > 4), 1
2 r(r + 1)

for Cn, 1
2 r(r − 1) for Dn, and 16, 29, 36, 9 and 5 respectively for E6, E7, E8, F4 and B3.

The algebra B4 has two classes of conjugate abelian subalgebras of maximal dimension 7,
D4 has two classes of dimension 6 and G2 has three classes of dimension 3.

9.6. Non algebraic anisotropic algebras. While the irreducible component R

of A contains only algebraic subalgebras of g (5.3), this is not the case of A.
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9.7. Proposition. If a semi-simple group has rank large enough, its variety A of abelian
algebras contains non algebraic elements.

Proof. Let G be a semi-simple group of rank r, and s a degenerate semi-simple
element of its Lie algebra g. If r is large enough, the set of nilpotent elements
in g commuting with s contains a r-dimensional linear subspace: this is most
easily seen when s is the coroot associated with an extremal node in the Dynkin
diagram of G, in this case the centralizer of s has semi-simple part a simple group
of rank r− 1 and one can readily use Malcev theorem (9.5). If the semi-simple part
of the centralizer of s in G has multiple simple ideals, one has to apply Malcev
theorem on each of them, to conclude. Let m be a basis of such a space, the Lie
algebra spanned by s + m1, m2, . . . , mr, is non algebraic, since it is not closed
under the Chevalley-Jordan decomposition. �

Appendix A. Tempered moving frames above degeneracy curves

in Grassmann varieties

We study moving frames along degeneracy curves in Grassmann varieties and
prove the technical result (A.8). We use here the language of degeneracies intro-
duced in 4.4.

A.1. Notations. Let E be a vector space of finite dimension, A1 a r-dimensional
subspace of E and Co a smooth and irreducible curve in GL(E). We let A0 be a
r-dimensional subspace lying in the closure of the curve Co A1 in the Grassmann
variety G(r, E) of r-dimensional subspaces of E. We denote by T (r, E) the tauto-
logical bundle T (r, E) → G(r, E). The principal bundle B(r, E) → G(r, E) whose
fiber at A is the set of all basis of A is a subbundle of the r-th bundle power
of T (r, E). It maps onto the principal bundle F (r, E) → G(r, E) whose fiber at A
is the set of complete flags of A. If x is a basis of A, we call its image in F (r, E)
the complete flag corresponding to x. Given a complete flag F in A, we say that
a basis x of A corresponds to F when its image in F (r, E) is F .

A.2. Tempered moving frames along degeneracy curves. Let A1 be a r-dimen-
sional subspace of E and K an algebraic group acting linearly on E. We choose
a point A0 lying in the closure of the orbit KA1 of K in G(r, E) containing A1, a
degeneracy curve Co in K and c0 a point at infinity taking A1 to A0. If x is a basis
of A1, we obtain a moving frame along Co A1 by sending c to the point (cA1, cx)
of B(r, E) ⊂ G(r, E)× Er .

This moving frame will usually not extend at c0. In the first place, it will not
do because the vectors cxk may become infinitely small or infinitely large. In the
second place, the lines defined by two vectors cxi and cxj may degenerate to a
single line. If cxi is asymptotically smaller than cxj, no linear combination of cxi
and cxj can yield a second direction at c0.

The first difficulty is circumvented by replacing cx by the associated tempered
moving frame: it is obtained from cx by rescaling its terms (A.6). We are able to
characterize the basis in A1 for which the second difficulty does not occur. They
are the basis of A1 whose associated flag is a refinement of some partial flag in A1
determined by Co. We call this partial flag the magnitude orders flag, it is defined
in (A.4).
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From now on we denote by R0 the local ring of the smooth completion C of Co

at c0, by m0 its maximal ideal, by L0 its ring of fractions and by ǫ ∈ m0 a local
parameter of C at c0. As the irreducible smooth curve Co uniquely determines its
smooth completion C, we call R0 the local ring of Co at c0 and ǫ a local parameter
of Co at co.

A.3. Filtration by the magnitude order. We consider a linear representation V
of K, for instance an exterior power of E. For any vector v ∈ V, the rational
map cv from C to V is an element of L0 ⊗ V. Thus, the asymptotic behaviour
of vectors in V under the operation of c near c0 is related to the structure of
the R0-module L0 ⊗ V.

The L0-vector space L0 ⊗V is a R0-module filtered by the submodules mk
0(R0 ⊗

V) for k ∈ Z. For any v ∈ L0 ⊗ V \ { 0 } we call the number

ω(v) = sup
{

k ∈ Z
∣

∣

∣
mk

0(R0 ⊗ V) ∋ v
}

the magnitude order of v near c0, or briefly the magnitude order of v. Note that the
zero vector has no magnitude order. For any v1, v2 in L0 ⊗ V \ { 0 } we have

ω(v1 + v2) ≥ min {ω(v1), ω(v2) } ,

unless v1 + v2 = 0.

