
ar
X

iv
:0

80
4.

07
44

v6
  [

m
at

h.
D

G
] 

 2
6 

A
ug

 2
00

9 Moduli of Flat Conformal Structures of Hyperbolic Type

Graham Smith

26 August 2009

Centre de Recerca Matemàtica,
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Moduli of Flat Conformal Structures of Hyperbolic Type

1 - Introduction.

A flat conformal structure (FCS) (or Möbius structure) on an n-dimensional manifold,
M , is an atlas of M whose charts lie in Sn and whose transition maps are restrictions
of conformal (i.e. Möbius) mappings of Sn. Such structures arise naturally in different
domains of mathematics. To every FCS of hyperbolic type may be canonically associated
a complete hyperbolic manifold with convex boundary called the hyperbolic end of that
structure. The purpose of this paper is to associate to every such FCS defined over a
compact manifold families of foliations of neighbourhoods of the finite boundary of its
hyperbolic end consisting of smooth, convex hypersurfaces of constant curvature.

The history of FCSs begins with the 2-dimensional case. Here, Thurston shows, for exam-
ple, that the moduli space of FCSs over a compact surface, M , is homeomorphic to the
Cartesian product T ×ML(M) of the Teichmüller space of M with the space of measured
geodesic laminations over M (see [10] or [20] for details). An important step in Thurston’s
proof involves the construction of a convex, pleated, equivariant “immersion” iT : M̃ → H3

from the universal cover of M into H3 which is canonically associated to the FCS. This
construction generalises that of the Nielsen Kernel of a quasi-Fuchsian manifold (see [5]
for a detailed study of its properties in this case).

In the higher dimensional case, Kapovich [11] provides information on the moduli space of
FCSs, but much remains unknown. However, when M is of hyperbolic type (see section
5), Kulkarni and Pinkall showed in [13] that Thurston’s construction may still be carried
out. This yields a convex, stratified, equivariant “immersion” iKP : M → Hn+1 in Hn+1

canonically associated to the Möbius structure, as well as a canonical C1,1 metric over M
with a.e. defined sectional curvatures taking values between −1 and 1. We call this metric
the Kulkarni-Pinkall metric of the Möbius structure and denote it by gKP .

Heuristically, a hyperbolic end over a manifold M is a complete, hyperbolic manifold
with concave, stratified boundary whose interior is homeomorphic to M × R. A detailed
description is provided in Sections 4 and 6. Strictly speaking, we call the boundary of E the
finite boundary, and we denote it by ∂0E . This distinguishes it from the ideal boundary,
∂∞E , which is the set of equivalence classes of complete half geodesics whose distance from
∂0E tends to infinity.

In [13], Kulkarni and Pinkall show that the “immersion” iKP may be interpreted as the
finite boundary of a hyperbolic end, E which is also canonically associated to the FCS and
whose ideal boundary ∂∞E is conformally equivalent to M . E thus provides a cobordism
between iKP and M . It is for neighbourhoods of the finite boundaries of these hyperbolic
ends that we construct foliations by hypersurfaces of constant curvature. These foliations
may thus be considered as families of smoothings of iKP . This construction generalises to
higher dimensions the result [15] of Labourie which provides families of parametrisations
of the moduli spaces of three dimensional hyperbolic manifolds with geometrically finite
ends.

The special Lagrangian curvature, Rθ was first developed by the author in [17]. We recall
its construction in section 3. Its most important properties are that it is only defined for

1



Moduli of Flat Conformal Structures of Hyperbolic Type

strictly convex immersed hypersurfaces and that it is regular in a PDE sense, which is
summarised in this paper in terms of Theorems 9.1 and 9.2 (proven in [17]) and Theorem
12.1 (proven in [18]).

Of tangential interest, this notion of curvature arises from the natural special Legendrian
structure of the unitary bundle of UH

3. Special Legendrian structures are closely related to
special Lagrangian structures which are studied under the heading of Calabi-Yau manifolds.
Special Lagrangian and Legendrian submanifolds have themselves been of growing interest
to mathematicians and physicists since the landmark paper [8] of Harvey and Lawson
concerning calibrated geometries. In its classical form, the special Lagrangian operator is
a second order, highly non-linear partial differential operator of determinant type closely
related to the Monge-Ampère operator, and which is among the archetypical highly non-
linear partial differential operators studied in detail in most standard works on nonlinear
PDEs ([2] and [3] to name but two).

The main results of this paper are most appropriately described in terms of developing
maps (see section 5). Let M be a manifold. A Möbius structure over M may be considered
as a pair (ϕ, θ) where θ : π1(M) → Conf(Sn) is a homomorphism and ϕ : M̃ → Sn is
a local homeomorphism from the universal cover of M into Sn which is equivariant with
respect to θ. Two pairs are equivalent if and only if they differ by a conformal mapping
of Sn. We furnish the space of Möbius structures with the (quotient of) the topology of
local uniform convergence. ϕ is called the developing map and θ is called the holonomy of
the Möbius structure.

We define the Gauss mapping −→n : UH
n+1 → ∂∞H

n+1 as follows. For v a unit vector in
UHn+1, let γv : [0, +∞[→ Hn+1 be the half geodesic such that ∂tγ(0) = v. We define:

−→n (v) = γv(+∞) = Lim
t→+∞

γv(+∞).

Let i : M → Hn+1 be a convex immersion. Since i is convex, there exists a unique
exterior vector field Ni over i in UHn+1. We say that i projects asymptotically to
the Möbius structure (ϕ, θ) if and only if i is equivariant with respect to θ, and, up to
reparametrisation:

−→n ◦ Ni = ϕ.

Theorem 1.1

Let η ∈](n − 1)π/2, nπ/2[ be an angle, and let r > tan(η/n). Let M be a compact n
dimensional manifold and let (ϕ, θ) be an FCS of hyperbolic type over M . There exists a
unique, convex, equivariant immersion ir,η : M̃ → Hn+1 such that:

(i) ir,η is a graph over iKP ;

(ii) ir,η projects asymptotically to ϕ;

(iii)Rη(ir,η) = r.

Moreover, if (ϕ, θ) is not conformally equivalent to Sn−1×S1, where Sk is the k-dimensional
sphere, then the same result holds for η = (n − 1)π/2.
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Remark: The proof of this theorem uses the Perron method. The finite boundary forms
a barrier, which follows from the Geodesic Boundary Property (see Definition 6.4). In
particular, as in the remarks following Definition 6.4, the existence result in fact holds in
a much more general class of negatively curved ends of non-constant sectional curvature
bounded above by −1 whose finite boundary possesses the Geodesic Boundary Property
or even the weak Geodesic Boundary Property.

Since they are graphs over the Kulkarni-Pinkall immersion, these immersed hypersurfaces
may be considered as submanifolds of the hyperbolic end of the FCS:

Theorem 1.2

Let E be the hyperbolic end of an FCS. Let θ ∈ [(n − 1)π/2, nπ/2[ be an angle. For all
r > tan(θ/n), let Σr,θ = (S, ir,θ) be the unique, smooth, convex, immersed hypersurface
on E which is a graph over ∂E and which satisfies Rθ(ir,θ) = r.

The family (Σr,θ)r>tan(θ/n) foliates a neighbourhood, Ωθ, of ∂E . Morever (Σ̂r,θ)r>tan(θ/n)

converges towards NE in the C0 sense as r tends to +∞, and, for any compact subset, K,
of E , there exists θ0 < nπ/2 such that for θ > θ0, K ⊆ Ωθ.

Remark: The final part of this theorem suggests that by judiciously choosing r as a function
of θ, it may be possible to obtain smooth foliations of the entire hyperbolic end.

Remark: Towards completion of this paper, the author was made aware of a recent, com-
plementary result of Mazzeo and Pacard [16]. There, using entirely different techniques,
and under different hypotheses on the hyperbolic end, the authors prove the existence of
foliations by constant mean curvature hypersurfaces near the ideal boundary, though not
near the finite boundary, as is obtained here. It appears reasonable that a happy marriage
of these techniques could yield more detailed information concerning the structure of the
hyperbolic end and its relation to its ideal boundary.

In the special case where E is an end of a quasi-Fuchsian manifold, the foliations may be
extended up to the ideal boundary, and we obtain:

Theorem 1.3

Let E be a hyperbolic end of a quasi-Fuchsian manifold. Let θ ∈ [(n − 1)π/2, nπ/2[ be an
angle. For all r > tan(θ/n), let Σr,θ = (S, ir,θ) be the unique, smooth, convex, immersed
hypersurface on E which is a graph over ∂E and which satisfies Rθ(ir,θ) = r.

The family (Σr,θ)r>tan(θ/n) foliates E . Morever (Σ̂r,θ)r>tan(θ/n) converges towards NE in
the C0 sense as r tends to +∞, and (Σr,θ)r>tan(θ/n) converges to ∂∞E in the Hausdorff
sense as r tends to tan(θ/n).

Remark: In fact, this result holds for any FCS whose developing map avoids an open subset
of ∂∞H

n+1.

We next consider how these foliations vary with the FCS:
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Theorem 1.4

Let M be a compact manifold. Let (θx, ϕx)‖x‖<ǫ be a continuous family of FCSs of
hyperbolic type over M whose holonomy varies smoothly. Let θ ∈ [(n − 1)π/2, nπ/2[ be
an angle, and let r > tan(θ/n). For all x, let Σx = (S, ix) be the unique, smooth, convex,
immersed hypersurface in E(θx, ϕx) such that Rθ(ix) = r. Then, up to reparametrisation,
ix varies smoothly with x.

Remark: It follows that the space of hypersurfaces of constant special Lagrangian curvature
yields smooth moduli for the space of FCSs of hyperbolic type over M which are compat-
ible with the smooth structure obtained from the canonical embedding of this space into
PSO(n + 1, 1)π1(M), and which also, importantly, encode smooth information about the
hyperbolic end and the Kulkarni-Pinkall metric.

As an illustration of these results, we now consider two special cases. The first is when n
is equal to 2, and θ = π/2. Here the special Lagrangian curvature reduces to the Gaussian
curvature and we recover the following, now classical, result of Labourie [15]:

Theorem 1.5, Labourie (1991)

Let Σ be a compact surface of hyperbolic type. Let (α, ϕ) be an FCS over Σ and let E be
the hyperbolic end of (α, ϕ). There exists a unique, smooth foliation (Σk)k∈]0,1[ of E such
that:

(i) for each k, Σk is a smooth, immersed surface of constant Gaussian (extrinsic) curvature
equal to k;

(ii) Σk tends to ∂0E in the Hausdorff sense as k tends to 0; and

(iii)Σk tends to ∂∞E in the Hausdorff sense as k tends to 1.

Remark: The geometric properties particular to this special case allow us to extend the
foliations up to the ideal boundary (see also [16] and [19]).

The second special case is when n = 3 and θ = π. In this case, the special Lagrangian
curvature still has a very simple expression:

Theorem 1.6

Let M be a compact three dimensional manifold. Let (α, ϕ) be an FCS over M of hyper-
bolic type. Let E be the hyperbolic end of (α, ϕ). There exists a unique, smooth foliation
(Σr)r∈]3,+∞[ of E such that:

(i) for each r, Σr is a smooth, immersed hypersurface such that:

H(Σr)/K(Σr) = r,

where H(Σr) and K(Σr) are the mean and Gaussian curvatures of Σr respectively; and

(ii) Σr tends to ∂0E in the Hausdorff sense as r tends to +∞.
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Towards completion of this paper, the author was made aware of related work by Ander-
sson, Barbot, Béguin and Zeghib [1]. Here the authors study constant mean curvature
foliations of Lorentzian, anti de-Sitter and de-Sitter spacetimes. There is a natural dual-
ity between hyperbolic ends and de-Sitter spacetimes, and thus a duality between their
framework and our own. One interesting consequence is that, in the 4-dimensional case,
Theorem 1.6 yields foliations of neighbourhoods of the past ends of four dimensional de-
Sitter spacetimes by 3-dimensional space-like hypersurfaces of constant scalar curvature.
This may be related to the Yamabe problem of the flat conformal structure, which is
relevant to [16].

