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Abstract

The spaceHhyp(4) consists of pairs (M,ω), whereM is a hyper-elliptic Riemann surface
of genus 3, and ω is a holomorphic 1-form having only one zero, which is located at a
Weierstrass point of M . In this paper, we first show that every surface in Hhyp(4) admits
a decomposition into parallelograms and simple cylinders following a unique model. We
then show that if this decomposition satisfies some specific condition, then the GL(2,R)-
orbit of the surface is dense inHhyp(4). Using this criterion, we prove that there are generic
surfaces in Hhyp(4) with coordinates in any quadratic field, and there are Thurston-Veech
surfaces with trace field of degree three over Q which are generic.

1 Introduction

Translation surfaces are flat surfaces with conical singularities and trivial linear holonomy,
that is the holonomy of any closed curve is a translation in R2. The space of translation
surfaces together with an oriented parallel line field is identified with the space of holomorphic
1-forms on Riemann surfaces, which is stratified by the orders of the zeros of the 1-form. Fix
g > 2, if k1, . . . , kn are some positive integers such that k1 + · · · + kn = 2g − 2, we denote by
H(k1, . . . , kn) the moduli space of holomorphic 1-forms on Riemann surfaces of genus g which
have exactly n zeros with orders (k1, . . . , kn). By a result of Kontsevich-Zorich [KoZ], we know
that H(k1, . . . , kn) has at most 3 connected components. We denote by H1(k1, . . . , kn) the
subset of H(k1, . . . , kn) consisting of surfaces of unit area.

There exists an action of SL(2,R) on the space H(k1, . . . , kn) which leaves invariant the
Lebesgue measure, and preserves the set H1(k1, . . . , kn). It is now a classical fact, due to
Masur and Veech, that the SL(2,R) action is ergodic in each component of H1(k1, . . . , kn), a
surface whose SL(2,R)-orbit is dense in its component is called generic. The SL(2,R)-orbit of
almost all surfaces in each component is dense, however, the problem of determining whether
the orbit of a particular surface is dense in its component is wide open. We only have a
complete classification (due to McMullen and Calta, [Mc2], [C]) for the case of genus 2, where
we have two strata, H(2) and H(1, 1), each of which has a single connected component. Re-
call that the Veech group of a translation surface is the stabilizer subgroup for the action of
SL(2,R). It is a well-known fact that the SL(2,R)-orbit of a surface is a closed subset in its
stratum if and only if its Veech group is a lattice of SL(2,R). It turns out from the work of
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McMullen that, for translation surfaces of genus two, if the Veech group contains a hyperbolic
element, then the SL(2,R)-orbit cannot be dense in the corresponding stratum.

More recently, Hubert-Lanneau-Möller ([HLM1], [HLM2]) give some results on generic
surfaces in the hyper-elliptic locus L of Hodd(2, 2), which is one of the two components of
H(2, 2). They show that, in contrast with the case of genus 2, there are generic surfaces in
L, that is the SL(2,R)-orbit is dense in L, whose Veech group contains hyperbolic elements.
Note that L is a closed, SL(2,R)-invariant subset of Hodd(2, 2), therefore, the closure of any
SL(2,R)-orbit in L cannot exceed L. The Thurston-Veech construction ([Th], [V1]) provides
us with translation surfaces which are stabilized by some hyperbolic elements in SL(2,R),
these hyperbolic elements arise as products of parabolic elements. Hubert-Lanneau-Möller
also show that there are surfaces in L obtained from the Thurston-Veech construction whose
SL(2,R)-orbit is dense in L.

The stratum H(4) is the space of holomorphic 1-form on Riemann surfaces of genus 3
which have only one zero (the order is necessarily 4). We have dimCH(4) = 6, and H(4)
has two connected components Hhyp(4) and Hodd(4) (see [KoZ]). In this paper, we will be
focusing on the connected component Hhyp(4) which consists of holomorphic 1-forms defined
on hyper-elliptic Riemann surfaces. Equivalently, we can consider Hhyp(4) as the space of
translation surfaces of genus 3 having only one singularity, such that there exists an isometric
involution which has exactly 8 fixed points, and acts by −Id on the homology.

Before stating the main results of this paper, let us recall some basic definitions. On a
translation surface, a saddle connection is a geodesic segment whose endpoints are singulari-
ties of the surface, which may coincide. For surfaces in Hhyp(4), a saddle connection is then
a geodesic loop joining the unique singularity to itself. If γ is a saddle connection, we denote
its length by |γ|. We can also associate to γ together with a choice of orientation a vector
V (γ) ∈ R2, which is the integral of the holomorphic 1-form defining the flat metric along γ.
In fact, the integral gives us a complex number, we view it as a vector in R2 by the standard
identification C = R⊕ ıR.

Given a translation surface Σ, a cylinder in Σ is an open subset which is isometric to the quo-
tient R×]0;h[/Z, where Z is the cyclic group generated by (x, y) 7→ (x + ℓ, y), and maximal
with respect to this property. We will call h the height, and ℓ the width of C, the modulus of
C is defined to be the ratio h/ℓ. Note that none of the parameters h, ℓ,m are invariant under
SL(2,R). By definition, we have a map from R×]0;h[ to Σ, which is locally isometric, with
image C. This map can be extended by continuity to a map from R× [0;h] to Σ. We call the
images of R×{0} and R×{h} under this map the boundary components of C. Each boundary
component of C is a concatenation of saddle connections, and freely homotopic to the simple
closed geodesics in C. Remark that the two boundary components of C are, in general, not
disjoint subsets of Σ, they can even coincide. We call C a simple cylinder when each of its
boundary components consists of only one saddle connection.

A direction θ in S1 is said to be completely periodic if Σ is the union of the closures of the
cylinders in this direction, in other words, any trajectory of the flow in this direction is either
a closed geodesic or a saddle connection.

Theorem 1.1 On every surface in Hhyp(4), there always exist four pairs of homologous saddle
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connections δ±i , i = 1, . . . , 4, such that

• δ±1 bound a simple cylinder.

• For i = 1, 2, 3, δ±i and δ±i+1 bound a topological disk, which is isometric to parallelogram
in R2,

• δ±4 bound a simple cylinder.

The configuration of δ±1 , . . . , δ
±
4 is shown in Figure 1.

δ+1

δ−1

δ+1

δ+2

δ−2δ+2

δ−3

δ+3

δ−3

δ−4δ+4

δ−4

Figure 1: Decomposition of surfaces in Hhyp(4) into parallelograms and simple cylinders

Let Σ0 be a surface in Hhyp
1 (4), and δ±i , i = 1, . . . , 4, be as in Theorem 1.1. Cutting Σ

along δ±3 , we get two connected components whose boundary consists of two geodesic segments.
Gluing those geodesic segments together, we then get a flat torus, which will be denoted by
Σ′, and a surface in H(2). On the torus Σ′, we denote the geodesic segment corresponding to
δ±3 by δ3. As a subsurface of Σ, Σ′ inherits a parallel line field, therefore we can view it as
a pair (M,ω), where M is a Riemann surface of genus one, and ω is a non-zero holomorphic
1-form on M . Equivalently, we can identify Σ′ with the quotient R2/Λ, where Λ is a lattice

in R2, which is the image of the map H1(M,Z) −→ C ≃ R2 : c 7→
∫

c

ω. A vector in R2 is said

to be generic with respect to Λ if it is not collinear with any vector in Λ. We have

Theorem 1.2 Suppose that δ±1 and δ±3 are parallel, that is V (δ±1 ) and V (δ±3 ) are collinear,

and V (δ3) = V (δ±3 ) is generic with respect to Λ, then SL(2,R) · Σ0 is dense in Hhyp
1 (4).

Using this result, we obtain

Corollary 1.3 Let Σ0 be a surface in Hhyp
1 (4). Suppose that the horizontal direction is com-

pletely periodic for Σ0, and that Σ0 is decomposed into three horizontal cylinders whose moduli
are independent over Q, then SL(2,R) · Σ0 is dense in Hhyp

1 (4).
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The proof of Theorem 1.1 relies on the action of the hyper-elliptic involution on the surfaces
in Hhyp(4). The key ingredient of the proof is Lemma 2.1, which says that, on a translation
surface of genus one or two, any saddle connection invariant under the distinguished involution
of the surface is contained in a simple cylinder.
To prove Theorem 1.2, we will show that the orbit closure contains all the surfaces admitting a
splitting as in Theorem 1.1 with δ±2 parallel to δ±3 . Consequently, the orbit closure contains all
the Veech surfaces, and in particular all the square-tiled surfaces. Since the set of square-tiled
surfaces is dense in Hhyp

1 (4), we deduce that the orbit closure is the whole component. The
proof of Theorem 1.2 uses a theorem of Ratner on action of unipotent subgroups on homoge-
neous spaces.
To prove Corollary 1.3, we prove that one can find in the SL(2,R)-orbit closure of Σ0 a surface
which satisfies the condition of Theorem 1.2. It is easy to construct surfaces in Hhyp(4) with
coordinates in a quadratic field over Q which satisfy the condition of Theorem 1.2, therefore,
we have an affirmative answer to a question in [HLM3] (see Section 9). We will also construct
explicitly some Thurston-Veech surfaces with trace field of degree three over Q which satisfy
the hypothesis of Corollary 1.3.

2 Simple cylinder invariant under the involution

2.1 Translation surfaces of genus one

Translation surfaces of genus one are simply flat tori. We denote by H(0) (resp. H(0, 0)) the
space of triples (M,ω,P ) (resp. quadruplet (M,ω,P1, P2)), where M is a Riemann surface of
genus one, ω is a nonzero holomorphic 1-form on M , and P (resp. P1 and P2) is a marked
point (resp. are marked points) of M . In both cases, we will call the lattice in R2 obtained by
integrating ω along elements of H1(M,Z) the associated lattice of the considered translation
surface. If Σ is an element of H(0) or H(0, 0), we denote by Λ(Σ) the lattice associated to Σ.

Note that the holomorphic 1-form determines a flat metric structure together with a choice
of vertical direction at every point of the surface. For each surface in H(0), and H(0, 0), we
have a distinguished isometric involution which acts like −Id on the homology of the surface,
and either fixes the unique marked point (in the case of H(0)), or exchanges the two marked
points (in the case of H(0, 0)). As usual, we will call a geodesic segment joining marked points
a saddle connection. In the case of H(0), a saddle connection is just a simple closed geodesic
passing through the marked point.

2.2 Saddle connection preserved by the involution

Let us prove the following lemma, which is the key ingredient for the proof of Theorem 1.1,

Lemma 2.1 Let γ be a saddle connection on a translation surface Σ which belongs to one
of the following strata H(0),H(0, 0),H(2),H(1, 1). Suppose that γ is invariant under the
distinguished involution in the cases H(0) and H(0, 0), or under the hyper-elliptic involution
in the cases H(2) and H(1, 1), then there exists a pair of saddle connections (η+, η−) which
bound a simple cylinder C containing γ, i.e.

. C \ C = η+ ∪ η−,
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. int(γ) ⊂ C.

