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RIGIDITY VERSUS FLEXIBILITY OF TIGHT CONFOLIATIONS

T. VOGEL

ABSTRACT. In[9] Y. Eliashberg and W. Thurston gave a definition of tighn-
foliations. We give an example of a tight confoliatignon 7' violating the
Thurston-Bennequin inequalities. This answers a questan [9] negatively.
Although the tightness of a confoliation does not imply theifston-Bennequin
inequalities, it is still possible to prove restrictionsloomotopy classes of plane
fields which contain tight confoliations.

The failure of the Thurston-Bennequin inequalities fohtigonfoliations is
due to the presence of overtwisted stars. Overtwisted atargarticular config-
urations of Legendrian curves which bound a disc with figiteany punctures
on the boundary. We prove that the Thurston-Bennequin alégs hold for
tight confoliations without overtwisted stars and that gyeatically fillable con-
foliations do not admit overtwisted stars.
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1. INTRODUCTION

In [Q] Eliashberg and Thurston explore the relationshipreetn foliations and
contact structures on orient@dmanifolds. Foliations respectively contact struc-
tures are locally defined biyformsa such thatvAda = 0 respectivelynw Ada > 0
(more precisely this defing®sitivecontact structures).

One of the main results df][9] is the following remarkabledien.

Theorem 1.1(Theorem 2.4.1 in[[9]) Suppose that &-foliation ¢ on a closed
oriented3-manifold is different from the product foliation 6 x S? by spheres.
Then¢ can beC-approximated by a positive contact structure.

In the main part of the proof of this theorem a given foliatmmn}/ is modified
so that the resulting plane field is somewhere integrabléithis a positive contact
structure on other parts @ff. This motivates the following definition.

Definition 1.2. A positive confoliationon M is a C2?-smooth plane field on &-
manifold M which is locally defined by d-form o such thata A dae > 0. We
denote the region whetgis a contact structure bf ().
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Theoren 11l remains true when foliations are replaced bfotiations. Like
foliations and contact structures the definition of corfiidins can be generalized
to higher dimensions (cf.[[2,] 9]) but in this article we ardyoooncerned with
dimension3. All plane fields appearing in this article will be orientead particular
these plane fields have an Euler class.

In the last chapter of [9] Eliashberg and Thurston discusersé properties of
foliations (tautness, absence of Reeb components) andat@tituctures (symplec-
tic fillability, tightness) and what can be said about a con$éructure approximat-
ing a taut or Reebless foliation. For example they estalfisHollowing theorem.

Theorem (Eliashberg, Thurston_[9])If a contact structure on a closed-mani-
fold is sufficiently close to a taut foliation in ti&’-topology, ther¢ is symplecti-
cally fillable and therefore tight.

Another result in this direction is due to V. Colin.

Theorem (Colin, [7]). A C?-foliation without Reeb components on a closed ori-
ented3-manifold can be_?-approximated by tight contact structures.

In [12] J. Etnyre shows that every contact structure (tigitat) may be obtained
by a perturbation of a foliation with Reeb components. Tisuit is implicitly
contained in[[2R]. Moreover, J. Etnyre improved Theofeni Hylshowing that
C*-smooth foliations can b€*-approximated by contact structures provided that
k > 2 (a written account will hopefully be available in the neaufe, cf. [13]).

In order to understand better the relationship between gaanproperties of
foliations and properties of the contact structures agprating them, it is inter-
esting to ask about properties of confoliations which apjrethe approximation
process. For example the notion of symplectic fillability &g extended to confo-
liations in an obvious fashion.

The question how to generalize the notion of tightness isernomplicated. One
aim of this article is to clarify this point. The following @irition is suggested in

[Q].
Definition 1.3. A confoliation & on M is tight if for every embedded disD ¢ M
such that
(i) 0D is tangent t,
(i) TD and¢ are transverse alongD
there is an embedded dig¥ satisfying the following requirements
(1) oD = oD/,
(2) D’ is everywhere tangent 9
(3) e(§)[DuU D' =0.

This definition is motivated by the following facts. {fis a contact structure,
then there are no surfaces tangent tand Definition 1.B reduces to a definition
of tightness for contact structures. In the case whémna foliation on a closed
manifold Definitio LB is equivalent to the absence Reebgmrants by a theorem
of Novikov [24]. Thus Definitio_ 13 interpolates betweeghti contact structures
and Reebless foliations. The following theorem is also shiowf9] (we recall the
definition of symplectic fillability in Sectioh 2} 3).

Theorem 1.4 (Theorem 3.5.1. in[]9]) Symplectically fillable confoliations are
tight.
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As pointed out in[[9] there are inequalities imposing resitshs on the Euler
classe(§) of £ when¢ is a tight contact structure or a Reebless foliation. Before
we can state these inequalities we need one more definition.

Definition 1.5. Let v be a nullhomologous knot in a confoliated manifoil, &)
which is positively transverse to For each choicé’ of an oriented Seifert surface
of v we define theself linking numbesl(~, F') of v as follows. Choose a nowhere
vanishing sectionX of ¢|» and lety’ be the knot obtained by pushingoff itself
by X. Then

sly, F)=+"-F.

Obviouslysl(v, F') depends only ofF’| € Ho(M,~;Z).

In [3] D. Bennequin proved an inequality betweé(ry) of a transverse knot in
the standard contact structuker(dz + z dy) on R? and the Euler number of a
Seifert surface ofy. This inequality was extended to all tight contact struesuiny
Eliashberg in[[8]. From Thurston’s work in [28] it followsdhthe same inequalities
hold for surfaces in foliated manifolds without Reeb comgras. We summarize
these results as follows.

Theorem 1.6 (Eliashberg|[8], Thurstori [28])Let ¢ be a tight contact structure
or a foliation without Reeb components on a closed manildlddifferent from a
foliation by spheres) and® C M an embedded oriented surface.

a) If F ~ S?% thene(¢)[F] = 0.

b) If OF = ) and F ¢ S2, then|e(¢)[F]| < —x(F).

c) If OF # () is positively transverse t§, thensl(v, [F]) < —x(F).

The inequalities stated in this theorem are usually refleie@s Thurston-Benne-
quin inequalities. They imply that only finitely many classe H?(M;Z) are
Euler classes of tight contact structures or foliationshauit Reeb components.
Foliations by spheres violate a) and we exclude such fohatifrom our discus-
sion.

It was conjectured (Conjecture 3.4.5 in [9]) that tight adiations satisfy the
Thurston-Bennequin inequalities. We give a counterexanipf, ¢7) with the
property thak(¢)[Ty] = —4 for an embedded torus ifi*. Therefore every contact
structure which is close t§ must be overtwisted. This yields a negative answer to
Question 1 on p. 63 of [9]. The construction (@, ¢£7) is based on the classifica-
tion of tight contact structures 6fi? x [0, 1] due to E. Giroux and K. Honda.

In this article we show that a) is true for tight confoliatsoand c) holds when
Fis adisc. On the other hand we give an example of a tight ciatitmh £ on 73
which violates b) and c) for surfaces which are not simplynemted.

Our example indicates that tight confoliations are mucherftexible objects
than tight contact structures or foliations without Reemponents. For exam-
ple infinitely many elements aff?(73; Z) are Euler classes of tight confoliations.
Nevertheless, tight confoliations have some rigidity mmies. In addition to the
Thurston-Bennequin inequalities for simply connectedam@s we show the fol-
lowing theorem.

Theorem[5.1. Let M be a manifold carrying a tight confoliatiohand B ¢ M a
closed embedded ball if. There is a neighbourhood &fin the space of plane
fields with theC%-topology such tha¢’| . is tight for every contact structurg in
this neighbourhood of.

s
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This theorem leads to restrictions on the homotopy clasdanfepfields which
contain tight confoliations. For example only one homotafass of plane fields
on S3 contains a tight confoliation by Eliashberg’s classifioatiof tight contact
structures on balls together with Theoreml 5.1. For the pobdtheoren{ 5.1l we
study the characteristic foliatiofi(¢) = 7'S N & on embedded spherésc M (we
generalize the notion of taming functions introduced intf8onfoliations and use
results from([15]).

Motivated by the examplél™, ¢é7) we define the notion of an overtwisted star.
Roughly speaking, an overtwisted star on an embedded suffas a domain in
F whose interior is homeomorphic to a disc, the boundary afdloimain consists
of Legendrian curves and all singularities on the boundayehthe same sign.
The main difference between overtwisted stars and ovegdidiscs is that the
set theoretic boundary of an overtwisted star may contaisecl leaves or quasi-
minimal sets of the characteristic foliation.

An example of an overtwisted star is shown in Figuré 13 dn_p. I23vill be
clear from the definition of overtwisted stars that contaaictures which admit
overtwisted stars are not tight, ie. they are overtwistdétiérusual sense. Following
Eliashberg’s strategy from|[8] we prove the following thewr.

Theorem[6.2. Let (M, &) be an oriented tight confoliation such that no compact
embedded oriented surface contains an overtwisted staf &hd) is not a folia-
tion by spheres.
Every embedded surfadé whose boundary is either empty or positively trans-

verse to¢ satisfies the following relations.

a) If F ~ S?% thene(¢)[F] = 0.

b) If OF = ) and F ¢ S2, then|e(¢)[F]| < —x(F).

c) If OF # () is positively transverse t§, thensl(v, [F]) < —x(F).

Moreover, Theorem 114 can be refined as follows.
Theorerm[6.9. Symplectically fillable confoliations do not admit ovesteid stars.

These results indicate that tightness in the sense of Defiffiit3 together with
the absence of overtwisted stars is the right generalizatidightness to confolia-
tions.

This article is organized as follows: In Sectioh 2 we recallesal facts about
confoliations and characteristic foliations. Secfidn &tains a discussion of sev-
eral methods for the manipulation of characteristic f@iaon embedded surfaces.
For example we generalize the elimination lemma to cortfolis and we discuss
several surgeries of surfaces when integral dis¢dgmrsect the surface in a cycle.
In Sectior(# we describe an example of a tight confoliatioriérwhich violates
the Thurston-Bennequin inequalities while we prove Thedbel in Sectiofls.

In Sectior® we discuss overtwisted stars and establishhbesion-Bennequin
inequalities for tight confoliations without overtwiststhrs. Moreover, we prove
that symplectically fillable confoliations do not admit otveisted stars.

Throughout this articleM will be a connected oriente8-manifold without
boundary and. will always denote a smooth oriented plane field an More-
over, we requirel/ to be compact.
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2. CHARACTERISTIC FOLIATIONS, NON-INTEGRABILITY AND TIGHTNESS

In this section we recall some definitions, notations and kvedwn facts which
will be used throughout this paper. Most notions discussed are generalizations
of definitions which are well-known in the context of contattuctures (cf. for
examplel[1],[10],[14] and the references therein).

2.1. Characteristic foliations on surfaces. We consider an embedded oriented
surfaceF' in a confoliated3-manifold (M, £) and we assume thatis cooriented.
The singular foliationF'(§) := £ N T'F is called thecharacteristic foliationof F'.
The leaves of the characteristic foliation are examplekegfendrian curvesie.
curves tangent tg.

The following convention is used to oriedt(¢): Considerp € F' such that
F(£), is one-dimensional. FaK € F(£)(p) we choos&” € {(p) andZ € T,F
such thatX, Y represents the orientation §fp) and X, Z induces the orientation
of the surface. ThelX represents the orientation of the characteristic folratfo
and only if X, Y, Z is a positive basis df}, M.

With this convention, the characteristic foliation poiwtst F* along boundary
components of’ which are positively transverse {0 An isolated singularity of
F(¢) is calledelliptic respectivelyhyperbolicwhen its index ist1 respectively
—1. A singularity ispositiveif the orientation of¢ coincides with the orientation
of F' at the singular point andegativeotherwise. Given an embedded surface
F C M we denote the number of positive/negative elliptic singtiés by e (F)
and the number of positive/negative hyperbolic singuksitsh (F).

2.2. (Non-)Integrability. The condition that is a confoliation can be interpreted
in geometric terms. The following interpretation can berfdin [9].

Let D be a closed disc of dimensi@and¢ a positive confoliation transverse to
the fibers ofr : D x R — D. Then¢ can be viewed as a connection. We assume
in the following that this connection is complete, ie. foegydifferentiable curve
o in D there is a horizontal lift of starting at a given point in the fiber over the
starting point ofo.

We consider the holonomy of the characteristic foliationron (0D)

(1) hop i t(p) R — R~ 77 1(p)
wherehyp(z) is defined as the parallel transportoE R alongdD.

Lemma 2.1 (Lemma 1.3.4. in[[9]) If the confoliation¢ on7 : D x R — D
defines a complete connection, theyy (z) <  for all z € #=1(p) andp € dD.
Equality holds for allz € 7#=1(p) if and only if¢ is integrable.

If D = D x {0} is tangent tcg, then the germ of the holonomy is well defined
without any completeness assumption &g (x) < z for all z in the domain
of h. The germ ofhyp coincides with the germ of the identity if and only if a
neighbourhood oD is foliated by discs.

Of course, the second part of the lemma applies to the case arheonsiders
only the part lying above or below x {0} C D xR. A consequence of Lemrha2.1
is the following generalization of the Reeb stability themrto confoliations.
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Theorem 2.2 (Proposition 1.3.9. in[9]) Let M be a closed oriented manifold
carrying a positive confoliatiog. Suppose tha$ is an embedded sphere tangent
to &. Then(M, €) is diffeomorphic to the product foliation o$¥ x S* by spheres.

Foliations by spheres appear as exceptional case in someethe. They will
therefore be excluded from the discussion.

Another useful geometric interpretation of the confobaticondition can be
found on p. 4 in[[9] (and many other sources): L¢tbe a Legendrian vector
field and F" a surface transverse 6. The slope of line field ;(£) on the image
of F' under the time-flow of X is monotone irt if and only if £ is a confoliation.
This interpretation is useful when one wants extends ca@tiohs along flow line
which are Legendrian where the confoliation is already @efin

We define thdully foliated partof a confoliations on M as the complement of

{z € M| there is a Legendrian curve connectingp H (£)}.

If v is a Legendrian curve in a leaf gfand A ~ ~ x (—4,4),d > 0 an annulus
transverse to the leaf such that= v x {0}, then we will consider several types of
holonomyh 4 of the characteristic foliation oA.

e \We say that there iknear holonomyor non-trivial infinitesimal holonomy
along~y if #/,(0) # 0.

e The holonomy issometimes attractivé there are sequences:,), (yn)
which converge to zero such thagt > 0 > y,, and

ha(xn) < xn, ha(yn) >y, foralln € N.

2.3. Tightness of confoliations. In this section we summarize several facts about
tight confoliations. We shall always assume thas a tight confoliation but it is
not a foliation by spheres.

If (M,¢) istightandD C M is an embedded disc such tli#b is tangent te
and£|8D is transverse t@'D, then the disd)’ whose existence is guaranteed by
Definition[1.3 is uniquely determined. Otherwise there widug a sphere tangent
to £ and by Theoreni 212 would be a foliation by spheres. But we explicitly
excluded this case.

The definition of tightness refers to smoothly embeddedsdisit of course it has
implications for discs with piecewise smooth boundary digthty more generally
for unions of discs.

Lemma 2.3. Suppose that)/, €) is a tight confoliation andS C M is an em-
bedded sphere such that the characteristic foliatit{§) = 7'S N ¢ has only non-
degenerate hyperbolic singularities along a connectedecyof .S(£). Then there
are immersed disc®., i = 1,... k in M which are tangent tg and

) (U DZ) _op

This follows by considering’>°-small perturbations af such thaty is approx-
imated by closed leaves of the characteristic foliatiorhefperturbed sphere. We
will continue to say that a disc bounds the cyglalthough the “disc” might have
corners or be a pinched annulus, for example.

The most important criterion to prove tightness is Thedrefh 1t is based on
the following definition.
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Definition 2.4. A positive confoliation¢ on a closed oriented manifoltd is sym-
plectically fillableif there is a compact symplectic manifold’, w) such that

0] w‘g is non-degenerate and
(i) 0X = M as oriented manifolds whert¥ is oriented byv A w.

In this definition we use the “outward normal first” conventior the orientation
of the boundary. There are several different notions of dgotig fillings and
the Definition[2.#4 is often referred to as weak symplectinfil It is clear from
Theorem T4 (and Theoreim 6.9) that the existence of a sybpliting is an
important property of a confoliation.

Note that if(M, &) is symplectically fillable, then the same is true for cordeli
tions¢’ which are sufficiently close t9in the C°-topology.

Theoren{ 14 can sometimes be extended to non-compact rasnifthen one
obtains the following consequence.

Proposition 2.5(Proposition 3.5.6. in_]9]) If a confoliation¢ is transverse to the
fibers of the projectiofR?> — R? and if the induced connection is complete, then
£ is tight.

In [9] one can find an example which shows that the complegec@sdition can
not be dropped.

3. PROPERTIES AND MODIFICATIONS OF CHARACTERISTIC FOLIATIONS

The characteristic foliations on embedded surfaces in foldsi with contact
structures has several properties reflecting the pogitofithe contact structure.
Moreover, there are methods to manipulate the charadteiadiaition by isotopies
of the surface. Similar remarks apply whérs a foliation. In this section we
generalize this to the case whers a confoliation. If¢ is tight, then there are more
restrictions on characteristic foliation. Some of thesditamhal restrictions shall
be discussed in Sectidh 5.

3.1. Neighbourhoods of elliptic singularities. With our orientation convention
positive elliptic singular points lying in the contact regiare sources. The follow-
ing lemma shows that this statement can be interpreted biatlit generalizes to
confoliation.

Lemma 3.1. Let (M, &) be a confoliated manifold and” an immersed surface
whose characteristic foliation has a non-degenerate paselliptic singularityp.

There is an open disp € D C F such that each leaf of the characteristic
foliation on D is either a circle or there is a closed transversalfof¢) through the
leaf. If p is positive respectively negative add is transverse td"(¢), thenF (&)
points outwards respectively inwards.

Proof. We fix a defining forma for £ on a neighbourhood qf. If da(p) # 0,
thenp lies in the interior of the contact region and the claim falofrom [14].
Whenda(p) = 0, thenF'(§) is transverse to the gradient vector fiétdbf a Morse
function which has a critical point of indexor 2 atp.

In the following we assume that is positive andR points away fromp and
coorients¢ away fromp (the other cases are similar). The Poincaré return map
characteristic foliation is well defined on a small neightbmod ofp in a fixed
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radial line starting at the origin (cf[_[21] for example) aboyg our orientation con-
vention F'(&) is oriented clockwise near. We want to show that Poincaré return
map is non-decreasing when the orientation of the radialpimints away fronp.

In the following we assume that the Poincaré return maptisheoidentity because
in that situation our claim is obvious.

Let D C F be a small disc containingsuch that D is transverse td"(¢). Fix
a vector fieldZ coorienting bothF” and¢. We write D, for the image ofF' under
the timez-flow of Z. We may assume that the tangenciedofand¢ are exactly
the points on the flow ling, of Z throughp.

