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RIGIDITY VERSUS FLEXIBILITY OF TIGHT CONFOLIATIONS

T. VOGEL

ABSTRACT. In [9] Y. Eliashberg and W. Thurston gave a definition of tight con-
foliations. We give an example of a tight confoliationξ on T 3 violating the
Thurston-Bennequin inequalities. This answers a questionfrom [9] negatively.
Although the tightness of a confoliation does not imply the Thurston-Bennequin
inequalities, it is still possible to prove restrictions onhomotopy classes of plane
fields which contain tight confoliations.

The failure of the Thurston-Bennequin inequalities for tight confoliations is
due to the presence of overtwisted stars. Overtwisted starsare particular config-
urations of Legendrian curves which bound a disc with finitely many punctures
on the boundary. We prove that the Thurston-Bennequin inequalities hold for
tight confoliations without overtwisted stars and that symplectically fillable con-
foliations do not admit overtwisted stars.
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1. INTRODUCTION

In [9] Eliashberg and Thurston explore the relationship between foliations and
contact structures on oriented3-manifolds. Foliations respectively contact struc-
tures are locally defined by1-formsα such thatα∧dα ≡ 0 respectivelyα∧dα > 0
(more precisely this definespositivecontact structures).

One of the main results of [9] is the following remarkable theorem.

Theorem 1.1(Theorem 2.4.1 in [9]). Suppose that aC2-foliation ξ on a closed
oriented3-manifold is different from the product foliation ofS1 × S2 by spheres.
Thenξ can beC0-approximated by a positive contact structure.

In the main part of the proof of this theorem a given foliationonM is modified
so that the resulting plane field is somewhere integrable while it is a positive contact
structure on other parts ofM . This motivates the following definition.

Definition 1.2. A positive confoliationon M is aC2-smooth plane field on a3-
manifold M which is locally defined by a1-form α such thatα ∧ dα ≥ 0. We
denote the region whereξ is a contact structure byH(ξ).
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2 T. VOGEL

Theorem 1.1 remains true when foliations are replaced by confoliations. Like
foliations and contact structures the definition of confoliations can be generalized
to higher dimensions (cf. [2, 9]) but in this article we are only concerned with
dimension3. All plane fields appearing in this article will be oriented,in particular
these plane fields have an Euler class.

In the last chapter of [9] Eliashberg and Thurston discuss several properties of
foliations (tautness, absence of Reeb components) and contact structures (symplec-
tic fillability, tightness) and what can be said about a contact structure approximat-
ing a taut or Reebless foliation. For example they establishthe following theorem.

Theorem (Eliashberg, Thurston, [9]). If a contact structureξ on a closed3-mani-
fold is sufficiently close to a taut foliation in theC0-topology, thenξ is symplecti-
cally fillable and therefore tight.

Another result in this direction is due to V. Colin.

Theorem (Colin, [7]). A C2-foliation without Reeb components on a closed ori-
ented3-manifold can beC0-approximated by tight contact structures.

In [12] J. Etnyre shows that every contact structure (tight or not) may be obtained
by a perturbation of a foliation with Reeb components. This result is implicitly
contained in [22]. Moreover, J. Etnyre improved Theorem 1.1by showing that
Ck-smooth foliations can beCk-approximated by contact structures provided that
k ≥ 2 (a written account will hopefully be available in the near future, cf. [13]).

In order to understand better the relationship between geometric properties of
foliations and properties of the contact structures approximating them, it is inter-
esting to ask about properties of confoliations which appear in the approximation
process. For example the notion of symplectic fillability can be extended to confo-
liations in an obvious fashion.

The question how to generalize the notion of tightness is more complicated. One
aim of this article is to clarify this point. The following definition is suggested in
[9].

Definition 1.3. A confoliationξ onM is tight if for every embedded discD ⊂ M
such that

(i) ∂D is tangent toξ,
(ii) TD andξ are transverse along∂D

there is an embedded discD′ satisfying the following requirements

(1) ∂D = ∂D′,
(2) D′ is everywhere tangent toξ,
(3) e(ξ)[D ∪ D′] = 0.

This definition is motivated by the following facts. Ifξ is a contact structure,
then there are no surfaces tangent toξ and Definition 1.3 reduces to a definition
of tightness for contact structures. In the case whenξ is a foliation on a closed
manifold Definition 1.3 is equivalent to the absence Reeb components by a theorem
of Novikov [24]. Thus Definition 1.3 interpolates between tight contact structures
and Reebless foliations. The following theorem is also shown in [9] (we recall the
definition of symplectic fillability in Section 2.3).

Theorem 1.4 (Theorem 3.5.1. in [9]). Symplectically fillable confoliations are
tight.
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As pointed out in [9] there are inequalities imposing restrictions on the Euler
classe(ξ) of ξ whenξ is a tight contact structure or a Reebless foliation. Before
we can state these inequalities we need one more definition.

Definition 1.5. Let γ be a nullhomologous knot in a confoliated manifold(M, ξ)
which is positively transverse toξ. For each choiceF of an oriented Seifert surface
of γ we define theself linking numbersl(γ, F ) of γ as follows. Choose a nowhere
vanishing sectionX of ξ|F and letγ′ be the knot obtained by pushingγ off itself
by X. Then

sl(γ, F ) = γ′ · F .

Obviouslysl(γ, F ) depends only on[F ] ∈ H2(M,γ; Z).
In [3] D. Bennequin proved an inequality betweensl(γ) of a transverse knot in

the standard contact structureker(dz + x dy) on R
3 and the Euler number of a

Seifert surface ofγ. This inequality was extended to all tight contact structures by
Eliashberg in [8]. From Thurston’s work in [28] it follows that the same inequalities
hold for surfaces in foliated manifolds without Reeb components. We summarize
these results as follows.

Theorem 1.6(Eliashberg [8], Thurston [28]). Let ξ be a tight contact structure
or a foliation without Reeb components on a closed manifoldM (different from a
foliation by spheres) andF ⊂ M an embedded oriented surface.

a) If F ≃ S2, thene(ξ)[F ] = 0.
b) If ∂F = ∅ andF 6≃ S2, then|e(ξ)[F ]| ≤ −χ(F ).
c) If ∂F 6= ∅ is positively transverse toξ, thensl(γ, [F ]) ≤ −χ(F ).

The inequalities stated in this theorem are usually referred to as Thurston-Benne-
quin inequalities. They imply that only finitely many classes in H2(M ; Z) are
Euler classes of tight contact structures or foliations without Reeb components.
Foliations by spheres violate a) and we exclude such foliations from our discus-
sion.

It was conjectured (Conjecture 3.4.5 in [9]) that tight confoliations satisfy the
Thurston-Bennequin inequalities. We give a counterexample (T 3, ξT ) with the
property thate(ξ)[T0] = −4 for an embedded torus inT 3. Therefore every contact
structure which is close toξt must be overtwisted. This yields a negative answer to
Question 1 on p. 63 of [9]. The construction of(T 3, ξT ) is based on the classifica-
tion of tight contact structures onT 2 × [0, 1] due to E. Giroux and K. Honda.

In this article we show that a) is true for tight confoliations and c) holds when
F is a disc. On the other hand we give an example of a tight confoliation ξT onT 3

which violates b) and c) for surfaces which are not simply connected.
Our example indicates that tight confoliations are much more flexible objects

than tight contact structures or foliations without Reeb components. For exam-
ple infinitely many elements ofH2(T 3; Z) are Euler classes of tight confoliations.
Nevertheless, tight confoliations have some rigidity properties. In addition to the
Thurston-Bennequin inequalities for simply connected surfaces we show the fol-
lowing theorem.

Theorem 5.1. LetM be a manifold carrying a tight confoliationξ andB ⊂ M a
closed embedded ball inM . There is a neighbourhood ofξ in the space of plane
fields with theC0-topology such thatξ′

∣∣
B

is tight for every contact structureξ′ in
this neighbourhood ofξ.
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This theorem leads to restrictions on the homotopy class of plane fields which
contain tight confoliations. For example only one homotopyclass of plane fields
on S3 contains a tight confoliation by Eliashberg’s classification of tight contact
structures on balls together with Theorem 5.1. For the proofof Theorem 5.1 we
study the characteristic foliationS(ξ) = TS∩ξ on embedded spheresS ⊂ M (we
generalize the notion of taming functions introduced in [8]to confoliations and use
results from [15]).

Motivated by the example(T 3, ξT ) we define the notion of an overtwisted star.
Roughly speaking, an overtwisted star on an embedded surface F is a domain in
F whose interior is homeomorphic to a disc, the boundary of this domain consists
of Legendrian curves and all singularities on the boundary have the same sign.
The main difference between overtwisted stars and overtwisted discs is that the
set theoretic boundary of an overtwisted star may contain closed leaves or quasi-
minimal sets of the characteristic foliation.

An example of an overtwisted star is shown in Figure 13 on p. 23. It will be
clear from the definition of overtwisted stars that contact structures which admit
overtwisted stars are not tight, ie. they are overtwisted inthe usual sense. Following
Eliashberg’s strategy from [8] we prove the following theorem.

Theorem 6.2. Let (M, ξ) be an oriented tight confoliation such that no compact
embedded oriented surface contains an overtwisted star and(M, ξ) is not a folia-
tion by spheres.

Every embedded surfaceF whose boundary is either empty or positively trans-
verse toξ satisfies the following relations.

a) If F ≃ S2, thene(ξ)[F ] = 0.
b) If ∂F = ∅ andF 6≃ S2, then|e(ξ)[F ]| ≤ −χ(F ).
c) If ∂F 6= ∅ is positively transverse toξ, thensl(γ, [F ]) ≤ −χ(F ).

Moreover, Theorem 1.4 can be refined as follows.

Theorerm 6.9. Symplectically fillable confoliations do not admit overtwisted stars.

These results indicate that tightness in the sense of Definition 1.3 together with
the absence of overtwisted stars is the right generalization of tightness to confolia-
tions.

This article is organized as follows: In Section 2 we recall several facts about
confoliations and characteristic foliations. Section 3 contains a discussion of sev-
eral methods for the manipulation of characteristic foliation on embedded surfaces.
For example we generalize the elimination lemma to confoliations and we discuss
several surgeries of surfaces when integral discs ofξ intersect the surface in a cycle.
In Section 4 we describe an example of a tight confoliation onT 3 which violates
the Thurston-Bennequin inequalities while we prove Theorem 5.1 in Section 5.

In Section 6 we discuss overtwisted stars and establish the Thurston-Bennequin
inequalities for tight confoliations without overtwistedstars. Moreover, we prove
that symplectically fillable confoliations do not admit overtwisted stars.

Throughout this articleM will be a connected oriented3-manifold without
boundary andξ will always denote a smooth oriented plane field onM . More-
over, we requireM to be compact.

Acknowledgements:The author started working on this project in the fall of
2006 during a stay at Stanford University, the financial support provided by the
”Deutsche Forschungsgemeinschaft” is gratefully acknowledged. It is a pleasure
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2. CHARACTERISTIC FOLIATIONS, NON-INTEGRABILITY AND TIGHTNESS

In this section we recall some definitions, notations and well known facts which
will be used throughout this paper. Most notions discussed here are generalizations
of definitions which are well-known in the context of contactstructures (cf. for
example [1], [10], [14] and the references therein).

2.1. Characteristic foliations on surfaces. We consider an embedded oriented
surfaceF in a confoliated3-manifold (M, ξ) and we assume thatξ is cooriented.
The singular foliationF (ξ) := ξ ∩ TF is called thecharacteristic foliationof F .
The leaves of the characteristic foliation are examples ofLegendrian curves, ie.
curves tangent toξ.

The following convention is used to orientF (ξ): Considerp ∈ F such that
F (ξ)p is one-dimensional. ForX ∈ F (ξ)(p) we chooseY ∈ ξ(p) andZ ∈ TpF
such thatX,Y represents the orientation ofξ(p) andX,Z induces the orientation
of the surface. ThenX represents the orientation of the characteristic foliation if
and only ifX,Y,Z is a positive basis ofTpM .

With this convention, the characteristic foliation pointsout F along boundary
components ofF which are positively transverse toξ. An isolated singularity of
F (ξ) is calledelliptic respectivelyhyperbolicwhen its index is+1 respectively
−1. A singularity ispositiveif the orientation ofξ coincides with the orientation
of F at the singular point andnegativeotherwise. Given an embedded surface
F ⊂ M we denote the number of positive/negative elliptic singularities bye±(F )
and the number of positive/negative hyperbolic singularities ish±(F ).

2.2. (Non-)Integrability. The condition thatξ is a confoliation can be interpreted
in geometric terms. The following interpretation can be found in [9].

Let D be a closed disc of dimension2 andξ a positive confoliation transverse to
the fibers ofπ : D ×R −→ D. Thenξ can be viewed as a connection. We assume
in the following that this connection is complete, ie. for every differentiable curve
σ in D there is a horizontal lift ofσ starting at a given point in the fiber over the
starting point ofσ.

We consider the holonomy of the characteristic foliation onπ−1(∂D)

(1) h∂D : π−1(p) ≃ R −→ R ≃ π−1(p)

whereh∂D(x) is defined as the parallel transport ofx ∈ R along∂D.

Lemma 2.1 (Lemma 1.3.4. in [9]). If the confoliationξ on π : D × R −→ D
defines a complete connection, thenh∂D(x) ≤ x for all x ∈ π−1(p) andp ∈ ∂D.
Equality holds for allx ∈ π−1(p) if and only ifξ is integrable.

If D = D × {0} is tangent toξ, then the germ of the holonomy is well defined
without any completeness assumption andh∂D(x) ≤ x for all x in the domain
of h. The germ ofh∂D coincides with the germ of the identity if and only if a
neighbourhood ofD is foliated by discs.

Of course, the second part of the lemma applies to the case when on considers
only the part lying above or belowD×{0} ⊂ D×R. A consequence of Lemma 2.1
is the following generalization of the Reeb stability theorem to confoliations.
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Theorem 2.2 (Proposition 1.3.9. in [9]). Let M be a closed oriented manifold
carrying a positive confoliationξ. Suppose thatS is an embedded sphere tangent
to ξ. Then(M, ξ) is diffeomorphic to the product foliation onS2 × S1 by spheres.

Foliations by spheres appear as exceptional case in some theorems. They will
therefore be excluded from the discussion.

Another useful geometric interpretation of the confoliation condition can be
found on p. 4 in [9] (and many other sources): LetX be a Legendrian vector
field andF a surface transverse toX. The slope of line fieldFt(ξ) on the image
of F under the time-t-flow of X is monotone int if and only if ξ is a confoliation.
This interpretation is useful when one wants extends confoliations along flow line
which are Legendrian where the confoliation is already defined.

We define thefully foliated partof a confoliationξ onM as the complement of

{x ∈ M | there is a Legendrian curve connectingx to H(ξ)}.

If γ is a Legendrian curve in a leaf ofξ andA ≃ γ × (−δ, δ), δ > 0 an annulus
transverse to the leaf such thatγ = γ ×{0}, then we will consider several types of
holonomyhA of the characteristic foliation onA.

• We say that there islinear holonomyor non-trivial infinitesimal holonomy
alongγ if h′

A(0) 6= 0.
• The holonomy issometimes attractiveif there are sequences(xn), (yn)

which converge to zero such thatxn > 0 > yn and

hA(xn) < xn, hA(yn) > yn for all n ∈ N.

2.3. Tightness of confoliations. In this section we summarize several facts about
tight confoliations. We shall always assume thatξ is a tight confoliation but it is
not a foliation by spheres.

If (M, ξ) is tight andD ⊂ M is an embedded disc such that∂D is tangent toξ
andξ

∣∣
∂D

is transverse toTD, then the discD′ whose existence is guaranteed by
Definition 1.3 is uniquely determined. Otherwise there would be a sphere tangent
to ξ and by Theorem 2.2ξ would be a foliation by spheres. But we explicitly
excluded this case.

The definition of tightness refers to smoothly embedded discs but of course it has
implications for discs with piecewise smooth boundary and slightly more generally
for unions of discs.

Lemma 2.3. Suppose that(M, ξ) is a tight confoliation andS ⊂ M is an em-
bedded sphere such that the characteristic foliationS(ξ) = TS ∩ ξ has only non-
degenerate hyperbolic singularities along a connected cycle γ of S(ξ). Then there
are immersed discsD′

i, i = 1, . . . k in M which are tangent toξ and

∂

(
k⋃

i=1

Di

)
= ∂D.

This follows by consideringC∞-small perturbations ofS such thatγ is approx-
imated by closed leaves of the characteristic foliation of the perturbed sphere. We
will continue to say that a disc bounds the cycleγ although the “disc” might have
corners or be a pinched annulus, for example.

The most important criterion to prove tightness is Theorem 1.4. It is based on
the following definition.
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Definition 2.4. A positive confoliationξ on a closed oriented manifoldM is sym-
plectically fillableif there is a compact symplectic manifold(X,ω) such that

(i) ω
∣∣
ξ

is non-degenerate and
(ii) ∂X = M as oriented manifolds whereX is oriented byω ∧ ω.

In this definition we use the “outward normal first” convention for the orientation
of the boundary. There are several different notions of symplectic fillings and
the Definition 2.4 is often referred to as weak symplectic filling. It is clear from
Theorem 1.4 (and Theorem 6.9) that the existence of a symplectic filling is an
important property of a confoliation.

Note that if(M, ξ) is symplectically fillable, then the same is true for confolia-
tionsξ′ which are sufficiently close toξ in theC0-topology.

Theorem 1.4 can sometimes be extended to non-compact manifolds. Then one
obtains the following consequence.

Proposition 2.5(Proposition 3.5.6. in [9]). If a confoliationξ is transverse to the
fibers of the projectionR3 −→ R

2 and if the induced connection is complete, then
ξ is tight.

In [9] one can find an example which shows that the completeness condition can
not be dropped.

3. PROPERTIES AND MODIFICATIONS OF CHARACTERISTIC FOLIATIONS

The characteristic foliations on embedded surfaces in manifolds with contact
structures has several properties reflecting the positivity of the contact structure.
Moreover, there are methods to manipulate the characteristic foliation by isotopies
of the surface. Similar remarks apply whenξ is a foliation. In this section we
generalize this to the case whenξ is a confoliation. Ifξ is tight, then there are more
restrictions on characteristic foliation. Some of these additional restrictions shall
be discussed in Section 5.

3.1. Neighbourhoods of elliptic singularities. With our orientation convention
positive elliptic singular points lying in the contact region are sources. The follow-
ing lemma shows that this statement can be interpreted such that it generalizes to
confoliation.

Lemma 3.1. Let (M, ξ) be a confoliated manifold andF an immersed surface
whose characteristic foliation has a non-degenerate positive elliptic singularityp.

There is an open discp ∈ D ⊂ F such that each leaf of the characteristic
foliation onD is either a circle or there is a closed transversal ofF (ξ) through the
leaf. If p is positive respectively negative and∂D is transverse toF (ξ), thenF (ξ)
points outwards respectively inwards.

Proof. We fix a defining formα for ξ on a neighbourhood ofp. If dα(p) 6= 0,
thenp lies in the interior of the contact region and the claim follows from [14].
Whendα(p) = 0, thenF (ξ) is transverse to the gradient vector fieldR of a Morse
function which has a critical point of index0 or 2 atp.

In the following we assume thatp is positive andR points away fromp and
coorientsξ away fromp (the other cases are similar). The Poincaré return map
characteristic foliation is well defined on a small neighbourhood ofp in a fixed
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radial line starting at the origin (cf. [21] for example) andby our orientation con-
ventionF (ξ) is oriented clockwise nearp. We want to show that Poincaré return
map is non-decreasing when the orientation of the radial line points away fromp.
In the following we assume that the Poincaré return map is not the identity because
in that situation our claim is obvious.

Let D ⊂ F be a small disc containingp such that∂D is transverse toF (ξ). Fix
a vector fieldZ coorienting bothF andξ. We writeDz for the image ofF under
the timez-flow of Z. We may assume that the tangencies ofDz andξ are exactly
the points on the flow lineγp of Z throughp.

We extendR to a vector field on a neighbourhood ofp tangent toDz such that it
remains transverse toξ onU \ γp. Then the vector fieldT = zZ + R is transverse
to ξ on {z ≥ 0} \ {p} ⊂ U . The flow ofT exists for all negative timest and
every flow line ofT approachesp ast → −∞. Sincedα(p) = 0 there are local
coordinatesx, y onD aroundp such thatp corresponds to the origin and

(2) α = dz + (xdx + ydy) + α̃

whereα̃ denotes a1-form such that̃α/(x2 + y2) andα̃/z remain bounded when
one approaches the origin.

