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KAC-MOODY GROUPS AND CLUSTER ALGEBRAS

CHRISTOF GEISS, BERNARD LECLERC, AND JAN SCHROER

ABSTRACT. Let @ be a finite quiver without oriented cycles, let A be the associated
preprojective algebra, let g be the associated Kac-Moody Lie algebra with Weyl group
W, and let n be the positive part of g. For each Weyl group element w, a subcategory C.,
of mod(A) was introduced by Buan, Iyama, Reiten and Scott. It is known that Cy, is a
Frobenius category and that its stable category C,, is a Calabi-Yau category of dimension
two. We show that C,, yields a cluster algebra structure on the coordinate ring C[N (w)]
of the unipotent group N(w) := NN (w™"N_w). Here N is the pro-unipotent pro-group
with Lie algebra the completion 7t of n. One can identify C[N(w)] with a subalgebra of
U(n)g,, the graded dual of the universal enveloping algebra U(n) of n. Let S™ be the
dual of Lusztig’s semicanonical basis S of U(n). We show that all cluster monomials of
C[N(w)] belong to §*, and that S*NC[N (w)] is a C-basis of C[N(w)]. Moreover, we show
that the cluster algebra obtained from C[N (w)] by formally inverting the generators of the
coefficient ring is isomorphic to the algebra C[N"] of regular functions on the unipotent
cell N of the Kac-Moody group with Lie algebra g. We obtain a corresponding dual
semicanonical basis of C[N*]. As one application we obtain a basis for each acyclic
cluster algebra, which contains all cluster monomials in a natural way.
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1. INTRODUCTION

1.1. This is the continuation of an extensive project to obtain a better understanding of
the relations between the following topics:

(i) Representation theory of quivers,

(ii) Representation theory of preprojective algebras,

(iii) Lusztig’s (semi)canonical basis of universal enveloping algebras,

(iv) Fomin and Zelevinsky’s theory of cluster algebras,

(v) Frobenius categories and 2-Calabi-Yau categories,

(vi) Cluster algebra structures on coordinate algebras of unipotent groups, Bruhat cells
and flag varieties.

The topics (i) and (iii) are closely related. The numerous connections have been studied by
many authors. Let us just mention Lusztig’s work on canonical bases of quantum groups,
and Ringel’s Hall algebra approach to quantum groups. An important link between (ii)
and (iii), due to Lusztig [Lull ILu2] and Kashiwara and Saito [K9] is that the elements of
the (semi)canonical basis are naturally parametrized by the irreducible components of the
varieties of nilpotent representations of a preprojective algebra.

Cluster algebras were invented by Fomin and Zelevinsky [BFZ, [FZ2 [FZ3], with the
aim of providing a new algebraic and combinatorial setting for canonical bases and total
positivity. One important breakthrough was the insight that the class of acyclic cluster
algebras with a skew-symmetric exchange matrix can be categorified using the so-called
cluster categories. Cluster categories were introduced by Buan, Marsh, Reineke, Reiten
and Todorov [BMRRT], see also [Ke]. In a series of papers by some of these authors and
also by Caldero and Keller [CK1] [CK2|, it was established that cluster categories have
all necessary properties to provide the mentioned categorification. We refer to the nice
overview article [BM] for more details on the development of this beautiful theory which
established a strong connection between the topics (i), (iv) and (v). More recently, a
different and more general type of categorification using representations of quivers with
potentials was developed by Derksen, Weyman and Zelevinsky [DWZ1, [DWZ2]. This
provides another strong link between topics (i) and (iv).

In |GLS5] we showed that the representation theory of preprojective algebras A of
Dynkin type (i.e. type A, D or E) is also closely related to cluster algebras. We proved
that mod(A) can be regarded as a categorification of a natural (upper) cluster structure
on the polynomial algebra C[N]. Here N is a maximal unipotent subgroup of a complex
Lie group of the same type as A. Let n be its Lie algebra, and let U(n) be the universal
enveloping algebra of n. The graded dual U(n);, can be identified with the coordinate
algebra C[N]. By means of our categorification, we were able to prove that all the cluster
monomials of C[N] belong to the dual of Lusztig’s semicanonical basis of U(n). Note that

the cluster algebra C[N] is in general not acyclic.

The aim of this article is a vast generalization of these results to the more general setting
of symmetric Kac-Moody groups and their unipotent cells. We also provide additional tools
for studying the associated categories and cluster structures. For many cluster algebras we
construct a basis (called dual semicanonical basis) which contains all cluster monomials in
a natural way. In particular, we obtain such a basis for all acyclic cluster algebras. Also, we
construct a dual PBW-basis of the cluster algebras involved. This provides another close
link between Lie theory and the representation theory of preprojective algebras. We show
that the coordinate rings C[N(w)] and C[N"] are genuine cluster algebras in a natural
way, and not just upper cluster algebras in the sense of [BFZ].
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Let us give some more details. We consider preprojective algebras A = Ag attached
to quivers ) which are not necessarily of Dynkin type. These algebras are therefore
infinite-dimensional in general. The category nil(A) of all finite-dimensional nilpotent
representations of A is then too large to be related to a cluster algebra of finite rank.
Moreover, it does not have projective or injective objects, and it lacks an Auslander-
Reiten translation. However, Buan, Iyama, Reiten and Scott [BIRS] have attached to
each element w of the Weyl group W = Wy of @ a subcategory C,, of nil(A). They show
that the categories C,, are Frobenius categories and the corresponding stable categories C,,
are Calabi-Yau categories of dimension two. (These results were also discovered and proved
independently in [GLST7] in the special case when w is an adaptable element of W.) Each
subcategory C,, contains a distinguished maximal rigid A-module V; associated to each
reduced expression i = (i, ...,i1) of w. (A module X is called rigid if Ext} (X, X) = 0.)

Special attention is given to the algebra Bj := Endy (V;)°P, which turns out to be quasi-
hereditary. There is an equivalence between C,, and the category of A-filtered Bj-modules.
This allows us to describe mutations of maximal rigid A-modules in C,, in terms of the
A-dimension vectors of the corresponding Bj-modules.

To the subcategory C,, we associate a cluster algebra A(C,,) which in general is not
acyclic, and we show that C,, can be seen as a categorification of the cluster algebra A(C,,).
Each of the modules V; provides an initial seed of this cluster algebra. (As a very special
case, we also obtain in this way a new categorification of every acyclic cluster algebra with
a skew-symmetric exchange matrix and a certain choice of coefficients.) The proof relies
on the fact that the algebra A(C,) has a natural realization as a certain subalgebra of
the graded dual U(n)y,, where n is now the positive part of the symmetric Kac-Moody
Lie algebra g = n_ @ h @ n of the same type as A. We show that again all the cluster
monomials belong to the dual of Lusztig’s semicanonical basis of U(n).

Next, we prove that A(C,) has a simple monomial basis coming from the objects of
the additive closure add(M;), where M; = My @ --- @ M, is another A-module in C,
associated to a reduced expression i of w. The modules M}, are rigid, but M; is not rigid,
except in some trivial cases. We call it the dual PBW-basis of A(C,), and regard it as a
generalization (in the dual setting) of the bases of U(n) constructed by Ringel in terms of
quiver representations, when g is finite-dimensional [Ri4]. We use this to prove that A(Cy,)
is spanned by a subset of the dual semicanonical basis of U(n)g,. Thus, we obtain a natural
basis of A(C,) containing all the cluster monomials. We call it the dual semicanonical
basis of A(Cy). We prove that A(C,,) is isomorphic to the coordinate ring of the finite-
dimensional unipotent subgroup N(w) of the symmetric Kac-Moody group attached to
g. Moreover, we show that the cluster algebra obtained from A(C,) by formally inverting
the generators of the coefficient ring is isomorphic to the algebra of regular functions on
the unipotent cell N* of the Kac-Moody group. This solves Conjecture IV.3.1 of [BIRS].

Note also that in the Dynkin case the unipotent cells N* are closely related to the
double Bruhat cells of type (e, w), whose coordinate ring is known to be an upper cluster
algebra by a result of [BFZ|. However, our proof is different and shows that C[N"] is not
only an upper cluster algebra but a genuine cluster algebra.

Finally, we explain how the results of this paper are related to those of [GLS6], in
which a cluster algebra structure on the coordinate ring of the unipotent radical Ng of a
parabolic subgroup of a complex simple algebraic group of type A, D, E was introduced.
We give a proof of Conjecture 9.6 of [GLS6].
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1.2. Remark. Our preprint [GLS7|] contains special cases of the main results of this arti-
cle: When w is an adaptable Weyl group element, we constructed and studied the subcate-
gories C,, independently of [BIRS], using different methods. For this case, [GLS7] contains
a proof of [BIRS| Conjecture IV.3.1]. Since |GLS7] is already cited in several published
articles, we decided to keep it on the arXiv as a convenient reference, but it will not be
published in a journal.

1.3. Notation. Throughout let K be an algebraically closed field. For a K-algebra A
let mod(A) be the category of finite-dimensional left A-modules. By a module we always
mean a finite-dimensional left module. Often we do not distinguish between a module
and its isomorphism class. Let D := Homg(—, K): mod(A) — mod(A°P) be the usual
duality.

For a quiver @ let rep(Q) be the category of finite-dimensional representations of @
over K. It is well known that we can identify rep(Q) and mod(K Q).

By a subcategory we always mean a full subcategory. For an A-module M let add(M)
be the subcategory of all A-modules which are isomorphic to finite direct sums of direct
summands of M. A subcategory U of mod(A) is an additive subcategory if any finite direct
sum of modules in ¢/ is again in Y. By Fac(M) (resp. Sub(M)) we denote the subcategory
of all A-modules X such that there exists some ¢t > 1 and some epimorphism M?! — X
(resp. monomorphism X — M?).

For an A-module M let 3(M) be the number of isomorphism classes of indecomposable
direct summands of M. An A-module is called basic if it can be written as a direct sum
of pairwise non-isomorphic indecomposable modules.

For an A-module M and a simple A-module S let [M : S] be the Jordan-Hélder mul-
tiplicity of S in a composition series of M. Let dim(M) := dimy(M) := ([M : S])s
be the dimension vector of M, where S runs through all isomorphism classes of simple
A-modules.

For a set U we denote its cardinality by |U|. If f: X — Y and ¢g: Y — Z are maps,
then the composition is denoted by gf =go f: X — Z.

If U is a subset of a K-vector space V, then let Spany (U) be the subspace of V' generated
by U.

By K(Xi,...,X,) (resp. K[Xq,...,X,]) we denote the field of rational functions (resp.
the polynomial ring) in the variables X7,..., X, with coefficients in K.

Let C be the field of complex numbers, and let N = {0, 1,2, ...} be the natural numbers,
including 0. Set Ny := N\ {0}.

Recommended introductions to representation theory of finite-dimensional algebras and
Auslander-Reiten theory are the books |[ARS, [ASS| IGR], [Ril].

2. DEFINITIONS AND KNOWN RESULTS

2.1. Preprojective algebras and nilpotent varieties. Let Q = (Qo,Q1,s,t) be a
finite quiver without oriented cycles. (As usual, Qg is the set of vertices, @1 is the set of
arrows, an arrow a € 1 starts in a vertex s(a) and terminates in t(a).) Let

A=Ag = KQ/(©)



KAC-MOODY GROUPS AND CLUSTER ALGEBRAS 5

be the associated preprojective algebra. We assume that () is connected and has vertices
Qo = {1,...,n}. Here K is an algebraically closed field, KQ is the path algebra of the
double quiver @Q of Q which is obtained from @Q by adding to each arrow a: i — j in Q an
arrow a*: j — ¢ pointing in the opposite direction, and (c) is the ideal generated by the

element
c= Z (a*a — aa™).
a1
Clearly, the path algebra K@ is a subalgebra of A. Let mg: mod(A) — mod(K Q) be the
corresponding restriction functor.

A A-module M is called nilpotent if a composition series of M contains only the simple
modules Sy, ..., S, associated to the vertices of Q). Let nil(A) be the abelian category of
finite-dimensional nilpotent A-modules.

Let d = (di,...,d,) € N". By

rep(Q,d) = ] Hompg (K%, K@)
ac€@1
we denote the affine space of representations of () with dimension vector d. Furthermore,
let mod(A, d) be the affine variety of elements

(for fa)acar € ] (HomK(KdS(a) , K%@) x Hom K(Kdt(a>,de<a>)>
acQ1
such that the following holds:

(i) For all i € Qo we have

Z fa*fa: Z fafa*-

a€Q1:s(a)=1 a€Qq:t(a)=i

By Aq we denote the variety of all (fa, for)ac@, € mod(A,d) such that the following
condition holds:

(ii) There exists some N such that for each path ajag - - ay of length N in the double
quiver Q of Q we have fo, fao, -+ fay = 0.

(It is not difficult to check that A4 is indeed an affine variety, namely for a fixed d we
can choose N = d; + - -+ + d,, in condition (ii) above.) If @ is a Dynkin quiver, then (ii)
follows already from condition (i). One can regard (ii) as a nilpotency condition, which
explains why the varieties A4 are often called nilpotent varieties. Note that rep(Q, d) can
be considered as a subvariety of Ay. In fact rep(Q,d) forms an irreducible component of
Ag4. Lusztig [Lull Section 12] proved that all irreducible components of Az have the same
dimension, namely
dim 1ep(Q,d) = > dy(a)dia)-
ac@1

One can interpret Ag as the variety of nilpotent A-modules with dimension vector d. The
group

n

GLq = [ [ 6L, (K)

i=1
acts on mod(A,d), Ay and rep(Q, d) by conjugation. Namely, for g = (g1,...,9n) € GLg
and © = (fa, for )acg, € mod(A,d) define

g.T = (gt(a) fags_((ll) 1 9s(a) fa*gi(i) )aEQl :
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The action on Ay and rep(Q,d) is obtained via restriction. The isomorphism classes of
A-modules in mod(A,d) and Ay, and K@Q-modules in rep(Q, d), respectively, correspond
to the orbits of these actions. For a module M in mod(A,d), (resp. in Ay or in rep(Q, d)),
let GLy.M denote its GLg4-orbit.

There is a bilinear form (—, —) = (—, —)¢g: Z™ x Z"™ — Z associated to @ defined by
(d,e) == (d,e)q := Z die; — Z ds(a)Ct(a)-
1€Qo acQ1
The dimension vector of a KQ-module M is denoted by dim(M) = dim(M). (Note that
dimg (M) = dim, (M), since we can consider M also as a A-module.) For KQ-modules
M and N set
(M,N) := (M,N)q = dim Homq(M, N) — dim Extjo (M, N).

