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ANALYTIC DIRAC APPROXIMATION FOR REAL

LINEAR ALGEBRAIC GROUPS

CHRISTOPH LIENAU

Abstract. For a real linear algebraic group G let A(G) be the
algebra of analytic vectors for the left regular representation of
G on the space of superexponentially decreasing functions. We
present an explicit Dirac sequence in A(G). Since A(G) acts on
E for every Fréchet-representation (π,E) of moderate growth, this
yields an elementary proof of a result of Nelson that the space of
analytic vectors is dense in E.

Subject Classification: 22E30

1. introduction

In this paper we provide an explicit Dirac sequence of superexponentially
decrasing analytic functions on a linear algebraic group. This yields an
elementary proof of a theorem of Nelson [2] that the space of analytic vectors
is dense. In order to keep the exposition self contained we recall basic
constructions from [5, 6]
Let (π,E) be a representation of a Lie group G on a Fréchet-space E. For a
vector v ∈ E we denote by γv the corresponding orbit map

γv : G → E, g 7→ π(g)v.

A vector v ∈ E is called analytic if the orbit map γv is a real analytic E-
valued map. We denote the space of all analytic vectors by Eω.
Let g be a left invariant Riemannian measure on G. To g we associate a
Riemannian distance d on G: d(g) is defined as the infimum lenght of all
arcs joining g and 1.
Let R(G) be the space of superexponentially decrasing smooth functions on
G with respect to the distance d, i.e

R(G) =

{

f ∈ C(G) | ∀n ∈ N : pn(f) := sup
g∈G

|f(g)|end(g) < ∞

}

.

The space R(G) is a Fréchet algebra under convolution and is independent
of the choice of the left invariant metric.
Let us assume that (π,E) is a F -representation, i.e the representation is
of moderate growth. In particular every Banach representation is a F -
representation.
For every continuous seminorm q on E exists a continuous seminorm q′ and
constants C, c > 0 such that

q (π(g)v) ≤ Cecd(g)q′(v) (∀g ∈ G,∀v ∈ E).
1
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Furthermore there exists a constant r′ > 0 such that ∀r > r′
∫

G

e−rd(g) dg < ∞.

Hence there is a corresponding algebra representation Π of R(G) which is
given by

Π(f)v =

∫

G

f(g)π(g)v dg (f ∈ (G), v ∈ E).

We denote the space of analytic vectors R(G)ω for the left regular represen-
tation L by A(G).
A function f ∈ R(G) is in A(G) if and only if it satisfies the following two
conditions.

(1) There exists a neighborhood U ⊂ GC of 1 and a F ∈ O(U−1G) with
F |G = f .

(2) For every compact subset Q ⊂ U we have
supk∈Q pn (Lk(F )) < ∞ for all n ∈ N.

Throughout this text we refer to these conditions as condition (1) and con-
dition (2).
We define a positive function on GLn(R) by

|g| =
√

tr (gtg) (g ∈ GLn(R)).

Let K be the maximal compact subgroup O(n) of GLn(R) and KC its com-
plexification. Then | · | is KC-bi-invariant and sub-multiplicative. Note that

for a matrix g = (aij)1≤i,j≤n
we have |g| =

√

∑

1≤i,j≤n a
2
ij. Hence | · |2 is

holomorphic on GLn(C).
Let G be a real linear algebraic group, then G is a closed subgroup of some
GLn(R).
We define a norm in the sense of [1] on G by

‖g‖ = max{|g|, |g−1 |}, (g ∈ G) .

For t > 0 we consider the function

ϕt : G → R, g 7→ Cte
−t2(|g−1|4n+|g−1−1|4n),

with constants Ct > 0 such that ‖ϕt‖L1(G) = 1.
Recall that a sequence (fk)k>0 is called a Dirac sequence if it satisfies the
following three conditions:

(a) f ≥ 0, ∀k ∈ N

(b)
∫

G
fk(g) dg = 1 , ∀k ∈ N

(c) For every ε > 0 and every neighborhood U of 1 in G exists a M ≥ 1
such that

∫

G\U fm(g) dg < ε, ∀m ≥ M .