Finally, the proofs of these theorems requires a detailed understanding of the geometric
structure of the Kulkarni-Pinkall hyperbolic end of a flat conformal structure. We obtain
the following characterisation of the Kulkarni-Pinkall end in terms of completeness and
local geometric data, which the author is not aware of in the litterature:

Theorem 1.7

Let Ñ be a hyperbolic end. Suppose that:

(i) Ñ possesses the Geodesic Boundary Property; and

(ii) Ñ is complete.

Then Ñ is the Kulkarni-Pinkall hyperbolic end of its quotient Möbius manifold.

Moreover, if N is a compact Möbius manifold, then the family of hyperbolic ends whose
quotient Möbius manifold is N is partially ordered, and the Kulkarni-Pinkall hyperbolic
end of N is the unique maximal element of this family.

Indeed, as noted in the remark following Theorem 1.4, the foliations constructed here
encode smooth information about the hyperbolic end whilst depending smoothly on the
conformal structure. We therefore expect them to be of considerable use in the future
study of FCSs. Indeed, as examples of possible applications of these results, we state two
immediate corollaries. The first concerns continuous dependence of iKP :

Theorem 1.8

Let M be a compact manifold. Let (θn, ϕn)n∈N, (θ0, ϕ0) be FCSs of hyperbolic type
over M such that (θn, ϕn)n∈N converges to (θ0, ϕ0), then (N∂0E(θn, ϕn))n∈N converges
to (N∂0E(θ0, ϕ0)) in the C0 sense.

And the second result concerns the Kulkarni-Pinkall metric. Let D, V and I represent the
diameter, volume and injectivity radius respectively of the Kulkarni-Pinkall metric. We
obtain the following continuity and compactness result:

Theorem 1.9

Let M be a compact manifold. D, V and I define continuous functions over the space
of FCSs of hyperbolic type over M . Moreover, the pairs (I, D) and (I, V ) define proper
functions over the space of FCSs of hyperbolic type.
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This paper is structured as follows:

(a) In Sections 2 to 6, we introduce the various concepts used in this paper. In particular,
hyperbolic ends and their relationship to flat conformal structures are studied in sections
4 to 6 and Theorem 1.7 is proven in section 6;

(b) In Section 7 & 8, we describe how equivariant immersions of smooth curvature may
be deformed, which is relevant to Theorem 1.4;

(c) In Section 9, we recall the compactness properties of the special Lagrangian curvature,
which form an important component of the Perron method used to prove Theorem 1.1;

(d) In Section 10, we recall the geometric maximum principal which is used to control the
location of immersed hypersurfaces of given SL curvature;

(e) In Section 11, we prove the uniqueness part of Theorem 1.1;

(f) Theorems 1.1, 1.2 and 1.4 are proven in Section 12;

(h) In Section 13, quasi-Fuchsian manifolds are introduced and Theorem 1.3 is proven;
and

(i) In Appendix A, we show how the Kulkarni-Pinkall metric may be used to furnish a
simpler proof of a result of Kamishima.

This paper has known a long and tortuous evolution since its conception. I would like to
thank Kirill Krasnov, François Labourie and Jean-Marc Schlenker for encouraging me to
study this problem in the first place. I am equally grateful to Werner Ballmann, Ursula
Hamenstaedt and Joan Porti for many useful conversations about FCSs (and to the latter
two for drawing attention to the various errors in earlier drafts of this paper). Finally, I
would like to thank the Max Planck Institutes for Mathematics in the Sciences in Leipzig,
the Max Planck Institute for Mathematics in Bonn and the Centre de Recerca Matemàtica
in Barcelona for providing the conditions required to carry out this research.

2 - Immersed Submanifolds and the Cheeger/Gromov
Topology.

Let M be a smooth Riemannian manifold. An immersed submanifold is a pair Σ = (S, i)
where S is a smooth manifold and i : S → M is a smooth immersion. A pointed
immersed submanifold in M is a pair (Σ, p) where Σ = (S, i) is an immersed submanifold
in M and p is a point in S. An immersed hypersurface is an immersed submanifold
of codimension 1. We give S the unique Riemannian metric i∗g which makes i into an
isometry. We say that Σ is complete if and only if the Riemannian manifold (S, i∗g) is.

Let UM be the unitary bundle of M (i.e the bundle of unit vectors in TM . In the cooriented
case (for example, when I is convex), there exists a unique exterior normal vector field N

over i. We denote ı̂ = N and call it the Gauss lift of i. Likewise, we call the manifold
Σ̂ = (S, ı̂) the Gauss lift of Σ.
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A pointed Riemannian manifold is a pair (M, p) where M is a Riemannian manifold and p
is a point in M . Let (Mn, pn)n∈N be a sequence of pointed Riemannian manifolds. For all
n, we denote by gn the Riemannian metric over Mn. We say that the sequence (Mn, pn)n∈N

converges to the pointed manifold (M0, p0) in the Cheeger/Gromov sense if and only if
for all n, there exists a mapping ϕn : (M0, p0) → (Mn, pn), such that, for every compact
subset K of M0, there exists N ∈ N such that for all n > N :

(i) the restriction of ϕn to K is a C∞ diffeomorphism onto its image, and

(ii) if we denote by g0 the Riemannian metric over M0, then the sequence of metrics
(ϕ∗

ngn)n>N converges to g0 in the C∞ topology over K.

We refer to the sequence (ϕn)n∈N as a sequence of convergence mappings of the sequence
(Mn, pn)n∈N with respect to the limit (M0, p0). The convergence mappings are trivially
not unique.

Let (Σn, pn)n∈N = (Sn, pn, in)n∈N be a sequence of pointed immersed submanifolds in M .
We say that (Σn, pn)n∈N converges to (Σ0, p0) = (S0, p0, i0) in the Cheeger/Gromov
sense if and only if the sequence (Sn, pn)n∈N of underlying manifolds converges to (S0, p0)
in the Cheeger/Gromov sense, and, for every sequence (ϕn)n∈N of convergence mappings of
(Sn, pn)n∈N with respect to this limit, and for every compact subset K of S0, the sequence
of functions (in ◦ ϕn)n>N converges to the function (i0 ◦ ϕ0) in the C∞ topology over K.

3 - Special Lagrangian Curvature.

The special Lagrangian curvature, which only has meaning for strictly convex immersed
hypersurfaces, is defined as follows. Denote by Symm(Rn) the space of symmetric matrices
over Rn. We define Φ : Symm(Rn) → C∗ by:

Φ(A) = Det(I + iA).

Since Φ never vanishes and Symm(Rn) is simply connected, there exists a unique analytic
function Φ̃ : Symm(Rn) → C such that:

Φ̃(I) = 0, eΦ̃(A) = Φ(A) ∀A ∈ Symm(Rn).

We define the function arctan : Symm(Rn) → (−nπ/2, nπ/2) by:

arctan(A) = Im(Φ̃(A)).

This function is trivially invariant under the action of O(Rn). If λ1, ..., λn are the eigen-
values of A, then:

arctan(A) =

n
∑

i=1

arctan(λi).

For r > 0, we define:
SLr(A) = arctan(rA).

7
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If A is positive definite, then SLr is a strictly increasing function of r. Moreover, SL0 = 0
and SL∞ = nπ/2. Thus, for all θ ∈]0, nπ/2[, there exists a unique r > 0 such that:

SLr(A) = θ.

We define Rθ(A) = r. Rθ is also invariant under the action of O(n) on the space of positive
definite, symmetric matrices.

Let M be an oriented Riemannian manifold of dimension n+1. Let Σ = (S, i) be a strictly
convex, immersed hypersurface in M . For θ ∈]0, nπ/2[, we define Rθ(Σ) (the θ-special
Lagrangian curvature of Σ) by:

Rθ(Σ) = Rθ(AΣ),

where AΣ is the shape operator of Σ.

4 - Hyperbolic Ends.

For all m, let H
m+1 be (m + 1)-dimensional hyperbolic space. Let UH

m+1 be the unitary
bundle over Hm+1. Let K be a convex subset of Hm+1. We define N (K), the set of
normals over K by:

N (K) =
{

vx ∈ UH
m+1 s.t. x ∈ ∂K and vx is a supporting normal to K at x.

}

N (K) is a C0,1 submanifold of UHm+1. Let Ω be an open subset of N (K). We define
E(Ω), the end over Ω by:

E(Ω) = {Exp(tvx) s.t. t > 0, vx ∈ Ω} .

We say that a subset of H
m+1 has concave boundary if and only if it is the end of some

open subset of the set of normals of a convex set. We refer to Ω as the finite boundary of
E(Ω).

We extend this concept to more general manifolds. Let (M, ∂M) be a smooth manifold
with continuous boundary. A hyperbolic end over M is an atlas A such that:

(i) every chart of A has convex boundary, and

(ii) the transition maps of A are isometries of H
m+1.

We refer to ∂M as the finite boundary of M . In the sequel, we will denote it by ∂0M in
order to differentiate it from the ideal boundary ∂∞M of M .

We can construct hyperbolic ends using continuous maps into UHm+1. Let M be an
m-dimensional manifold without boundary. Let i : M → UHm+1 be a continuous map.
We say that i is a convex immersion if and only if for every p in M , there exists a
neighbourhood Ω of p in M and a convex subset K ⊆ Hm+1 such that the restriction of

8
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i to Ω is a homeomorphism onto an open subset of N (K). In this case, we define the
mapping I : M × [0,∞[→ Hm+1 by:

I(p, t) = Exp(ti(p)).

We refer to I as the end of i. I is a local homeomorphism from M×]0,∞[ into Hm+1. If g
is the hyperbolic metric over Hm+1, then I∗g defines a hyperbolic metric over this interior.
I∗g degenerates over the boundary, and we identify points that may be joined by curves
of zero length. We denote this equivalence by ∼ and we define E(i), which we also call the
end of i by:

E(i) = (M×]0,∞[)∪(M/ ∼).

We shall see presently that every hyperbolic end may be constructed in this manner. Thus,
if M̂ is an end, and if i : M → UH

m+1 is a convex immersion such that M̂ = E(i), then
we say that i is the boundary immersion of M̂ .

5 - Flat Conformal Structures.

Let Hn+1 be (n + 1)-dimensional hyperbolic space. We identify ∂∞Hn+1 with the n-
dimensional sphere Sn. Isom(Hn+1) is identified with PSO(n + 1, 1). This group acts
faithfully on Sn = ∂∞Hn+1. The image is a subgroup of the group of homeomorphisms of
the sphere. We denote this group by Mob(n) and we call elements of Mob(n) conformal
maps.

Let M be a manifold. A flat conformal structure (FCS) on M is an atlas A of M in Sn

whose transformation maps are restrictions of elements of Mob(n). Trivially, every element
of Mob(n) is uniquely determined by its germ at a point. Thus, any chart of A uniquely
extends to a local homeomorphism from M̃ , the universal cover of M , into Sn which is
equivariant with respect to a given homomorphism. This yields an alternative definition
of FCSs which is better adapted to our purposes:

Definition 5.1

Let M be a manifold. Let π1(M) be its fundamental group and let M̃ be its universal
cover. A flat conformal structure over M is a pair (ϕ, θ) where:

(i) θ : π1(M) → Mob(n) is a homomorphism, and

(ii) ϕ : M̃ → Sn is a local homeomorphism which is equivariant with respect to θ.

θ is called the holonomy and ϕ is called the developing map of the flat conformal
structure.

We refer to a pair (M, (ϕ, θ)) consisting of a manifold M and a flat conformal structure
over M as a Möbius manifold. In the sequel, where no ambiguity arises, we refer to the
manifold with its conformal structure merely by M .

9
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Remark: A canonical differential structure on M is obtained by pulling back the differential
structure of Sn through ϕ.