We extendR to a vector field on a neighbourhoodofangent taD, such that it
remains transverse toon U \ ,. Then the vector field” = zZ + R is transverse
to{on{z > 0} \ {p} C U. The flow of T" exists for all negative times and
every flow line of " approache ast — —oo. Sinceda(p) = 0 there are local
coordinatest, y on D aroundp such thap corresponds to the origin and

(2) a =dz + (zdx + ydy) + &

wherea denotes d-form such thatv/(z? + y?) anda/z remain bounded when
one approaches the origin.

We choose a closed embedded di¥dn {z > 0} which is transverse t&' and
D such thath D’ = 9D and D U D’ bound a closed half balB. The half ball is
identified with a Euclidean half ball of radidsand we fix spherical coordinates
p, ¥, ¢ (wherep denotes the distance of a point from the origihjs the angle
betweeny, and the straight line connecting the point with the origings that?’
corresponds tpd,. In this coordinate system

(3) a = cos(V)dp + psin(?) (—dv + sin(P)dp + cos(V)pd?d) + &

anda/(p?sin?(¥9)) anda/(pcos(19)) remain bounded when one approaches the
origin.

Consider a closed disP” lying in the interior of D’. We identify the union
of all flow lines of T" which intersectD” with D" x (0, 1] such that the second
factor corresponds to flow lines @f. On D" x (0, 1] the factorcos(##) is bounded
away from0. By (3) the plane fielder(«) extends to a smooth plane field on
D" x [0,1] such thatD” x {0} is tangent to the extended plane field. Therefore
ker(a) extends to a continuous plane field@@’ x [0,1]) \ (9D’ x {0}) which is
a smooth confoliation o®’ x (0, 1].

The holonomy of the characteristic foliation 6" x [0, 1] is non-increasing
by Lemmd 2.l whe®dD” x {0} is oriented as the boundary Bf’. Our orientation
assumptions at the beginning of the proof imply that the attaristic foliation on
0D’ x (0,1] is oriented in the opposite sense. This implies that thed@o@return
map of the characteristic foliation aroupds non-decreasing. O

3.2. Legendrian polygons. In the proof of rigidity theorems for tight confolia-
tions and also in Sectidd 6 we well use the notion of basinsLaggndrian poly-
gons. In this section we adapt the definitions fram [8].

Definition 3.2. A Legendrian polygon@, V, «) on a compact embedded surface
I is a triple consisting of a connected oriented surf@ceith piecewise smooth
boundary, a finite sét’ C 0Q and a differentiable map : @ \ V' — F which is

an orientation preserving embedding on the interior suah th

(i) corners of@ are mapped to singular points BY¢),
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(ii) smooth pieces 0@ are mapped onto smooth Legendrian curveg'on
(iii) for pointsv € V the imagex (b ) of the two segments,. C 9Q\ V which
end atv have the same-limit setT", andl’, is not a singular point.

A pseudovertexs a pointz € 9@ such thatx(z) is a hyperbolic singularity and
alpg is smooth aty(x).

A hyperbolic singularitya(z) on a(9Q) can be a pseudovertex only if both
unstable or both unstable leaves are contained ).

The points inV” should be thought of as missing vertices in the boundary.of
Figure[1 shows the image(()) of a Legendrian polygon@, V, o) where@ is a
disc,V = {v} C 9Q and the corresponding ends@ \ {v} are mapped to leaves
of the characteristic foliation whoselimit set is the closed leaf,. There are three
pseudovertices. The following definition generalizes thtam of injectivity of a

(

FIGURE 1.

Legendrian polygon to the context of confoliations.

Definition 3.3. A Legendrian polygon@, V, «) identifies edges there are edges

e1,... el >2in0Q such thav(e;)U...Ua(e;) is a cycle containing the image
of the pseudovertices lying, . . . , ¢; and leaves of the characteristic foliation such
that

(i) the preimage of each point of the cyclg, ., except the image of pseu-
dovertices has exactly one element while

(i) the preimage of points on the segments and of the imaljde @seudover-
tices consists of exactly two elements.

A Legendrian polygon which does not identify edges is cailhigekctive

Notice thato may identify vertices even {fQ), V, «) is injective. An example of
a Legendrian polygon which identifies three edges suchthal., is not trivial is
shown FiguréP.

Becausé is compact and the singularities B{¢) are isolated the limit sets of
individual leaves of the characteristic foliation éhbelong to one and only one of
the following classes (cf. Theorem 2.6.1. of[23])

e fixed points,
e closed leaves,
e cycles consisting of singular points and leaves connectiagn and
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FIGURE 2.

e quasi-minimal sets, ie. closures of non-periodic recuriejectories.
At this point we use the smoothnesstafsmoothness of clags? would suffice).

Lemma 3.4. Let F' C M be a surface ang a confoliation on) such thatoF is
transverse tg and the characteristic foliation points inwards aload’. Assume
thatU C F is a submanifold of dimensidhsuch that every boundary component
is either is tangent t@"(£) or transverse t@ and the characteristic foliation points
outwards.

Let B(U) be the union of all leaves df(¢) which intersectU. ThenB(U) has
the structure of a Legendrian polygon.

Proof. A preliminary candidate fofQ@, V, «) is Qo := U, V;, = () and« the inclu-
sion of Qy. We will define vertices and edges @fand we will gluel-handles to
components 00Q,. The existence oft will be immediate once the correct poly-
gon with all pseudovertices, corners and elliptic singties andV” are defined.

Each intersection ofU with a stable leaf of a hyperbolic singularity &f(¢)
defines a vertex afy. We obtain a subséty C 9Q), which will serve as a first ap-
proximation for the set of pseudovertices. ar Py we denote the corresponding
hyperbolic singularity of'(¢) by a(p).

First we consider the boundary componehtsf )y which are transverse to
F(¢) andl’' N Py = (. All leaves of F'(¢) passing through® have the same-limit
setQ)(T") (cf. Proposition 14.1.4 ir [20]).

We claim thatQ(T") is an elliptic singularity or a cycle: Assume thatT’) is
quasi-minimal. According to Theorem 2.3.3 [n_[23] there iseaurrent leafy
which is dense if2(T"). There is a short transversabf F'(£) such thatynr| > 2
and there are leaves @f(¢) passing throughi® which intersectr between two
pointspy, ps of ¥ N 7. Becausey is recurrent it cannot intersett Let I C 7 be
the maximal open segment lying betwegnp, such that the leaves &f(¢) induce
a map from/ to I'. It follows (as in Proposition 14.1.4. in [20]) that the balany
points of I connect to singular points af(¢) which have to be hyperbolic by
our assumptions. These hyperbolic singularities are gartpath tangent td’(&)
which connect§” with 7~ and this path passes only through hyperbolic singularities
This is a contradiction to our assumptibm P, = (.

Thus if By N T = (), then there are two cases depending on the natukIoy.

e If Q(T") is an elliptic singularity respectively a closed leaffof¢ ), then we
place no vertices oht anda mapsI to the elliptic point respectively the
closed leaf whilex = o7 outside a collar of".
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e If Q(T) is a cycle containing hyperbolic points, then we place aeoom
I" for each time the cycle passes through a hyperbolic singuldihe map
alr is defined accordingly.

Next we consider a boundary componé&nof )y, which is transverse té'(£)
and contains an elemenof PyNT. Letn be an unstable leaf of the corresponding
hyperbolic singularityx(p) of F/(£) and€2(n) thew-limit set of . Depending on
the type ofQ2(n) we distinguish four cases.

(i) ©(n) is an elliptic singular point. Then we place an elliptic sifagity on
I" next to the pseudovertex.

(i) Q(n)is acycle ofF'(£) or a quasi-minimal set. Then we place a paimn
I" and add this vertex to to the set of virtual vertidgs

(iii)y Q(n) is a hyperbolic point andy(p) is part of a cycle. Some possible
configurations in this case are shown in Fidure 3 (excepuoihedght part).
More precisely, the configurations in Figlile 3 corresporttiéacase when
there are are at most two different hyperbolic singulagité F'(£) which
are connected. This assumption is satisfied for surfacesgenaric1-
parameter family of embeddings and it would suffice for ouligations.

In the present situation we addlahandle toQ)y alongI'. This de-
fines a new polygod);. We definex; : Q1 — F such that one of two
new boundary components is mapped to the cycle contamijpgand we
place a corner on this connected componer@@f for each time the cy-
cle passes trough a hyperbolic singularity. In particglas no longer a
pseudovertex. Outside a collarofwe requirea = «.

(iv) Q(n) is a hyperbolic singularity and.(p) is not part of a cycle. Then
we place a corner o which corresponds téX(n). We continue with
the unstable leaff ¢ B, (T") of ©2(n) and place corners or vertices dn
depending on the nature of thelimit set of’. One possible configuration
is shown in the top right part of Figuké 3.

All unstable leaves of hyperbolic singularities#t{¢) which correspond to ele-
ments of Py N T" can be treated in this way.

We iterate the procedure (starting from the choice of pseendices) until no
new 1-handles are added and we have treated all occurring boundarponents.
This process is finite because each hyperbolic singulaaityicduce the addition
of at most onel-handle and there are only finitely many hyperbolic singtiésr
on F'. In the end we obtain a polygof. The existence of a finite sét C 9Q
and the immersiom : Q \ V' — F with the desired properties follows from the
construction. O

3.3. The elimination lemma. There are several possibilities to manipulate the
characteristic foliation on an embedded surface. Of conomgecan always perturb
the embedding of the surface so that it becomes generic ahdhi singularities
lie in the interior of the contact regioH (¢) or in the interior of its complement.
In addition to such perturbations we shall use two other pugh

The first method discussed in this section is called elinonabf singularities
and it is well known in the context of contact structures. heond method will
be described in Sectidn 3.4.

By a C°-small isotopy of the surfacé one can remove a hyperbolic and an
elliptic singularity which are connected by a leafof F'(¢) if the signs of the
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FIGURE 3.

singularities agree. The characteristic foliation befthre isotopy is depicted in
Figure[4. The segment corresponds to the thickened segment in the middle of

Figure[4.

FIGURE 4.

After the elimination of a pair of singularities as in Lemn& 3he character-
istic foliation on a neighbourhood of looks like in Figurd_b. The elimination of
singularities plays an important role in Eliashberg’s praior heoren{ 1.6 for tight
contact structures.

Below we give a proof of the elimination lemma which appliesconfolia-
tions under a condition on the location of the singularitidsually the elimination
lemma is proved using Gray’s theorem but this theorem is veitable in the cur-
rent setting (this is explained inl[1] for example).

Lemma 3.5. Let F' be a surface in a confoliated manifold/, £). Assume that
the characteristic foliation o’ has one hyperbolic singularity and one elliptic
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FIGURE 5.

singularity of the same sign which are connected by a{eaf the characteristic
foliation.

If the elliptic singularity lies inf (¢), then then there is @°-small isotopy of”
with support in a small open neighborhoétof + such that the new characteristic
foliation has no singularities inside éf. The isotopy can be chosen such thas
contained in the isotoped surface.

Note that if¢ is a foliation, then the situation of the lemma cannot ariseesall
leaves of the characteristic foliations in a neighbourhoben elliptic singularity
are closed.

Proof of Lemm&a3]5We assume that both singularities are positive. There is a
neighbourhood’ of v with coordinatest, y, z such thaig\U is defined by thd -
form o = dz + a(x, y, z)dy such that the function satisfiesd,a > 0. We assume
that 0, is positively transverse t9 and F', {z = 0} C F and thex—axis of the
coordinate system contains

It follows that¢|,,, can be extended to a confoliatiga on R? which satisfies
the assumptions of Lemrha2.1lif C U is a ball and),. is tangent ta)U’ along a
circle. Since every step in the proof will take place in a fisethll neighbourhood
of v we can apply Lemm@a=2.1 without any restriction. We choose 0 so that
x C (—e,e) C U’ for all z in a neighbourhood” C U’ of v. For a pathv C V/
we will consider the hypersurfacg, = o x (—¢,¢). By our choicesT, (&) is
transverse to the second factoriof.

Choose a smooth foliatiofi of a small neighbourhood (contained f) of ~
in F' by intervalsl,, s € [—1,1] as indicated by the dashed lines in Figure 4. We
chooseT such that it has the following properties.

~—

(i) Twointervalsiy,, I, pass through the singularities. One of them is tangent
to the closure of the unstable separatrices of the hyperbiigularity.

(i) Allintervals intersecting the interior of have exactly two tangencies with
the characteristic foliation of". The intervals which do not intersect the
closure ofy are transverse to the characteristic foliation.

(iii) Let o by a path inF" which is shorter than with respect to a fixed auxiliary
Riemannian metric. 1§ > 0 is small enough, then the image (@f(0), 0)
under the holonomy alorg, is defined. We assume that the length of each
I, is smaller than.
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We parameterize the ledf by o, : [0,1] — F such that the intersection of
with I, is positive (or empty), ie. in Figuld 4 the leavesioére oriented towards
the upper part of the picture.

The following figures show neighbourhoods &f in 75 := T, for certain
s € [—1,1]. In each of these figures the dotted line represéntsriented from
left to right. Figurd 6 corresponds to a lelafwhich does not interseet. Then/
is nowhere tangent to the characteristic foliatioriZgnBYy our orientation conven-
tions and the choice df the slope of N Ty is negative alond.

ZZ

FIGURE 6.

The leaved,,, I, contain the singular points of the characteristic foliatamn
F. As shown in Figur€l7 there is exactly one tangency'atnd the characteristic
foliation onTy,, T, . The slope of the characteristic foliation @y, 7, is negative
along/,,, I, except at the point of tangency.

0

)

FIGURE 7.

Finally, the leaved,, s € [so, s1] intersect the interior ofy and I is tangent to
F(&) in exactly two points. This is shown in Figuré 8. Between thie points of
tangency, the slope of the characteristic foliationTanis positive alongly, it is
zero at the tangencies and negative at the remaining pdirts o

We want to find a smooth family of isotopies of the intervaJswithin T such
that

(i) for all sthe isotopy is constant near the endpointg adind
(i) after the isotopy, the interval; are transverse to the characteristic folia-
tion onTy.

This will produce the desired isotopy &f. Such a family of isotopies exists if
and only if the following condition (s) is satisfied for alle [—1, 1]:
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FIGURE 8.

Z

Condition (s): The image ofos(0) x {0} under the holonomy along; lies
below the other endpoint;(1) x {0} of I, or the leaf ofT,(£) which passes
through(o(0),0) exits T through(os, —¢) C 0T5.

Note that this condition is automatically satisfied fore [—1,1] if I, does
not intersecty or this intersection point is close enough to a singularitythe
characteristic foliation.

If (s) is not satisfied for alk, then we will replaceZ by another foliationZ’
by intervalsI (the corresponding embeddings of intervals are denoted pgs
follows:

(i) If I does not intersect, thenos = o,. I intersectsy if and only if I

does.

(i) I.is tangent to the characteristic foliation éhalong two closed intervals
(which may be empty or points). The complement of these twervals is
the union of three intervals such that each of these inteigahapped to a
curve of length< J.

(i) I, andI coincide on those intervals where the characteristic tioliaon
T, has negative slope for alle [—1, 1].

(iv) I, U I’ bounds a positively oriented disc (hefg denotes the interval,
with the opposite orientation).

In Figure[9 the dashed line correspondstavhile the thick solid line represents

)
S

Fors € (so,s1) we define a curvd! by replacing the segment df lying
between the tangencies wiffi(§) by two segments of leaves &f(£) whose.A-
limit set is the elliptic singularity i”. Then the holonomy o x (—¢, ¢) clearly

Pz
N

FIGURE 9.
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satisfies the condition (s). This shows that for eadne can choosé’ with the
desired properties.

Moreover, whenevef; satisfies (s) then so do&sby Lemmd2.1L. It follows that
we can choose the foliaticf such the leaf of 7’ satisfies (s) for als € [—1,1].
The desired isotopy aof' can be constructed such that the surface is transversal to
0, throughout the isotopy. O

The following lemma is a partial converse of the eliminatiemma. Because is
only concerned with the region whegés a contact structure we omit the proof. It
can be found in[g, 14].

Lemma 3.6. Let F' C M be an embedded surface in a confoliated manifold and
~ C F a compact segment of a nonsingular leaf of the characterfstiation on
F which lies in the contact region &f

Then there is aC%-small isotopy ofF" with support in a little neighbourhood
of v such that after the isotopy there is an additional pair ofgsilarities (one
hyperbolic and ons elliptic) having the same sign. The gptoan be performed
in such a way that is still tangent to the characteristic foliation and contethe
two new singularities.

We end this section with mentioning a particular pertudratf an embedded
surfaceF which also appears in[8]. Consider an injective Legendgalygon
(Q,V, ) such that there is an elliptic singularityof F'(¢) such thath—!(z) con-
sists of more than one vertex X

Then F can be deformed by @°-small isotopy near: into a surfaceF” such
that there is a map’ : Q — F’ with the same properties aswhich coincides
with o outside a neighbourhood of ! (x) anda’ maps all vertices im—!(z) to
different elliptic singularities of” (), cf. Figure 10.

>

FIGURE 10.

3.4. Modifications in the neighbourhood of integral discs. The second method
for the manipulation of the characteristic foliation on ambedded surfacé' is by
surgery of the surface along a cyelewhich is part of an integral disc @f. The
latter condition is satisfied when the confoliation is tightdy bounds a disc i’
(for example wherf is simply connected).

While the elimination lemma is used in the proof of the ThamsBennequin in-
equalities for embedded surfaces in tight contact marsfdite following lemmas
adapt lemmas appearing in 26, 28] (cf. alsb [4]) which ardus the proof the
the existence of the Roussarie-Thurston normal form fdiases in3-manifolds
carrying a foliation without Reeb components. The existanfcthis normal forms
implies the Thurston-Bennequin inequalities for suchafidins.
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Lemma 3.7. Let F' be a surface and a closed leaf of the characteristic foliation
on F' such that there is a disP tangent ta which boundsy and hasFF N D = ~.
Then there is a surfacé” which is obtained fron¥' by removing an annulus
around~ and gluing in two discd), D_. The discs can be chosen such that the
D, (&), D_(&) have exactly one elliptic singularity in the interior 6f,, D_.
If the germ of the holonom¥;», has non trivial holonomy along on one side
of v, then we can achieve that the elliptic singularity on thecdis that side lies
in the interior of the contact region and every leaf of thereuteristic foliation on
the new discs connects the singularity with the boundariefiisc.

Proof. We will construct the upper dis®. in the presence of non-trivial holo-
nomy on the upper side of C F'. The construction of the other disc is analogous.
Fix a closed neighbourhodd ~ D x (—2e¢,2¢),e > 0 of D such that the fibers
of D x (—¢, €) are positively transverse to We assumé' NU = 9D x (—2¢, 2¢)

and we identifyD x {0} with the unit disc inR2.