It is known that (M, N) = (dim(M),dim(N)). Let (—,—) = (—,—)Q: Z" X Z"™ — 7Z be
the symmetrization of the bilinear form (—, —), i.e. (d,e) := (d,e) + (e, d> For A-modules
X and Y set

(X,Y)q = (mo(X),m(Y))q + (oY), 7 (X))q-
Lemma 2.1 ([CB| Lemma 1]). For any A-modules X and Y we have
dim Ext} (X,Y) = dim Homp(X,Y") + dim Homy (Y, X) — (X,Y)g.
In particular, dim Ext} (X, X) is even, and dim Ext} (X,Y) = dim Ext} (Y, X).
Corollary 2.2. For a nilpotent A-module X with dimension vector d the following are

equivalent:

e The closure GLg.X of GLy.X is an irreducible component of Ag;
e The orbit GLg.X is open in Ay;
e Exti(X,X)=0.

2.2. Semicanonical bases. We recall the definition of the dual semicanonical basis and
its multiplicative properties, following [Lull [Lu2l [GLST] [GLS4]. From now on, assume
that K = C.

For each dimension vector d = (dy,...,d,) we defined the affine variety Ag. A subset
C of Ay is said to be constructible if it is a finite union of locally closed subsets. For a
C-vector space V, a function

f: Ag—V
is constructible if the image f(Ag4) is finite and f~!(m) is a constructible subset of Ay for
allme V.

The set of constructible functions A; — C is denoted by M (Ag). This is a C-vector
space. Recall that the group GLg acts on Ag by conjugation. By M (A4)%" we denote
the subspace of M (A,) consisting of the constructible functions which are constant on the

GLg-orbits in A4. Set -
M= P M(Ag)S"e.

deNn
For f' € M(Ag)Cla, " € M(Ag)% @ and d = d’' + d" we define a constructible function

fi=fxf""Ag—C
in M(Ad)GLd by
=Y mxc ({UCX|f(U)f"(X/U) =m})

meC
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for all X € Ay, where U runs over the points of the Grassmannian of all submodules of
X with dim(U) = d’. Here, for a constructible subset V' of a complex variety we denote
by x.(V) its (topological) Euler characteristic with respect to cohomology with compact

support. This turns M into an associative C-algebra.

Remark 2.3. Note that the product x defined here is opposite to the convolution product
we have used in [GLS1 [GLS3| [GLS4]. This new convention turns out to be better adapted
to our choice of categorifying C[N(w)] and C[N*] by categories closed under factor mod-
ules. It is also compatible with our choice in [GLS6] of categorifying coordinate rings of
partial flag varieties by categories closed under submodules.

For the canonical basis vector e; := dim(S;) we know that A., is just a point, which (as
a A-module) is isomorphic to the simple module S;. Define 1;: A.;, — C by 1;(5;) := 1.
By M we denote the subalgebra of M generated by the functions 1; where 1 <i < mn. Set
My = M0 M(Ag)Cte. Tt follows that

M= P My

deNn

is an N"-graded C-algebra. Let U(n) be the enveloping algebra of the positive part n of
the Kac-Moody Lie algebra g associated to ), see Sections 1] and

Theorem 2.4 (Lusztig [Lu2]). There is an isomorphism of N"-graded C-algebras
Un) — M
defined by E; — 1; for 1 <i<mn.

Let Irr(Ag) be the set of irreducible components of Ag.

Theorem 2.5 (Lusztig [Lu2]). For each Z € Irr(A4) there is a unique fz: Ag — C in
My such that fz takes value 1 on some dense open subset of Z and value 0 on some dense
open subset of any other irreducible component Z' of Ay. Furthermore, the set

S:={fz1]Z elr(Ay),d € N"}
is a C-basis of M.
The basis S is called the semicanonical basis of M. By Theorem 2.4 we just identify

M and U(n) and consider S also as a basis of U(n). Since U(n) is a cocommutative Hopf
algebra, its graded dual

Ui, = P U;

deN™
is a commutative C-algebra. Let M be the dual space of My, and set
M* = EB M.
deNn

Again we identify M* and U(n)g,.
For X € A, define an evaluation function
ox: Mg —C
by dx (f) == f(X).

It is not difficult to show that the map X — dx from A4 to M is constructible in the
above sense. So on every irreducible component Z € Irr(A4) there is a Zariski open set
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on which this map is constant. Define pz := dx for any X in this open set. The C-vector
space M is spanned by the functions éx with X € Ag. Then by construction

S :={pz| Z €lrr(Ay),d € N"}
is the basis of M* = U(n), dual to Lusztig’s semicanonical basis S of U(n).

In case X is a rigid A-module, the orbit of X in Ay is open, its closure is an irreducible
component Z, and dx = pz belongs to S*.

For a module X € Ag and an m-tuple i = (i1,...,ip) with 1 < 4; < n for all j, let
JFi,x denote the projective variety of composition series of type i of X. Thus an element
in Fj x is a flag

(OZX()CXl C"'CXm:X)
of submodules X; of X such that for all 1 < j < m the subfactor X; /X j—1 is isomorphic
to the simple A-module S;; associated to the vertex i; of (). Let

di:Ad—>(C

be the map which sends X € Ay to xc(Fjx). It follows from the definition of x that
di = 1;, »---%1; . The C-vector space My is spanned by the maps d;. We have
ox (di) = Xe(Fix)-

Theorem 2.6 (|[GLS1]). For X,Y € nil(A) we have 0xdy = dxay -

In [GLS4] a more complicated formula than the one in Theorem is given, expressing
dxdy as a linear combination of dz where Z runs over all possible middle terms of non-split
short exact sequences with end terms X and Y. The formula is especially useful when
dim Ext}(X,Y) = 1. In this case, the following hold:

Theorem 2.7 (J[GLS4, Theorem 2]). Let X,Y € nil(A). If dim Ext} (X,Y) = 1 with
0X—>E —=>Y—>0 and 0—-Y —E"-X =0

the corresponding non-split short exact sequences, then

5X5Y = 5El + 5E”-

2.3. Frobenius categories. Let A be a K-algebra. Let C be a subcategory of a module
category mod(A) which is closed under extensions. Clearly, we have

Exts(X,Y) = Extl(X,Y)

for all modules X and Y in C. An A-module C in C is called C-projective (resp. C-
injective) if Extl (C,X) = 0 (resp. Extl(X,C) = 0) for all X € C. If C is C-projective
and C-injective, then C' is also called C-projective-injective. We say that C has enough
projectives (resp. enough injectives) if for each X € C there exists a short exact sequence
0—>Y —>C—X —0(resp. 0> X — C — Y — 0) where C is C-projective (resp.
C-injective) and Y € C. If C has enough projectives and enough injectives, and if these
coincide (i.e. an object is C-projective if and only if it is C-injective), then C is called a
Frobenius subcategory of mod(A). In particular, C is a Frobenius category in the sense of
Happel [Hal]. Of course, for A = A, an A-module C in C is C-projective if and only if it
is C-injective, see Lemma 2.1

By definition the objects in the stable category C are the same as the objects in C,
and the morphism spaces Hom¢(X,Y') are the morphism spaces in C modulo morphisms
factoring through C-projective-injective objects. The category C is a triangulated category
in a natural way [Hal], where the shift is given by the relative inverse syzygy functor

o l.coc.
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For all X and Y in C there is a functorial isomorphism
Home (X, Q71(Y)) = Ext}(X,Y).

The category C is a 2-Calabi- Yau category, if for all X,Y € C there is a functorial isomor-
phism
Exts(X,Y) = D Extb (Y, X).

2.4. Frobenius categories associated to Weyl group elements. By fl,...,fn we
denote the indecomposable injective A-modules with socle S1,...,S,, respectively. Here
S1,...,5, are the 1-dimensional simple A-modules corresponding to the vertices of the
quiver Q. (The modules ]A'Z are infinite-dimensional if @ is not a Dynkin quiver.)

For a A-module X and a simple module S; let soc(;)(X) := socg,(X) be the sum of
all submodules U of X with U = S;. (In this definition, we do not assume that X is
finite-dimensional.) For a sequence (ji,...,J:) of indices with 1 < j, < n for all p, there
is a unique chain

0=XoCX;C---CX; CX

of submodules of X such that X,/ X}, 1 = soc;,)(X/Xp-1). Define soc(;, .y (X) = X;.

For the rest of this section, let i = (i,,...,41) be a reduced expression of an element w
of the Weyl group W = Wq of Q. (By definition, this is the Weyl group of the Kac-Moody
Lie algebra g associated to @, see Section A1) For 1 <k < r let

Vi i=Vig = SOC(4y,... 1) <Ek> ’

and set V; := V1 @---@®V,. (The module V; is dual to the cluster-tilting object constructed
in [BIRS| Section III1.2].) Define

C; := Fac(V;) C nil(A).
For 1 <j <nlet kj :=max{1 <k <r|ix = j}. Define I ; := Vi, and set
L:=5L1® @i
The category C; and the module I; depend only on w, and not on the chosen reduced
expression i of w. Therefore, we define
Cw:=C; and I, := I;.

(If @ is a Dynkin quiver, and w = wy is the longest Weyl group element, then C, =
nil(A) = mod(A).) Without loss of generality, we assume that for each 1 < j < n there is
some 1 < k < r with i, = j. Otherwise, we could just replace ) by a quiver with fewer
vertices. Note also that C,, = add(I,) if and only if if # is for all k # s. In this case,
most of our theory becomes trivial.

The following three theorems are proved in [BIRS]. They were also obtained indepen-
dently and by different methods in [GLS7] in the case when w is adaptable.

Theorem 2.8. For any Weyl group element w the following hold:

(i) Cy is a Frobenius category;
(ii) The stable category C,, is a 2-Calabi-Yau category;
(iii) Cy has n indecomposable Cy,-projective-injective modules, namely the indecompos-
able direct summands of I,;
(iv) Cyw = Fac(Iy).
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We denote the relative inverse syzygy functor of C,, by Q!.

Recall that a A-module T is rigid if Ext} (T, T) = 0. Let C be a subcategory of mod(A),
and let 7' € C be rigid. Recall that for all X,Y € mod(A) we have dim Ext}(X,Y) =
dim Ext} (Y, X). We need the following definitions:

e T is C-mazimal rigid if Ext} (T © X, X) = 0 with X € C implies X € add(T);
e T is a C-cluster-tilting module if Ext} (T, X) = 0 with X € C implies X € add(T).

Theorem 2.9. For a rigid A-module T in C,, the following are equivalent:

(i) X(T) = length(w);
(ii) T is Cyw-mazimal Tigid;
(iii) T is a Cy-cluster-tilting module.

For 1 <k <rlet
k™ :=max{0,1 <s<k—1]is =71},
kT i=min{k+1<s<rr+1]is=r1}.

For 1 < 4,7 < n let ¢;; be the number of edges between the vertices ¢ and j of the
underlying graph of our quiver Q.

Following Berenstein, Fomin and Zelevinsky we define a quiver I'; as follows: The
vertices of I'j are just the numbers 1,...,7. For 1 <s,t < r there are g¢;, ;, arrows from s
to t provided tT > sT >t > s. These are called the ordinary arrows of I';. Furthermore,
for each 1 < s < r there is an arrow s — s~ provided s~ > 0. These are the horizontal
arrows of T';.

On the other hand, let A be a K-algebra, and let X = X7" & --- & X" be a finite-
dimensional A-module, where the X; are pairwise non-isomorphic indecomposable modules
and n; > 1. Let S; = Sy, be the simple End 4(X)°P-module corresponding to X;. Then
Hom 4 (X, X;) is the indecomposable projective End 4 (X )°P-module with top S;. The basic
facts on the quiver I'x of the endomorphism algebra End4(X)°P are collected in [GLS5|
Section 3.2]. In particular, we have a 1-1 correspondence between the vertices of I'x and
the modules X1,..., X;.

Theorem 2.10. The module V; is Cy-mazimal rigid, and we have I'y; = I';.
For example, let @Q be a quiver with underlying graph 1 —2——3. Then i :=

(t7,...,41) == (3,1,2,3,1,2,1) is a reduced expression of a Weyl group element w € Wy.
The quiver I'j looks as follows:

NZNA
LN

We often try to visualize A-modules. For example, let () be the quiver

1
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and let i:= (ig,...,11) := (3,2,1,3,2,1). Then the A-module V; =V} @ --- @ Vi looks as
follows:
1

Vi=1 Vo= ,! V3:132

T o 1 21321
Vi=,"3 V5:13213 Vo=12 3"

1 5 L

The numbers can be interpreted as basis vectors or as composition factors. For ex-
ample, the module Vj is a 9-dimensional A-module with dimension vector dim, (V) =
(di1,da,ds) = (4,3,2). More precisely, one could display V5 as follows:

1 241
1 2b/ \13%
NN
N/

This picture shows how the different arrows of the quiver @ of A act on the 9 basis vectors
of V5. For example, one can see immediately that the socle of X is isomorphic to Sy, and
the top is isomorphic to S1 & S1 P 1.

2.5. Relative homology for C,,. We recall some notions from relative homology theory
which, for Artin algebras, was developed by Auslander and Solberg [AST] [AS2).

Let A be a K-algebra, and let X,Y, Z, T € mod(A). Set
Fpr:= Homyu (T, —): mod(A) — mod(End4(T)°P).

A short exact sequence
0=-Z2—=2Y—=>X—-0

is Fr-ezact if 0 — Fr(Z) — Fr(Y) — Fr(X) — 0 is exact. By Fr(X,Z) we denote the
set of equivalence classes of Frr-exact sequences with end terms X and Z as above.

Let Yr be the subcategory of all X € mod(A) such that there exists an exact sequence

(1) SN PR LN RN N
where T; € add(7T') for all ¢ and the short exact sequences
0 — Ker(f;) = T; = Im(f;) = 0

are Fr-exact for all i > 0. We call sequence (1) an add(T)-resolution of X. We say that
(@) has length at most d if T; = 0 for all j > d. Note that

add(T) C Yr.
Dually, one defines add(T")-coresolutions
0-XL 1 & 8.
where we require now that the sequences

0 — Im(g;) — T; — Coker(g;) — 0
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are FT-exact, where FT is the contravariant functor Hom 4(—, T').
For X € Yr and Z € mod(A) let EX‘E%T (X,Z), i >0 be the cohomology groups of the
cocomplex obtained by applying the functor Homy(—, Z) to the sequence
SN NN LN
Lemma 2.11 ([AS1]). For X € Yr and Z € mod(A) there is a functorial isomorphism
Extp, (X, Z) = Pr(X, Z).

Proposition 2.12 (JAS2, Proposition 3.7]). For X € Yr and Z € mod(A) there is a
functorial isomorphism

Extip, (X, Z) = Extigg , (yor (Homa (T, X), Hom (T Z))
for all i > 0.
Corollary 2.13. The functor
Hom (T, —): Yr — mod(End4(T)°P)
is fully faithful. In particular, Hom (T, —) has the following properties:

(i) If X € Yr is indecomposable, then Hom 4 (T, X) is indecomposable;
(ii) If Homa(T, X) = Homa(7,Y) for some X,Y € Yr, then X =Y.