Möbius manifolds are divided into three types (for more details, see [13]):

(i) manifolds of elliptic type, whose universal cover is conformally equivalent to Sn,

(ii) manifolds of parabolic type, whose universal cover is conformally equivalent to Rn,
and

(iii)manifolds of hyperbolic type, consisting of all other cases.

In the sequel, we study flat conformal structures of hyperbolic type over compact manifolds.

Let (ϕ, θ) be a flat conformal structure over M . A geometric ball in M is an injective
mapping α : B → M̃ from a Euclidean ball B into M̃ such that ϕ ◦ α is the restriction
of a conformal mapping. Geometric balls form a partially ordered set with respect to
inclusion. In [13], it is shown that when M is of hyperbolic type, every point of M̃ is
contained in a maximal geometric ball. Every geometric ball carries a natural complete
hyperbolic metric. Indeed, ∂(ϕ ◦α(B)) bounds a totally geodesic hyperplane in Hn+1 and
orthogonal projection defines a homeomorphism from (ϕ◦α)(B) onto this hyperplane. The
hyperbolic metric on B is obtained by pulling back the metric on this hyperplane through
this orthogonal projection. We denote this metric by gB. It is trivially conformal with
respect to the conformal structure of M .

We define the Kulkarni-Pinkall metric gKP over M̃ by:

gKP (p) = Inf {gB(p) s.t. B is a geometric ball and p ∈ B.} .

This metric is the analogue in the Möbius category of the Kobayashi metric. Trivially,
gKP is equivariant and thus quotients to a metric over M . The main result of [13] is:

Theorem 5.2 [Kulkarni, Pinkall]

Let M be a Möbius manifold of hyperbolic type. Then gKP is positive definite and of type
C1,1.

Let gS be a spherical metric over ∂∞Hn+1. Let M be the metric completion of M̃ with
respect to ϕ∗gS. Since any two spherical metrics are uniformly equivalent, the topolog-
ical space M is independant of the choice of spherical metric. Trivially ϕ extends to a
continuous map from M into ∂∞Hn+1. We call ∂M̃ := M \ M̃ the ideal boundary of M̃ .

Let (B, α) be a geometric ball. We define C(B) to be the convex hull in B (with respect
to the hyperbolic metric) of α(B)∩ ∂∞M̃ . In proposition 4.1 of [13], Kulkarni and Pinkall
obtain:

Proposition 5.3 [Kulkarni, Pinkall]

If M is a Möbius manifold of hyperbolic type, then for every point p ∈ M̃ there exists a
unique maximal geometric ball (B, α) such that p ∈ α(C(B)).

10
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We denote this ball by B(p). Kulkarni and Pinkall show that:

gKP (p) = gB(p)(p).

In [13], Kulkarni and Pinkall use these maximal geometric balls to associate a canonical
hyperbolic end to each flat conformal structure. These are the ends that will interest us
in the sequel. We refer the reader to [13] for the details of this construction. Let ϕ be the
developing map of the flat conformal structure. We denote the canonical hyperbolic end
associated to it by E(ϕ). Let UHn+1 be the unitary bundle of Hn+1, let −→n : UHn+1 →
∂∞Hn+1 be the Gauss map and let π : UHn+1 → Hn+1 be the canonical projection. Let
ı̂ : M̃ → UHn+1 be the boundary immersion of E(ϕ) and define i = π ◦ ı̂. E(ϕ) has the
following useful properties:

(i) ϕ = −→n ◦ ı̂;

(ii) if p ∈ M̃ , if P is the totally geodesic hyperplane in Hn+1 normal to ı̂(p) at i(p), if g
is the hyperbolic metric of P and if πp : ∂∞Hn+1 → P is the orthogonal projection, then
gKP (p) coincides with (πp ◦ ϕ)∗g(p); and

(iii) for all p ∈ M̃ , there exists a curve γ :] − ǫ, ǫ[→ M̃ such that γ(0) = p and i ◦ γ is a
geodesic segment in Hn+1.

Remark: Condition (iii) is a strong statement about the curvature of the finite boundary
of E(ϕ), which can be defined and vanishes in the direction of the geodesic. We shall see
in the sequel how this condition alone defines the geometry of the boundary immersion.

6 - The Geodesic Boundary Property.

To better understand condition (iii) of the preceeding section, we study more closely the
geometry of hyperbolic ends.

Lemma 6.1

Let Ñ be a hyperbolic end. Ñ is foliated by complete half-geodesics normal to the finite
boundary.

Remark: In the sequel, we will refer to this foliation as the vertical foliation.

Proof: Every subset of Hn+1 is foliated in this manner. Since the transition maps preserve
the concave boundary, they also preserve the foliation. The result follows. �

This induces an equivalence relation on the hyperbolic end which we denote by ∼.

Lemma 6.2

Ñ/ ∼ has the structure of a smooth manifold.
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Proof: Let d denote the distance in Ñ from the finite boundary. Choose r > 0. We
claim that Nr := d−1({r}) is a C1,1 embedded submanifold of Ñ . Indeed, let Ω ⊆ Hn+1

have convex boundary and let dΩ denote the distance in Ω from the finite boundary. It
follows from the properties of convex sets that d−1

Ω ({r}) is a C1,1 embedded submanifold of
Ω. Since these embedded submanifolds are preserved by the transition maps, the assertion
follows. Using mollifiers (c.f. [18], for example), we obtain a smooth embedded submanifold
N ′

r which is close to Nr in the C1 sense. All such embeddings have the same C∞ structure,
and the result follows. �

We denote N := Ñ/ ∼.

Lemma 6.3

If Ñ is simply connected, then there exists a convex immersion, i : N → H
n+1, which is

canonical up to composition by isometries of Hn+1 such that:

Ñ = E(i).

Remark: In particular, if Ñ is an arbitrary hyperbolic end, then we may define a canonical
ideal boundary ∂∞Ñ of Ñ as well as a canonical topology of Ñ ∪ ∂∞Ñ .

Proof: Trivially, N is simply connected. Let d be the distance in Ñ from its finite
boundary. Choose r > 0. By the proof of Lemma 6.2, we may identify N with d−1({r}).
Choose p ∈ N . Let (α, U, V ) be a coordinate chart of Ñ about p. Thus α : U → V , and
V ⊆ Hn+1 has concave boundary. Define ir : N ∩U → Hn+1 by:

ir(q) = α|N ∩U .

Trivially, ir is a convex immersion. Let ı̂r : N ∩U → UHn+1 be the unit normal exterior
vector field over ir. For all q ∈ N ∩U , let γq be the unit speed geodesic leaving ir(q) in
the direction of ı̂r(q). Define ı̂(q) : N ∩U → UHn+1 by:

ı̂(q) = ∂tγq(−r).

Let K ⊆ Hn+1 be a convex set such that the finite boundary of V is an open subset, Ω
of N (K). Trivially, ı̂ defines a homeomorphism from N ∩U to Ω. It follows that ı̂ is a
convex immersion. Moreover, ı̂ is independant of r, and:

V = E(ı̂).

Since N is simply connected, ir, ı̂r and ı̂ can be extended to mappings defined over the
whole of N which are canonical up to composition by homeomorphisms of Hn+1. Ñ = E(ı̂),
and the result follows. �

The convex immersion ı̂ : N → Hn+1 yields an immersion I : N×]0,∞[→ Hn+1 which
is the end of ı̂. I extends continuously to a map from N×]0,∞] to Hn+1 ∪ ∂∞Hn+1. We
define ϕ : N → ∂∞Hn+1 by:

ϕ(p) = I(p,∞).

12
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Since ı̂ is a convex immersion, ϕ is a local homeomorphism. ϕ thus defines a flat conformal
structure over N . Moreover, ϕ is smooth with respect to the C∞ structure of N . Thus the
underlying C∞ structure of the flat conformal structure induced on N coincides with the
preexisting C∞ structure on N . We refer to (N, ϕ) as the quotient Möbius manifold
of the hyperbolic end Ñ .

Let Ñ1 and Ñ2 be hyperbolic ends. Let (N1, ϕ1) and (N2, ϕ2) be their respective quotient
Möbius manifolds. We define a morphism between Ñ1 and Ñ2 to be a pair (Φ, Φ̃) such
that:

(i) Φ : N1 → N2 is a locally conformal mapping;

(ii) Φ̃ : Ñ1 → Ñ2 is a local hyperbolic isometry; and

(iii) Φ̃ extends to a continuous map from ∂∞Ñ1 = N1 to ∂∞Ñ2 = N2 which coincides with
Φ.

In the sequel, we denote such a morphism merely by Φ.

We define a partial order “<” over the family of hyperbolic ends such that, if Ñ1 and
Ñ2 are hyperbolic ends, then Ñ1 < Ñ2 if and only if there exists an injective morphism
Φ̃ : Ñ1 → Ñ2. If Ñ1 < Ñ2, then we say that Ñ1 is contained in Ñ2.

Definition 6.4, Geodesic Boundary Property

Let Ñ be a simply connected hyperbolic end. Let N = Ñ/ ∼ and let ı̂ : N → Hn+1 be the
convex immersion such that Ñ = E(i). We say that Ñ possesses the Geodesic Boundary
Property if and only if, for every point p ∈ N there exists:

(i) a real number ǫ > 0;

(ii) a unit speed geodesic segment γ :] − ǫ, ǫ[→ Hn; and

(iii) a continuous path α :] − ǫ, ǫ[→ N ,

such that α(0) = p and, for all t ∈] − ǫ, ǫ[:

γ(t) = (π ◦ ı̂ ◦ α)(t).

Remark: Heuristically, Ñ possesses the Geodesic Boundary Property if and only if, at
every boundary point, there exists a non-trivial geodesic segment passing through that
point which remains in the boundary.

Remark: The Geodesic Boundary Property is a natural property of minimal convex sets
in hyperbolic manifolds. Indeed, any such minimal convex set possesses the Geodesic
Boundary Property, since, otherwise, there would be a point at which it would be strictly
convex, and therefore be minimal.

Remark: Importantly, the Geodesic Boundary Property may be substituted by a weaker
version, where, instead of a geodesic, a curve having vanishing geodesic curvature at p is
used. The reader may verify that this Weak Geodesic Boundary Property may be substited
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at every stage in the sequel where the Geodesic Boundary Property is used. As the Geodesic
Boundary Property is a natural property of minimal convex sets in hyperbolic manifolds,
so the Weak Geodesic Boundary Property is a natural property of minimal convex sets in
more general negatively curved manifolds. We thus see how the results of this paper may
be extended to a much more general setting than where they are currently presented.

This allows us to obtain a geometric characterisation of the Kulkarni-Pinkall hyperbolic
end. Let Ñ be a hyperbolic end. Let d denote the distance in Ñ along the vertical foliation
from the finite boundary ∂0Ñ of Ñ . For all δ > 0, let Nδ denote the level hypersurface
d−1({δ}). We say that Ñ is complete if and only if Nδ is for some (and therefore for all)
δ > 0.

Lemma 6.5

Let Ñ be a hyperbolic end. Suppose that:

(i) Ñ possesses the Geodesic Boundary Property; and

(ii) Ñ is complete.

Then Ñ is the Kulkarni-Pinkall hyperbolic end of its quotient flat conformal structure.

Proof: Let p ∈ ∂0Ñ be a point in the finite boundary of Ñ . Let Np be a supporting

normal to ∂0Ñ at p and let Hp ⊆ Ñ be the supporting totally geodesic hyperspace to ∂0Ñ

at p whose normal at p is Np. Since Ñ is complete, so is Hp.

Let K = Hp ∩ ∂0Ñ be the intersection of Hp with the finite boundary of Ñ . Since the
distance to the finite boundary in a hyperbolic end is a convex function, it follows that
K is a convex subset of Hp. Moreover, K is closed. Choose q ∈ K. By the Geodesic
Boundary Property, there exists ǫ > 0 and a unit speed geodesic segment γ :] − ǫ, ǫ[→ Hp

such that γ(0) = q. Since the distance to p in Hp is a strictly convex function, it therefore
cannot attain a maximum over K. K is therefore unbounded.