In the case H(0), actually η+ ≡ η−, in all others case η+ and η− are distinct.

Proof: We will prove this lemma case by case.

Case H(0):
In this case γ is a simple closed geodesic passing through the marked point. Let η be any
simple closed geodesic which meets γ only at the marked point, then we can take η+ = η− = η.

Case H(0, 0):
In this case γ is a geodesic segment joining two marked points P1, P2 of Σ. Using the action
of SL(2,R), we can assume that γ is horizontal. Let Ψt, t ∈ R, denote the vertical flow on
Σ. There exists a minimal value t0 > 0 such that Ψt0(γ) ∩ γ 6= ∅. Observe that Ψt0(γ) must
contain one endpoint of γ, without loss of generality, we can assume that P1 ∈ Ψt0(γ).
By the definition of t0, we have an isometric immersion Φ from the rectangle R = [0; |γ|]×[0; t0]
into Σ whose restriction into int(R) is an embedding. We can suppose that Φ maps the
lower side of R onto γ. Let P̃ b

i , i = 1, 2, denote the two endpoints of the lower side of R so
that Φ(P̃ b

i ) = Pi. By assumption, there exists a point P̃ t
1 in the upper side of R such that

Φ(P̃ t
1) = P1. Let η̃ denote the geodesic segment in R joining P̃ b

1 to P̃ t
1 , then η+ = Φ(η̃) is a

simple closed geodesic in Σ which meets γ only at P1. Let η− be the image of η+ under the
distinguished involution of Σ, we see that η− is parallel to η+, and meets γ only at P2. It is
easy to check that η+ and η− cut Σ into two cylinders, one of which contains γ.

Case H(2):
Let P denote the unique singularity of Σ, and τ denote the hyper-elliptic involution of Σ. In
this case γ is a geodesic segment joining P to itself, and invariant under τ . Note that τ reverse
the orientation of γ, and since τ(P ) = P , it also fixes the midpoint of γ.
We can assume that γ is horizontal. As before, let Ψt, t ∈ R, denote the vertical flow on
Σ. The same argument as in the previous case shows that we have an immersion Φ from a
rectangle R ⊂ R2 into Σ such that Φ|int(R) is an embedding, Φ maps the lower side of R onto

γ, and there exists a point P̃ in the upper side of R which is mapped to P . Let ∆̃ denote
the triangle whose vertices are P̃ and the two endpoints of the lower side of R. Since ∆̃ is
contained in R, the restriction Φ|int(∆̃) is an embedding, moreover the images of the sides of

∆̃ by Φ are three distinct saddle connections, which meet one another only at P . Therefore,
∆ = Φ(∆̃) is an embedded triangle in Σ whose vertices coincide with P . By construction, γ is
a side of ∆, let σ1, σ2 denote the two other sides. Let ∆′, σ′

1, σ
′
2 denote the images of ∆, σ1, σ2

under τ respectively. Observe that ∆′ is also an embedded triangle in Σ, and γ is a common
side of ∆′ and ∆. Here we have two possibilities:

• ∆ and ∆′ have another common side other than γ, that is, either σ′
1 = σ1, or σ2 = σ′

2.
In this case ∆ ∪∆′ is a simple cylinder, and we are done.

• γ is the only common side of ∆ and ∆′. In this case, ∆∪∆′ is an embedded parallelogram
in Σ. Let us show that σ1 and σ′

1 bound a cylinder disjoint from ∆ ∪ ∆′. Recall the
the cone angle at P is 6π, and the action of τ at P is the rotation of angle 3π. Fix an
orientation for γ, consider γ as a part of ∂∆ (resp. ∂∆′), we then have an orientation
for σ1, σ2 (resp. σ′

1, σ
′
2) subsequently. Consider a small disk D centered at P . The

intersection of any oriented saddle connection with D is the union of an outgoing ray,
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and an incoming ray. These two rays specify a pair of angles at P , since Σ is a translation
surface, this pair of angles is either (π, 5π), or (3π, 3π). Since γ is invariant under τ , the
pair of angle specified by γ is (3π, 3π), meanwhile the pair of angles specified by σ1 is
(π, 5π) since σ′

1 = τ(σ1) 6= σ1. We claim that the outgoing and the incoming rays of σ1
are contained in the same half disk cut out by the outgoing and the incoming rays of γ.
Indeed, suppose that the outgoing and the incoming rays of σ1 do not belong to the same
half disk (see Figure 2, Case a)), then by considering the sum of the angles in ∆, we see
that the pair of angles specified by σ2 is (3π, 3π), which means that σ2 = τ(σ2) = σ′

2,
but this is excluded by the hypothesis.

γ

σ1σ2

σ′
1 σ′

2

∆

γ

σ2σ1

σ1

σ2

π
γ γ

σ2

σ2
σ1

σ1

π

Case a) Case b)

Figure 2: Configurations of geodesics rays at P

We know that the action of τ on H1(Σ,Z) is −Id, which implies that σ1 − σ′
1 =

0 in H1(Σ,Z). It follows that σ1 and σ′
1 cut Σ into two connected components, each

of which is equipped with a flat metric structure with piecewise geodesic boundary.
Consider the connected component which does not contain γ. This component does not
contain any singularity in its interior, and since the angle between the two rays of σ1
at P measured inside this component is π, we deduce that there is no singularities in
its boundary. The only flat surface with two geodesic boundary components with no
singularities is a cylinder. Therefore, we can conclude that σ1 and σ′

1 bound a cylinder
C disjoint from ∆ ∪∆′.
Consider the subsurface Σ′ = ∆ ∪ ∆′ ∪ C of Σ. We first observe that Σ′ is invariant
under τ . Topologically, Σ′ is the complement in a torus of two open disks whose bound-
aries meet at one point. We can construct Σ′ by gluing two parallelograms so that the
restriction of τ into Σ′ is realized by the central symmetries in both parallelograms.
Elementary geometry shows that one can find a saddle connection η+ in ∆ ∪ C which
crosses σ1 once. Let η− denote the image of d under τ , then η+ and η− bound a simple
cylinder containing γ. Since τ preserves γ and reverses its orientation, we see that τ
preserves the cylinder bounded by η+ and η−, and τ(η+) = η−, τ(η−) = η+.

Case H(1, 1):
Let {P1, P2} denote the singularities of Σ, the cone angles at both P1 and P2 are 4π. Recall that
in this case, the hyper-elliptic involution τ exchanges P1 and P2, therefore γ must be a saddle
connection joining P1 to P2. Without loss of generality, we can assume that γ is horizontal.
As we have seen in the previous cases, there exists an embedded triangle ∆ in Σ bounded by
γ and two other saddle connections σ1 and σ2. Since there are only two singularities, one of
the two sides σ1 and σ2 must joint a singularity to itself, therefore we can assume that σ1
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γ

σ2

σ′
2

σ1

σ′
1

σ′
1

σ1

η+

η−

C C

Figure 3: Existence of η±

joins P1 to itself.
Let ∆′, σ′

1, σ
′
2 denote the images of ∆, σ1, σ2 under τ respectively. Since τ exchanges P1 and

P2, σ1 and σ′
1 are two distinct saddle connections. We choose the orientation for γ to be from

P1 to P2, and choose the orientation of σ1 and σ2 (resp. σ′
1 and σ′

2) coherently to get an
orientation for the boundary of ∆ (resp. ∆′). Consider two small disks D1,D2 centered at
P1, P2 respectively. The intersection of σ1 with D1 consists of an outgoing ray and an incoming
ray, while the intersection of γ with D1 consists of only an out going ray. Let θ be the angle
between the outgoing and the incoming rays of σ1 measured along the sector of D1 that does
not contain γ. We have two cases:

. θ = 3π : In this case, the angle between the two rays of σ1 measured along the other
sector of D1 is π. A simple computation of angles shows that we must have σ2 = σ′

2

as subset of Σ, which implies that ∆ ∪∆′ is actually a cylinder invariant under τ and
bounded by σ1 and σ′

1, and the lemma follows immediately.

. θ = π : Since σ1 − σ′
1 = 0 in H1(Σ,Z), by cutting Σ along σ1 and σ′

1, we obtain two flat
surfaces with piecewise geodesic boundary. Observe that the component which does not
contain γ has no singularities in the interior, and since the angle between the two rays of
σ1 measured inside this surface is π, we see that it has no singularities in the boundary.
It follows that this component is a cylinder C bounded by σ1 and σ′

1. Now, using the
same argument as in the case H(2), we see that there exists a pair of saddle connections
η± in ∆ ∪∆′ ∪C which are exchanged by τ , and bound a simple cylinder containing γ.

�

3 Proof of Theorem 1.1

3.1 Existence of simple cylinder on hyper-elliptic translation surfaces

To prove Theorem 1.1, we first show

Lemma 3.1 For any g > 2, on every surface of the stratum Hhyp(2g−2), there always exists
a simple cylinder which is invariant under the hyper-elliptic involution.
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Proof: Let Σ be a surface in the stratum Hhyp(2g − 2). A construction due to Veech (see
[V1], [HLM3]) allows us to construct Σ from a 2g-gon P in R2 centered at the origin, and in-
variant under the central symmetry of R2. The polygon P is not necessarily convex, however
it has a horizontal diagonal d which passes through the origin contained in the interior. Let
A0, B0 denote the left and right endpoints of d respectively. We denote by A1, . . . , A2g−1 (resp.
B1, . . . , B2g−1) the vertices of P above (resp. below) the diagonal d in the counter-clockwise
order. We consider by convention that A2g = B0, and B2g = A0. The surface Σ is obtained
by identifying the opposite sides of P.
Let y : R2 −→ R denote the vertical coordinate function of R2. Let i0 be the smallest index in
{0, 1, . . . , 2g − 1} so that y(Ai0) = max{y(A0), . . . , y(A2g−1)}. Note that we have 0 < i0 < 2g
since y(A0) = y(B0) = 0. By the choice of i0, we see that the diagonal Ai0−1Ai0+1 is contained
inside P. By symmetry, the diagonal Bi0−1Bi0+1 is also contained inside P. Since the sides
Ai0−1Ai0 and Ai0Ai0+1 are identified with Bi0−1Bi0 and Bi0Bi0+1 respectively, it follows that
the union of the two triangles ∆u = (Ai0−1Ai0Ai0+1) and ∆l = (Bi0−1Bi0Bi0+1) is projected
to a simple cylinder C of Σ. Now, the hyper-elliptic involution of Σ corresponds to the cen-
tral symmetry at the origin, which interchanges the two triangles ∆u, and ∆l, therefore the
hyper-elliptic involution preserves C, and exchanges its two boundary components . �

Remark: This lemma is also true for surfaces in Hhyp(g − 1, g − 1).