Note that Corollary 213 follows already from [Aul, Section 3], see also [APR, Lemma
1.3 (b)].
Corollary 2.14. Let T € mod(A), and let C be an extension closed subcategory of Y. If

Hom 4 (T7f) Hom 4 (T7g)
0 —

: 0 — Homyu (T, X) Homu(T,Y) Homu(7T,Z) — 0
is a short exact sequence of End4(T")°P-modules with X,Y,Z € C, then

10 XLy Sz 0

is a short exact sequence in mod(A).

Now we apply the above ideas to the category C,,. The following proposition is proved
in [GLS7] for adaptable w and in [BIRS| for arbitrary w. In a more general framework it
is proved in [KR].

Proposition 2.15. Let T be a Cy-mazimal rigid module, and let X € C,. Then there
exists an add(T)-resolution of the form
0—-T,—>Ty—>X—=0

and an add(T)-coresolution of the form

0—X —Ty— T —0.
Corollary 2.16. For each Cy-mazximal rigid module T we have C,, C Vr.

Corollary 2.17. For each X € C, the projective dimension of the End(T)°P-module
Homy (T, X) is at most one.

Corollary 2.18 ([Iy, Theorem 5.3.2]). If T and R are Cy-mazimal rigid A-modules, then
the Enda (T')°P-module Hom (T, R) is a classical tilting module, and

Endgyq, (7yor (Homy (T, R)) = Enda(R).
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2.6. The cluster algebra A(C,,T"). We refer to [FZ4] for an excellent survey on cluster
algebras. Here we only recall the main definitions and introduce a cluster algebra A(C,,,T")
associated to a Weyl group element w and a C,-maximal rigid A-module T.

If B= (bij) is any 7 x (r — n)-matrix with integer entries, then the principal part B of
B is obtained from B by deleting the last n rows. Given some 1 < k <1 —n define a new
7 % (r — n)-matrix pu(B) = (b};) by

, _bij le:kOI'j:k,

j bij+| Kl kﬂz- k| bk |

otherwise,

where 1 <i<rand1<j<r—n. One calls ,uk(é) a mutation of B. If B is an integer
matrix whose principal part is skew-symmetric, then it is easy to check that uk(g) is also
an integer matrix with skew-symmetric principal part. In this case, Fomin and Zelevinsky
define a cluster algebra A(B) as follows. Let F = C(y1,...,yy) be the field of rational
functions in r commuting variables yi,...,y,. Define y := (y1,...,¥y,). One calls (y,é)
the initial seed of A(B). For 1 <k <r —n define

bik —bik
y* L Hbik>0 yl + Hbik<0 yl
k - .
Yk

The pair (uk(y),,uk(é)), where ju;,(y) is obtained from y by replacing i by yj, is the
mutation in direction k of the seed (y, B).

Now one can iterate this process of mutation and obtain inductively a set of seeds.
Thus each seed consists of an r-tuple of algebraically independent elements of F called a
cluster and of a matrix called the exchange matriz. The elements of a cluster are its cluster
variables. Given a cluster (f1,..., fr), the monomials fi"* f3"* - f/™ where my > 0 for
all k are called cluster monomials. A seed has r — n neighbours obtained by mutation in
direction 1 < k < r —n. One does not mutate the last n elements of a Eluster, they serve
as "coefficients” and belong to every cluster. The cluster algebra A(B) is by definition
the subalgebra of F generated by the set of all cluster variables appearing in all seeds
obtained by iterated mutation starting with the initial seed.

It is often convenient to define a cluster algebra using an oriented graph, as follows.
Let T' be a quiver without loops or 2-cycles with vertices {1,...,r}. We can define an
r x r-matrix B(I') = (b;;) by setting

b;j = (number of arrows j — 4 in I') — (number of arrows ¢ — j in I).

Let B(I')° be the r x (r —n)-matrix obtained by deleting the last n columns of B(I'). The
principal part of B(I")° is skew-symmetric, hence this yields a cluster algebra A(B(T")°).

We apply this procedure to our subcategory C,. Let T' = T & --- ® T, be a basic
Cw-maximal rigid A-module with T}, indecomposable for all k. Without loss of generality
assume that T, 11, ..., 7T, are Cy-projective-injective. By I'r we denote the quiver of the
endomorphism algebra Endy (7')°P. We then define the cluster algebra

A(Co, T) == A(B(T'1)°).

In particular, we denote by A(C,,) the cluster algebra A(C,,, V;) attached to the C,-maximal
rigid module V; of Section 2.4l Thus A(Cy) := A(B(T';)°). (Up to isomorphism of cluster
algebras, this definition does not depend on the choice of i, see Section [B.1])
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2.7. Mutation of rigid modules. The results of this section are straightforward gener-
alizations of results in [GLS5|, see [GLST, Sections 12,13,14] and [BIRS].

Let A be a K-algebra, and M be an A-module. A homomorphism f: X — M’ in
mod(A) is a left add(M)-approzimation of X if M’ € add(M) and the induced map

Homu (f, M): Homa(M', M) — Hom4(X, M)
is surjective. A morphism f: V — W is called left minimal if every morphism g: W — W
with gf = f is an isomorphism. Dually, one defines right add(M )-approximations and

right minimal morphisms. Some well known basic properties of approximations can be
found in [GLS5| Section 3.1].

Proposition 2.19. Let T be a basic Cy-maximal rigid A-module, and let X be an inde-
composable direct summand of T which is not Cy,-projective-injective. Then there are short
exact sequences

0x L1 Ly 5o
and

0y x o
such that the following hold:

(i) f" and f" are minimal left add(T/X)-approzimations, and ¢’ and g" are minimal
right add(T/X)-approzimations;
(il) Y®T/X is a basic Cy-mazximal rigid A-module (in particularY is indecomposable),
and X 2Y;
(iii) dim Ext} (Y, X) = dim Ext}(X,Y) = 1;
(iv) We have add(T") Nadd(T"”) = 0;
v) The quiver I'r of End(T)°P has no loops and no 2-cycles;
(vi) We have

Cw # add(1ly),
Cw = add(ly) and n > 1,
Cw = add(ly) and n = 1.

w

[I N

gl. dim(End (T)°P) =

S = W

w

In the situation of the above proposition, we call {X,Y} an exchange pair associated to
T/X, and we write

pux(T) =Y & T/X.
We say that Y @ T'/X is the mutation of T" in direction X. The short exact sequence

0x L1 Ly 50
is the exchange sequence starting in X and ending in Y. Thus, we have

py (ux (1)) =T.

Let T =T, @ --- ® T, be a basic Cy,-maximal rigid A-module with 7T} indecomposable
for all k. Without loss of generality we assume that T,_,+1,...,7T, are Cy-projective-
injective. As in Section 26l write B(T') := B(I'r) = (tij)1<i,j<r, and let B(T)° = (t;;) be
the r x (r — n)-matrix obtained from B(7') by deleting the last n columns.

For1<k<r—mnlet

0T, =T =T =0
and
0—=Tp =T"—Tp —0
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be exchange sequences associated to the direct summand T}, of T'. It follows that

T'=@P 1" and T'=5 T
tik <0 tik>0
Set
T = NTk(T) = T]: @ T/Tk.
The quivers of the endomorphism algebras Endy (7)°P and Enda (pr, (7)) are related via
Fomin and Zelevinsky’s mutation rule:

Theorem 2.20. Let w be a Weyl group element. For a basic Cy-mazximal rigid A-module
T as above and 1 < k <r —n we have

B(pr,,(T))" = pr(B(T)°").

2.8. Categorification. An (additive) categorification of a cluster algebra .A(E) as in
section is given by the following:

(A) A C-linear, Hom-finite Frobenius category £ with a cluster structure in the sense
of [BIRS| II.1] on the basic £&-maximal rigid objects.

(B) A basic £&-maximal rigid object T' such that B(I'r)° = B.

(C) A cluster character x7: obj(£) — C(yi,...,y,) in the sense of Palu [Pal, Definition
1.2], with triangles replaced by short exact sequences.

(D) The cluster character x- induces a bijection between basic, T-reachable £-maximal
rigid objects and clusters in A(B).

Remark 2.21. (1) Conditions (A)-(C) imply obviously that each cluster monomial in
A(B) is of the form xp for some E-rigid object R. Thus condition (D) is a kind of
injectivity requirement for ys.

(2) By the results in Section 2.7] we have a cluster structure on C,. We can take
T = V;, for which we know I'y; by Theorem 2I01 By Theorems and 27 our 07 is
a good candidate for a cluster character. In fact, by Theorems [B.1] and below, we
know that dx € A(B(I'y;)°) for all X € Cy. (By Theorem Bl the algebra A(B(I'y;)°)
is up to isomorphism a subalgebra of M*.) Property (D) holds in our situation because
of the construction of the dual semicanonical basis. For this reason we call (Cy,V;) a
categorification of A(B(I'y;)°).

3. MAIN RESULTS

In this section, let K = C be the field of complex numbers.

3.1. The cluster algebra A(C,) as a subalgebra of M* = U(n);,. For a reduced
expression i = (i, ...,i1) of a Weyl group element w let T (C,,) be the graph with vertices
the isomorphism classes of basic C,-maximal rigid A-modules and with edges given by
mutations. Let T'=T; @ --- ® T, be a vertex of T(Cy), and let 7 (Cy,T) denote the con-
nected component of 7(C,,) containing 7. Two modules in 7 (Cy,) are mutation equivalent
if they belong to the same connected component. A A-module X is called T-reachable if
X € add(R) for some vertex R of T(Cy,T). Denote by R(Cy,T) the subalgebra of M*
generated by the g, (1 <i <r)where R = R;@®---® R, runs over all vertices of T (Cy, T).
The following theorem is our first main result. The proof is given in Section [I5.11

Theorem 3.1. Let w be a Weyl group element. Then the following hold:
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(i) There is a unique isomorphism v: A(Cy,T) — R(Cy,T) such that
Wyi) =0, (1<i<r)

(ii) If we identify the two algebras A(Cy,T) and R(Cy,T) via i, then the clusters of
A(Cy,T) are identified with the r-tuples §(R) = (dr,,.-.,0r, ), where R runs over
the vertices of the graph T (Cyw,T). In particular, {dx | X is T-reachable} is the
set of cluster monomials in R(Cy,T), and all cluster monomials belong to the dual
semicanonical basis S* of M* = U(n)g,.

The proof of Theorem B] relies on Theorem and the multiplication formula in

Theorem [2.7]

Write R(Cy) := R(Cy, Vi). (The algebra R(C,,) and its cluster algebra structure do not
depend on i, since all C,,-maximal rigid modules of the form V; are mutation equivalent,
see [BIRS| Proposition II1.4.3].) Theorem Bl shows that the cluster algebra A(C,) is
canonically isomorphic to the subalgebra R(Cy) of U(n)g,.

As an application, our theory provides an algorithm which computes the Euler charac-
teristics x.(Fk,gr) for all cluster monomials 0 in R(C,) and all composition series types
k = (ky,...,ks), see Section This is quite remarkable, since starting from the defini-
tions this seems to be an impossible task in almost all cases.

3.2. Dual PBW-bases and dual semicanonical bases. Let i = (i,...,7;) be a re-
duced expression of a Weyl group element w. Let V; = V1 & --- ® V,. be defined as before.
For each 1 < k < r there is a canonical embedding

Lk - ka — Vk.
Here we set Vjy := 0. Let M}, be the cokernel of ¢, and define
Mi :M1@®Mr

These modules play an important role in our theory. (In case w is adaptable and i is
Q°P-adapted, the module M; is a terminal K Q-module in the sense of [GLS7].)

In the spirit of Ringel’s construction of PBW-bases for quantum groups [Ri4], we con-
struct dual PBW-bases for our cluster algebras A(C,). The following theorem is our
second main result. The proof will be given in Section

Theorem 3.2. Let i = (iy,...,i1) be a reduced expression of a Weyl group element w,
and let My = M1 & --- & M, be defined as above.

(i) The cluster algebra R(Cy) is a polynomial ring in r variables. More precisely, we
have
R(Cw) = Clérr,, - - -, 6m,] = Spanc(0x | X € Cu);
(ii) The set {0ps | M € add(M;)} is a C-basis of R(Cy);
(i) The subset S := S*NR(Cy) of the dual semicanonical basis is a C-basis of R(Cy)
containing all cluster monomaals.

Let ﬁ(Cw) be the algebra obtained from R(C,) by formally inverting the elements Jp
for all Cy-projective-injectives P. In other words, ﬁ(Cw) is the cluster algebra obtained
from R(C,) by inverting the generators of its coefficient ring. Similarly, let R(C,) be
the cluster algebra obtained from R(C,,) by specializing the elements ép to 1. For both
cluster algebras R(C,) and R(C,) we get a C-basis which is easily obtained from the dual
semicanonical basis S and again contains all cluster monomials, see Sections and
1L5.0l
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3.3. The shift functor in C,. As mentioned before, the category C,, is a triangulated
category with shift functor Q;l. Recall that V; = V1 & --- @V, is a basic C,-maximal rigid
module. Set T} := I, ® Q' (V). In Section [[3.1] we construct a sequence of mutations
which starts in V; and ends in 7;. This mutation sequence is crucial for the proof of some of
our results. (For example, it helps to show that the coordinate rings C[N(w)] and C[N"]
are generated by the set of cluster variables.)

Now let R = R; @ --- & R, be any Cy,-maximal rigid A-module, which is mutation
equivalent to V;. Suppose that we know a sequence of mutations starting in V; and ending
in R. Then we can use the mutation sequence from V; to T; to obtain a mutation sequence
between R and I, ® Q,'(R), and between R and I, ® 2, (R), see Section (3.3l

3.4. Unipotent subgroups and cells. Let w be a Weyl group element and put A} :=
{a € AT | w(a) < 0}. Let
n(w) = EB Ny

acAY
be the corresponding sum of root subspaces of n, see Section €3l This is a finite-
dimensional nilpotent Lie algebra. Let N(w) be the corresponding finite-dimensional
unipotent group, see Section

The maximal Kac-Moody group attached to g as in [Ku, Chapter 6] comes with a pair of
subgroups N and N_ (denoted by ¢ and _ in [Ku]). Note that later on for the definition
of generalized minors in Section [7] we also have to work with the minimal Kac-Moody
group (denoted by G™® in in [Kul, 7.4]). We have

N(w) = NN (w ' N_w).
We also define the unipotent cell
NY:=Nn(B_wB-)
where B_ is the standard negative Borel subgroup of the Kac-Moody group.