We choose a closed embedded discD′ in {z ≥ 0} which is transverse toT and
D such that∂D′ = ∂D andD ∪ D′ bound a closed half ballB. The half ball is
identified with a Euclidean half ball of radius1 and we fix spherical coordinates
ρ, ϑ, φ (whereρ denotes the distance of a point from the origin,ϑ is the angle
betweenγp and the straight line connecting the point with the origin) such thatT
corresponds toρ∂ρ. In this coordinate system

(3) α = cos(ϑ)dρ + ρ sin(ϑ) (−dϑ + sin(ϑ)dρ + cos(ϑ)ρdϑ) + α̃

and α̃/(ρ2 sin2(ϑ)) and α̃/(ρ cos(ϑ)) remain bounded when one approaches the
origin.

Consider a closed discD′′ lying in the interior ofD′. We identify the union
of all flow lines of T which intersectD′′ with D′′ × (0, 1] such that the second
factor corresponds to flow lines ofT . OnD′′ × (0, 1] the factorcos(ϑ) is bounded
away from0. By (3) the plane fieldker(α) extends to a smooth plane field on
D′′ × [0, 1] such thatD′′ × {0} is tangent to the extended plane field. Therefore
ker(α) extends to a continuous plane field on(D′ × [0, 1]) \ (∂D′ ×{0}) which is
a smooth confoliation onD′ × (0, 1].

The holonomy of the characteristic foliation on∂D′′ × [0, 1] is non-increasing
by Lemma 2.1 when∂D′′×{0} is oriented as the boundary ofD′′. Our orientation
assumptions at the beginning of the proof imply that the characteristic foliation on
∂D′× (0, 1] is oriented in the opposite sense. This implies that the Poincaré-return
map of the characteristic foliation aroundp is non-decreasing. �

3.2. Legendrian polygons. In the proof of rigidity theorems for tight confolia-
tions and also in Section 6 we well use the notion of basins andLegendrian poly-
gons. In this section we adapt the definitions from [8].

Definition 3.2. A Legendrian polygon(Q,V, α) on a compact embedded surface
F is a triple consisting of a connected oriented surfaceQ with piecewise smooth
boundary, a finite setV ⊂ ∂Q and a differentiable mapα : Q \ V −→ F which is
an orientation preserving embedding on the interior such that

(i) corners ofQ are mapped to singular points ofF (ξ),
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(ii) smooth pieces of∂Q are mapped onto smooth Legendrian curves onF ,
(iii) for points v ∈ V the imageα(b±) of the two segmentsb± ⊂ ∂Q\V which

end atv have the sameω-limit setΓv andΓv is not a singular point.

A pseudovertexis a pointx ∈ ∂Q such thatα(x) is a hyperbolic singularity and
α|∂Q is smooth atα(x).

A hyperbolic singularityα(x) on α(∂Q) can be a pseudovertex only if both
unstable or both unstable leaves are contained inα(∂Q).

The points inV should be thought of as missing vertices in the boundary ofQ.
Figure 1 shows the imageα(Q) of a Legendrian polygon(Q,V, α) whereQ is a
disc,V = {v} ⊂ ∂Q and the corresponding ends of∂Q\{v} are mapped to leaves
of the characteristic foliation whoseω-limit set is the closed leafγv. There are three
pseudovertices. The following definition generalizes the notion of injectivity of a

v
γ

FIGURE 1.

Legendrian polygon to the context of confoliations.

Definition 3.3. A Legendrian polygon(Q,V, α) identifies edgesif there are edges
e1, . . . , el, l ≥ 2 in ∂Q such thatα(e1)∪ . . .∪α(el) is a cycle containing the image
of the pseudovertices lyinge1, . . . , el and leaves of the characteristic foliation such
that

(i) the preimage of each point of the cycleγe1...el
except the image of pseu-

dovertices has exactly one element while
(ii) the preimage of points on the segments and of the images of the pseudover-

tices consists of exactly two elements.

A Legendrian polygon which does not identify edges is calledinjective.

Notice thatα may identify vertices even if(Q,V, α) is injective. An example of
a Legendrian polygon which identifies three edges such thatγe1e2e3

is not trivial is
shown Figure 2.

BecauseF is compact and the singularities ofF (ξ) are isolated the limit sets of
individual leaves of the characteristic foliation onF belong to one and only one of
the following classes (cf. Theorem 2.6.1. of [23])

• fixed points,
• closed leaves,
• cycles consisting of singular points and leaves connectingthem and
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γ
2 3

e e e1

FIGURE 2.

• quasi-minimal sets, ie. closures of non-periodic recurrent trajectories.

At this point we use the smoothness ofξ (smoothness of classC2 would suffice).

Lemma 3.4. LetF ⊂ M be a surface andξ a confoliation onM such that∂F is
transverse toξ and the characteristic foliation points inwards along∂F . Assume
that U ⊂ F is a submanifold of dimension2 such that every boundary component
is either is tangent toF (ξ) or transverse toξ and the characteristic foliation points
outwards.

LetB(U) be the union of all leaves ofF (ξ) which intersectU . ThenB(U) has
the structure of a Legendrian polygon.

Proof. A preliminary candidate for(Q,V, α) is Q0 := U, V0 = ∅ andα the inclu-
sion ofQ0. We will define vertices and edges ofQ and we will glue1-handles to
components of∂Q0. The existence ofα will be immediate once the correct poly-
gon with all pseudovertices, corners and elliptic singularities andV are defined.

Each intersection of∂U with a stable leaf of a hyperbolic singularity ofF (ξ)
defines a vertex ofQ0. We obtain a subsetP0 ⊂ ∂Q0 which will serve as a first ap-
proximation for the set of pseudovertices. Forp ∈ P0 we denote the corresponding
hyperbolic singularity ofF (ξ) by α(p).

First we consider the boundary componentsΓ of Q0 which are transverse to
F (ξ) andΓ∩P0 = ∅. All leaves ofF (ξ) passing throughΓ have the sameω-limit
setΩ(Γ) (cf. Proposition 14.1.4 in [20]).

We claim thatΩ(Γ) is an elliptic singularity or a cycle: Assume thatΩ(Γ) is
quasi-minimal. According to Theorem 2.3.3 in [23] there is arecurrent leafγ
which is dense inΩ(Γ). There is a short transversalτ of F (ξ) such that|γ∩τ | ≥ 2
and there are leaves ofF (ξ) passing throughΓ which intersectτ between two
pointsp1, p2 of γ ∩ τ . Becauseγ is recurrent it cannot intersectΓ. Let I ⊂ τ be
the maximal open segment lying betweenp1, p2 such that the leaves ofF (ξ) induce
a map fromI to Γ. It follows (as in Proposition 14.1.4. in [20]) that the boundary
points of I connect to singular points ofF (ξ) which have to be hyperbolic by
our assumptions. These hyperbolic singularities are part of a path tangent toF (ξ)
which connectsΓ with τ and this path passes only through hyperbolic singularities.
This is a contradiction to our assumptionΓ ∩ P0 = ∅.

Thus ifP0 ∩ Γ = ∅, then there are two cases depending on the nature ofΩ(Γ).

• If Ω(Γ) is an elliptic singularity respectively a closed leaf ofF (ξ), then we
place no vertices onΓ andα mapsΓ to the elliptic point respectively the
closed leaf whileα = α1 outside a collar ofΓ.
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• If Ω(Γ) is a cycle containing hyperbolic points, then we place a corner on
Γ for each time the cycle passes through a hyperbolic singularity. The map
α|Γ is defined accordingly.

Next we consider a boundary componentΓ of Q0 which is transverse toF (ξ)
and contains an elementp of P0∩Γ. Letη be an unstable leaf of the corresponding
hyperbolic singularityα(p) of F (ξ) andΩ(η) theω-limit set of η. Depending on
the type ofΩ(η) we distinguish four cases.

(i) Ω(η) is an elliptic singular point. Then we place an elliptic singularity on
Γ next to the pseudovertex.

(ii) Ω(η) is a cycle ofF (ξ) or a quasi-minimal set. Then we place a pointv on
Γ and add this vertex to to the set of virtual verticesV0.

(iii) Ω(η) is a hyperbolic point andα(p) is part of a cycle. Some possible
configurations in this case are shown in Figure 3 (except the top right part).
More precisely, the configurations in Figure 3 correspond tothe case when
there are are at most two different hyperbolic singularities of F (ξ) which
are connected. This assumption is satisfied for surfaces in ageneric1-
parameter family of embeddings and it would suffice for our applications.

In the present situation we add a1-handle toQ0 along Γ. This de-
fines a new polygonQ1. We defineα1 : Q1 −→ F such that one of two
new boundary components is mapped to the cycle containingα(p) and we
place a corner on this connected component of∂Q1 for each time the cy-
cle passes trough a hyperbolic singularity. In particularp is no longer a
pseudovertex. Outside a collar ofΓ we requireα = α1.

(iv) Ω(η) is a hyperbolic singularity andα(p) is not part of a cycle. Then
we place a corner onΓ which corresponds toΩ(η). We continue with
the unstable leafη′ ⊂ Bω(Γ) of Ω(η) and place corners or vertices onΓ
depending on the nature of theω-limit set ofη′. One possible configuration
is shown in the top right part of Figure 3.

All unstable leaves of hyperbolic singularities inF (ξ) which correspond to ele-
ments ofP0 ∩ Γ can be treated in this way.

We iterate the procedure (starting from the choice of pseudovertices) until no
new1-handles are added and we have treated all occurring boundary components.
This process is finite because each hyperbolic singularity can induce the addition
of at most one1-handle and there are only finitely many hyperbolic singularities
on F . In the end we obtain a polygonQ. The existence of a finite setV ⊂ ∂Q
and the immersionα : Q \ V −→ F with the desired properties follows from the
construction. �

3.3. The elimination lemma. There are several possibilities to manipulate the
characteristic foliation on an embedded surface. Of courseone can always perturb
the embedding of the surface so that it becomes generic and that the singularities
lie in the interior of the contact regionH(ξ) or in the interior of its complement.
In addition to such perturbations we shall use two other methods.

The first method discussed in this section is called elimination of singularities
and it is well known in the context of contact structures. Thesecond method will
be described in Section 3.4.

By a C0-small isotopy of the surfaceF one can remove a hyperbolic and an
elliptic singularity which are connected by a leafγ of F (ξ) if the signs of the
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α (p) α(p) q

q qα (p) (p)α

η η

η
η η η

FIGURE 3.

singularities agree. The characteristic foliation beforethe isotopy is depicted in
Figure 4. The segmentγ corresponds to the thickened segment in the middle of
Figure 4.

+ +

FIGURE 4.

After the elimination of a pair of singularities as in Lemma 3.5 the character-
istic foliation on a neighbourhood ofγ looks like in Figure 5. The elimination of
singularities plays an important role in Eliashberg’s proof of Theorem 1.6 for tight
contact structures.

Below we give a proof of the elimination lemma which applies to confolia-
tions under a condition on the location of the singularities. Usually the elimination
lemma is proved using Gray’s theorem but this theorem is not available in the cur-
rent setting (this is explained in [1] for example).

Lemma 3.5. Let F be a surface in a confoliated manifold(M, ξ). Assume that
the characteristic foliation onF has one hyperbolic singularity and one elliptic
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FIGURE 5.

singularity of the same sign which are connected by a leafγ of the characteristic
foliation.

If the elliptic singularity lies inH(ξ), then then there is aC0-small isotopy ofF
with support in a small open neighborhoodU of γ such that the new characteristic
foliation has no singularities inside ofU . The isotopy can be chosen such thatγ is
contained in the isotoped surface.

Note that ifξ is a foliation, then the situation of the lemma cannot arise since all
leaves of the characteristic foliations in a neighbourhoodof an elliptic singularity
are closed.

Proof of Lemma 3.5.We assume that both singularities are positive. There is a
neighbourhoodU of γ with coordinatesx, y, z such thatξ

∣∣
U

is defined by the1-
form α = dz + a(x, y, z)dy such that the functiona satisfies∂xa ≥ 0. We assume
that ∂z is positively transverse toξ andF , {z = 0} ⊂ F and thex−axis of the
coordinate system containsγ.

It follows that ξ
∣∣
U ′

can be extended to a confoliationξc on R
3 which satisfies

the assumptions of Lemma 2.1 ifU ′ ⊂ U is a ball and∂x is tangent to∂U ′ along a
circle. Since every step in the proof will take place in a fixedsmall neighbourhood
of γ we can apply Lemma 2.1 without any restriction. We chooseε > 0 so that
x ⊂ (−ε, ε) ⊂ U ′ for all x in a neighbourhoodV ⊂ U ′ of γ. For a pathσ ⊂ V
we will consider the hypersurfaceTσ = σ × (−ε, ε). By our choicesTσ(ξ) is
transverse to the second factor ofTσ.

Choose a smooth foliationI of a small neighbourhood (contained inU ) of γ
in F by intervalsIs, s ∈ [−1, 1] as indicated by the dashed lines in Figure 4. We
chooseI such that it has the following properties.

(i) Two intervalsIs0
, Is1

pass through the singularities. One of them is tangent
to the closure of the unstable separatrices of the hyperbolic singularity.

(ii) All intervals intersecting the interior ofγ have exactly two tangencies with
the characteristic foliation onF . The intervals which do not intersect the
closure ofγ are transverse to the characteristic foliation.

(iii) Let σ by a path inF which is shorter thanδ with respect to a fixed auxiliary
Riemannian metric. Ifδ > 0 is small enough, then the image of(σ(0), 0)
under the holonomy alongTσ is defined. We assume that the length of each
Is is smaller thanδ.
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We parameterize the leafIs by σs : [0, 1] −→ F such that the intersection ofγ
with Is is positive (or empty), ie. in Figure 4 the leaves ofI are oriented towards
the upper part of the picture.

The following figures show neighbourhoods ofIs in Ts := Tσs for certain
s ∈ [−1, 1]. In each of these figures the dotted line representsIs, oriented from
left to right. Figure 6 corresponds to a leafIs which does not intersectγ. ThenIs

is nowhere tangent to the characteristic foliation onTs. By our orientation conven-
tions and the choice ofI the slope ofξ ∩ Ts is negative alongIs.

FIGURE 6.

The leavesIs0
, Is1

contain the singular points of the characteristic foliation on
F . As shown in Figure 7 there is exactly one tangency ofF and the characteristic
foliation onTs0

, Ts1
. The slope of the characteristic foliation onTs0

, Ts1
is negative

alongIs0
, Is1

except at the point of tangency.

FIGURE 7.

Finally, the leavesIs, s ∈ [s0, s1] intersect the interior ofγ andIs is tangent to
F (ξ) in exactly two points. This is shown in Figure 8. Between the two points of
tangency, the slope of the characteristic foliation onTs is positive alongIs, it is
zero at the tangencies and negative at the remaining points of Is.

We want to find a smooth family of isotopies of the intervalsIs within Ts such
that

(i) for all s the isotopy is constant near the endpoints ofIs and
(ii) after the isotopy, the intervalsIs are transverse to the characteristic folia-

tion onTs.

This will produce the desired isotopy ofF . Such a family of isotopies exists if
and only if the following condition (s) is satisfied for alls ∈ [−1, 1]:
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FIGURE 8.

Condition (s): The image ofσs(0) × {0} under the holonomy alongσs lies
below the other endpointσs(1) × {0} of Is or the leaf ofTs(ξ) which passes
through(σs(0), 0) exitsTs through(σs,−ε) ⊂ ∂Ts.

Note that this condition is automatically satisfied fors ∈ [−1, 1] if Is does
not intersectγ or this intersection point is close enough to a singularity of the
characteristic foliation.

If (s) is not satisfied for alls, then we will replaceI by another foliationI ′

by intervalsI ′s (the corresponding embeddings of intervals are denoted byσ′
s) as

follows:

(i) If Is does not intersectγ, thenσs = σ′
s. I ′s intersectsγ if and only if Is

does.
(ii) I ′s is tangent to the characteristic foliation onF along two closed intervals

(which may be empty or points). The complement of these two intervals is
the union of three intervals such that each of these intervals is mapped to a
curve of length≤ δ.

(iii) Is andI ′s coincide on those intervals where the characteristic foliation on
Ts has negative slope for alls ∈ [−1, 1].

(iv) Is ∪ I ′s bounds a positively oriented disc (hereIs denotes the intervalIs

with the opposite orientation).

In Figure 9 the dashed line corresponds toI ′s while the thick solid line represents
Is.

+ +

FIGURE 9.

For s ∈ (s0, s1) we define a curveI ′′s by replacing the segment ofIs lying
between the tangencies withF (ξ) by two segments of leaves ofF (ξ) whoseA-
limit set is the elliptic singularity inV . Then the holonomy onI ′′s × (−ε, ε) clearly
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satisfies the condition (s). This shows that for eachs one can chooseI ′s with the
desired properties.

Moreover, wheneverIs satisfies (s) then so doesI ′s by Lemma 2.1. It follows that
we can choose the foliationI ′ such the leafI ′s of I ′ satisfies (s) for alls ∈ [−1, 1].
The desired isotopy ofF can be constructed such that the surface is transversal to
∂z throughout the isotopy. �

The following lemma is a partial converse of the eliminationlemma. Because is
only concerned with the region whereξ is a contact structure we omit the proof. It
can be found in [8, 14].

Lemma 3.6. Let F ⊂ M be an embedded surface in a confoliated manifold and
γ ⊂ F a compact segment of a nonsingular leaf of the characteristic foliation on
F which lies in the contact region ofξ.

Then there is aC0-small isotopy ofF with support in a little neighbourhood
of γ such that after the isotopy there is an additional pair of singularities (one
hyperbolic and ons elliptic) having the same sign. The isotopy can be performed
in such a way thatγ is still tangent to the characteristic foliation and connects the
two new singularities.

We end this section with mentioning a particular perturbation of an embedded
surfaceF which also appears in [8]. Consider an injective Legendrianpolygon
(Q,V, α) such that there is an elliptic singularityx of F (ξ) such thatα−1(x) con-
sists of more than one vertex ofQ.

ThenF can be deformed by aC0-small isotopy nearx into a surfaceF ′ such
that there is a mapα′ : Q −→ F ′ with the same properties asα which coincides
with α outside a neighbourhood ofα−1(x) andα′ maps all vertices inα−1(x) to
different elliptic singularities ofF ′(ξ), cf. Figure 10.

FIGURE 10.

3.4. Modifications in the neighbourhood of integral discs.The second method
for the manipulation of the characteristic foliation on an embedded surfaceF is by
surgery of the surface along a cycleγ which is part of an integral disc ofξ. The
latter condition is satisfied when the confoliation is tightandγ bounds a disc inF
(for example whenF is simply connected).

While the elimination lemma is used in the proof of the Thurston-Bennequin in-
equalities for embedded surfaces in tight contact manifolds, the following lemmas
adapt lemmas appearing in [26, 28] (cf. also [4]) which are used in the proof the
the existence of the Roussarie-Thurston normal form for surfaces in3-manifolds
carrying a foliation without Reeb components. The existence of this normal forms
implies the Thurston-Bennequin inequalities for such foliations.
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Lemma 3.7. LetF be a surface andγ a closed leaf of the characteristic foliation
onF such that there is a discD tangent toξ which boundsγ and hasF ∩ D = γ.

Then there is a surfaceF ′ which is obtained fromF by removing an annulus
aroundγ and gluing in two discsD+,D−. The discs can be chosen such that the
D+(ξ),D−(ξ) have exactly one elliptic singularity in the interior ofD+,D−.

If the germ of the holonomyh∂D has non trivial holonomy alongγ on one side
of γ, then we can achieve that the elliptic singularity on the disc on that side lies
in the interior of the contact region and every leaf of the characteristic foliation on
the new discs connects the singularity with the boundary of the disc.

Proof. We will construct the upper discD+ in the presence of non-trivial holo-
nomy on the upper side ofγ ⊂ F . The construction of the other disc is analogous.

Fix a closed neighbourhoodU ≃ D× (−2ε, 2ε), ε > 0 of D such that the fibers
of D× (−ε, ε) are positively transverse toξ. We assumeF ∩U = ∂D× (−2ε, 2ε)
and we identifyD × {0} with the unit disc inR2.

By Lemma 2.1 there isx ∈ D and0 < η < η′ < ε such thatx × [η, η′] is
contained in the interior of the contact region ofξ. OnD we consider the singular
foliation consisting of straight lines starting atx. For t ∈ [η, η′] let Dt be the disc
formed by horizontal lifts of leaves of the singular foliation onD with initial point
(x, t). By Gray’s theorem we may assume thatξ is generic nearx × [η, η′]. Then
Dt(ξ) is homeomorphic to the singular foliation by straight lineson D and the
singularity is non-degenerate for allt ∈ [η, η′].

Let ρ : [η, η′] −→ [1/2, 1] be a monotone function which is smooth on(η, η′]
such thatρ ≡ 1 nearη′ and the graph ofρ is C∞-tangent to a vertical line at
(η, 1/2). We denote the boundary of the disc of radiusρ(t) in Dt by St. The union
of all St, t ∈ [η, η′] with the part ofDη which corresponds to the disc with radius
1/2 is the desired discD+. We remove the annulus∂D × [0, η′] from F and add
D+.

By construction the only singular point ofD+(ξ) is (x, η), the singularity is
elliptic and contained in the contact region. Its sign depends on the orientation of
F .

