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VANISHING OF ALGEBRAIC
BRAUER-MANIN OBSTRUCTIONS

MIKHAIL BOROVOI

ABSTRACT. LetX be a homogeneous space of a quasi-trikigtoupG, with geometric stabilizer
H, over a number fielk. We prove that under certain conditions on the charactenpyad H,
certain algebraic Brauer-Manin obstructions to the Hasseiple and weak approximation vanish,
because the abelian groups where they take values vanisén Wis connected or abelian, these
algebraic Brauer-Manin obstructions to the Hasse priecipld weak approximation are the only
ones, so we prove the Hasse principle and weak approximfatiof under certain conditions. As
an application, we obtain new sufficient conditions for theske principle and weak approximation
for linear algebraic groups.
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1. INTRODUCTION: SANSUC'S RESULTS

We are inspired by Sansuc’s paper![Sa]. In this section we sfad discuss Sansuc's results
on the Hasse principle and weak approximation for princimahogeneous spaces of connected
linear algebraic groups admitting special coverings.

1.1. Letk be a field of characteristic O arkbe a fixed algebraic closure kf If X is an algebraic
variety overk, we write X = X x k.

A k-torus T is called quasi-trivial if its character group:= Hom(T, Gmﬁ) is a permutation
Gal(k/k)-module, i.eT has aZ-basis which the Galois group permutes.
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2 MIKHAIL BOROVOI

A special coveringf a (connected) reductidegroupG is a short exact sequence
1-B—-G —-G—1,

whereG' is a product of a simply connected semisimklgroup and a quasi-trividé-torus, ancB
is a finite central subgroup &'.

Not all reductive groups admit special coverings. For exama nonsplit one-dimensional
k-torus does not admit such a covering.

A finite groupT is calledmetacyclicif all its Sylow subgroups are cyclic. Any cyclic group is
metacyclic. The grouf?./27Z x 7Z/2Z is not metacyclic. A finite Galois extensidryk is called
metacyclic if GalL/k) is a metacyclic group. Clearly any cyclic extension is mgtic.

Let k be a field of characteristic 0 aiM be a Galk/k)-module. We say that a field extension
K c k of k splits Mif Gal(k/K) acts trivially onM. If T is ak-torus, therK splits T if and only if
K splits T.

Now letk be a number field. We denote by the set of all places of k, and by¥, the set of
infinite (archimedean) places. FoE 7 we denote by, the completion ok atv.

1.2. Let G be a reductivék-group over a number fielkladmitting a special covering
1-B—+G G- 1

Let B denote the character groupBfi.e. B= Hom(B,G ;). LetK be the smallest subfield &f

splitting B (i.e K is the subfield corresponding to the subgroup Katl(k /K) — Aut(l§)]). LetX
be a right principal homogeneous spac&sof

Sansuc/[Sa] proved the following results:

Proposition 1.3 ([Sg], Cor. 5.2) Let k G, B, K, and X be as il _1]2. If Kk is a metacyclic
extension, then X satisfies the Hasse principle and wealoajppation, i.e. if Xk,) # 0 for any
place v of k, then Xk) # 0 and, moreover, X) is dense iMyey X(Ky).

Remarkl.4. In [Sd], Sansuc always assumes t@ahas no factors of typ&g. This assumption
can be removed by Chernousov’s result/[Ch].

Remarkl.5. If the extensiorK /k is not metacyclic (e.g. G&/k) = Z/2Z & 7./27), then the
Hasse principle or weak approximation may fail %y see [Seglll.4.7] and [Sa, Examples 5.6,
5.7, and 5.8].

Proposition 1.6 ([Sg], Thm. 3.3 and Lemma 1.6) etk G, B, K, and X be as if_1]2. Assume
that X has a k-point (hence we may identify X with G). Let'8 be a finite set formed by places
of k with cyclic decomposition groups in/K (for example, assume that/Kis unramified at all
finite places in S). Then X has the weak approximation prgpers, i.e. the set ¥) is dense in

Hvesx(kv)'

1.7. The results of Propositioris_1.3 ahd]1.6 can be explainedrinst®f the Brauer group of
X. Let X be a smoottk-variety. We write BfX) for the cohomological Brauer group &f, i.e
Br(X) = HZ(X,Gm). We set Bi(X) = ker{Br(X) — Br(X)]. We define thealgebraic Brauer
group Bry(X) by Bra(X) = cokefBr(k) — Bry(X)].