Every A-module X in C,, gives rise to a linear form dx € M* = U(n);, and by means
of the identification U (n) [N] to a regular function px on N.

ol—
gr —

The following theorem, proved in Section [8 is our third main result.

Theorem 3.3. The algebras C[N(w)] and C[N"™] of regular functions on N(w) and N,
respectively, have a cluster algebra structure. For each reduced expression i = (iy,...,11)
of w, the tuple ((ovi ;- - -, ), B(T')°) provides an initial seed of these cluster algebra
structures. The functions v, € C[N] can be interpreted as generalized minors. We
obtain natural cluster algebra isomorphisms

C[N(w)] 2 R(Cy) and C[N™] = R(Cy).

As a result, we have obtained a categorification in the sense of 2.8 of the cluster algebra
structure on C[N(w)] and C[N"].

3.5. Example. We are going to illustrate some of the previous results on an example. Let
Q@ be a quiver with underlying graph 1 2 3 4 andleti:= (3,4,2,1,3,4,2,1).
This is a reduced expression of the Weyl group element w := s354525153545251. The cat-
egory C,, contains 18 indecomposable modules, and 4 of these are C,,-projective-injective.
The stable category C,, is triangle equivalent to the cluster category Cg.
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The maximal rigid module V; has 8 indecomposable direct summands, namely
1

Vi=1 Vo=1, Vs =4 Vi= 24

1 2
2 4
o o 7 1
Ve=I=,2 VG—Ii,2—123 Vi=TLis= 2, Vs=Lis=1,3,
4

Similarly, T; has 4 non-C,,-projective-injective indecomposable direct summands, namely
T1:2 T2:234 T3: 2 T4:23.

Here we set Tj, := Q1 (V) for 1 < k < 4.

The group N can be taken to be the group of upper unitriangular 5 x 5 matrices with
complex coefficients. Given two subsets I and J of {1,2,...,5} with [I| = |J|, we denote
by D;j € C[N] the regular function mapping an element x € N to its minor Dyj(x) with
row subset I and column subset J. We get

ovi = D1y (23 v, = D19y 123} vy = Di123ay, {1235y Pva = Dy123),(235)
Pvs = D{1},{3} PV = D{lz},{:as} vy = D{1234},{2345} P = D{123},{345}
o = Dpioy 13y o1 = Dpaesy sy 13 = D123}, {234} o1, = D193} (134} -

The unipotent subgroup N (w) consists of all 5 x 5 matrices of the form

1 Uy U2 U7 U4
0 1 us uUg Ug
0 0 1 0 O0f, (ug,...,us € C).
0 0 0 1 ws
0 0 0 0 1

The unipotent cell N¥ is a locally closed subset of N defined by the following equations
and inequalities:

N" ={z € N | D1y 43(%) = D1y,45)(2) = D12y, 1453 (¥) = 0, Dy g33(x) # 0,
D2y 351 (%) # 0, Dy193) (3451 () # 0, D234 {2345} (z) # 0}

Note that the 4 inequalities are given by the non-vanishing of the 4 regular functions ¢y, _,
1 < j < 4 attached to the indecomposable C,,-projective-injective modules. We have
Dupy =9 3 Dapey =9 4 Dpzyqisy =# 3 -
1 2 173
1 2
Our results show that the polynomial algebra C[N(w)] has a cluster algebra structure,
of which (¢vy, va, Vs, OVis PL 1> PLL o PL sy P1;4) 18 @ distinguished cluster. Its coefficient
ring is the polynomial ring in the four variables (¢, ,,¥r; ,, %1 5, ¢1,)- The cluster mu-
tations of this algebra come from mutations of the basic C,-maximal rigid A-modules.
Moreover, if we replace the coefficient ring by the ring of Laurent polynomials in the four
variables (41, |, 1, 55 91 55 1, ), We obtain the coordinate ring C[N"].

4. KAC-MooODY LIE ALGEBRAS

From now on, let K = C be the field of complex numbers. In this section we recall
known results on Kac-Moody Lie algebras.
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4.1. Kac-Moody Lie algebras. Let I' = (I'g,I'1,7) be a finite graph (without loops).
It has as set of vertices 'y, edges I'y and ~: I'y — Po([g) determining the adjacency of
the edges; here Py(I'g) denotes the set of two-element subsets of I'g. If 'y = {1,2,...,n}
we can assign to I' a symmetric generalized Cartan matriz Cr = (¢;j)1<i,j<n, which is an
n X n-matrix with integer entries

2 if i = 4,
Cij 1= R e
|y {a | i # g
Obviously, the assignment I' — Cp induces a bijection between isomorphism classes of

graphs with vertex set {1,2,...,n} and symmetric generalized Cartan matrices in Z"*"
up to simultaneous permutation of rows and columns.

For a quiver @ = (Qo,Q1,s,t) as defined in Section 2] its underlying graph |Q| :=
(Qo,Q1,q) is given by q(a) = {s(a),t(a)} for all a € Q; i.e. it is obtained by “forgetting”
the orientation of the edges. We write Cq := C|q| := (cij)i ;-

Let g := gg := g(Cg) be the (symmetric) Kac-Moody Lie algebra (see [Kal]) associated
to @, which is defined as follows: Let h be a C-vector space of dimension 2n — rank(Cq),
and let II := {aq,...,an} C b* and IIY := {af,...,a, } C b be linearly independent
subsets of the vector spaces h* and b, respectively, such that

ai(af) = ¢
for all ¢, j.

Let b* = bT @ b3 be a vector space decomposition, where b is just the subspace with
basis II, and b3 is any direct complement of h] in h*. Let (—,—): h* x h* — C be the
standard bilinear form, defined by (aj,q;) = ai(ay), (e, 2) := (2,q;) := z(a}), and
(z,y) := 0 for all z,y € b3 and 1 < 4,j < n. Note that a;(a)) = (dim(S;),dim(S;))q,
where (—, —)¢ is the bilinear form defined in Section 211

Now g = (g,[—, —]) is the Lie algebra over C generated by h and the symbols e; and
fi (1 <i < n) satisfying the following defining relations:

[h, W] =0 for all h,h' € ¥,

[h,e;] = a;(h)e;, and [h, fi] = —a;(h) fi,
les, fi] = o) and [e;, f;] = 0 for all i # j,
ad(e;)!¢d)(e;) = 0 for all i # j,
ad(f;)17¢3)(f;) = 0 for all i # j.

)
(For z,y € g and m > 1 we set ad(z)(y) := ad(z)'(y) := [z,9] and ad(z)™T!(y) :=
ad(z)™([z,y]).)

The Lie algebra g is finite-dimensional if and only if @) is a Dynkin quiver. In this case,
this is the usual Serre presentation of the simple Lie algebra associated to Q.

Conversely, if g = g(C) is a Kac-Moody Lie algebra defined by a symmetric generalized
Cartan matrix C, we say that g is of type I' if C' = Cp. This is well defined for symmetric
Kac-Moody Lie algebras. We call I" the Dynkin graph of g.

For a € h* let
go :={z € 9] [h,z] = a(h)z for all h € bh}.

One can show that dim g, < oo for all @. By

R .= Zn: Za,-
=1
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we denote the root lattice of g. Define Rt := Nay @ - - - @ Na,. The roots of g are defined
as the elements in

A={ae R\{0} | ga # 0}.

Set AT := ANR" and A~ := AN (—R*"). One can show that A = AT UA~. The
elements in AT and A~ are the positive roots and the negative roots, respectively. The
elements in {aq,...,q,} are positive roots of g and are called simple roots.

One has the triangular decomposition g =n_ @ h & n with

n_ = @ g« and n= @ da-

acAt aceAt

The Lie algebra n is generated by ey, ..., e, with defining relations (L4). Set n, := gq if
a€ R\ {0}.

For 1 < i < n define an element s; in the automorphism group Aut(h*) of h* by

si(@) = a —a(a) )y

for all @ € h*. The subgroup W C Aut(h*) generated by si1,...,s, is the Weyl group
of g. The elements s; are called Cozeter generators of W. The identity element of W is
denoted by 1. The length I(w) of some w # 1 in W is the smallest number ¢t > 1 such that
W = S, -+ Sip sy, for some 1 <i; < n. In this case (i,...,i2,71) is a reduced expression for
w. Let R(w) be the set of all reduced expressions for w. We set (1) = 0.

A root o € A is a real root if o = w(w;) for some w € W and some 4. It is well known

that dimg, = 1 if « is a real root. By A, we denote the set of real roots of g. Define
Af = A NAT,

Finally, let us fix a basis {w; | 1 < j < 2n —rank(Cg)} of h* such that
w;(a)) = by, (1<i<n, 1<j<2n—rank(Cp)).
The w; are the fundamental weights. We denote by
P={vebh |v(a))€eZforal 1<i<n}
the integral weight lattice, and we set
Pti={veP|v(a)>0forall<i<n}.
The elements in P are called integral dominant weights. We have

2n—rank(CQ) 2n—rank(Cq)

P = éij P @ Cw; and Pt = éij P EB Cw;
=1 j=1

Jj=n+1 Jj=n+1
Define
n n
P .= @Zw]' and ﬁ+ = @Nw]'.
j=1 j=1

The lattice P can be naturally identified with the weight lattice of the derived subalgebra
g = [g,g] of g.
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4.2. The universal enveloping algebra U(n). The universal enveloping algebra U(n)
of the Lie algebra n is the associative C-algebra defined by generators FEi,...,E, and

relations
1—c;;

> (BN EET T <0
k=0
for all i # j, where the ¢;; are the entries of the generalized Cartan matrix Cg, and let
E® .= EF /1.
We have a canonical embedding ¢: n — U(n) which maps e; to E; for all 1 < i < n. We

consider n as a subspace of U(n), and we also identify e; and E;.

Let

(1,2,...,d} if dim(n) = d.

Let P := {p; | i € J} be a C-basis of n such that P Nn, is a basis of n, for all positive
roots a. We assume that {ej,...,e,} C P. Thus ¢; is a basis vector of the (1-dimensional)
space ny,. For k > 0 define

J {Nl if dim(n) = oo,

k
i = pl /R
Let N be the set of tuples (m;);es of natural numbers m; such that m; = 0 for all but
finitely many m;. For m = (m;);>; € N ) define

(m1)_(mz2) (ms)

Pm = P17 Py A

where s is chosen such that m; = 0 for all j > s.
Theorem 4.1 (Poincaré-Birkhoff-Witt). The set
P = {pm | m e N(J)}
is a C-basis of U(n).
The basis P is called a PBW-basis of U(n). For d = (dy,...,d,) € N" let Uy be

the subspace of U(n) spanned by the elements of the form e; e;, - --€;,,, where for each
1 <i<ntheset {k|ir=1,1<k<m} contains exactly d; elements. It follows that

Un) = € Ua.

deN"
This turns U(n) into an N"-graded algebra.
Furthermore, U(n) is a cocommutative Hopf algebra with comultiplication
A:Un) = Un) @U(n)
defined by A(z) :=1®z + 2 ® 1 for all = € n. It is easy to check that

(2) A(pm) =D Pk ® Pm-i;
k

where the sum is over all tuples k = (k;);>1 with 0 < k; < m; for every 1.

By U} we denote the vector space dual of Uy. Define the graded dual of U(n) by

U = P U;.

deN™
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It follows that U(n)g, is a commutative associative C-algebra with multiplication defined
via the comultlphcatlon A of U(n): For f', f" € U(n ) and z € U(n), we have

(f' - ) Zf ()" (z2),

where (using the Sweedler notation) we write

NOEDBENLED
(z)
Let P* := {pfn | m e N(J)} be the dual PBW-basis of U(n)%,, where

gr
“ (pn) = 1 ifm=mn,
Pm{Pn) = 0 otherwise.

The element in P* corresponding to p; € P is denoted by p7. It follows from (2) that
P Pa = Pmn
that is, each element py, in P* is equal to a monomial in the p;’s. Hence, the graded dual

U(n);, can be identified with the polynomial algebra C[pi, p3,...] (with countably many

variables pY).

4.3. The Lie algebra n(w). Let
o~ — H na
aEAT
be the completion of n. A subset © C AT is bracket closed if for all o, € © with
a+ 8 € AT we have a + 8 € ©. In this case, we define

iy
a€c®

Since © is bracket closed, n(0) is a Lie subalgebra of n. One calls © bracket coclosed if
AT\ © is bracket closed.

For w € W set A}, := {a € AT | w(a) < 0}. It is well known that for each reduced
expression (i, ...,i2,11) € R(w) we have

A$ - {ail’sil (ai2)7 <oy 80y Sig Sir71(ai7-)}’
For 1 <k <7 set
o ith=1,
k) = 1 .
SiySiy -+ Sip_, (qi,) otherwise.

The set A}, contains [(w) positive roots, all of these are real roots, see for example [Kul,
1.3.14]. The next lemma is also well known.

Lemma 4.2. For every w € W, the set A}, is bracket closed and bracket coclosed.

Let n(w) :=n(A})) be the nilpotent Lie algebra associated to w. We have
= D n
aeA
and dimn(w) = l(w).

Again, let i = (i,,...,71) be a reduced expression. As in Section [L.2]we choose a C-basis
P = {p; | j € J} such that P Nn, is a basis of n, for all positive roots a. The resulting
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PBW-basis P = {pm | m € N(‘])} of U(n) is called i-compatible provided the vector py
belongs to ng, ) for all 1 <k <r. In this case

P = {p&ml)pgmz) . .pﬁmr) | mi >0foralll <k< 7’}

is a PBW-basis of the universal enveloping algebra U(n(w)) of n(w), and
Pi= ()™ (p2)™ - ()™ [y, 2 0 for all 1 < k <7}

is the corresponding dual PBW-basis of the graded dual U(n(w))g,-

4.4. Highest weight modules. A U(g)-module M is a weight module or h-diagonalizable

if
M= P M,
web*
where

M, :={meM|h-m=pu(h)m for all h € h}.

For each vector v € M, let wt(v) := p be its weight. Analogously, one defines when a
right U(g)-module is a weight module.

A U(g)-module M is a highest weight module if the following hold:

e M is a weight module;
e There is a vector v € M with U(g) - v = M;
e ¢;-v =0 for all i.

A right U(g)-module M is a lowest weight module if the following hold:

e M is a weight module;
e There is a vector v € M with u-U(g) = M;
e u- fi =0 for all 4.

When we work with right U(g)-modules, we invert the usual ordering on weights. So if M
is a lowest weight right U(g)-module, then the vector u (which is uniquely determined up
to a non-zero scalar) has actually the lowest weight of M. Indeed, if m € M, and h € b,
then we have

(m-e;) - h=(u(h)m) - e; — (a;(h)m) - e; = (u — ;) (h)(m - €;).
Here we used that [h, e;] = he; — e;h = a;(h)e;. So m - e; has weight p — «.