In order to show that all leaves ofD+(ξ) accumulate at the elliptic singularity
it is enough to show that there are no closed leaves onD+. Assume thatτ is a
closed leaf ofD+(ξ). Let Dτ be the disc formed by lifts of the leaves of the radial
foliation onD with initial point onτ .

The restriction ofξ to D × [0, ε] extends to a confoliatioñξ on R
2 × R which

is a complete connection. By Proposition 2.5ξ̃ is tight. Henceτ must bound an
integral disc ofξ′. Now Dτ is the only possible candidate for such a disc. But
Dτ cannot be an integral disc of̃ξ because it intersects the contact region ofξ̃ (or
equivalentlyξ) in an open set. This contradiction finishes the proof. �

The following two lemmas are analogues to the elimination lemma in the sense
that we will remove pairs of singularities. Note however that new singularities can
be introduced. In particular in Lemma 3.9 we will obtain a surface whose charac-
teristic foliation is not generic. However this will play norole in later applications
since the locus of the non-generic singularities will be isolated from the rest of the
surface by closed leaves of the characteristic foliation.
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Lemma 3.8. Let F be a surface in a confoliated manifold,D an embedded disc
tangent toξ andD∩F = γ is a cycle containing exactly one hyperbolic singularity
x0.

Then there is a surfaceF ′ which coincides withF outside of a neighbourhood
of γ and is obtained fromF by removing a tubular neighbourhood ofγ and gluing
in two discsD+,D−. The characteristic foliation ofF ′ has no singularities onD−

and one elliptic singularity onD+ whose sign is the opposite of the sign ofx0.

Proof. The assumptions of the lemma imply thatx0 has a stable and an unstable
leaf which do not lie onD.

Choose a simple curveσ ⊂ D connectingx0 to another boundary pointx1

of D such thatσ is not tangent to a separatrix ofx and extendσ to a Legendrian
curve such thatx0, x1 become an interior points ofσ. Fix a product neighbourhood
U ≃ D̃ × (−ε, ε) of D with the following properties.

(i) D is contained in the interior of the disc̃D × {0}.
(ii) There is a simple Legendrian curveσ ⊂ D̃ containingx0 in its interior

and intersecting∂D respectively∂D̃ in two points such thatγ is nowhere
tangent toσ respectively∂D̃ is transverse toσ.

(iii) The fibers of the projectionπ : D̃ × (−ε, ε) −→ D̃ are transverse toξ.

Now considerTσ = σ × (−ε, ε). The intersectionTσ ∩ F has a non-degenerate
tangency withTσ(ξ) in x0and meetsσ × {0} transversely inx1. We choose two
pointsy0, y1 ∈ Tσ ∩ F such thatx0, x1 lie betweenπ(y0) andπ(y1), as indicated
in Figure 11.

xx
σ

y
1

0 1

y
0

Fσ

F
σ

FIGURE 11.

The pointsy0, y1 can be connected by a curveσ̂ ⊂ Tσ transverse to the charac-
teristic foliation on this strip provided thaty0, y1 are close enough tõD. Moreover,
we may assume that̂σ is tangent toF near its endpoints (cf. the lower dashed
curve in Figure 11).

The curveσ̂ is going to be part ofD−. In order to finish the construction ofD−

we choose a foliation of̃D by a familyIs, s ∈ σ of intervals that connect boundary
points ofD̃ and are transverse toσ. The characteristic foliation onTIs consists of
lines which are mapped diffeomorphically toIs by π.

If σ̂ was chosen close enough tõD, then there is a smooth family of curvesÎs

in Is × (−ε, ε) which

(i) intersectσ̂ and are tangent toξ in these points,
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(ii) are transverse toξ elsewhere and
(iii) are tangent toF neary0, y1.

The choices we made for̂σ andÎs, s ∈ σ ensure that the union of all curveŝIs is a
discD− which is transverse toξ.

The discD+ is obtained as in the proof of Lemma 3.7. The statement about the
sign of the singularity ofD+(ξ) follows from the construction. �

Lemma 3.9. Let F ⊂ M be an embedded surface in a manifold carrying a con-
foliation ξ such thatF (ξ) contains a hyperbolic singularityx and the stable and
unstable leaves ofx bound an annulusA ⊂ F which is pinched atx. We as-
sume that the pinched annulus is bounded by an integral discD of ξ such that
∂A = F ∩ D.

Then there is an embedded surfaceF ′ which is obtained fromF by removing a
neighbourhood ofγ and gluing in an annulusA′ and a discD′ such thatA′(ξ) has
one of the following properties.

(i) A′(ξ) has no singularity.
(ii) The singularities ofA′(ξ) form a circle and a neighbourhood inF ′ of this

circle is foliated by closed leaves ofF (ξ′).

The characteristic foliation onD′ has exactly one singularity which is elliptic and
whose sign is opposite to the sign ofx.

Proof. The discD in the statement of the lemma is an immersed disc which is an
embedding away from two points in the boundary. These two points are identified
to the single pointx. Let S1 ≃ σ ⊂ D be a simple closed curve inD which meets
x exactly once.

We choose a solid torusC = σ×[−1, 1]×[−1, 1] such thatσ = σ×{(0, 0)} and
the foliation corresponding to the second factor is Legendrian while the foliation
corresponding to the third factor is transverse toξ. For s ∈ [−1, 1] let As =
σ × {s} × [−1, 1]. The torus is chosen such thatD ⊂ σ × [−1, 1] × {0} andF
intersectsA− = σ × [−1, 1]×{−1} in two circles whileF ∩ (σ × [−1, 1]×{1})
is a circle which bounds is disc inσ × [−1, 1] × {1}.

If C is thin enough, then a discD′ which boundsF ∩ (σ × [−1, 1] × {1}) with
the desired properties can be constructed as in the proof of Lemma 3.7.

Let Ps := σ(s) × [−1, 1] × [−1, 0], s ∈ S1. The characteristic foliation onPs

consists of lines transverse to the last factor ofPs andσ(s) × [−1, 1] × {0} is a
leaf ofPs(ξ)

If ξ one of the annuliσ × {t} × (−1, 0], t ∈ (−1, 1) has non-trivial holonomy
alongσ×{(t, 0)} or if σ×{(t, 0)} is not Legendrian, then one can choose a curve
σ′ in that annulus which is transverse toξ. The annulusA′ is the union of curves in
Ps, s ∈ S1 which connect the two points ofF ∩ (σ(s) × [−1, 1] × {−1} and pass
throughσ′ ∩Ps. These curves can be chosen such that they are transverse toPs(ξ)
everywhere except inσ′ ∩ Ps. By constructionA′(ξ) has the property described in
(i) of the lemma.

This construction also applies if we chooseσ′ in annuli which areC∞-close to
σ × {t} × [−1, 0] for a suitablet ∈ [−1, 1]. If all annuli of this type have trivial
holonomy along their boundary curve which is close toσ × {(t, 0)}, thenξ is a
foliation on a neighbourhood ofσ in σ × [−1, 1] × [−1, 0] by Lemma 2.1 whose
holonomy alongσ is trivial. The same construction as in the previous case (with
σ′ = σ) yields an annulusA′ with the properties described in (ii). �
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Lemma 3.7 and Lemma 3.8 suffice for Section 5 because the embedded surfaces
in that section are going to be simply connected. Then one canapply Lemma 3.8
to one of the boundary components of the pinched annulus.

In the lemmas of this section we have assumed thatF ∩ D = γ. In generalF
andD may intersect elsewhere. Since all singularities of the characteristic foliation
on γ are non-degenerate or of birth-death type, there is a neighbourhood ofγ in
D such thatγ is the intersection ofF with this neighbourhood. After a small
perturbation with support outside of a neighbourhood ofγ we may assume thatF
is transverse toD on the interior ofD. Now we can apply Lemma 3.7 a finite
number of times to circles inF ∩ D in order to achieve that the resulting surface
intersectsD only alongγ. Then we can apply the lemmas of this section.

4. TIGHT CONFOLIATIONS VIOLATING THE THURSTON-BENNEQUIN

INEQUALITIES

The example given in this section shows that tightness (as defined in Defini-
tion 1.3) is a much weaker condition for confoliations compared to the rigidity of
tight contact structures or foliations without Reeb components. It also shows that
it may happen thateverycontact structure obtained by a sufficiently small pertur-
bation of a tight confoliation is overtwisted. This is in contrast to the situation of
foliations without Reeb components: According to [7] everyfoliation without a
Reeb component can be approximated by a tight contact structure.

The starting point for the construction of a tight confoliation violating the Thur-
ston-Bennequin inequalities is the classification of tightcontact structures onT 2×I
such that the characteristic foliation onTt = T 2×{t}, t ∈ {0, 1} is linear (cf. [15]).
We fix an identificationT 2 ≃ R

2/Z
2 and the corresponding vector fields∂1, ∂2.

According to [15] (Theorem 1.5) there is a unique tight contact structureξ on
T 2 × I such that

(i) the characteristic foliation on∂(T 2 × I) is a pair of linear foliations whose
slope is2 respectively1/2 onT0 respectivelyT1,

(ii) the obstruction for the extension of the vector fields which span the char-
acteristic foliation on∂(T 2 × I) is Poincaré-dual to(2, 2) ∈ H1(T

2; Z) ≃
Z

2.

Figure 12 shows the characteristic foliation onT 2 × {t} at various times and its
orientation. The two curves inT 2 × {1/2} where the characteristic foliation is
singular represent the homology class(2, 2) ∈ H1(T

2; Z). We may assume that
the contact structure isT 2-invariant and tangent to∂t on a neighbourhood of the
boundary (cf. [14]). Then there are smooth functionsfi, gi, i ∈ {0, 1} on this
neighbourhood such thatξ is spanned by∂t and

f0(t)∂1 + g0(t)∂2 nearT 2 × {0}

f1(t)∂1 + g1(t)∂2 nearT 2 × {1}.
(4)

Becauseξ is a positive contact structure, the functionsfi, gi satisfy the inequalities
f ′

i(t)gi(t) − g′i(t)fi(t) > 0 for i ∈ {0, 1} on their respective domains.
We now modifyξ to a confoliationξ̃ on V = T 2 × [0, 1]. For this replace the

functionsfi, gi in (4) by f̃i, g̃i such that fori = 0, 1

• f̃i, g̃i coincide withfi, gi outside of small open neighbourhoods ofT 2×{i}
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t=0 t=1/6 t=1/3 t=1/2

t=2/3 t=5/6 t=1

FIGURE 12.

• there isτ > 0 such thatf̃ ′
i(t)g̃i(t) − g̃′i(t)f̃i(t) > 0 if t ∈ (τ, 1 − τ) and

• f̃ ′
i(t)g̃i(t) − g̃′i(t)f̃i(t) ≡ 0 for t ∈ [0, τ ] ∪ [1 − τ, 1]

• f̃i, g̃i coincide withfi, gi at t = 0, 1.

Remark 4.1. From the proof of Theorem 1.5 in [15] it follows that the contact
structureξ̃ onT 2 × (τ, 1 − τ) is tight.

We writeξ for the confoliation constructed so far. In the next step we will extend
ξ to a smooth confoliation onT 2 × [−1, 2] such that the boundary consists of torus
leaves.

Leth be a diffeomorphism ofR+
0 such thath(s) < s for s > 0 and all derivatives

of h(s) − s vanish fors = 0. The suspension of this diffeomorphism yields a
foliation on S1 × R

+
0 whose only closed leaf isS1 × {0} and all other leaves

accumulate on this leaf. In this way we obtain a foliation onS1 × (S1 ×R
+
0 ) such

that the boundary is a leaf and the characteristic foliationon S1 × (S1 × {σ}) ≃
T 2 × {σ}, σ > 0 corresponds to the first factor. In particular it is linear.

Using suitable elements of{A ∈ Gl(2, Z)|det(A) = ±1}we glue two copies of
the foliation onT 2×[0, σ], σ > 0 to T 2×[0, 1]. We obtain an oriented confoliation
onT 2× [−1, 2] such that the boundary is the union of two torus leaves and we may
assume the orientation of the boundary leaves coincides with the orientation of the
fiber ofT 2 × [−1, 2].

After identifying the two boundary components by an orientation preserving
diffeomorphism, we get a closed oriented manifoldM carrying a smooth positive
confoliation which we will denote again byξ.

Claim: ξ is tight.
We show that the assumption of the contrary contradicts Remark 4.1. Letγ ⊂

M be a Legendrian curve which bounds an embedded discD in M such thatξ is
nowhere tangent toD alongγ and violates the requirements of Definition 1.3. By
constructionξ has a unique closed leafT . If γ is contained inT , thenγ bounds
a disc inT becauseT is incompressible. Thus we may assume thatγ lies in the
complement ofT and we can consider the manifoldM \ T = T 2 × (−1, 2).
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By Remark 4.1,γ cannot be contained inT 2 × (τ, 1 − τ). If γ lies completely
in the foliated regionT 2 ×

(
(−1, τ ] ∪ [1 − τ, 2)

)
, then it bounds a disc in its leaf

because all leaves are incompressible cylinders.
It remains to treat the case when theγ intersects the contact region and the

foliated region. All leaves ofξ in M \ T = T 2 × (−1, 2) are cylinders which can
be retracted into the regionT 2 × [0, τ) ∪ (1 − τ, 1]. Hence we may assume thatγ
is contained inT 2 × [0, 1].

First we show that there is a Legendrian isotopy ofγ such that the resulting
curve is transverse to the boundary of the contact regionB = T 2 × {τ, 1 − τ}. A
similar isotopy will be used later, therefore we describe itin detail.

Let T 2 × (0, τ ′) with 0 < τ < τ ′ be a neighbourhood of one component ofB
whereξ can be defined by the1-form

α0 = dx1 −
f̃0(t)

g̃0(t)
dx2.

We consider the projectionpr : T 2 × [0, τ ′] −→ S1 × [0, τ ′] such that the fibers
are tangent to∂1. Note thatdα0 is the lift of the2-form

ω =
f̃ ′

i(t)g̃i(t) − g̃′i(t)f̃i(t)

g̃2
0(t)

dx2 ∧ dt.

The fibers ofpr are transverse toξ. Let γ̂ be a segment ofγ which is contained in
T 2 × [0, τ ′] and whose endpoints do not lie onB.

If γ̂ is contained in the foliated part ofξ, then we isotopêγ within its leaf such
that the resulting curve is disjoint fromT 2 × {τ} and the isotopy does not affect
the curve on a neighbourhood of its endpoints.

Now assume that some pieces ofγ̂ are contained in the contact region ofξ.
Thenpr(γ̂) passes through the region ofS1 × (τ, τ ′] whereω is non-vanishing.
We consider an isotopy of the projection ofγ̂ which is fixed near the endpoints and
the area of the region bounded byγ̂ is zero for all curves in the isotopy. By Stokes
theorem this implies that one obtains closed Legendrian curves when̂γ is replaced
by horizontal lifts of curves of the isotopy (with starting point onγ).

Hence we may assume thatγ is transverse toT 2 × {τ} andγ is decomposed
into finitely many segments whose interior is completely contained in either the
contact region or the foliated region ofξ.

Let γ0 ⊂ γ be an arc with endpoints in the contact region ofξ such thatγ0

contains a exactly one sub arc ofγ lying in the foliated region. Becauseγ0 is
embedded, it bounds a compact half disc in a leaf tangent toξ and we can choose
γ0 such that the half disc does not contain any other segment ofγ.

Now we isotopeγ0 relative to its endpoints such that after the isotopy this
segment lies completely in the contact region ofξ. As above we deformpr(γ0)
through immersions such that the resulting arcγ̂0 has the following properties

• the integral ofω over the region bounded bŷγ0 andpr(γ0) is zero and the
same condition applies to every curve in the isotopy,

• γ̂0 is completely contained inS1 × (τ, τ ′].

Then the horizontal lift of̂γ0 can be chosen to have the same endpoints asγ0 and
we can replaceγ0 by this horizontal lift. The resulting curve is Legendrian isotopic
to γ but it the number of pieces which lie in the foliated region has decreased by
one.
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After finitely many steps we obtain a Legendrian isotopy betweenγ0 and a
closed Legendrian curve which lies completely in the interior of the contact re-
gion. The Thurston-Bennequin invariant of the resulting curve is still zero. But
this is impossible because the contact structure onT 2 × (τ, 1 − τ) is tight.

Claim: If M = T 3, thenξ violates b) of Theorem 1.6.
The trivialization ofξ induced by the characteristic foliation onT 2 × {0, 1}

extends to the complement ofT 2 × [0, 1] in T 3. The obstruction for the extension
of the trivialization fromT 2 × {0, 1} to T 2 × [0, 1] is Poincaré-dual to(1, 1) ∈
H1(T

2 × [0, 1]). Hencee(ξ) is Poincare-dual to(2, 2, 0) ∈ H1(T 2) ⊕ Z where
the second factor corresponds to the homology of the second factor ofT 3 ≃ T 2 ×
S1. This means thatξ violates the Thurston-Benneuqin inequalities since these
inequalities implye(ξ) = 0 because every homology class int3 can be represented
by a union of embedded tori.

An example of a torus in(T 3, ξT ) which violates the Thurston-Bennequin in-
equality can be described very explicitly. LetT0 be the torus which is invariant
under theS1-action transverse to the fibers and it intersects each fiber in a curve of
slope−1, hence this curve represents(1,−1) ∈ H1(T

2) whenT0 is suitably ori-
ented. It follows from the description ofξ given above, thatτ = T0∩(T 2×{1/2})
is Legendrian and the characteristic foliation onT0 has exactly four singular points
which lie onτ and have alternating signs.

Moreover,T0∩T is a Legendrian curve andξ is transverse to all toriT 2×{t}, t ∈
(−1, 2) except in the singular points onT0 ∩ (T 2 × {1/2}). Figure 13 shows a
singular foliation homeomorphic to the one onT0. We choose the orientation of

−

−

+

+

FIGURE 13.

T0 such thate(T0) = −4. In order to find an example of a surface with boundary
which violates the inequality c) from Theorem 1.6 it sufficesto remove a small disc
containing one of the elliptic singularities inT0.

Finally, note that according to [9] every positive confoliation can be approxi-
mated (in theC0-topology) by a contact structure, it follows that tightness isnotan
open condition in the space of confoliations with theC0-topology. Actuallyξ can
be approximated by contact structures which areC∞-close toξ. This can be seen
by going through the proof of Theorem 2.4.1 and Lemma 2.5.1 in[9]: By con-
struction the holonomy of the closed leaf onT0 is attractive, therefore it satisfies
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conditions which imply the conclusion of Proposition 2.5.1, [9] (despite of the fact
that the infinitesimal holonomy is trivial). The main part ofthis lemma is stated in
Lemma 6.3 together with an outline of the proof.

Thus tightness is not an open condition for confoliations ingeneral. This an-
swers question 1 from the section 3.7 in [9] (when tightness is defined as in Defi-
nition 1.3).

5. RIGIDITY RESULTS FOR TIGHT CONFOLIATIONS

The example from the previous section shows that tight confoliations are quite
flexible objects compared to tight contact structures and foliations without Reeb
components. In this section we establish some restrictionson the homotopy class
of plane fields which contain tight confoliations.

The first restriction is the Thurston-Bennequin inequalityfor simply connected
surfaces. Note that this imposes no restriction on the Eulerclasse(ξ) of a tight
confoliationξ on a closed manifoldM unless the prime decomposition ofM con-
tains(S1 × S2)-summands. The second restriction on the homotopy class ofξ is a
consequence of

Theorem 5.1. LetM be a manifold carrying a tight confoliationξ andB ⊂ M a
closed embedded ball inM . There is a neighbourhood ofξ in the space of plane
fields with theC0-topology such thatξ′

∣∣
B

is tight for every contact structureξ′ in
this neighbourhood.

The proof of this theorem is given in Section 5.2. Let us explain an application
of Theorem 5.1 which justifies the claim that Theorem 5.1 is a rigidity statement
about tight confoliations.

By Theorem 1.1 every confoliation on a closed manifold can beC0-approximated
by a contact structure unless it is a foliation by spheres. Hence Theorem 5.1 can be
applied to every confoliation. Recall the following theorem.

Theorem 5.2(Eliashberg, [8]). Two tight contact structures on the3-ball B which
coincide on∂B are isotopic relative to∂B.

It follows from this theorem that two tight contact structures onS3 are isotopic
and therefore homotopic as plane fields. In contrast to this every homotopy class
of plane fields onS3 contains a contact structure which is not tight. Thus the
following consequence of Theorem 5.1 shows that there are restrictions on the
homotopy classes of plane fields containing tight confoliations.

Corollary 5.3. Only one homotopy class of plane fields onS3 contains a positive
tight confoliation.

Proof. Let ξ be a tight confoliation onS3. It is well known that every foliation of
rank2 on S3 contains a Reeb component, cf. [24]. ThusH(ξ) is not empty. We
choosep ∈ H(ξ) and a ballB ⊂ H(ξ) aroundp.