Whenk is a number field an& C 7 is a finite set of places df, we set

Bs(X) = ker | Bra(X) — |_| Bra(X,) | -
v¢S

Set Bo(X) = Us Bs. We setB(X) := Bo(X) and Bso(X) = Bs(X)/ Bo(X) = Bs(X)/ B(X).
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Sansucl[Sa, (6.2.3)], following Manin_|M], defined a natywalring
|_| X(ky) X Bp(X) = Q/Z
vey
(see alsol[Sk, (5.2)]), which is continuous in the first argatrand is additive in the second one.
This pairing induces a continuous map

() m: [ X(k) = Hom( By(X),Q/Z).
vey

If X0 € X(K) C Mver X(kv), thenm(xg) = 0. If mis not identically 0, saym(xy ) # 0 for some
Xy = (Xv)ver € [ver X(kv), thenxy is not contained in the closure &f(k), hence the Hasse
principle or weak approximation fail foX (i.e. eitherX (k) = 0, or X(k) # 0 butX (k) is not dense
in Mvey X(ky)). We say tham s the algebraic Brauer-Manin obstruction to the Hasse pritei
and weak approximation for X associated wiih,,.

Assume thak is a smoothk-variety having &-point. LetSC ¥ be a finite set of places &t
Inspired by [CTS] and [Sa], we defined [n [BRL] a hatural pairing

|‘Lx .) % Bso(X) = Q/Z.

This pairing induces a continuous map

2 Mg: rLX v) = Hom( Bgp(X),Q/Z).

If Xo € X(K) C MvesX(ky), thenmg(xg) = 0. If mgis not identically 0, sayns(xs) # O for some
Xs € [vesX(ky), thenxs is not contained in the closure #f(k), hence weak approximation &
fails for X. We say thaing is the algebraic Brauer-Manin obstruction to weak approximatin S
for X associated withGgp(X).

Using Sansuc’s methods and results, one can show that urelassumptions of Proposition
1.3 we haveB, = 0, hencen = 0, see Proposition_1.8(ii) below. Moreover, the Hasse fplac
and weak approximation hold fof because there is no Brauer-Manin obstruction. Similarly,
under the assumptions of Proposition| 1.6 we h#sg = 0, hencems = 0, see Proposition_1.8(i)
below. Again, weak approximation Bholds forX because there is no Brauer-Manin obstruction.
We provide some details.

Proposition 1.8. Letk G, B, K, and X be as in_1]2. Let& ¥ be a finite set of places of k.
(i) If any place ve S has a cyclic decomposition group ifl§ then Bgp(X) = 0.
(i) If K /k is a metacyclic extension, thdn,(X) = 0.

Proof. We use the notation 0§3.1 below. By [SA, Lemma 6.8] BfX) = Bry(G), hence
Bu(X) = By(G)and Bsp(X) = Bgp(G). By [Sa, Prop. 9.8]5,(G) = TIT%,(K, B) and B(G) =
111*(k,B). One proves similarly thatBs(G) 2 III§(k,B), hence Bgp(G) = III§y(k,B) =
I3k, I§) / T3 (K, I§). In case (i), sinceSis formed by places ok with cyclic decomposition
groups inK /k, by [Sa, Lemma 1.1(iii)] (see also Lemrmal3.2(iii) beIO\M)Igo(k, I§) =0, hence
Bsp(X) = 0. In case (i), sinc& /k is metacyclic, by[[Sa, Lemma 1.3] (see also Lenima 3.4
below) III%,(k, B) = 0, henceB,(X) = 0. 0

An alternative proof of Propositidn_1.38y Propositiori 1.B(ii) the Brauer-Manin obstructiorof
formula (1) is identically zero in our case, i.e there is ngelraic Brauer-Manin obstruction to
the Hasse principle and weak approximation associated With Since by [[Sa, Cor. 8.7 and
Cor. 8.13] this obstruction is the only one (see Rerhark Wé)conclude that the Hasse principle
and weak approximation hold fof. a
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An alternative proof of Propositidn_1.@y Propositiori 1.8(i) the Brauer-Manin obstructimng of
formula (2) is identically zero in our case, i.e. there is fgebraic Brauer-Manin obstruction to
weak approximation isassociated withbgp(X). Since by[[Sa, Cor. 8.13] this obstruction is the
only one, we conclude that weak approximatiorsinolds forX. O