By Lemmal21 there is € D and0 < n < 1 < e such thatr x [n,7/] is
contained in the interior of the contact regionéofOn D we consider the singular
foliation consisting of straight lines starting:at Fort € [n,7'] let D; be the disc
formed by horizontal lifts of leaves of the singular fol@tion D with initial point
(z,t). By Gray's theorem we may assume t§as generic near: x [n,7]. Then
D, (&) is homeomorphic to the singular foliation by straight lires D and the
singularity is non-degenerate for alE [, 7'].

Letp : [n,7] — [1/2,1] be a monotone function which is smooth on ']
such thatp = 1 nearn’ and the graph op is C'*°-tangent to a vertical line at
(n,1/2). We denote the boundary of the disc of radigs) in D; by S;. The union
of all Sy, ¢ € [n,7'] with the part ofD,, which corresponds to the disc with radius
1/2 is the desired dis®_. We remove the annulugD x [0,7'] from F and add
D+.

By construction the only singular point @ (§) is (x,n), the singularity is
elliptic and contained in the contact region. Its sign dejseon the orientation of
F.

In order to show that all leaves @b, () accumulate at the elliptic singularity
it is enough to show that there are no closed leave®qn Assume that is a
closed leaf ofD, (¢). Let D, be the disc formed by lifts of the leaves of the radial
foliation on D with initial point onr.

The restriction of to D x [0, ] extends to a confoliatiog on R? x R which
is a complete connection. By Propositf.ﬁs tight. Hencer must bound an
integral disc of¢’. Now D. is the only possible candidate for such a disc. But
D. cannot be an integral disc éfbecause it intersects the contact regior?{ Gbr
equivalentlys) in an open set. This contradiction finishes the proof. O

The following two lemmas are analogues to the eliminationne in the sense
that we will remove pairs of singularities. Note howevert thew singularities can
be introduced. In particular in LemriaB.9 we will obtain aface whose charac-
teristic foliation is not generic. However this will play mole in later applications
since the locus of the non-generic singularities will béatsd from the rest of the
surface by closed leaves of the characteristic foliation.



18 T. VOGEL

Lemma 3.8. Let ' be a surface in a confoliated manifold an embedded disc
tangent toc and DN F' = ~ is a cycle containing exactly one hyperbolic singularity
xZQ-

Then there is a surfacg” which coincides with¥ outside of a neighbourhood
of v and is obtained fron¥" by removing a tubular neighbourhood pfind gluing
intwo discsD_,, D_. The characteristic foliation of” has no singularities o
and one elliptic singularity orD; whose sign is the opposite of the sigrneef

Proof. The assumptions of the lemma imply that has a stable and an unstable
leaf which do not lie orD.

Choose a simple curve C D connectingz, to another boundary point;
of D such thatr is not tangent to a separatrix ofand extendr to a Legendrian
curve such that, z; become an interior points ef. Fix a product neighbourhood
U~ D x (—¢,¢e) of D with the following properties.

(i) D is contained in the interior of the dige x {0}.

(i) There is a simple Legendrian curve C D containingxg in its interior
and intersecting) D respectivelyaf) in two points such thaf is nowhere
tangent tor respectivelydD is transverse to.

(iii) The fibers of the projectionr : D x (—¢,¢) — D are transverse to.
Now considerT, = o x (—¢,¢). The intersectiorf;,, N F' has a non-degenerate
tangency withT,,(£) in xzpand meets x {0} transversely in:;. We choose two

pointsyo, y1 € T, N F such thateg, z; lie betweenr(yy) and~(y;), as indicated
in Figure[11.

FIGURE11.

The pointsyy, 1 can be connected by a curgeC T, transverse to the charac-
teristic foliation on this strip provided that, ¢, are close enough th. Moreover,
we may assume thdt is tangent toF’ near its endpoints (cf. the lower dashed
curve in Figuré11).

The curves is going to be part oD _. In order to finish the construction @7 _
we choose a foliation ab by a family I,, s € o of intervals that connect boundary
points of D and are transverse ta The characteristic foliation ofi;, consists of
lines which are mapped diffeomorphically fpby .

If & was chosen close enoughfb then there is a smooth family of curvés
in I; x (—e,e) which

() intersects and are tangent t9in these points,
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(ii) are transverse t6 elsewhere and
(i) are tangent taF" nearyg, 1.

The choices we made férand/,, s € o ensure that the union of all curvésis a
disc D_ which is transverse to.

The discD, is obtained as in the proof of Lemmal.7. The statement abeut t
sign of the singularity o (¢) follows from the construction. O

Lemma 3.9. Let F € M be an embedded surface in a manifold carrying a con-
foliation ¢ such thatF'(¢) contains a hyperbolic singularity and the stable and
unstable leaves of bound an annulusA C F which is pinched atr. We as-
sume that the pinched annulus is bounded by an integral Bisaf £ such that
0A=FnND.

Then there is an embedded surfacewhich is obtained fron# by removing a
neighbourhood of and gluing in an annulus!’ and a discD’ such that4’(¢) has
one of the following properties.

(i) A’(¢) has no singularity.
(i) The singularities ofd’(¢) form a circle and a neighbourhood iR’ of this
circle is foliated by closed leaves 6%¢’).

The characteristic foliation oD’ has exactly one singularity which is elliptic and
whose sign is opposite to the signof

Proof. The discD in the statement of the lemma is an immersed disc which is an
embedding away from two points in the boundary. These twntpaire identified
to the single point:. Let S' ~ o C D be a simple closed curve 2 which meets
x exactly once.

We choose a solid torus = o x [—1, 1] x[—1, 1] such that = o x {(0,0)} and
the foliation corresponding to the second factor is Legamdwhile the foliation
corresponding to the third factor is transverse{toFors € [—1,1] let Ay =
o x {s} x [-1,1]. The torus is chosen such thBtC o x [-1,1] x {0} and F’
intersectsA_ = o x [—1,1] x {—1} in two circles whileF'N (o x [—1,1] x {1})
is a circle which bounds is disc in x [—1,1] x {1}.

If C'is thin enough, then a dis®’ which boundsF' N (o x [—1, 1] x {1}) with
the desired properties can be constructed as in the procfrohid 3.7.

Let Py := o(s) x [-1,1] x [-1,0],s € S'. The characteristic foliation of,
consists of lines transverse to the last factoPpfando(s) x [—1,1] x {0} is a
leaf of Ps (&)

If £ one of the annule x {t} x (—1,0],t € (—1,1) has non-trivial holonomy
alongo x {(t,0)} orif o x {(¢,0)} is not Legendrian, then one can choose a curve
o’ in that annulus which is transverse&oThe annulusd’ is the union of curves in
Py, s € St which connect the two points df N (o(s) x [~1,1] x {—1} and pass
througho’ N P;. These curves can be chosen such that they are transversg fo
everywhere except ia’ N Ps. By constructiond’(¢) has the property described in
(i) of the lemma.

This construction also applies if we choasgen annuli which areC'>°-close to
o x {t} x [-1,0] for a suitablet € [—1,1]. If all annuli of this type have trivial
holonomy along their boundary curve which is closeste {(¢,0)}, then¢ is a
foliation on a neighbourhood ef in o x [—1,1] x [—1,0] by Lemmd2.]l whose
holonomy along is trivial. The same construction as in the previous casé(wi
o’ = o) yields an annulus!’ with the properties described in (ii). O
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Lemmd3.Y and Lemnia 3.8 suffice for Secfidbn 5 because the elatbasdrfaces
in that section are going to be simply connected. Then oneapply Lemmd. 3.8
to one of the boundary components of the pinched annulus.

In the lemmas of this section we have assumed ihatD = ~. In generalF’
andD may intersect elsewhere. Since all singularities of theazttaristic foliation
on ~ are non-degenerate or of birth-death type, there is a neighbod ofy in
D such thaty is the intersection of” with this neighbourhood. After a small
perturbation with support outside of a neighbourhood @fe may assume that
is transverse td on the interior of D. Now we can apply Lemmia_3.7 a finite
number of times to circles il N D in order to achieve that the resulting surface
intersectsD only along~. Then we can apply the lemmas of this section.

4. TIGHT CONFOLIATIONS VIOLATING THE THURSTON-BENNEQUIN
INEQUALITIES

The example given in this section shows that tightness (fisedkin Defini-
tion[1.3) is a much weaker condition for confoliations comgohbto the rigidity of
tight contact structures or foliations without Reeb congus. It also shows that
it may happen thagverycontact structure obtained by a sufficiently small pertur-
bation of a tight confoliation is overtwisted. This is in ¢@st to the situation of
foliations without Reeb components: According [0 [7] evérliation without a
Reeb component can be approximated by a tight contact steuct

The starting point for the construction of a tight confabatviolating the Thur-
ston-Bennequin inequalities is the classification of tigritact structures di® x I
such that the characteristic foliation ®h= T2 x {t}, ¢t € {0,1} is linear (cf. [15]).
We fix an identificatiori™ ~ R?/Z? and the corresponding vector fieldg .

According to [15] (Theorem 1.5) there is a unique tight cohtructure on
T? x I such that

(i) the characteristic foliation 0fi(7? x I) is a pair of linear foliations whose
slope is2 respectivelyl /2 on Tj respectivelyl,
(ii) the obstruction for the extension of the vector fieldsiethspan the char-
acteristic foliation ord(72 x I) is Poincaré-dual t62, 2) € H,(T?;7Z) ~
72,
Figure[I2 shows the characteristic foliation BA x {t} at various times and its
orientation. The two curves ifi? x {1/2} where the characteristic foliation is
singular represent the homology cldgs2) € H;(7?;Z). We may assume that
the contact structure i2-invariant and tangent t8; on a neighbourhood of the
boundary (cf. [14]). Then there are smooth functigfisg;,i € {0,1} on this
neighbourhood such thatis spanned by, and

fo(t)Or + go(t)da nearT? x {0}
f1(£)01 + g1(t)ds nearT? x {1}.
Because€ is a positive contact structure, the functiofisg; satisfy the inequalities
1) gi(t) — gi(t) fi(t) > 0 fori € {0,1} on their respective domains.
We now modify¢ to a confoliation on' V' = T? x [0,1]. For this replace the
functionsf;, g; in (4) by f;, g; such that fori = 0, 1
e fi, g coincide withf;, g; outside of small open neighbourhoodsI8fx {i}

(4)
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o there isr > 0 such thatf](t)g:(t) — g(t) fi(t) > 0if t € (7,1 — ) and
o f1(t)g:(t) —glt)fi(t)=0fort e [0,7] U [l — 7, 1]
e fi, g coincide withf;, g; att = 0, 1.

Remark 4.1. From the proof of Theorem 1.5 in [15] it follows that the catta
structure¢ onT? x (7,1 — 7) is tight.

We write¢ for the confoliation constructed so far. In the next step itlkextend
¢ to a smooth confoliation of”? x [—1, 2] such that the boundary consists of torus
leaves.

Leth be a diffeomorphism dR; such that(s) < s for s > 0 and all derivatives
of h(s) — s vanish fors = 0. The suspension of this diffeomorphism yields a
foliation on S* x R whose only closed leaf i§* x {0} and all other leaves
accumulate on this leaf. In this way we obtain a foliation®nx (S x R;) such
that the boundary is a leaf and the characteristic foliatiors® x (S! x {o}) ~
T? x {o}, o > 0 corresponds to the first factor. In particular it is linear.

Using suitable elements ¢4 € G1(2,7Z)| det(A) = £1} we glue two copies of
the foliation on7™ x [0, 0], > 0toT? x [0, 1]. We obtain an oriented confoliation
onT? x [—1, 2] such that the boundary is the union of two torus leaves and aye m
assume the orientation of the boundary leaves coincidésthdtorientation of the
fiber of T2 x [-1,2].

After identifying the two boundary components by an oriéiota preserving
diffeomorphism, we get a closed oriented maniféldcarrying a smooth positive
confoliation which we will denote again gy

Claim: ¢ is tight.

We show that the assumption of the contrary contradicts Rehd. Lety C
M be a Legendrian curve which bounds an embeddeddist M such that is
nowhere tangent t® along~ and violates the requirements of Definition]1.3. By
construction¢ has a unique closed ledf. If + is contained inl’, then~ bounds
a disc inT becaus€l’ is incompressible. Thus we may assume thées in the
complement off” and we can consider the manifald \ 7' = T2 x (—1,2).
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By RemarK4.1L;y cannot be contained ih? x (7,1 — 7). If ~ lies completely
in the foliated regiorl™ x ((—1,7] U [1 — 7,2)), then it bounds a disc in its leaf
because all leaves are incompressible cylinders.

It remains to treat the case when thedntersects the contact region and the
foliated region. All leaves of in M \ T = T2 x (—1,2) are cylinders which can
be retracted into the regidi? x [0,7) U (1 — 7, 1]. Hence we may assume that
is contained il x [0, 1].

First we show that there is a Legendrian isotopyyasuch that the resulting
curve is transverse to the boundary of the contact reiea 72 x {r,1 — 7}. A
similar isotopy will be used later, therefore we describa etail.

Let 72 x (0,7') with 0 < 7 < 7/ be a neighbourhood of one componentif
where¢ can be defined by thie-form

fo(t)

oo = dl‘l — N—d.%'g.
go(t)
We consider the projectiopr : 72 x [0,7'] — S x [0,7'] such that the fibers
are tangent t@;. Note thatda is the lift of the2-form

L H0a0 - GOA0
710)
The fibers ofpr are transverse . Let4 be a segment of which is contained in
T? x [0,7'] and whose endpoints do not lie é&h

If 4 is contained in the foliated part gf then we isotopé within its leaf such
that the resulting curve is disjoint froffiZ x {7} and the isotopy does not affect
the curve on a neighbourhood of its endpoints.

Now assume that some pieces“pfare contained in the contact region of
Thenpr(4) passes through the region 6t x (7,7'] wherew is non-vanishing.
We consider an isotopy of the projectionfpivhich is fixed near the endpoints and
the area of the region bounded bys zero for all curves in the isotopy. By Stokes
theorem this implies that one obtains closed Legendriavesuvheny is replaced
by horizontal lifts of curves of the isotopy (with startingipt on-~).

Hence we may assume thats transverse td? x {7} and~ is decomposed
into finitely many segments whose interior is completelytaored in either the
contact region or the foliated region &f

Let vg C ~ be an arc with endpoints in the contact regionfasuch thaty,
contains a exactly one sub arc 9flying in the foliated region. Becauseg is
embedded, it bounds a compact half disc in a leaf tangefiatad we can choose
~o such that the half disc does not contain any other segment of

Now we isotopey, relative to its endpoints such that after the isotopy this
segment lies completely in the contact regior{ofAs above we defornpr (o)
through immersions such that the resulting &ytas the following properties

e the integral ofv over the region bounded by andpr (o) is zero and the
same condition applies to every curve in the isotopy,
e 4o is completely contained if! x (7, 7'].
Then the horizontal lift ofyy can be chosen to have the same endpointg and
we can replaceg by this horizontal lift. The resulting curve is Legendriantopic
to ~ but it the number of pieces which lie in the foliated regiors kiacreased by
one.

dxo A dt.
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After finitely many steps we obtain a Legendrian isotopy leemy, and a
closed Legendrian curve which lies completely in the imteof the contact re-
gion. The Thurston-Bennequin invariant of the resultingveus still zero. But
this is impossible because the contact structur@®x (7,1 — 7) is tight.

Claim: If M = T3, then¢ violates b) of Theorefn 1.6.

The trivialization of¢ induced by the characteristic foliation arf x {0,1}
extends to the complement ®f x [0, 1] in T'3. The obstruction for the extension
of the trivialization from7? x {0,1} to 72 x [0, 1] is Poincaré-dual t@¢1,1) ¢
H1(T? x [0,1]). Hencee(¢) is Poincare-dual t@2,2,0) € HY(T?) & Z where
the second factor corresponds to the homology of the se@mdrfof73 ~ 72 x
S1. This means tha¢ violates the Thurston-Benneugin inequalities since these
inequalities implye(¢) = 0 because every homology classfrcan be represented
by a union of embedded tori.

An example of a torus i7", &) which violates the Thurston-Bennequin in-
equality can be described very explicitly. L&t be the torus which is invariant
under theS*-action transverse to the fibers and it intersects each fiteecurve of
slope—1, hence this curve represerits —1) € Hy(T?) whenT, is suitably ori-
ented. It follows from the description gfgiven above, that = TN (T2 x {1/2})
is Legendrian and the characteristic foliationTyhas exactly four singular points
which lie on7 and have alternating signs.

Moreover,TyNT is a Legendrian curve argds transverse to all tofi™? x {t},t €
(—1,2) except in the singular points ¢fy N (T2 x {1/2}). Figure[IB shows a
singular foliation homeomorphic to the one @h. We choose the orientation of

NI

FIGURE 13.

Ty such thake(Ty) = —4. In order to find an example of a surface with boundary
which violates the inequality c) from Theorém11.6 it sufficesemove a small disc
containing one of the elliptic singularities .

Finally, note that according t0 ][9] every positive confaba can be approxi-
mated (in the_'’-topology) by a contact structure, it follows that tightaésnotan
open condition in the space of confoliations with the-topology. Actually¢ can
be approximated by contact structures which@reé-close to¢. This can be seen
by going through the proof of Theorem 2.4.1 and Lemma 2.5[B]inBy con-
struction the holonomy of the closed leaf @ is attractive, therefore it satisfies
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conditions which imply the conclusion of Proposition 2,99] (despite of the fact
that the infinitesimal holonomy is trivial). The main parttbfs lemma is stated in
Lemmd 6.8 together with an outline of the proof.

Thus tightness is not an open condition for confoliationg@meral. This an-
swers question 1 from the section 3.7[in [9] (when tightnesiefined as in Defi-
nition[1.3).

5. RIGIDITY RESULTS FOR TIGHT CONFOLIATIONS

The example from the previous section shows that tight daiions are quite
flexible objects compared to tight contact structures atidtfons without Reeb
components. In this section we establish some restrictorthe homotopy class
of plane fields which contain tight confoliations.

The first restriction is the Thurston-Bennequin inequdiitysimply connected
surfaces. Note that this imposes no restriction on the Hidese(¢) of a tight
confoliation¢ on a closed manifold/ unless the prime decomposition bf con-
tains(S! x $?)-summands. The second restriction on the homotopy clagsssaf
consequence of

Theorem 5.1. Let M be a manifold carrying a tight confoliatioand B C M a
closed embedded ball if. There is a neighbourhood &fin the space of plane
fields with theC%-topology such tha¢’| . is tight for every contact structurg in
this neighbourhood.

s

The proof of this theorem is given in Section]5.2. Let us eixpdan application
of Theoren{ 5l which justifies the claim that Theorerd 5.1 igy@ity statement
about tight confoliations.

By TheoreniII1 every confoliation on a closed manifold ca6'bepproximated
by a contact structure unless it is a foliation by spheresiced& heoreri 5]1 can be
applied to every confoliation. Recall the following thewre

Theorem 5.2(Eliashberg,[[8]) Two tight contact structures on tt3eball B which
coincide ond B are isotopic relative t@B.