We prove the following theorem

Theorem 1.1. (a) ϕt ∈ A(G) for all t > 0.
(b) The sequence (ϕt)t>0 forms a Dirac sequence.

As a corollary we obtain a result of Nelson [2] for real linear algebraic
groups.
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Corollary 1.2. Let (π,E) be a F -representation of a real linear algebraic
group G on a Fréchet space E, then the space of analytic vectors Eω is dense
in E.

Remark 1.3. In fact [5] every analytic vector is a finite sum of vectors of
the form Π(f)v with f ∈ A(G) and v ∈ E.

Remark 1.4. If G is a real reductive group then Theorem 1.1 holds even
for

ϕ′
t : G → R, g 7→ Cte

−t2(|g−1|2+|g−1−1|2),

with constants Ct > 0 such that ‖ϕ′
t‖L1(G) = 1.

2. Proofs

The function ϕt posses an holomorphic continuation to GC which we also
denote by ϕt, but ϕt does not satisfy condition (2) on the whole of GC.
We now describe for GLn(R) a KC ×GLn(R)-invariant domain in GLn(C)
where ϕt satisfies condition (2). It turns out that this domain is a subdomain
of the crown domain Ξ [3, 4]. Therefore let Ω = {diag(d1, . . . , dn) : dk ∈

R, |dk| <
π
4 ,∀ k = 1 . . . , n} ⊂ R

n2
.

Remark 2.1. Note that this Ω is not the same as in [4]. Let us denote by Ωss

the Omega used in [4] for SLn(R). Then Ω is related to Ωss in the following
way: Ω has the property that Ωss +Re = Ω+Re with e = diag(1, . . . , 1). In
other words, up to central shift the Omegas coincide.

We define Ξn by Ξn = GLn(R) exp
(

i 1
n+1Ω

)

KC.

Remark 2.2. Let us remark that if G be a real reductive group, i.e a closed
transposition stable subgroup of GLn(R), then d(g) and log ‖g‖ are compa-
rable in the sense that there are constants c1, c2 > 0 and C1, C2 ∈ R such
that

c1d(g) + C1 ≤ log ‖g‖ ≤ c1d(g) +C2.

Hence we can give an alternative characterization of the space R(G) in terms
of ‖ · ‖:

R(G) =

{

f ∈ C(G) | ∀n ∈ N : pn(f) := sup
g∈G

‖g‖n|f(g)| < ∞

}

.

In the proof of the next proposition we need the following notations: For a
matrix g = (aij)1≤i,j≤n

we denote by gi the i-th column vector (a1i, . . . , ani)
T

and for a vector w ∈ C
n we denote by ‖w‖2 the euclidean norm.

Proposition 2.3. The function ϕt satisfies condition (2) on Ξn.

Proof. Let Q ⊂ Ξn be compact. We show that there exists a constant C > 0
such that

|ϕt(gq)| ≤ e−C‖g‖4n , (∀g ∈ G,∀q ∈ Q). (2.1)

There exists a Ω′ ⊂ Ω which satisfies the following properties.

(a) Q ⊂ GLn(R) exp(i
1

n+1Ω
′)KC.
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(b) There exists a constant C ′
1 > 0 such that for all

d = diag(eiθ1 , . . . , eiθn) ∈ exp(i 1
n+1Ω

′) we have

cos(2(θα1 + . . .+ θαn+1)) ≥ C ′
1 for all αj ∈ {1, . . . , 2n}.

This implies that for k = 1, . . . , 2n there exists a constant C1 > 0 such that

Re
(

|gq|2k
)

≥ C1|g|
2k, (g ∈ GLn(R), q ∈ Q) . (2.2)

Therefore let d = diag(eiθ1 , . . . , eiθn) ∈ exp(iΩ′) and g′ ∈ GLn(R) then

|g′d|2k =
(

e2θ1i‖g′1‖
2 + · · ·+ e2θni‖g′n‖

2
)k

(2.3)

Hence Re
(

|g′q|2k
)

≥ C ′
1|g

′|2k according to (b).