4.5. Construction of highest weight modules. In this section we present some of our
results from [GLS3] in a form convenient for our present purpose. For v € PT we write

n
fy - @Ey(aiv)'
=1

For 1 <i < n and a nilpotent A-module X we denote by G(i, X) the variety of submodules
Y of X such that X/Y = S;. Similarly, if

soc(X) = éSZmZ
i=1
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and v € Pt is such that I/(Oé;/) > m; for 1 <7 < n, then we have an embedding X — Z,

In this case, we denote by G(i,v, X) the variety of submodules Y of f,, such that X C Y
and Y/X = S;. Hence, if dim(X) = 8 and f € Mg_,,, we can form the following sum

D= Y mxe({Y €66, X) | F(¥) =m}).

meC

For convenience we shall denote such an expression by an integral, for example,

Y= Y).
/YEQ(Z’,X)f( )

Similarly, there exists a partition
m
G(i,X) = |4
j=1

into constructible subsets such that dy = dy+ for all Y, Y’ € A;. Then, choosing arbitrary
Y; € Aj for j = 1,...,m, we can also denote by an integral the following element of

M,
(Sy = XC(A )(5y
/Yeg(i,X) ; I

Theorem 4.3. Let A € P be an integral weight, and let Moy () be the lowest weight Verma
right U(g)-module (with underlying vector space U(n)) with lowest weight . Under the
identifications

Migw(A) =U(n) =M

the corresponding right U(g)-module structure on M is described as follows: The genera-
torse;en, fien_, hebhactonge Mg by

@)X = [ e,

G- = [ gy) - - Nagx @S,
Yeg (i, X)
g-h=(\—B)(h)g.

where X' € Agio,, X € Ap_qo, and v € PT are as above.

Note that g - e; = g x 1; by our convention for the multiplication in M. Moreover, the
formula for g - f; € Mpg_,, is in fact independent of the choice of v.

For each h-diagonalizable right U(g)-module
M= M,
web*
one can consider the dual representation
=@
web*

defined by M, := Homc(M,,, C). It acquires the structure of a left U(g)-module via
(@-¢)(m) :=¢(m-x),  (zeU(g), meM).
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Consider the canonical epimorphism from the Verma module M,y (A) to the irreducible
lowest weight right U(g)-module Loy (A). For the corresponding dual representations we
obtain an inclusion

Likow()‘) — MIT)W()‘)‘

It is well known that Lj () is isomorphic to the irreducible highest weight left U(g)-

module L(\) with highest weight . This yields the following realization of the integrable
module L(\) in terms of d-functions.

Theorem 4.4. Let A € Pt be an integral dominant weight. The subspace
U(\) := Spanc(dx | X submodule of L)

of U(n)g, carries the above-mentioned structure of an irreducible highest weight left U(g)-
module L(X). For such X with dim(X) = B the action of the Chevalley generators of U(g)
s given by

e - 0x = / dy,
YEG(i,X)

fi-dx = / oy,
Y'eG(i,A,X)

h-éx = (A= p)(h)ox.

Note that U(n)g, carries also a right U (n)-module structure coming from the left regular
representation of U(n). In order to describe it, we introduce the following definition. For
X € Ag we denote by G'(i, X) the variety of submodules Y of X such that dim(Y") = a.
Each element of this space is isomorphic to S; and clearly G'(i, X) is a projective space.
It is easy to see that

(5X € = / 6X/S
Seg’ (i, X)

Under the above identification My (A\) = U(n),, the subspace of U(n);, carrying the
U(g)-module L(\) can be described as follows.

Corollary 4.5. For A € P we have

U = {<Z5 € U(n)g | (b-ej\(aiv)ﬂ =0 for all 1 gz‘gn},
Proof. The nilpotent A-module X is isomorphic to a submodule of 1, » if and only if

Aoy )+1
5X - €

=0

for every i. The claim then follows from Theorem Z.4l O

Note that for A, u € P™ we have U()\) = U(u) if and only if

2n—rank(Cq)

A—p € @ (ij.

j=n+1
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5. UNIPOTENT GROUPS

5.1. The group N and its coordinate ring C[N]. The completion 1 of n defined in 3]
is a pro-nilpotent pro-Lie algebra, see [Ku, Section 6.1.1]. Let N be the pro-unipotent
pro-group with Lie algebra n. We refer to Kumar’s book [Kul, Section 4.4] for all missing
definitions.

We can assume that N =1 as a set and that the multiplication of N is defined via the
Baker-Campbell-Hausdorff formula. Hence the exponential map Exp: n — N is just the
identity map.

Put H := U(n);. This is a commutative Hopf algebra. We can regard H as the

coordinate ring C[N] of N, that is, we can identify N with the set
maxSpec(H) = Homge(H, C)

of C-algebra homomorphisms H — C. An element f € Hom,(#,C) is determined by
the images ¢; := f(p}) for all ¢ > 1.

It is well known (see e.g. [AD) §3.4]) that Hom,,(H,C) can also be identified with the

group G(H°) of all group-like elements of the dual Hopf algebra H° of H, by mapping
f € Homy,(H,C) to

=3 () pmecioe)
m %

Note that the map f — ys does not depend on the choice of the PBW-basis P = {pm |
m € N}, Note also that G(#°) is contained in the vector space dual H* of H, which is
the completion U (n) of U(n) with respect to its natural grading. When we use this second
identification, an element x € N = 71 is simply represented by the group-like element

exp(z) := Z z* k!

k>0

—

in U(n). To summarize, we have H = U(n) [N] and

o
gr —

—

N = maxSpec(H) = Hompe(H,C) = G(H°) CH° C H* =U(n).

5.2. The unipotent groups N(w) and N'(w). Let © be a bracket closed subset of AT,
and let

N(©) := Exp(n(©))

be the corresponding pro-unipotent pro-group. For example, if a € Af then 6, := {a}
is bracket closed. In this case, N(«) is called the one-parameter subgroup of N associated

to a. We have an isomorphism of groups N(«) = (C, +).
If © is bracket closed and bracket coclosed, then set N'(0) := N(A™\ ©). In this case,
the multiplication in N yields a bijection [Kul Lemma 6.1.2]

m: N(©) x N'(©) — N.
For w € W let N(w) := N(A}). This is a unipotent algebraic group of dimension I(w),

and its Lie algebra is n(w). Again we can identify U(n(w));, = C[N(w)]. Similarly, define
N'(w) := N'(A}).
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6. EVALUATION FUNCTIONS AND GENERATING FUNCTIONS OF EULER
CHARACTERISTICS

Recall the identifications M* = U(n);, = C[N]. To every X € nil(A), we have associ-
ated a linear form dx € U(n);,. We shall also denote the evaluation function dx by ¢x
when we regard it as a function on N. For 1 < i < n define z;: C - N by

_ N (te)”
zi(t) = exp(te;) = Z 7l

k>0

The following formula shows how to evaluate ¢x on a product of z;(t)’s.

Proposition 6.1. Let X € nil(A), and leti= (i1,...,ix) be any sequence with 1 <i; <n
forall1 < j <k. We have

ox (@i (t1) -+ @iy, (tk)) = > Xe(Fin, x)

a=(a1,...,a)ENF

ai ag
ety

aﬂ---ak!’

Here i? is short for the sequence (i1, ...,41,...,ik,.-., i) consisting of ay letters i1 followed
by aq letters iy, etc.

—

Proof. By Section [5.1] we can regard x;, (1) - - - z;, (tx) as an element of U(n), namely,

t‘lll . tzk

— ail ar

ziy (t1) - @y, (k) = > arlal G G
a=(a1,..,ar)eNF ’

It follows from the identification of ¢x with dx that

t‘lll - tzk
a a
ox (@i (t1) - - 23, (k) = Z m‘SX(eif ey
a=(a1,...,a)ENF
Now, in the geometric realization M of the enveloping algebra U(n) in terms of con-
structible functions, e?ll "'e?: becomes the convolution product 1?11 * K 1?: and it is
easy to see that
Ox (17} %+ x 13F) = xc(Fia x)-

This finishes the proof. U

Remark 6.2. The formula for px given in [GLS5 §9] involves descending flags instead
of ascending flags of submodules of X. This is because in the present paper we have taken
a convolution product * opposite to that of our previous papers, see Remark 2.3]

Proposition says that we can think of the ¢-functions ¢ x as generating functions of
Euler characteristics.

For i = (i1,...,i;) and a = (a1,...,a) as above and X € nil(A) let F; 5 x be the
projective variety of partial composition series of type (i,a) of X. Thus an element of
Fia,x is a chain

0=XoCX;C--CX =X
of submodules of X such that X;/X;_; = SZ Y for all 1 < j < k. There is an obvious
surjective morphism 7 5: Fja x — Fja x Whose fibers are all isomorphic to
F(CU) x - x F(C™),
where F (C™) is the variety of complete flags of subspaces in C™. In particular, we have

Xc (]:ia,X) = Xc (]:i,a,X) a!---ag!.
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Summarizing, we get

ox (i) (t1) - @iy (te)) = > Xe(Frax)t]" - tpF.

a=(a1,...,a)ENFK

7. GENERALIZED MINORS

7.1. Generalized minors. We start with some generalities on Kac-Moody groups. Let
G™" be the Kac-Moody group with Lie(G™") = g defined in [Ku, 7.4]. It has a refined
Tits system . .

(G™" Normgmin (H), NNG™ N_, H).
Write N™ .= G™in 0 N. Moreover, G™" is an affine ind-variety in a unique way [Kul
7.4.8].

For any real root a of g, the one-parameter subgroup N(«) is contained in G™®, and
the N(a) together with H generate G™ as a group. We have an anti-automorphism
g+ g" of G™™ which maps N(a) to N(—a) for each real root «, and fixes H. We have
another anti-automorphism g ++ g* which fixes N(a) for every real root a, and h* = h™!
for every h € H.

For each v € h* there is a character H — C*, a + a” defined by exp(h)? := ¥ for
all h € b

For 1 < i < n we have a unique homomorphism ¢;: SLy(C) — G™ satisfying

oo 1) =explte), i) V) =expltf),  (te0).
(o 1) )

- 0 -1
Si = Qi 1 0 .

For w € W, we define w := 5, ---5;,, where (i,,...,i1) is a reduced expression for w.
Thus, we choose for every w € W a particular representative w of w in the normalizer
Normgmin (H).

Let L(\) denote the irreducible highest weight g-module with highest weight A € P*.
Let uy be a highest weight vector of L(\). This is an integrable module, so it is also a
representation of G™". For a reduced expression i = (i,,...,4;) of a Weyl group element
w, the vector

We define

Siq *** Sg, (’LL)\) S L()\)
is an extremal weight vector of L()), i.e. it belongs to the extremal weight space L(\)y(z)-
For a U(g)-module V' and a weight vector v € V,, define

fimaxv = fz(m) v

where m > 0 is maximal such that fi(m)v # 0. Similarly, define e}***. The following results
can be found in [Jol Section 4.4.3]: We have

= = - _ max cmax max
SiySiy =+ Sip (un) = [l fi - fil ™ (ua)
and
max max _
€inJip i, (ux) = 0.
Furthermore,

wt (8iy - Bi, (un)) = Wt (8iy - 54, (un)) — bray,

where by == —(si; -+ 55, (A), @iy ) = (Siy -+ - S (A), iy ).
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We have the following analogue of the Gaussian decomposition.

Proposition 7.1. Let Gy be the subset N_ - H - N™ of G™in,

(i) The subset Gy is dense open in G™® and each element g € Go admits a unique
factorization g = [g]_[glo[g]+ with [g]— € N_, [glo € H and [g]+ € N™n,

(ii) The map g — [g9]+ (resp. g — [glo) is a morphism of ind-varieties from Gy to
N™ (resp to H).

Part (i) follows from the fundamental properties of a refined Tits system [Ku, Theorem
5.2.3]. For part (ii), see [Kul, Proposition 7.4.11].

Following Fomin and Zelevinsky [FZ1] we can now define for each w,; a generalized
minor Ag . as the regular function on G™ guch that

A, w;(9) =1ldlo”s (9 € Go).
For w € W, we also define Ay, () by

AWj,w(Wj) (g) = ij,wj (g@)

The generalized minors A - (g) have the following alternative description.

Proposition 7.2. Let g € G™". The coefficient of Ugw; 1N the projection of gus,; on the
weight space L(w;)w, is equal to Ay, =, (g)-

Proof. Set uj := ug,. Let g = [g]-[glolg]l+ € Go. We have [g]yu; = uj, and [glou; =
[9]5” u;. The result then follows from the fact that [g]_u; is equal to u; plus elements in
lower weights. O

Proposition 7.3. We have
Go = {9 e | ij,wj(g) #0 forall1 <j< n}

Proof. Set u; := ug,;. We use the Birkhoff decomposition [Ku, Theorem 5.2.3]

Gmin _ N_EHNmm,
w|6—|W
where G is the subset of the right-hand side corresponding to w = e. If g = [g]_[g]o[g]+ €
Go, then Ay, ».(9) = [9]g7 # 0. Conversely, if g ¢ Gy we have g = n_whn for some
n_ € N_,ne€ N™» h € H and w # e. Then for some j we have w(w;) # w; and Whnu;
is a multiple of the extremal weight vector wu;. Since the projection of n_wu; on the
highest weight space of L(zw;) is zero, it follows that Ay 5. (g) = 0. Finally, note that for
any j > n the minor Ay, ., does not vanish on G™in | Tndeed, the corresponding highest
weight irreducible module L(z;) is one-dimensional since w; () = 0 for any 7. Hence in
the above description of G, we may omit the minors Ay ., with j > n. O

7.2. The module L(\) as a subspace of C[N]. For w € W and 1 < j < n, we denote
by

D ()
the restriction of the generalized minor Ag . () to N min - For example, Dy, 1w, is equal
to the constant function 1. In Section we are going to show that each (restricted)
generalized minor Dy, 4 (w,) can be identified with a generating function px for a certain
A-module X. In order to do this, we need to recall some results on Kac-Moody groups.
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Let G’ := [G™", G™"] be the group constructed by Kac and Peterson [KP], see [Kul,
Section 7.4.E (1)]. The associated Lie algebra is g’ = [g, g].

Let C[G']s.,. denote the algebra of strongly regular functions on G’ [KPl §2C]. Define
the invariant ring

C[N_\G)sr. = {f € C[()sr. | f(ng) = f(g) forallme N_, g€ G/}.
This ring is endowed with the usual left action of G’ given by
(9- ) =fd9), (f€CINAG s, 9,9 €G).