2. INTRODUCTION (CONTINUED): OUR MAIN RESULTS

In this section we state our generalizations of Sansucilteefn two cases: homogeneous
spaces of quasi-trivial groups and principal homogenepases of connected linear algebraic
groups. Our main results are Theordms 2.1[and 2.7, genegaRzopositiod 1.8 and proving that
the groupsBsp(X) and B,(X) vanish under certain conditions &n

In order to state our results we use the notion of a quasatrgroup, introduced by Colliot-
Thélenel[CT, Definition 2.1], see also Definitionl4.2 below

Let X be a right homogeneous space of a quasi-tricigroup G over a number fielk. Let
H C G be the stabilizer of &-pointx € X (k) (we do not assume that is connected or abelian).

It is well known that the character groltpof H has a canonical structure of a Galois module, see
[B3, 4.1] or [BvHZ, Rem. 5.7(1)], see al§8.1 below.

Theorem 2.1. Let X be a right homogeneous space of a quasi-trivial k-grGugver a number
field k. LetH C G be the stabilizer of &-pointx € X (k). Let SC 7 be a finite subset. Let J be

the smallest Galois extension krsplitting the Galois modulel.
(i) If any place ve S has a cyclic decomposition group iflK then Bgp(X) = 0.
(i) If K /k is a metacyclic extension, theB(X) = 0.

Theorem 2.11 will be proved in Sectibh 5.

Corollary 2.2. Let X be as in Theorem 2.1. Assume that X has a k-point, e HXG, where G

is a quasi-trivial k-group and HZ G is a k-subgroup. Assume that H is connected or abelian. Let
ScC ¥ be afinite set of places of k formed by places with cyclic deesition groups in Kk (for
example assume that/K is unramified at all finite places in S). Then X has weak appration

inS.

Proof. SinceH is connected or abelian, the algebraic Brauer-Manin obitm ms associated
with Bgp is the only obstruction to weak approximation $for X, see [[B3, Thm. 2.3]. By
Theoreni 2.1L(ims = 0, henceX has weak approximation i& O

Corollary 2.3. Let X be as in Corollari/ 2]2, i.e. X H\G, where G is a quasi-trivial k-group and
H C Gis ak-subgroup. Assume that H is connected or abelian. Xheas the real approximation
property, i.e XK) is dense iM]yc v, X(kv).

Proof. For anyv € ¥, the decomposition group efin K/k is cyclic, and by Corollari 21X has
weak approximation irv;,, i.e. real approximation. a

Question 2.4. Does there exist a homogeneous spdce H\G, whereG is a quasi-trivialk-
group over a number fieki andH C G is a nonconnected non-abelikssubgroup, such that real
approximation fails foixX?

Corollary 2.5. Let X be a homogeneous space having a k-rational point withected stabilizer,
of a connected linear algebraic group (not necessarily dtr?gal) over a number field k; in other
words, X=H\G, where G is a connected k-group andHG is a connected k-subgroup. Then X
has the real approximation property.

Proof. By Lemmal4.8 below we can writé = H'\G/, whereG' is a quasi-trivialk-group and
H’ ¢ G’ is a connectedt-subgroup. Now by Corollady 2.8 has real approximation. O
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Corollary 2.6. Let X be as in Theorem 2.1. Assume tHas connected or abelian. Assume that
K/k is a metacyclic extension. Then X satisfies the Hasse plgnand weak approximation.

Proof. SinceH is connected or abelian, the algebraic Brauer-Manin obistmum associated with
B is the only obstruction to the Hasse principle and weak agpration, see[[B3, Thms. 2.2
and 2.3]. By Theorerh_2.1(ii) we hava = 0, henceX satisfies the Hasse principle and weak
approximation. d

Note that Propositioris 1.3 ahd 11.6 (due to Sansuc) followeatiately from our Corollari€s 2.6
and 2.2, respectively. Note also that the special case afll@or[2.2 whenG is simply connected
andH is connected was earlier proved in_[B1, Cor. 1.6] by a diffiemaethod. The special case
of Corollary[2.6 wherH is connected anX has ak-point was proved in [B5, Thm. 4.2] by the
method of [B1].