3.2 Proof of Theorem 1.1

Let Σ be a surface in Hhyp(4), we denote by τ the hyper-elliptic involution of Σ. By Lemma
3.1, we know that there exists a simple cylinder C1 in Σ bounded by a pair of saddle connec-
tions (δ+1 , δ

−
1 ) such that τ(C1) = C1 and τ(δ+1 ) = δ−1 . Cutting off C1 from Σ, we then get a

surface whose boundary is an eight figure, i.e. the union of two circles meeting at one point.
Splitting the common point of the two circles into two points gives us two geodesic segments
(corresponding to the pair (δ+1 , δ

−
1 )), gluing these two segments together, we then get a surface

Σ′ in H(1, 1) with a marked saddle connection which will be denoted by δ1.
Since τ preserves C1, and exchanges δ+1 and δ−1 , its restriction τ ′ to Σ′ is the hyper-elliptic
involution of Σ′, and preserves the saddle connection δ1. By Lemma 2.1, we know that there
exists a pair of saddle connections (δ+2 , δ

−
2 ) in Σ′ which bound a simple cylinder C2 containing

δ1. Again, we have that τ ′ preserves C2 and exchanges δ+2 and δ−2 . Note that since δ+2 and δ−2
meet δ1 at only the endpoints of δ1, which are the singularities of Σ′, we deduce that δ+2 and
δ−2 are a pair of homologous saddle connections in the initial surface Σ.
Now, cut off C2 from Σ′, what is left is a surface with two boundary components correspond-
ing to δ+2 and δ−2 . Gluing the two boundary components so that the two singularities are
identified, we get a surface in H(2) with a marked saddle connection, which is invariant by the
hyper-elliptic involution. Lemma 2.1 then allows us to continue the procedure until we are left
with a simple cylinder. Since in each step, we cut out a simple cylinder, a simple computation
on Euler character shows that we get to this situation after four steps. The result of this proce-
dure is that we have found four pairs of homologous saddle connections (δ+i , δ

−
i ), i = 1, . . . , 4,

in Σ which satisfy the properties asserted in the statement of the theorem. �

Corollary 3.2 There exists on any surface Σ in Hhyp(4) a pair of homologous saddle connec-
tions which are exchanged by the hyper-elliptic involution, and decompose Σ into a union of a
surface in H(2), and a surface in H(0, 0). In both components of this decomposition, this pair
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of saddle connections corresponds to a saddle connection invariant under the (distinguished)
involution.

Proof: Let (δ+i , δ
−
i ), i = 1, . . . , 4, be the saddle connections in Σ satisfying the properties in

Theorem 1.1. It is easy to check that both pairs (δ+2 , δ
−
2 ) and (δ+3 , δ

−
3 ) satisfy the property

asserted in the corollary. �

4 Splitting of surfaces in Hhyp(4)

4.1 Flat torus with a marked geodesic segment

Throughout this paper, by a ’flat torus’ we will mean a Riemann surface of genus one together
with a non-zero holomorphic 1-form. Equivalently, we identify a flat torus with the quotient
C/Λ, where Λ is a lattice isomorphic to Z ⊕ Z. Using this identification, we can associate to
any oriented geodesic s in the torus a vector V (s) ∈ R2. If u = (x1, y1) and v = (x2, y2) are
two vectors in R2, we set u∧ v = x1y2 − x2y1. The following lemma is elementary, but will be
useful for us in the sequel.

Lemma 4.1 Let T be a flat torus, and s be a geodesic segment joining two distinct points
x1, x2 in T . Let c be a simple closed geodesic passing through x1, not parallel to s. Then x1 is
the unique intersection point of c and s if and only if |V (s) ∧ V (c)| < Area(T ).

Proof: Using SL(2,R), we can assume that V (c) is horizontal and V (s) is vertical. Cutting
T along c, we then get a cylinder C. Let h be the height of C. The fact that x1 is the unique
intersection point of s and c is equivalent to the fact that |V (s)| < h, which is equivalent to

|V (s) ∧ V (c)| = |V (s)||V (c)| < h|V (c)| = Area(C) = Area(T ).

�

4.2 The space of splittings

Let Σ be a surface inHhyp(4). We denote by P the unique singularity of Σ. Let δ±i , i = 1, . . . , 4,
be four pairs of saddle connections in Σ as in Theorem 1.1. Cutting Σ along (δ+1 , δ

−
1 ) and

(δ+3 , δ
−
3 ), we get three following components:

• C1 is a cylinder bounded by δ+1 and δ−1 . Gluing δ+1 and δ−1 together so that the two
points corresponding to P are identified, we then get a surface in H(0) with a marked
saddle connections.

• C2 is an annulus equipped with a flat metric structure with piecewise geodesic boundary,
each boundary component of C2 consists of two geodesic segments (corresponding to
δ+1 ∪ δ+3 , and δ−1 ∪ δ−3 ). Gluing δ+1 and δ+3 to δ−1 and δ−3 respectively, we then get an
element of H(0, 0), together with two saddle connections whose union is a simple closed
curve.

• C3 is a one holed flat torus, the boundary of C3 is connected and consists of two geodesic
segments corresponding to δ+3 and δ−3 . Gluing these two segments together, we then get
an element in H(0, 0) together with a marked saddle connection.
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Remark: We get a similar decomposition of Σ by cutting along the pairs (δ+2 , δ
−
2 ) and

(δ+4 , δ
−
4 ).

Let Sp denote the set of (T1, T2, T3, v1, v2), where T1 ∈ H(0), T2, T3 ∈ H(0, 0), and vi ∈
R2, i = 1, 2 satisfying

a) There are a saddle connection in T1 and a saddle connection in T2 both have associated
vector equal to v1.

b) There are a saddle connection in T2, and a saddle connection in T3 both have associated
vector equal to v2.

c) v = v1+v2 is a primitive vector of the lattice Λ2 = Λ(T2) associated to T2, and there exists
another primitive vector w such that Λ2 = Zv⊕Zw and 0 < |vi∧w| < Area(T2), i = 1, 2.

We denote by Sp1 the subset of Sp consisting of elements (T1, T2, T3, v1, v2) such thatArea(T1)+
Area(T2) +Area(T3) = 1.

Remark:

• We have a natural action of SL(2,R) on Sp.

• It follows from the condition c) that the flat torus T2 is obtained from the gluing of two
parallelograms P1,P2 with Pi constructed from w and vi.

Given an element (T1, T2, T3, v1, v2) in Sp, we construct a surface in Hhyp(4) as follows:

. Cutting T1 along the saddle connection corresponding to v1, we get a cylinder C1.

. Let s1, s2 be the saddle connections in T2 corresponding to v1 and v2 respectively. Since
v1 + v2 is a primitive vector in Λ(T2), we see that s1 ∪ s2 is a simple closed curve in T2.
Cutting T2 along s1 and s2, we then get a cylinder with piecewise geodesic boundary,
which will be denoted by C2.

. Slitting open T3 along saddle connection corresponding to v2, we get a one holed torus
which will be denoted by C3.

. We can now glue C1, C2, C3 together following the model shown in Figure 1 so that all
the marked points are identified, we then get a surface in Hhyp(4).

This construction provides us with a map Ψ : Sp −→ Hhyp(4). A direct consequence of
Theorem 1.1 is the following

Proposition 4.2 The map Ψ is surjective, locally homeomorphic, and SL(2,R)-equivariant.
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4.3 Special splitting

Let X = (T1, T2, T3, v1, v2) be an element of Sp, we say that X is a special splitting if v1 and
v2 are parallel (collinear). We denote by SSp the set of special splittings in Sp, and by SSp1

the intersection SSp ∩ Sp1.
Consider a point X = (T1, T2, T3, v1, v2) in SSp, we denote by Λi, i = 1, 2, 3, the lattices
associated to Ti. Let C1 (resp. C2) denote the cylinder obtained by cutting T1 (resp. T2) along
the saddle connection corresponding to v1 (resp. along the union of the saddle connections
corresponding to v1 and v2). Let mi, i = 1, 2, denote the modulus of Ci, we will call m1 (resp.
m2) the modulus of the pair (T1, v1) (resp. of the pair (T2, v1 + v2)). By construction, C1 and
C2 are isometric to two cylinders in the direction v1 on the surface Σ = Ψ(X). Set

α =
|v2|
|v1|

, and m̄ =
m1

m2
.

Observe that we have the following relation between m̄ and α

m̄ =
Area(T1)

Area(T2)
(1 + α)2.

Since α and the areas of Ti are SL(2,R)-invariant, so is m̄. We will call m̄ the moduli ratio of
(T1, T2, T3, v1, v2).
Using SO(2,R), we can assume that C1 and C2 are horizontal. We can also define the twists
for C1 and C2 as follows: let w1 = (wx

1 , w
y
1) (resp. w2 = (wx

2 , w
y
2)) be a primitive vector in Λ1

(resp. Λ2) such that Λ1 = Zv1 ⊕ Zw1 (resp. Λ2 = Z(v1 + v2) ⊕ Zw2). We define the twists

t1, t2 of C1 and C2 respectively to be t1 =
wx
1

|v1|
mod Z, and t2 =

wx
2

|v1|+ |v2|
mod Z. We also

call t1 (resp. t2) the twist of the pair (T1, v1) (resp. of the pair (T2, v1 + v2)).
Recall that a vector w in R2 is generic with respect to a lattice Λ = Zu ⊕ Zv if w is not
parallel to any vector in Λ. To prove Theorem 1.2, we first prove the following theorem, which
is slightly weaker. As we will see, Theorem 1.2 can be obtained as a consequence of this
theorem.

Theorem 4.3 Let X0 = (T 0
1 , T

0
2 , T

0
3 , v

0
1 , v

0
2) be an element in SSp1. Let Λ0

i , i = 1, 2, 3, denote
the lattice associated to T 0

i , and m̄0 denote the moduli ratio of X0. Suppose that

• m̄0 /∈ Q,

• v02 is generic with respect to Λ0
3,

then O := SL(2,R) ·Ψ(X0) is dense in Hhyp
1 (4).

4.4 Ratner’s Theorem

The first important ingredient of the proof of Theorem 4.3 is a consequence of the famous
theorem of Ratner on action of unipotent subgroups on homogeneous spaces. Before stating
this theorem, let us first recall some basic notions. Let G be a Lie group, and g be its Lie
algebra. An element g of G is unipotent if Adg − Id is nilpotent in End(g). Let λ denote the
right Haar measure of G, G is called unimodular if the left Haar measure equals the right Haar
measure, or equivalently if |detAdg| = 1 for all g in G. A discrete subgroup Γ of G is called
a lattice if we have λ(G/Γ) < ∞. If G has a lattice then it is unimodular. It is well-known
that SL(2,R) is unimodular, but its subgroup consisting upper triangular matrices is not.
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Theorem 4.4 (Ratner) Let G be a finite dimensional Lie group, Γ be a lattice in G, and
X = G/Γ. Let U be a connected subgroup of G generated by unipotent element. Then for any
x in X, the closure U · x of the U -orbit of x is a homogeneous space of finite volume, that is
there exists a closed unimodular subgroup H ⊂ G containing U such that

• U · x = H · x,

• xΓx−1 ∩H is a lattice in H.