We claim that K is the convex hull of K ∩ ∂∞Hp. Indeed, suppose the contrary. There
exists q ∈ ∂K which is not in the convex hull of K ∩ ∂∞Hp. By rotating Np and Hp slightly

around q, we obtain a supporting normal Nq to ∂0Ñ at q and a supporting totally geodesic

hyperplane to ∂0Ñ at q whose normal is Nq such that K ∩Hq is bounded. This is absurd
by the previous discussion, and the assertion follows.

It follows that p is contained in the convex hull of K ∩ ∂∞Hp. This condition characterises
the Kulkarni-Pinkall hyperbolic end, and the result follows. �

In the compact case, moreover, the Kulkarni-Pinkall hyperbolic end is the unique maximal
end. First we prove:

Lemma 6.6

Let Ñ1 and Ñ2 be compact hyperbolic ends. Suppose, moreover that Ñ2 possesses the
Geodesic Boundary Property. Let (N1, ϕ1) and (N2, ϕ2) be their respective quotient flat
conformal manifolds. If (N1, ϕ1) and (N2, ϕ2) are isomorphic, then Ñ1 < Ñ2. Moreover,
the finite boundary, ∂0Ñ1, of Ñ1 is a graph over the finite boundary, ∂0Ñ2, of Ñ2.
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Proof: Let N̂1 and N̂2 be the universal covers of Ñ1 and Ñ2 respectivey. Let Φ̂1 : N̂1 →
Hn+1 and Φ̂2 : N̂2 → Hn+1 be their respective developing maps. We may assume that
∂∞N̂1 = ∂∞N̂2 and that Φ̂1 = Φ̂2 on this set.

The identity on the ideal boundaries extends to an equivariant homeomorphism Ψ from
an open subset, U1, of ∂∞N̂1 in N̂1 into an equivariant open subset, U2, of ∂∞N̂2 in N̂2.

Let d : N̂1 → [0,∞[ be the distance in N̂1 to ∂N̂1. For all r > 0, let N̂1,r be the hypersurface

at constant distance r from ∂N̂1:

N̂1,r = d−1({r}).

For sufficiently large r, N̂1,r is contained in U .

Let V1 and V2 be the fields of vertical vectors over N̂1 and N̂2 respectively. Let (pn)n∈N ∈ U1

be a sequence converging to a point p0 ∈ ∂∞N̂1. Then:

(〈V1(pn), Ψ∗V2(pn)〉)n∈N → 1.

Thus, by cocompactness, for sufficiently large r, Ψ(N̂1,r) is transverse to the field of vertical

vectors over Ñ2. Therefore, by cocompactness, the projection from Ψ(N̂1,r) onto ∂0N̂2 is

a covering map, and so Ψ(N̂1,r) is a graph over ∂0N̂2. Moreover, Ψ(N̂1,r) is a strict graph

in the sense that it does not intersect ∂0N̂2.

Since N̂1,r is smooth, by continuously reducing r, U1 and Ψ may be extended to contain

N̂1,r at least as long as Ψ(N̂1,r) remains a strict graph over ∂0N̂2 (it will always be an

immersion). Suppose therefore that there exists r0 > 0 such that Ψ(N̂1,r0
) is not a strict

graph over ∂N̂2 but Ψ(N̂1,r) is for all r > r0.

Suppose that Ψ(N̂1,r0
) intersects ∂0N̂2 non-trivially. Ψ(N̂1,r0

) is an external tangent to

∂N̂2 at this point. However, by Lemma 10.5 the second fundamental form of Ψ(N̂1,r0
) is

bounded below by tanh(r0)Id in the weak sense. This therefore contradicts the Geodesic
Boundary Property of N̂2. It follows that Ψ(N̂1,r0

) lies strictly above ∂0N̂2.

Suppose that Ψ(N̂1,r0
) is not a graph over ∂0N̂2. Then, there exists p ∈ N̂1,r0

such that

Ψ(N̂1,r0
) is vertical at this point. Let q ∈ ∂0N̂2 be the vertical projection of p. Let

γ : [0, d(p, q)] → N̂2 be the vertical geodesic segment in N̂2 from q to p. γ lies below
the graph of Ψ(N̂1,r) for all r > r0. γ is therefore an interior tangent to Ψ(N̂1,r0

) at p.

However, as in the preceeding paragraph, Ψ(N̂1,r0
) is strictly convex at p, and this yields

a contradiction.

It follows that Ψ(N̂1,r) remains a strict graph over ∂0N̂2 for all r > 0. Letting r → 0, it

follows that U1 = N̂1,r and that Ψ(∂0N̂1) is a graph over ∂0N̂2. The result now follows by
taking quotients. �

Corollary 6.7

Let Ñ be a compact hyperbolic end. Let (N, ϕ) be its quotient flat conformal manifold.
Let Ñ ′ be the Kulkarni-Pinkall hyperbolic end of (N, ϕ) then Ñ is contained in Ñ ′ and
∂Ñ is a graph over ∂Ñ ′,

15



Moduli of Flat Conformal Structures of Hyperbolic Type

Proof: The Kulkarni-Pinkall hyperbolic end satisfies the geodesic boundary condition. �

Corollary 6.8

Let Ñ1 and Ñ2 be compact hyperbolic ends having the same quotient Möbius manifold.
Then there exists a unique hyperbolic end Ñ12 such that:

(i) Ñ1 and Ñ2 are contained in Ñ12; and

(ii) if Ñ1 and Ñ2 are contained in Ñ , then Ñ12 is also contained in Ñ .

Proof: Let ÑKP be the Kulkarni-Pinkall hyperbolic end of the induced flat conformal
manifold. By Corollary 6.7, Ñ1 and Ñ2 are contained in ÑKP and ∂0Ñ1 and ∂0Ñ2 are
graphs over ∂0ÑKP . Let f1 and f2 be their respective graph functions. The graph of
Min(f1, f2) in ÑKP is convex and yields the desired hyperbolic end. �

This yields uniqueness of the maximal ends in the compact case:

Lemma 6.9

Let M be a compact Möbius manifold. The Kulkarni-Pinkall hyperbolic end of M is the
unique maximal end amongst all ends whose quotient Möbius manifold is M .

Proof: Let M̃KP be the Kulkarni-Pinkall hyperbolic end of M. We first show that M̃KP

is maximal. Let M̃ be any other end whose quotient Möbius manifold is M . Suppose that
MKP < M and that this inclusion is strict. We thus identify M̃KP with a subset of M̃ .

Let d be the distance in M̃ from ∂0M̃ . Let p ∈ ∂0M̃KP be a point maximising distance
from ∂0M̃ . Let Np be a supporting normal to ∂0M̃KP which is parallel to the vertical

foliation of M̃ . Let Up be the set of unit vectors, Vp, over p in TpÑ such that:

〈Vp, N(p)〉 > 0.

For all Vp ∈ U , the half geodesic in M̃KP leaving p in the direction of Vp terminates in a

point in ∂∞M̃KP . Let B be the image of Up in ∂∞M̃KP . By definition of the Kulkarni-
Pinkall end, Bp is a maximal ball about the image of Np.

Let q be the projection of p ∈ ∂0M̃ . Let Nq be the supporting normal to ∂0M̃ at q pointing
towards p. We define Bq in the same way as Bp. Trivially, Bq contains Bp in its interior,

and this contradicts the maximality of Bp. We conclude that M̃ = M̃KP , and maximality
follows.

Let M̃ ′ be another maximal end whose quotient Möbius manifold is M . Since M̃KP

possesses the Geodesic Boundary Property, it follows by Lemma 6.6 that M̃ ′ 6 M̃KP . By
maximality of M̃ ′, M̃ ′ = M̃KP , and uniqueness follows. �

The proof of Theorem 1.7 now follows:

Proof of Theorem 1.7: This follows from Lemmata 6.5 and 6.9. �
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7 - The Derivative of the Curvature Operator.

Let N and M be Riemannian manifolds of dimensions n and (n + 1) respectively. The
special Lagrangian curvature operator sends the space of smooth immersions from N into
M into the space of smooth functions over N . These spaces may be viewed as infinite
dimensional manifolds (strictly speaking, they are the intersections of infinite nested se-
quences of Banach manifolds). Let i be a smooth immersion from N into M . Let N be
the unit exterior normal vector field of i in M . We identify the space of smooth functions
over N with the tangent space at i of the space of smooth immersions from N into M as
follows. Let f : N → R be a smooth function. We define the family (Φt)t∈R : N → M by:

Φt(x) = Exp(tf(x)N(x)).

This defines a path in the space of smooth immersions from N into M such that Φ0 = i.
It thus defines a tangent vector to this space at i. Every tangent vector to this space may
be constructed in this manner.

Let A be the shape operator of i. This sends the space of smooth immersions from N into
M into the space of sections of the endomorphism bundle of TN . We have the following
result:

Lemma 7.1

Suppose that M is of constant sectional curvature equal to −1, then the derivative of the
shape operator at i is given by:

DiA · f = f Id − Hess(f) − fA2,

where Hess(f) is the Hessian of f with respect to the Levi-Civita covariant derivative of
the metric induced over N by the immersion i.

Proof: See the proof of proposition 3.1.1 of [14]. �

We consider the operators SLr = SLr(AΣ) and Rθ = Rθ(AΣ). Using Lemma 7.1, we
obtain:

Lemma 7.2

Suppose that M is of constant sectional curvature equal to −1.

(i) The derivative of SLr at i is given by:

(1/r)DiSLr · f = −Tr((Id + r2A2)−1Hess(f)) + Tr((Id− A2)(Id + r2A2)−1)f.

(ii) Likewise, the derivative of Rθ at i is given by:

Tr(A(I + A2R2
θ)

−1)DiRθ · f = RθTr((Id + r2A2)−1Hess(f))
+RθTr((Id − A2)(Id + r2A2)−1)f.

17



Moduli of Flat Conformal Structures of Hyperbolic Type

These operators are trivially elliptic. We wish to establish when they are invertible. We
first require the following technical result:

Lemma 7.3

Let 0 < n < m be positive integers. If t ∈]0, π/2], then:

nsin2(t/n) > msin2(t/m),

With equality if and only if n = 1, m = 2 and t = π/2.

Proof: The function sin2(t/2) is strictly convex over the interval [0, π/4]. Thus, for all
0 < x < y 6 π/4:

(1/x)sin2(x) < (1/y)sin2(y).

Thus, for m > n > 2, we obtain:

nsin2(t/n) > msin2(t/m).

We treat the case n = 1 separately. For t 6 π/4, the result follows as before. We therefore
assume that t > π/4. Since the function sin2(t/2) is strictly concave over the interval
[π/4, π/2], it follows that sin2(t) > 2t/π, with equality if and only if t = π/2. However:

sin2(π/4) = 1/2 = (2/π)(π/4).

Since m > 2, it follows by concavity that:

msin2(t/m) 6 sin2(t),

with equality if and only if m = 2 and t = π/2. The result now follows. �

Using Lagrange multipliers to determine critical points, we obtain:

Lemma 7.4

If θ > (n − 1)π/2 and r > tan(θ/n), then the coefficient of the zeroth order term is
non-negative:

Tr((Id − A2)(Id + r2A2)−1) > 0.

Moreover, this quantity reaches its minimum value of 0 if and only if r = tan(θ/n) and A
is proportional to the identity matrix.

Proof: For all m, we define the functions Φm and Θm over Rm by:

Φm(x1, ..., xm) =

m
∑

i+1

1 − x2
i

1 + r2x2
i

, Θm(x1, ..., xm) =

m
∑

i=1

arctan(rxi).

Since the derivative of Θm never vanishes, Θ−1
m (θ) is a smooth submanifold of R

m. Suppose
that Φm achieves its minimum value on the interior of Θ−1

m (θ). Let (x̃1, ..., x̃m) be a critical
point of the restriction of Φm to this submanifold. For all i, let θ̃i ∈ [0, π/2[ be such that:

tan(θ̃i) = rx̃i.
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Using Lagrange multipliers, we find that there exists η ∈ [0, π/2] such that, for all i:

θ̃i ∈ {η, π/2− η} .