In order to state our results on principal homogeneous sgafamnnecte#-groups, we use the

notion of thealgebraic fundamental groups (G) introduced in([B4§1] (where we wroters (G)
instead ofra (G)), see alsa [CIT§6]. Note thatrg (G) is a finitely generated Galois module.

Theorem 2.7. Let G be a connected linear k-group over a number field k. LeteXabight
principal homogeneous space (right torsor) of G over k. Let 8 be a finite set of places of k.
Let K/k be the smallest Galois extensiorkisplitting the Galois module; (G).

(i) If any place ve S has a cyclic decomposition group ik then Bgg(X) = 0.

(i) If K /k is a metacyclic extension, theB(X) = 0.

Theoreni 27 will be proved in Secti@h 6.

Proposition 2.8. Let G be a connected linear algebraic group over a field k ofrabiristic 0.
Let K/k be the smallest Galois extensiorkigplitting 75 (G). Then there exists an exact sequence

1+-H—-G —-G—1,

where Gis a quasi—tAriviaI k-group and H is a central k-subgroup ofltiplicative type, such that
K splits bothH andG'.

Propositior_2.B will be proved in Sectidh 7. In Section 8 walkbive an alternative proof of
Theoreni 2.7 based on Proposition] 2.8 and Thedrem 2.1.

Corollary 2.9. Letk, G, and K be asin TheorémP.7. Let 3 be a finite set of places of k formed
by places with cyclic decomposition groups ifk{(for example assume that/Kis unramified at
all finite places in S). Then G has weak approximation in S.

Proof. Under our assumptions the algebraic Brauer-Manin ob$bruaing associated with
Bsp(G) is the only obstruction to weak approximatiorSfor G, see([Sh, Cor. 8.13]. By Theorem

[2.4()) ms = 0, henceG has weak approximation i8. Alternatively, the corollary follows from
Propositior 2.8 and Corollafy 2.2. O

Corollary 2.10. Let k, G, X, and K be as in Theordm12.7. Assume thét Is a metacyclic
extension. Then X satisfies the Hasse principle and wealozippation.

Proof. Under our assumptions the algebraic Brauer-Manin obsbruch associated withG, is

the only obstruction to the Hasse principle and weak appration forX, see([Sh, Cor. 8.7 and
Cor. 8.13] (see Remalk 1.4). By Theorém]2.7(ii) we have- 0, henceX satisfies the Hasse
principle and weak approximeition. Alternatively, the dtaxy follows from Proposition 2J8 and

Corollary[2.6 (becausk splitsH, whereH is the stabilizer ok in G/, see§8.2 below). O
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Remark2.11 Sansuc proved in[$a, Cor. 3.5(iii)] that any connedtegtoup over a number field
k has the real approximation property. This follows from oordlary[2.9 (because infinite places
have cyclic decomposition groups in @&//k)) and from our Corollar{ 2]5 (because we may write
G = {1}\G, and{1} is a connectedt-subgroup).

Note that Sansuc proved the following result:

Proposition 2.12(Sansuc) Let G be a connected linear k-group over a number field k. Let/s
be a finite subset. Assume that G splits over a finite Galoéneidn K/k.

(i) If any place ve S has a cyclic decomposition group il then G has weak approximation
in S (cf.[Sa, Cor. 3.5(ii)].

(i) If K /k is a metacyclic extension, thdb,,(X) = 0 (cf. [S&, Prop. 9.8] hence any principal
homogeneous space X of G over k satisfies the Hasse princigle@ak approximation.

Proposition 2. 12 follows from our Theorém P.7: if a finite GialextensiorK /k splitsG, then it
splits 75.(G). The following example shows that Theorém]2.7 is indeechgio than Proposition
2.12.

Example 2.13.Letk be a number field, and I&t; andK; be two different quadratic extensions of
kin k. LetK be the composite df; andK», thenK /k is a Galois extension with non-metacyclic
Galois group GdK /k) = Z /27 x 7./ 27.. SetGy = SU,,, itis ak-group. Set

Gy = R]kz/ka = ker[NKz/k: RKz/kaKz — Gmk],
whereN, i is the norm map. Set = {(—1,-1),(1,1)} C G1 x Gy, and seG = (G x Gp)/u.