It was proved by Kac and Peterson [KP, Corollary 2.2] that as a left G’-module, it de-
composes as follows

CIN\Gsr. = @ L.
AeP"
This is a multiplicity-free decomposition, in which the irreducible highest weight module
L(\) is carried by the subspace

S(A) = {f € CIN_\G'ls.. | f(hg) = Ax(h)f(g) for all h € H, g € G'},
where we denote
@)
Ay =A% %,
j=1
Clearly, A) is contained in S(\), and it is a highest weight vector. Moreover, for any
w € W, the 1-dimensional extremal weight space of S(\) with weight w(\) is spanned by

o A@Y)
Aw()‘) = I l ij',iu(w]‘).
i=1

Now consider the restriction map
p: CIN\G'lsz. = C[N™"...
given by restriction of functions from G’ to N™n,
Lemma 7.4. For every A € ﬁ+, the restriction
pr: S(A) = CIN™™g
of p to S(\) is injective.

Proof. Let B’ be the Borel subgroup of G’ with unipotent radical N_. We have

N™» € GyNG' = B.N™™.
It follows that the natural projection from G’ onto B’ \G' restricts to an embedding
of N™ with image the open subset of the flag variety X = B’ \G’ defined by the

non-vanishing of the minors Ay, .. Now C[N_\G']sr. can be regarded as the multi-
homogeneous coordinate ring of X with homogeneous components S(\), where A runs

through P . Tt follows that C[N™i"] can be identified with the subring of degree 0 homo-
geneous elements of the localized ring obtained from C[N_\G']s,. by formally inverting
the element

A=]]Ax =,
j=1

Therefore, the restriction py of p to every homogeneous piece S()) is an embedding. O
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It follows that we can transport the G’-module structure from S(A) to p(S(\)) by setting

g-o=pg-p3'(), (9€G, p<p(SN)).

In this way, we can identify the highest weight module L(A) with the subspace p(S(A)) of
C[N™=]g ;. The highest weight vector is now p(Ay) = 1, and the extremal weight vectors
are the (restricted) generalized minors

n
w()\ H w; ,w(w]

for w € W.

At this point, we note that a strongly regular function on N™" is just the same as
an element of U(n);,. Indeed, the elements of C[N™"];, are the restrictions to N™" of
the linear combinations of matrix coefficients of the irreducible integrable representations

L(\) with X € P' of G, see [KPl Lemma 4.2]. Now, by Theorem [£.4] we can realize
every L(A) as a subspace of U(n),, and every f € U(n);, belongs to such a subspace for

A =1 lyw; with the [; > 0. It follows that each element of U (n)g can be seen as a

matrix coefficient for some L(\), and vice versa. We can therefore identify
CIN™"]. = U(n)g, = C[N].
Moreover, these two ways of embedding L()\) in C[N] coincide.

Lemma 7.5. Let A € P'. Under the identification U(n);, = C[N™n) ., the subspace
U(X) defined in Theorem [].] coincides with p(S(N)).

Proof. The natural right action of U(n) on U(n), defined before Corollary coincides

with the right action of U(n) on C[N min] obtained by differentiating the right regular
representation of N™™:

(f-n)(x) = f(nx), (z,n € N™B f e C[N™),,).
Consider first the case of a fundamental weight A = @;. It is easy to check that
A, 0, (9) ifi# j
Aw- wi (@t = I — e J
s (2i{0)9) { oo (9) + tDy oy (559) i i = j.

Now, the subspace p(S())) is spanned by the functions n +— Ay, o (ng), (n € N_, g €
G'). By differentiating the previous equation with respect to ¢ and setting t = 0, we obtain
that

p(S(N) € {f € CIN™™ s | f-e;=0fori#j, f-e5 =0},

Hence, using Corollary [L.5] we see that p(S()\)) is contained in the embedding of L(w;) into
the dual Verma module M}’ (w;). Since these spaces have the same graded dimensions,

they must coincide. The case of a general A € P follows using the fact that
n
AaY)
A)\ — H ij',gﬂj
=1

and that the e;’s act as derivations on C[N™n], .. O
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8. THE COORDINATE RINGS C[N(w)] AND C[N¥]

8.1. The coordinate ring C[N(w)| as a ring of invariants. Again, we fix a reduced
expression i = (i,,...,41) of a Weyl group element w. Assume that

P={pm|me N(J)}
is an i-compatible PBW-basis of U(n). Note that this PBW-basis of U(n) and also the
corresponding dual PBW-basis of U (n);, are homogeneous with respect to the (root lattice)
N"-grading of U(n). We write |m| = d € N" in case py, is a homogeneous element of degree

d € N". Let us denote by (e;);cs the usual coordinate vectors of Z(J).

lex| = Bi(k) for 1 <k <.
The multiplication p: U(n) @ U(n) — U(n) is given by its effect on the PBW-basis, say

For example,

k
Pm " Pn = Z Cm,n Pk-
[k|=|m-+n|

Next, the comultiplication p*: C[N] — C[N] ® C[N] is a ring homomorphism, so it is
determined by the value on the generators p; = pg,. By construction, we have

WP = Y i (P ®ph)

|m-+n|=|e;|

Lemma 8.1. Let 1 < i <r and 0 # n € N(J) such that nj = 0 for 1 < j < r. Then

€; —
Cmn = 0.

Proof. Let m = m< + m~ such that mf =0 for j >randmj> =0for1 <j<r so
Pm = Pm< * Pm>- Since A is bracket closed and coclosed we have

k,
Pm> " Pn = Z Cm> Pk’

K |=m>+n

with k:; =0for1<j <r. Thus

k,
Pm *Pn = Z Cm> nPk/+m<-
|k'|=|m>+n|
Putting k = k' + m~ we get cf, , = cll‘r:>7n. Thus, if in our situation ¥, ,, # 0 then k; # 0
for some k > r. O

Now, let us turn to the subgroups N(w) and N'(w). Consider the ideals
I(w) == (p}41,Pfyas---)s  L'(w):=(p],....p})
in C[N]. Then we have
N(w) = {v € Hom,z(C[N],C) | v(I(w)) = 0}, and
N'(w) = {v' € Homyy(C[N],C) | V'(I'(w)) = 0}.
In other words we have canonically C[N(w)] = C[N]/I(w) and C[N'(w)] = C[N]/I' (w).

We consider the action of N'(w) on N via right multiplication. By definition, this comes
from the left action of N'(w) on C[N] given by

Ve f = (de )t (f)
for f € C[N] and v/ € N'(w). (Here we identify C[N] ® C = C[N] in the canonical way.)



KAC-MOODY GROUPS AND CLUSTER ALGEBRAS 33

We denote by C[N]V "(®) the invariant subring for this group action.

Proposition 8.2. Consider the injective ring homomorphism
7o+ C[N(w)] — C[N]

w
defined by p; + I(w) — pf for 1 < i < r. The corresponding morphism (of schemes)
Tw: N — N(w) is N'(w)-invariant and is a retraction for the inclusion of N(w) into N.
As a consequence, 7, identifies C[N (w)] with C[N]N'(®) = C[pt, ..., p].

Proof. We have
P =10 +pi @1+ D i, (P @i
[m-tn|=|e;|
where in the last sum |m| # 0 # |n|. Thus for 1 <i <r and v/ € N'(w) we get
Viepi=1-0+pf -1+ Z o P - V' (P1)
Im-n|=le;|

with the last sum vanishing by Lemma [R1] and the definition of N'(w). In other words,
pi € CINJV'(®) for 1 < i < 7. Thus, 7i,: N — N(w) is N'(w)-invariant, that is, 7, (nn') =
Tw(n) for any n’ € N'(w).

Now, since the multiplication map N(w) x N'(w) — N is bijective, each N'(w)-orbit

on N is of the form n - N'(w) for a unique n € N(w). We conclude that the inclusion
N(w) < N is a section for 7,,. Our claim follows. O

8.2. The coordinate ring C[N"] as a localization of C[N]"Y'(*), Let us now consider
the groups N(w) and N’(w) introduced in Section

Lemma 8.3. We have
N(w) = NN (w ' N_w),
N'(w) = NN (w™ Nw),
N'(w) N N™ = N™* 0 (w™ N ).,

Proof. This follows from [Kul, 5.2.3] and [Kul 6.2.8]. O

It follows that ij,wq(wj) is invariant under the action of N’(w) N N™" on G™* via
right multiplication. Indeed, for g € G™™ and n/ € N'(w)NN™", we have n'w ' = w~'n"
for some n” € N'(w) N N™" hence

1——1 =11

ij,wfl(wj)(gn/) = ij,wj (gn'w™ ") = ij,wj (gw="n")
= Axjw; (gw ) = Ay w1 () (9)-
Define
Oy = {n e N™in | A w1(w;)(n) #0forall 1 <j < n}
This is the open subset of N™ consisting of elements n such that wn? € Gy. Indeed,
A w1(my) (M) = A . (M) = Ay o (n 1)) = Ay o, (W),

since w~! = w’. Following [BZ, Section 5], we can now define the map 7, : O, — N™"
given by

i (2) = [W2"]
Recall that N* = N N (B_wB_), see Section 3.4

+.
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Proposition 8.4. The following properties hold:

) The map 1y, is a morphism of ind-varieties.
) The image of M, is N*™.
) T () = 7w (y) if and only if x = yn' for some n' € N'(w) N N™n,
iv) 7y restricts to a bijective morphism N(w) N Oy — NY.
) We have N* C Oy, and 1, restricts to a bijection n,: N* — N*.
) The inverse of 0, is given by ngyt(z) = ny,-1(x*)* for x € N¥. It follows that 1,
18 an automorphism of N™.

Proof. Property (i) follows from Proposition [[T] (ii). Next, we have
@21y = ([w")y w2 Yyw:" € B_wB-_.

This shows that the image of 7, is contained in N*. The rest of (ii) and (iii) is proved
as in [BZl Proposition 5.1]. Property (iv) follows from (ii), (iii), and the decomposition
N™IR = N(w) x (N'(w) N N™®), Finally, (v) and (vi) are proved exactly in the same way
as in [BZ, Propositions 5.1, 5.2]. O

Proposition 8.5. The map T, restricts to a morphism my: NY — Oy N N(w). This is
an isomorphism with inverse

n;lﬁw: Ow N N(w) - NY.

In particular, N is an affine variety with coordinate ring identified to the localized ring
N'(w)
C[NJy, ~, where

Ay = H Ay w1 (wy)-
j=1

Proof. By Proposition B4 (iv) and (v), we know that 1,7, is a bijection. On the other
hand 7,,(N") C O, N N(w) because N* C O,,. Now, by Proposition [8.4] (iii), we have

T (T () = T (T) = 1 ()

for every x € N%. Hence 1,77y (x) = z for every x in N*. So we have 7, T, = idyw,
and this proves that 7, is the inverse of 17,

These maps are morphisms of varieties so they induce isomorphisms
C[N"] = C[N(w) N Oy] = C[N(w)]a, — (C[N]X;(“’),
O

The following commutative diagram displays the different morphisms appearing in
Propositions R4 and

(The arrows labelled with ¢ are inclusion maps.)
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9. THE MODULES Vi AND M

For the entire section, we fix a reduced expression i = (i,,...,i;) of a Weyl group
element w, and as before let Vi = V1 ®--- @V, and M; = M7 & --- & M,. Recall that for
each 1 < k < r there is a short exact sequence

0—=>V- =V — My —0

of A-modules.

9.1. Generalized minors as p-functions. For 1 < k < r set

-1 ._ .. .
Wy i= Sy Siy -

Proposition 9.1. For 1 < k <r we have
PV = @iy, ,wgi(wik)'

In particular, we have ¢y, ; = Dy -1,y for every 1 < j <n.

Proof. Using Lemma [I.5], we can realize the fundamental module L(w;, ) as the subspace

p(S(w;,)) of C[N]. Then using Theorem [44] the definition of V}, (see Section 2.4) and

the discussion in Section [Z.I, we can check that the function ¢y, is an extremal weight
. -1 . . .. .

vector of weight w_; (w;, ) in L(w;, ), hence it coincides with Dwik wZl(wi,) UP to a scalar.

is equal to 1, so the normalizations agree and we

O

max |
23

max

Moreover, its image under e i

have ¢y, = D

.. e
wik,w;}c(wik)'
Corollary 9.2. For 1 <k <1 we have dim(Vy) = w;, — si, iy - - - Sip, (Wi, )-

Proof. The statement follows from the following general fact: Assume that dx € U(N)

for some weight A € P™ and some A-module X. When we consider dx as an element of
L(\) = U(X), Theorem 4] implies that wt(dx) = A\ — dim(X). O

Recall that for 1 < k& < r we defined
Bilk) = {a ith=1,

Siy -+ Sip_, (a,) otherwise.
Corollary 9.3. For 1 <k <r we have dim(My) = Bi(k).

Proof. By Corollary [0.2] we know that dim(Vy) = w;, — S, i, - - - Sij, (@, ) for each 1 < k <
r. By the definition of M we have

dim(My) = dim(V},) — dim(V},-)
= 8iy iy~ Si,_ (Wiy,) — SiySip 8y (Wi, )
= SiySiy " Si, (wik — Si T Siy (w,k)> .
But
@i if § # i,
i) = 4 0 g
wi, — oy, if § =i,
It follows that
dim(Mg) = 84, 8i, + Sg, _ (wik - Wiy, + Si, "'Sik,l(aik))

= Si1Sip " Sikﬂ(aik)-
This finishes the proof. U
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Corollary 9.4. We have A}, = {dim(M;),...,dim(M,)}.