Let k be the number of values of i such that θ̃i > π/4. Since θ > (m − 1)π/2:

k > m/2.

Choose η > π/4. Since θ̃1 + ... + θ̃m = θ:

η =
θ − (m − k)π/2

2k − m
=

m(θ/m) − 2(m − k)(π/4)

2k − m
.

If Φ̃m is the value acheived by Φm at this point, then:

Φ̃m = r−2(1 + r2)(2k − m)cos2(η) + (m − k)r−2(1 + r2) − mr−2.

However:
π/4 6 θ/m 6 η < π/2.

Thus, since the function cos2 is convex in the interval [π/4, π/2]:

cos2(η) >
mcos2(θ/m) − 2(m − k)cos2(π/4)

2k − m
,

with equality if and only if k = m. Thus:

Φ̃m > mr−2(1 + r2)cos2(θ/m) − mr−2,

with equality if and only if θ̃1 = ... = θ̃m. Since r > tan(θ/m), this is non-negative, and is
equal to 0 if and only if r = tan(θ/m).

We now show that Φm attains its minimum over Θ−1
m (θ). We treat first the case θ >

(m − 1)π/2. Suppose the contrary. The functions Φm and Θm extend to continuous
functions over the cube [0, +∞]m. Let (x̃1, ..., x̃m) be the point in Θ−1

m (θ) where Φm is
minimised, and suppose now that it lies on the boundary of the cube. Since θ > (m−1)π/2,
x̃i > 0 for all i. Without loss of generality, there exists n < m such that:

x1, ..., xn < +∞, xn+1, ..., xm = +∞.

Let (θ̃1, ..., θ̃m) be as before. We define θ′ by:

θ′ = θ̃1 + ... + θ̃n.

Since θ̃n+1 = ... = θ̃m = π/2, it follows that θ′ = θ − (m − n)π/2. Moreover:

Φm(x1, ..., xm) = Φn(x1, ..., xn) − (m − n)r−2.
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Since (x̃1, ..., x̃m) minimises Φm it follows that (x̃1, ..., x̃n) is the minimal valued critical
point of Φn in Θ−1

n (θ′). Thus:

Φm(x1, ..., xm) = nr−2(1 + r2)cos2(θ′/n) − mr−2.

Let η ∈]0, π/2[ be such that:

θ = nπ/2 − η.

We have:

ncos2(θ′/n) = nsin2(η/n), mcos2(θ/m) = msin2(η/m).

It follows by Lemma 7.3 that:

Φm(x1, ..., xm) > mr−2(1 + r2)cos2(θ/m) − mr−2.

It follows that (x̃1, ..., x̃m) cannot be the minimum of Φm over Θ−1
m (θ), which is absurd.

The result now follows in the case θ > (m − 1)π/2.

It remains to study the case θ = (m − 1)π/2. This follows as before, with the single
exception that it is now possible that x̃1 = 0, in which case x̃2 = ... = x̃n = +∞. However:

Φm(0, +∞, ..., +∞) = 1 − (m − 1)r−2.

However, r > tan((m − 1)π/2m). For x ∈ [0, 1], tan(πx/4) 6 x. Thus, since m > 2:

r−1
6 tan(π/2m) = tan((π/4)(2/m)) 6 2/m.

Thus:

Φm(0, +∞, ..., +∞) > 1 − 4(m − 1)/m−2 = (m − 2)2m−2 > 0,

The result now follows. �

Lemma 7.5

(i) If SLr(i) > (n − 1)π/2 and tan(SLr(i)/n) 6 r, then DiSLr is invertible.

(ii) Likewise, if θ > (n − 1)π/2 and Rθ(i) > tan(θ/n), then DiRθ is invertible.

Proof: This follows immediately from the preceeding lemma, the maximum principal and
the fact that second order elliptic linear operators on the space of smooth functions over
a compact manifold are Fredholm of index 0. �
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8 - Deforming Equivariant Immersions.

The results of the previous section permit us to locally deform equivariant immersions of
M̃ in Hn+1. Let Γ ⊆ Isom(M̃) be a cocompact subgroup acting properly discontinuously
on M̃ . Thus M̃/Γ is a compact manifold. Let α : Γ → Isom(Hn+1) be a homomorphism.
Let i : M̃ → H

n+1 be an immersion which is equivariant with respect to θ. Thus, for all
γ ∈ Γ:

i ◦ γ = α(γ) ◦ i.

Let ρ = Rθ(i). Suppose first that i is an embedding. We may therefore extend ρ to
a smooth equivariant function over a neighbourhood of i(M̃) in Hn+1. We obtain the
following local deformation result:

Lemma 8.1

Let θ > (n − 1)π/2 and suppose that ρ > tan(θ/n).

(i) Let (αt)t∈]−ǫ,ǫ[ be a smooth family of homomorphisms such that α0 = α;

(ii) let (θt)t∈]−ǫ,ǫ[ be a smooth family of angles such that θ0 = θ; and

(iii) let (ρt)t∈]−ǫ,ǫ[ : Hn+1 → R be a smooth family of smooth functions such that ρ0 = ρ.

There exists 0 < δ < ǫ and a unique smooth family of immersions (it)t∈]−δ,δ[ such that
i0 = i and, for all t:

(i) Rθt
(it) = ρt ◦ it, and

(ii) it is equivariant with respect to αt.

Remark: The corresponding result when i is not injective is almost identical. We do not
state it in order to avoid notational complexity. In the sequel, we consider embeddings
inside smooth manifolds or smooth families of smooth manifolds, and so the distinction is
not important.

Proof: For ease of presentation, we only prove the case where both ρ and θ are constant.
The general case is proven in a similar manner. The proof is divided into two stages:

(i) We approximate the desired family by constructing a smooth, equivariant family of
deformations of i which are not necessarily immersions, and not necessarily of constant
θ-special Lagrangian curvature. First we construct a fundamental domain for Γ. Let p be
a point in Hn. Let P ⊆ Hn be the orbit of p under the action of Γ. Thus:

P = Γp.

We define Ω ⊆ Hn to be the set of all points on Hn which are closer to p than to any other
point in the orbit of p:

Ω = {q ∈ H
n s.t. d(q, p) < d(q, p′) for all p′ ∈ P \ {p}} .

Trivially, Ω is a polyhedron and a fundemental domain for Γ.
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Using Ω, we now construct the family of deformations. For each t, we construct a (non-
continuous) deformation be defining it to be equal to i over the interior of Ω and then
extending this function to the orbit of Ω (which is almost all of Hn) by equivariance
with respect to αt. These deformations may trivially be smoothed along ∂Ω. The only
complication is to ensure that the smoothing is performed in an equivariant manner. The
following recipe allows us to achieve exactly this.

For any submanifold X ∈ Hn and for all ǫ > 0, let Xǫ be the set of all points in X which
are at a distance (in X) greater than ǫ from the boundary of X . That is:

Xǫ = {p ∈ X s.t. dX(p, ∂X) > ǫ} .

Choose ǫn small. For all γ ∈ Γ, we define (ı̃nt )t∈]ǫ,ǫ[ over γΩǫn by:

ı̃nt (p) = αt(γ)i(γ−1(p)).

This family is trivially equivariant with respect to (αt)t∈]−ǫ,ǫ[.

Choose ǫn−1 small. Let Fn−1 be any (n − 1)-dimensional face of Ω. We may trivially
extend (ı̃nt )t∈]−ǫ,ǫ[ smoothly across a neighbourhood of F

ǫn−1

n−1 . Since every element of Γ is
of infinite order, there is no element which fixes any face of Ω (since otherwise it would
permute the domains touching that face, and thus be of finite order). It follows that,
by choosing ǫn and ǫn−1 small enough, we may extend this family further to a smooth
equivariant extension over every face in the orbit of Fn−1. We then continue extending
this family over every face of Ω until all (n − 1)-dimensional faces are exhausted. By
working downwards inductively on the dimension of the faces, we thus obtain a smooth
equivariant family (ı̃t)t∈]−ǫ,ǫ[ = (ı̃0t )t∈]−ǫ,ǫ[ which extends i.

(ii) We now modify this approximation to obtain the desired family of immersions. Since Ω
is relatively compact, there exists δ < ǫ such that, for |t| < δ, ı̃t is an immersion. Moreover,
we may suppose that for η > 0 sufficiently small, we may extend ı̃t smoothly along normal
geodesics to a smooth equivariant immersion from Hn×] − η, η[ into Hn+1. We thus view
(ı̃t)t∈]−δ,δ[ as a smooth family of immersions from Hn×] − η, η[ into Hn+1.

We denote by g the hyperbolic metric over Hn+1. We define the family (gt)t∈]−δ,δ[ such
that, for all t:

gt = ı̃∗t g.

The action of Γ over Hn trivially extends to an action of Γ over Hn×] − η, η[. For all t,
gt is equivariant under this action of Γ. We denote M = Hn/Γ and we obtain a smooth
family, which we also call (gt)t∈]−δ,δ[, of hyperbolic metrics over M×] − η, η[.

Let j0 be the canonical immersion of M into M×] − η, η[. Trivially, with respect to g0,
Rθ(j0) = ρ. As in Section 7, we view Rθ as a second order, non-linear differential operator
sending immersions of M into M×] − η, η[ into functions over M . Since infinitesimal
variations of immersions may be interpreted as functions over M times the normal vector
field of M in M×]− η, η[, the derivative DRθ of Rθ may be interpreted as a second order,
linear differential operator from C∞(M) into C∞(M). By Lemma 7.5, the operator DRθ
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is invertible. After reducing δ if necessary, the Implicit Function Theorem for non-linear
PDEs therefore allows us to extend j0 to a smooth family (jt)t∈]−η,η[ of immersions of M
into M×]− η, η[ such that, for all t, the θ-special Lagrangian curvature of jt with respect
to gt equals ρ. For all t, let ̃t be the lift of jt secding Hn into Hn+1. We now define
it = ı̃t ◦ ̃t. Trivially, (it)t∈]−δ,δ[ is the desired family of immersions, and existence follows.

Let (i′t)t∈]−δ,δ[ be another family of immersions having the desired properties. For δ suf-
ficiently small, the image of i′t is contained in the image of ı̃t. For all t, we thus project
̃′t = ı̃−1

t ◦ i′t to an immersion j′t of M into M×] − η, η[. By the uniqueness part of the
Implicit Function Theorem for non-linear PDEs, for all sufficiently small t, j′t coincides
with jt. Uniqueness now follows by a standard open/closed argument. �

9 - Compactness.

A relatively trivial variant of the reasoning used in [17] yields:

Theorem 9.1

Let M be a complete Riemannian manifold.

(i) Let (pn)n∈N, p0 ∈ M be such that (pn)n∈N converges to p0;

(ii) Let (θn)n∈N, θ0 ∈](n − 1)π/2, nπ/2[ be such that (θn)n∈N converges to θ0;

(iii) Let (rn)n∈N, r0 ∈ C∞(M) be strictly positive functions such that (rn)n∈N converges
to r0 in the C∞

loc sense; and

(iv) Let (Σn, qn)n∈N = (Sn, in, qn)n∈N be pointed, convex immersed hypersurfaces such
that, for all n:

(a) in(qn) = pn, and

(b) Σn is complete, convex and Rθn
(in) = rn ◦ in.

Then, there exists a complete, pointed immersed submanifold (Σ0, q0) = (S0, i0, q0) in
M such that, after extraction of a subsequence, (Σn, qn)n∈N converges to (Σ0, q0) in the
pointed Cheeger/Gromov sense.

The limit case where θ = (n − 1)π/2 exhibits more interesting geometric behaviour. We
only require it in the constant curvature case:

Theorem 9.2

Let M be a complete Riemannian manifold.