ClearlyG does not admit a special covering. ILe¢k be any finite Galois extension ksplitting
G. ThenL splits bothG; andG;, hencel. D K, and thereford. /k is not metacyclic. We see that
we cannot prove the Hasse principle and weak approximatioa principal homogeneous space
X of G using Proposition 113 or Propositibn 2.12.

However, the quadratic extensio,/k splits 75(G). Indeed, consider the composed
homomorphisnG; — G1 x G, — G, itis injective. We obtain a short exact sequence of comukbct
reductivek-groups

156G —->G—=Gy/u — 1,
wherep, = {1,—1} C Gy. Sincerq(Gy) =0, we see thatn (G) = 1 (Gz/2), cf. [B4, Lemma
1.5] or [CT, Prop. 6.8]. The quadratic extensip/k splits the one-dimensional tor,/ i,
henceK,/k splits i (G,/U2) and 1 (G).

Now by Theoreni 2]7(ii))5(X) = 0, and by Corollary 2. 1X satisfies the Hasse principle and
weak approximation.

The plan of the rest of this paper is as follows. In Sectildnse3gwe preliminaries on Galois
cohomology of finitely generated Galois modules. In Sedfiome give preliminaries on quasi-
trivial groups. In Sections|5 armd 6 we prove Theoréms 2.1 andr@spectively. In Sectidd 7 we
prove Propositioh 218, and in Sectign 8 we use this prowsiti order to give an alternative proof
of Theoreni 2.I7. Our proofs are based on the results of Se8tamd of our papers [BvH1] and
[BvHZ].

3. PRELIMINARIES ON GALOIS COHOMOLOGY OF FINITELY GENERATEDGALOIS MODULES

3.1. In this sectiork denotes a number field, aids a discrete Gdk/k)-module which is finitely
generated as an abelian group (we say just “a finitely gezaalois module”). Byswe always
denote a finite subset of. We write

IIg(k,B) = ker|H'(k,B) — [TH'(k,,B) | -
V¢S



BRAUER-MANIN OBSTRUCTIONS 7

We have ITy(k,B) = IIT'(k,B). We setIIlI5y(k,B) := III5(k,B)/ ITTy(k,B) and IIT,(k,B) =

Lemmad 3.2 an 3.4 below are straightforward generalizsitaf [Sa, Lemmas 1.1 and 1.3]
(Sansuc assumes tHais afinite Galois module).

Lemma 3.2. Let K/k be a a finite Galois extension with Galois grog@nd S be a finite set of
places of k.

(i) If B is a constaniGal(k/k)-module (i.e Gal(k/k) acts trivially), then ITI5(K /k,B) = O.
(ii) If the extension Kk trivializes B, there is a reduction
I1&(k,B) = IIE(K /K, B).
(iii) If S’ is a finite subset of” formed of places with cyclic decomposition groups ifkkthen
I3 4 (K/k B) = TII(K/k,B).
U

Consider the homomorphism Gll/k) — Aut(B). The imagey of this homomorphism is finite.
Let K denote the subfield ik corresponding to the kernel of this homomorphism, tKefk is a
finite Galois extension with Galois grogp We say thaK /k be the smallest Galois extensionkin
splitting B.

Corollary 3.3. Let K/k be the smallest Galois extensionkrsplitting B, and let S 7 be a

finite set of places of k. If any placesvS has a cyclic decomposition group @al(K /k), then
I115(k,B) = 0.

Idea of proof.We have ITT(k, B) = III§(K /k,B) = III5(K/k,B) = III(k,B). O

Recall that the exponent of a finite group is the least commatiipte of the orders of its
elements. A finite group is metacyclic if and only if its exgonis equal to its order.

Lemma 3.4. Let K/k be the smallest Galois extensiorkisplitting B, and let n and e be the order
and the exponent gf= Gal(K /k), respectively. Then multiplication by@equal€in 111 (k,B).
In particular, if K/k is a metacyclic extension, then

I} (k,B) = 0.

4. PRELIMINARIES ON QUASI-TRIVIAL GROUPS

4.1. Letk be afield of characteristic @,a fixed algebraic closure &f LetG be a connected linear
k-group. We seG = G xik. We use the following notation:

GYis the unipotent radical d&;

G'®d = G/GY (it is reductive);

GSSis the derived group dB"d (it is semisimple);

G3Cis the universal cover d&°* (it is simply connected);

Glr = G'4/G (it is a torus).