Let q = hdk with h ∈ GLn(R) and k ∈ KC.
Then Re

(

|gq|2
)

= Re
(

|ghdk|2
)

= Re
(

|ghd|2
)

≥ C ′
1|gh|

2. Since Q is com-

pact there exists a constant C1 > 0 such that C ′
1|gh|

2 > C1|g|
2 for all q ∈ Q.

Thus we obtain (2.2).
Likewise we can show that for k = 1, . . . , 2n there exists a constant C2 > 0
such that

Re

(

∣

∣

∣
(gq)−1

∣

∣

∣

2k
)

≥ C2|g
−1|2k, (g ∈ GLn(R), q ∈ Q) . (2.4)

Note that for k = 1, . . . , 4n there exists a constant C3 > 0 such that

Re
(

tr (gq)k
)

≤ | tr (gq) |k ≤ C3|g|
k, (g ∈ GLn(R), q ∈ Q) . (2.5)

Since |g − 1|4n = (|g|2 − 2 tr(g) + n)2n we obtain the upper bound (2.1) for
some C > 0 by expanding the 2n-th power and combining the estimates.
Since GLn(R) is real reductive Remark 2.2 implies that ϕt satisfies condition
(2) on Ξ. �

Hence ϕt ∈ A (GLn(R)). Now we show that for every real linear algebraic
group G ⊂ GLn(R) the functions ϕt are elements of A(G).

Proposition 2.4. Let G ⊂ GLn(R) be a real linear algebraic group then
ϕt ∈ A(G).

Proof. The set GC ∩ Ξn is an open neighborhood of 1 ∈ G to which ϕt ex-
tends holomorphically.
We give an upper bound for d(g) which implies that ϕt satisfies (2) on this
neighborhood.
Every algebraic group G can be decomposed as a semidirect product G =
RaduG ⋊ L of a connected unipotent group RaduG and a reductive group
L. We write g = ur with u unipotent and r reductive, then d(g) = d(ur) =
d(u) + d(r).
Remark 2.2 implies that there exists a constant C > 0 such that d(r) ≤
C log(‖r‖) +C. Note that the unipotent radical Radu G is connected and u

has a real logarithm. The path γ(t) = exp(t log(u)) connects 1 and log(u)

and has length | log(u)|, thus d(u) ≤ | log(u)|. Since log(u) =
∑n

k=0
(−1)k(u−1)k

k

and |u−1|k ≤ 1+|u−1|n ≤ 1+|u|n for k = 0, . . . , n we obtain | log(u)| ≤ 1+
n+n‖u‖n. Let J = D+N be the Jordan normal form of g with D a diagonal
and N a nilpotent matrix and let P ∈ GLn(C) be the change of basis matrix.
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Since the Jordan-Chevalley decomposition is unique, u = P (1+D−1N)P−1

and r = PDP−1. Therefore ‖u‖ ≤ ‖P‖2(‖1‖ + ‖D−1N‖) ≤ ‖P‖2(‖1‖ +
‖D‖) ≤ ‖P‖2(‖1‖ + ‖g‖). The last inequality follows from the fact that
the sum of the absolute values of the squares of the eigenvalues is less or
equal than the sum of the squares of the singular values. Likewise we obtain
‖r‖ ≤ ‖P‖2‖g‖. Since the column vectors of the matrices P and P−1 are
chains of generalized eigenvectors of g we obtain ‖P‖2 ≤ n2n‖g‖2.
Combining these estimates we obtain that there exists a constant R > 0
such that

end(g) ≤ ReR‖g‖3n‖g‖R.

Hence ϕt satisfies condition (2) on GC ∩ Ξn. �

Proposition 2.5. The family (ϕt)t≥1 forms for t → ∞ a Dirac sequence.

Proof. Let V be a neighborhood of 0 in g such that the exponential map is
a diffeomorphism of V with some neighborhood U of 1 in G. Then

∫

G

e−t2(|g−1|2+|g−1−1|2) dg ≥

∫

U

e−t2(|g−1|2+|g−1−1|2) dg.