It follows from this theorem that two tight contact struasronS?® are isotopic
and therefore homotopic as plane fields. In contrast to thesyehomotopy class
of plane fields onS? contains a contact structure which is not tight. Thus the
following consequence of Theorem b.1 shows that there ateiagons on the
homotopy classes of plane fields containing tight confiolies.

Corollary 5.3. Only one homotopy class of plane fields$hcontains a positive
tight confoliation.

Proof. Let ¢ be a tight confoliation or$®. It is well known that every foliation of
rank 2 on S3 contains a Reeb component, df.[24]. Thid$¢) is not empty. We
choosep € H(§) and a ballB C H (&) aroundp.

According to [9]¢ can beCY-approximated by a contact structieon S2 such
that¢ and¢’ coincide onB. By Theoreni Gl the restriction ¢f to S \ B is tight
and by a result fron1]6§’ is a tight contact structure o$? which is homotopic to
€. O

More generally, Theorefn 3.1 together with Theotenh 5.2 iesplhat the homo-
topy class of a tight confoliatiog as a plane field is completely determined by
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the restriction oft to a neighbourhood of the-skeleton of a triangulation of the
underlying manifold.

5.1. The Thurston-Bennequin inequality for discs and spheresin this sec-
tion we prove the Thurston-Bennequin inequalities for &ttigonfoliation¢ in

the cases wheré’ is a sphere or a disc (with transverse boundary). For this we
adapt the arguments inl[8]. We shall discuss why Eliashbgugdof cannot be
adapted for non-simply connected surfaces in tight coatiolns after the proof
TheorenT54. Recall that the self-linking numbgry, ') of a null-homologous
knot v which is positively transverse twith respect to a Seifert surfade sat-
isfiese(&)[F] = —sl(v, F') wheree(&)[F] corresponds to the obstruction for the
extension the characteristic foliation n€#dr to a trivialization of¢ | P

Theorem 5.4. Let (M, &) be a manifold with a tight confoliation. Then

a) e(¢)[S?) = 0 for every embeddeztsphereS? ¢ M and
b) sl(0D, D) < —1 for every embedded disc whose boundary is positively
transverse t@.

Proof. We perturb the surface such that it becomes generic and liptcesin-
gularities lie in the interior ofZ (£) or in the interior of the foliated region. Fur-
thermore, we will assume in the following that there are nonaztions between
different hyperbolic singularities of characteristici&ions.

We showe(&)[D] > 1 for every disc as in b). By the Poincaré index theorem

V(D) = e4 (D) + e_(D) — hy(D) - h_(D)
e(§)(D) = e+(D) — e_(D) — h+ (D) + h_(D).

Subtracting these equalities we obtai(D) — e(£)[D] = 2(e— — h_). In order
to prove the b) it suffices to replade by an embedded disP’ with e(¢)[D] =
e(&)[D’] such thatD’ contains no negative elliptic singularities.

Because is tight andD is simply connected each cycle bf(§) is the boundary
of an integral disc. We can apply Lemial3.7 or Lenim& 3.8 to disgs to obtain
a new embedded dig@’. By (iii) of Definition[L.3e(&)[D] = e(&)[D].

We now choose particular cycles 6f(¢) to which we apply LemmBa_3.7 and
Lemmal[3.8: Definey < + for two cycles~,+’ of the characteristic foliation if
~" bounds an embedded disc containingWe apply Lemm& 3]7 and Lemrha3.8
to cycles which are maximal with respect4o This means in particular that the
holonomy of maximal cycles which are closed leave$Xf) is not trivial on the
outer side of the cycle.

Hence we obtain a disP’ whose characteristic foliation does not have closed
cycles and all elliptic singularities are containedHi{¢). In particular there are
no integral discs of which pass though elliptic singularities of the charastari
foliation of D. Moreover,e(£)[D] = e(§)[D’]. From now on we will writeD
instead ofD’.

Adapting arguments from [8] we eliminate one negative gtligingularity y.
Let U be a disc such thaiU is transverse td(£) andy € U. According to
Lemmd 3.4 there is a Legendrian polyg@®, V, «) coveringB(U). In the present
situationV = () since D(¢) has no cycles or exceptional minimal sets. Note that
B(U) C D because the characteristic foliation is pointing outwaldeagoD. Af-
ter a small perturbation adb we may assume that identifies vertices 0f() only

()
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if adjacent edges are also identified, for elliptic vertitieis is illustrated in Fig-
ure[I0. In this situation all boundary components)éf(y) are embedded piece-
wise smooth circles.

Recall thatD(£) contains no cycles. Then every boundary compongnof
W therefore contains an elliptic singularity (which has topmsitive). If all
singularities ofD (&) on~, are positive, then we obtain a contradiction to the tight-
ness of¢. Hencew, contains a negative singularity which has to be hyperbolic.
According to our assumptions it is a pseudovertex of the hdgan polygon, ie.
its unstable leaf ends gtwhile the other unstable leaf never me&tgy).

Therefore the application of the elimination lemma (Lenin®) 8loes not cre-
ate new cycles on the disc. We continue with the eliminatibnegative elliptic
singularities untile_ = 0. This finishes the proof of b)

Now we come to the prove of a). First we use Lenima 3.7 and LemBhan3
order to decomposg into a disjoint union of embedded spheres such that there are
no cycles which contain hyperbolic singularities. In thiéoiwing we consider each
sphere individually, so we continue to write If S(£) contains a closed leaf, then
the claim follows immediately from the definition of tighs®e LetD;, Dy, C S
be the two discs witW D, = v = dD,. Then there is an integral dige’ of ¢ such
thatoD’ = . We orientD’ such thatD; U D’ is a cycle and denote by D’ the
disc with the opposite orientation. Thé$i| = [D; U D'] + [(—D’) U D5] and the
claim follows from (iii) of Definition[I.3 applied td;, D,:

e(§)[S] = e(§)[D1 U D'+ e(§)[(—D") U Dy = 0.

Finally if S(£) has neither closed leaves or cycles, then one can provers) bisi
when one considers complements of small discs aroundositinegative elliptic
singularities. O

Consider a Legendrian polygd®, V, «) in FF C M when¢ is a contact struc-
ture onM . Generically the characteristic foliation éhis of Morse-Smale type (cf.
[14]). In particular there are no quasi-minimal sets. If #e¢ of virtual vertices of
the Legendrian polygo(1, V, «) associated t& is not empty, then by Lemnia3.6
one can create of a canceling pair of singularities along,cfor v € V' such that
all leaves which accumulated e now accumulate on an elliptic or a hyperbolic
singularity.

For this reason the cadé # () plays essentially no role whehis a contact
structure. If thew-limit set of v is contained in the fully foliated part @f, then it
not possible to apply Lemnia 3.6 (cf. Sectidn 4). Itis at thispwhere the proof
of the Thurston-Bennequin inequalities for tight contdoictures fails when one
tries to adapt the arguments from [8] to tight confoliati@msl surfaces which are
not simply connected.

We finish this section with a remark that will be useful later.

Remark 5.5. Let ¢ be a tight confoliation. For an embedded surfaéte- M we
definedy. (F') = e4(F') — h4 (F') for open subsets df. Note that ifF is a sphere,
thend, (F) = d_(F) = 1 by Theoreni. 5} ang(F) = 2.

Part b) Theorerh 5l4 can be strengthened: It is not only pessitbreplaceD
be a disc with the same boundary ar(@d)[D] = e(£)[D’] such thatD'(¢) has
no negative elliptic singularities. Consideflimit set of stable leaves of positive
hyperbolic singularities ofD’. SinceD’(¢) contains no cycles the-limit set is
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generically a positive elliptic singularity. Thus we maijnghate all negative ellip-
tic and all positive hyperbolic singularities frof¥ (£). This implies the following
inequalities:

d (D)=e (D)—h (D)=e_ (D) —h_ (D)) <0
di(D) = e4(D) — hy (D) = e (D) = hy (D) 2 0

In a later application we shall consider discs such ¢hatis negatively transverse
to £. Then the two inequalities above will be interchanged.

5.2. Perturbations of tight confoliations on balls. The proof Theoreni 5l1 is
given in the following sections. It has two main ingredienksrst we general-
ize taming functions on spheres to confoliations. We shat the characteristic
foliation on an embedded sphesecan be tamed if is tight and that this remains
true for contact structured which are close enough o Then we apply arguments
from [15] to conclude that’| B is tight if ¢ is a contact structure.

In the following sectiong will always be an oriented tight confoliation oW
and S denotes an embedded oriented sphere. We do not considatidiadi by
spheres.

5.2.1. Properties of characteristic foliations on sphereBhe tightness of leads
to restrictions on the signs of hyperbolic singularitiesronLemmal5.8 is con-
cerned with signs of hyperbolic singularities on cyclesS¢f) when¢ is a tight
confoliation. To state it we need the following definition:

Definition 5.6. A cycle connectedy of S(&) is aninternal subcyclef there is
another cycley’ of S(¢) such thaty N+’ is not empty and the integral disc which
boundsy’ contains the integral disc which boungls

A leaf v of S(¢) is calledinternal if there are two cycles of () which bound
discs tangent t§ whose interiors are disjoint. We say that a hyperbolic deudty
on~ is essentialf it is not lying on an internal subcycle of.

The union of singular points and cycles.8(¢) will be denoted by(S). This
set is compact.

An example of an internal subcycle is shown in Figuré 14. Nb& one can
create internal cycles intersecting a fixed cycl&'¢f) with arbitrary sign using an
inverse of the construction explained in Lemimd 3.8.

If a connected cycley of S(£) contains hyperbolic singularities, then the ho-
lonomy alongy can be defined at most on one side. The one-sided holonomy is
defined if and only if there is an immersion of a diBdnto S which is an embed-
ding onD anddD is mapped ontey such that the image db does not contain a
stable or unstable leaf of a hyperbolic singularity~onWe will say thatD is a disc
in .S although some points on the boundary may be identified.

The singularities on can be decomposed into two classes

A(v) = {hyperbolic singularities on such thaty contains
both stable leavés

B(~) = {hyperbolic singularities on such thaty contains
only one of the two stable leaves
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Let v be a cycle ofS(£) and D C S a disc withoD = ~ whose interior does not
contain a stable leaf of a hyperbolic singularity-anThen the one-sided holonomy
along~ is well defined. Becausgis tight there is a dis®’ tangent tef such that
0D’ = ~. We orientD’ using the orientation df.

Definition 5.7. We say thaty is potentially attractingif

() D lies below respectively abou®’ (with respect to the coorientation &
in a neighbourhood ob’ and
(i) the orientation ofy is opposite respectively equal to the orientatio® 6f .

In the opposite case, is potentially repulsive

According to Lemma2]1 the holonomy along potentially repud respectively
attractive cycles is non-repelling respectively noneating. The terminology of
Definition[5.7 is introduced to deal with the case when thehaimy is trivial (and
therefore non-repelling and non-attracting at the same)tim

Lemma 5.8. Lety be a cycle o5(¢) containing a hyperbolic singularity and such
that the one-sided holonomy is defined.

Then all essential singularities iA(~) have the same sign and all essential sin-
gularities in B(y) have the opposite sign. The one-sided holonomy is potigntial
attractive (respectively repulsive) if and only if all sirigrities in A() are nega-
tive (respectively positive) and all singularities () are positive (respectively
negative).

The signs of the non-essential singularitiesitry) respectivelyB(~) is oppo-
site to the sign of the essential singularities4fry) respectivelyB (7).

Proof. Let D C S be the disc inS with 9D = ~ such that the one-sided holo-
nomy is defined on the side ef where D is lying. Becausg is tight, there is
a disc D’ tangent ta¢ which boundsy. Consider a tubular neighbourhood bf
which contains a collar a®D and the collars lies on one side bf in the tubular
neighbourhood.

The statement about the signs of singularities now follows$obking how D
approached)’ near the tangencies and the relation between the signs artth
lonomy is a consequence of our orientation conventions amarhd 2.11. O

The following proposition is a generalization of Lemma 4. [8]. It will play
an important role in the proof of Theordmb.1.

Proposition 5.9. Let £ be a tight confoliation on\/ and S ¢ M an embedded
sphere such that the singularities 5{¢) are non-degenerate. Léf C S be
a connected submanifold of dimensisuch thatoU is transverse ta5(£) and
S (&) points outwards alon@U. Each connected compondnbf the boundary the
associated Legendrian polygd®, V, ) has the following properties.

(i) If there is a negative elliptic singularity on «(T") such thatn(Q) is not a
neighbourhood of: or a cycley, withv € V' N T such thatn(Q) is not a
one-sided neighbourhood of, then«(T") contains a positive pseudover-
tex.

(i) If di-(U) = 1 and (@, V, «) identifies the edges,...,¢e; of I, thena
maps the pseudovertices ey .. ., e; to negative hyperbolic singularities
of S(&).
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Proof. It was shown in Lemmia_3.4 th&(U) is covered by a Legendrian polygon
(Q,V,a). Recall thaty is defined only ori* \ (I' V'), but we shall denote/(I" \
(I'nV)) by a(T).

First we reduce the situation to the case whén= (). By the theorem of
Poincaré-Bendixon, the-limit sets corresponding to points df are cycles. Be-
cause is tight, these cycles bound integral discg @nd we can apply Lemnia3.7
or Lemmd3.B. Since the discs bounding these cycles magéaur it is also nec-
essary to consider cycles in.

Letv € V and D, the integral disc of which boundsy, and~; a cycle ofS(¢)
which is contained irD,. We assume that the dige; c D, bounded byy; inter-
sectsS only along~;. The cycley; is either contained i/ or in the complement
of U.

We begin with the case; C U. In this case we obtain two embedded spheres
S’, 8" by cutting alongy;. When we use Lemnia_3.7 for this the subsetc S
induces two subsets’ c S’,U” < S” such thatU’ respectivelyU” contains
one positive respectively one negative singularity in fiddito singularities which
were already present ifi, U’ respectivelyoU” is transverse t&’(¢) respec-
tively S”(£) and the characteristic foliation points outwards. The geeartices
of the Legendrian polygons associated to the basing’of/” coincide with the
pseudovertices af), o, V). If d.(U) = 1, then

dy (U') +dy (U") = dy (U) + 1
(6) d+(S\U') +d (U') =d(S") =1
d (S"\U") +dy (U") = d4(5") = 1.

Notice that(S” \ U") U (S” \ U”) = S\ U andd(S \ U) is negatively transverse
to Se. It follows from RemarK 5.5 that, (S \ U’) < 0 andd,(S” \ U") < 0.
Together with[(6) this implied (U') = d;(U") = 1.

If we applied Lemma_3]8 and the hyperbolic singularity wasifpee respec-
tively negative, therh (U’ U U") = hy(U) — 1 respectivelye (U' U U") =
e+(U) + 1 and one of the sets, séy coincides withU. Thend, (U) = 1 implies
d+(U”) — 1

When~; lies in the complement of/, cutting along~; will not affect U or
d+(U) but the basin ot/ can change: We might remove a virtual vertex, or after
the surgery process some boundary components of the Legenquaiygon might
be mapped to a negative elliptic singularity while they weereumulated on a cycle
before. The pseudovertices are not affected. Note alsafth@f)) is a one—sided
neighbourhood of a cycle,, then the Legendrian polygon which results from the
surgery alongy, will be a neighbourhood of the negative elliptic singulasthich
results from surgery process. (Recall thathas well defined attractive one—sided
holonomy on the side of(Q)).

After finitely many steps we obtain a finite union of embeddglesesS; and
subsetd/; with the same properties &5such that the associated Legendrian poly-
gon (Q,,V;, a;) satisfiesV; = (). Therefore is suffices to prove the claim when
B(U) is covered by a Legendrian polygd®,V,«) with V.= (. LetT be a
boundary component @p.

We now prove (i). Letr € «(T') be an elliptic singularity such that(Q) is
not a neighbourhood af. Then the connected componentdgfy(Q)) containing
x is a piecewise smooth closed curve After a perturbation of the sphere we
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may assume that does not contain corners, € H () andc is embedded (cf.
Figure 10). If all singularities onwere negative, then we would get a contradiction
to the tightness of since no integral surface @fcan meet:. Since all elliptic
singularities onc C «(0Q) are attractive and therefore negative there must be a
positive pseudovertex an

It remains to prove (ii). Assumé,(U) = 1 and letzy,...,z;,l > 2 be the
pseudovertices on the edgss...,e C I

Whena(e;) = a(e;) for i # j, thenl = 2. Letn,n’ be the two stable leaves
of a(z1). After a small perturbation of in the complement of/ we may assume
that thea-limit sets ofr), ’ are contained /.

If a(e;) # a(ey) foralli # j, then leta(z;), (x;) be two hyperbolic singular-
ities which lie on the cycle associated to identified edgésDefinition[3.3) and
are connected by a piecewise smooth simple oriented paththe complement
of U consisting of leaves of(¢) and hyperbolic singularities (as corners) such
thato starts at(x;) and ends atv(z;) without passing through images of other
pseudovertices. After a small perturbationsoin the neighbourhood af(z;) we
obtain a spheré&’ such that thex-limit sets.A(n),.A(r/) of the two stable leaves
n,n of a(x;) are contained if/.

We may assume that neithdi(n) or .A(n’) is a hyperbolic singularity or a sin-
gularity of birth-death type. By the Poincaré-Bendixordrem.A(n) is either
an elliptic singularity or a cycle. The same is true $&(n’). Using Lemmd_3l7
and Lemma&-318 we can ensure thé{;) is an elliptic singularity, which has to be
positive. Note that), /' lie in the same connected component of the two spheres
obtained by the surgery along cycledlin

For the same reason we may assume thattlimit set of each stable leaf of
hyperbolic singularities i/ is an elliptic singularity in/. Under these conditions
the hypothesed (U) = 1 implies that the graph formed by positive singularities
(except birth-death type singularities) and stable lea¥dg/perbolic singularities
is a connected tree.

Both stable leaves af(z1) together with the simple path on the trEecon-
necting.A(n) with A(n") form a simple closed curve on S which is Legendrian.
All singularities onry excepta(z;) are positive by construction. Moreovercon-
tains an elliptic singularities which lies if (). If «(x;) is positive we obtain a
contradiction to the tightness ¢fsincec cannot bound an integral disc&f [

In order to apply the previous proposition efficiently it ra@ims to show that
either one of the two parts of Propositibn]5.9 can be used ar 9Q does not
contain any pseudovertices at all. This is done in the faligwemma.

Lemma 5.10. In the situation of Proposition 5.8Q has more connected compo-
nents or one of the following statements holds for each atedecomponerit of
0Q.
(i) There is a connected compondntof 0@ such thata(I") is an elliptic
singularity anda(Q) is a neighbourhood of or «(T") is a cycle andy(Q)
is a one-sided neighbourhood of that cycle.
(i) «(I") contains a cycle of (&) such thata(Q) is not a one-sided neigh-
bourhood of«(T") or a(T") contains an elliptic singularity such that(Q)
is not a neighbourhood of.
(i) « identifies edges on.
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Proof. After a small perturbation of we may assume that all negative elliptic
singularities onS' lie in H (&) or the interior of the complement df (). As in
the proof of the previous proposition the problem can beceduo the case when
rnv=40.