Definition 4.2 ( [CT], Prop. 2.2) A connected lineak-groupG over a fieldk of characteristic 0
is calledquasi-trivial, if G'°" is a quasi-trivial torus an@Sis simply connected.

Lemma 4.3 (well known). Let k be a field of characteristic 0 and let X be a right homogeise
space of a connected linear k-group G. EetC G be the stabilizer of a poite X (k); we assume
thatH is connected. Then the variety X is a homogeneous spacenefguasi-trivial k-group G
such that the stabilized’ ¢ G’ of X in G’ is connected.
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Proof. The lemma follows from [CIT, Prop.-Def. 3.1], cf. [B3, Prodflemma 5.2]. a

5. HOMOGENEOUS SPACES OF QUASTRIVIAL GROUPS

In this section we prove Theordm P.1.

5.1. Letk be a field of characteristic 0, and lat— B be a morphism of Ggk/k)-modules. We
write H' (k, A — B) for the Galois hypercohomology of the compléx- B, whereA is in degree
0 andBis in degree 1. Whekis a number field, we definélls(k,A — B), IlIgy(k,A— B), and

11 (k,A— B) as ing3.

The following lemma must be well known (seée [B3, Proof of Leanind] and/[BvH1, Proof of
Cor. 2.15] for similar results) but we do not know a referemteere it was stated, so we state and
prove it here.

Lemma 5.2. Let k be a number field and P L a complex of5al(k/k)-modules in degrees 0 and
1, where P is a permutatioGal(k/k)-module. Then for any finite set S of places of k we have a
canonical isomorphismiITg(k,L) = TIT4(k,P — L).
Proof. We have an exact sequence
0=H*(k,P) — H(k,L) — H?(k,P — L) — H?(k,P),

and similar exact sequences for Galois cohomology &yéor v ¢ S. We obtain a commutative
diagram with exact rows

0——H(kL) H2(k,P — L) H2(k,P)
0 — MvgsH (kL) — MvgsH?(ky,P = L) — MuesH?(ky, P).

SinceP is a permutation module, we havlI4(k,P) = 0, cf. [Sa, (1.9.1)]. An easy diagram
chase shows that the homomorphidiii(k,L) — II14(k,P — L) induced by this diagram is an
isomorphism. a

Proposition 5.3. Let X be a homogeneous space of a quasi-trivial k-group G avember field
k. LetH C G be the stabilizer of &-pointx € X (k). Let SC ¥ be a finite set of places of k. Then

there is a canonical isomorphisribs(X) = TI14(k,H).
Proof. By [BvHZ, Thm. 7.2] we have a canonical, functorialkisomorphism
Bra(X) = H2(k, G — H),
whence we obtain a canonical isomorphism
Bs(X) 2 113(k,G — H).
SinceGis a permutation module, by Lemrmals.2 we have a canonicalaguimsm
1k, H) 5 113k, G — H).

Thus we obtain a canonical isomorphisBis(X) = 1IIi(k,H).

O

5.4. Proof of Theoreni_2]1.By Proposition[5.8 we have a canonical isomorphigsg(X) =
111§(k,H), hence we obtain a canonical isomorphisig(X) = ngo(k,ﬁ) and a canonical

isomorphism B, (X) 2 1L (k, H). In case (i) by Corollariz313 we haleéw(k,ﬁ) =0, hence
Bsp(X) = 0. In case (i) by Lemma3.4 we havl},(k,H) = 0, henceB,(X) = 0. 0
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6. PRINCIPAL HOMOGENEOUS SPACES OF CONNECTED GROUPS

In this section we prove Theordm P.7.

6.1. LetM be a Galk/k)-module, finitely generated ovér. Choose &-free resolution
3) O—-L—-P—>M—=0,
whereL andP are finitely generateé-free Galois modules. We write
H (k,MP) := H' (k,PY — L"),
whereP" := Homy(P,Z) is in degree 0 andl” := Homy(L,Z) is in degree 1. We regamd® :=
(P¥ — L") as a dual complex t¥l. Since the isomorphism class BIP in the derived category

does not depend on the choice of the resolufidn (3), the bghemologyH! (k,MP) also does not
depend on the resolution.

Lemma 6.2. Let M be as if6]1. Let Kk be the smallest Galois extensionkirsplitting M. Let
SC 7 be finite set of places of k.