According to [9]ξ can beC0-approximated by a contact structureξ′ onS3 such
thatξ andξ′ coincide onB. By Theorem 5.1 the restriction ofξ′ to S3 \ B is tight
and by a result from [6]ξ′ is a tight contact structure onS3 which is homotopic to
ξ. �

More generally, Theorem 5.1 together with Theorem 5.2 implies that the homo-
topy class of a tight confoliationξ as a plane field is completely determined by
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the restriction ofξ to a neighbourhood of the2-skeleton of a triangulation of the
underlying manifold.

5.1. The Thurston-Bennequin inequality for discs and spheres.In this sec-
tion we prove the Thurston-Bennequin inequalities for a tight confoliation ξ in
the cases whereF is a sphere or a disc (with transverse boundary). For this we
adapt the arguments in [8]. We shall discuss why Eliashberg’s proof cannot be
adapted for non-simply connected surfaces in tight confoliations after the proof
Theorem 5.4. Recall that the self-linking numbersl(γ, F ) of a null-homologous
knot γ which is positively transverse toξ with respect to a Seifert surfaceF sat-
isfiese(ξ)[F ] = −sl(γ, F ) wheree(ξ)[F ] corresponds to the obstruction for the
extension the characteristic foliation near∂F to a trivialization ofξ

∣∣
F

.

Theorem 5.4. Let (M, ξ) be a manifold with a tight confoliation. Then

a) e(ξ)[S2] = 0 for every embedded2-sphereS2 ⊂ M and
b) sl(∂D,D) ≤ −1 for every embedded disc whose boundary is positively

transverse toξ.

Proof. We perturb the surface such that it becomes generic and the elliptic sin-
gularities lie in the interior ofH(ξ) or in the interior of the foliated region. Fur-
thermore, we will assume in the following that there are no connections between
different hyperbolic singularities of characteristic foliations.

We showe(ξ)[D] ≥ 1 for every disc as in b). By the Poincaré index theorem

χ(D) = e+(D) + e−(D) − h+(D) − h−(D)

e(ξ)(D) = e+(D) − e−(D) − h+(D) + h−(D).
(5)

Subtracting these equalities we obtainχ(D) − e(ξ)[D] = 2(e− − h−). In order
to prove the b) it suffices to replaceD by an embedded discD′ with e(ξ)[D] =
e(ξ)[D′] such thatD′ contains no negative elliptic singularities.

Becauseξ is tight andD is simply connected each cycle ofD(ξ) is the boundary
of an integral disc. We can apply Lemma 3.7 or Lemma 3.8 to suchdiscs to obtain
a new embedded discD′. By (iii) of Definition 1.3 e(ξ)[D] = e(ξ)[D′].

We now choose particular cycles ofD(ξ) to which we apply Lemma 3.7 and
Lemma 3.8: Defineγ ≤ γ′ for two cyclesγ, γ′ of the characteristic foliation if
γ′ bounds an embedded disc containingγ. We apply Lemma 3.7 and Lemma 3.8
to cycles which are maximal with respect to≤. This means in particular that the
holonomy of maximal cycles which are closed leaves ofD(ξ) is not trivial on the
outer side of the cycle.

Hence we obtain a discD′ whose characteristic foliation does not have closed
cycles and all elliptic singularities are contained inH(ξ). In particular there are
no integral discs ofξ which pass though elliptic singularities of the characteristic
foliation of D. Moreover,e(ξ)[D] = e(ξ)[D′]. From now on we will writeD
instead ofD′.

Adapting arguments from [8] we eliminate one negative elliptic singularityy.
Let U be a disc such that∂U is transverse toD(ξ) and y ∈ U . According to
Lemma 3.4 there is a Legendrian polygon(Q,V, α) coveringB(U). In the present
situationV = ∅ sinceD(ξ) has no cycles or exceptional minimal sets. Note that
B(U) ⊂ D because the characteristic foliation is pointing outwardsalong∂D. Af-
ter a small perturbation ofD we may assume thatα identifies vertices of∂Q only
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if adjacent edges are also identified, for elliptic verticesthis is illustrated in Fig-
ure 10. In this situation all boundary components of∂B(y) are embedded piece-
wise smooth circles.

Recall thatD(ξ) contains no cycles. Then every boundary componentγo of
B(y) therefore contains an elliptic singularity (which has to bepositive). If all
singularities ofD(ξ) onγo are positive, then we obtain a contradiction to the tight-
ness ofξ. Henceγo contains a negative singularity which has to be hyperbolic.
According to our assumptions it is a pseudovertex of the Legendrian polygon, ie.
its unstable leaf ends aty while the other unstable leaf never meetsB(y).

Therefore the application of the elimination lemma (Lemma 3.5) does not cre-
ate new cycles on the disc. We continue with the elimination of negative elliptic
singularities untile− = 0. This finishes the proof of b)

Now we come to the prove of a). First we use Lemma 3.7 and Lemma 3.8 in
order to decomposeS into a disjoint union of embedded spheres such that there are
no cycles which contain hyperbolic singularities. In the following we consider each
sphere individually, so we continue to writeS. If S(ξ) contains a closed leaf, then
the claim follows immediately from the definition of tightness: LetD1,D2 ⊂ S
be the two discs with∂D1 = γ = ∂D2. Then there is an integral discD′ of ξ such
that∂D′ = γ. We orientD′ such thatD1 ∪ D′ is a cycle and denote by−D′ the
disc with the opposite orientation. Then[S] = [D1 ∪ D′] + [(−D′) ∪ D2] and the
claim follows from (iii) of Definition 1.3 applied toD1,D2:

e(ξ)[S] = e(ξ)[D1 ∪ D′] + e(ξ)[(−D′) ∪ D2] = 0.

Finally if S(ξ) has neither closed leaves or cycles, then one can prove a) using b)
when one considers complements of small discs around positive or negative elliptic
singularities. �

Consider a Legendrian polygon(Q,V, α) in F ⊂ M whenξ is a contact struc-
ture onM . Generically the characteristic foliation onF is of Morse-Smale type (cf.
[14]). In particular there are no quasi-minimal sets. If theset of virtual vertices of
the Legendrian polygon(Q,V, α) associated toU is not empty, then by Lemma 3.6
one can create of a canceling pair of singularities along onγv for v ∈ V such that
all leaves which accumulated onγv now accumulate on an elliptic or a hyperbolic
singularity.

For this reason the caseV 6= ∅ plays essentially no role whenξ is a contact
structure. If theω-limit set of γ is contained in the fully foliated part ofξ, then it
not possible to apply Lemma 3.6 (cf. Section 4). It is at this point where the proof
of the Thurston-Bennequin inequalities for tight contact structures fails when one
tries to adapt the arguments from [8] to tight confoliationsand surfaces which are
not simply connected.

We finish this section with a remark that will be useful later.

Remark 5.5. Let ξ be a tight confoliation. For an embedded surfaceF ⊂ M we
defined±(F ) = e±(F )−h±(F ) for open subsets ofF . Note that ifF is a sphere,
thend+(F ) = d−(F ) = 1 by Theorem 5.4 andχ(F ) = 2.

Part b) Theorem 5.4 can be strengthened: It is not only possible to replaceD
be a disc with the same boundary ande(ξ)[D] = e(ξ)[D′] such thatD′(ξ) has
no negative elliptic singularities. Considerα-limit set of stable leaves of positive
hyperbolic singularities ofD′. SinceD′(ξ) contains no cycles theα-limit set is
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generically a positive elliptic singularity. Thus we may eliminate all negative ellip-
tic and all positive hyperbolic singularities fromD′(ξ). This implies the following
inequalities:

d−(D) = e−(D) − h−(D) = e−(D′) − h−(D′) ≤ 0

d+(D) = e+(D) − h+(D) = e+(D′) − h+(D′) ≥ 0

In a later application we shall consider discs such that∂D is negatively transverse
to ξ. Then the two inequalities above will be interchanged.

5.2. Perturbations of tight confoliations on balls. The proof Theorem 5.1 is
given in the following sections. It has two main ingredients: First we general-
ize taming functions on spheres to confoliations. We show that the characteristic
foliation on an embedded sphereS can be tamed ifξ is tight and that this remains
true for contact structuresξ′ which are close enough toξ. Then we apply arguments
from [15] to conclude thatξ′|B is tight if ξ′ is a contact structure.

In the following sectionsξ will always be an oriented tight confoliation onM
and S denotes an embedded oriented sphere. We do not consider foliations by
spheres.

5.2.1. Properties of characteristic foliations on spheres.The tightness ofξ leads
to restrictions on the signs of hyperbolic singularities onγ. Lemma 5.8 is con-
cerned with signs of hyperbolic singularities on cycles ofS(ξ) whenξ is a tight
confoliation. To state it we need the following definition:

Definition 5.6. A cycle connectedγ of S(ξ) is an internal subcycleif there is
another cycleγ′ of S(ξ) such thatγ ∩ γ′ is not empty and the integral disc which
boundsγ′ contains the integral disc which boundsγ.

A leaf γ of S(ξ) is calledinternal if there are two cycles ofS(ξ) which bound
discs tangent toξ whose interiors are disjoint. We say that a hyperbolic singularity
onγ is essentialif it is not lying on an internal subcycle ofγ.

The union of singular points and cycles ofS(ξ) will be denoted byΣ(S). This
set is compact.

An example of an internal subcycle is shown in Figure 14. Notethat one can
create internal cycles intersecting a fixed cycle ofS(ξ) with arbitrary sign using an
inverse of the construction explained in Lemma 3.8.

If a connected cycleγ of S(ξ) contains hyperbolic singularities, then the ho-
lonomy alongγ can be defined at most on one side. The one-sided holonomy is
defined if and only if there is an immersion of a discD into S which is an embed-
ding onD̊ and∂D is mapped ontoγ such that the image of̊D does not contain a
stable or unstable leaf of a hyperbolic singularity onγ. We will say thatD is a disc
in S although some points on the boundary may be identified.

The singularities onγ can be decomposed into two classes

A(γ) = {hyperbolic singularities onγ such thatγ contains

both stable leaves}

B(γ) = {hyperbolic singularities onγ such thatγ contains

only one of the two stable leaves}.
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Let γ be a cycle ofS(ξ) andD ⊂ S a disc with∂D = γ whose interior does not
contain a stable leaf of a hyperbolic singularity onγ. Then the one-sided holonomy
alongγ is well defined. Becauseξ is tight there is a discD′ tangent toξ such that
∂D′ = γ. We orientD′ using the orientation ofξ.

Definition 5.7. We say thatγ is potentially attractingif

(i) D lies below respectively aboveD′ (with respect to the coorientation ofξ)
in a neighbourhood ofD′ and

(ii) the orientation ofγ is opposite respectively equal to the orientation of∂D′.

In the opposite case,γ is potentially repulsive.

According to Lemma 2.1 the holonomy along potentially repulsive respectively
attractive cycles is non-repelling respectively non-attracting. The terminology of
Definition 5.7 is introduced to deal with the case when the holonomy is trivial (and
therefore non-repelling and non-attracting at the same time).

Lemma 5.8. Letγ be a cycle ofS(ξ) containing a hyperbolic singularity and such
that the one-sided holonomy is defined.

Then all essential singularities inA(γ) have the same sign and all essential sin-
gularities inB(γ) have the opposite sign. The one-sided holonomy is potentially
attractive (respectively repulsive) if and only if all singularities in A(γ) are nega-
tive (respectively positive) and all singularities inB(γ) are positive (respectively
negative).

The signs of the non-essential singularities inA(γ) respectivelyB(γ) is oppo-
site to the sign of the essential singularities inA(γ) respectivelyB(γ).

Proof. Let D ⊂ S be the disc inS with ∂D = γ such that the one-sided holo-
nomy is defined on the side ofγ whereD is lying. Becauseξ is tight, there is
a discD′ tangent toξ which boundsγ. Consider a tubular neighbourhood ofD′

which contains a collar of∂D and the collars lies on one side ofD′ in the tubular
neighbourhood.

The statement about the signs of singularities now follows by looking howD
approachesD′ near the tangencies and the relation between the signs and the ho-
lonomy is a consequence of our orientation conventions and Lemma 2.1. �

The following proposition is a generalization of Lemma 4.2.1 in [8]. It will play
an important role in the proof of Theorem 5.1.

Proposition 5.9. Let ξ be a tight confoliation onM and S ⊂ M an embedded
sphere such that the singularities ofS(ξ) are non-degenerate. LetU ⊂ S be
a connected submanifold of dimension2 such that∂U is transverse toS(ξ) and
S(ξ) points outwards along∂U . Each connected componentΓ of the boundary the
associated Legendrian polygon(Q,V, α) has the following properties.

(i) If there is a negative elliptic singularityx onα(Γ) such thatα(Q) is not a
neighbourhood ofx or a cycleγv with v ∈ V ∩ Γ such thatα(Q) is not a
one-sided neighbourhood ofγv, thenα(Γ) contains a positive pseudover-
tex.

(ii) If d+(U) = 1 and (Q,V, α) identifies the edgese1, . . . , el of Γ, thenα
maps the pseudovertices one1, . . . , el to negative hyperbolic singularities
of S(ξ).
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Proof. It was shown in Lemma 3.4 thatB(U) is covered by a Legendrian polygon
(Q,V, α). Recall thatα is defined only onΓ \ (Γ ∩ V ), but we shall denoteα(Γ \
(Γ ∩ V )) by α(Γ).

First we reduce the situation to the case whenV = ∅. By the theorem of
Poincaré-Bendixon, theω-limit sets corresponding to points ofV are cycles. Be-
causeξ is tight, these cycles bound integral discs ofξ and we can apply Lemma 3.7
or Lemma 3.8. Since the discs bounding these cycles may intersectU it is also nec-
essary to consider cycles inU .

Let v ∈ V andDv the integral disc ofξ which boundsγv andγi a cycle ofS(ξ)
which is contained inDv. We assume that the discDi ⊂ Dv bounded byγi inter-
sectsS only alongγi. The cycleγi is either contained inU or in the complement
of U .

We begin with the caseγi ⊂ U . In this case we obtain two embedded spheres
S′, S′′ by cutting alongγi. When we use Lemma 3.7 for this the subsetU ⊂ S
induces two subsetsU ′ ⊂ S′, U ′′ ⊂ S′′ such thatU ′ respectivelyU ′′ contains
one positive respectively one negative singularity in addition to singularities which
were already present inS, ∂U ′ respectively∂U ′′ is transverse toS′(ξ) respec-
tively S′′(ξ) and the characteristic foliation points outwards. The pseudovertices
of the Legendrian polygons associated to the basins ofU ′, U ′′ coincide with the
pseudovertices of(Q,α, V ). If d+(U) = 1, then

d+(U ′) + d+(U ′′) = d+(U) + 1

d+(S′ \ U ′) + d+(U ′) = d+(S′) = 1

d+(S′′ \ U ′′) + d+(U ′′) = d+(S′′) = 1.

(6)

Notice that(S′ \ U ′) ∪ (S′′ \ U ′′) = S \ U and∂(S \ U) is negatively transverse
to Sξ. It follows from Remark 5.5 thatd+(S′ \ U ′) ≤ 0 andd+(S′′ \ U ′′) ≤ 0.
Together with (6) this impliesd+(U ′) = d+(U ′′) = 1.

If we applied Lemma 3.8 and the hyperbolic singularity was positive respec-
tively negative, thenh+(U ′ ∪ U ′′) = h+(U) − 1 respectivelye+(U ′ ∪ U ′′) =
e+(U) + 1 and one of the sets, sayU ′ coincides withU . Thend+(U) = 1 implies
d+(U ′′) = 1.

When γi lies in the complement ofU , cutting alongγi will not affect U or
d+(U) but the basin ofU can change: We might remove a virtual vertex, or after
the surgery process some boundary components of the Legendrian polygon might
be mapped to a negative elliptic singularity while they wereaccumulated on a cycle
before. The pseudovertices are not affected. Note also thatif α(Q) is a one–sided
neighbourhood of a cycleγv, then the Legendrian polygon which results from the
surgery alongγv will be a neighbourhood of the negative elliptic singularity which
results from surgery process. (Recall thatγv has well defined attractive one–sided
holonomy on the side ofα(Q)).

After finitely many steps we obtain a finite union of embedded spheresSj and
subsetsUj with the same properties asU such that the associated Legendrian poly-
gon (Qj , Vj , αj) satisfiesVj = ∅. Therefore is suffices to prove the claim when
B(U) is covered by a Legendrian polygon(Q,V, α) with V = ∅. Let Γ be a
boundary component ofQ.

We now prove (i). Letx ∈ α(Γ) be an elliptic singularity such thatα(Q) is
not a neighbourhood ofx. Then the connected component of∂(α(Q)) containing
x is a piecewise smooth closed curvec. After a perturbation of the sphere we
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may assume thatc does not contain corners,x ∈ H(ξ) and c is embedded (cf.
Figure 10). If all singularities onc were negative, then we would get a contradiction
to the tightness ofξ since no integral surface ofξ can meetx. Since all elliptic
singularities onc ⊂ α(∂Q) are attractive and therefore negative there must be a
positive pseudovertex onc.

It remains to prove (ii). Assumed+(U) = 1 and letx1, . . . , xl, l ≥ 2 be the
pseudovertices on the edgese1, . . . , el ⊂ Γ.

Whenα(ei) = α(ej) for i 6= j, thenl = 2. Let η, η′ be the two stable leaves
of α(x1). After a small perturbation ofS in the complement ofU we may assume
that theα-limit sets ofη, η′ are contained inU .

If α(ei) 6= α(ej) for all i 6= j, then letα(xi), α(xj) be two hyperbolic singular-
ities which lie on the cycle associated to identified edges (cf. Definition 3.3) and
are connected by a piecewise smooth simple oriented pathσ in the complement
of U consisting of leaves ofS(ξ) and hyperbolic singularities (as corners) such
that σ starts atα(xi) and ends atα(xj) without passing through images of other
pseudovertices. After a small perturbation ofS in the neighbourhood ofα(xj) we
obtain a sphereS′ such that theα-limit setsA(η),A(η′) of the two stable leaves
η, η′ of α(xi) are contained inU .

We may assume that neitherA(η) or A(η′) is a hyperbolic singularity or a sin-
gularity of birth-death type. By the Poincaré-Bendixon theoremA(η) is either
an elliptic singularity or a cycle. The same is true forA(η′). Using Lemma 3.7
and Lemma 3.8 we can ensure thatA(η) is an elliptic singularity, which has to be
positive. Note thatη, η′ lie in the same connected component of the two spheres
obtained by the surgery along cycles inU .

For the same reason we may assume that theα-limit set of each stable leaf of
hyperbolic singularities inU is an elliptic singularity inU . Under these conditions
the hypothesesd+(U) = 1 implies that the graph formed by positive singularities
(except birth-death type singularities) and stable leavesof hyperbolic singularities
is a connected tree.

Both stable leaves ofα(x1) together with the simple path on the treeΓ con-
nectingA(η) with A(η′) form a simple closed curveγ on S which is Legendrian.
All singularities onγ exceptα(xi) are positive by construction. Moreover,γ con-
tains an elliptic singularities which lies inH(ξ). If α(xi) is positive we obtain a
contradiction to the tightness ofξ sincec cannot bound an integral disc ofξ. �

In order to apply the previous proposition efficiently it remains to show that
either one of the two parts of Proposition 5.9 can be used orΓ ⊂ ∂Q does not
contain any pseudovertices at all. This is done in the following lemma.

Lemma 5.10. In the situation of Proposition 5.9∂Q has more connected compo-
nents or one of the following statements holds for each connected componentΓ of
∂Q.

(i) There is a connected componentΓ of ∂Q such thatα(Γ) is an elliptic
singularity andα(Q) is a neighbourhood ofx or α(Γ) is a cycle andα(Q)
is a one-sided neighbourhood of that cycle.

(ii) α(Γ) contains a cycle ofS(ξ) such thatα(Q) is not a one-sided neigh-
bourhood ofα(Γ) or α(Γ) contains an elliptic singularity such thatα(Q)
is not a neighbourhood ofx.

(iii) α identifies edges onΓ.
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Proof. After a small perturbation ofS we may assume that all negative elliptic
singularities onS lie in H(ξ) or the interior of the complement ofH(ξ). As in
the proof of the previous proposition the problem can be reduced to the case when
Γ ∩ V = ∅.

We show that if (i) and (ii) do not hold forΓ, then (iii) applies toΓ. In the
following discussion we ignore corners onα(Γ) if two of their separatrices lie in
the complement ofα(Q).

Let x1 ∈ α(Γ) be an elliptic singularity. Sinceα(Γ) 6= x1 there is an unstable
leaf η′1 of a pseudovertexy1 which ends atx1. Let η1 be the other unstable leaf of
y1.