9.2. Example. Let () be a quiver with underlying graph
1 2 3

4
Let w be the Weyl group element s3sssssiss. The set of reduced expressions for w is
R(w) ={(3,4,2,1,4),(3,4,1,2,4)}. We have

A:U—:{O(l)07 100 010 110 111}

Let i = (3,4,2,1,4). We get
4

4
Vizvl@---@%,zz;@l‘*@g@li@li
3

and

~

Mi=M & --6M;=40 ‘"l 412
3

Note that add () is neither closed under factor modules nor under submodules. We have
We can think of C,, as a categorification of a cluster algebra of type A with four coefficients.
9.3. Example. Let Q be a quiver with underlying graph 1—2——3 Then i :=

(t7,...,41) == (3,1,2,3,1,2,1) is a reduced expression of a Weyl group element w € Wy.
The indecomposable direct summands of Vj are

1 1 1
Vi=1 Vo=1,1 V3 = 2.2
11 1 1 1 1 1 1
Vi= 2 Vo= "2 2 2 2
3 17 3 "1
2
12121 12121 12121 1212121
Ve = 17 3 1 3 1 Vi = 11
2 2 2
1 3

Here, the A-modules are represented by their socle filtration. The indecomposable C,,-
projective-injective modules are V5, Vs and V7. The corresponding functions ¢y, are given
by

Yy, = le,sl(wl) vy = Dwz,slsg(wz) Pz = le,slsgsl(wl)
Pvy = Dwg,81828183(wg) Pvs = Dw2,8182818382(w2)
PVe = Dw1,515251835281(w1) PV, = DW3,81828183828183(W3)‘

9.4. Example. We continue to discuss the example from Section Thus @ is a quiver
with underlying graph 1 2 3 4 . Note that the Weyl group Wy is the sym-
metric group S5, and the generators s; are the transpositions (i,i + 1). The generalized
minors become ordinary minors. More precisely, for w € S5 and i € {1,2,3,4,5} we have

Ag (@) = A2, it w({1,2,...i})
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since we may identify S5 with the group of permutation matrices in GLs. Here Ay ;
denotes the minor in C[SLs] with row set I and column set J. As in Section let
W = $3545281535848281 and 1:= (ig,...,41) := (3,4,2,1,3,4,2,1). We get

xi(t) = xg(tg)x4(t7)a:2(t6)a:1(t5)a:3(t4)x4(t3)x2(tg)ajl(tl) =

1 ts+1; tsto 0 0
0 1 te +ta  tets tetats
= 0 0 1 ts +tg ts(t7 +t3) + tats
0 0 0 1 t7 + 13
0 0 0 0 1

A straightforward calculation shows:

= Dy 23 = t5 + 1,

w1 ,w;% (wo1)

Dwszgé(wz) = Dy1,21,42,3) = to(ts +t1) + tat1,

>

W4,UJ;§(’W4) = D{1727374}7{1727375} = t7 + t37

Doy i) = Prizsy 25y = ts(tr(te(ts + 1) +tatr) + teta(ls + t1) + tatatr)
+ tatstaty,
le,w;é(wl) = D{l},{3} = t5t27

>

w2l (2) = Dy12) 43,50 = tetstatsta,
DW4,UJ;%(’W4) = D{1727374}7{2737475} = t7t4t2t1’
Dm,w;;(wg) = D{12.3},{3.4,5) = tstrtelstata.

Here the evaluation of the minors is always on z;(¢). Due to the structure of the modules
Vi described in Section B.5 we could also use Proposition and calculate directly that

(1) = Dt ()
forall 1 <k <8

9.5. Refined socle and top series. For any A-module X € C,, there exists a unique
chain

0=X,C---CX3CXp=X
of submodules of X such that Xj_1/Xy = socg, (X/Xj). This is called the refined socle
series of type i of X. Define

si(X) :== (pry---,p1)

where py, := dim(X;_1/Xy) for 1 < k < r. Similarly, there exists a unique chain

0=Y,C---ChCY=X

of submodules of X such that Y;_1/Yy = top Si, (Yy—q1) for all 1 < k < r. This is called
the refined top series of type i of X. Define

t1()() = (qT’7 e 7Q1)
where g = dim(Y;_1/Yy) for 1 < k < r. (For a simple module S and a module M let
topg(M) be the intersection of all submodules U of M with M/U = S.)

The existence of refined socle and top series of type i of X € C,, comes from the fact
that V; generates the category C,,. It follows directly from the definitions that each module
Vi has a refined socle and top series of type i. Now one easily checks that this property
also holds for factor modules of modules in add(Vj).
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The uniqueness of refined socle and top series of type i implies the following result:

Lemma 9.5. Let i = (iy,...,11) be a reduced expression of w, and let X € C,. Set
s:=si(X) = (pry...,p1) and t .= t;(X) = (¢r,...,q1). Then the following hold:

(i) We have
Fex 2 [[F (@) and Fex= H F (C*)
k=1 k=1

In particular,

Fex)=]]pe! and xc(Fex)= qu
k=1

(i) Fis,x and Fig x both consist of a single point. In particular, x.(Fisx) =1 and
XC(-EJ:,X) =1

Observe that (ig,...,4) is a reduced expression for the Weyl group element wy; :=
SiySip_, -+ si, forall 1 <t <k <r. Set j:= (i,...,42). For 1 <k <r define

b = by == — (i~ 50, (i, ), 2, ) = (Sipyy + - 8, (@i, ), iy ),
and set by := (by,...,b1).
Proposition 9.6. Fori and j as above, the following hold:

(i) tops, (Vis—1) = 0;
(i) tops, (Vi) = S";

(iii) Si(Vi’,«) = ti(V7 ) = bi.

Proof. For r = 1 the statements are obvious. Thus assume r > 2. Let Ug,;, be a highest
weight vector in L(w;, ). Since i = (j, 1) is a reduced expression, we know from Section [7]]
that

(3) iy (giz S, (uwir)) =0.
1)

By Proposition 0.1l we can identify 3, - - - 5;, (uw,, ) With ¢y, . We have top Si, (Vjr—
S¢, for some ¢ > 0. Let U be the unique submodule such that Vj, /U = topg,, (

We get

Vir-1)-

,(f)sﬁvr ,=wu #0.

But if ¢ > 1, then equation (3]) yields egf) ©v;,_; = 0, a contradiction. This implies ¢ = 0.
So we proved (i). To show (ii) we use that yy;, can be identified with

max

SiySiy " Siy (uwir) = Ji (giz T (uwir)) = max

(evi, 1) -

We have wt (§i1 5, (Ueo,, )) =wt (52‘2 5, (Ueo,, )) — by, see Section [[ Il This implies
(ii). Finally, it follows by induction on r that s;(Vi,) = t;(Vi,) = b;. This finishes the
proof. O
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9.6. Computation of the Euler characteristics x.(Fk,,). By Proposition 6.1} to
evaluate oy, on xj (t1)---x;,(tp), we need to know the Euler characteristic x.(Fk,v;)
for arbitrary types k of composition series. These Fuler characteristics can in turn be
calculated via a simple algorithm that we shall now describe.

To this end, it will be convenient to embed U(n);, = C[N] in the shuffle algebra F'*, as

explained in [Lel, §2.8]. As a C-vector space, F™* has a basis consisting of all words
wlk] == wlky, ka, ..., ks] = wg, Wk, - - - Wk, (1<ki,...,ks <n, s>0),

in the letters wq,...,w,. The multiplication in F™* is the classical commutative shuffle
product LW of words with unit the empty word w[], see e.g. [Re] and [Lel, §2.5]. By [Lel
Propositions 9 and 10|, for any X € nil(A) the image of ¢x in this embedding is just the
generating function

9x = > Xe(Fie x)w[k]
k

of the Euler characteristics x.(Fk x) for all types k of composition series. (The Euler
characteristic x.(Fk x) is equal to the coefficient of ¢ ---ts in @x(zk, (t1) - - - 2k, (ts)).)

Let A € PT and 1 < i < n. Define endomorphisms py(e;), px(fi) of the vector space F*
by

paei)(wljr, .- Jk]) = i wlin, .-, k-1l
k

p)\(fz)(w[]177]k]) = Z()‘_ajl_"'_ajl)(a;/)w[jla"'7jl7i7jl+17’”7jk]'
=0

Proposition 9.7. The formulas above extend to a representation py: U(g) — Endc(F™)
of U(g). This turns F* into a U(g)-module. The image of C[N] in its embedding in F*
is a U(g)-submodule isomorphic to the dual Verma module M (X), see Section[{.5 In
particular the set

{oafir - fi)(w])) | 1 <dn, o yis <my s > 0}

spans the irreducible module L(X), considered as a submodule of My (X).

The above formulas for py(e;) and py(f;) can be obtained by specializing ¢ to 1 in the
formulas of the proof of [Lel, Proposition 50]. We omit the details.

By Proposition @11 for 1 < k < r we have

By Section [T.Il we know that ¢y, is obtained by acting on the highest weight vector U,
of L(w;,) with the product fz.(lbl) e f-(bk) of divided powers of the Chevalley generators,

7

where b, = b;  is defined as in Section Therefore we have

(4 g = Py (S 07 ().

Hence to calculate the generating function gy; one only needs to apply by + --- 4 by, =
dim(Vj) times the above combinatorial formula for pe, (fi). Thus we have obtained an
algorithm for calculating all Euler characteristics xc(Fk,v;,)-
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9.7. Example. We continue the example of Section Clearly, we have

Similarly

gvi = pe, (1) (w]]) = @1(a])w[l] = w(l].

9, = s (17 f2) (w])).

Now we calculate successively

P (f2)(w]]) = @2(ag)w[2] = w[2],
Py (f)(WI2]) = w@a(af) wll, 2] + (w2 — az)(a) ) w[2,1] = 2w[2,1],
Py (f1)(2w[2,1]) = 2(w2(a))wl,2,1] + (w2 — a2)(a)) w[2,1,1]

+(wwg — ag — ay) (o) w[2,1,1])
= 4wf2,1,1].

Hence, taking into account that f1(2) = f12/2, we get

gy, = 2w[2,1,1].

Similar applications of formula () yield the following results

gV3
qv,

av;

ooy 1(3)f2(2)f1) (w]]) = 4w[1,2,1,2,1,1] + 12w[1,2,2,1,1,1],
peos (7 Ffs) (w]) = 2w(3,2,1,1],

4) (3 2
peos (A 1712 o) ()
288w(3,2,1,1,2,2,2,1,1,1,1] + 144 w(3

— N = =g

) ) )

) )

1,2,1,2,2,1,1,1,1]
01,2,1,1,2,2,1,1,1]
1,1,2,1,2,2,1,1,1] + 16 w]
1,2,1,1,2,1,2,1,1]

) ) )

The generating functions gy; and gy; are too large to be included here. For example gy;
is a linear combination of 402 words.

9.8. The modules M[b,a|. For 1 <k <r let

k™ :=max{0,1 < s <k—1|1is =1},
kT i=min{k+1<s<rr+1]|is=i},
kmin :=min{l < s <r|is =i},
kmax := max{l < s <7 |ig =i}

Set k() := k, and for an integer m define k(™= := (k(™))~ and k(D .= (k(™)*. For
1<j<nand1<k<r+1let

and

E~(j) =max{0,1 <s<k—1|is =7},

kljl={1<s<k—1|i,=j},

and set t; := (r + 1)[j].

For 1 < a < b < r with i, = 4, define M[b,a] := V}/V,-. (For convenience, we define
Vo = Vi1 = 0.) We have a short exact sequence

0 — Ml[a™, bmin] = M]Ib, byin] — M[b,a] — 0.
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Note that amin = bmin, since we assume i, = ip. For 1 < k < r we have M [k, kyin] = Vi
and M|k, k] = Mj. One can visualize a module Mb, a] by

M,

M-

M,

We have

T
Vi = @D Mk, k).
k=1
For each k we have a short exact sequence

0 — Mk, kmin] — M [kmax, kmin] — M [kmax, k7] — 0.
Note that M [Emax, kmin] = 1i i, is Cw-projective-injective. Define
Vi if kT =r+1,
Ty =T = n )
M [kmax, k] otherwise.

Thus if k* # r + 1, then Q' (Vi) = T). Define T} :=T1 @ --- @ T;.. In other words, we
have

T3 = B Mk, Kl = I ® 2,1 (V).
k=1

9.9. Computation of dim Homp (Vy, My).
Lemma 9.8. Let 1 <k,s <r.

(i) If k < s, then we have

&
dim Hom (Vi, M,) — dim Homa (Mg, M,) = 40 TF<*
1 ifk=s.
(ii) If k > s, then
> om0 k—mss (Mymy, Ms)q if i # is,

dim Homp (Vj, My) = , .
’ L+ Zmzo,k(*m)>s (Mk(*m) ) MS)Q if i = is-

(iii) We have
dim Homp (Vi, Vs) = dim Homp (Vi, Ms & M- @ --- & M, ).

Proof. We have short exact sequences
n: 0= Vi-e BV, S M, —>0 and ¢: 00—V 25V, 55 M, —0.

First, assume that k& < s. Then the module Mj is contained in C, ;) and also
in Cy, .4 Now Vi is C, . 4 )-projective-injective and V- is C(,_, . ;)-projective-
injective. This implies

dim Homp (My, V,-) = dim Homp (Mg, V) and  dim Ext} (M, V,-) = 0.
Now apply Homy (M, —) to the sequence ¢ and get Homp (My, M) = 0. Next, ap-

ply Homy(—, My) to . We have Homy (Mg, Ms) = 0 and by induction we also get
Homy (V},—, M) = 0. This implies Homy (Vi, M) = 0.

Next, let & = s. We apply Homy(—, M) to n. Since Homp (V,-, My) = 0, we get
dim Homp (Vi, M) = dim Homp (My, My).
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Applying Homy (Vi, —) to n gives an exact sequence

Homp (Vi,t) Homp (Vi,7k)
_— _—

0 — Homp (Vi, Vj-) Homp (Vi, Vi) Homp (Vi, My) — 0.

Here we use that V},- is contained in C;, . ;) and Vi is C(;, . ;,)-projective-injective. Thus
every homomorphism h: Vj, — M}, factors through 7. In other words, there exists some
g: Vi, — Vi, such that 7, o g = h. Now V}, is indecomposable, so the endomorphism ring
Enda (V) is local. Therefore g = Aidy, + ¢ for some nilpotent endomorphism ¢’ and some
A € K. Now we easily see that the image of ¢’ is contained in 1x(V},-). Thus h = Amg.
This implies dim Homp (Vy, My) = 1.

Finally, assume that k > s. Then Lemma 2.1] yields
dim Ext (Vy, M) = dim Homy (Vy, M) + dim Homy (Mg, Vi) — (Vi,, M) g
= dim Hompy (Vi, M) + dim Homy (M, Vi)
= (Vi Ms) @ — (Mg, M;)q
= dim Homp (Vy,, My) + dim Homy (M, Vi) + dim Ext} (V},—, My)
— dim Homy (V- , M) — dim Homp (M, V- ) — (M, Ms)q.

Since s < k, we have dim Homy(M;,Vj—) = dim Homy (M, Vi) and Ext}(Vi, M) =
Ext} (Vi—, M) = 0. Thus we get

dim Homp (Vy, M) = (Mg, Ms)g + dim Homy (V- , My).
The result follows by induction.

To prove (iii) we just apply Homy (V}, —) to the short exact sequence 0 — V- — Vs —
My — 0, and then use induction. O

Note that in general we have dim Homp (Vj, M) # dim Homp (Mg, Ms).
Corollary 9.9. For 1 <k <r we have Ext} (M, M) = 0.

Proof. Again we use the short exact sequence
n: 0—=>V,-—V,—= M,—0.

The three modules in this sequence are contained in C;, . ;). In particular, Vi is C(;, . 4,)-
projective-injective. This implies Ext} (Vi, M) = 0. We have Homy (V,—, M},) = 0 by
Lemmal[L8 Thus, applying the functor Homy (—, My) to n we get Ext} (Mg, M) =0. O

Corollary 9.10. For 1 < k <r with k= # 0 we have dim Ext} (M, V,-) = 1.