Put G = R×R×SL(2,R), and Γ = Z×Z×SL(2,Z), then Γ is a lattice in G. An element
of G/Γ is a triple (θ1, θ2,Λ), where θi ∈ R/Z ≃ S1, and Λ ≃ Z2 is a lattice in R2 such that
Vol(R2/Λ) = 1. Let m1,m2 be two positive real numbers. We set

U = Um1,m2
= {(m1t,m2t,

(

1 t
0 1

)

), t ∈ R},

then U is a unipotent subgroup of G. As a consequence of Theorem 4.4, we have

Corollary 4.5 Suppose that m1/m2 /∈ Q. Let Λ be a lattice in R2 which contains no hori-
zontal vectors. Then for any (θ1, θ2) ∈ R/Z× R/Z, we have

U · (θ1, θ2,Λ) = G/Γ.

Proof: By Ratner Theorem, we know that U · (θ1, θ2,Λ) = H · (θ1, θ2,Λ), where H is con-
nected, unimodular subgroup of G. All we need to show is that H = G.
Let x be any element of G which is projected to (θ1, θ2,Λ). Let h and g denote the Lie algebras
of H and G respectively. Set

a =

(

1 0
0 −1

)

,u+ =

(

0 1
0 0

)

,u− =

(

0 0
1 0

)

.

We have sl(2,R) = Ru+⊕Ru−⊕Ra, and g = R⊕R⊕ sl(2,R). Observe that the Lie bracket
of g is trivial on the R components, and we have

[u+,u−] = a, [a,u+] = 2u+, [a,u−] = −2u−.

Since U ⊂ H, the Lie algebra h contains v0 = (m1,m2,u+). Remark that xΓx−1 = Z × Z ×
M · SL(2,Z) ·M−1, where M is any matrix in SL(2,R) sending the standard basis of R2 to a
basis of the lattice Λ. We denote by A and N the following subgroups of SL(2,R)

A = {
(

et 0
0 e−t

)

, t ∈ R}, N = {
(

1 t
0 1

)

, t ∈ R}.

Let pr2 : g −→ sl(2,R) denote the natural projection. The image of h under pr2 is a subal-
gebra of sl(2,R) which contains Ru+.

Case 1: pr2(h) = Ru+. We have three possibilities:

• h = Rv0 =⇒ H = U , but by assumption, we have U ∩ Z × Z × M · SL(2,Z) · M−1 =
{(0, 0, Id)} is not a lattice in U .

• h = Rv0 ⊕ Ru+ = Ru+ ⊕ Rm1,m2
, where Rm1,m2

= R · (m1,m2) ⊂ R2. It follows that
H = Rm1,m2

×N . But again, we have H ∩ Z× Z×M · SL(2,Z) ·M−1 = {(0, 0, Id)}.
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• h = R2 ⊕Ru+ =⇒ H = R2 ×N . But we have N ∩M · SL(2,Z) ·M−1 = {Id}, therefore,
H ∩ Z× Z×M · SL(2,Z) ·M−1 is not a lattice.

Case 2: pr2(h) = Ru+ ⊕ Ra. Let v be any vector in h such that pr2(v) = a, then we have
[v,v0] = 2u+. Therefore, we see that h contains the following vectors

. u+,

. v1 = a+w, with w = (k1, k2) ∈ R2,

. w0 = v0 − u+ = (m1,m2) ∈ R2.

Here we have two possibilities:

• h = Rw0 ⊕ Ru+ ⊕ Rv1 =⇒ H = R × A′N , where A′ = {(k1t, k2t,
(

et 0
0 e−t

)

), t ∈
R} ⊂ G. It follows that H ≃ R×AN. But since AN is not unimodular, neither is H.

• h = R2 ⊕ Ru+ ⊕ Ra =⇒ H = R2 ×AN , but again H is not unimodular.

Case 3: pr2(h) = sl(2,R). Let v be a vector in h such that pr2(v) = u−, we then have

[v0,v] = a, [[v0,v],v0] = 2u+ and [[v0,v],v] = −2u−.

It follows that sl(2,R) ⊂ h. We then have two possibilities:

• H = Rm1,m2
×SL(2,R), in this case H ∩Z×Z×M ·SL(2,Z) ·M−1 = (0, 0,M ·SL(2,Z) ·

M−1) is not a lattice in H.

• H = R2 × SL(2,R), this is the only admissible possibility.

We can then conclude that U · (θ1, θ2,Λ) = G/Γ. �

Remark: Similar results for Rk × SL(2,R)n/Zk × SL(2,Z)n with small k and n can be found
in [HLM3].

For any (A1, A2, A3, α) in R4
>0, let SSp(A1, A2, A3, α) denote the subset of SSp consist-

ing of elements (T1, T2, T3, v1, v2) such that Area(Ti) = Ai, i = 1, 2, 3, and
|v2|
|v1|

= α. Using

Corollary 4.5, we have the following lemma

Lemma 4.6 Let X = (T1, T2, T3, v1, v2) be an element in SSp(A1, A2, A3, α). If
A1

A2
(α+ 1)2

is irrational, and v2 is generic with respect to the lattice Λ3 = Λ(T3) then

Ψ(SSp(A1, A2, A3, α)) ⊂ SL(2,R) ·Ψ(X).
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Proof: Let SSp(A1, A2, A3, α)hor denote the subset of SSp(A1, A2, A3, α) consisting of ele-
ments with v1 = (1, 0). We have SSp(A1, A2, A3, α) = SL(2,R) · SSp(A1, A2, A3, α)hor. We
have a natural mapping ϕ : SSp(A1, A2, A3, α)hor −→ G/Γ which sends (T1, T2, T3, v1, v2) to
an element (t1, t2,Λ3), where t1 and t2 are the twists of (T1, v1) and (T2, v1 + v2) respectively,
and Λ3 is the lattice associated to T3 normalized to have covolume one. Remark that ϕ is a
homeomorphism onto its image.
Let m1 and m2 denote the moduli of (T1, v1) and (T2, v1 + v2) respectively. Recall that we

have
m1

m2
=

A1

A2
(α+ 1)2. We define the action of U = {

(

1 t
0 1

)

, t ∈ R} on G/Γ using the

identification U ≃ Um1,m2
. It follows that ϕ is U -equivariant.

Without loss of generality, we can assume that X ∈ SSp(A1, A2, A3, α)hor. Consider x =
ϕ(X) ∈ G/Γ. The hypothesis on X implies that x satisfies the conditions of Corollary 4.5,
therefore U · x = G/Γ. Since ϕ is U -equivariant and a local homeomorphism, we deduce that
U ·X = ϕ−1(U · x) = SSp(A1, A2, A3, α)hor, and the lemma follows. �

Corollary 4.7 Let X0 = (T 0
1 , T

0
2 , T

0
3 , v

0
1 , v

0
2) be as in Theorem 4.3. Then we have

Ψ(SSp(A0
1, A

0
2, A

0
3, α0)) ⊂ SL(2,R) ·Ψ(X0),

where A0
i = Area(T 0

i ), i = 1, 2, 3, and α0 = |v02 |/|v01 |.

5 Surfaces admitting special splitting are contained in the or-

bit closure

Our aim in this section is to prove the following

Proposition 5.1 Let X0 = (T 0
1 , T

0
2 , T

0
3 , v

0
1 , v

0
2) be as in Theorem 4.3. We have Ψ(SSp1) ⊂

SL(2,R) ·Ψ(X0).

5.1 Dual splitting

Given X = (T1, T2, T3, v1, v2) in SSp, we will denote both saddle connections in T1 and T2

corresponding to v1 by δ1, similarly, we denote by δ2 the two saddle connections in T2 and
T3 corresponding to v2. Recall that the saddle connections δi, i = 1, 2, give rises to a pair of
homologous saddle connections in the surface Σ = Ψ(X), which will be denoted by δ±i .
Let η1 be a simple closed geodesic in T3 which meets δ2 once, and let η±1 denote the pair of
saddle connections parallel to η1. Similarly, let η2 be a simple closed geodesics in T2 which
meets δ1∪δ2 once, and let η±2 denote the pair of saddle connections parallel to η2. Remark that
η±1 (resp. η±2 ) are homologous saddle connections in Σ. We choose the orientation of η1 and η2
so that η+1 ∗η+2 is freely homotopic to a simple closed curve in Σ. Put w1 = V (η1), w2 = V (η2).
Cutting Σ along η±1 and η±2 , we see that the surface Σ is obtained from another element
X∨ = (T∨

1 , T
∨
2 , T

∨
3 , w1, w2) in Sp. We will call X∨ a dual splitting of X. Note that X∨ does

not belong to SSp in general, and there are infinitely many splittings dual to a given splitting.
We also have

Area(T∨
3 ) = Area(T1) +

Area(T2)

1 + |v2|/|v1|
(1)

Throughout this section, we set A0
i = Area(T 0

i ), i = 1, 2, 3, and α0 =
|v02 |
|v01 |

.
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Figure 4: Dual splittings

5.2 Changing splitting

The first step to prove Proposition 5.1 is the following

Lemma 5.2 If (A1, A2, A3, α) ∈ R4
>0 satisfies

. A1 +A2 +A3 = 1,

. A1 +
A2

1 + α
= A0

1 +
A0

2

1 + α0

then Ψ(SSp(A1, A2, A3, α)) ⊂ SL(2,R) ·Ψ(X0).

By Corollary 4.7, we know that SL(2,R) ·Ψ(X0) contains Ψ(SSp(A0
1, A

0
2, A

0
3, α0)). Let

X = (T1, T2, T3, v1, v2) be an element in SSp(A0
1, A

0
2, A

0
3, α0), and Σ be the surface in Hhyp(4)

constructed from X. Let δi, δ
±
i , ηi, η

±
i , i = 1, 2, and X∨ = (T∨

1 , T
∨
2 , T

∨
3 , w1, w2) be as in the

previous subsection, where X∨ is a dual splitting of X.
Let σ±

1 (resp. σ±
2 ) be a pair of homologous saddle connections in T∨

3 (resp. T∨
2 ) which bound

a simple cylinder containing η2 (see Figure 5). Viewed as saddle connections of Σ, the pairs
σ±
1 and σ±

2 determine a splitting of Σ. If σ±
1 and σ±

2 are parallel, then we have another special
splitting of Σ. To prove the lemma, we will show that for any (A1, A2, A3, α) in R4

>0, there
exists an element X in SSp(A0

1, A
0
2, A

0
3, α0) for which one can find σ±

1 , σ
±
2 determining a spe-

cial splitting with parameters (A1, A2, A3, α). We can then use Lemma 4.6 to conclude, first,
for (A1, A2, A3, α) satisfying the condition of Lemma 4.6, and then for all (A1, A2, A3, α) by
continuity.