We show that if (i) and (ii) do not hold fof", then (iii) applies tol'. In the
following discussion we ignore corners aifl') if two of their separatrices lie in
the complement ofi(Q).

Letz; € «(T") be an elliptic singularity. Sinca(I') # z; there is an unstable
leafn] of a pseudovertey; which ends atr;. Letn; be the other unstable leaf of
Yi1-

If the a-limit set of n; is a negative elliptic singularity, thesp is contained in
the interior ofa(Q) and the two edges df which correspond tg; are identified
by a. Otherwise thev-limit set of n; is a hyperbolic singularity, and we can
assume that, is a pseudovertex df. There is a unique unstable legf of v,
which is not contained in the interior of(Q). In particular thev-limit set of 7,
cannot by an elliptic singularity. Thus thelimit set of ns is the imagey; of a
pseudovertex of). If y3 = y1, thena identifies the edges correspondingyicand
11, n2 form a non-trivial cycle ofS(¢).

Otherwise we continue as above until a pseudovertex appeatte second
time. This happens after finitely many steps sificeontains only finitely many

pseudovertices. If we obtained a sequenceys, . .., y,,r > 2 with y; = y,., then
« identifies the edges corresponding to the pseudovetices. , y,_1. Thus if (i)
and (ii) do not apply, then (iii) is true. O

5.2.2. Taming functions for characteristic foliations on spherdaming functions
for characteristic foliations were introduced by Y. Elibshg in [8]. In this section
we extend the definition of taming functions so that it can ppliad to spheres
embedded in manifolds carrying a tight confoliation.

Let S be an embedded sphere in a confoliated manifold such thairbalar-
ities of the characteristic foliatio§(¢) are non-degenerate or of birth-death type.
This assumption holds in particular for spheres in a geneparameter family
of embeddings. In addition we may assume that there are attwmoddifferent
hyperbolic singularities which are connected by theirIstainstable leaves.

Definition 5.11. Let U C S be a compact submanifold of dimensi®im S whose
boundary is piecewise smooth and does not interSésf). Moreover, we assume
that every connected componéhtz oU satisfies one of the following conditions:

(1) T is either transverse or tangentS¢¢).

(2) T intersects one respectively two stable leaves of hyperitsatigularities
of S(¢) (these singularities may be part of a cycle, cf. Fidurk 157as
a neighbourhood of a hyperbolic singularity). Each smoetingent ofl"
intersects exactly one separatrix of a hyperbolic singylan U and each
segment is transverse &{¢).

(3) U is disc and a neighbourhood of a birth-death type singylaftS (&)
such thabU consists of two smooth segments transversg(tg.

A function f : U — R is ataming functionfor S(¢) if it has the following
properties.



32 T. VOGEL

(o) If a component” C 9U belongs to the class (1), thghis assumed to be
constant alond’. If I" is of class (2) or (3) we require thﬂF has exactly
one critical point in the interior of each of the smooth segte®fI".

(i) The union of the singular points ¢f(£) with all points on internal leaves
coincides with the set of critical points gf. The function is strictly in-
creasing along leaves 6f¢) which are not part of a cycle anfdis constant
along cycles of5(¢).

(i) Positive respectively negative elliptic points 6f¢) are local minima re-
spectively maxima of .

(ii) If the level set{f = C'} contains only hyperbolic singularities, then as
C increases the number of closed connected componenfg of C'}

changes by ({f = C'}) — h+({f = C}).

Requirement (i) in Definitioh 5.11 is slightly more complied than one might
expect. Figuré4 gives an example of a spiene R? equipped with the foliation
by horizontal planes. A part of the characteristic foliatie indicated in the right
part of Figurd_I¥ where the cycle containing the internaktgale is thickened. If
one requires that singular points $f¢) should coincide with critical points of the
taming function, thert(¢) cannot be tamed although the confoliation in question

is tight.
& C
N .
/| ®
N 7 @
- 7

FIGURE 14.

Assume tha( X, w) is a symplectic filling of(), ¢) and a compatible almost
complex structure of/ is fixed such thag consists of complex lines. By Theorem
1 of [18] an embedded-sphereS C M can be filled by holomorphic discs when
the embedding ofb satisfies several technical conditions. The singular tiole
in the formulation of Theorem 1 in_[18] is very similar to thgular foliation
formed by level sets of a taming function. The appearancetefial cycles should
be compared with Remark 2 in[18].

5.2.3. Construction and deformations of taming functiongt S € M an em-
bedded oriente@-sphere. The tightness gfleads to several restrictions on the
combinatorics of the cycles &f(¢) and their holonomy. This will be used to con-
struct a taming function fof(¢).

Recall that the orientations 6fand¢ induce an orientation of (§) and integral
surfaces of are oriented by. If -y is a cycle ofS(¢), then by tightness there is an
integral discD,, of £ such thato D, = ~ but the orientation obD., as boundary
of D, does not coincide with the orientationpin general. Recall also th#?, is
uniquely determined becaugés not a foliation by spheres.
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For a2-dimensional submanifold C S with piecewise smooth boundary we
define the following quantities:

d(U) = e (U) = hs (U)
N_(U) = Number of connected componefit®f 0U whereS(¢)
points transversally int& or I is tangent taS(¢)
andT is potentially repulsive on the side bt
N¢(U) = Number of boundary components@f through which
stable leaves of negative hyperbolic singularities enter.
P,(U) = Number of stable leaves of positive hyperbolic singulesitinl/
which intersecU.

These quantities will be used in the construction of tamingcfions.

Lemma 5.12. For each path connected componéty of X(.S) there is a neigh-
bourhoodU, of ¥y and a taming functiory : Uy — R such that no connected
component odUj is tangent taS(§) and

@) a4 (U) = 1 = N_(Up) — Py(Us) - No(Uy).

Proof. We will constructUy and f : Uy — R inductively. The starting point are
connected cycles and singularities of(¢) in X, which belong to the following
classes.

(i) Positive elliptic singularities and hyperbolic or liirtleath type singulari-
ties which do not belong to a cycle.
(ii) Closed leaves with sometimes attractive (non-triviate-sided holonomy.
(iii) Cycles ~ containing hyperbolic singularities which satisfy theldaling
conditions:
— The only cycle ofS(¢) containingy is .
— If 9 C v is asubcycle with potentially attractive one-sided hologp
then this one-sided holonomy is not trivial.

If the positive elliptic singularityy in (i) is dynamically hyperbolic, then it is a
source and there is a taming function on a neighbouriidoshose boundary is
transverse t&'(€). If the elliptic singularity is not dynamically hyperbolithen
one obtains a taming function using the holonomy of an imtej¥,),n > 0
which is transverse t8(¢) except ay andy correspond$ (cf. Lemmd3.1). If the
holonomy is non-trivial, then we can choose the dondaiof the taming function
such thatoU is transverse t&'(£). Otherwise we choos& such thatoU is a
closed leaf of5(¢). Moreover,U satisfies[(I7).

If = is a hyperbolic singularity or a singularity of birth-deatpe, then the
existence of a taming function on a neighbourhédbdhich satisfied(7) is obvious.

For aclosed leaf of S(¢) as in (ii) we choose an embedded interrah, ), n >
0 transverse t&'(£) such thab corresponds to a point inand(—n, 0] corresponds
to the side where the holonomy ofis sometimes attractive. This choice deter-
minesf along the transverse segment ghdan be extended to a taming function
on a neighbourhood of. If the holonomy on the sidéf > 0} is non-trivial
(respectively trivial) we choosE to be an annulus with transverse boundary (re-
spectively such thadU N {f > 0} is a leaf ofS(¢) and the other component of
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oU is transverse t&(£)). ThusN_(U) = 1 andU contains no singular points of
S(§). This means thak{7) holds féf.

Now let~ be a cycle containing hyperbolic singularities. For eaditgale with
potentially attractive (respectively repelling) oneedcholonomy chose a transver-
sal(—¢, 0] (respectively|0, £)) with 0 lying on~ and construct taming functions on
collars of discs bounding the subcycle. When the germ of tleesided holonomy
is nontrivial, then we can choose the boundary correspgndoundary compo-
nent of the domairi/ of f to be transverse t§(¢), otherwise we can choose the
boundary of the domain to be tangent to a leab¢f).

If v contains a corner such that only one stable leaf of the hgfierfingularity
is part of, then the levelsets of neary can be chosen as suggested in Figute 15.
The thick curve represents a critical level fofvhile the dashed curve corresponds
to a regular level off.

FIGURE 15.

By constructionf is constant along cycles and increasing along leaves ©f
which are not part of cycles. Singular points$f¢) clearly are critical points of
f. In order to show that requirement (i) of Definitibn 5.11 isisfeed by f we
consider an internal leafy C ~.

Let Dy 1, D2 C S be discs which lie on opposite sidesf and contain no
subcycle ofvy in their interior. Because is an internal Ieaflo)m respectively
10)072 can not contain a stable or unstable leaf of a hyperboliauangy ondDy ;
respectivelyd Dy ». Therefore the one-sided holonomy aloi ; anddDy 5 is
well defined and by Lemnia2.1 the holonomy al@ih, ; is potentially attractive
if and only if the same is true for the holonomy alod@,». Hencef has a
local minimum respectively maximum at every pointygfwhen the holonomy is
potentially repulsive respectively attractive.

Using induction on the number of hyperbolic singularitiasyiwe now prove
requirement (iii) from Definitiod 5.1 andl(7) fof : U — R. We have already
treated the case whencontains no hyperbolic singularity.

Given a cycley and a fixed hyperbolic singularity, we isotopeS in a neigh-
bourhood ofry. We choose the isotopy such that segmentS(gf in S NS’ which
ended atry before the perturbation are now connected be non-singatgnents
of S’(¢€). In this way obtain a cycle’ on S’ which contains one singularity less
than~ and it may happen that is not connected.

In order to construct an isotopy with the desired propextias moves:, away
from the integral surface af which contains the cycle. Whenx is part of an
internal cycle or not all stable/unstable leavesrgfare contained iny one has
to movex into the interior of an integral surface ¢fand then slightly above or
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below the integral surface with respect to the coorientatibé. Choosing to push
upwards or downwards one can make sure that on obtains aarythe perturbed
surface which is contained in the interior of the integrafate of¢ which contains
~. Figure[16 shows one particular instance of the isotopy ieighibourhood of
xo. In that figure, we movey downwards. In the left part of the figure all lines are
part of S while in the right part they straight line do not belong%o The cyclesy
respectivelyy’ correspond to the thickened lines in the left respectivigliitrpart

of Figure[16.

integral surface

v S \

FIGURE 16.

If there is a hyperbolic singularityy € ~ such thaty contains only one stable
leaf of z, thenz is automatically an essential singularity pand our orientation
convention and the choice of the function in Figlré 15 togethith Lemmd5.B
imply that the behavior of the level sets phearz is compatible with requirement
(iii) of Definition B.17.

In order to provel{l7) we perturl. After an isotopy ofS in a neighbourhood
of zy we obtain a cycle)’ which contains one singularity less tharand the sin-
gularity we removed had a stable leaf which was not part.ofVe construct the
function f" onU’ O +/ as above. When is positive, then

do(U') = dy(U) + 1 N_(U") = N_(U)

Ns(U") = N,(U) Py(U') = P,(U) — 1.
Therefore[(¥) holds fot/ if and only if it holds forU’. If x( is negative we have to
distinguish two cases: In the first case, the stable leaf,a§ the only stable leaf

of a negative hyperbolic singularity intersecting the aetad component aiU.
Then

dy(U') = dy(U) N_(U)=N_(U) +1
N,(U') = Ny(U) — 1 P,(U") = P,(U).

If there are other stable leaves of other hyperbolic singida of v which intersect
the same connected componentbés the stable leaf afy, then

d(U") = d.(U) N_(U") = N_(U)

Ny (U") = N4(U) P,(U") = P,(U).
Again the validity of [7) forU follows from (@) forU’. For the proof of{(¥) we may
assume from now on that all stable and unstable leaves ofadirbolic singulari-
ties ony are contained iny. In particularN; = P; = 0 in the sequel.

Letzy € v be an essential hyperbolic singularity. We shall discussctinfigu-
ration shown in the left part of Figute116. The other confitjores can be handled
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in the same manner. The vertical arrow in Figuré 16 indicdtesoorientation of
¢, the other arrows indicate orientations of leavesS¢f) and S’(€). In addition
we assume that the stable leaf on the right (resp. left) haedlis connected in
v\ {zo} to the unstable leaf on the right (resp. left) hand side.

In this situationy is split into two connected components ~” by the isotopy.
For both connected components there is an integral digowdfich bounds a cy-
cle containing parts of one stable leaf.qf. The two integral discs have disjoint
interiors.

Therefore there is one disb, C S with well defined one-sided holonomy
below the integral surface gfandzy € D, and by Lemma2]1 this holonomy is
potentially attractive. There are two discs with well defirane-sided holonomy
lying above the integral surface and each of the upper disetaimns exactly one
stable leaf ofrg in its boundary while the lower disc contains both stabledsaof
xo in its boundary. The one-sided holonomies along the boynoaeach of the
two discs if potentially repulsive. This is exactly the beioa prescribed by (iii) of
Definition[5.11.

We choose neighbourhood$’, U” of +/,~"” which satisfy [F). The relation
betweend, (U) andd(U’),d(U") is given by

i (U) = do(U) +de(U")  N_(U) = N_(U') + N_(U") L.

Hence[[7) is true fof/ because it is satisfied féf’, U”. The other configurations
can be handled in a similar manner.

Now we assume that is a hyperbolic singularity such that one stable leaf is
part of an internal cycle and the other one is part of a subcgtl which is not
internal (if there are internal subcycles, then there massibgularities with this
property because is connected).

Let y0,1,70,2 be the stable and unstable leavescgfwhich are internal. There
is a discDy C S whose boundary containg 1,702 such that the one-sided holo-
nomy alongd D is well defined. If it is potentially attractive respectiyekpulsive,
thenx is positive respectively negative by Lemmal5.8.

The remaining pair of separatrices is part of a cycle with delined one-sided
holonomy. It is potentially attractive if and only if the flwlomy alongd Dy is
potentially repulsive (cf. Lemnia§.8).

By a small isotopy we can obtain a connected cygl®r two connected cy-
clesy’,~v” on the perturbed sphei® with one singularity less tham such that
7,1, 70,2 (ie. the segments lying outside of the support of the peatish ofS) are
connected by a leaf d’(¢) and the same is true for the other pair of separatrices
of zg. Figurel14 shows a cycle which decomposes into a pair of @iedeycles.
The discussion above shows thfat U — R satisfies (iii) of Definitio 511 if
the same is true fof’ : U/ — Randf” : U” — R.

We construct a taming function on a neighbourhood of theupeed cycle. The
following table summarizes the relations from Lemmd 5.8Veen the invariants
d,, N_ associated te with the invariants for the perturbed cycle.

xo IS positive xo IS negative
. dy =d\, —1 dy =d},
~ remains connected N — N 41 N — N’
L dy =d, +d] -1 dy =d, +d}
~ splits into two cycleg N — N +N” N — N +N'"_-1
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Therefore [[¥) holds for the neighbourhoétof v and f : U — R has the
desired properties.

This finishes the first step in the construction of a tamingfiom on a neigh-
bourhood oB. If all components 0bU are transverse t8(¢), thenU, := U and
f tamesS (&) onU,. Otherwise we iterate the above construction.

Assume we have constructed a taming functjon U — R andI’ C oU
is a closed leaf of5(¢) with trivial holonomy. By construction the holonomy is
potentially attractive on the side &f which is contained ii/. Then there is a
cylinder S* x (0,1) C S such thatS(¢) corresponds to the foliation by the first
factor andC' consists of two cyclesy,y; such thaty, ¢ U and~, lies in the
complement of/. We choose&” maximal among cylinders with these properties.
Then~; can not be a closed leaf with trivial holonomy. Therefetebelongs to
one of the following classes.

(i) 1 is a negative elliptic singularity or a closed leaf such thatholonomy
on the side which is not containeddnis non-trivial and potentially repul-
sive. In this case it is easy to exterido a taming function o/ U C such
that [7) is satisfied.

(i) ~1 is a cycle containing hyperbolic singularities. If we did yet define a
taming function neat, then we apply the above procedure to construct a
taming functiong : V. — R on a sefl” with U NV = (). In particular,
V satisfies[{l7). We add a constantgtto ensure thaﬂ71 > f|p. Then we
extendgU f : UUV — R to a taming function o/ UV U C'. Note that
N_(UuVUC)=N_(U)+ N_(V) — 1. From this it follows that[{]7)
holds forU UV U C.

After finitely many steps we have constructed a taming famctin a neighbour-
hoodU, of ¥ with the desired properties. It is clear how to adapt the wongon
in the presence of birth-death type singularities. O

The following lemma implies that the existence of a tamingction on a neigh-
bourhoodU of ¥ is a property which is stable undéf-small perturbations of if
U is small enough. For the statement of Lenimak.13 recall trad fjiven cycle
in S there is a unique integral disc fwhose boundary is the cycle.

Lemma 5.13. Let 3 be a path connected componentfS) and 3 the union

of all discs tangent t which bound cycles irty. There is a neighbourhood
Yo C W C M ande > 0 such that for every confoliatiod’ on M which ise-
close (in theC-topology) there is a confoliatiog, on R? which is transverse to
the fibers ofR* — R? and complete as connection together with an embedding

o (W) — (R.€)
such thatp, (¢') = £.. In particular, if ¢’ is a contact structure, theff|W is tight.

Proof. Note that the integral discs which bound a cycle depend oaotisly on
the cycle because the integral discs are uniquely detedmi@n ¥, we define
an equivalence relation as follows: ~ y for z,y € ¥, if and only if there is a
piecewise smooth path M, tangent ta¢ which connects: andy.

The spacq” := io/ ~ should be thought of as a directed graph: Discs bounding
singular cycles and closed leaves with non-trivial holog@orrespond to vertices
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while edges ofl’ correspond to families of integral discsfvhich bound a max-
imal connected cycle ify. (Because a disc X may be part of a bigger disc
in 3, a point inio/ ~ does not correspond to a unique cycleSg€) in general.
This happens for example in Figurel 14.) The orientation oédge is induced by
the coorientation of.

T is a connected tree becauSg is connected and is a sphere. We embéd
in they, z-plane inR? such thailz is consistent with the orientation of the edges
of T

Let £ be the foliation orR? by straight lines parallel to the-axis andZ the
foliation by planes parallel to the, y-plane. We replac& by a family of discs
tangent taZ: For each vertex di’ we choose a collection of disd3; such that

e eachD; is tangent to the leaf of containing the vertex,

e U;D; is homeomorphic to the union of integral discsff which bound
the corresponding cycle in/ andU; D; intersects the original tre€ in
exactly one point.