(i) If any place ve S has a cyclic decomposition group@al(K /k), then ngo(k, MP)
(ii) If K /k is a metacyclic extension, theliilZ (k,MP) = 0.

0.

Proof. Setg = Gal(K/k), thenM is ag-module. We can choose a resolutidh (3) such Ehista
permutationg-module and. is aZ-free g-module. TherP" is a permutation module as well, and
by LemmdJ5.2 we have a canonical isomorphism

ik, LY) = Ik, PY — L) = I113(k,MP),
whence we obtain canonical isomorphisms
15k, LY) = 11154(k,MP),
1L (kL) 5 1112, (k, MP).

SinceK splitsL, in case (i) by Corollarf 313 we havBlIg,(k, L") =0, hencelll§,(k,MP) =0.
In case (i) by Lemm&a3l4 we havH1L (kL") = 0, hencelll? (k,MP) = 0. 0

6.3. Proof of Theoreni 217 By [S&, Lemma 6.8] there is a canonical isomorphismg(By —
Bra(G). By [BvHI, Cor. 7] there is a canonical isomorphismy@) = H?(k, 71(G)P). Hence
Bs(X) = TI14(k, m(G)P), whence Bgp(X) & 1TT54(K, 76(G)P) and By (X) = TI1Z,(k, 78 (G)P).
In case (i) by Lemma_6l2(i) we halego(k, 15 (G)P) = 0, hence Bgp(X) = 0. In case (i) by
Lemma[6.2(ii) we havelll2 (k, i (G)P) = 0, henceB(X) = 0. O

7. CONNECTED GROUPS AS HOMOGENEOUS SPACES OF QUABRIVIAL GROUPS

In this section we prove Propositibn P.8.

7.1. Proof of Propositior 2J8.We may and shall assume thatis reductive, cf. [[CT, proof of
Prop.-Def. 3.1]. Consider the largest quotient to@f¥ of G. SetM = 1 (G), thenX,(G") =
M /Miors, WhereMyors denotes the torsion subgroup Mf SinceK splits M, we see thaK splits
X*(Gtor).

We follow the construction i [CT, proof of Prop.-Def. 3.1let Z° denote the radical (the
identity component of the center) of our reductive grdbip SinceZ? is isogenous t@!', we
see thatK splits X,(Z°). Setg = Gal(K/k), thenX,(Z°) is a g-module. Choose a surjective
homomorphism ofi-modulesP — X, (Z°), whereP is a finitely generated permutatigamodule.
We regarcP as a Galk/k)-module, therK splitsP. LetQ be the quasi-triviak-torus withX, (Q) =
P. We have a surjective homomorphigh Q — Z°.
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Consider the canonical homomorphism
p: G¢— G*— G.
SetG' = G x¢ Q, thenG' is a quasi-trivial group ani splits G = P". We define a surjective
homomorphism
a:G — G, a(g,9 =p(g)0(q), wherege G*¢, g Q.
SetH = kera, thenH is a centrak-subgroup ofG'. We have an exact sequence
(4) 1 -H-G G- 1

SetM’ := i (G') = P, thenK splits M and M’. By Lemmal 7.2 below we have a canonical
isomorphism of Galois moduled = Ext) (M’ — M, Z) (whereM'’ is in degree 0). It follows
thatK splitsH, which proves the proposition. O

Lemma 7.2. Assume we have a short exact sequence

1—>H—>G’L>G—>1,

where G and Gare connected reductive k-groups over a field k of charastierD, and HC G’ is
a central k-subgroup. Set M= i (G), M’ := 1 (G'). Then there is a canonical isomorphism of
Galois modules

X*(H) =2 ExQ (M — M, Z),
where in the complex M— M the Galois module Mis in degree 0 and M is in degree 1 and we
write X*(H) := H.

Proof (C. Demarche). Consider the induced homomorpistn G'SS— G5, it is surjective and

its kernel is a centrak-subgroup inG*S, hence finite. Consider the induced homomorphism
¢3¢ G'S¢— G€, it is surjective and has finite kernel. SinG&°® is simply connected, we conclude
that ¢sCis an isomorphism.