If the α-limit set of η1 is a negative elliptic singularity, theny1 is contained in
the interior ofα(Q) and the two edges ofΓ which correspond toy1 are identified
by α. Otherwise theω-limit set of η1 is a hyperbolic singularityy2 and we can
assume thaty2 is a pseudovertex ofΓ. There is a unique unstable leafη2 of y2

which is not contained in the interior ofα(Q). In particular theω-limit set of η2

cannot by an elliptic singularity. Thus theω-limit set of η2 is the imagey3 of a
pseudovertex ofQ. If y3 = y1, thenα identifies the edges corresponding toy1 and
η1, η2 form a non-trivial cycle ofS(ξ).

Otherwise we continue as above until a pseudovertex appearsfor the second
time. This happens after finitely many steps sinceΓ contains only finitely many
pseudovertices. If we obtained a sequencey1, y2, . . . , yr, r ≥ 2 with y1 = yr, then
α identifies the edges corresponding to the pseudoverticesy1, . . . , yr−1. Thus if (i)
and (ii) do not apply, then (iii) is true. �

5.2.2. Taming functions for characteristic foliations on spheres. Taming functions
for characteristic foliations were introduced by Y. Eliashberg in [8]. In this section
we extend the definition of taming functions so that it can be applied to spheres
embedded in manifolds carrying a tight confoliation.

Let S be an embedded sphere in a confoliated manifold such that thesingular-
ities of the characteristic foliationS(ξ) are non-degenerate or of birth-death type.
This assumption holds in particular for spheres in a generic1-parameter family
of embeddings. In addition we may assume that there are at most two different
hyperbolic singularities which are connected by their stable/unstable leaves.

Definition 5.11. Let U ⊂ S be a compact submanifold of dimension2 in S whose
boundary is piecewise smooth and does not intersectΣ(S). Moreover, we assume
that every connected componentΓ ⊂ ∂U satisfies one of the following conditions:

(1) Γ is either transverse or tangent toS(ξ).
(2) Γ intersects one respectively two stable leaves of hyperbolic singularities

of S(ξ) (these singularities may be part of a cycle, cf. Figure 15 orU is
a neighbourhood of a hyperbolic singularity). Each smooth segment ofΓ
intersects exactly one separatrix of a hyperbolic singularity in U and each
segment is transverse toS(ξ).

(3) U is disc and a neighbourhood of a birth-death type singularity of S(ξ)
such that∂U consists of two smooth segments transverse toS(ξ).

A function f : U −→ R is a taming functionfor S(ξ) if it has the following
properties.
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(o) If a componentΓ ⊂ ∂U belongs to the class (1), thenf is assumed to be
constant alongΓ. If Γ is of class (2) or (3) we require thatf

∣∣
Γ

has exactly
one critical point in the interior of each of the smooth segments ofΓ.

(i) The union of the singular points ofS(ξ) with all points on internal leaves
coincides with the set of critical points off . The function is strictly in-
creasing along leaves ofS(ξ) which are not part of a cycle andf is constant
along cycles ofS(ξ).

(ii) Positive respectively negative elliptic points ofS(ξ) are local minima re-
spectively maxima off .

(iii) If the level set{f = C} contains only hyperbolic singularities, then as
C increases the number of closed connected components of{f = C}
changes byh−({f = C}) − h+({f = C}).

Requirement (i) in Definition 5.11 is slightly more complicated than one might
expect. Figure 14 gives an example of a sphereS in R

3 equipped with the foliation
by horizontal planes. A part of the characteristic foliation is indicated in the right
part of Figure 14 where the cycle containing the internal subcycle is thickened. If
one requires that singular points ofS(ξ) should coincide with critical points of the
taming function, thenS(ξ) cannot be tamed although the confoliation in question
is tight.

+
+

+

−

+++

FIGURE 14.

Assume that(X,ω) is a symplectic filling of(M, ξ) and a compatible almost
complex structure onM is fixed such thatξ consists of complex lines. By Theorem
1 of [18] an embedded2-sphereS ⊂ M can be filled by holomorphic discs when
the embedding ofS satisfies several technical conditions. The singular foliation
in the formulation of Theorem 1 in [18] is very similar to the singular foliation
formed by level sets of a taming function. The appearance of internal cycles should
be compared with Remark 2 in [18].

5.2.3. Construction and deformations of taming functions.Let S ⊂ M an em-
bedded oriented2-sphere. The tightness ofξ leads to several restrictions on the
combinatorics of the cycles ofS(ξ) and their holonomy. This will be used to con-
struct a taming function forS(ξ).

Recall that the orientations ofS andξ induce an orientation ofS(ξ) and integral
surfaces ofξ are oriented byξ. If γ is a cycle ofS(ξ), then by tightness there is an
integral discDγ of ξ such that∂Dγ = γ but the orientation of∂Dγ as boundary
of Dγ does not coincide with the orientation ofγ in general. Recall also thatDγ is
uniquely determined becauseξ is not a foliation by spheres.
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For a2-dimensional submanifoldU ⊂ S with piecewise smooth boundary we
define the following quantities:

d+(U) = e+(U) − h+(U)

N−(U) = Number of connected componentsΓ of ∂U whereS(ξ)

points transversally intoU or Γ is tangent toS(ξ)

andΓ is potentially repulsive on the side ofU.

Ns(U) = Number of boundary components of∂U through which

stable leaves of negative hyperbolic singularities enter.

Ps(U) = Number of stable leaves of positive hyperbolic singularities inU

which intersect∂U.

These quantities will be used in the construction of taming functions.

Lemma 5.12. For each path connected componentΣ0 of Σ(S) there is a neigh-
bourhoodU0 of Σ0 and a taming functionf : U0 −→ R such that no connected
component of∂U0 is tangent toS(ξ) and

(7) d+(U0) = 1 − N−(U0) − Ps(U0) − Ns(U0).

Proof. We will constructU0 andf : U0 −→ R inductively. The starting point are
connected cyclesγ and singularities ofS(ξ) in Σ0 which belong to the following
classes.

(i) Positive elliptic singularities and hyperbolic or birth-death type singulari-
ties which do not belong to a cycle.

(ii) Closed leaves with sometimes attractive (non-trivial) one-sided holonomy.
(iii) Cycles γ containing hyperbolic singularities which satisfy the following

conditions:
– The only cycle ofS(ξ) containingγ is γ.
– If γ0 ⊂ γ is a subcycle with potentially attractive one-sided holonomy,

then this one-sided holonomy is not trivial.

If the positive elliptic singularityy in (i) is dynamically hyperbolic, then it is a
source and there is a taming function on a neighbourhoodU whose boundary is
transverse toS(ξ). If the elliptic singularity is not dynamically hyperbolic, then
one obtains a taming function using the holonomy of an interval [0, η), η > 0
which is transverse toS(ξ) except aty andy corresponds0 (cf. Lemma 3.1). If the
holonomy is non-trivial, then we can choose the domainU of the taming function
such that∂U is transverse toS(ξ). Otherwise we chooseU such that∂U is a
closed leaf ofS(ξ). Moreover,U satisfies (7).

If x is a hyperbolic singularity or a singularity of birth-deathtype, then the
existence of a taming function on a neighbourhoodU which satisfies (7) is obvious.

For a closed leafγ of S(ξ) as in (ii) we choose an embedded interval(−η, η), η >
0 transverse toS(ξ) such that0 corresponds to a point inγ and(−η, 0] corresponds
to the side where the holonomy ofγ is sometimes attractive. This choice deter-
minesf along the transverse segment andf can be extended to a taming function
on a neighbourhood ofγ. If the holonomy on the side{f ≥ 0} is non-trivial
(respectively trivial) we chooseU to be an annulus with transverse boundary (re-
spectively such that∂U ∩ {f > 0} is a leaf ofS(ξ) and the other component of
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∂U is transverse toS(ξ)). ThusN−(U) = 1 andU contains no singular points of
S(ξ). This means that (7) holds forU .

Now letγ be a cycle containing hyperbolic singularities. For each subcycle with
potentially attractive (respectively repelling) one-sided holonomy chose a transver-
sal(−ε, 0] (respectively[0, ε)) with 0 lying onγ and construct taming functions on
collars of discs bounding the subcycle. When the germ of the one-sided holonomy
is nontrivial, then we can choose the boundary corresponding boundary compo-
nent of the domainU of f to be transverse toS(ξ), otherwise we can choose the
boundary of the domain to be tangent to a leaf ofS(ξ).

If γ contains a corner such that only one stable leaf of the hyperbolic singularity
is part ofγ, then the levelsets off nearγ can be chosen as suggested in Figure 15.
The thick curve represents a critical level off while the dashed curve corresponds
to a regular level off .

FIGURE 15.

By constructionf is constant along cycles and increasing along leaves ofS(ξ)
which are not part of cycles. Singular points ofS(ξ) clearly are critical points of
f . In order to show that requirement (i) of Definition 5.11 is satisfied byf we
consider an internal leafγ0 ⊂ γ.

Let D0,1,D0,2 ⊂ S be discs which lie on opposite sides ofγ0 and contain no
subcycle ofγ in their interior. Becauseγ is an internal leaf̊D0,1 respectively
D̊0,2 can not contain a stable or unstable leaf of a hyperbolic singularity on∂D0,1

respectively∂D0,2. Therefore the one-sided holonomy along∂D0,1 and∂D0,2 is
well defined and by Lemma 2.1 the holonomy along∂D0,1 is potentially attractive
if and only if the same is true for the holonomy along∂D0,2. Hencef has a
local minimum respectively maximum at every point ofγ0 when the holonomy is
potentially repulsive respectively attractive.

Using induction on the number of hyperbolic singularities in γ we now prove
requirement (iii) from Definition 5.11 and (7) forf : U −→ R. We have already
treated the case whenγ contains no hyperbolic singularity.

Given a cycleγ and a fixed hyperbolic singularityx0 we isotopeS in a neigh-
bourhood ofx0. We choose the isotopy such that segments ofS(ξ) in S∩S′ which
ended atx0 before the perturbation are now connected be non-singular segments
of S′(ξ). In this way obtain a cycleγ′ on S′ which contains one singularity less
thanγ and it may happen thatγ′ is not connected.

In order to construct an isotopy with the desired propertiesone movesx0 away
from the integral surface ofξ which contains the cycleγ. Whenx0 is part of an
internal cycle or not all stable/unstable leaves ofx0 are contained inγ one has
to movex0 into the interior of an integral surface ofξ and then slightly above or
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below the integral surface with respect to the coorientation of ξ. Choosing to push
upwards or downwards one can make sure that on obtains a cycleon the perturbed
surface which is contained in the interior of the integral surface ofξ which contains
γ. Figure 16 shows one particular instance of the isotopy in a neighbourhood of
x0. In that figure, we movex0 downwards. In the left part of the figure all lines are
part ofS while in the right part they straight line do not belong toS′. The cyclesγ
respectivelyγ′ correspond to the thickened lines in the left respectively right part
of Figure 16.

S
S

x0

γ

γ γ, ,
integral surface

integral surface

FIGURE 16.

If there is a hyperbolic singularityx0 ∈ γ such thatγ contains only one stable
leaf ofx0, thenx0 is automatically an essential singularity onγ and our orientation
convention and the choice of the function in Figure 15 together with Lemma 5.8
imply that the behavior of the level sets off nearx0 is compatible with requirement
(iii) of Definition 5.11.

In order to prove (7) we perturbS. After an isotopy ofS in a neighbourhood
of x0 we obtain a cycleγ′ which contains one singularity less thanγ and the sin-
gularity we removed had a stable leaf which was not part ofγ. We construct the
functionf ′ onU ′ ⊃ γ′ as above. Whenx0 is positive, then

d+(U ′) = d+(U) + 1 N−(U ′) = N−(U)

Ns(U
′) = Ns(U) Ps(U

′) = Ps(U) − 1.

Therefore (7) holds forU if and only if it holds forU ′. If x0 is negative we have to
distinguish two cases: In the first case, the stable leaf ofx0 is the only stable leaf
of a negative hyperbolic singularity intersecting the connected component of∂U .
Then

d+(U ′) = d+(U) N−(U ′) = N−(U) + 1

Ns(U
′) = Ns(U) − 1 Ps(U

′) = Ps(U).

If there are other stable leaves of other hyperbolic singularities ofγ which intersect
the same connected component ofU as the stable leaf ofx0, then

d+(U ′) = d+(U) N−(U ′) = N−(U)

Ns(U
′) = Ns(U) Ps(U

′) = Ps(U).

Again the validity of (7) forU follows from (7) forU ′. For the proof of (7) we may
assume from now on that all stable and unstable leaves of all hyperbolic singulari-
ties onγ are contained inγ. In particularNs = Ps = 0 in the sequel.

Let x0 ∈ γ be an essential hyperbolic singularity. We shall discuss the configu-
ration shown in the left part of Figure 16. The other configurations can be handled
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in the same manner. The vertical arrow in Figure 16 indicatesthe coorientation of
ξ, the other arrows indicate orientations of leaves ofS(ξ) andS′(ξ). In addition
we assume that the stable leaf on the right (resp. left) hand side is connected in
γ \ {x0} to the unstable leaf on the right (resp. left) hand side.

In this situationγ is split into two connected componentsγ′, γ′′ by the isotopy.
For both connected components there is an integral disc ofξ which bounds a cy-
cle containing parts of one stable leaf ofx0. The two integral discs have disjoint
interiors.

Therefore there is one discDb ⊂ S with well defined one-sided holonomy
below the integral surface ofξ andx0 ∈ Db and by Lemma 2.1 this holonomy is
potentially attractive. There are two discs with well defined one-sided holonomy
lying above the integral surface and each of the upper discs contains exactly one
stable leaf ofx0 in its boundary while the lower disc contains both stable leaves of
x0 in its boundary. The one-sided holonomies along the boundary of each of the
two discs if potentially repulsive. This is exactly the behavior prescribed by (iii) of
Definition 5.11.

We choose neighbourhoodsU ′, U ′′ of γ′, γ′′ which satisfy (7). The relation
betweend+(U) andd+(U ′), d+(U ′′) is given by

d+(U) = d+(U ′) + d+(U ′′) N−(U) = N−(U ′) + N−(U ′′) − 1.

Hence (7) is true forU because it is satisfied forU ′, U ′′. The other configurations
can be handled in a similar manner.

Now we assume thatx0 is a hyperbolic singularity such that one stable leaf is
part of an internal cycle and the other one is part of a subcycle of γ which is not
internal (if there are internal subcycles, then there must be singularities with this
property becauseγ is connected).

Let γ0,1, γ0,2 be the stable and unstable leaves ofx0 which are internal. There
is a discD0 ⊂ S whose boundary containsγ0,1, γ0,2 such that the one-sided holo-
nomy along∂D is well defined. If it is potentially attractive respectively repulsive,
thenx0 is positive respectively negative by Lemma 5.8.

The remaining pair of separatrices is part of a cycle with well defined one-sided
holonomy. It is potentially attractive if and only if the holonomy along∂D0 is
potentially repulsive (cf. Lemma 5.8).

By a small isotopy we can obtain a connected cycleγ′ or two connected cy-
clesγ′, γ′′ on the perturbed sphereS′ with one singularity less thanγ such that
γ0,1, γ0,2 (ie. the segments lying outside of the support of the perturbation ofS) are
connected by a leaf ofS′(ξ) and the same is true for the other pair of separatrices
of x0. Figure 14 shows a cycle which decomposes into a pair of connected cycles.
The discussion above shows thatf : U −→ R satisfies (iii) of Definition 5.11 if
the same is true forf ′ : U ′ −→ R andf ′′ : U ′′ −→ R.

We construct a taming function on a neighbourhood of the perturbed cycle. The
following table summarizes the relations from Lemma 5.8 between the invariants
d+, N− associated toγ with the invariants for the perturbed cycle.

x0 is positive x0 is negative

γ remains connected
d+ = d′+ − 1
N− = N ′

− + 1
d+ = d′+
N− = N ′

−

γ splits into two cycles
d+ = d′+ + d′′+ − 1
N− = N ′

− + N ′′
−

d+ = d′+ + d′′+
N− = N ′

− + N ′′
− − 1
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Therefore (7) holds for the neighbourhoodU of γ andf : U −→ R has the
desired properties.

This finishes the first step in the construction of a taming function on a neigh-
bourhood ofΣ0. If all components of∂U are transverse toS(ξ), thenU0 := U and
f tamesS(ξ) onU0. Otherwise we iterate the above construction.

Assume we have constructed a taming functionf : U −→ R andΓ ⊂ ∂U
is a closed leaf ofS(ξ) with trivial holonomy. By construction the holonomy is
potentially attractive on the side ofΓ which is contained inU . Then there is a
cylinder S1 × (0, 1) ⊂ S such thatS(ξ) corresponds to the foliation by the first
factor andC consists of two cyclesγ0, γ1 such thatγ0 ⊂ U andγ1 lies in the
complement ofU . We chooseC maximal among cylinders with these properties.
Thenγ1 can not be a closed leaf with trivial holonomy. Thereforeγ1 belongs to
one of the following classes.

(i) γ1 is a negative elliptic singularity or a closed leaf such thatthe holonomy
on the side which is not contained inC is non-trivial and potentially repul-
sive. In this case it is easy to extendf to a taming function onU ∪C such
that (7) is satisfied.

(ii) γ1 is a cycle containing hyperbolic singularities. If we did not yet define a
taming function nearγ1, then we apply the above procedure to construct a
taming functiong : V −→ R on a setV with U ∩ V = ∅. In particular,
V satisfies (7). We add a constant tog to ensure thatg

∣∣
γ1

> f
∣∣
Γ
. Then we

extendg∪ f : U ∪V −→ R to a taming function onU ∪V ∪C. Note that
N−(U ∪ V ∪ C) = N−(U) + N−(V ) − 1. From this it follows that (7)
holds forU ∪ V ∪ C.

After finitely many steps we have constructed a taming function on a neighbour-
hoodU0 of Σ0 with the desired properties. It is clear how to adapt the construction
in the presence of birth-death type singularities. �

The following lemma implies that the existence of a taming function on a neigh-
bourhoodU of Σ is a property which is stable underC0-small perturbations ofξ if
U is small enough. For the statement of Lemma 5.13 recall that for a given cycle
in S there is a unique integral disc ofξ whose boundary is the cycle.

Lemma 5.13. Let Σ0 be a path connected component ofΣ(S) and Σ̃0 the union
of all discs tangent toξ which bound cycles inΣ0. There is a neighbourhood
Σ̃0 ⊂ W ⊂ M and ε > 0 such that for every confoliationξ′ on M which isε-
close (in theC0-topology) there is a confoliationξ′c on R

3 which is transverse to
the fibers ofR3 −→ R

2 and complete as connection together with an embedding

ϕ :
(
W, ξ′

∣∣
W

)
−→

(
R

3, ξ′c
)

such thatϕ∗(ξ
′) = ξ′c. In particular, if ξ′ is a contact structure, thenξ′

∣∣
W

is tight.

Proof. Note that the integral discs which bound a cycle depend continuously on
the cycle because the integral discs are uniquely determined. On Σ̃0 we define
an equivalence relation as follows:x ∼ y for x, y ∈ Σ̃0 if and only if there is a
piecewise smooth path iñΣ0 tangent toξ which connectsx andy.

The spaceT := Σ̃0/ ∼ should be thought of as a directed graph: Discs bounding
singular cycles and closed leaves with non-trivial holonomy correspond to vertices
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while edges ofT correspond to families of integral discs ofξ which bound a max-
imal connected cycle inΣ0. (Because a disc iñΣ0 may be part of a bigger disc
in Σ̃0, a point inΣ̃0/ ∼ does not correspond to a unique cycle ofS(ξ) in general.
This happens for example in Figure 14.) The orientation of anedge is induced by
the coorientation ofξ.

T is a connected tree becauseΣ̃0 is connected andS is a sphere. We embedT
in they, z-plane inR

3 such thatdz is consistent with the orientation of the edges
of T .

Let L be the foliation onR3 by straight lines parallel to thex-axis andZ the
foliation by planes parallel to thex, y-plane. We replaceT by a family of discs
tangent toZ: For each vertex ofT we choose a collection of discsDi such that

• eachDi is tangent to the leaf ofZ containing the vertex,
• ∪iDi is homeomorphic to the union of integral discs inM which bound

the corresponding cycle inM and∪iDi intersects the original treeT in
exactly one point.

Then we connect the discs which correspond to vertices ofT by families of discs
tangent toZ as prescribed by the edges ofT , ie. by the configuration of integral
discs inM . This is done in such a way that outside of a small neighbourhood of the
discs which correspond to vertices of the tree each leaf ofL intersects at most one
disc and this intersection is connected. (In the presence ofsome configurations of
critical points on cycles inΣ0 it may be impossible to satisfy the last requirement
everywhere without violating the requirement that each leaf of L intersects at most
one disc.)

So far we have obtained an embeddingϕ0 : Σ̃0 −→ R
3 with ϕ0∗(ξ) = Z and

the Legendrian foliationϕ−1
0∗ (L) on Σ̃0. We extend this foliation to a Legendrian

foliation L0 on an open neighbourhood̃Σ of Σ̃0 and we extend the embeddingϕ0

such that the extended Legendrian foliation is mapped toL, the extension ofϕ0 is
the desired embeddingϕ : Σ̃ −→ R

3 but we still have to find the right domain and
the neighbourhoodW .