Proof: (of Lemma 5.2) Without loss of generality, we can assume that v1 = (1, 0) and
v2 = (α0, 0). Let C1 (resp. C2) denote the cylinder obtained by slitting T1 (resp. T2) along
saddle connection δ1 (resp. along the saddle connections δ1 and δ2). Let hi and ti denote the

height and the twist of Ci, i = 1, 2. Note that h1 = A0
1, and h2 =

A0
2

α0 + 1
. We fix t2 = 0,

consequently, we can choose η±2 to be vertical, and therefore w2 = V (η±2 ) = (0, h2).
Set Λi = Λ(Ti) and Λ∨

i = Λ(T∨
i ), i = 1, 2, 3. Recall that v1 is a primitive vector of Λ1, let

u1 = (x, h1) be another primitive vector in Λ1 such that Λ1 = Zu1 ⊕ Zv1. Observe that the
parameter x can be chosen arbitrarily. Similarly, w1 = (y, z) is a primitive vector in Λ∨

1 , let
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û1 be another primitive vector such that Λ∨
1 = Zw1 ⊕Zû1. Note that Λ∨

2 = Zv2 ⊕Z(w1 +w2)
and Λ3 = Zw1 ⊕ Z(v2 + û1). The parameters (x, y, z, û1) ∈ R3 × R2 uniquely determine the
element X in SSp(A0

1, A
0
2, A

0
3, α0). By construction, the parameters (x, y, z, û1) must satisfy

the following conditions

|v2 ∧ w2| < Area(T∨
2 ) = |v2 ∧ (w1 + w2)| < 1−Area(T∨

3 ) =
α0A

0
2

α0 + 1
+A0

3 (2)

|w1 ∧ (v2 + û1)| = A0
3 (3)

Simple computations show that (2) is equivalent to

0 < z <
A0

3

α0
(4)

Remark that the conditions (2) and (3) are sufficient, that is, if the parameters (x, y, z, û1)
satisfy these two conditions, then they determine an element in SSp(A0

1, A
0
2, A

0
3, α0).

σ+
1

σ−
1

σ+
1

σ+
2

σ−
2

σ−
2

σ+
2

σ−
2

v1

u1

w1

û1 v2

w2

h1

h2

Figure 5: Finding new special splittings

Claim 1: For any (A1, A2, A3, α) ∈ R4
>0 satisfying the conditions of the lemma, there exist

(x, y, z) ∈ R3 with z satisfying (4) such that we can find a primitive vector v′1 in Λ∨
3 , and a

primitive vector v′2 in Λ∨
2 such that

i) v′2 = αv′1,

ii) |v′1 ∧ w2| =
A2

α+ 1
,

iii) |v′2 ∧ w2| < Area(T∨
2 ).

Proof of Claim 1: Recall that, by assumption, we have A1 +
A2

α+ 1
= A0

1 +
A0

2

α0 + 1
. Since

A1 +A2 < A0
1 +A0

2 +A0
3 = 1, it follows
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αA2

α+ 1
<

α0A
0
2

α0 + 1
+A0

3 (5)

From (5), we deduce that there exist p, q ∈ N, p > 0, q > 0, such that

max{α0A
0
2/(α0 + 1)

αα0(h1 + h2)
,
αA2/(α+ 1)

αα0(h1 + h2)
} <

p

q
<

α0A
0
2/(α0 + 1) +A0

3

αα0(h1 + h2)

Set x =
1

p
(

A2

h2(α+ 1)
− 1), y =

1

q
(

αA2

h2(α+ 1)
− α0), z = α

p

q
(h1 + h2)− h2. By the choice of

p, q, it is straight forward to verify that z satisfies (4). We have

u1 = (x, h1) = (
A2

ph2(α+ 1)
− 1

p
, h1)

w1 = (y, z) = (
αA2

qh2(α+ 1)
− α0

q
, α

p

q
(h1 + h2)− h2)

Set

v′1 = v1 + p(u1 + w2) = (1, 0) + (
A2

h2(α+ 1)
− 1, p(h1 + h2)) = (

A2

h2(α + 1)
, p(h1 + h2))

v′2 = v2 + q(w1 + w2) = (α0, 0) + (
αA2

h2(α+ 1)
− α0, αp(h1 + h2)) = α(

A2

h2(α+ 1)
, p(h1 + h2))

Since Λ∨
3 is generated by v1 and u1 +w2, we see that v′1 is a primitive vector in Λ∨

3 , similarly,
v′2 is a primitive vector in Λ∨

2 . Clearly, we have v′2 = αv′1, hence i) is satisfied. We have

|v′1 ∧ w2| =
∣

∣

∣

∣

A2/(h2(α+ 1)) 0
p(h1 + h2) h2

∣

∣

∣

∣

=
A2

α+ 1

therefore ii) is satisfied. Next, we have

Area(T∨
2 ) = |v2 ∧ (w1 + w2)| = αα0

p

q
(h1 + h2),

and

|v′2 ∧w2| = α|v′1 ∧ w2| =
αA2

α+ 1
.

By the choice of p, q, we have |v′2 ∧ w2| < Area(T∨
2 ), hence iii) is satisfied. �

Claim 2: Given (x, y, z) as in Claim 1, there exist û1 satisfying (3) such that v′2 is generic
with respect to the lattice Zw1 ⊕ Z(v′2 + û1).

Proof of Claim 2: Since |v′2 ∧ w1| = α0(h1 + h2)
p

q
− A2

α+ 1
> 0, we deduce that {v′2, w1} is

a basis of R2. Therefore, we can write û1 = λw1+µv′2. Observe that, once w1 is fixed, the set
of û1 satisfying (3) is parameterized by λ ∈ R, with fixed µ.
Observe that v′2 is parallel to a vector in Zw1 + Z(v′2 + û1) if and only if λ ∈ Q. Indeed,
suppose that v′2 = λ′(mw1 + n(v′2 + û1)), with m,n ∈ Z, then we must have n 6= 0, otherwise

v′2 and w1 are collinear, therefore û1 = −m

n
w1 + λ′′v′2. It follows immediately that there exist

û1 satisfying (3) such that v′2 is generic with respect to Zw1 ⊕ Z(v′2 + û1). �
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Let us now show that the lemma will follow from Claim 1 and Claim 2. Choose (x, y, z) as
in Claim 1, and choose û1 as in Claim 2, then the parameters (x, y, z, û1) give us an element
X in SSp(A0

1, A
0
2, A

0
3, α0). We have Σ = Ψ(X) ∈ SL(2,R) ·Ψ(X0).

Let σ±
1 (resp. σ±

2 ) be the pair of saddle connections in T∨
3 (resp. in T∨

2 ) corresponding to v′1

(resp. v′2). Since |v′1 ∧ w2| =
A2

α+ 1
< Area(T∨

3 ) =
A0

2

α0 + 1
+A0

1, from Lemma 4.1, we deduce

that σ±
1 meet η2 at only one point. Consequently, we see that σ±

1 bound a simple cylinder
containing η2. Similarly, since Area(T∨

2 ) = |v′2 ∧ w1| + |v′2 ∧ w2|, it follows that σ±
2 cut T∨

2

into two cylinders, one contains η1, the other contains η2. Consequently, σ±
1 and σ±

2 give
rise to two pairs of homologous saddle connections in Σ which determine a special splitting
X ′ = (T ′

1, T
′
2, T

′
3, v

′
1, v

′
2). We have

Area(T ′
1) = Area(T∨

3 )− |v′1 ∧ w2| =
A2

α+ 1
+A1 −

A2

α+ 1
= A1

Area(T ′
2) = |(v′1 + v′2) ∧ w2| = A2

Therefore, Area(T ′
3) = A3. Since Λ(T

′
3) = Zw1⊕Z(v′2+û1), it follows from the choice of û1 that

v′2 is generic with respect to Λ(T ′
3). We can then conclude that for any (A1, A2, A3, α) ∈ R4

>0

such that

. A1 +A2 +A3 = 1,

. A1 +
A2

α+ 1
= A0

1 +
A0

2

α0 + 1
,

there existX ′ = (T ′
1, T

′
2, T

′
3, v

′
1, v

′
2) ∈ SSp(A1, A2, A3, α), with v′2 generic with respect to Λ(T ′

3),
such that Ψ(X ′) ∈ SL(2,R) ·Ψ(X0). We can now complete the proof of Lemma 5.2 as fol-

lows: first, for any (A1, A2, A3, α) such that
A1

A2
(α+ 1)2 /∈ Q, it follows from Lemma 4.6 that

Ψ(SSp(A1, A2, A3, α)) ⊂ SL(2,R) ·Ψ(X0). By continuity of Ψ, it follows that SL(2,R) ·Ψ(X0)
contains Ψ(SSp(A1, A2, A3, α)) for all (A1, A2, A3, α). �

To complete the proof of Proposition 5.1, we need the following

Lemma 5.3 For any (A1, A2, A3, α) such that

. A1 +A2 +A3 = 1,

. A1 +
A2

α+ 1
< 1− (A0

1 +
A0

2

α0 + 1
) =

α0A
0
2

α0 + 1
+A0

3,

we have Ψ(SSp(A1, A2, A3, α)) ⊂ SL(2,R) ·Ψ(X0).

Proof: Since A1 +
A2

α+ 1
< 1− (A0

1 +
A0

2

α0 + 1
), we can find (A′

1, A
′
2, A

′
3, α

′) ∈ R4
>0 such that

. A′
1 +A′

2 +A′
3 = 1,

. A′
1 +

A′

2

α′+1 = A0
1 +

A0

2

α0+1 , and

. A′
3 = A1 +

A2

α+1 .
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From Lemma 5.2, we know that Ψ(SSp(A′
1, A

′
2, A

′
3, α

′)) ⊂ SL(2,R) ·Ψ(X0). Consider an
element X = (T1, T2, T3, v1, v2) ∈ SSp(A′

1, A
′
2, A

′
3, α

′), where v1 = (1, 0), v2 = (α′, 0). Let Λi

denote the lattice associated to Ti, i = 1, 2, 3. Observe that we can choose X such that (see
Figure 6)

. Λ1 contains no vertical vectors,

. Λ2 contains a vector vertical vector w2 such that Λ2 = Z(v1 + v2)⊕ Zw2,

. Λ3 = Zv3 ⊕ Zw1, where v3 is horizontal, and w1 is vertical.

α′ 1

ℓ3

h3 w1

w2

C1

C2

C3

Figure 6: Switching between horizontal and vertical splittings

By assumption, we see that all Λ1,Λ2,Λ3 contain horizontal vectors. Let Ci, i = 1, 2, 3, denote
the horizontal cylinder obtained by slitting Ti along the horizontal saddle connections, which
correspond to the primitive horizontal vectors in Ti . Let ℓi and hi denote width and the
height of Ci. Note that h1, h2 are determined by (A′

1, A
′
2, A

′
3, α

′), and ℓ3 and h3 must satisfy
ℓ3 > α′ and ℓ3h3 = A′

3.
By construction, the surface Σ constructed from X admits another special splitting X∨ =
(T∨

1 , T
∨
2 , T

∨
3 , w1, w2) which is dual to X. Since Λ1 contains no vertical vectors, the lattice Λ∨

3

does not contain any vertical vector. Let m̄∨ denote the moduli ratio of X∨.

m̄∨ =
(ℓ3 − α′)(h2 + h3)

α′h2
.

Since ℓ3 = A′
3/h3, we see that m̄

∨ is a non-constant rational function of h3. Therefore, we can
find h3 so that m̄∨ /∈ Q. We deduce that there exists an element X in SSp(A′

1, A
′
2, A

′
3, α

′) such
that the element X∨ defined above satisfies the conditions of Theorem 4.3. Let A∨

i , i = 1, 2, 3,
denote the area of T∨

i , and α∨ = |w2|/|w1|. By construction, we have

A∨
1 +

A∨
2

α∨ + 1
= A′

3 = A1 +
A2

α+ 1
.