Choose compatible maximal tofg C G, Tg C G, Tgse C G*¢andTgsc € G'SC. It follows from
the definition ofM andM’ that we have a commutative diagram with exact rows

(5) 0—— X* (TG/sc) E—— X*(TG/) — M —0

C T

00— X* (TGsc) e X* (TG) — M —0.

Since the homomorphisng,.: G'S¢ — GS¢ is an isomorphism, the left-hand vertical arrow
Xy (Tase) — X, (Tese) in diagram [(b) is an isomorphism, and the five lemma shows ttit
morphism of complexes of Galois modules

(Xi(Tg) = Xu(Tg)) — (M' = M)
given by this diagram is a quasi-isomorphism.
The short exact sequence of complexes
0— (0= X, (Tg)) = (Xu(Te) = Xi(Tg)) — (Xu(Te) - 0) =0
induces an exact sequence of Ext-groups
Homy, (X, (Ts), Z) — Homy (X, (Te ), Z) — Ex®.(X.(Te) — X.(Ts), Z) — Exts (X.(Tg),Z) = 0.
Since the compleX, (Te ) — X, (Tg) is quasi-isomorphic t¥1’ — M, we obtain an exact sequence
Homy, (X, (Ts), Z) — Homy (X, (Te), Z) — Ext3 (M’ = M, Z) — 0,
which we can write as
(6) X*(Tg) = X*(Tg) — ExQ (M’ = M, Z) — 0,
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whereX*(Tg) = T andX*(Tg) = Te. On the other hand, the exact sequencé-gfoups of
multiplicative type
1-H->Tg—>Tc—1

gives an exact sequence

@) 0— X*(Tg) = X*(Te) > X*(H) — 0.
Comparing exact sequencés (6) dnd (7), we obtain a canasarabrphism of Galois modules
X*(H) = ExQ (M — M, 7). 0

Remark7.3. Constructing and arguing as in the proof(of [CT, Prop.-Del],3ve can construct
an exact sequenck] (4) wit a quasi-trivialk-group andH a flasquek-torus (and not just some
k-group of multiplicative type) such that the smallest GalektensiorK /k in k splitting 75 (G)
splits both toriG'*" andH. This strengthens Remark 3.1.1 of [CT].

8. PRINCIPAL HOMOGENEOUS SPACES OF CONNECTED GROUPS AGAIN

In this section we give an alternative proof of Theoreml 2.3eldaon Proposition 2.8 and
TheoreniZ.11.

8.1. Let X be a right homogeneous space of a quasi-triigtoup G over a numbgr field. Let
H C G be the stabilizer of &pointx € X (k). We describe the action of GaJ/k) onH defined by
the homogeneous spaxe

Let h € H(k), thenx.h=x. Let g € Gal(k/k), then?x.“h = 9x. For anyo € Gal(k/k) we

chooseg, € G(k) such thafx = x.g, and the functioro — gy is locally constant, then
go-’h-g5" € H(K).

The maph+— gg - “h- gzt comes from some-semialgebraic automorphism (sée [B2,1] for a
definition) v of H, which induces an automorphisvg of H (namely,v5(x)(h) = x(vgi(h)) for
x €Handhe H(K)). If we choose another elemegit € G(k) such thaf’x = x.g;, theng, = ' go
for someh’ € H(k). Then we obtairv}, = Inn(h') o v, where Inrfh) is the inner automorphism
of H defined byt'. We havev/, = V5, because Infiv) acts trivially onH. The well-defined map
0 — Vg is @ homomorphism defining an action of Galk) on H.
8.2. Alternative proof of Theorem 2.¥We deduce Theorem 2.7 from Proposition 2.8 and Theorem
2. SinceK splits 5 (G), by Propositiori 2]8 we can wri®@ = G'/H, whereG' is a quasi-trivial
k-group andH is a centrak-subgroup of multiplicative type i’ such thaK splitsH.

The groupG’ acts onX via G. Letx € X(k), then the stabilizer afin G’ isH := H. Consider
the actiono — Vg of Gal(k/k) onH defined iHBIL. Writ€x = X.g, Whereg,, € G'(k), then for

h € H(k) we have

Vo(h) =5 - °h-(gy) = h,
because is central inG'. It follows that the action of Gék/k) onH defined by the homogeneous
spaceX coincides with the action oH defined by thek-structure ofH.

Now, sinceK splits H, we see thak splitsﬁ, and Theorerh 217 follows from Theorém12.11
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