A.4. Magnitude orders flag and corresponding basis. We describe a filtration
on A1 associated to the filtration of L0 ⊗ E by the magnitude order, which yields
a partial flag in A1. In the theory of the module L0 ⊗ E over the principal ideal
domain R0, this flag is related to the invariant factors of the submodule R0 ⊗ A1
of the finitely generated module R0 ⊗ E.

To any integer k we associate the subspace (A1)k of A1 defined by

(A1)k = { x ∈ A1 \ { 0 } | ω(cx) ≥ k } ∪ { 0 } .

Let (a1, . . . , am) be the increasing sequence of integers k such that (A1)k is a strict
superset of (A1)k+1. We thus have (A1)a1 = A1 and (A1)1+am = { 0 }, and it is
convenient to put am+1 = 1 + am. This yields a partial flag

{ (A1)a1 ⊃ · · · ⊃ (A1)am }

of A1.

A.5. Definition. The partial flag Fω
1 = { (A1)a1 ⊃ · · · ⊃ (A1)am } of A1 is the

magnitude orders flag. A magnitude orders basis of A1 is a basis x ∈ Ar
1 of A1

corresponding to a complete flag finer than the magnitude orders flag.

The natural map B(r, E) → F (r, E) is onto, which implies the existence of
magnitude orders basis of A1.

A.6. Definition. Let x be basis of A1. The tempered moving frame associated
to x is the map sending c ∈ Co to (cA1, ǫ−ω(cx1)cx1, . . . , ǫ−ω(cxr)cxr).

A.7. Extension of tempered moving frames. Our characterization of tempered
moving frames that extend at infinity is the following

A.8. Theorem. Let x be a basis of A1. The following conditions are equivalent:

(1) x is a magnitude orders basis of A1;
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(2) the finite sequence (ω(cxk))1≤k≤r is non-decreasing and for any 1 ≤ k ≤ r we
have

ω(cx1 ∧ · · · ∧ cxk) =
k

∑
i=1

ω(cxi)

for magnitude orders in the R0-module Λk(L0 ⊗ E).
(3) the tempered moving frame associated to x extends at A0 = c0 A1, and its value

at c0 is a basis of A0.

We will only give a few indications about its proof, for it is rather lengthy and
has little to do with the geometry of varieties of reductions. The hard work is
the proof that (2) implies (3). This can be done by using a variation of Smith’s
algorithm computing the normal form of a matrix whose coefficients are in the
principal ideal domain R0. From this standpoint (2) means that the principal
minors of the matrix whose columns are the coordinates of the tempered frame
associated to x are invertible in R0.

We also state without proof the following technical result:

A.9. Proposition. Let A1 = B1 ⊕ · · · ⊕ Bl be a direct sum decomposition of A1. There
exists a magnitude order basis of A1 whose terms are in B1 ∪ · · · ∪ Bl.

Appendix B. Closures of decomposition classes

We use the rigidity theorem 4.6 to show that the closure of a decomposition
class is a union of decomposition class. It seems that this was yet only proved for
the reductive symmetric pairs associated to the Cartesian square of a reductive
group [10, 39.2.7].

B.1. Theorem. Let (G, θ) be a reductive symmetric pair, and p its anisotropic space.
For any x in p, the closure of the decomposition class D(x) of x in p is a union of
decomposition classes.

Proof. Let K = (Gθ)o be the connected component of the fixed point group of θ.
According to [10, 39.5.2] we have:

D(x) = K · (c2
p(xs)o + xn) = K · (c2

p(x)o)

(see (3.2) for the definition of c2
p(xs)o and c2

p(x)o). Let y be a point in the clo-
sure D̄(x) of D(x) in p. We show that D(y) is contained in D̄(x). Since this
closure is K-stable, it is enough to prove that c2

p(ys) + yn ⊂ D̄(x).
Let Γo ⊂ K × c2

p(x)o be a smooth curve such that y lies in the closure of the
image of Γo by the map sending (g, z) to gz. For all (g, z) in Γo we have c2

p(gz) =
gc2

p(x) so that the projection Co of Γo in K pushes the anisotropic algebra c2
p(x)

toward an anisotropic algebra containing y. A double centralizer is closed un-
der Chevalley-Jordan decomposition, hence we can assume by the rigidity theo-
rem 4.6 that ys belongs to c2

p(x) and Co is a subset of the centralizer of ys in K.
But then c2

p(ys) ⊂ c2
p(xs) ⊂ c2

p(x) so we are done. �
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