(i) Let (pn)n∈N, p0 ∈ M be such that (pn)n∈N converges to p0;

(ii) Let (θn)n∈N ∈ [(n − 1)π/2, nπ/2[ be such that (θn)n∈N converges to (n − 1)π/2;

(iii) Let (rn)n∈N, r0 ∈]0,∞[ be strictly positive real numbers such that (rn)n∈N converges
to r0; and
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(iv) Let (Σn, qn)n∈N = (Sn, in, qn)n∈N be pointed, convex immersed hypersurfaces such
that, for all n:

(a) in(qn) = pn, and

(b) Σn is convex, Rθn
(in) = rn, and Σ̂n is a complete submanifold of UM .

Then there exists a complete, pointed immersed submanifold (Σ̂0, q0) = (S0, ı̂0, q0) in UM
such that, after extraction of a subsequence, the Gauss liftings, (Σ̂n, qn)n∈N converge to
(Σ̂0, q0) in the pointed Cheeger/Gromov sense. Moreover:

(i) either there exists a convex, immersed hypersurface Σ0 in M of constant (n − 1)π/2-
special Lagrangian curvature equal to r0 such that Σ̂0 is the Gauss lifting of Σ0 (in other
words, if π : UM → M is the canonical projection, then π ◦ ı̂0 is an immersion);

(ii) or Σ̂0 is a covering of a complete sphere bundle over a complete geodesic.

Remark: Heuristically, if (Σn, pn)n∈N = (Sn, in, pn)n∈N is a sequence of pointed, im-
mersed submanifolds of constant (n− 1)π/2-special Lagrangian curvature equal to r, then
(Σn, pn)n∈N subconverges to (Σ0, i0, p0) where Σ0 is either another such immersed sub-
manifold or a complete geodesic. This (slightly abusive) language will be use in the sequel.

10 - The Geometric Maximum Principal.

Let E be a hyperbolic end possessing the Geodesic Boundary Property and let ∂0E be its
finite boundary. For all d, let Md be the hypersurface in E at a distance d from ∂0E . We
make the following definition:

Definition 10.1

Let M be a manifold and let Σ = (S, i) be a C0 convex immersed hypersurface in M .
Let A be a family of positive definite, symmetric, bilinear forms defined on the supporting
tangent planes of Σ. The second fundamental form of Σ at p is said to be at least (resp.
at most) A in the weak sense if and only if, for all p ∈ S and for each supporting tangent
space Ep of Σ at p, there exists a smooth, convex, immersed submanifold Σ′ = (S, i′) which
is an exterior (resp. interior) tangent to Σ with tangent space Ep at p and whose second
fundamental form is bounded below (resp. above) by A(Ep).

Likewise, if p ∈ S, if θ ∈]0, nπ/2[ and if r > 0, then the θ-special Lagrangian curvature of
Σ at p is said to be at least (resp. at most) r in the weak sense if and only if there exists
a smooth, convex, immersed submanifold Σ′ = (S′, i′) of θ-special Lagrangian curvature
equal to r which is an exterior (resp. interior) tangent to Σ at p.

Remark: If the second fundamental form of Σ is bounded above and below, then Σ is
necessarily of type C1,1.

This definition is well adapted to the Geometric Maximum Principal, whose proof requires
the following result concering symmetric matrices:
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Lemma 10.2, Minimax Principal

Let A be a symmetric matrix of rank n. If λ1 6 ... 6 λn are the eigenvalues of A arranged
in ascending order, then, for all k:

λk = Inf
Dim(E)=k

Sup
v∈E\{0}

〈Av, v〉/‖v‖2.

Proof: Let e1, ..., en be the eigenvectors of A. We define Ê by:

Ê = 〈e1, ..., ek〉.

Let π be the orthogonal projection onto Ê. Let E be a subspace of Rn of dimension k.
For all v in E:

〈Aπ(v), π(v)〉‖v‖2
6 〈Av, v〉‖π(v)‖2.

If the restriction of π to E is an isomorphism, then it follows that:

λk = Sup
v∈Ê\{0}

〈Av, v〉/‖v‖2 6 Sup
v∈E\{0}

〈Av, v〉/‖v‖2.

Otherwise, there exists a non-trivial v ∈ E such that π(v) = 0, in which case:

〈Av, v〉 > λk+1‖v‖
2 > λk‖v‖

2.

The result now follows. �

Corollary 10.3

Let A,A′ be two symmetric matrices of rank n such that A′ 6 A. If λ1, ..., λn and λ′
1, ..., λ

′
n

are the eigenvalues of A and A′ respectively arranged in ascending order, then, for all k:

λ′
k 6 λk.

We now obtain the Geometric Maximum Principal for hypersurfaces of constant special
Lagrangian curvature:

Lemma 10.4

Let M be a Riemannian manifold and let Σ = (S, i) and Σ′ = (S′, i′) be C0 convex,
immersed hypersurfaces in M . For θ ∈]0, nπ/2[, let Rθ and R′

θ be the θ-special Lagrangian
curvatures of Σ and Σ′ respectively. If p ∈ S and p′ ∈ S′ are such that q = i(p) = i′(p′),
and Σ′ is an interior tangent to Σ at q, then:

Rθ(p) > R′
θ(p

′).
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Proof: If A and A′ are the shape operators of Σ and Σ′ respectively, then:

A′(p′) > A(p).

It follows that:

arctan(Rθ(p)A′(p′)) > arctan(Rθ(p)A(p)) = θ = arctan(R′
θ(p

′)A′(p′)).

The result now follows since the mapping ρ 7→ arctan(ρA′(p′)) is strictly increasing. �

Lemma 10.5

For all d > 0, the second fundamental form of Md is at least tanh(d)Id in the weak sense.

Proof: It suffices to calculate the second fundamental form of a hypersurface equidistant
from a supporting totally geodesic submanifold at some point of ∂E . The result now follows
from Lemma 7.1. �

Corollary 10.6

Let θ ∈]0, nπ/2[ be an angle. For all d > 0, the θ-special Lagrangian curvature of Md is at
least tan(θ/n)/tanh(d) in the weak sense.

For d > 0, define the matrix A0(d) by:

A0(d) =

(

tanh(d)
coth(d)Idn−1

)

,

where Idn−1 is the (n − 1)-dimensional identity matrix.

Lemma 10.7

For all d > 0, there exists a (not necessarily continuous) field A of symmetric, bilinear
forms over Md such that:

(i) for all p ∈ Md, A(p) is conjugate to A0; and

(ii) the second fundamental form of Md is bounded above by A in the weak sense.

Proof: For all q ∈ ∂E , there is a geodesic segment passing through p which remains in ∂E .
Thus, for all p ∈ Md, there is a cylinder at a distance d from a geodesic segment which
is an interior tangent to Md at p. By Lemma 7.1, the second fundamental form of this
cylinder is conjugate to A0. The upper bound of the curvature at p thus follows. �

Corollary 10.8

Let θ ∈](n−1)π/2, nπ/2[ be an angle. There exists a function κ : [0, +∞[→ [0, +∞[, which
tends to +∞ as d tends to 0, such that the θ-special Lagrangian curvature of Md is at
most κ(d) in the weak sense.
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We now obtain upper and lower bounds for the distance between a hypersurface of bounded
θ-special Lagrangian curvature and ∂E :

Lemma 10.9

Let E be a hyperbolic end. Let ∂E be the boundary of E . Let θ ∈](n − 1)π/2, nπ/2[
be an angle. There exists a decreasing function δ : [tan(θ/n), +∞[→]0, +∞[ such that if
r 6 R ∈]tan(θ/n),∞[ and if Σ = (S, i) is a compact, convex immersed submanifold such
that Rθ(i) ∈ [r, R], then, for all p ∈ S:

δ(R) 6 d(i(p), ∂E) 6 arctanh(r−1tan(θ/n)).

Proof: For all ρ > 0, let Mρ be the level hypersurface in E at a distance of R from ∂E .
Since Σ is compact, there exists a point p ∈ S maximising the distance from ∂E . Let d be
the distance of i(p) from ∂E . Σ is an interior tangent to Md at p. The upper bound now
follows by Lemma 10.6 and the geometric maximum principle (Lemma 10.4). The lower
bound follows in an analogous way, using Lemma 10.8 instead of Lemma 10.6. �

11 - Uniqueness.

We show that the metric induced by i is uniformly equivalent, up to reparametrisation,
with the Kulkarni-Pinkall metric:

Lemma 11.1

Let θ ∈](n − 1)π/2, nπ/2[ be an angle, and let r > tan(θ/n) be a positive real number.
There exists K = K(r, θ, n) > 0 which only depends on r, θ and n such that:

(i) if M is a compact manifold and (ϕ, θ) is a flat conformal structure of hyperbolic type
over M ;

(ii) if i : M → H
n+1 is a complete, equivariant, convex immersion such that Rθ(i) = r and

−→n ◦ ı̂ = ϕ; and

(iii) if α : M → M is a reparametrisation such that i ◦ α is a graph over ̂, where ̂ is the
boundary immersion of E(ϕ),

then, if g is the hyperbolic metric on Hn+1:

K−1gKP 6 (i ◦ α)∗g 6 KgKP .

Proof: Let E(ϕ) be the Kulkarni-Pinkall hyperbolic end of ϕ. Since, in particular, i is a
convex immersion, by Lemma 6.6, i may be viewed as an immersion from M into E(ϕ).
For all R > 0, let MR be the hypersurface at distance R from ∂0E(ϕ). By Lemma 10.9,
there exists R > ǫ > 0 such that i(M) lies between Mǫ and MR. Define π : M → ∂0E(ϕ)
such that π(p) is the orthogonal projection of i(p) onto ∂0E(ϕ). For all p ∈ M , let γp be
the geodesic segment joining π(p) to i(p). Let Np be the exterior normal to i(M) at p.
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We show that there exists δ, which only depends on r, θ and n such that γp makes an
angle of at most π/2− δ with Np. We consider the universal covers of M and E(ϕ). In this
case i(M) only intersects γp once in Bǫ(i(p)). Let (Mn, pn)n∈N be a sequence of complete,
pointed manifolds. For all n, let (θn, ϕn) be a flat conformal structure of hyperbolic type
over Mn and let in : M̃n → Hn+1 be a complete, equivariant, convex immersion such that
ϕn = −→n ◦ ı̂n. For all n, let γn be the geodesic segment joining πn(pn) to in(pn). Suppose
that the angle that γn makes with Npn

tends to π/2.

By Theorems 9.1 and 9.2, after extracting a subsequence, we may assume that the se-
quences (in, Mn, pn)n∈N and (γn)n∈N converge to (i0, M0, p0) and γ0 respectively. The
limit hypersurface (i0, M0, p0) is an immersed submanifold in Hn+1. Since the γn have
length bounded below by ǫ, γ0 is a finite length geodesic segment which is an interior
tangent to i0 at p0. This is impossible, since i0 is strictly convex, and the result follows.

For p ∈ M , let Pp be the supporting totally geodesic hyperspace to E(ϕ) normal to γp at
π(p). Since i(M) lies below MR and since its normal makes an angle of at most π/2 − δ
with γp, there exists K, which only depends on R,ǫ and δ such that the normal projection
from i(M) onto Pp is K-bilipschitz at p. The result now follows by the relationship between
E(ϕ) and gKP . �

This yields uniqueness:

Lemma 11.2 Uniqueness

Let M be a conformally flat manifold of hyperbolic type. Let α : π1(M) → Isom(Hn+1)
be the holonomy and let ϕ : M̃ → ∂∞Hn+1 be the developing map.

Let θ ∈ [(n − 1)π/2, nπ/2[ be an angle, and let r > tan(θ/n). Let i, i′ : M̃ → Hn+1

be complete, equivariant, convex immersions such that Rθ(i) = Rθ(i
′) = r and −→n ◦ ı̂ =

−→n ◦ ı̂′ = ϕ. Then, up to reparametrisation, i = i′.

Moreover i = i′ is a graph over the finite boundary of the Kulkarni-Pinkall hyperbolic end
of M , and is thus strictly contained within this hyperbolic end.