Then we connect the discs which correspond to vertic&stof families of discs
tangent toZ as prescribed by the edges’®f ie. by the configuration of integral
discs inM. This is done in such a way that outside of a small neighbadlod the
discs which correspond to vertices of the tree each le#fiotersects at most one
disc and this intersection is connected. (In the presenserok configurations of
critical points on cycles irt, it may be impossible to satisfy the last requirement
everywhere without violating the requirement that eachdé& intersects at most
one disc.) _

So far we have obtained an embedding: ¥y — R3 with . (¢) = Z and
the Legendrian foliationp,,! (£) on 3. We extend this foliation to a Legendrian
foliation £y on an open neighbourho&l of 3y and we extend the embedding
such that the extended Legendrian foliation is mapped, the extension ofy is
the desired embedding : & — RR3 but we still have to find the right domain and
the neighbourhood.

We may assume that was chosen such that the intersection of each ledf of
with () is connected ang, (¢) is transverse té,. By constructionp, (§|§) iS

the kernel of the-form o = dz + f(z,y, z)dy with 0, f > 0 and f = 0 on Xy.

By extending f to a function onR? we can extendy to a 1-form «, on R?
whose kernel is a confoliatio. with the desired properties: If we exterfdio a
function onR? with 9, f > 0 and f = 0 for |z| big enough, thel.. is a complete
connection. B

For each plane field on ¢(X) such that( is transverse t@, we define a fo-
liation £(¢) which is tangent to the projection @f, to ¢ alongd.. There is a
neighbourhoodV C M of 5o ande > 0 with the following properties:

o If ' ise-close tog, thenyp, (&) is transverse t@. .

e For every plane field’ which ise-close to¢ there is an open sét”’ with
Y9 C W C W' C U such that the intersection gf(W’) with leaves of
L(p«(&")) is connected.

This implies the claim of the lemma: If a confoliatighis sufficiently close to
¢ in the C%-topology, then we can extem(§’|w) by extending (as above) the

confoliation . (& \W/) along leaves of a foliatior’ of R? by lines transverse to
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the planes{z = cons§ and which coincides withC outside ofo(3). Thus we
have found a confoliatios’, on R? with the desired properties.
The statement about the tightnesi’cﬁ” follows from Propositiof 2J5. [

Next we show that the taming functions which we have conttlion pieces of
S in Lemma5.IP can be combined to obtain a taming function orengyeneri-
cally embedded sphere.

Proposition 5.14. If (M, ¢) is tight andS is an embedded sphere such tisgt)
has isolated singularities which are either non-degeremt of birth-death type,
thenS admits a taming function.

Proof. We constructf inductively in a finite number of steps. By Lemia 5.12
we can cover the compact sB{.S) by a finite collection of open sef§;, =
{Ui1,..., U} with U; C S such that there is a taming functigf) on Uj,j =

1,...,l and the set#/; are pairwise disjoint. Recall that
(8) d+(Uj):1_N7(Uj)_PS(Uj)_NS(Uj)
forall j = 1,...,l. For later applications we assume that edGhe Uy,j =

1,...,l has the property described in Lemma®’.13pr> 0.

We define a partial ordex on Uy as follows: U; < U, if and only if either
j = k or Uy has a boundary component which bounds a disg ot containing
U, and a leaf of the characteristic foliation coming frémentersU;, through this
boundary component.

By definition every cycle of5(¢) which intersectd/; is completely contained
in U;. This implies thaty; < U, andUj, = Uj; if and only if j = k and there is
a setU; € Uy which is minimal with respect tex. All connected components of
oU; are transverse t6/(¢) and the characteristic foliation points outwards along
the boundary. Moreovef](8) implies (U;) = 1.

Let f; be a taming function o/; and consider the basif(U;) of U;. Ac-
cording to Lemmd_3]4 the closure & (U;) is covered by a Legendrian poly-
gon (Q;,V;, o). We consider four cases which correspond to the concludion o
Lemma5.1D. Let us assume that there are no birth-death iygelarities. This
assumption will be removed below.

Case (0) Q; has more boundary components tiian This means that in the
construction of(Q;, V;, «;) in Lemmal3.4 we did attach-handles taU; (recall
that we used/; as a starting point for the construction@f).

Let~; be the stable leaf of a hyperbolic singularitysuch thaty; leavesU; and
h; is a corner in a cycle. This cycle is contained in one of the sétg,, € Up.
Let f; be a taming function ol/;,,). Now we extendf; to a taming function on
a neighbourhoodfjf of v; U U; U Uy, (it may be necessary to add a sufficiently
large constant tg; ).

The extended function tames the characteristic foliatiorit® domain and the
new boundary component 0f; can be chosen transverseS(t). By construction

N- (U) = N-(Uiw)

, Py(Usyy) — 1 if hy is positive
P (U}) = { Py(Us(y) if h; is negative

N No(Ui) if h; is positive
N, (Uj) = { Ns(Uipy) — 1 if by is negative.
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This impliesd . (U}) = 1 — N_(U;) — Ps(U}) — Ns(U;).

In the following cases we consider a fixed connected comgohnea 0Q);
which was not covered in case (0).

Case (i) «;(I") is an elliptic singularity andy;(Q;) is a neighbourhood of or
a;(I") is a cycle andy;(Q;) is a one-sided neighbourhood of that cycle.

Let us start with the case when(I") is an elliptic singularity. Because it is
attractive, it must be negative and it is contained/jpty with i(I") # j. One can
easily extendf; to a taming function on the unidﬁj‘ of U; U Uyry with all leaves
passing througfi'. Obviously [8) holds folJ;.

If a;(I") is a closed leaf or a cycle, ther(I") belongs to one of the set§
with i(I") # j. After eventually adding a constant to the taming functiori
one obtains a taming function on the union of the flow linesiteaU; throughI'
with U; andUjry. As before we denote the new domain llziy From

N- (Uj) = N-(Uin)) — 1
P, (U}) = P(Uyry)
N (Uj) = No(Uy(ry)-
it follows thatd . (U}) = 1 — U_(U;) — Ps(Uj) — Ns(Uj).

Case (iiy o;(I") contains an elliptic singularity such thaj(Q;) is not a neigh
bourhood of this singularity or thereis € V; NT" such thaty,, is a cycle ofS (&)
anda;(Q;) is not a one sided neighbourhood-gf or

According to Proposition 519 there is a positive pseudeverton «;(I") such
that a;(Q;) is not a neighbourhood aof. Letn be the stable leaf of which is
not contained imy;(Q;). The a-limit set of » is contained in a sef/;(, while
r € Us(,). We obtain a taming function on the union@f of U; U Uj(,)) U Uj(s)
with a neighbourhood of the stable leaves @after adding a constant to the taming
function onU;,.)).

Becausex is positive the requirements in the definition of taming fimrts are
satisfied. Moreover, we can choose the donigjf the taming function such that
its the new boundary component is transvers&'tg). The equalityd (U;) =

1 = N_(U;) — Ps(Uj) — Ny(Uj) follows from

and the fact that is positive.

Case (iiiy (0)-(ii) do not hold for(Q;, V;,«;). Thenc; identifies edges oiv
by Lemmd5.ID. We shall use the notation from the proof of ldrama.

Letey, ..., e be edges ol which are obtained as in the proof of Lemma’.10.
The cyclen C aj(er) U... U aj(e) is contained iU,y € Uy and we denote
the stable leaves of the pseudovertices;avhich are not part of) by o4, ..., 0;.

Let U]’- be the union ofU; U Uy, with neighbourhoods of, ..., 0;. No other
stable leaves of hyperbolic singularities entéy,) and all pseudovertices an
are negative. After we add a sufficiently big constanftg, we obtain a taming
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function f; on U7. By construction we have
N_(Uj) = N- (Vi)
P, (Uj) = Ps (Uiw))
N; (U)) = Ny (Uig) = 1.

These equalities immediately imply (7).

We have now considered all cases occurring in Lerhmd 5.10t Wexemove
the assumption that there is not birth-death type singulakissume that in the step
above we encounter a birth-death type singularityThenz is contained in a set
Uj(z) from Up. In an intermediate step we extefido the unionU;f"t of U U Uy
with the leaves of (&) which connecU;(, to U. Then we continue as before with
U™ instead ofU;.

Now we removel; together with alll; which are contained i/} from the
collectionUy and we addJ’. This yields a new collection of of subsetg such
that on each domain ify; we have a defined a taming function. Notice that the
number of sets ifiJ; is strictly smaller than the number of setdlip.

We iterate the procedure after replacidg with U;. After finitely many steps
we obtain a taming function ofi. O

So far we have established the existence of a taming functioembedded
spheres such thet(¢) has only non-degenerate or birth-death type singularities
Now we consider an embedding of a family of sphesésx [0,1] in M and a
C-approximation of¢ by a confoliation¢’. After a C>°-small perturbation of
S? x [0, 1] each spheré; = S? x {t} becomes generic. We want to show that
the characteristic foliatiors;(¢’) admits a taming function if the confoliatiaff is
close enough tg in the C%-topology.

Proposition 5.15. There is aC°-neighbourhood of such that for every confoli-
ation ¢’ in that neighbourhoodb;(¢’) admits a taming function for all € [0, 1] if
S, is generic with respect t¢/ for all ¢.

If ¢’ is a contact structure, thefi;(¢') admits a taming function which is strictly
increasing along all leaves df;(¢’).

Proof. We show that if¢’ is close enough tg in the C°-topology ands;(¢) has
only non-degenerate singularities or singularities ofrbéteath type, then the it-
eration process used for the construction of a taming fandti Propositio 5,74
can be carried out to yield a taming function f8#(¢’). For this we first recon-
sider the proof of Proposition 5.114 in order to show the exiseé ofs > 0 with
the desired properties for a fixed sphéfeand then we argue thatcan be chosen
independently from € [0, 1].

Recall that in the proof of Propositidn 5114 we required #iasetsU; € U,
appearing in the initial stage of the construction are dosthin a sel?; with the
stability property described in Lemrha5l13 fgr> 0: The restriction of’ to 1V
is tight when¢’ is € ;-close tog.

Moreover, we chose th&; such that each smooth segmend; is transverse
to S(&). This remains true whefl is ¢;-close to whene; > 0 is small enough.
The iteration process in the proof of Proposition 5.14 stafber finitely many
steps and we choose > 0 so small that each smooth segment contained in the
boundary of a set ift)y, Uy, . . . is transverse t&'(¢') when¢’ is e-close to€. This
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requirement ensures also that the combinatorics of thegixies off is the same
for S;(&) and Sy (¢').

It remains to show that we can choase- 0 independently fromt € [0, 1]. For
this note that> = U;X(.S;) is compact. Thus a finite number of sét§ obtained
from Lemmd5.IB suffice to covet. If 7 is sufficiently close ta, thenS.(§) is
very close toS;(§) in the C*°-topology and the combinatorics of extensions of a
taming function forS,(£) andS-(§) coincide, ie. we connect subséfs(t) of Sy
which are very close to subseli§(7) of S- in the same order (with the possible
but irrelevant exception of birth-death type singulasi}ie

When the above procedure for the choice=dbr S; yieldse; > 0, thene;/2
has the desired property with respect to the charactefatation on S, whent’
is close enough té. Since|0, 1] is compact, this proves the claim. OJ

5.2.4. Proof of Theoreri 5] 1For the proof of Theorein 5.1 we combine the results
from the previous sections with results from][[15].

Let B C By C M be an embedded closed ball in a manifdlfl with a tight
confoliation¢. We assume that the interior 8 contains points whergis a con-
tact structure since otherwise Theoffen 5.1 follows immtedidrom Lemma5.113.
Moreover, we assume thaB; is generic.

Let By be a ball in the contact region whose characteristic foliatias exactly
two singular points and the leaves of the characteristi@tioh connect the two
singularities. The existence of such a ball follows from faet that every contact
structure is locally equivalent to the standard contacicstireker(dz + xdy) on
R3. Moreover, there is an open neighbourhood |gf such that every confoliation
in this neighbourhood is tight oBj.

Let ¢’ be a contact structure a;. If ¢’ is a contact structure and sufficiently
close to¢’ in the C>°-topology, thert’|B is diffeomorphic to the restriction &’
to a closed ball inB;. Therefore it is enough to prove Theoréml5.1 for generic
perturbations.

We fix a generic identificatior; \ By ~ $2x [0, 1] suchthabB; = S;,i = 0, 1.
Because the confoliatiofiis assumed to be tighs;(£) can be tamed for atl. By
Propositiori 5.75 this remains true for generic confoliasi¢f which are sufficiently
close to¢ in the C°-topology.

Recall that an embedded surface in a contact manifold isdbadinvexf there is
a vector field transverse to the surface such that the floneofebtor field preserves
the contact structure. According fo [14] convexity i€'&-generic property, so we
may assume thdtB, anddB; are convex with respect tg.

We will show that¢’ can be isotoped 082 x [0,1] relative to the boundary
such that all leaves of the product foliation 88 x [0, 1] become convex with
respect to the isotoped contact structure. SinBg is convex and’ is tight on a
neighbourhood 0f By this implies that’| 5 is tight by Theorem 2.19 in [15] (and
the gluing result in[[6]).

In order to prove the existence of the desired isotopy @fe use the following
lemma. Our formulation is a slight modification of Lemma 2i415] in the case
F ~ S2.

Lemma 5.16. Let (M, ¢’) be a contact manifold. Assume that the characteristic
foliation on each sphere; from the familyS? x [0,1] ¢ M admits a taming
function andSy, S; are convex. Then there is a contact structgfesuch that
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e ¢ and¢” are isotopic relative to the boundary and
e the characteristic foliation of” on S; has exactlyy(S) = 2 singular
points ands; is convex with respect i’ for all ¢ € [0, 1].

The original statement of Giroux of this lemma containstiigiss as an assump-
tion. However the proof of Lemma 2.17 df [15] requires onlpmperties of the
characteristic foliation o, ¢ € [0, 1] which follow from the existence of taming
functions.

More specifically, the proof of Lemma 2.17 [n]14] yields a@fof Lemmd5.1b
after the following modification: As we have already expé&dnwve may assume
that the characteristic foliation @f on S; can also be tamed for all€ [0, 1] by
Propositioi 5.15. Moreover, becauges a contact structure, the taming functions
are strictly increasing along leaves of the characterfstiation. Therefore the
following statements hold:

(1) There is no closed cycle dhx {t},t € [0, 1].

(2) The graph’; (T';’) on F x {t} formed by positive (negative) singular
points and stable (unstable) leaves of positive (negatiypgrbolic singu-
larities is a tree.

Using these two observations one obtains a proof of Lemn@fEoin the proof of
Lemma 2.17 in[[15]. This finishes the proof of Theoreni 5.1.

6. OVERTWISTED STARS

In this section we introduce overtwisted stars. Their définiis given in the
next section and it is motivated by the discussion of the @@tfon (72, ¢7) in
Section[#. The absence of overtwisted stars in a tight ciatifahs implies all
Thurston-Bennequin inequalities and we show that symipkdbt fillable confoli-
ations do not admit overtwisted stars (in addition to thé flaat they are tight).

6.1. Overtwisted stars and the Thurston-Bennequin inequalitis. As we have
already mentioned the point where Eliashberg’s proof offtherston-Bennequin
inequalities fails in the case of tight confoliations is feowing: Given an em-
bedded surfacd” and a tight confoliation M, £), there may be leaves df (&)
which come from an elliptic singularity and accumulate arseld leaves (or on
qguasi-minimal sets) of the characteristic foliation sulcatty is part of the fully
foliated set of¢. Even if all singular points o@B(z) have the same sign it may
be impossible to construct a disc frai{x) which has the properties of the dist
appearing in Definition 113.

This suggests the following definition of overtwisted starsgenerically em-
bedded surfaces.

Definition 6.1. An overtwisted star in the interior of a generically embetidem-
pact surfacel” % S? is the image of a Legendrian polygd), V, o) with the
following properties.

(i) @ is homeomorphic to a disc anddQ) contains singularities af'(¢).

(i) Allsingularities of F'(¢) ona(0Q\ V') have the same sign. There is a single
singularity in the interior oix(Q); it is elliptic and its sign is opposite to
the sign of the singularities am(0Q).

(i) If ~, is a cycle, then it does not bound an integral dis€ of M.
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The torus shown Figufe 113 contains two overtwisted starse Nhat the polygon
is not required to be injective. Requirement (i) impliestthitherV £ () or «(9Q)
contains an elliptic singularity of'(¢) and we may assume that this singularity is
contained inH (£). (Note that the elliptic singularity cannot lie in the iritarof
M\ H(&). After a small perturbation and by Lemrmal3.7 the elliptiogsitarity
lies in H(&)). In particular discs with the properties bfin Definition[1.3 are not
overtwisted stars.

If £ is a contact structure anfd C M is a generically embedded closed surface
containing an overtwisted stdc), V, ), then¢ cannot be tight sinc€ is con-
vex by the genericity assumption (thereforegllv € V are cycles) and has a
homotopically trivial dividing curve (this terminology &andard in contact topol-
ogy; because we shall not really use it we refer the readétdpdr [19]). This
argument does not apply whén ~ S2. Since the definition of tightness in Def-
inition [I.3 can be applied efficiently to spheres and didws,etxceptional role of
spheres in Definition &l 1 will not play a role.

The following theorem is proved following Eliashbergs &gy from [8] and

Theoreni 5.4.

Theorem 6.2. Let (M, &) be an oriented tight confoliation such that no compact
embedded oriented surface contains an overtwisted staf &hd) is not a folia-
tion by spheres.
Every embedded surfade whose boundary is either empty or positively trans-

verse to¢ satisfies the following relations.

a) If F ~ S?% thene(¢)[F] = 0.

b) If OF = ) and F ¢ S2, then|e(¢)[F]| < —x(F).

c) If OF # () is positively transverse t§, thensl(v, [F]) < —x(F).

Proof. The claim a) was already covered in Theofeni 5.4. For the mfdnfand c)
we may assume thdt is a generic representative of the homology cl@§svhich
is incompressible (this means that the mapF') — 71 (M) which is induced by
the inclusionF — M is injective). Recall that iDF is positively transverse t§,
then F'(¢) points out ofF’ alongdF'. Recall that

X(F) —e(§)[F] =2(e- —h-)

by (). If there is no negative elliptic singularity, theristhmplies —e(&)[F] <
—x(F). If there is a negative elliptic singularity, then we shall use the absence of
overtwisted stars to eliminatewithout creating new negative elliptic singularities.
Let D, be the maximal open disc il such that

e 9D, = D, \ D, is acycle ofF(¢) and

e 1 is the only singularity ofF'(£) in the interior ofD.
UnlessD, # () there is an integral dis®’, of ¢ whose boundary 8D, because
¢ is tight. Moreover, the intersection of the interior bf, with F' consists of
homotopically trivial curves irf” (otherwise we get a contradiction to the incom-
pressibility of F).