Therefore, it follows from Lemma 5.2 that

Ψ(SSp(A1, A2, A3, α)) ⊂ SL(2, R) ·Ψ(X∨) ⊂ SL(2,R) ·Ψ(X0).

�
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5.3 Proof of Proposition 5.1

All we need to show is that Ψ(SSp(A1, A2, A3, α)) ⊂ SL(2,R) ·Ψ(X0) for all (A1, A2, A3, α)
such that A1 +A2 +A3 = 1. Choose (A′

1, A
′
2, A

′
3, α

′) in R4
>0 so that

A′
1 +

A′
2

α′ + 1
< min{1− (A0

1 +
A0

2

α0 + 1
), 1− (A1 +

A2

α+ 1
)}.

by Lemma 5.3, we know that Ψ(SSp(A′
1, A

′
2, A

′
3, α

′)) ⊂ SL(2,R) ·Ψ(X0). Let X be an element
in SSp(A′

1, A
′
2, A

′
3, α

′) which satisfies the conditions of Theorem 4.3. Since we have

A1 +
A2

α+ 1
< 1− (A′

1 +
A′

2

α′ + 1
),

by applying Lemma 5.3 with X in the place of X0, we see that

Ψ(SSp(A1, A2, A3, α)) ⊂ SL(2,R) ·Ψ(X) ⊂ SL(2,R) ·Ψ(X0),

and the proposition follows. �

6 Proof of Theorem 4.3

By Proposition 5.1, we know that O = SL(2,R) ·Ψ(X0) contains all the surfaces that admit a

special splitting. We will show that O contains all the Veech surfaces in Hhyp
1 (4), in particular,

O contains all the square-tiled surfaces. Since the set of square-tiled surfaces is dense in
Hhyp

1 (4), it follows immediately that O = Hhyp
1 (4).

Let Σ be a Veech surface in Hhyp
1 (4). From Corollary 3.2, we know that there exists on Σ a

pair of homologous saddle connections δ± such that by cutting along δ±, and gluing the two
geodesic segments in the boundary of each of the connected component obtained from the
cutting, we get a surface in H(0, 0), which will be denoted by Σ′, and a surface in H(2) which
will be denoted by Σ′′. On both Σ′ and Σ′′ we have a marked saddle connection corresponding
to the pair δ±, we denote both of them by δ. Without loss of generality, we can assume that δ
is horizontal. Since Σ is a Veech surface, Σ is decomposed into cylinders which are filled with
horizontal closed geodesics. In particular, we see that Σ′′ is a union of horizontal cylinders.
We have to possibilities

• Case 1: Σ′′ is the union of two cylinders. In this case, there exists another pair of
homologous horizontal saddle connections γ± in Σ′′ which, together with δ±, determine
a special splitting of Σ. Therefore, Σ ∈ O by Proposition 5.1.

• Case 2: Σ′′ contains only one horizontal cylinder. In this case, there exist two other
horizontal saddle connections γ1, γ2 in Σ such that δ ∗ γ1 ∗ γ2 is freely homotopic to a
simple closed geodesic. Consequently, Σ′′ can be constructed from a single parallelogram
P by the gluing as shown in Figure 7. Actually, P is an octagon whose opposite sides
are parallel and have the same length. Let U = (x, 0), V1 = (y, 0), V2 = (z, 0), with x >
0, y > 0, z > 0, be the vectors associated to the saddle connections δ, γ1, γ2 respectively.

Let {ǫn} be a sequence of positive real number decreasing to zero. For each ǫn, we

construct a surface Σn in Hhyp
1 (4) as follows: first, we construct a surface Σ′′

n from an

octagon Pn, which is obtained from P by replacing V1 by the vector V
(n)
1 = (y, ǫn), and
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δ+

δ−

δ+

δ+

δ−

δ+

γ1 γ2

γ1γ2

ǫn

Figure 7: Surfaces with special splitting converging to Σ

V2 by the vector V
(n)
2 = (z,−ǫn), then we glue Σ′′

n to Σ′ along the pair of homologous

saddle connections δ±, and rescale to get a surface in Hhyp
1 (4). By construction, we see

that Σn admits a special splitting by horizontal saddle connections, therefore Σn ∈ O.
As ǫn −→ 0, the sequence {Σn} converges to Σ, hence we have Σ ∈ O.

The proof of Theorem 4.3 is now complete. �

7 Proof of Theorem 1.2

We can now prove Theorem 1.2 as a consequence of Theorem 4.3. The idea is to show that
there exists in the closure of SL(2,R) ·Ψ(X0) a surface which admits a special splitting satisfy-
ing the conditions of Theorem 4.3. As usual, let A0

i and Λ0
i denote the area and the associated

lattice of T 0
i , i = 1, 2, 3. We can assume that v01 = (1, 0) and v02 = (α0, 0). Let t

0
1 and t02 denote

the twists of the pairs (T 0
1 , v

0
1) and (T 0

2 , v
0
1 + v02) respectively (see 4.3). Obviously, we only

have to consider the case m̄0 = m0
1/m

0
2 = (α0 + 1)2A0

1/A
0
2 ∈ Q.

Let n1, n2 be the integers such that gcd(n1, n2) = 1 and n1m
0
1+n2m

0
2 = 0. Applying Ratner’s

Theorem for the action of U = {
(

1 t
0 1

)

, t ∈ R}, we see that U ·Ψ(X0) contains Ψ(X) for

all X = (T1, T2, T3, v1, v2) ∈ SSp(A0
1, A

0
2, A

0
3, α0)hor such that

n1(t1 − t01) + n2(t2 − t02) ∈ Z

where t1, t2 are the twists of the pairs (T1, v1) and (T2, v1 + v2) respectively. Consider such
an X with t2 = 0. Let Λi denote the lattice associated to Ti, i = 1, 2, 3. Since t2 = 0,
the lattice Λ2 contains vertical vectors, let w1 be the primitive vertical vector in Λ2, and
let η±2 denote the pair of homologous saddle connections in T2 such that V (η±2 ) = w2. Let
w1 be a primitive vector in the lattice Λ3 such that |w1 ∧ v02 | < A0

3, and let η±1 denote the
pair of homologous saddle connections in T3 such that V (η±1 ) = w1. The saddle connections
η±1 and η±2 determine a splitting X∨ = (T∨

1 , T
∨
2 , T

∨
3 , w1, w2) of the surface Σ = Ψ(X). Let

Λ∨
i and A∨

i denote the associated lattice and the area of T∨
i , i = 1, 2, 3. Here we have two cases:

Case 1: t1 /∈ Q

In this case, the lattice Λ∨
3 does not contain any vertical vector. We can choose w1 to be
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vertical and
A∨

1

A∨
2

(α∨ + 1)2 /∈ Q, where α∨ = |w1|/|w2| (see Lemma 5.3). Hence the splitting

X∨ satisfies the condition of Theorem 4.3, it follows immediately that SL(2,R) ·Ψ(X0) =

SL(2,R) ·Ψ(X∨) = Hhyp
1 (4).

Case 2: t1 ∈ Q

In this case, Λ∨
3 contains vertical vectors. Let û3 = (0, h3), with h3 > 0, be the primitive

vertical vector of Λ∨
3 , and v̂3 = (ℓ, h), with ℓ > 0 and 0 6 h < h3, be another primitive vector

such that Λ∨
3 = Zû3 ⊕ Zv̂3.

By assumption, we have w2 = (0, h2), with h2 > 0. Remark that we have h3 > h2. Recall that
we are free to choose T3 and w1 provided Area(T3) = A0

3, and |w1∧v02| < A0
3. By construction,

we have Λ∨
2 = Zv02 ⊕ Z(w1 + w2). The theorem follows from the following observation (see

Lemma 5.2)

Claim: We can choose Λ3 and w1 so that there exist a primitive vector v′1 of Λ∨
3 , and a prim-

itive vector v′2 of Λ∨
2 such that the surface Σ admits a special splitting X ′ = (T ′

1, T
′
2, T

′
3, v

′
1, v

′
2)

dual to X∨ which satisfies the conditions of Theorem 4.3.

Proof of the claim: Set A1 = ℓ(h3 − h2) > 0, and choose (A2, A3, α) in R3
>0 such that

. A1 +A2 +A3 = 1,

. A1 +
A2

α+ 1
= A0

1 +
A0

2

α0 + 1
,

.
A1

A2
(α+ 1)2 /∈ Q.

Since A1 +
A2

α+ 1
= A0

1 +
A0

2

α0 + 1
= A∨

3 = ℓh3, and A1 = ℓ(h3 − h2), it follows
A2

α+ 1
= ℓh2,

hence

αA2

α+ 1
= αℓh2 < 1− (A0

1 +
A0

2

α0 + 1
) =

α0A
0
2

α0 + 1
+A0

3 = A0 (6)

Choose q ∈ N large enough so that











h

h3q
<

αℓh2
αα0h3

,

1

q
<

1

2

A0 − αℓh2
αα0h3

.

From (6), it follows that there exists p ∈ N such that

αℓh2
αα0h3

− h

h3q
<

p

q
<

A0

αα0h3
− h

h3q
.

Now, we can take

. v′1 = pû3 + v̂3 = (ℓ, ph3 + h),

. w1 = (
αℓ− α0

q
, αh3(

h

h3q
+

p

q
)− h2),
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σ+
1

σ−
1

σ+
1

σ+
2

σ−
2

σ+
2

σ−
2

ℓ

h

h3

h2

w1

w2

û1

v02

Figure 8: Case 2 the lattice Λ∨
3 contains vertical vectors.

. v′2 = v02 + q(w1 + w2) = (αℓ, α(ph3 + h)).