Proof: By Lemma 6.6, we view i and i′ as immersions inside E(ϕ). We first consider
the case where θ 6= (n − 1)π/2 and extend i and i′ to unique foliations (it)t∈[r,+∞[ and
(i′t)t∈[r,+∞[ respectively which cover the lower end of E(ϕ).

Let I ⊆ [r, +∞[ be such that, for all T ∈ I, there exists a foliation (iTt )t∈[r,T [ of E(ϕ) such
that ir = i and, for all t, Rθ(it) = t. By the local uniqueness part of Lemma 8.1, these
foliations are unique. In other words, for all r 6 t < T < T ′:

iTt = tT
′

t .

By Lemma 8.1, there exists δ > 0 and a smooth family (it)t∈[r,r+δ[ such that ir = r, and,
for all t, Rθ(it) = t. Let N be the normal vector field over i. Let f be the function over M
such that fN is the infinitesimal deformation of (it)t∈[r,r+δ[. Then:

DiRθf = 1 > 0.
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It follows by Lemma 7.4 that f < 0. Thus, by reducing δ if necessary, (it)t∈[r,r+δ[ is a
foliation. I is therefore non-empty. Let T be the suprememum of I and suppose that
T < +∞. By uniqueness, there exists a foliation (it)t∈[r,T [ with the given properties.

For all t ∈ [r, T [, by Lemma 6.6, it is a graph over ∂E(ϕ). Since (it)t∈[r,T [ is a foliation,
the corresponding graphs form a monotone family. In fact, the graphs are monotone
decreasing. For all t, let Volt and Injt be the volume and injectivity radius respectively of
it. By Lemma 11.1, Volt is uniformly bounded above and Injt is uniformly bounded below
for t ∈ T . It follows by Theorem 9.1 that, for every sequence (tn)n∈N which converges to
T , (itn

)n∈N subconverges. By monotonicity, all these subsequences converge to the same
immersion, and thus (it)t∈[r,T ] converges as t tends to T . We thus extend (it)t∈[r,T [ to a
foliation (it)t∈[r,T ] defined over the closed interval.

Applying Lemma 8.1 again, this foliation can be extended to a foliation (iT )t∈[r,T+δ[. This
contradicts the definition of T . We thus obtain the desired foliation.

Let f and f ′ be the functions of which i and i′ are the graphs over ∂E(ϕ). Suppose
that f ′ < f at some point. For all R, let MR be the hypersurface of E(ϕ) at distance R
from ∂E(ϕ). Let ǫ > 0 be such that i and i′ lie above Mǫ. By Lemma 10.9, (it)t∈[r,+∞[

converges to ∂E(ϕ) in the Hausdorff sense as t tends to +∞. In particular, there exists
R0 > r such that iR lies below Mǫ and thus does not intersect i′. Let R be the supremum
of all s ∈ [r, R0] such that is intersects i′ non-trivially. By compactness iR is an interior
tangent to i′ at some point. However, Rθ(ir) = R > Rθ(i

′), which is a contradiction by
the Geometric Maximum Principal (Lemma 10.4).

It follows that f ′ > f . By symmetry, f > f ′, and the result now follows for θ 6= (n−1)π/2.

Suppose that θ = (n− 1)π/2. By Lemma 8.1, there exist smooth families (iη) and (i′η) for
η ∈ [(n − 1)π/2, (n− 1)π/2 + δ[ such that i = i(n−1)π/2, i′ = i′(n−1)π/2 and, for all η:

Rη(iη) = Rη(i′η) = r.

By uniqueness for θ 6= (n−1)π/2, iη = i′η for all η 6= (n−1)π/2 and the result now follows
for θ = (n − 1)π/2 by taking limits. �

12 - Main Results.

Existence follows from Theorem 1.4 of [18]. For the reader’s convenience, we include a
proof based on the more elementary Theorem 1.2 of the same paper. Throughout the rest
of this section, a convex set will be said to be ǫ-convex for some ǫ > 0 if and only if its
second fundamental form with respect to every supporting normal is bounded below by
ǫId in the weak sense. We quote Theorem 1.2 of [18]:

Theorem 12.1

Choose θ ∈ [(n − 1)π/2, nπ/2[. Let H ⊆ Hn+1 be a totally geodesic hypersurface. Let
Ω ⊆ H be a bounded open subset. Let Σ̂ ⊆ Hn+1 be a convex hypersurface which is a
graph over Ω such that ∂Σ̂ = ∂Ω and:

Rθ(Σ̂) 6 R1,
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in the weak sense, where R1 > tan−1(θ/n). If θ > (n − 1)π/2, then, for all r ∈ [R1,∞],
there exists a unique immersed hypersurface Σr ⊆ Hn+1 such that:

(i) Σr is C0 and C∞ in its interior;

(ii) ∂Σr = ∂Ω;

(iii)Σr is a graph over Ω lying below Σ̂; and

(iv)Rθ(Σr) = r.

Moreover, the same result holds for θ = (n−1)π/2 provided that, in addition, Σ̂ is ǫ-convex,
for some ǫ > 0.

Remark: The statement of this theorem differs slightly from that appearing in [18] because
(for technical reasons) the special Lagrangian curvature as defined in [18] is the reciprocal
of the special Lagrangian curvature as defined here.

Following [7] and [18], we use the Perron method to obtain:

Lemma 12.2

Let E be a hyperbolic end satisfying the Geodesic Boundary Condition. For all θ ∈](n −
1)π/2, nπ/2[ and for all r > tan(θ/n), there exists a strictly convex immersed hypersurface
Σ = (S, i) in E which is a graph over the finite boundary of E such that Rθ(i) = r.

Moreover, if the quotient Möbius manifold is neither Sn−1 × S1 nor Sn−1 × R, where Sk

is the k-dimensional sphere, then the same result holds for θ = (n − 1)π/2.

Proof: We first treat the case where the quotient Möbius manifold of E is compact and
θ > (n − 1)π/2. Let ∂0E be the finite boundary of E . For d > 0, let Σ0

d be the level
hypersurface at distance d from ∂0E . By Lemma 10.5, the second fundamental form of Σ0

d

is greater than tanh(d)Id in the weak sense. Since tanh(d) tends to 1 as d tends to +∞,
for sufficiently large d, the θ-special Lagrangian curvature of Σ0

d is at most r in the weak
sense. Choose such a d and denote Σ0 = Σ0

d.

By definition, Σ0 is a graph over ∂0E . Let f0 be the function whose graph Σ0 is. Let Σ1

be a strict graph over ∂0E lying below Σ0 such that Rθ(Σ1) 6 r in the weak sense. There
exists ǫ > 0, which only depends on θ and r such that Σ1 is ǫ-convex. In particular, by
Lemma 10.7 and the Geometric Maximum Principal, there exists δ > 0 such that Σ1 lies
at a distance of at least δ from ∂0E . Let U1 be the open set lying between ∂0E and Σ1.
Choose p ∈ Σ1. Let Np be a supporting normal to Σ1 at p chosen such that, for any other
supporting normal N

′
p to Σ1 at p:

〈N′
p, Np〉 > η,

for some η > 0. Such an Np always exists since Σ1 bounds a strictly convex set with
non-trivial interior (c.f. Lemma 4.7 of [18]). Let δ1 > 0 be smaller than the injectivity
radius of E at p. Let γ be the unit speed geodesic such that:

∂tγ(0) = Np.
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For small t, let Dp,t be the totally geodesic disk in E of radius δ1 about γ(t) whose exterior
normal at p is ∂tγ(t). By strict convexity, Dp,0 only intersects Σ1 at a single point. There
therefore exists δ2 > 0 such that, for all t ∈] − δ2, 0[, Ωt := U0 ∩Dp,t is a convex set and
the portion of Σ1 lying above Ωt is a graph over Ωt which we denote by Σ1,t. Moreover,
δ2 may also be chosen sufficiently small such that it doesn’t intersect ∂0E .

By Theorem 12.1, for all t ∈]−δ2, 0[, there exists a unique graph Σ′
1,t over Ωt, lying beneath

Σ1,t such that:
Rθ(Σ

′
1,t) = r.

For all t ∈] − δ2, 0[, let Σ′
t be the hypersurface obtained by replacing the portion Σ1,t of

Σ1 with Σ′
1,t. By uniqueness, this is a continuous family. Moreover, for t1 > t2, Σ′

t1
lies

above Σ′
t2

.

We claim that Rθ(Σ
′
t) 6 r in the weak sense. It suffices to verify this property along

∂Ω = ∂Σ′
1,t. However, along ∂Ω, this property follows by the convexity of the curvature

condition (Rθ is a convex function, c.f. Lemma 2.4 of [18]). The assertion therefore follows.

In particular, Σ′
t is ǫ-convex for all t. We claim that Σ′

t is a graph over ∂0E . Indeed,
since Dp,t lies strictly above ∂0E , so does Σ′

t for all t. Σ′
t therefore only ceases to be a

graph if it becomes vertical at some point q0 for some value t0 of t. t0 may be chosen such
that Σt is a graph over ∂0E for all t ∈]t0, 0[. Let q

0
be the projection of q in ∂0E . Let

γ : [0, d(q
0
, q0)] → E be the geodesic segment in E joining q

0
to q0. For all t, let U ′

t be the
open set lying between ∂0E and Σ′

t. For t > t0, since Σ′
t lies above Σ′

t0 , γ is contained in
U ′

t . It follows by continuity that γ is contained in U ′
t0

, and thus ∂tγ is an interior tangent
to Σt0 at q0, which contradicts strict convexity. The assertion follows.

We choose any t ∈ [−δ2, 0] and define Σ2 = Σ′
t. We denote by A this operation for

obtaining new immersed hypersurfaces out of old ones. Let Σ1 and Σ2 be two graphs over
∂0E and let f1 and f2 be the respective functions whose graphs they are. Suppose that:

(i) f1, f2 6 f0; and

(ii) Rθ(Σ1), Rθ(Σ2) 6 r in the weak sense.

Define f1,2 by:
f1,2 = Min(f1, f2).

Let Σ1,2 be the graph of f1,2. Then Σ1,2 lies below Σ0, and, by convexity of the curvature
condition (c.f. Lemma 2.4 of [18]):

Rθ(Σ1,2) 6 r.

We denote this operation by B.

Let F be the family of immersed hypersurfaces in E obtained from Σ0 by a finite number
of combinations of the operations A and B. For any Σ ∈ F , let f(Σ) be the function of
which Σ is the graph, and let U(Σ) be the open set contained between ∂0E and Σ. Define
V0 > 0 by:

V0 = Inf {Vol(U(Σ)) s.t. Σ ∈ F} .

31



Moduli of Flat Conformal Structures of Hyperbolic Type

There exists a sequence (Σn)n∈N ∈ F such that:

(i) for all n > m:
f(Σn) 6 f(Σm); and

(ii) (Vol(U(Σn)))n∈N tends to V0.

Let f∞ be the function to which (f(Σn))n∈N converges pointwise. By Lemma 10.7 and the
Geometric Maximum Principal, there exists d0 > 0 such that, for all n:

f(Σn) > d0.

It follows that f∞ > d0. Moreover, since the graphs (f(Σn))n∈N form the boundaries of a
nested sequence of ǫ-convex sets, the graph of f∞ is also the boundary of an ǫ-convex set,
and, by strict convexity as before, the graph of f∞ is never vertical. It follows that f∞ is
C0,1 and that (f(Σn))n∈N converges to f∞ in the C0,α sense for all α.

We claim that f∞ is smooth. Let Σ∞ be the graph of f∞. Choose p ∈ Σ∞. Let Np be a
supporting normal to Σ∞ at p chosen such that, for any other supporting normal N

′
p to

Σ∞ at p:
〈N′

p, Np〉 > η,

for some η > 0. Let δ1 > 0 be smaller than the injectivity radius of E at p. Let γ be the
unit speed geodesic such that:

∂tγ(0) = Np.