We may assume that̃Σ was chosen such that the intersection of each leaf ofL

with ϕ(Σ̃) is connected andϕ∗(ξ) is transverse to∂z. By constructionϕ∗

(
ξ
∣∣

eΣ

)
is

the kernel of the1-form α = dz + f(x, y, z)dy with ∂xf ≥ 0 andf ≡ 0 on Σ̃0.
By extendingf to a function onR

3 we can extendα to a 1-form αc on R
3

whose kernel is a confoliationξc with the desired properties: If we extendf to a
function onR

3 with ∂xf ≥ 0 andf ≡ 0 for |z| big enough, thenξc is a complete
connection.

For each plane fieldζ on ϕ(Σ̃) such thatζ is transverse to∂z we define a fo-
liation L(ζ) which is tangent to the projection of∂x to ζ along ∂z. There is a
neighbourhoodW ⊂ M of Σ̃0 andε > 0 with the following properties:

• If ξ′ is ε-close toξ, thenϕ∗(ξ) is transverse to∂z .
• For every plane fieldξ′ which isε-close toξ there is an open setW ′ with

Σ̃0 ⊂ W ⊂ W ′ ⊂ U such that the intersection ofϕ(W ′) with leaves of
L(ϕ∗(ξ

′)) is connected.

This implies the claim of the lemma: If a confoliationξ′ is sufficiently close to
ξ in the C0-topology, then we can extendϕ∗(ξ

′
∣∣
W

) by extending (as above) the
confoliationϕ∗(ξ

∣∣
W ′

) along leaves of a foliationL′ of R
3 by lines transverse to
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the planes{x = const} and which coincides withL outside ofϕ(Σ̃). Thus we
have found a confoliationξ′c on R

3 with the desired properties.
The statement about the tightness ofξ′

∣∣
W

follows from Proposition 2.5. �

Next we show that the taming functions which we have constructed on pieces of
S in Lemma 5.12 can be combined to obtain a taming function on a given generi-
cally embedded sphere.

Proposition 5.14. If (M, ξ) is tight andS is an embedded sphere such thatS(ξ)
has isolated singularities which are either non-degenerate or of birth-death type,
thenS admits a taming function.

Proof. We constructf inductively in a finite number of steps. By Lemma 5.12
we can cover the compact setΣ(S) by a finite collection of open setsU0 =
{U1, . . . , Ul} with Uj ⊂ S such that there is a taming functionfj on Uj , j =
1, . . . , l and the setsUj are pairwise disjoint. Recall that

(8) d+(Uj) = 1 − N−(Uj) − Ps(Uj) − Ns(Uj)

for all j = 1, . . . , l. For later applications we assume that eachUj ∈ U0, j =
1, . . . , l has the property described in Lemma 5.13 forεj > 0.

We define a partial order� on U0 as follows: Uj � Uk if and only if either
j = k or Uk has a boundary component which bounds a disc inS not containing
Uk and a leaf of the characteristic foliation coming fromUj entersUk through this
boundary component.

By definition every cycle ofS(ξ) which intersectsUj is completely contained
in Uj . This implies thatUj � Uk andUk � Uj if and only if j = k and there is
a setUj ∈ U0 which is minimal with respect to�. All connected components of
∂Uj are transverse toS(ξ) and the characteristic foliation points outwards along
the boundary. Moreover, (8) impliesd+(Uj) = 1.

Let fj be a taming function onUj and consider the basinB(Uj) of Uj . Ac-
cording to Lemma 3.4 the closure ofB(Uj) is covered by a Legendrian poly-
gon (Qj , Vj , αj). We consider four cases which correspond to the conclusion of
Lemma 5.10. Let us assume that there are no birth-death type singularities. This
assumption will be removed below.

Case (o): Qj has more boundary components thanUj . This means that in the
construction of(Qj, Vj , αj) in Lemma 3.4 we did attach1-handles toUj (recall
that we usedUj as a starting point for the construction ofQj).

Let γj be the stable leaf of a hyperbolic singularityhj such thatγj leavesUj and
hj is a corner in a cycleη. This cycle is contained in one of the setsUi(η) ∈ U0.
Let fi be a taming function onUi(η). Now we extendfj to a taming function on
a neighbourhoodU ′

j of γj ∪ Uj ∪ Ui(η) (it may be necessary to add a sufficiently
large constant tofi(η)).

The extended function tames the characteristic foliation on its domain and the
new boundary component ofU ′

j can be chosen transverse toS(ξ). By construction

N−

(
U ′

j

)
= N−(Ui(η))

Ps

(
U ′

j

)
=

{
Ps(Ui(η)) − 1 if hj is positive
Ps(Ui(η)) if hj is negative

Ns

(
U ′

j

)
=

{
Ns(Ui(η)) if hj is positive
Ns(Ui(η)) − 1 if hj is negative.
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This impliesd+(U ′
j) = 1 − N−(U ′

j) − Ps(U
′
j) − Ns(U

′
j).

In the following cases we consider a fixed connected component Γ ⊂ ∂Qj

which was not covered in case (o).
Case (i): αj(Γ) is an elliptic singularity andαj(Qj) is a neighbourhood ofx or

αj(Γ) is a cycle andαj(Qj) is a one-sided neighbourhood of that cycle.
Let us start with the case whenαj(Γ) is an elliptic singularity. Because it is

attractive, it must be negative and it is contained inUi(Γ) with i(Γ) 6= j. One can
easily extendfj to a taming function on the unionU ′

j of Uj ∪ Ui(Γ) with all leaves
passing throughΓ. Obviously (8) holds forU ′

j .
If αj(Γ) is a closed leaf or a cycle, thenαj(Γ) belongs to one of the setsUi(Γ)

with i(Γ) 6= j. After eventually adding a constant to the taming function on Ui(Γ)

one obtains a taming function on the union of the flow lines leaving Uj throughΓ
with Uj andUi(Γ). As before we denote the new domain byU ′

j . From

N−

(
U ′

j

)
= N−(Ui(Γ)) − 1

Ps

(
U ′

j

)
= Ps(Ui(Γ))

Ns

(
U ′

j

)
= Ns(Ui(Γ)).

it follows thatd+(U ′
j) = 1 − U−(U ′

j) − Ps(U
′
j) − Ns(U

′
j).

Case (ii): αj(Γ) contains an elliptic singularity such thatαj(Qj) is not a neigh-
bourhood of this singularity or there isvj ∈ Vj ∩Γ such thatγvj

is a cycle ofS(ξ)
andαj(Qj) is not a one sided neighbourhood ofγvj

or
According to Proposition 5.9 there is a positive pseudovertex x on αj(Γ) such

that αj(Qj) is not a neighbourhood ofx. Let η be the stable leaf ofx which is
not contained inαj(Qj). The α-limit set of η is contained in a setUi(η) while
x ∈ Ui(x). We obtain a taming function on the union ofU ′

j of Uj ∪ Ui(η) ∪ Ui(x)

with a neighbourhood of the stable leaves ofx (after adding a constant to the taming
function onUi(x)).

Becausex is positive the requirements in the definition of taming functions are
satisfied. Moreover, we can choose the domainU ′

j of the taming function such that
its the new boundary component is transverse toS(ξ). The equalityd+(U ′

j) =

1 − N−(U ′
j) − Ps(U

′
j) − Ns(U

′
j) follows from

N−

(
U ′

j

)
= N−

(
Ui(η)

)

Ps

(
U ′

j

)
= Ps

(
Ui(η)

)

Ns

(
U ′

j

)
= Ns

(
Ui(η)

)

and the fact thatx is positive.
Case (iii): (0)-(ii) do not hold for(Qj , Vj , αj). Thenαj identifies edges onΓ

by Lemma 5.10. We shall use the notation from the proof of thatlemma.
Let e1, . . . , el be edges onΓ which are obtained as in the proof of Lemma 5.10.

The cycleη ⊂ αj(e1) ∪ . . . ∪ αj(el) is contained inUi(η) ∈ U0 and we denote
the stable leaves of the pseudovertices onη which are not part ofη by σ1, . . . , σl.
Let U ′

j be the union ofUj ∪ Ui(η) with neighbourhoods ofσ1, . . . , σl. No other
stable leaves of hyperbolic singularities enterUi(η) and all pseudovertices onη
are negative. After we add a sufficiently big constant tofi(η) we obtain a taming
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functionf ′
j onU ′

j . By construction we have

N−

(
U ′

j

)
= N−

(
Ui(η)

)

Ps

(
U ′

j

)
= Ps

(
Ui(η)

)

Ns

(
U ′

j

)
= Ns

(
Ui(η)

)
− 1.

These equalities immediately imply (7).
We have now considered all cases occurring in Lemma 5.10. Next we remove

the assumption that there is not birth-death type singularity. Assume that in the step
above we encounter a birth-death type singularityx. Thenx is contained in a set
Ui(x) from U0. In an intermediate step we extendf to the unionU int

j of U ∪ Ui(x)

with the leaves ofS(ξ) which connectUi(x) to U . Then we continue as before with
U int

j instead ofUj.
Now we removeUj together with allUi which are contained inU ′

j from the
collectionU0 and we addU ′

j . This yields a new collection of of subsetsU1 such
that on each domain inU1 we have a defined a taming function. Notice that the
number of sets inU1 is strictly smaller than the number of sets inU0.

We iterate the procedure after replacingU0 with U1. After finitely many steps
we obtain a taming function onS. �

So far we have established the existence of a taming functionon embedded
spheres such thatS(ξ) has only non-degenerate or birth-death type singularities.
Now we consider an embedding of a family of spheresS2 × [0, 1] in M and a
C0-approximation ofξ by a confoliationξ′. After a C∞-small perturbation of
S2 × [0, 1] each sphereSt = S2 × {t} becomes generic. We want to show that
the characteristic foliationSt(ξ

′) admits a taming function if the confoliationξ′ is
close enough toξ in theC0-topology.

Proposition 5.15. There is aC0-neighbourhood ofξ such that for every confoli-
ation ξ′ in that neighbourhoodSt(ξ

′) admits a taming function for allt ∈ [0, 1] if
St is generic with respect toξ′ for all t.

If ξ′ is a contact structure, thenSt(ξ
′) admits a taming function which is strictly

increasing along all leaves ofSt(ξ
′).

Proof. We show that ifξ′ is close enough toξ in theC0-topology andSt(ξ) has
only non-degenerate singularities or singularities of birth death type, then the it-
eration process used for the construction of a taming function in Proposition 5.14
can be carried out to yield a taming function forSt(ξ

′). For this we first recon-
sider the proof of Proposition 5.14 in order to show the existence ofε > 0 with
the desired properties for a fixed sphereSt and then we argue thatε can be chosen
independently fromt ∈ [0, 1].

Recall that in the proof of Proposition 5.14 we required thatall setsUj ∈ U0

appearing in the initial stage of the construction are contained in a setWj with the
stability property described in Lemma 5.13 forεj > 0: The restriction ofξ′ to Wj

is tight whenξ′ is εj-close toξ.
Moreover, we chose theUj such that each smooth segment in∂Uj is transverse

to S(ξ). This remains true whenξ′ is εj-close toξ whenεj > 0 is small enough.
The iteration process in the proof of Proposition 5.14 stopsafter finitely many
steps and we chooseε > 0 so small that each smooth segment contained in the
boundary of a set inU0, U1, . . . is transverse toS(ξ′) whenξ′ is ε-close toξ. This



42 T. VOGEL

requirement ensures also that the combinatorics of the extensions off is the same
for St(ξ) andSt(ξ

′).
It remains to show that we can chooseε > 0 independently fromt ∈ [0, 1]. For

this note thatΣ = ∪tΣ(St) is compact. Thus a finite number of setsWj obtained
from Lemma 5.13 suffice to coverΣ. If τ is sufficiently close tot, thenSτ (ξ) is
very close toSt(ξ) in theC∞-topology and the combinatorics of extensions of a
taming function forSt(ξ) andSτ (ξ) coincide, ie. we connect subsetsUj(t) of St

which are very close to subsetsUj(τ) of Sτ in the same order (with the possible
but irrelevant exception of birth-death type singularities).

When the above procedure for the choice ofε for St yields εt > 0, thenεt/2
has the desired property with respect to the characteristicfoliation onSτ ′ whenτ ′

is close enough tot. Since[0, 1] is compact, this proves the claim. �

5.2.4. Proof of Theorem 5.1.For the proof of Theorem 5.1 we combine the results
from the previous sections with results from [15].

Let B ⊂ B1 ⊂ M be an embedded closed ball in a manifoldM with a tight
confoliationξ. We assume that the interior ofB1 contains points whereξ is a con-
tact structure since otherwise Theorem 5.1 follows immediately from Lemma 5.13.
Moreover, we assume that∂B1 is generic.

Let B0 be a ball in the contact region whose characteristic foliation has exactly
two singular points and the leaves of the characteristic foliation connect the two
singularities. The existence of such a ball follows from thefact that every contact
structure is locally equivalent to the standard contact structureker(dz + xdy) on
R

3. Moreover, there is an open neighbourhood ofξ|B0
such that every confoliation

in this neighbourhood is tight onB0.
Let ξ′ be a contact structure onB1. If ξ′′ is a contact structure and sufficiently

close toξ′ in theC∞-topology, thenξ′|B is diffeomorphic to the restriction ofξ′′

to a closed ball inB1. Therefore it is enough to prove Theorem 5.1 for generic
perturbations.

We fix a generic identificationB1\B̊0 ≃ S2×[0, 1] such that∂Bi = Si, i = 0, 1.
Because the confoliationξ is assumed to be tight,St(ξ) can be tamed for allt. By
Proposition 5.15 this remains true for generic confoliationsξ′ which are sufficiently
close toξ in theC0-topology.

Recall that an embedded surface in a contact manifold is calledconvexif there is
a vector field transverse to the surface such that the flow of the vector field preserves
the contact structure. According to [14] convexity is aC∞-generic property, so we
may assume that∂B0 and∂B1 are convex with respect toξ′.

We will show thatξ′ can be isotoped onS2 × [0, 1] relative to the boundary
such that all leaves of the product foliation onS2 × [0, 1] become convex with
respect to the isotoped contact structure. Since∂B0 is convex andξ′ is tight on a
neighbourhood of∂B0 this implies thatξ′|B is tight by Theorem 2.19 in [15] (and
the gluing result in [6]).

In order to prove the existence of the desired isotopy ofξ′ we use the following
lemma. Our formulation is a slight modification of Lemma 2.17in [15] in the case
F ≃ S2.

Lemma 5.16. Let (M, ξ′) be a contact manifold. Assume that the characteristic
foliation on each sphereSt from the familyS2 × [0, 1] ⊂ M admits a taming
function andS0, S1 are convex. Then there is a contact structureξ′′ such that
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• ξ′ andξ′′ are isotopic relative to the boundary and
• the characteristic foliation ofξ′′ on St has exactlyχ(S) = 2 singular

points andSt is convex with respect toξ′′ for all t ∈ [0, 1].

The original statement of Giroux of this lemma contains tightness as an assump-
tion. However the proof of Lemma 2.17 of [15] requires only properties of the
characteristic foliation onSt, t ∈ [0, 1] which follow from the existence of taming
functions.

More specifically, the proof of Lemma 2.17 in [14] yields a proof of Lemma 5.16
after the following modification: As we have already explained we may assume
that the characteristic foliation ofξ′ on St can also be tamed for allt ∈ [0, 1] by
Proposition 5.15. Moreover, becauseξ′ is a contact structure, the taming functions
are strictly increasing along leaves of the characteristicfoliation. Therefore the
following statements hold:

(1) There is no closed cycle onS × {t}, t ∈ [0, 1].
(2) The graphΓ+

t (Γ−

t ) on F × {t} formed by positive (negative) singular
points and stable (unstable) leaves of positive (negative)hyperbolic singu-
larities is a tree.

Using these two observations one obtains a proof of Lemma 5.16 from the proof of
Lemma 2.17 in [15]. This finishes the proof of Theorem 5.1.

6. OVERTWISTED STARS

In this section we introduce overtwisted stars. Their definition is given in the
next section and it is motivated by the discussion of the confoliation (T 3, ξT ) in
Section 4. The absence of overtwisted stars in a tight confoliations implies all
Thurston-Bennequin inequalities and we show that symplectically fillable confoli-
ations do not admit overtwisted stars (in addition to the fact that they are tight).

6.1. Overtwisted stars and the Thurston-Bennequin inequalities. As we have
already mentioned the point where Eliashberg’s proof of theThurston-Bennequin
inequalities fails in the case of tight confoliations is thefollowing: Given an em-
bedded surfaceF and a tight confoliation(M, ξ), there may be leaves ofF (ξ)
which come from an elliptic singularity and accumulate on closed leavesγ (or on
quasi-minimal sets) of the characteristic foliation such that γ is part of the fully
foliated set ofξ. Even if all singular points on∂B(x) have the same sign it may
be impossible to construct a disc fromB(x) which has the properties of the discD
appearing in Definition 1.3.

This suggests the following definition of overtwisted starson generically em-
bedded surfacesF .

Definition 6.1. An overtwisted star in the interior of a generically embedded com-
pact surfaceF 6≃ S2 is the image of a Legendrian polygon(Q,V, α) with the
following properties.

(i) Q is homeomorphic to a disc andα(∂Q) contains singularities ofF (ξ).
(ii) All singularities ofF (ξ) onα(∂Q\V ) have the same sign. There is a single

singularity in the interior ofα(Q); it is elliptic and its sign is opposite to
the sign of the singularities onα(∂Q).

(iii) If γv is a cycle, then it does not bound an integral disc ofξ in M .
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The torus shown Figure 13 contains two overtwisted stars. Note that the polygon
is not required to be injective. Requirement (i) implies that eitherV 6= ∅ or α(∂Q)
contains an elliptic singularity ofF (ξ) and we may assume that this singularity is
contained inH(ξ). (Note that the elliptic singularity cannot lie in the interior of
M \ H(ξ). After a small perturbation and by Lemma 3.7 the elliptic singularity
lies in H(ξ)). In particular discs with the properties ofD in Definition 1.3 are not
overtwisted stars.

If ξ is a contact structure andF ⊂ M is a generically embedded closed surface
containing an overtwisted star(Q,V, α), then ξ cannot be tight sinceξ is con-
vex by the genericity assumption (therefore allγv, v ∈ V are cycles) and has a
homotopically trivial dividing curve (this terminology isstandard in contact topol-
ogy; because we shall not really use it we refer the reader to [14] or [19]). This
argument does not apply whenF ≃ S2. Since the definition of tightness in Def-
inition 1.3 can be applied efficiently to spheres and discs, the exceptional role of
spheres in Definition 6.1 will not play a role.

The following theorem is proved following Eliashbergs strategy from [8] and
Theorem 5.4.

Theorem 6.2. Let (M, ξ) be an oriented tight confoliation such that no compact
embedded oriented surface contains an overtwisted star and(M, ξ) is not a folia-
tion by spheres.

Every embedded surfaceF whose boundary is either empty or positively trans-
verse toξ satisfies the following relations.

a) If F ≃ S2, thene(ξ)[F ] = 0.
b) If ∂F = ∅ andF 6≃ S2, then|e(ξ)[F ]| ≤ −χ(F ).
c) If ∂F 6= ∅ is positively transverse toξ, thensl(γ, [F ]) ≤ −χ(F ).

Proof. The claim a) was already covered in Theorem 5.4. For the proofof b) and c)
we may assume thatF is a generic representative of the homology class[F ] which
is incompressible (this means that the mapπ1(F ) −→ π1(M) which is induced by
the inclusionF →֒ M is injective). Recall that if∂F is positively transverse toξ,
thenF (ξ) points out ofF along∂F . Recall that

χ(F ) − e(ξ)[F ] = 2(e− − h−)

by (5). If there is no negative elliptic singularity, then this implies−e(ξ)[F ] ≤
−χ(F ). If there is a negative elliptic singularityx, then we shall use the absence of
overtwisted stars to eliminatex without creating new negative elliptic singularities.
Let Dx be the maximal open disc inF such that

• ∂Dx = Dx \ Dx is a cycle ofF (ξ) and
• x is the only singularity ofF (ξ) in the interior ofD.

UnlessDx 6= ∅ there is an integral discD′
x of ξ whose boundary is∂Dx because

ξ is tight. Moreover, the intersection of the interior ofD′
x with F consists of

homotopically trivial curves inF (otherwise we get a contradiction to the incom-
pressibility ofF ).