The differential of exp at X is given by

dLexp(X) ◦
1−e− ad(X)

ad(X) .

Therefore
∫

U

e−t2(|g−1|2+|g−1−1|2) dg =

∫

V

e−t2(|eX−1|2+|e−X−1|2)
∣

∣

∣
det

(

1−e− ad(X)

ad(X)

)
∣

∣

∣
dX

There exists a constant C > 0 with
∣

∣

∣
det

(

1−e− ad(X)

ad(X)

)
∣

∣

∣
≥ C, ∀X ∈ V.

Hence
∫

G

e−t2(|g−1|2+|g−1−1|2) dg ≥ C

∫

V

e−t2(|eX−1|2+|e−X−1|2) dX

There exists a constant C ′ > 0 such that

|eX − 1|2 + |e−X − 1|2 ≤ C ′|X|2, ∀X ∈ V.

Thus
∫

V

e−t2(|eX−1|2+|e−X−1|2) dX ≥

∫

V

e−t2C′|X|2 dX

=

∫

V

e−C′|tX|2 dX

=
1

tdim h

∫

V

e−C′|X|2 dX

Therefore
∫

H

e−t2(|g−1|2+|g−1−1|2) dg ≥

∫

V

e−C′|X|2 dX ≥ C1t
− dim h

with C1 = C
∫

V
e−C′|X|2 dX < ∞.

Let U be a neighborhood of 1 in G, there exists a constant R > 0 such that

|g − 1|2 + |g−1 − 1|2 ≥ R, ∀g ∈ G\U.
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Hence

e−
1
2
t2(|g−1|2+|g−1−1|2) ≤ e−

1
2
t2R, ∀g ∈ G\U.

Therefore
∫

G\U
e−t2(|g−1|2+|g−1−1|2)dg

=

∫

G\U
e−

1
2
t2(|g−1|2+|g−1−1|2)e−

1
2
t2(|g−1|2+|g−1−1|2)dg

≤ e−
1
2
t2R

∫

G\U
e−

1
2
t2(|g−1|2+|g−1−1|2)dg

≤ e−
1
2
t2R

∫

G\U
e−

1
2(|g−1|2+|g−1−1|2)dg

= C2e
− 1

2
t2R

with C2 =
∫

G\U e−
1
2(|g−1|2+|g−1−1|2)dg < ∞. Hence
∫

G\U
ϕt(g)dh ≤ e−

1
2
t2Rt− dim gC2

C1
.

The expression on the right hand side tends to 0 as t tends to infinity. �

Lemma 2.6.

Π(A(G))E ⊂ Eω

Proof. Let f ∈ A (G) , v ∈ E. Then the orbit map γΠ(f)v is given by

γΠ(f)v(g) = π(g)

∫

H

f(x)π(x)v dµ(x)

=

∫

H

f(x)π(gx)v dµ(x)

=

∫

H

f(g−1x)π(x)v dµ(x)

= π
(

Lg(f)
)

v.

Hence the orbit map is equal to to the composition

G → R(G) → E

Here the first arrow denotes the map g 7→ Lg(f) and the second the map
ϕ 7→ Π(ϕ)v. The first map in this composition is analytic and the last is
linear. Hence the whole map is an analytic map from G to E. �

Theorem 2.7. For every real linear algebraic group G exists an analytic
Dirac sequence, i.e a Dirac sequence which members are elements of A(G).

Proof. The sequence of functions (ϕt)t≥1 on G provides a Dirac sequence,
as we have seen in Proposition 2.5. �

Corollary 2.8. Let (π,E) be a F -representation of a real linear algebraic
group G on a Fréchet space E. Then the space Eω of analytic vectors is
dense in E.
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Proof. Let v ∈ E and let (ϕt)t≥1 be an analytic Dirac sequence. Then π(ϕt)v
is, according to Lemma 2.6, a sequence of analytic vectors which tends to v

in E. �
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[5] H. Gimperlein, B. Krötz, C. Lienau, Analytic Factorization of Lie Group

Representations, arXiv:0910.0177, submitted (2009)
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