For small t, let Dp,t be the totally geodesic disk in E of radius δ1 about γ(t) whose exterior
normal at p is ∂tγ(t). By strict convexity, Dp,0 only intersects Σ∞ at a single point. There
therefore exists δ2 > 0 such that, for all t ∈] − δ2, 0[, Ωt := U(Σ∞)∩Dp,t is a convex set
and the portion of Σ∞ lying above Ωt is a graph over Ωt. By reducing δ2 if necessary, there
exists N ∈ N such that, for all n > N , and for all t ∈] − δ2, 0[, Ωn,t := U(Σn)∩Dp,t is a
convex set and the portion of Σn lying above Ωn,t is a graph over Ωn,t. Choose t ∈]− δ2, 0[
and for all n > N , define Σ′

n by replacing the portion of Σn lying above Ωn,t with the
smooth graph obtained from Theorem 12.1.

(f(Σ′
n))n∈N is a decreasing sequence and therefore tends towards a C0,1 limit, f ′

∞ in the
C0,α sense for all α. For all n > N , Σ′

n lies below Σn. Therefore:

f ′
∞ 6 f∞.

We claim that f ′
∞ = f∞. Indeed, suppose that f ′

∞ < f∞, then:

Vol(U(f ′
∞)) < Vol(U(f∞)),

which contradicts the minimality of the volume below f∞. By Theorem 9.1, the portion
of (Σ′

n)n∈N lying above Ωn,t converges in the C∞
loc sense to the portion of Σ∞ lying above

Ω∞,t, which is a non-trivial neighbourhood of p. It follows that Σ∞ is smooth at p and
that Rθ(Σ∞) = r near p. Since p ∈ Σ∞ is arbitrary, the result follows.
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Suppose that θ = (n − 1)π/2. Let (θn)n∈N ∈](n − 1)π/2, nπ/2[ be a decreasing sequence
converging towards θ. Suppose moreover, that for all n:

r > tan−1(θn/n).

For all n, let Σn be the immersed hypersurface such that:

Rθn
(Σn) = r.

For all n, let fn be the function of which Σn is the graph and let Un be the open convex
set lying between ∂0E and Σn. For all d > 0, let Md be the level hypersurface at distance
d from ∂0E . By Lemma 10.5, there exists D > 0 such that, for all n, and for all d > D,
Rθn

(Md) is not greater than r. It follows by the Geometric Maximum Principal that, for
all n, Σn lies below MD. There therefore exists a convex set U∞, lying below MD to which
(Un)n∈N subconverges in the Haussdorf sense.

Let V be the unit tangent vector field to the vertical foliation of E . For all n, since Σn is
a graph over ∂0E , if Nn is the outward unit normal vector to Σn, then:

〈V, Nn〉 > 0.

Taking limits, if N∞ is a supporting normal to U∞, then:

〈V, Nn〉 > 0.

By Theorem 9.2, the sequence (Σn) can only degenerate by converging towards a complete
geodesic. If this happens, then the above condition on the supporting normal to U0 implies
one of two possibilities:

(i) either this geodesic is vertical, which is impossible, since Σn lies below MD for all n;

(ii) or this geodesic coincides with ∂0E , which is excluded by the hypotheses on E .

We thus conclude that Σn never degenerates. It follows that the boundary of U∞ is smooth.
Moreover, as before, it is always transverse to V . It follows that (fn)n∈N is equicontinuous,
and therefore subconverges to a function, f∞. Since the graph of f∞ is the boundary of
U∞, f∞ is smooth and its graph has constant θ-special Lagrangian curvature equal to r.
The concludes the proof when the quotient Möbius manifold is compact.

To conclude, we outline the proof in the case when the quotient Möbius manifold is not
compact. Let (Un)n∈N be an exhaustion of ∂0E by relatively compact open sets. For
each n, we verify that the Perron method preserves graphs over Un, and we thus obtain
a smooth graph over Un of constant special Lagrangian curvature. Moreover, using the
Geometric Maximum Principal, we show that these graphs are uniformly bounded, and
thus subconverge to a smooth graph over the whole of ∂0E which has the desired properties.
The general result now follows. �

Proof of Theorem 1.1: This is the union of Lemmata 11.2 and 12.2. �
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Proof of Theorem 1.2: Using Lemma 8.1, these hypersurfaces form a smooth family.
Moreover, we can show that the derivative of ir,θ with respect to r is strictly negative.
Thus, if r′ < r are close, then Σr,θ lies strictly below Σr′,θ. It follows that this family
defines a foliation. By Lemma 10.9, (Σr,θ) converges to ∂E in the C0 sense as r tends to
+∞. Since this concerns the convergence of convex functions, it automatically also implies
convergence of the spaces of supporting hyperplanes.

Finally, by Corollary 10.8 and the Geometric Maximum Principle (Lemma 10.4), the dis-
tance of Σr,θ from ∂0E is at least R, where:

tanh(R) =
tan(θ − (n − 1)π/2)

r
.

Let R̂θ be the maximal value of R which is obtained when r = tan(θ/n):

tanh(R̂θ) =
tan(θ − (n − 1)π/2)

tan(θ/n)
.

This yields a lower bound for the furthest extent of the foliation for each θ. Since (θ −
(n− 1)π/2)(θ/n) converges to 1 as θ converges to nπ/2, R̂θ converges to ∞ as θ converges
to nπ/2 and the result follows. �

Proof of Theorem 1.4: This follows from uniqueness and Lemma 8.1. �

13 - Quasi-Fuchsian Manifolds.

Quasi-Fuchsian manifolds provide an interesting special case. For all m, let Hm be m-
dimensional hyperbolic space. Let M be a compact n-dimensional, hyperbolic manifold.
We view π1(M) as a subgroup Γ of Isom(Hn).

We denote by Rep(Hn, Γ) the space of pairs (ϕ, α), where:

(i) α : Γ → Isom(Hn+1) is a properly discontinous representation of Γ in Isom(Hn+1), and

(ii) ϕ : ∂∞Hn → ∂∞Hn+1 is an injective, continuous mapping which is equivariant with
respect to α.

The set Rep(Hn, Γ) is a subset of the set of continuous mappings from ∂∞Hn ∪Γ into
∂∞Hn+1 ∪ Isom(Hn+1). We furnish this set with the topology of local uniform convergence.

For all n, Hn embeds totally geodesically into Hn+1. This induces a homeomorphism α0 :
PSO(n, 1) → PSO(n + 1, 1) and an injective continuous mapping ϕ0 : ∂∞Hn → ∂∞Hn+1

which is equivariant with respect to α0. The connected component of Rep(Hn, Γ) which
contains (ϕ0, α0) is called the quasi-Fuchsian component. The pair (ϕ, α) is then said to
be quasi-Fuchsian if and only if it belongs to the quasi-Fuchsian component.

Let (ϕ, α) be quasi-Fuchsian. Since α(Γ) is properly discontinuous, it defines a quotient
manifold M̂α = Hn+1/α(Γ). When α = α0, we call this manifold the extension of M . In
the sequel, we identify a quasi-Fuchsian pair and its quotient manifold, and we say that a
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manifold is quasi-Fuchsian if and only if it is the quotient manifold of a quasi-Fuchsian
pair. In this case it may be isotoped to the extension of a compact, hyperbolic manifold.

Let (ϕ, α) be quasi-Fuchsian. The image of ∂∞Hn under the action of ϕ divides ∂∞Hn+1

into two open, simply connected, connected components. The group α(Γ) acts properly
discontinuously on each of these connected components. The quotient of each component
is a Möbius manifold homeomorphic to M , and the union of these two quotients forms the
ideal boundary of M̂α.

Let K be the convex hull in Hn+1 of ϕ(∂∞Hn). This is the intersection of all closed sets
with totally geodesic boundary whose ideal boundary does not intersect ϕ(∂∞Hn). This
set is equivariant under the action of α and thus quotients down to a compact, convex
subset of M̂α which we refer to as the Nielsen kernel of M̂α and which we also denote
by K. Trivally M \ K consists of two hyperbolic ends arising from FCSs.

Let M be a quasi-Fuchsian manifold, let K be its Nielsen kernel and let D be the diameter
of K. Let E be one of the connected components of M \ K. Let θ ∈ [(n − 1)π/2, nπ/2[
be an angle. By Theorem 1.1, there exists a family (Σr)r∈]tan(θ/n),∞[ of compact, convex,
immersed hypersurfaces in Ω such that, for all r:

(i) [Σr] is the fundamental class of Ω and

(ii) Rθ(Σr) = r.

Moreover, this family foliates a neighbourhood of ∂K ∩E . We show that this foliation
covers the whole of E :

Lemma 13.1

(Σr)r∈]tan(θ/n),+∞[ foliates the whole of E and Σr → ∂∞E in the Hausdorff sense as r →
tan(θ/n).

Proof: Let K ′
0 be the component of ∂K which does not intersect E (i.e. K ′

0 is the boundary
component of K lying on the other side of K from Ω). For all d > 0, let K ′

d be the level
hypersurface in Ω∪K at a distance of d from K ′

0. As in Corollary 10.6, for all d > 0, the
θ-special Lagrangian curvature of Kd is at most tan(θ/n)/tanh(d) in the weak sense.

For all r, since Σr = (S, ir) is compact, there exists a point p ∈ S such that d(ir(p), K ′
0)

is minimised. Let d be the distance of ir(p) from K ′
0. Σ is an exterior tangent to Kd at p.

By the geometric maximum principal:

d(ir(p), K ′
0) > arctanh(r−1tan(θ/n))− D.

The result now follows. �

The proof of Theorem 1.3 follows immediately:

Proof of Theorem 1.3: This is the union of Theorem 1.1 and Lemma 13.1. �
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A - Appendix - On a Result of Kamishima.

An earlier revision of this paper relied on a result of Kamishima (Theorem B of [9]) con-
cerning FCSs whose developing maps are not surjective. We discovered that the Kulkarni-
Pinkall metric may be used to provide a relatively short proof of this result, which we thus
include here.

Let Γ be a subgroup of Isom(Hn). The limit set of Γ, L(Γ), is the set of all limit points of
sequences of the form (γn(p))n∈N where p ∈ ∂∞Hn and (γn)n∈N ∈ Γ. By definition, this is
a closed set. We recall the following important lemma (see, for example [9]):

Lemma A.1, Chen & Greenberg, [4]

Let C be a closed subset of ∂∞Hn which contains more than one point and is invariant
under Γ, then L(Γ) ⊆ C.

This yields the following result of Kamishima:

Theorem A.2, Kamishima, [9]

Let M be a closed conformally flat manifold of dimension at least 3. If the developing map
is not surjective, then it is a covering map.

Proof: Let M̃ be the universal cover of M , let ϕ : M̃ → ∂∞Hn+1 be its developing map
and let θ : π1(M) → Isom(Hn+1) be its holonomy. We consider the two cases where the
complement of ϕ(M̃) contains only one point and where it contains more than one point
seperately. Suppose first that ϕ(M̃)c contains only one point. This point is invariant under
the action of Γ := θ(π1(M)). Γ is thus conjugate to a subgroup of the symmetry group of
Euclidean space. The result then follows by [6]. Suppose now that ϕ(M̃)c contains more
than one point. Since it is closed and invariant under the action of Γ, it follows from Lemma
A.1 that L(Γ) ⊆ ϕ(M̃). In other words, ϕ(M̃) ⊆ L(Γ)c. Let gKP be the Kulkarni/Pinkall
metric of L(Γ)c (see [13]). since L(Γ) contains at least two points, this metric is non-trivial.
Moreover, it is complete and invariant under the action of Γ. Thus ϕ∗gKP is invariant
under π1(M). Since M is compact, ϕ∗gKP defines a complete metric over M̃ . ϕ is thus a
local isometry between complete manifolds, and the result now follows. �

Corollary A.3

Let M be a closed conformally flat manifold of dimension at least 3. If the developing map
ϕ is not surjective, then L(Γ) = ∂ϕ(M̃).
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