Thus we can cutF using Lemma 3.7, Lemma 3.8 and Lemma 3.9 so that the
resulting surfaceF ′ is the union of spheres and a surface which is diffeomorphic
to F and incompressible. Becausee(ξ)[S] = 0 for embedded spheresS we can
ignore the spherical components and we denote the remainingsurface byF ′. It
follows thate(ξ)[F ] = e(ξ)[F ′].
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If we used Lemma 3.8 or Lemma 3.9, then we have reduced the number of
negative elliptic singularities by one. Note that if we haveapplied Lemma 3.9,
thenF ′ might contain a circle of singularities. This means thatF ′ is non-generic
near that circle. Since this circle is isolated from the restof F ′ by closed leaves
of F ′(ξ) and the singularities on this circle do not contribute toe(ξ)[F ′] or χ(F ′),
these singularities will play no role in the following. Therefore we can pretend that
F ′ is generic and eliminate the remaining negative elliptic singularities.

If we used Lemma 3.7, thenF ′ contains a negative elliptic singularityx′. By
constructionx′ lies inH(ξ). In the following we shall denotex′ again byx.

The basin ofx is covered by a Legendrian polygon(Q′, V ′, α′) on F ′. By
the maximality property ofDx the boundary ofQ′ is not mapped to a cycle of
F ′(ξ). If ∂Q′ has more than one connected component, then there is a hyperbolic
singularityy onα′(∂Q′) which is the corner of a cycleγy. If y is negative, then we
can eliminate the pairx, y.

Now assume thaty is positive. Ifγy does intersectH(ξ), then we can perturb
F ′ in a small neighbourhood of a point on the cycle such thaty is no longer part
of a cycle after the perturbation. Ifγy does not intersectH(ξ), then we push a part
of the cycle intoH(ξ) by an isotopy ofF ′ without introducing new singularities of
the characteristic foliation.

The isotopy is constructed as follows. LetL be the maximal connected integral
surface ofξ which contains the cycle throughy. We choose a simple curveσ
tangent toξ which connects the cycle toH(ξ) and is disjoint fromF ′. This curve
can be chosen close to the stable leaf ofy which is connected tox ∈ H(ξ). We
choose a vector fieldX tangent toξ with support in a small neighbourhood ofσ
such thatσ is a flow line ofX andF ′ is transverse toX. We use the flow ofX
to isotopeF ′ such that all unstable leaves ofy are connected toH(ξ) after the
isotopy. SinceX is transverse toF ′ and tangent toX the isotopy creates no new
singular points of the characteristic foliation. Figure 17showsL together with a
part of the intersectionF ′ ∩ L. The curveσ is represented by the thickened line
while the shaded disc represents another part ofH(ξ) or non-trivial topology ofL.

H(  )ξ

y
σ

L

−

FIGURE 17.

By this process we modified the basin ofx and the surface. Note that there
are finitely many hyperbolic singularities onF and the procedure described above
does not create new ones. Therefore finitely many applications lead to a surface
F ′′ with e(ξ)[F ] = e(ξ)[F ′′] such that the hyperbolic singularities ofF ′′(ξ) are
also hyperbolic singularities ofF (ξ) and the basin ofx is homeomorphic to a disc.
Also, the number of negative elliptic singularities did notincrease. Note thatF ′′
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is not a sphere becauseF ′′ andF have the same genus. Moreover,F ′′ has the
following properties.

The basin ofx is covered by a Legendrian polygon(Q′′, V ′′, α′′) on F ′′ such
that Q′′ is a disc andα′′(Q′′) is not an elliptic singularity or a cycle ofF ′′(ξ).
If necessary, we eliminate all elements ofv′′ with the property thatγv′′ is null
homotopic inF ′′.

Now the assumption of the theorem implies that∂Q′′ contains a negative pseu-
dovertex. By Lemma 3.5 we can isotopeF ′′ to a surface containing less negative
elliptic singularities thanF respectivelyF ′′. After finitely many steps we have
eliminated all negative elliptic singularities. This finishes the proof of c) and one
of the inequalities in b). The remaining inequality in b) canbe proved by eliminat-
ing all positive elliptic singularities. �

6.2. Overtwisted stars and symplectic fillings. In this section we show that sym-
plectically fillable confoliations do not admit overtwisted stars. In the proof we
C0-approximate a confoliation by another confoliation (cf. Theorem 1.1). Several
techniques used in the proof are adaptations of constructions in [9]. Other useful
references are [25] (where the proofs of Lemma 2.5.1 c) and Lemma 2.5.3 from [9]
are carried out) and [11]. For later use we summarize the proof of a lemma used to
show Theorem 1.1.

Lemma 6.3(Lemma 2.5.1 c) in [9]). Letγ be a simple closed curve in the interior
of an integral surfaceL of ξ. If γ has sometimes attractive holonomy, then in every
C0-neighbourhood ofξ there is a confoliationξ′ which

(i) is a contact structure on a neighbourhood ofγ and
(ii) coincides withξ outside a slightly larger neighbourhood.

Proof. We only indicate the main stages of the construction. Fix a neighbourhood
V ≃ S1

x × [−1, 1]y × [−1, 1]z and coordinatesx, y, z such that the foliation by
the second factor is Legendrian,S1 × [−1,−1] × {0} ⊂ L andS1 × {(0, 0)}
corresponds toγ. We assume thatγ has sometimes attractive holonomy. As in
Lemma 2.1.1 of [25] the coordinates can be chosen such that

• ξ is defined by the1-form α = dz + a(x, y, z) dx with ∂ya ≤ 0 and
• there are sequencesζ ′n < 0 < ζn converging to zero such thata(x, 0, ζ ′n) <

0 < a(x, 0, ζn) for all x.

At this point we use the assumption that the holonomy alongγ is sometimes at-
tractive. We fix a pairζ ′, ζ of numbers from the sequences(ζn), (ζ ′)n.

According to Lemma 2.2.1 in [25] and Lemma 2.5.3 in [9] there is a diffeomor-
phismg : [−1, 1] −→ [−1, 1] such that

(i) g is the identity outside ofV := (ζ ′, ζ) and
(ii) g′(z)a(x, 0, z) < a(x, 0, g(z)) for all (x, 0, z) ∈ S1 × {0} × V .

It follows that g converges uniformly to the identity asζ, ζ ′ → 0, but no claim
is made with respect to theC1-topology. The graph ofg is given in Figure 18
(cf. [25]). The parametersa, b with ζ ′ < a < 0 < b < ζ are chosen such that
a(x, 0, z) 6= 0 for z ∈ [ζ ′, a] ∪ [b, ζ].

In order to obtain the desired confoliation in aC0-neighbourhood ofξ, one
proceeds as follows.
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FIGURE 18.

Step 1:Replaceξ onS1 × [−1/2,−1/4] × V by the push forward ofξ with the
mapG which is defined by

G(x, y, z) := (x, y, u(y)g(z) + (1 − u(y))z)

whereu is a smooth non-negative function on[−1/2,−1/4] such thatu ≡ 0 near
−1/2 andu ≡ 1 near−1/4. We extendG to M \ (S1 × [−1/4, 1/2] × V ) by
the identity. Asζ, ζ ′ → 0 the corresponding diffeomorphismG converges to the
identity uniformly but not with respect to theC1-topology in general. Therefore
G∗(ξ) might not beC0-close toξ onS1×[−1/2,−1/4]×V . This will be achieved
in the third step (at this point we follow the exposition on [25] closely). In the
following step we replace the confoliation onS1 × [−1/4, 1/2] × V .

The dashed respectively the solid lines in Figure 19 show thecharacteristic fo-
liations ofξ′ on neighbourhoods ofγ in {y = −1/4} respectively on{y = 1/2}
using dashed respectively solid lines in the simple case when γ has attractive holo-
nomy.

γ

G(  )γ

FIGURE 19.

Step 2:We extendG∗(ξ) to a confoliationξ′′ on M such that∂y remains Leg-
endrian: The plane fieldξ′′ rotates around the foliationS1 × [−1/4, 1/2]×V such
that the characteristic foliation onS1 ×{−1/4, 1/2} × V coincides with the char-
acteristic foliation ofFn∗(ξ) on these annuli. This is possible by (ii) using the in-
terpretation of the confoliation condition mentioned in Section 2.2 (cf. Figure 19).
Note thatξ′′ is a contact structure on the interior ofS1 × [−1/4, 1/2] × V =: Ṽ .
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Step 3:We want to construct a diffeomorphismφ of M with support inV such
that φ∗ξ

′′ is C0-close toξ. For this one has to chooseV more carefully. This
is carried out on p. 31–33 of [25]. The argument can be outlined as follows;
cf. p. 16 in [25]: Assume thatr is chosen such thatV ⊂ [−r/2, r/2] and ξ is
ε-close to the horizontal distribution onS1 × [−1, 1] × [−r, r]. As we already
mentionedξ′′ might be very far away from the horizontal distribution. Choose
a very small numberδ > 0 and a diffeomorphismϕ : [−r, r] −→ [−r, r] such
that ϕ([−r/2, r/2]) ⊂ [−δ, δ]. Then the push forward of the restriction ofξ′′ to
S1 × [−1/2, 1/2] × [−r, r] is 3ε-close to the horizontal distribution. One has to
extendϕ such that this property is preserved. �

We will need not only the statement of the lemma, but also the construction
outlined in the proof since we need to understand how this modification of ξ near
a curveγ with sometimes attractive holonomy affects the presence ofovertwisted
stars on embedded surfaces inM . The third step of the above proof is of course
irrelevant at this point.

Figure 20 showsF (ξ′′) near a closed curve ofF (ξ′′) in an embedded surface
F transverse toγ after the second step of the proof of Lemma 6.3. The dot in the
center of the figure representsF ∩ γ while the left inner rectangle represents the
support ofG. Finally, ξ′′ is a contact structure in the inner rectangle on the right
(this rectangle corresponds to the regionṼ ∩F in the proof of Lemma 6.3). Recall
that the characteristic foliationF (ξ) was nearly horizontal in the region shown in
Figure 20.

ξ
,,

F(    )

γv

FIGURE 20.

Note that ifγ even has non-trivial infinitesimal (or only attractive) holonomy,
then the statement of Lemma 6.3 can be sharpened in the sense that the lemma
remains true forC∞-neighbourhoods ofξ because the functiong : [−1, 1] −→
[−1, 1] can be chosenC∞-close to the identity. In the following we will consider
only C0-approximations. This allows us to choose the approximation of ξ more
freely. In particular we can preserve qualitative featuresof the characteristic folia-
tion on surfaces transverse toγ.

Lemma 6.4. Let ξ be aCk-confoliation,k ≥ 1, andγ a simple Legendrian seg-
ment such that both endpoints ofγ lie in the contact region andγ intersectsF
transversely and at most once.

Then everyCk-neighbourhood ofξ contains a confoliationξ′ such thatξ′ = ξ
outside a neighbourhood ofγ andξ′ is a contact structure on a neighbourhood of
γ. Moreover,F (ξ) = F (ξ′).
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Proof. The caseγ ∩ F = ∅ corresponds to Lemma 2.8.2. in [9], the caseγ ∩ F =
{p} is very similar and only this case uses the assumption that both endpoints ofσ
lie in H(ξ). �

The following lemma is standard in the setting of foliations: One can thicken
a closed leaf to obtain a smooth foliation which is close to the original one and
contains a family of closed leaves. Once there is such a family, one can modify the
foliation such that a compact leaf whose holonomy was never sometimes attractive
on one sides has sometimes attractive holonomy one one side after the modifica-
tion.

The main difficulty in the context of confoliations is the fact that now compact
leaves ofξ may have boundary.

Lemma 6.5. Let (M, ξ) be a manifold with confoliation,L ⊂ M a compact em-
bedded surface tangent toξ andF ⊂ M a closed oriented surface which is gener-
ically embedded and does not intersect∂L. We require that each connected com-
ponent of∂L can be connected toH(ξ) by a Legendrian curve which is disjoint
from L̊ ∪ F .

Then there is a smooth confoliationξ′ which isC0-close toξ such thatF (ξ′)
is homeomorphic to the singular foliation obtained fromF (ξ) by thickening the
closed leaves of cycles ofF (ξ) which are also contained inL.

Proof. Let I = [−1, 1] andJ = [−1, 0]. We fix a tubular neighbourhoodU ≃
L × I of L = L × {0}.

For each boundary componentBi of L we chooseUi ≃ S1 × J × I ⊂ M in
the complement of̊L ∪ F . We assume that the third factor ofUi is transverse toξ
while the foliationJ whose fibers correspond to the second factor is Legendrian
and thatS1 × {(0, 0)} = B0,i andS1 × {(−1, 0)} = B−1,i intersectH(ξ). Let
Aj,i = S1 × {j} × I ⊂ ∂Ui for j ∈ {−1, 0}.

Without loss of generality we may assume thatB−1,i is completely contained
in the contact region and transverse toξ. Otherwise we apply Lemma 6.4 along
segments ofB−1,i and replaceUi with a new setU ′

i with the desired property.
We will now construct a confoliationξ′ on U ∪

⋃
i Ui which coincides withξ

near∂U and has the desired properties.
The restriction ofξ′ to U is defined in two steps. First we flattenξ in a neigh-

bourhoodU ≃ L× I using the push forward ofξ using a smooth homeomorphism
g of I which isC∞-tangent to the zero map and coincides with the identity outside
a neighbourhood of0.

We push forwardξ onL×[0, 1] respectivelyL×[−1, 0] using a diffeomorphism
[0, 1] −→ [ε, 1] respectively[−1,−ε]. The confoliation on(L × [−1,−ε]) ∪ (L×
[−ε, ε]) ∪ (L × [ε, 1]) ≃ U (with ε > 0), which is the product foliation onL ×
[−ε, ε], is smooth and contains a family of compact leaves. Moreover, we can
choose the diffeomorphisms appearing in the construction such thatξ

∣∣
U

is as close
to ξ′

∣∣
U

in theC0-topology as we want.
We can chooseξ′

∣∣
U

such thatA0,i(ξ) andA0,i(ξ
′) coincide outside of the region

where the slope ofA0,i(ξ) is very small compared to the slope ofA−1,i(ξ). By
construction the slope ofA0,i(ξ

′) is much smaller than the slope ofA−1,i(ξ) =
A−1,i(ξ). As in the second step in the proof of Lemma 6.3 (or Lemma 2.5.1. of
[9]) one can extendξ′ to a smooth confoliation onM such thatξ′ is close toξ (the
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foliation J corresponds to they-coordinate in [9]). The claim aboutF (ξ′) follows
immediately from the construction. �

Remark 6.6. After a trivially foliated bundleL × [−ε, ε] is added to the confolia-
tion, it is possible to replace the trivially foliated pieceby a foliation onL× [−ε, ε]
such that the boundary leavesL × {±ε} have sometimes attractive holonomy on
side lying inL × [−ε, ε]. The following statements follow from the construction
explained in [9] on p. 39. (This construction carries over tosurfaces with boundary
after the surface is doubled.)

When the Euler characteristic ofL is negative, then one can replace the product
foliation onL × [−ε, ε] by a foliation such that the holonomy along every homo-
topically non trivial curve inL × {ε} or L × {−ε} is sometimes attractive on one
side.

If the Euler characteristic of the compact surface with boundaryL is not nega-
tive, thenL is diffeomorphic toS2,D2, T 2 or S1 × I. The caseS2 will not occur
unless the confoliation in question is actually a product foliation by spheres. But
these are excluded. IfL ≃ S1×I, then the suspension of a suitable diffeomorphism
yields the same result as in the case ofχ(L) < 0 (without doubling the surface).
The caseL ≃ D2 will be excluded by the last requirement of Definition 6.1 in the
application we have in mind. Finally, the caseL ≃ T 2 is exceptional because of
Kopell’s lemma (cf. the footnote on p. 39 of [9]). But ifL = T 2, then it is easy
to arrange that the holonomy is attractive along a given homotopically non-trivial
curve.

This modification changes the characteristic foliation onF , but only an open
set which was foliated by closed leaves and cycles before theperturbation. In
particular overtwisted stars are not affected.

The following proposition from [9] adapts a famous result ofSacksteder [27] to
laminations so that it can be applied to the fully foliated part of confoliations.

Proposition 6.7(Proposition 1.2.13 in [9]). Let (M, ξ) be aCk-confoliation,k ≥
2. All minimal sets of the fully foliated part ofξ are either closed leaves or excep-
tional minimal sets. Each exceptional minimal set containsa simple closed curve
along whichξ has non-trivial infinitesimal holonomy.

In particular exceptional minimal sets are isolated and there are only finitely
many of them.

We denote the finite set consisting of the exceptional minimal sets of the fully
foliated part ofξ by E(ξ).

In the followingF will be an embedded surface containing an overtwisted star
(Q,V, α). We writeΩQ for ∪v∈V γv. If γv, v ∈ V is a cycle containing hyperbolic
singularities ofF (ξ), then the confoliationξ can be modified such that the cycle has
a neighbourhood which is foliated by closed leaves of the characteristic foliation
of the modified confoliation (cf. Lemma 6.5). We will therefore assume thatγv

is either a closed leaf ofF (ξ) or a quasi-minimal set but not a cycle containing
hyperbolic singularities. (By the definition of an overtwisted star,γv is not an
elliptic singularity.)

Lemma 6.8. Let ξ be a confoliation andF an embedded connected surface con-
taining an overtwisted star(Q,V, α) andv ∈ V .

a) If γv is contained in a closed leaf ofξ, then in everyC0-neighbourhood
of ξ there is a confoliationξ′ such thatF (ξ′) contains an overtwisted star
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(Q′, V ′, α′) which is naturally identified with(Q,V, α) andγ′
v, (v ∈ V ′ ≃

V ) passes through the contact region ofξ′.
b) Assume thatγ is contained in an exceptional minimal set,γ has attractive

linear holonomy, andγ is transverse toF . Then everyC0-neighbourhood
of ξ contains a confoliationξ′ such thatF (ξ′) contains an overtwisted star
which can be naturally identified with(Q,V, α) and |E(ξ′)| < |E(ξ)|.

Proof. First we prove a). LetL be the closed leaf containingγv. Sinceγv is theω-
limit set of leaves inF (ξ) it has attractive holonomy on one side andF ∩L consists
of a family of cycles. In particular,L∩α(Q) = ∅ because an overtwisted star with
virtual vertices does not contain closed cycles of the characteristic foliation.

We use Lemma 6.5 and Remark 6.6 to ensure thatγv has sometimes attractive
holonomy on both sides. Unfortunately this property is not stable under arbitrary
isotopies ofγv in general. But by Lemma 2.1 there is an annulusA ≃ γv × [0, 1]
such thatγv = γv ×{0} = F ∩A and all curves inA have attracting holonomy on
the side whereα(Q) approachesγv while isotopies do not change the nature of the
holonomy on the other side ofL since there the confoliation is actually a foliation.

Therefore there is a small isotopy ofF which maps(Q,V, α) to an overtwisted
star (Q′, V ′, α′) on the isotoped surfaceF ′ such thatγv is mapped toγv × {ε}
where0 < ε < 1/2. Then we can apply Lemma 6.3 toγv × {0} andγv × {2ε}.

After this there is a Legendrian arc intersectingF ′ exactly once in a point ofγv

and both endpoints of this arc lie in the contact region. Hence this arc satisfies the
assumptions of Lemma 6.4. Therefore there is a confoliationξ′ with the desired
properties such thatF ′(ξ) = F ′(ξ′). This finishes the proof of a).

Now we prove b). We shall use notations from the proof of Lemma6.3. In
the proof we will use the freedom in the choice of the functiong in the proof of
Lemma 6.3. For this we need the fact thatγ has non-trivial infinitesimal holonomy
since then there are only very few restriction ong in the proof of Lemma 6.3, cf.
also Lemma 2.5.2 in [9].

Fix a neighbourhoodU ≃ S1
x × [−1, 1]y × [−1, 1]z such thatγ = S1 ×{(0, 0)}

and the coordinatesx, y, z have all the properties used in the proof of Lemma 6.3.
In particular, the foliation by the second factor is Legendrian and coincides with
F (ξ) on F ∩ U while the third factor is positively transverse toξ. We require that
U intersectsF only in neighbourhoods of points inγ ∩ ΩQ =: X.

Let us make an orientation assumption in order to simplify the presentation: We
assume that the orientation of the Legendrian foliation onS1 × [−1, 1] × [−1, 1]
given by the second factor coincides with the orientation ofF (ξ) near points of
γ ∩ γv, v ∈ V , ie. in Figure 20 the foliation is oriented from left to right. When
this assumption is not satisfied for somey ∈ γ ∩ ΩQ, then one has to interchange
the roles of̂τ−(y) andτ̂+(y) in some of the following arguments.

By transversalityγ intersectsF in a finite number of points. Sinceγ is contained
in the fully foliated part ofξ, γ cannot intersectα(Q) since every point ofα(Q) is
connected toH(ξ) by a Legendrian arc. We can ignore the points inF ∩ γ which
do not belong toα(Q) if we deform ξ on a neighbourhood ofγ which is small
enough.

