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A REMARK ABOUT DIHEDRAL GROUP ACTIONS ON SPHERES

IAN HAMBLETON

Abstract. We show that a finite dihedral group does not act pseudofreely and locally
linearly on an even-dimensional sphere S2k, with k > 1. This answers a question of
R. S. Kulkarni from 1982.

1. Introduction

In this note we let Dp = 〈a, b | ap = b2 = 1, bab = a−1〉 denote the finite dihedral group
of order 2p, for p an odd prime. A famous theorem of Milnor [8] states that a finite
dihedral group can not act freely on a topological n-manifold with the mod 2 homology
of Sn. More generally, a pseudofree action is one which is free outside of a discrete set
of points. In [6, Theorem 7.4], R. S. Kulkarni studied orientation-preserving, pseudofree
actions of finite groups G on manifolds which are Z/2-homology n-spheres, and found
that for n = 2k the group G must be (i) a periodic group which acts freely on S2k−1,
(ii) dihedral, or (iii) tetrahedral, octahedral or icoshedral (when k = 1). The first case
occurs as the suspension of any free action of a periodic group on S2k−1, and the other
cases already appear for orthogonal actions on S2. Kulkarni asked whether the second
case could actually occur on S2k if k > 1. This turns out to be impossible.

Theorem A. The dihedral group G = Dp, p an odd prime, can not act pseudofreely and

locally linearly on S2k, preserving the orientation, for k > 1.

For k even, we show that there does not even exist a finite pseudofree G-CW complex
X ≃ S2k, with XG = ∅. For all odd integers k ≥ 1, such complexes do exist, for example
by taking the join of S2 with the action given by G ⊂ SO(3) and a finite Swan complex
for G (see [9], [3]).

Remark 1.1. My interest in this question was prompted by the recent paper of A. Ed-
monds [2], where he proves this result for k even. Our methods seem rather different.
The discussion by Edmonds in [2, 4.1] combined with Theorem A shows that there are
no effective pseudo-free dihedral actions on Sn, for n > 2, even if some elements of G are
allowed to reverse orientation.

2. The chain complex

In this section we let G = Dp and suppose that X is a finite G-CW complex such that
X ≃ S2k, with k > 0, and XG = ∅. We further assume the G-action is pseudofree, and
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induces the identity on homology. It follows from [6, Prop. 7.3] that every non-identity
element of G fixes exactly two points. We assume that XG = ∅ since this is a necessary
condition for a locally-linear, pseudo-free action on a sphere (by Milnor’s theorem).

Let C = C(X?)) denote the chain complex of X over the orbit category ZΓ := ZOrF G
with respect to the family F of all proper subgroups of G (see [1] or [7] for this theory).
The notation means that Ci(G/U) = Ci(X

U), for U ≤ G, and the action of NG(U)/U on
Ci(G/U) induced by the G-action on X is expressed algebraically through the functorial
properties of C..

Our pseudo-free assumption on the G-CW complex X implies that Ci(G/U) = 0, if
U 6= 1 is a non-trivial subgroup of G, and i > 0. Therefore,

(2.1) Hi(C)(G/U) = 0, if i > 0, for all U 6= 1.

From the homology of S2k, we have

(2.2) H0(C)(G/1) = Z, and Hi(C)(G/1) = 0 for i 6= 0, 2k.

In addition, since we assumed that G acts trivially on the homology of S2k, we have

(2.3) H2k(C)(G/1) = Z,with trivial G-action.

LetH = 〈a〉 andK = 〈b〉 denote particular subgroups ofG, of order p and 2 respectively.
The orbit types give the chain group

C0 = Z[G/H ? ]⊕ Z[G/K ? ]⊕ Z[G/K ? ],

where Z[G/V ? ] denotes the free right module over the orbit category with values

Z[G/V ? ](G/U) = ZMapG(G/U,G/V ),

for all proper subgroups U ≤ G. In particular, the homology of the fixed sets is given by

(2.4) H0(C)(G/H) = Z[G/H ? ](G/H) = Z[NG(H)/H ] = Z[Z/2],

and

(2.5) H0(C)(G/K) =
(

Z[G/K ? ](G/K)
)2

=
(

Z[NG(K)/K]
)2

= Z⊕ Z.

Definition 2.6. A finite ZΓ -chain complex C of finitely-generated free ZΓ -modules,
which satisfies the algebraic conditions (2.1)–(2.5), is called a pseudofree ZΓ -chain com-

plex with the Z-homology of S2k.