Observe that v′1 and v′2 are primitive vectors in Λ∨
3 and Λ∨

2 respectively. Clearly, we have
v′2 = αv′1. By the choice of p, q, we also have

. |v′1 ∧ w2| = ℓh2 < ℓh3 = A∨
3 = A0

1 +
A0

2

α0 + 1
,

. |v′2 ∧ w2| = αℓh2 < αα0h3(
h

h3q
+

p

q
) = |v02 ∧ (w1 + w2)| = A∨

2 ,

. A∨
2 = αα0h3(

h

h3q
+

p

q
) < A0 = 1−A∨

3 ,

Consequently, the surface Σ admits a special splitting determined by two pairs of homologous
saddle connections σ±

1 and σ±
2 , where σ

±
1 is the pair of saddle connections in T∨

3 corresponding
to v′1, and σ±

2 is the pair of saddle connections in T∨
2 corresponding to v′2 (see Figure 8). Let

X ′ = (T ′
1, T

′
2, T

′
3, v

′
1, v

′
2) denote this special splitting, then we have Area(T ′

i ) = Ai, i = 1, 2, 3.
By construction, w1 is a primitive vector of Λ∨

1 . Let û1 be another primitive such that
Λ∨
1 = Zw1⊕Zû1. Recall that we can choose T3 arbitrarily provided Area(T3) = A0

3, therefore
we are free to choose û1, provided |û1 ∧w1| = A∨

1 = 1− (A∨
2 +A∨

3 ). It is easy to check that we
can choose such a û1 so that the vector v′2 is generic with respect to Λ(T ′

3) = Zw1⊕Z(v′2+ û1).
With this choice, we see that splitting X ′ satisfies the conditions of Theorem 4.3, and the
claim is then proved. �
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By Theorem 4.3, we know that SL(2,R) · Σ = Hhyp
1 (4). Since Σ ∈ SL(2,R) · Σ0, it follows

SL(2,R) · Σ0 = Hhyp
1 (4). The proof of Theorem 1.2 is now complete. �

8 Surfaces admitting completely periodic directions with three

cylinders

8.1 Two models of decomposition into three cylinders

Lemma 8.1 Let Σ be a surface in Hhyp(4). Assume that Σ is decomposed into three horizon-
tal cylinders, that is, the horizontal direction is completely periodic for Σ with three cylinders.
Then the surface Σ can be reconstructed from three (horizontal) cylinders by one of the fol-
lowing gluing models

Case I Case II

Figure 9: Two models of gluing

Proof: First, observe that Σ has exactly 5 horizontal saddle connections, since the angle at
the unique singular point of Σ is 10π. Let C1, C2, C3 denote the three horizontal cylinders.
Since each of the horizontal saddle connections is contained in the lower boundary component
of a unique cylinder, we then have a partition of set of horizontal saddle connections into three
subsets, there are only two such partitions corresponding to two ways of writing 5 as the sum
of three positive integers: 5 = 1 + 1 + 3 = 1 + 2 + 2.

Next, let us show that the hyper-elliptic involution τ of Σ preserves each of the cylinders
Ci, i = 1, 2, 3. Consider a simple closed geodesic ci in Ci close to its lower boundary. Since
τ(ci)+ ci = 0 in H1(Σ,Z), we deduce that ci and τ(ci) cut Σ into two connected components,
each of which is equipped with a flat metric with geodesic boundaries. Since Σ has only one
singularity, one of the two components has no singularities in the interior, and must be a
cylinder. Therefore, ci and τ(ci) are contained in the same cylinder Ci. As a consequence, we
see that τ maps the lower boundary of each cylinder to its upper boundary. In particular, the
upper boundary and the lower boundary of each cylinder contain the same number of saddles
connections, and moreover, for each saddle connection in the lower boundary is paired up with
a saddle connection in the upper boundary, which is its image under τ .

From these two observations, it is now easy to check that there are only two ways to construct
Σ from three cylinders, which are shown in Figure 9. �
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Remark: The fact that the hyper-elliptic involution preserves each of the cylinders is already
known to Kontsevich-Zorich (see [KoZ], Lemma 8).

8.2 Proof of Corollary 1.3

8.2.1 Proof of Corollary 1.3, Case I)

In this case, let C0
1 denote the unique simple cylinder of the decomposition, C0

2 denote the
cylinder adjacent to C0

1 , and C0
3 the remaining cylinder. Let ℓ0i , h

0
i ,m

0
i denote respectively

the width, the height, and the modulus of C0
i . Since m0

1,m
0
2,m

0
3 are independent over Q,

by applying Ratner’s Theorem for the action of U , we deduce that U · Σ0 contains all the
surfaces Σ which are constructed from 3 horizontal cylinders C1, C2, C3 by the same gluing
model, whenever Ci has the same width and height as C0

i .
On each boundary component of C1 we have a marked point which corresponds to the unique
singularity of Σ. Let v1 = (vx1 , v

y
1) be the associated vector of any geodesic segment joining

the marked point in the lower boundary to the marked point in the upper boundary. We then

define the twist t1 of C1 to be
vx1
ℓ01

mod Z. On each boundary component of C2 (resp. C3),

we have two marked points, therefore each boundary component is the union of two geodesic
segments. From Lemma 8.1, we see that each segment in the upper boundary of C2 is paired
up with a segment in the lower boundary component by the hyper-elliptic involution. Take
such a pair of segments, and consider a segment joining the left endpoint of the segment in the
lower boundary to the left endpoint of the segment in the upper boundary. Let v2 = (vx2 , v

y
2) be

the vector associated to this segment, we then define the twist t2 of C2 to be t2 =
vx2
ℓ02

mod Z.

We define the twist t3 of C3 in the same manner.
Observe that any value of (t1, t2, t3) gives us a unique surface Σ in U · Σ0. Consider the case
t2 = t3 = 0, in that case Σ admits a special splitting by two pairs of vertical homologous saddle
connections. It is easy to see that if t1 is not in Q then this splitting satisfies the condition
of Theorem 1.2, that is the lattice associated to T3 does not contain any vertical vector. It
follows immediately that SL(2,R) · Σ0 = SL(2,R) · Σ = Hhyp

1 (4).

8.2.2 Proof of Corollary 1.3 Case II)

In this case, we have two simple cylinders, which will be denoted by C0
1 and C0

2 , the remaining
cylinder has 3 saddle connections in each boundary component, and will be denoted by C0

3 .
Let γ+1 , γ

+
2 , γ

+
3 denote the saddle connections contained in the upper boundary of C0

3 such
that γ+1 (resp. γ+2 ) is also the lower boundary of C0

1 (resp. C0
2 ). Let γ−i denote the image

of γ+i under τ . Note that the lower boundary of C0
3 is the union of γ−1 , γ

−
2 , γ

−
3 , and in fact

γ+3 = γ−3 (see Figure 10).
Let ℓi, hi denote respectively the width and the height of C0

i , i = 1, 2, 3. Since the cylinders
C0
1 and C0

2 are simple, we define their twists t01, t
0
2 as in Case I). Let δ+ (resp. δ−) denote a

pair of homologous saddle connections in C0
3 which joins the left (resp. right) endpoint of γ−1

to the left (resp. right) endpoint of γ+1 . Using the action of U , we can assume that δ± are
vertical.
Applying the Ratner’s Theorem, we see that U · Σ0 contains all surfaces obtained from three
cylinders (C1, C2, C3) by the same gluing model as (C0

1 , C
0
2 , C

0
3 ), provided Ci has the same

width and height as C0
i . In particular, U · Σ0 contains all surfaces constructed from three

cylinders (C1, C2, C3) with C3 = C0
3 , and, for i = 1, 2, the twist ti of Ci can be chosen
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arbitrarily. Let Σ be such a surface. Cut Σ along δ±, then glue the geodesic segments
corresponding to δ± on each component together, we get a surface in H(0, 0) containing C1,
which will be denoted by Σ′, and a surface in H(2) containing C2, which will be denoted by
Σ′′. In both of Σ′ and Σ′′, we have a marked saddle connection corresponding to δ±, we denote
both of them by δ.

δ+
δ−

δ+
γ+1

γ+3γ+2

γ−3

γ−2

γ−1

σ+
1 σ−

1

σ+
1

σ+
2σ−

2

h1

h3

h2

ℓ1

ℓ2

ℓ3

Figure 10: Finding new special splittings

In Σ′, for any t1 ∈]0, 1[, we have a pair of homologous saddle connections σ±
1 which correspond

to the vector w1 = (t1ℓ1, h1 + h3). This pair of saddle connections cut Σ′ into two cylinders,
one of which contains δ.
Suppose that t2 ∈]0, 1[, then there exists a pair of homologous saddle connections σ±

2 in Σ′′

V (σ±
2 ) = w2 = (t2ℓ2, h2 + h3), which bound a simple cylinder containing δ. If we cut off

the simple cylinder bounded by σ±
2 from Σ′′, and then glue the geodesic segments corre-

sponding to σ±, we obtain a torus T in H(0, 0) together with a marked saddle connection
σ2. Let Λ denote the lattice in R2 associated to T , then Λ is generated by u = (ℓ2, h3) and
v = (t2ℓ2 − |γ+3 |, h2 + h3). Note that u is independent of t2.
Recall that w2 is parallel to a vector in Λ = Zu⊕Zv if and only if we can write v = λu+µw2

with λ ∈ Q. As t2 varies, we see that the set of t2 for which w2 is parallel to a vector in Λ
is countable, which means that, given any ǫ > 0, we can find t2 ∈]0, ǫ[ such that w2 is not

parallel to any vector in Λ. Therefore, we can find t2 ∈]0,
ℓ1(h1 + h3)

ℓ2(h2 + h3)
[, such that w2 is not

parallel to any vector in Λ. Now, take t1 =
ℓ2(h2 + h3)

ℓ1(h1 + h3)
t2, we have t1 ∈]0; 1[, hence we can find

σ±
1 as above. By the choice of t1 and t2, w1 and w2 are parallel. Reconstruct Σ from Σ′ and

Σ′′, we see that σ±
1 and σ±

2 determine a special splitting of Σ, which satisfies the condition of
Theorem 1.2. Since Σ ∈ U · Σ0, the corollary follows. �

9 Applications

9.1 Generic surfaces with coordinates in a quadratic field

In [HLM3], Hubert-Lanneau-Möller raise the following question: does there exist a generic
translation surface of genus g with all coordinates in a number field K such that [K : Q] < g?
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Theorem 1.2 provides us with an affirmative answer to this question for the case Hhyp(4).

For every quadratic field K, one can construct a surface in Hhyp
1 (4) with all coordinates in K

which satisfies the condition of Theorem 1.2. Here below is such a surface with coordinates in
Q[

√
2].

1
4

1
2

1
2

√
2
4

2−
√
2

2

√
2
2

√
2
4

Figure 11: A generic surface in Hhyp
1 (4) with coordinates in Q[

√
2]

9.2 Thurston-Veech surface with cubic trace field

Surfaces obtained by the Thurston-Veech construction have large Veech group, which con-
tains infinitely many hyperbolic elements (see [HLM3] for definition and further detail on
Thurston-Veech construction). Recall that the trace field of a translation surface is the field
generated over Q by the the traces of the matrices in its Veech group. If K is the trace field
of a translation surface of genus g then [K : Q] 6 g. For g = 2, McMullen ([Mc2]) shows
that if [K : Q] = 2 then the SL(2,R)-orbit of the surface can not be dense in its stratum.
However, for g = 3, Hubert-Lanneau-Möller ([HLM1], [HLM2]) show that there exist surfaces
in the hyper-elliptic locus L of Hodd(2, 2) obtained by the Thurston-Veech construction with
trace field of degree 3 such that the SL(2,R)-orbit is dense in L. Note that L is a closed
SL(2,R)-invariant subset of Hodd(2, 2), therefore these surfaces can be viewed as generic.