Thus we can cuf’ using Lemmd_3]7, Lemnma_3.8 and Lemmal 3.9 so that the
resulting surface”’ is the union of spheres and a surface which is diffeomorphic
to /' and incompressible. Becausg)[S] = 0 for embedded spheres we can
ignore the spherical components and we denote the remasuirigce byF’. It
follows thate(&)[F] = e(&)[F].
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If we used Lemma&_3]8 or Lemnia_B.9, then we have reduced the emuaib
negative elliptic singularities by one. Note that if we hamplied Lemma_3]9,
then I might contain a circle of singularities. This means thatis non-generic
near that circle. Since this circle is isolated from the mdst” by closed leaves
of F’(¢) and the singularities on this circle do not contributet9)[F’] or x(F”),
these singularities will play no role in the following. Tleéore we can pretend that
F' is generic and eliminate the remaining negative elliptigsiarities.

If we used Lemm&_3]7, theR” contains a negative elliptic singularity/. By
constructionz’ lies in H(&). In the following we shall denote’ again byz.

The basin ofz is covered by a Legendrian polygd®’,V’,«’) on F’. By
the maximality property ofD, the boundary of)’ is not mapped to a cycle of
F'(¢). If 9Q' has more than one connected component, then there is a bliperb
singularityy ona/(9Q") which is the corner of a cycle,. If y is negative, then we
can eliminate the pait, y.

Now assume thaj is positive. Ifv, does intersect (), then we can perturb
F’ in a small neighbourhood of a point on the cycle such thist no longer part
of a cycle after the perturbation. 4f, does not intersedt (£), then we push a part
of the cycle intoH (£) by an isotopy off” without introducing new singularities of
the characteristic foliation.

The isotopy is constructed as follows. Liebe the maximal connected integral
surface of¢ which contains the cycle through We choose a simple curve
tangent taf which connects the cycle td(£) and is disjoint fromF”. This curve
can be chosen close to the stable leaf; afhich is connected ta € H(§). We
choose a vector field tangent ta$ with support in a small neighbourhood of
such thatr is a flow line of X and F” is transverse toX. We use the flow ofX
to isotopeF’ such that all unstable leaves gfare connected tdi (&) after the
isotopy. SinceX is transverse td”’ and tangent to¥ the isotopy creates no new
singular points of the characteristic foliation. Figlré skbwsL together with a
part of the intersectiod” N L. The curves is represented by the thickened line
while the shaded disc represents another paH @) or non-trivial topology ofL.

O H(E)
N

FIGURE 17.

By this process we modified the basin ofand the surface. Note that there
are finitely many hyperbolic singularities dnand the procedure described above
does not create new ones. Therefore finitely many applicatiead to a surface
F" with e(§)[F] = e(§)[F"] such that the hyperbolic singularities BY (£) are
also hyperbolic singularities df(¢) and the basin af is homeomorphic to a disc.
Also, the number of negative elliptic singularities did muotrease. Note thak”
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is not a sphere becaudé’ and F' have the same genus. Moreovét, has the
following properties.

The basin ofz is covered by a Legendrian polygd®”, V", «”") on F” such
that Q" is a disc andv”(Q") is not an elliptic singularity or a cycle af” ().

If necessary, we eliminate all elements«f with the property thaty,~ is null
homotopic inf™.

Now the assumption of the theorem implies th&l” contains a negative pseu-
dovertex. By Lemm@a_3l5 we can isotop¥ to a surface containing less negative
elliptic singularities thanF' respectivelyF”. After finitely many steps we have
eliminated all negative elliptic singularities. This fihes the proof of ¢) and one
of the inequalities in b). The remaining inequality in b) denproved by eliminat-
ing all positive elliptic singularities. O

6.2. Overtwisted stars and symplectic fillings. In this section we show that sym-
plectically fillable confoliations do not admit overtwistetars. In the proof we
CC-approximate a confoliation by another confoliation (chebreniLl1). Several
techniques used in the proof are adaptations of constnsctio[9]. Other useful
references aré [25] (where the proofs of Lemma 2.5.1 ¢) anthh& 2.5.3 from([9]
are carried out) and[11]. For later use we summarize thef pfalemma used to
show Theoreri 1]1.

Lemma 6.3(Lemma 2.5.1 ¢) in[9]) Let~ be a simple closed curve in the interior
of an integral surfacd. of . If v has sometimes attractive holonomy, then in every
C°-neighbourhood of there is a confoliatior¢’ which

(i) is a contact structure on a neighbourhood~oénd
(ii) coincides withe outside a slightly larger neighbourhood.

Proof. We only indicate the main stages of the construction. Fixighimurhood

V ~ S!x[-1,1], x [-1,1], and coordinates, y, z such that the foliation by
the second factor is Legendriafi} x [—1,—1] x {0} ¢ L andS! x {(0,0)}
corresponds te.. We assume thaf has sometimes attractive holonomy. As in
Lemma 2.1.1 ofi[25] the coordinates can be chosen such that

e ¢ is defined by thd-form o = dz + a(x, y, z) de with dy,a < 0 and
e there are sequences < 0 < ¢, converging to zero such thatz, 0, (},) <
0 < a(x,0,¢,) forall z.

At this point we use the assumption that the holonomy aleng sometimes at-
tractive. We fix a paic’, ¢ of numbers from the sequencgs,), ().

According to Lemma 2.2.1 in [25] and Lemma 2.5.3[ih [9] thera idiffeomor-
phismg : [—1,1] — [—1, 1] such that

(i) g isthe identity outside oV := ({’, () and
(i) ¢'(2)a(x,0,2) < a(z,0,9(z)) forall (z,0,z) € St x {0} x V.

It follows that g converges uniformly to the identity as¢’ — 0, but no claim
is made with respect to thé'-topology. The graph of is given in Figure_18
(cf. [25]). The parameters, b with ¢’ < a < 0 < b < ¢ are chosen such that
a(x,0,z) #0forz € [¢/,a] U[b,(].

In order to obtain the desired confoliation in(®-neighbourhood of, one
proceeds as follows.
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FIGURE 18.

Step 1:Replacet on St x [~1/2,—1/4] x V by the push forward of with the
mapG which is defined by

G(z,y,2) = (z,y,u(y)g(z) + (1 —u(y))z)
whereu is a smooth non-negative function én1/2, —1/4] such that: = 0 near
—1/2 andu = 1 near—1/4. We extendG to M \ (S x [-1/4,1/2] x V) by
the identity. As¢, ¢’ — 0 the corresponding diffeomorphisti converges to the
identity uniformly but not with respect to th@'-topology in general. Therefore
G, (¢) might not beC-close tof on S' x [—~1/2, —1/4] x V. This will be achieved
in the third step (at this point we follow the exposition orf[Zlosely). In the
following step we replace the confoliation ¢H x [—1/4,1/2] x V.

The dashed respectively the solid lines in Fidurk 19 shoveltiaeacteristic fo-
liations of ¢’ on neighbourhoods of in {y = —1/4} respectively oy = 1/2}
using dashed respectively solid lines in the simple casenwties attractive holo-
nomy.

FIGURE 19.

Step 2:We extendG., (&) to a confoliation” on M such thatd, remains Leg-
endrian: The plane field’ rotates around the foliatiofi' x [—1/4,1/2] x V such
that the characteristic foliation o$'' x {—1/4,1/2} x V coincides with the char-
acteristic foliation ofF},. () on these annuli. This is possible by (ii) using the in-
terpretation of the confoliation condition mentioned irc&@n[2.2 (cf. Figuré_19).
Note that¢” is a contact structure on the interior §F x [—1/4,1/2] x V =: V.
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Step 3:We want to construct a diffeomorphisgmof A with support inl” such
that ¢,.£” is C%-close to&. For this one has to choodé more carefully. This
is carried out on p. 31-33 of [25]. The argument can be outlias follows;
cf. p. 16 in [25]: Assume that is chosen such that C [—r/2,r/2] and¢ is
e-close to the horizontal distribution aofi' x [~1,1] x [~r,r]. As we already
mentioneds” might be very far away from the horizontal distribution. ©be
a very small numbed > 0 and a diffeomorphisnp : [—r,r] — [—r,r] such
that po([—r/2,7/2]) C [—¢,d]. Then the push forward of the restriction &f to
St x [-1/2,1/2] x [~r,7] is 3e-close to the horizontal distribution. One has to
extendy such that this property is preserved. O

We will need not only the statement of the lemma, but also tesituction
outlined in the proof since we need to understand how thisification of £ near
a curvey with sometimes attractive holonomy affects the presenavefftwisted
stars on embedded surfaceslih The third step of the above proof is of course
irrelevant at this point.

Figure[20 showd”(¢”) near a closed curve df(¢”) in an embedded surface
F transverse to after the second step of the proof of Lemmd 6.3. The dot in the
center of the figure representsn ~ while the left inner rectangle represents the
support ofG. Finally, £” is a contact structure in the inner rectangle on the right
(this rectangle corresponds to the regfém F in the proof of Lemma®gl3). Recall
that the characteristic foliatioR'({) was nearly horizontal in the region shown in

Figure20.
FE™)

x
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FIGURE 20.

Note that ify even has non-trivial infinitesimal (or only attractive) dobmy,
then the statement of Lemrha’6.3 can be sharpened in the $eisthe lemma
remains true folC>°-neighbourhoods of because the functiop : [-1,1] —
[—1,1] can be chosen'>°-close to the identity. In the following we will consider
only C?-approximations. This allows us to choose the approximatibé more
freely. In particular we can preserve qualitative featuwkthe characteristic folia-
tion on surfaces transverse+{o

Lemma 6.4. Let¢ be aC*-confoliation, k. > 1, and~ a simple Legendrian seg-
ment such that both endpoints gflie in the contact region and intersects#
transversely and at most once.

Then everyC*-neighbourhood of contains a confoliatiort” such thatt’ = ¢
outside a neighbourhood afand¢’ is a contact structure on a neighbourhood of
~. Moreover,F'(§) = F(¢).
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Proof. The casey N F' = () corresponds to Lemma 2.8.2. id [9], the case F =
{p} is very similar and only this case uses the assumption thhatéwalpoints ofr
liein H(E). O

The following lemma is standard in the setting of foliatior@3ne can thicken
a closed leaf to obtain a smooth foliation which is close ® dniginal one and
contains a family of closed leaves. Once there is such ayaarie can modify the
foliation such that a compact leaf whose holonomy was newaesimes attractive
on one sides has sometimes attractive holonomy one one fsalglee modifica-
tion.

The main difficulty in the context of confoliations is the falbat now compact
leaves oft may have boundary.

Lemma 6.5. Let (M, &) be a manifold with confoliation[. € M a compact em-
bedded surface tangent feand F' C M a closed oriented surface which is gener-
ically embedded and does not intersédt. We require that each connected com-
ponent ofoL can be connected t& (£) by a Legendrian curve which is disjoint
fomL U F.

Then there is a smooth confoliatigh which is C%-close to¢ such thatF'(¢)
is homeomorphic to the singular foliation obtained frdi¢) by thickening the
closed leaves of cycles 6f(¢) which are also contained if.

Proof. Let I = [-1,1] andJ = [-1,0]. We fix a tubular neighbourhootl ~
L xIof L=Lx{0}.

For each boundary componeBj of L we choosdJ; ~ S' x J x I € M in
the complement of, U F. We assume that the third factor ©f is transverse tg
while the foliation 7 whose fibers correspond to the second factor is Legendrian
and thatSt x {(0,0)} = Bo,; andS* x {(—1,0)} = B_,; intersectH (£). Let
Aji =S {j} x I coU,;forje{-1,0}

Without loss of generality we may assume tiat; ; is completely contained
in the contact region and transverse¢toOtherwise we apply Lemnia 6.4 along
segments oB_; ; and replacé/; with a new seUU/ with the desired property.

We will now construct a confoliatiog” on U U | J; U; which coincides with¢
nearoU and has the desired properties.

The restriction oft’ to U is defined in two steps. First we flattérin a neigh-
bourhoodU ~ L x I using the push forward @fusing a smooth homeomorphism
g of I which isC*°-tangent to the zero map and coincides with the identityidets
a neighbourhood di.

We push forward on L x [0, 1] respectivelyL x [—1, 0] using a diffeomorphism
[0,1] — [e, 1] respectively{—1, —¢]. The confoliation oL x [—1, —¢]) U (L x
[—e,e]) U (L x [g,1]) =~ U (with e > 0), which is the product foliation o, x
[—e, €], is smooth and contains a family of compact leaves. Morgaowvercan
choose the diffeomorphisms appearing in the constructich that¢ |U is as close
to §’\U in the C°-topology as we want.

We can choose’|U such thatd ; () and Ay ;(¢’) coincide outside of the region
where the slope ofi;({) is very small compared to the slope 4f ; ;(£). By
construction the slope ol ;(¢’) is much smaller than the slope df ; ;(§) =
A_1,;(§). Asin the second step in the proof of Lemmal 6.3 (or Lemma 2.6f1
[9]) one can extend’ to a smooth confoliation oA/ such thatt’ is close ta¢ (the
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foliation 7 corresponds to thg-coordinate in[[9]). The claim about(¢’) follows
immediately from the construction. O

Remark 6.6. After a trivially foliated bundleL x [—¢, ¢] is added to the confolia-
tion, it is possible to replace the trivially foliated pidog a foliation onL x [—¢, €]
such that the boundary leavésx {+c} have sometimes attractive holonomy on
side lying inL x [—¢,¢]. The following statements follow from the construction
explained in[[9] on p. 39. (This construction carries ovesudaces with boundary
after the surface is doubled.)

When the Euler characteristic éfis negative, then one can replace the product
foliation on L x [—¢, ¢] by a foliation such that the holonomy along every homo-
topically non trivial curve inL x {e} or L x {—¢} is sometimes attractive on one
side.

If the Euler characteristic of the compact surface with lazug L is not nega-
tive, thenL is diffeomorphic toS2, D?, T2 or S' x I. The case5? will not occur
unless the confoliation in question is actually a produdiafmon by spheres. But
these are excluded. If ~ S x I, then the suspension of a suitable diffeomorphism
yields the same result as in the casey6f) < 0 (without doubling the surface).
The case. ~ D? will be excluded by the last requirement of Definition]6.1he t
application we have in mind. Finally, the cabe~ T? is exceptional because of
Kopell's lemma (cf. the footnote on p. 39 6f [9]). Butif = T2, then it is easy
to arrange that the holonomy is attractive along a given hiopically non-trivial
curve.

This modification changes the characteristic foliationfonbut only an open
set which was foliated by closed leaves and cycles beforgénirbation. In
particular overtwisted stars are not affected.

The following proposition from[9] adapts a famous resulSaicksteder [27] to
laminations so that it can be applied to the fully foliatedt jpd confoliations.

Proposition 6.7 (Proposition 1.2.13 i ]9]) Let (M, ¢) be aC*-confoliation, & >
2. All minimal sets of the fully foliated part gfare either closed leaves or excep-
tional minimal sets. Each exceptional minimal set contarssmple closed curve
along which¢é has non-trivial infinitesimal holonomy.

In particular exceptional minimal sets are isolated andréhare only finitely
many of them.

We denote the finite set consisting of the exceptional mihsats of the fully
foliated part of¢ by £(¢).

In the following F' will be an embedded surface containing an overtwisted star
(Q,V,a). We writeQg for Uyevy,. If v, v € V is a cycle containing hyperbolic
singularities off'(¢), then the confoliatiog can be modified such that the cycle has
a neighbourhood which is foliated by closed leaves of theattaristic foliation
of the modified confoliation (cf. Lemnia8.5). We will therefoassume that,
is either a closed leaf of'() or a quasi-minimal set but not a cycle containing
hyperbolic singularities. (By the definition of an overtieid star,v, is not an
elliptic singularity.)

Lemma 6.8. Let ¢ be a confoliation and®” an embedded connected surface con-
taining an overtwisted staf@, V, o) andv € V.

a) If v, is contained in a closed leaf gt then in everyC°-neighbourhood
of ¢ there is a confoliatiort’ such thatF’(¢’) contains an overtwisted star
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(Q', V', &) which is naturally identified with@, V, «) and~,,, (v € V' ~
V') passes through the contact regionsaf

b) Assume that is contained in an exceptional minimal sethas attractive
linear holonomy, and, is transverse td. Then every’-neighbourhood
of ¢ contains a confoliatio’ such thatF'(¢') contains an overtwisted star
which can be naturally identified wittQ, V, o) and |£(¢')| < |E(€)].

Proof. First we prove a). LeL be the closed leaf containing. Sincevy, is thew-
limit set of leaves inF'(£) it has attractive holonomy on one side aid L consists
of a family of cycles. In particular N «(Q) = () because an overtwisted star with
virtual vertices does not contain closed cycles of the diarastic foliation.

We use LemmA 65 and Remark]6.6 to ensure{hdtas sometimes attractive
holonomy on both sides. Unfortunately this property is nabke under arbitrary
isotopies ofy, in general. But by Lemmia2.1 there is an annulus ~, x [0, 1]
such thaty, = v, x {0} = F'n A and all curves i have attracting holonomy on
the side wherex(Q) approaches, while isotopies do not change the nature of the
holonomy on the other side @f since there the confoliation is actually a foliation.

Therefore there is a small isotopy Bfwhich maps @, V, «) to an overtwisted
star (Q’,V’, ) on the isotoped surfacE” such thaty, is mapped toy, x {¢}
where0 < ¢ < 1/2. Then we can apply Lemnia®.34p x {0} and~, x {2¢}.

After this there is a Legendrian arc intersectifigexactly once in a point of,,
and both endpoints of this arc lie in the contact region. ledhts arc satisfies the
assumptions of Lemnia®.4. Therefore there is a confoliagiomith the desired
properties such that’(¢) = F’(¢’). This finishes the proof of a).

Now we prove b). We shall use notations from the proof of Len# In
the proof we will use the freedom in the choice of the functioim the proof of
Lemmd6.8. For this we need the fact thatas non-trivial infinitesimal holonomy
since then there are only very few restriction @im the proof of Lemm&6]3, cf.
also Lemma 2.5.2in]9].

Fix a neighbourhood’ ~ S! x [-1,1], x [-1,1], such thaty = S* x {(0,0)}
and the coordinates, y, z have all the properties used in the proof of Lenima 6.3.
In particular, the foliation by the second factor is Legéanrand coincides with
F (&) on F N U while the third factor is positively transversegoWe require that
U intersectsF only in neighbourhoods of points inN Qg =: X.

Let us make an orientation assumption in order to simplié/pghesentation: We
assume that the orientation of the Legendrian foliationSén< [—1,1] x [~1,1]
given by the second factor coincides with the orientatiorF'¢f) near points of
vy N,,v €V, ie. in Figure 2D the foliation is oriented from left to rightvhen
this assumption is not satisfied for some + N g, then one has to interchange
the roles ofr_(y) and7,.(y) in some of the following arguments.

By transversalityy intersectd in a finite number of points. Sinegis contained
in the fully foliated part of, v cannot interseat((Q) since every point ofv(Q) is
connected td7 (&) by a Legendrian arc. We can ignore the pointg’im v which
do not belong tax(Q) if we deform¢ on a neighbourhood of which is small
enough.