One example of such a complex arises from the standard orthogonal action Y = S(V )
of the dihedral group on S2 (for G as a subgroup of SO(3)). The SO(3)-representation
V = W ⊕ R− is the sum of the standard 2-dimensional real representation W (given
by the action on a regular 2p-gon in the plane), and the non-trivial 1-dimensional real
representation R−. The chain complex D = C(Y ?) over the orbit category has the form

(

Z[G/1 ? ]
)2

//

(

Z[G/1? ]
)3

// Z[G/H ? ]⊕
(

Z[G/K ? ]
)2

D2
// D1

// D0



A REMARK ABOUT DIHEDRAL GROUP ACTIONS ON SPHERES 3

where H2(D) = Z
0
is the ZΓ -module with value Z

0
(G/1) = Z, and zero otherwise. The

module H0 := H0(D) has value H0(G/1) = Z, and values at G/H and G/K as listed
above. In general, for any pseudofree ZΓ -chain complex C with the Z-homology of S2k,
we have H2k(C) = Z

0
and H0(C) = H0(D).

Lemma 2.7. Suppose that C is a pseudofree ZΓ -chain complex with the Z-homology of

S2k. Then the complex C is chain homotopy equivalent to a finite free 2k-dimensional

chain complex C′, with C′
i = Ci for i ≥ 4, whose initial part C′

2
→ C′

1
→ C′

0
is chain

isomorphic to D.

Proof. Since H0(C) = H0(D), this follows from the version of Schanuel’s Lemma over
the orbit category given in the proof of [4, Lemma 8.12]. By construction C′

3
= C′′

3
⊕ F ,

where C′′
3
is isomorphic to a direct sum of copies of Z[G/1 ? ]. �

An immediate consequence is the statement of Theorem A for k even.

Corollary 2.8 (Edmonds [2]). Let G = Dp. If k is even, there is no effective pseudofree

G-action on a finite G-CW complex X ≃ S2k, inducing the identity on homology.

Proof. Let C = C(X?) denote the chain complex over the orbit category of such an action.
From the chain equivalent complex C′ ≃ C we can extract an exact periodic resolution

0 → Z
0
→ C2k → C2k−1 → · · · → C4 → C′′

3
→ Z

0
→ 0

since H2(D) = H2k(C) = Z
0
. By evaluating at G/1 we obtain a periodic resolution from

Z to Z over ZG of length (2k − 2). Since G = Dp has periodic cohomology of period 4
(and not two), we conclude that k is odd. �

The proof of Theorem A, k odd. Suppose, if possible, that we have a locally linear and
orientation-preserving pseudofree topological action of G on S2k, for some odd integer
k ≥ 3. Then there exists a finite G-CW complex X ≃ S2k, and a chain homotopy
equivalence C(X?) ≃ C′ provided by Lemma 2.7. We may identify the singular set
Sing(X) of X with the singular set of the given action on S2k. Let {x0, x1, x2} ⊂ Sing(X)
denote representatives of the distinct G-orbits of singular points (with Gx0

= H , and
Gxi

= K for i = 1, 2). Around each singular point xi, 0 ≤ i ≤ 2, we can choose a linearly
embedded 2-disk slice G ×Gxi

D2 ⊂ S2k, since the action (S2k, G) is locally linear. This
gives a G-equivariant embedding

f0 :
⋃

0≤i≤2

(

G×Gxi
D2

)

⊂ S2k.

Since the pseudofree orbit structure of the standard G-action on S2 = S(V ) is the same
for any locally linear action on S2k, we can consider f0 to be a G-equivariant embedding
of a tubular neighbourhood of the singular set of S(V ) into S2k. By obstruction the-
ory, and since k ≥ 3, we can extend this embedding f0 to a G-equivariant embedding
f : S(V ) ⊂ S2k. Non-equivariantly such an embedding of S2 ⊂ S2k is isotopic to a stan-
dard embedding. We have thus obtained a dihedral action on S2k of the type considered
in my earlier joint work with Erik Pedersen [5], namely one conjugate to “a topological
action on a sphere which is free off a standard proper subsphere, and given by a S(V )
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on the subsphere”. However, we proved in [5, Theorem 7.11] that such an action exists if
and only if the representation V on the subsphere contains two R− factors. Since this is
not the case for the standard SO(3)-representation V of G, we conclude that a pseudofree
G-action on S2k does not exist for k > 1. �
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