The surfaces obtained from Thurston-Veech construction are completely algebraically pe-
riodic in the sense of Calta-Smillie (see [CS]). In particular, if such a surface admits a special
splitting (T1, T2, T3, v1, v2), then v2 must be parallel to a vector in the lattice associated to T3.
Therefore, a Thurston-Veech surface can never satisfy the condition of Theorem 1.2. However,
if the trace field is of degree 3 over Q, one can find examples of Thurston-Veech surfaces which
admit decompositions into three parallel cylinders whose moduli are independent over Q. By
Corollary 1.3, it follows that the SL(2,R)-orbits of such surfaces are dense in Hhyp

1 (4). Here
below, we will give the explicit construction of some of such surfaces.
We construct surfaces in Hhyp(4) for which the horizontal and vertical directions are com-
pletely periodic with three cylinders. To get such a surface, we glue three horizontal cylinders
C1, C2, C3 as shown in Figure 12.

Let ℓi and hi denote the width and the height of Ci, i = 1, 2, 3. We define the twists ti of
Ci, i = 1, 2, 3, as in Section 8.2.1. In what follows we fix t2 = t3 = 0, and consider the cases
t1 = (n − 1)/n, n ∈ N.
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Figure 12: Cubic Thurston-Veech surface with a non-parabolic completely periodic direction

We denote by δ±1 , δ
±
2 , δ3 the horizontal saddle connections contained in the boundary of

C1, C2, C3 as shown in Figure 12. We choose the orientation for every horizontal saddle
connection to be from the left to the right, and for every vertical saddle connection to be
upward. Let η+2 and η−2 (resp. η+1 and η−1 ) denote the vertical saddle connections in C2 (resp.
in C3) joining the left and the right endpoints of δ−2 to the left and the right endpoints of
δ+2 respectively. We see that the surface Σ admits a special spitting (T∨

1 , T
∨
2 , T

∨
3 , w1, w2) de-

termined by η±1 and η±2 (wi = V (η±i ), i = 1, 2). Since t1 = (n − 1)/n, there exists a vertical
saddle connection in T∨

3 which crosses δ−1 (n − 1) times, we denote this saddle connection by
η3. It follows that Σ is decomposed into three vertical cylinders, which will be denoted by
C∨
i , i = 1, 2, 3, where

. C∨
1 is bounded by η±i ,

. C∨
2 is bounded by η+1 ∪ η+2 and η−1 ∪ η−2 ,

. C∨
3 is bounded by η+2 ∪ η3 and η−2 ∪ η3 (η3 bounds C∨

3 from both sides).

Fix ℓ2 = h2 = 1, and let mi denote the modulus of Ci, and m∨
i denote the modulus of

C∨
i , i = 1, 2, 3. Set

. a =
m1

m2
=

h1
ℓ1

,

. b =
m3

m2
=

h3
ℓ3

,

. c =
m∨

2

m∨
1

=
h3(1− ℓ1)

(h3 + 1)(ℓ1 + ℓ3 − 1)
,
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. d =
m∨

2

m∨
3

=
n2(h1 + 1)(1 − ℓ1)

(h3 + 1)ℓ1
.

Let η denote the saddle connection in C1 which corresponds to the vector (−ℓ1
n
, h1). We

have a pair of homologous saddle connections σ±
1 in T∨

3 such that σ+
1 = σ−

1 = δ−1 + η−2 + η in
H1(Σ,Z). Note that σ±

1 bound a cylinder containing η. Similarly, we have in T∨
2 a pair of

homologous saddle connections σ±
2 such that σ+

2 = σ−
2 = δ+2 + η+1 + η+2 . We have

V (σ+
1 ) = (

n− 1

n
ℓ1, h1 + 1), V (σ+

2 ) = (1− ℓ1, h3 + 1).

Claim 1: V (σ+
1 ) and V (σ+

2 ) are collinear if and only if d = n(n− 1).

Proof: The fact that V (σ+
1 ) is parallel to V (σ+

2 ) is equivalent to

n− 1

n

ℓ1
1− ℓ1

=
1 + h1
1 + h3

⇐⇒ 1− ℓ1
1 + h3

1 + h1
ℓ1

=
n− 1

n

⇐⇒ d

n2
=

n− 1

n
⇐⇒ d = n(n− 1).

�

Clearly, the surface Σ is completely determined by the values of (h1, ℓ1, h3, ℓ3). We will
find some values of (h1, ℓ1, h3, ℓ3) such that the vertical and horizontal directions are parabolic,
i.e. a, b, c, d are rational numbers, and Σ admits a decomposition into three cylinders in the
direction V (σ±

1 ) whose moduli are independent over Q. For this purpose, we fix n ∈ N, a, b, c
in Q, and d = n(n− 1), then we compute (h1, ℓ1, h3, ℓ3) as functions of (n, a, b, c).

First, observe that since c =
m∨

2

m∨
1

is a rational number, the vector V (σ+
2 ) is parallel to a vector

in the lattice associated to T∨
1 . It follows that Σ is decomposed into three cylinders in the

direction V (σ+
1 ). We denote these cylinders by C ′

i, i = 1, 2, 3, where

. C ′
1 is the cylinder containing η, and bounded by σ±

1 ,

. C ′
2 is the cylinder containing η±2 , and bounded by σ+

1 ∪ σ+
2 and σ−

1 ∪ σ−
2 ,

. C ′
3 is the complement of C ′

1 ∪ C ′
2, which is bounded by σ+

2 ∪ σ3 and σ−
2 ∪ σ3, where σ3

is a saddle connection parallel to σ±
2 , and bounds C ′

3 from both sides.

Let m′
i, i = 1, 2, 3, denote the modulus of C ′

i.

Claim 2: Suppose that c ∈ N, then we have

m′
1

m′
2

=
1

(n− 1)2
(naℓ1 + 1)(

n

ℓ1
− 1),

m′
3

m′
2

=
b

nc2
(n− ℓ1).
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Proof: Let h′i, ℓ
′
i, i = 1, 2, 3, denote the height and the width of C ′

i. We have

h′1
h′2

=
Area(C ′

1)

Area(T∨
3 )−Area(C ′

1)
=

(h1 + 1)ℓ1 − ((n− 1)/n)ℓ1
((n− 1)/n)ℓ1

=
1 + nh1
n− 1

.

Using the vertical projection onto the horizontal axis, we have

ℓ′2
ℓ′1

= 1 +
1− ℓ1

((n− 1)/n)ℓ1
=

n− ℓ1
(n− 1)ℓ1

.

Therefore

m′
1

m′
2

=
h′1
h′2

ℓ′2
ℓ′1

=
1 + nh1
(n− 1)

n− ℓ1
(n− 1)ℓ1

=
1

(n− 1)2
(1 + naℓ1)

n− ℓ1
ℓ1

.

Rescaling so that V (δ3) = (1, 0) and V (η1) = (0, 1), that is m∨
1 = 1. Since

m∨
2

m∨
1

= c, we deduce

that V (σ+
2 ) is collinear with the vector (c, 1). When c is an integer, in the standard torus

R2/Z2, the number of intersection points of the simple closed geodesics corresponding to the
vectors (c, 1) and (0, 1) is given by |(c, 1) ∧ (0, 1)| = c. Therefore, the saddle connection σ3

crosses η+1 c times. Using the projection along V (σ±
1 ) onto the vertical axis we have

h′3
h′2

=
h3
c
.

Then using the vertical projection onto the horizontal axis, we have
ℓ′2
ℓ′3

=
1− ℓ1/n

cℓ3
. Therefore,

m′
3

m′
2

=
h′3
h′2

ℓ′2
ℓ′3

=
1

nc2
h3
ℓ3

(n− ℓ1) =
b

nc2
(n− ℓ1).

�

Given n ∈ N, n > 1, a, b ∈ Q, a > 0, b > 0, and c ∈ N, c > 0, set

P (X) =
nc

n− 1
(X + a)(

n

(n − 1)b
(X − 1)(X + a)− X

b
−X + 1)− n

n− 1
(X − 1)(X + a) +X.

Claim 3: Suppose that P (X) is irreducible over Q, and has a real root α satisfying

. α > 1,

.
n(α− 1)(α + a)

(n − 1)α
> 1.

Then by taking ℓ1 =
1

α
, h1 =

a

α
, ℓ3 =

1

b
(
n(α− 1)(α + a)

(n− 1)α
− 1), h3 =

n(α− 1)(α + a)

(n− 1)α
− 1, the

construction above gives us a Thurston-Veech surface with trace field of degree 3 over Q for
which the moduli of the three cylinders in the direction V (σ±

1 ) are independent over Q. Con-
sequently, this surface is generic in Hhyp(4) by Corollary 1.3.

Proof: From the choice of ℓ1, h1, ℓ3, h3, we only need to check that

a) ℓ1 + ℓ3 − 1 > 0

b)
m∨

2

m∨
1

=
1− ℓ1
1 + h3

h3
ℓ1 + ℓ3 − 1

= c
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c)
m∨

2

m∨
3

=
n2(1− ℓ1)(1 + h1)

ℓ1(1 + h3)
= n(n− 1).

Condition a) is satisfied since we have

ℓ1 + ℓ3 − 1 =
1

α
+

n

b(n − 1)

(α− 1)(α + a)

α
− 1

b
− 1

=
n− 1

cn(α+ a)
(

n

n− 1

(α− 1)(α+ a)

α
− 1) > 0.

Conditions b) and c) follow immediately from the fact that α is a root of P . To see that the
trace field of Σ is of degree 3, remark that we have mi ∈ Q, i = 1, 2, 3, but

m∨
3 =

ℓ1
n2(1 + h1)

=
1

n2(α+ a)
.

is an algebraic number of degree 3 over Q. From Claim 2, we have

m′
1

m′
2

=
1

(n− 1)2
(1 + naℓ1)(

n

ℓ1
− 1)

=
1

(n− 1)2
(1 +

na

α
)(nα− 1)

=
n

(n− 1)2
α+

n2a− 1

(n − 1)2
− na

(n− 1)2
1

α
.

and

m′
3

m′
2

=
b

nc2
(n − ℓ1)

=
b

c2
− b

nc2
1

α
.

Since α, 1,
1

α
are independent over Q, it follows that m′

1,m
′
2,m

′
3 are independent over Q. �

9.3 Numerical examples

Here below are some explicit examples of Thurston-Veech surfaces obtained from the con-
struction above which satisfy the condition of Corollary 1.3. Here P̃ (X) is a polynomial
proportional to P (X) with coefficients in Z.

(n, a, b, c) P̃ (X) α ℓ1 ℓ3
(4, 1, 10, 5) 8X3 − 70X2 − 5X + 64 ≈ 8.716407 ≈ 0.114726 ≈ 1.046891
(5, 2, 10, 3) 15X3 − 127X2 − 152X + 260 ≈ 9.352026 ≈ 0.106929 ≈ 1.167271
(5, 1/5, 2, 1) 25X3 − 115X2 + 83X + 15 ≈ 3.643625 ≈ 0.274452 ≈ 1.242959
(5, 1/2, 5, 1) 20X3 − 176X2 + 121X + 75 ≈ 7.983332 ≈ 0.125261 ≈ 1.655175
(2, 1, 6, 1) 2X3 − 11X2 + 10 ≈ 5.323574 ≈ 0.187844 ≈ 1.545243
(2, 2, 9, 2) 8X3 − 34X2 − 53X + 76 ≈ 5.175414 ≈ 0.193221 ≈ 1.175327
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