Becausd" is smoothly embedded agds C?-smooth,F () is also of clas€?.
As we have already mentioned in Sectlon] 3.2 ¢hbmit set v, with v € V is
either a quasi-minimal set or we may assume (after a smadiggmf F') that~, is
a closed leaf of’(¢). We distinguish the following cases.
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(i) v, is quasi-minimal. Since there are interior pointscdi®y) arbitrarily
close tov,, there is no segment transverse tad#'(§) such thatr N, is
dense int. Then~, N 7 is a Cantor set (cf.[[16]). The intersection be-
tween two different quasi-minimal sets cannot contain anreat orbit by
Maier’s theorem (Theorem 2.4.1 in [23]) and the number ofguognimal
sets ofF'(€) is bounded by the genus éf according to Theorem 2.4.5. in

(i) ~, is a closed leaf of'(¢) whose holonomy is attractive on the side from
which «(Q) accumulates on, while it is repulsive on the other side and
a(Q) spirals ontovy, on the attractive side. In this case(®) cannot
enter a one-sided neighbourhood~gfon the side where the holonomy
is repulsive.

(iii) ~, is a closed leaf of’(¢) whose holonomy is attractive on one side and
either there is a sequence of closed leaveE @) on the other side of,
which converge toy, or v, has attractive holonomy on both sides.

If v, belongs to class (iii) and is small enough (ie. contained in the interior of
an annulus each of whose boundary is tange () or transverse td'(§) such
that F'(£) points into the annulus), then any modificationfof¢) with support in
U N F will result in a singular foliation or¥' such that all leaves of the charac-
teristic foliation which enter a neighbourhood @f containingU will remain in
U forever even after the modification. When no singularitiess @eated during
the modification, then the modification repladég, V, «) by an overtwisted star
(Q',V',a/) such that|V| = |V’|. In this casey, # ~, but~, is a closed leaf
of F'(¢') which passes througH (¢') (by the proof of Lemm&a®]3. We keep this
case separated from the others although all three of themog@y in one single
perturbation ot.

The following argument is complicated due to a difficulty @se (ii). If a(Q)
accumulates on, and the holonomy ofy, is repulsive on the side where points
of v are pushed to by the diffeomorphisthappearing in the proof of Lemnia 6.3,
then it is impossible to say something about the nelimit set of leaves im(Q)
which accumulated on, unlessG is chosen carefully: It is possible that leaves
which accumulated on, accumulate ony,, when the characteristic foliation is
modified neary,. However it is possible that, is also changed whefis re-
placed by¢’. Therefore one has to treat alle V' such thaty, belongs to (i),(ii)
simultaneously.

For non-empty open intervais. C [—1,0) and7y. C (0, 1] we write 74 (y) :=
{y} x [-1,1] x 7% for y € ~. We will fix 71 in the following.

We require that, is chosen such that thelimit of a leaf intersecting. (y) is
never a hyperbolic singularity for ajl € X. Because

e there are only finitely many hyperbolic singularities Brand

e a(Q) intersects every interval transverse~tpin an open set (note that
there are singular folioations on surfaces with dense quasnal sets; in
particular stable leaves of hyperbolic singularities ielsquasi-minimal
sets may be dense in the surface)

e a(0Q) is disjoint from~, which intersecty even if, is quasi-minimal
(this is true because every point®fQ) is connected td7 (¢) by a Legen-
drian curve whiley is part of the fully foliated set)

this condition can be satisfied. Next we impose additionstrictions onr_:
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We choose_ such that no pointiri, (x),z € X, is connected té_(y),y € X,
by a leaf of F'(¢) which is disjoint from{(y,0)} x [inf(7_),sup(7)]. In other
words, we require that leaves &f(¢) which come from7 (z) do not intersect
7_(y) when they meet the piece ¢fy, —1)} x [-1,1] C (U N F) which lies
between the lower endpoint 6f (y) and the upper endpoint 6f.(y) for the first
time. In order to satisfy this condition it might be neceggarshortenr, .

Obviously there is a choice for,, 7 which satisfies these requirements for
z,y € X whenever the limit sef,, which corresponds tg is not thew-limit set of
leaves intersecting ().

If y is contained in a closed leaf @f(¢), then one can also satisfy the require-
ment forz,y € X provided thatr, is so short that the translates of (x) along
leaves ofF'(£) do not cover the segmeiit (y)). We shortenr;. whenever this is
necessary. Finally, whenis part of a quasi-minimal set and the leavesrgft)
which intersect, (x) accumulate on this quasi-minimal set the above requirement
can be satisfied by shortening. again. Now one can construet in a finite
number of steps and shortening at each step.

Lett_ € 7—. We fix the diffeomorphisny : [-1,1] — [—1, 1] in the proof
of Lemma6.B such that maps the entire intervdk_, sup(r)) into 7 and the
support ofg is contained in(inf(7_),sup(7y)). The role of the parametets ¢’
from the proof of Lemm&®l3 is now played byp(r ), inf(7_).

If ¢ is modified by the procedure described in the proof of Lerin3ausing
the diffeomorphismy chosen above, then one obtains a confoliajosuch that
all leaves ofF'(¢’) starting at the elliptic singularity in the center of thegimal
overtwisted whose-limit set wasy, such thaty, N~ # () never meet a hyperbolic
singularity of F/(¢').

Since all elliptic singularities on the boundary of the basi the elleiptic sin-
gularity in «(Q) are automatically negative and all hyperbolic singulesiton the
boundary of the basin where already present () there is an overtwisted star
(Q', V', o) and V' can be viewed as a subset Wfby construction. Moreover,
£ < IEE)]. 0

Now we can finally show that there are no overtwisted starswgtie symplec-
tically fillable.

Theorem 6.9. Let (M, ¢) be aC*-confoliation, & > 2, which is symplectically
fillable. Then no oriented embedded surface contains arntwisted star.

Proof. Let (X,w) be a symplectic filling of. Assume tha#’ is an embedded sur-
face containing an overtwisted st@p, V, «). It is sufficient to treat only the case
of closed surfaces when the elliptic singularity in the fiitieof «(Q) is positive.

In the first part of the proof we show how to reduce the numbesirtdial ver-
tices. Because overtwisted stars are not required to betirgeas Legendrian
polygons, we show in a second step how to obtain an embeddedvidilating
Definition[1.3 starting from an overtwisted st@), (), o). The confoliation is mod-
ified several times but all confoliations appearing in theopmwill be C°-close tof.
In particular they are symplectically fillable. Therefoheassumption that\/, &)
admits an overtwisted star leads to a contradiction to TéveGL.4.

Notice that in the presence of an overtwisted gtaannot be a foliation every-
where. Thereforé/ is not a minimal set of the fully foliated part gfand¢ is not
a foliation without holonomy.
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Step 1:If V' # (), then¢ can be approximated by a confoliation which admits
an overtwisted star with less virtual vertices th@n V, o). We fixvg € V. If
Yo = T, intersectsH (§), then an application of Lemnia 8.6 yields a surface
carrying an overtwisted star with less virtual verticesatiC°-small isotopy of
F. Now assumey, N H (&) = 0.

Let L be the maximal connected open immersed hypersurfadd @fhich is
tangent tof and containsy,. If L = (), then there is a Legendrian segment
satisfying the hypothesis of Lemrha6.4. After applying teimma,, intersects
the contact region of the modified confoliation and we areedon

Now assume. # () and letL> be the space of ends &f We say that an end
e € L™ liesin H () if for every compact sell’ C L there is a Legendrian curve
from H (&) to the connected component bf\ K corresponding te.

Step la:lf L> # (), then we approximaté such that all ends of, lies in the
contact region of the modified confoliation.

The set of ends itH () is open inL®°, therefore its complemerﬂ?‘;l is com-
pact. To eacle € L7, we associate a minimal s@f(e) C lim. L of the fully
foliated part of¢ (this is explained in[[4], p. 115). Recall thaf cannot be a
minimal set of the fully foliated part of. According to[17], p.19, all minimal sets
are either closed leaves or exceptional minimal sets. Nuatevie allow thatl is
contained inM(e).

If M(e) is a closed leaf of whose holonomy along a curvetransverse td’ is
sometimes attractive, then we can apply Lerimh 6.8 (a) tbthere isv € V with
v C M(e). If L contains no limit set ofv((), then the procedure from the proof
of Lemmal6.8 can be applied directly to any curveC M(e) with sometimes
attractive holonomy. We can ensure the existence of suchve tiy Lemmd 65
and Remark 616.

If M(e) is an exceptional minimal set, then according to Propasiidl there
is a simple closed curve in a leaf L, C M(e) with non-trivial infinitesimal
holonomy. Every curve i, which is isotopic toy through Legendrian curves
has the same property by Lemma 1.3.17in [9]. In particulanvag assume that
~ is transverse t@’.

Using Lemma&68 (b) we approximageby a confoliation” such thatL, meets
H(E).

If M(e) was an exceptional minimal set, this process might havegguthe
overtwisted star in the sense that type of théimit sets of virtual vertices may
have changed. But recall that by the proof of Lenima 6.8 we daw V"’ as a
subset ofl”. We usey,, to denote theu-limit set of leaves which start at the elliptic
singularity in the center of the overtwisted star and acdated on~y,,v € V
before the modification.

We iterate the procedure from the very beginning withe Vv’ and with an
integral surface of’ containingy(. Since& () is finite and|E(¢')| < |£(£)] this
phenomenon can occur only finitely many times.

After finitely many steps no exceptional minimal sets wilcocin the above
procedure. In later applications of the above constructjpa: ~, and the maximal
integral surface of’ containing~; is contained in the maximal integral surface of
& containingry,. Because the inclusion induces a continuous mapping batthee
spaces of ends and by the compactnesﬂﬁ{ we are done after finitely many
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steps. We continue to writg for the embedded surfacefor the confoliation, and
(Q,V, «) for the overtwisted star etc.

Step 1b:We isotopefF’ such that all quasi-minimal sets of the characteristic foli
ation on the resulting surface pass through the contaaimedis we have already
noted in the proof of Lemma 8.8/ (¢) has only finitely many quasi-minimal sets
(this number is bounded by the genusfif Let~,,w € V be a quasi-minimal
set of F'(£) which is disjoint fromH (&).

According to Theorem 2.3.3 i0 [23] there is an uncountabi@iner of leaves of
F (&) which are recurrent (in both directions) and dense,irwhile there is only
a finite number of pseudovertices @, V, «) and only finite number of virtual
vertices. Therefore there i, € ~,, which can be connected fd(¢) by a Legen-
drian arco transverse td”’ such thatr does not meet(0(Q) ando never intersects
closed components 6. Atthis point we use the fact that every end of the union
of integral hypersurfaces containing, lies in H (). If o intersects(2g in some
other quasi-minimal set,/, w’ € V before it meetdd (¢), then we replace,, by
~Yw'- Thus we may assume thaimeetsF' in p,, and nowhere else.

By Lemma 2.8.2 in[[9] there is a confoliatigh C*-close ta¢ such thatF(¢') =
F(¢), o is tangent t&¢ and¢’ and a neighbourhood @f, in F' lies in H(¢'). We
will denote&’ again by¢.

Choose a neighbourhodd ~ o x [—1,1] x [-1,1] of o such thatr = o x
{(0,0)} and ({pw} x [-1,1] x [-1,1]) C F. Moreover, we require that the
foliation by the first factor is Legendrian while the foliati corresponding to the
second factor is transverseg¢andU ¢ H (£). Finally we assume that the foliation
which corresponds to the second factor is Legendrian whisnésstricted ta.

Now we apply an isotopy té" whose effect on the characteristic foliation Bn
is the same as the effect of the m@pappearing in the proof of Lemnia 6.3. We
explain this under the following orientation assumptioti®e (other cases can be
treated in the same way):

The orientation off'(£) coincides with the second factor b6f~ ¢ x [—1, 1] x
[—1, 1] and the coorientation df points away front/. In Figure 20 the left respec-
tively right edge of the rectangle correspondg tp,,, —1)} x [—1, 1] respectively
{(pw,1)} x [—1,1], the foliation is oriented from left to right, the coorietiten of
& points upwards and the coorientationfofpoints towards the reader.

Choose-1 < x < 0 < y < 1 such that the point&,,, —1, z), (pw, 1,y) € F

(i) do not lie on a stable or unstable leaf of a hyperbolic slagty and they
are not connected by a leaf 6f(¢).

(ii) can be connected by a smooth Legendrianaic U whose projection to
o x [—1,1] is embedded andl is C*° tangent taF". Moreover, we assume
that the projection of to o x [—1, 1] is transverse to the first factor.

The curve) andz, y exist because of the orientation assumptions and Lemrha 2.1.
Now fix 2/, close tox, y such thatr < 2/ < 0 <9/ < y.

Using a flow along the first factor @f we can movep,,} x [—1,1] to a curve
which is close to the projection of to o x [—1,1]. When we apply this flow to
F, the surface is pulled int&é/ and we obtain a surface’ isotopic to F' which
coincides with7 outside of{p,,} x (—=1,1) x (x,y).

By the assumptions oA we can choosé” such thatF’((zi) compresses the
transverse segmefitp,,, —1)} x (2/,y) onto{(pw, 1)} x (¢/,y) such that no leaf
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of intersecting{ (pw, 1)} x (v, y) is part of a stable or unstable leaf Bf¢). More-
over, we may assume that leaves which start at poin{$f, 1)} x (v/,y) meet
the segmenf(p.,, —1)} x [2/, y] before the enter the region whefé £ F for the
first time. The neww-limit set is now a closed leaf df’(¢) which passes through
{(pw, D)} x (v, ).

This modification may have created quasi-minimal setg"6mhich were not
present inF'(¢). But if this happens, then the new quasi-minimal sets iatdrs
the contact region by construction. Thus after finitely matgps (this number is
bounded by the genus &f) we have isotoped’ such that all quasi-minimal sets of
the characteristic foliation on the resulting surface phssugh the contact region.
Now we apply Lemm& 316. We obtain a surfagé containing an overtwisted star
(Q", V" a") such that there is a natural inclusi®if c V and allv,,v € V" are
cycles of F”(£). In the next step we treat the remaining virtual vertices. Wile
denoteF” by F, Q" by Q, etc.

Step 1c:Let ~, be the limit set which corresponds to the virtual vertgxe V'
of an overtwisted staiQ, V, «). We assume thay, is a cycle for allv € V and all
ends of the maximal integral surfaég containingy, lie in the contact region.

Choose a submanifolfi;, C L of dimension2 such thatL;, contains all closed
components of2g N Ly. Since each end df lies in H(§) we can choosé,(, so
that each boundary component is connecteff {¢) by a Legendrian curve which
does not intersect the interior &f,. After aC>°-small perturbation (we use again
Lemma 2.8.1 from[[9]) o we may assume that the boundaryIgfis contained
in the contact region of the resulting confoliati¢h This perturbation might affect
the characteristic foliation of', but since the modification of the confoliation does
not affect(2g and all components @@, are cycles off'(£) which are also present
in F(¢'), there still is an overtwisted sta€)’, V'a’) on F together with a natural
inclusionV’ — V.

Now we can apply Lemnia 8.5 and RemiarK 6.6. From Leilnnia 6.8 apteinca
confoliation¢” which isC°-close to¢’ such thatf’(£”) contains an overtwisted star
(Q", V" o) with V" c V' and allw-limit sets+./, w € V" which were contained
in Lo now intersect the contact region &f. After an application of Lemma_3.6
we can reduce the number of virtual vertices.

Step 2:We show that we can assume that the massociated to the overtwisted
star(Q, (), ) in F'is injective.

Assume that the Legendrian polyg6f, (), «) is not injective. Then there are
two edgesey, e Of @ such thatu(e;) = a(ez2). (Recall that by our genericity as-
sumption no two different hyperbolic singularitiesif¢) are connected by leaves.
Therefore configurations like the one shown in Figure 2 caappear.)

Let y be the image of the pseudovertex @nby the mapa. Theny is a nega-
tive hyperbolic singularity of’(¢). Thew-limit sets of the stable leaves gfare
negative elliptic singularitieg, y» in «(0Q) and we may assume that these sin-
gularities are contained if (§) (because they are-limit sets, they do not lie in
the interior of the foliated part ).

We eliminatey; andy using Lemma3]5. This reduces the number of edges of
the polygon which are identified unlegs = y5. The case whep; = y5 requires
slightly more work:

After perturbing the surface on a neighbourhood,pfve may assume that the
two unstable leaves af form a smooth closed Legendrian curye We eliminate
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11,y such thaty’ is a closed leaf of the characteristic foliation on the risgl
surface. We obtained a Legendrian polyd6i, V', /) on a surface” with Q' ~
D? and V' consists of all vertices of)’ which were mapped tg, by o/. By
constructiony,, =~/ forallv' € V.

Sincey; € H(¢') we can approximat€’ by a confoliation¢” which coincides
with & outside a tubular neighbourhood ¢f and is a contact structure nesr.
This can be done without changing the characteristic foliabn the surface by
Lemmd6.4.

Next we apply a standard procedure from contact topolodgaéblding to~'.
This is described in[19] (on p. 325). We obtain a surfaéewhich contains an
overtwisted staf@”, V", o’) such thal’’ consists of two elements witQ” ~ (',
V" = V' but now elements oF’” correspond to different-limit sets depending
on which side ofy’ the corresponding leaves af Q) accumulated.

In order to continue we create a pair of negative singuéaritilong the closed
leaves ina”’(Q"). We eliminate all pseudovertices successively and we mlatai
confoliationg on M together with an overtwisted stap, V = 0, &) on a surfacé”
which has no virtual vertices and is injective as a Legemdpialygon.« becomes
injective after finitely many perturbations 6t as in Figuré 10.

Becausen(9Q) passes through the contact region¢othe discD = &(Q)
violates Definitio_.I.B. This concludes the proof of the tieso. O

This proof can be modified to yield a proof of Theorem 1.4 usirgwell known
fact that symplectically fillable contact structures aghtiand without referring to
results of R. Hind in[[18] which are used in [9]. Let us outlite argument.

Given a discD as in Definitio_1.B assume first that the holonomydf in D
is non-trivial. We try follow the construction above to finccanfoliation £’ such
thatdD remains Legendrian angd is C°-close to¢. This attempt must fail since
otherwise we could continue to modify into a symplectically fillable contact
structure such thab becomes an overtwisted disc. This contradicts the fact that
symplectically fillable contact structures are tight.

The only point at which the above construction can break devime application
of RemarK 6.6 in the case whé bounds a dis®’ in the maximal surface which
contains® D and is tangent to the confoliation. In order to show #{g}) [ DUD'] =
0 one chooses an embedded sphgrmose (and homologous) tB U D’. Then
e(€)[S] = 0 follows from the tightness contact structures which @feclose to
the original one.

It remains to treat the case when the holonomyéf in D is trivial. Then
one has to show that eithéD is a vanishing cycle (cf. Chapter 9 inl[5]) or one
can replaceD by a smaller disc which has Legendrian boundary along whiieh t
holonomy of the characteristic foliation on the disc is motial. If 9D is a van-
ishing cycle, then one uses results due to S. NovikoV [24$tat#ish the existence
of a solid torus whose boundafly is a leaf of the confoliation. This contradicts
Jrw > 0 because this inequality means tffatepresents a non-trivial homology
class.
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