BecauseF is smoothly embedded andξ is C2-smooth,F (ξ) is also of classC2.
As we have already mentioned in Section 3.2 theω-limit set γv with v ∈ V is
either a quasi-minimal set or we may assume (after a small isotopy ofF ) thatγv is
a closed leaf ofF (ξ). We distinguish the following cases.
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(i) γv is quasi-minimal. Since there are interior points ofα(Q) arbitrarily
close toγv, there is no segmentτ transverse toF (ξ) such thatτ ∩ γv is
dense inτ . Thenγv ∩ τ is a Cantor set (cf. [16]). The intersection be-
tween two different quasi-minimal sets cannot contain a recurrent orbit by
Maier’s theorem (Theorem 2.4.1 in [23]) and the number of quasi-minimal
sets ofF (ξ) is bounded by the genus ofF according to Theorem 2.4.5. in
[23].

(ii) γv is a closed leaf ofF (ξ) whose holonomy is attractive on the side from
which α(Q) accumulates onγv while it is repulsive on the other side and
α(Q) spirals ontoγv on the attractive side. In this case,α(Q) cannot
enter a one-sided neighbourhood ofγv on the side where the holonomy
is repulsive.

(iii) γv is a closed leaf ofF (ξ) whose holonomy is attractive on one side and
either there is a sequence of closed leaves ofF (ξ) on the other side ofγv

which converge toγv or γv has attractive holonomy on both sides.

If γv belongs to class (iii) andU is small enough (ie. contained in the interior of
an annulus each of whose boundary is tangent toF (ξ) or transverse toF (ξ) such
thatF (ξ) points into the annulus), then any modification ofF (ξ) with support in
U ∩ F will result in a singular foliation onF such that all leaves of the charac-
teristic foliation which enter a neighbourhood ofγv containingU will remain in
U forever even after the modification. When no singularities are created during
the modification, then the modification replaces(Q,V, α) by an overtwisted star
(Q′, V ′, α′) such that|V | = |V ′|. In this caseγv 6= γ′

v but γ′
v is a closed leaf

of F (ξ′) which passes throughH(ξ′) (by the proof of Lemma 6.3. We keep this
case separated from the others although all three of them mayoccur in one single
perturbation ofξ.

The following argument is complicated due to a difficulty in case (ii). If α(Q)
accumulates onγv and the holonomy ofγv is repulsive on the side where points
of γ are pushed to by the diffeomorphismG appearing in the proof of Lemma 6.3,
then it is impossible to say something about the newω-limit set of leaves inα(Q)
which accumulated onγv unlessG is chosen carefully: It is possible that leaves
which accumulated onγv accumulate onγv′ when the characteristic foliation is
modified nearγv. However it is possible thatγv′ is also changed whenξ is re-
placed byξ′. Therefore one has to treat allv ∈ V such thatγv belongs to (i),(ii)
simultaneously.

For non-empty open intervalsτ− ⊂ [−1, 0) andτ+ ⊂ (0, 1] we write τ̂±(y) :=
{y} × [−1, 1] × τ± for y ∈ γ. We will fix τ± in the following.

We require thatτ+ is chosen such that theω-limit of a leaf intersectinĝτ+(y) is
never a hyperbolic singularity for ally ∈ X. Because

• there are only finitely many hyperbolic singularities onF and
• α(Q) intersects every interval transverse toγv in an open set (note that

there are singular folioations on surfaces with dense quasiminimal sets; in
particular stable leaves of hyperbolic singularities in such quasi-minimal
sets may be dense in the surface)

• α(∂Q) is disjoint fromγv which intersectγ even if γv is quasi-minimal
(this is true because every point ofα(Q) is connected toH(ξ) by a Legen-
drian curve whileγ is part of the fully foliated set)

this condition can be satisfied. Next we impose additional restrictions onτ−:
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We chooseτ− such that no point in̂τ+(x), x ∈ X, is connected tôτ−(y), y ∈ X,
by a leaf ofF (ξ) which is disjoint from{(y, 0)} × [inf(τ−), sup(τ+)]. In other
words, we require that leaves ofF (ξ) which come fromτ̂+(x) do not intersect
τ̂−(y) when they meet the piece of{(y,−1)} × [−1, 1] ⊂ (U ∩ F ) which lies
between the lower endpoint ofτ̂−(y) and the upper endpoint of̂τ+(y) for the first
time. In order to satisfy this condition it might be necessary to shortenτ+.

Obviously there is a choice forτ+, τ− which satisfies these requirements for
x, y ∈ X whenever the limit setγv which corresponds toy is not theω-limit set of
leaves intersectinĝτ+(x).

If y is contained in a closed leaf ofF (ξ), then one can also satisfy the require-
ment forx, y ∈ X provided thatτ+ is so short that the translates ofτ̂+(x) along
leaves ofF (ξ) do not cover the segmentτ̂−(y)). We shortenτ+ whenever this is
necessary. Finally, wheny is part of a quasi-minimal set and the leaves ofF (ξ)
which intersect̂τ+(x) accumulate on this quasi-minimal set the above requirement
can be satisfied by shorteningτ± again. Now one can constructτ− in a finite
number of steps and shorteningτ± at each step.

Let t− ∈ τ−. We fix the diffeomorphismg : [−1, 1] −→ [−1, 1] in the proof
of Lemma 6.3 such thatg maps the entire interval(t−, sup(τ+)) into τ+ and the
support ofg is contained in(inf(τ−), sup(τ+)). The role of the parametersζ, ζ ′

from the proof of Lemma 6.3 is now played bysup(τ+), inf(τ−).
If ξ is modified by the procedure described in the proof of Lemma 6.3 using

the diffeomorphismg chosen above, then one obtains a confoliationξ′ such that
all leaves ofF (ξ′) starting at the elliptic singularity in the center of the original
overtwisted whoseω-limit set wasγv such thatγv ∩γ 6= ∅ never meet a hyperbolic
singularity ofF (ξ′).

Since all elliptic singularities on the boundary of the basin of the elleiptic sin-
gularity in α(Q) are automatically negative and all hyperbolic singularities on the
boundary of the basin where already present inα(∂Q) there is an overtwisted star
(Q′, V ′, α′) andV ′ can be viewed as a subset ofV by construction. Moreover,
|E(ξ′)| < |E(ξ)|. �

Now we can finally show that there are no overtwisted stars when ξ is symplec-
tically fillable.

Theorem 6.9. Let (M, ξ) be aCk-confoliation, k ≥ 2, which is symplectically
fillable. Then no oriented embedded surface contains an overtwisted star.

Proof. Let (X,ω) be a symplectic filling ofξ. Assume thatF is an embedded sur-
face containing an overtwisted star(Q,V, α). It is sufficient to treat only the case
of closed surfaces when the elliptic singularity in the interior of α(Q) is positive.

In the first part of the proof we show how to reduce the number ofvirtual ver-
tices. Because overtwisted stars are not required to be injective as Legendrian
polygons, we show in a second step how to obtain an embedded disc violating
Definition 1.3 starting from an overtwisted star(Q, ∅, α). The confoliation is mod-
ified several times but all confoliations appearing in the proof will be C0-close toξ.
In particular they are symplectically fillable. Therefore the assumption that(M, ξ)
admits an overtwisted star leads to a contradiction to Theorem 1.4.

Notice that in the presence of an overtwisted starξ cannot be a foliation every-
where. ThereforeM is not a minimal set of the fully foliated part ofξ andξ is not
a foliation without holonomy.
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Step 1:If V 6= ∅, thenξ can be approximated by a confoliation which admits
an overtwisted star with less virtual vertices than(Q,V, α). We fix v0 ∈ V . If
γ0 := γv0

intersectsH(ξ), then an application of Lemma 3.6 yields a surface
carrying an overtwisted star with less virtual vertices after aC0-small isotopy of
F . Now assumeγ0 ∩ H(ξ) = ∅.

Let L be the maximal connected open immersed hypersurface ofM which is
tangent toξ and containsγ0. If L = ∅, then there is a Legendrian segmentσ
satisfying the hypothesis of Lemma 6.4. After applying thislemma,γv intersects
the contact region of the modified confoliation and we are done.

Now assumeL 6= ∅ and letL∞ be the space of ends ofL. We say that an end
e ∈ L∞ lies in H(ξ) if for every compact setK ⊂ L there is a Legendrian curve
from H(ξ) to the connected component ofL \ K corresponding toe.

Step 1a:If L∞ 6= ∅, then we approximateξ such that all ends ofL lies in the
contact region of the modified confoliation.

The set of ends inH(ξ) is open inL∞, therefore its complementL∞
fol is com-

pact. To eache ∈ L∞
fol we associate a minimal setM(e) ⊂ lime L of the fully

foliated part ofξ (this is explained in [4], p. 115). Recall thatM cannot be a
minimal set of the fully foliated part ofξ. According to [17], p.19, all minimal sets
are either closed leaves or exceptional minimal sets. Note that we allow thatL is
contained inM(e).

If M(e) is a closed leaf ofξ whose holonomy along a curveγ transverse toF is
sometimes attractive, then we can apply Lemma 6.8 (a) toγv if there isv ∈ V with
γv ⊂ M(e). If L contains no limit set ofα(Q), then the procedure from the proof
of Lemma 6.3 can be applied directly to any curveγ ⊂ M(e) with sometimes
attractive holonomy. We can ensure the existence of such a curve by Lemma 6.5
and Remark 6.6.

If M(e) is an exceptional minimal set, then according to Proposition 6.7 there
is a simple closed curveγ in a leaf Lγ ⊂ M(e) with non-trivial infinitesimal
holonomy. Every curve inLγ which is isotopic toγ through Legendrian curves
has the same property by Lemma 1.3.17 in [9]. In particular wemay assume that
γ is transverse toF .

Using Lemma 6.8 (b) we approximateξ by a confoliationξ′ such thatLγ meets
H(ξ′).

If M(e) was an exceptional minimal set, this process might have changed the
overtwisted star in the sense that type of theω-limit sets of virtual vertices may
have changed. But recall that by the proof of Lemma 6.8 we can view V ′ as a
subset ofV . We useγ′

v to denote theω-limit set of leaves which start at the elliptic
singularity in the center of the overtwisted star and accumulated onγv, v ∈ V
before the modification.

We iterate the procedure from the very beginning withv0 ∈ V ′ and with an
integral surface ofξ′ containingγ′

0. SinceE(ξ) is finite and|E(ξ′)| < |E(ξ)| this
phenomenon can occur only finitely many times.

After finitely many steps no exceptional minimal sets will occur in the above
procedure. In later applications of the above constructionγ′

0 = γ0 and the maximal
integral surface ofξ′ containingγ′

0 is contained in the maximal integral surface of
ξ containingγ0. Because the inclusion induces a continuous mapping between the
spaces of ends and by the compactness ofL∞

fol we are done after finitely many
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steps. We continue to writeF for the embedded surface,ξ for the confoliation, and
(Q,V, α) for the overtwisted star etc.

Step 1b:We isotopeF such that all quasi-minimal sets of the characteristic foli-
ation on the resulting surface pass through the contact region. As we have already
noted in the proof of Lemma 6.8,F (ξ) has only finitely many quasi-minimal sets
(this number is bounded by the genus ofF ). Let γw, w ∈ V be a quasi-minimal
set ofF (ξ) which is disjoint fromH(ξ).

According to Theorem 2.3.3 in [23] there is an uncountable number of leaves of
F (ξ) which are recurrent (in both directions) and dense inγw while there is only
a finite number of pseudovertices of(Q,V, α) and only finite number of virtual
vertices. Therefore there ispw ∈ γw which can be connected toH(ξ) by a Legen-
drian arcσ transverse toF such thatσ does not meetα(∂Q) andσ never intersects
closed components ofΩQ. At this point we use the fact that every end of the union
of integral hypersurfaces containingγw lies in H(ξ). If σ intersectsΩQ in some
other quasi-minimal setγw′ , w′ ∈ V before it meetsH(ξ), then we replaceγw by
γw′ . Thus we may assume thatσ meetsF in pw and nowhere else.

By Lemma 2.8.2 in [9] there is a confoliationξ′ Ck-close toξ such thatF (ξ′) =

F (ξ), σ is tangent toξ andξ′ and a neighbourhood ofpw in F lies in H(ξ′). We
will denoteξ′ again byξ.

Choose a neighbourhoodU ≃ σ × [−1, 1] × [−1, 1] of σ such thatσ = σ ×
{(0, 0)} and ({pw} × [−1, 1] × [−1, 1]) ⊂ F . Moreover, we require that the
foliation by the first factor is Legendrian while the foliation corresponding to the
second factor is transverse toξ andŮ ⊂ H(ξ). Finally we assume that the foliation
which corresponds to the second factor is Legendrian when itis restricted toF .

Now we apply an isotopy toF whose effect on the characteristic foliation onF
is the same as the effect of the mapG appearing in the proof of Lemma 6.3. We
explain this under the following orientation assumptions (the other cases can be
treated in the same way):

The orientation ofF (ξ) coincides with the second factor ofU ≃ σ × [−1, 1] ×
[−1, 1] and the coorientation ofF points away fromU . In Figure 20 the left respec-
tively right edge of the rectangle corresponds to{(pw,−1)} × [−1, 1] respectively
{(pw, 1)} × [−1, 1], the foliation is oriented from left to right, the coorientation of
ξ points upwards and the coorientation ofF points towards the reader.

Choose−1 < x < 0 < y < 1 such that the points(pw,−1, x), (pw , 1, y) ∈ F

(i) do not lie on a stable or unstable leaf of a hyperbolic singularity and they
are not connected by a leaf ofF (ξ).

(ii) can be connected by a smooth Legendrian arcλ in U whose projection to
σ × [−1, 1] is embedded andλ is C∞ tangent toF . Moreover, we assume
that the projection ofλ to σ × [−1, 1] is transverse to the first factor.

The curveλ andx, y exist because of the orientation assumptions and Lemma 2.1.
Now fix x′, y′ close tox, y such thatx < x′ < 0 < y′ < y.

Using a flow along the first factor ofU we can move{pw} × [−1, 1] to a curve
which is close to the projection ofλ to σ × [−1, 1]. When we apply this flow to
F , the surface is pulled intoU and we obtain a surfaceF ′ isotopic toF which
coincides withF outside of{pw} × (−1, 1) × (x, y).

By the assumptions onλ we can chooseF ′ such thatF ′((xi) compresses the
transverse segment{(pw,−1)} × (x′, y) onto{(pw, 1)} × (y′, y) such that no leaf
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of intersecting{(pw, 1)}×(y′, y) is part of a stable or unstable leaf ofF (ξ). More-
over, we may assume that leaves which start at points of{(pw, 1)} × (y′, y) meet
the segment{(pw,−1)} × [x′, y] before the enter the region whereF ′ 6= F for the
first time. The newω-limit set is now a closed leaf ofF ′(ξ) which passes through
{(pw, 1)} × (y′, y).

This modification may have created quasi-minimal sets onF ′ which were not
present inF (ξ). But if this happens, then the new quasi-minimal sets intersect
the contact region by construction. Thus after finitely manysteps (this number is
bounded by the genus ofF ) we have isotopedF such that all quasi-minimal sets of
the characteristic foliation on the resulting surface passthrough the contact region.
Now we apply Lemma 3.6. We obtain a surfaceF ′′ containing an overtwisted star
(Q′′, V ′′, α′′) such that there is a natural inclusionV ′′ ⊂ V and allγv, v ∈ V ′′ are
cycles ofF ′′(ξ). In the next step we treat the remaining virtual vertices. Wewill
denoteF ′′ by F , Q′′ by Q, etc.

Step 1c:Let γ0 be the limit set which corresponds to the virtual vertexv0 ∈ V
of an overtwisted star(Q,V, α). We assume thatγv is a cycle for allv ∈ V and all
ends of the maximal integral surfaceL0 containingγ0 lie in the contact region.

Choose a submanifoldL′
0 ⊂ L0 of dimension2 such thatL′

0 contains all closed
components ofΩQ ∩ L0. Since each end ofL0 lies in H(ξ) we can chooseL′

0 so
that each boundary component is connected toH(ξ) by a Legendrian curve which
does not intersect the interior ofL′

0. After aC∞-small perturbation (we use again
Lemma 2.8.1 from [9]) ofξ we may assume that the boundary ofL′

0 is contained
in the contact region of the resulting confoliationξ′. This perturbation might affect
the characteristic foliation onF , but since the modification of the confoliation does
not affectΩQ and all components ofΩQ are cycles ofF (ξ) which are also present
in F (ξ′), there still is an overtwisted star(Q′, V ′α′) on F together with a natural
inclusionV ′ →֒ V .

Now we can apply Lemma 6.5 and Remark 6.6. From Lemma 6.8 a) we obtain a
confoliationξ′′ which isC0-close toξ′ such thatF (ξ′′) contains an overtwisted star
(Q′′, V ′′, α′′) with V ′′ ⊂ V ′ and allω-limit setsγ′′

w, w ∈ V ′′ which were contained
in L0 now intersect the contact region ofξ′′. After an application of Lemma 3.6
we can reduce the number of virtual vertices.

Step 2:We show that we can assume that the mapα associated to the overtwisted
star(Q, ∅, α) in F is injective.

Assume that the Legendrian polygon(Q, ∅, α) is not injective. Then there are
two edgese1, e2 of Q such thatα(e1) = α(e2). (Recall that by our genericity as-
sumption no two different hyperbolic singularities ofF (ξ) are connected by leaves.
Therefore configurations like the one shown in Figure 2 cannot appear.)

Let y be the image of the pseudovertex one1 by the mapα. Theny is a nega-
tive hyperbolic singularity ofF (ξ). Theω-limit sets of the stable leaves ofy are
negative elliptic singularitiesy1, y2 in α(∂Q) and we may assume that these sin-
gularities are contained inH(ξ) (because they areω-limit sets, they do not lie in
the interior of the foliated part ofξ).

We eliminatey1 andy using Lemma 3.5. This reduces the number of edges of
the polygon which are identified unlessy1 = y2. The case wheny1 = y2 requires
slightly more work:

After perturbing the surface on a neighbourhood ofy1 we may assume that the
two unstable leaves ofy form a smooth closed Legendrian curveγ′. We eliminate
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y1, y such thatγ′ is a closed leaf of the characteristic foliation on the resulting
surface. We obtained a Legendrian polygon(Q′, V ′, α′) on a surfaceF ′ with Q′ ≃
D2 and V ′ consists of all vertices ofQ′ which were mapped toy1 by α′. By
constructionγv′ = γ′ for all v′ ∈ V ′.

Sincey1 ∈ H(ξ′) we can approximateξ′ by a confoliationξ′′ which coincides
with ξ′ outside a tubular neighbourhood ofγ′ and is a contact structure nearγ′.
This can be done without changing the characteristic foliation on the surface by
Lemma 6.4.

Next we apply a standard procedure from contact topology called folding toγ′.
This is described in [19] (on p. 325). We obtain a surfaceF ′′ which contains an
overtwisted star(Q′′, V ′′, α′) such thatV ′ consists of two elements withQ′′ ≃ Q′,
V ′′ = V ′ but now elements ofV ′′ correspond to differentω-limit sets depending
on which side ofγ′ the corresponding leaves ofα(Q) accumulated.

In order to continue we create a pair of negative singularities along the closed
leaves inα′′(Q′′). We eliminate all pseudovertices successively and we obtain a
confoliationξ̃ onM together with an overtwisted star(Q̃, Ṽ = ∅, α̃) on a surfacẽF
which has no virtual vertices and is injective as a Legendrian polygon.α̃ becomes
injective after finitely many perturbations of̃F as in Figure 10.

Becausẽα(∂Q̃) passes through the contact region ofξ̃′ the discD = α̃(Q̃)
violates Definition 1.3. This concludes the proof of the theorem. �

This proof can be modified to yield a proof of Theorem 1.4 usingthe well known
fact that symplectically fillable contact structures are tight and without referring to
results of R. Hind in [18] which are used in [9]. Let us outlinethe argument.

Given a discD as in Definition 1.3 assume first that the holonomy of∂D in D
is non-trivial. We try follow the construction above to find aconfoliationξ′ such
that∂D remains Legendrian andξ′ is C0-close toξ. This attempt must fail since
otherwise we could continue to modifyξ′ into a symplectically fillable contact
structure such thatD becomes an overtwisted disc. This contradicts the fact that
symplectically fillable contact structures are tight.

The only point at which the above construction can break downis the application
of Remark 6.6 in the case when∂D bounds a discD′ in the maximal surface which
contains∂D and is tangent to the confoliation. In order to show thate(ξ)[D∪D′] =
0 one chooses an embedded sphereS close (and homologous) toD ∪ D′. Then
e(ξ)[S] = 0 follows from the tightness contact structures which areC0-close to
the original one.

It remains to treat the case when the holonomy of∂D in D is trivial. Then
one has to show that either∂D is a vanishing cycle (cf. Chapter 9 in [5]) or one
can replaceD by a smaller disc which has Legendrian boundary along which the
holonomy of the characteristic foliation on the disc is not trivial. If ∂D is a van-
ishing cycle, then one uses results due to S. Novikov [24] to establish the existence
of a solid torus whose boundaryT is a leaf of the confoliation. This contradicts∫
T

ω > 0 because this inequality means thatT represents a non-trivial homology
class.
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