Proof. Apply Homy (My, —) to the sequence n appearing in the proof of Corollary O

10. THE add(Mj;)-STRATIFICATION OF C,,

10.1. The stratification. Let a = (aq,...,a,) be a tuple of nonnegative integers, and
let Cps; o be the category of all A-modules X such that there exists a chain

0=XoCX;C--CX, =X
of submodules of X with Xj/Xj,_1 = M;* forall 1 <k <r.

Lemma 10.1. If X is a module in Cpj.a and Cpp, 1, then a = b.
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Proof. Let a= (ay,...,a,) and b = (b1,...,b,). There is a short exact sequence
0= X1 > X = M —0.

Lemma and induction shows that Homy (X, _1, M) = 0. Thus dim Homy (X, M,) =
ay. Similarly, we get dim Homy (X, M,) = b,. Thus a, = b,, and by induction we get
ap =bp forall 1 <k <r. O

Define
CAQZZZ LJ Ckﬁ@.

acN"
Lemma 10.2. We have Cy, = Cyy,.

Proof. The category C,, contains all My, and C,, is closed under extensions. This implies
Cu; C Cy.

Vice versa, assume X € C,. By Proposition 2.15] there exists a short exact sequence
e: 0oV LV S x50
with V', V" € add(V;) and ¢ is a minimal right add(V;)-approximation. We call ¢ a
minimal add(V;)-resolution of length at most one. Since V. is C,-projective-injective, by
the minimality of ¢ we know that V" does not contain a direct summand isomorphic to V..
Let U be the unique submodule of V' such that V//U = M2 with a, maximal. Clearly,
we have
U=vero V' ver.

By Lemma and induction, the image of f is contained in U. We have V'/Im(f) = X.
Let X,—1 := g(U). We get X/X,_1 = M, and by passing to the restriction maps, we
obtain a short exact sequence

0=V Lveravive 5 X, 4 o

This is an add(V})-resolution of X,._;. By possibly deleting a direct summand of f’ of the
form id: V2 — V*, this yields again a minimal add(V;)-resolution of length at most one
of X,_1. The result follows by induction. O

For X € Cp; 2 set
M;i(X):=M" & --- & M.
Recall that Bj := Enda (V;)°P.
For a A-module X € C, we want to compute the dimension vector of the Bj-module

Homy (V4, X). The indecomposable projective Bj-modules are the modules Homy (V;, Vi),
1 <k < r. Thus the entries of the dimension vector dimy (Homy (V;, X)) are

dim Homp, (Homy (V3, Vi), Homy (W3, X))
where 1 < k < r. By Corollaries 2.13] and we have
Hom g, (Homy (V;, Vi), Homy (V3, X)) = Homp (Vi, X).

For 1 <k < r define

ZXkZ::IionlA(‘G,AJk)
(In Section [IIl we prove that B; is a quasi-hereditary algebra and that the Ay are the
corresponding standard modules.) The following result follows directly from Lemma

Lemma 10.3. The dimension vectors di_mBi(Ak), 1 < k <r are linearly independent.
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Lemma 10.4. For all 1 < k <r we have

dimp (Homp (V3, Vi) = dimp, (Ag) +dimp (Ag-) + -+ - +dimp (A, )-

Proof. Use the short exact sequence

0—=>V- =V — My —0

and an induction on k. O

The next result shows that Lemma [[0.4] is just a special case of a general fact.

Proposition 10.5. For a A-module X € Cy, and a = (ay,...,a,) the following are equiv-
alent:

(i) X € Cwmyas
(ii) There exists a short exact sequence

0— EBV,?E — EBV,?’“ - X = 0;
k=1 k=1
(iti) dimy, (Homa(V3, X)) = dim, (Homa (Vi, M; (X)) = S5_, ay dim (Ay).

Proof. (i) = (ii): Assume X € Cp.a with a = (ai1,...,a,). By induction we get the
following diagram of morphisms with exact row and columns.

0 0
o &
o ver
f g
0 X, ——— X "> M 0
0 0

Since V. is Cy-projective-injective, there exists a homomorphism ¢’ such that 7o ¢ = g.

Then [f,¢']: B, Vi" — X is an epimorphism. Let Z := Ker([f,¢']). The Snake Lemma
yields an exact sequence

r—1 an B ! ”

Pz 5 ve

k=1
Clearly, h” is an epimorphism, since f is an epimorphism. For dimension reasons b’ is a
monomorphism. Thus we get a short exact sequence

r—1

[lk hl h// a
0—>EBVk, — Z— V=0
k=1



KAC-MOODY GROUPS AND CLUSTER ALGEBRAS 45

Applying Homp (V;, —) to this sequence yields an exact sequence of Bi-modules with a pro-
jective end term. Thus this sequence splits, and we get Z = @), _, Vkaf . So we constructed
a short exact sequence

nx: 0— @Vk“f —>EBV,§”€ - X =0.
k=1 k=1

(i) = (iii): Apply Homp(Vj, —) to the short exact sequence nx. Since V; is rigid,
this yields a short exact sequence of Bj-modules, and we get

dim 5, (Hom (Vi, X)) = dimp, (Hom (Vi, D ;™)) — dimp, (Hom (Vi, €D Vi)
k=1 k=1

= > ax (dimp, (Homy (4, Vi) — dimp, (Homy (V5 Vi-)))
k=1

= Z ap dimp (Ay).
k=1
This implies (iii).

(iii) == (i): Let X € Cy, and assume dimp (Homy (V;, X)) = >7,_; ar dimp (Ag).
Set a = (ai,...,a,). We know that X € Cj, p for some b = (by,...,b,;). By the impli-
cation (i) = (iii) we get dimp (Homy (V3, X)) = >7;_; bp dimp (Ay). Since the vectors
dimp (Aq),...,dimp (A;) are linearly independent, we get ay = by for all k. O

Corollary 10.6. For X,Y € Cy we have dimp (Homy (V;, X)) = dimp (Homy (V4,Y)) if
and only if X,Y € Cpr,.a for some a.

Proof. By Lemma [I0.3] the dimension vectors dimpg (Ay) are linearly independent. Now
use Proposition [10.5] O

A short exact sequence n: 0 = X — Y — Z — 0 of A-modules is called M;-split if
M;(X) & M;(Z) = M;(Y). Recall that Fy; := Homa (V;, —).

Corollary 10.7. For a short exact sequence n: 0 — X — Y — Z — 0 of A-modules in
Cw the following are equivalent:

(i) n is Fy;-exact;
(i1) n is M;-split.

Proof. Clearly, n is Fy;-exact if and only if
dim s, (Hom (Vi, X)) + dim g (Homy (Vi, 2)) = dim, (Hom (1, Y)).
By Proposition this happens if and only if M;(X) & M;(Z) = M;(Y). O

10.2. Example. Let QQ be a quiver with underlying graph
1—2—3

and let wy be the longest Weyl group element in Wy. Thus we have C,,, = mod(A). The
short exact sequences

2
022 1,0,° 21,220 and 7":0- 1% 51735220



46 CHRISTOF GEISS, BERNARD LECLERC, AND JAN SCHROER

are exchange sequences in mod(A). Let i = (1,2,1,3,2,1) and j = (2,1,2,3,2,1) be
reduced expressions of wy. We get

Mi:1@12@12 ®2®2;83 and Mj:16912@12 D3P, 2.
3 3

Now one easily observes that 7’ is M;j-split and not Mj-split, and 7" is M;-split but not
M;-split.

11. QUASI-HEREDITARY ALGEBRAS ASSOCIATED TO REDUCED EXPRESSIONS

11.1. Quasi-hereditary algebras. Let A be a finite-dimensional algebra. By Py, ..., P,
and @1,...,Q, and S1,...,.5, we denote the indecomposable projective, indecomposable
injective and simple A- modules respectively, where S; = top(P;) = soc(Q;).

For a class U of A-modules let F(U) be the class of all A-modules X which have a
filtration
0=XoCX;C---CX; =X
of submodules such that all factors X;/X;_; belong to U for all 1 < j < t. Such a filtration
is called a U-filtration of X. We call these modules the U-filtered modules.

Fix a bijective map w: {S1,...,5} = {1,...,r}. Let A; be the largest factor module
of P; such that [A; : S;] = 0 for all j with w(S ) > w(S;), and set

A={Aq,..., A}

The modules A; are called standard modules. The algebra A is called quasi-hereditary
if Enda(4A;) = K for all 4, and if 4A belongs to F(A). Quasi-hereditary algebras first
occured in Cline, Parshall and Scott’s [CPS] study of highest weight categories.

Note that the definition of a quasi-hereditary algebra depends on the chosen ordering
of the simple modules. If we reorder them, it could happen that our algebra is no longer
quasi-hereditary.

Now assume A is a quasi-hereditary algebra, and let F(A) be the subcategory of A-
filtered A-modules. For X € F(A) let [X : A;] be the number of times that A; occurs as
a factor in a A-filtration of X. Then

dima (X) = ([X : Aq],.. ., [X : A)]) e N

is the A-dimension vector of X. Let V; be the largest submodule of @; such that [V; :
S;] = 0 for all j with w(S;) > w(S;), and let

V={Vi,....V,}.

The modules V; are called costandard modules. The following results (and the missing
definitions) can be found in [Ri2, Ri3]:

(i) There is a unique (up to isomorphism) basic tilting module (A N'V) over A such
that
add(T(ANV)) =F(A)NF(V).
(il) F(A ) is closed under extensions and under direct summands.
(ili) [P:Aj]=[V;: 8] foralll<i,j<r.
(iv) If X € .F(A) then [X : A;] = dim Hom x4 (X, V;) for all 7.
(v) HomA(A,, Aj) =0 for all 7, j with w(S;) > w(S;).
(vi) Extl(A;, A ) =0 for all 4, j with w(S;) > w(S;).
(vii) The F(A)- projective modules are the projective A-modules. The F(V)-injective
modules are the injective A-modules.
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(viii) The F(A)-injective modules are the modules in add(T(A N V)). The F(V)-
projective modules are the modules in add(T'(A NV)).
(ix) If Extl(X,V;) = 0 for all 4, then X € F(A). Similarly, if Ext}(A;,Y) = 0 for all
i, then Y € F(V).

The module T(ANV) is called the characteristic tilting module of A. In general, T(ANYV)
is not a classical tilting module. (Here a tilting module is called classical provided its
projective dimension is at most one.) The endomorphism algebra Enda(T(A NV)) is
called the Ringel dual of A. It is again a quasi-hereditary algebra in a natural way, see
[Ri2].

Following Ringel [Ri5], the finite-dimensional algebra A is strongly quasi-hereditary if
there is a bijective map w: {S1,...,S,} — {1,...,r} such that for each 1 < k < r there
is a short exact sequence

00— Ry, —>P,—>D,—0

satisfying the following two properties:

(1) Ry, is a direct sum of indecomposable projective A-modules P; with w(j) > w(k);

(2) [Dy:S;] = {? i;’(i); w(k),

Each strongly quasi-hereditary algebra is quasi-hereditary with A, = Dy, for all k. Further-
more, we have proj. dim(Ay) < 1 for all k. If each of the modules Ry, is indecomposable,
then one easily checks that A is A-serial, i.e. each P, has a unique A-filtration.

11.2. The algebra B; is quasi-hereditary. As before, let V=V ®---® V. and M; =
M, @ ---® M,. Set B; :== Endj(V;)°P. For 1 <k <1 let S(k) be the (simple) top of the
indecomposable Bj-modules Py, := Homp (V4, Vi). As before, define Ay := Homy (V;, M),
and set

A:={Aq,...,A}.
Define w: {S(1),...,S(r)} = {1,...,n} by w(S(k)) :=r —k+ 1.

The following theorem was first proved in [GLS7) Section 16] for adaptable Weyl group
elements. Later the statement was generalized to arbitrary Weyl group elements by Iyama
and Reiten [[R]. Here we present a proof for the general case, which is very similar to our
original proof of the adaptable case.

Theorem 11.1. Let i be a reduced expression of a Weyl group element w. The following
hold:

(i) The algebra B; = Endy (V)P is strongly quasi-hereditary and A-serial with stan-
dard modules A = {Aq,...,A};
(ii) The functor Homp (V;, —) yields an equivalence of categories Fi: Cy — F(A);
(iii) T(ANV)=Homy(V;, T;).
Proof. (i): We know that for each 1 < k < r there is a short exact sequence
n: 0= Vi- 25 Vi — M, — 0.

We apply the functor Homy (V;, —) to this sequence and obtain a short exact sequence

0 — Homp (Vi, Vie) = Pe 25 Ay — 0
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of Bi-modules. Let w(S(j)) > w(S(k)), and let F': Homp(V;,V;) — Aj be a homo-
morphism of Bj-modules. Since Homy (3, V}) is a projective Bj-module, there is a ho-
momorphism G: Homa(V;,V}) — P, such that H o G = F. There exists a A-module
homomorphism g: V; — Vj, such that G = Homa(Vj,g). Assume w(S(j)) > w(S(k)).
Since j < k, we know that Im(g) C 1x(Vj-). Thus Im(G) C Im(Homy (V;, 1x)) = Ker(H).
But this implies F' = 0. Therefore we have [Ay : S(j)] = 0. Next, we consider the case
w(S(j)) = w(S(k)). The endomorphism ring Ends(Vj) is local, and we work over an
algebraically closed field. Thus g = Aidy, + ¢ with ¢’ nilpotent and A € K. We have
soc(Vy) C Ker(g'). This implies Im(g') C t4(V-). Thus F = HoG = HoHomy (V4, Aidy, ).
In other words, Homp, (Py, Ag) is 1-dimensional. This finishes the proof of (i).

(ii): For X, Z € C,, we have a functorial isomorphism
Extp, (X, Z) — Extp (Homy (V;, X), Homy (14, 2)).
Thus the image of the functor
Homy (V4, —): Cyp — mod(B;)

is extension closed. Clearly, for all 1 < k < r the standard module Ay, is in Homy (V;, Cy).
It follows that F(A) C Homp (V;, Cy).

Now let X € Cy,. By Lemma [10.2] we know that X € Cpy, o for some a = (ai,...,a,).
Thus there is a short exact sequence

n: 0= X1 —>X—> M"—0.

We claim that 7 is Fy;-exact: Clearly, n is Fy,-exact, since V. is Cy,-projective-injective and
X,—1 € Cy. Since Homy (Vi,, M) = 0 for all k£ < r, it follows that 7 is also Fy, -exact for all
such k. Clearly, Homp (Vi, M?") is contained in F(A). By induction also Homa (V;, X,—1)
is in F(A). Since F(A) is closed under extensions, and since 7 is Fy;-exact, we get that
Hompy (V;, X) is in F(A). So we proved that F(A) = Homy (V;,Cy). Now Corollary 213
and Lemma show that the restriction functor Fj: C,, — F(A) is an equivalence of
categories.

(iii): Tt is enough to show that Ext} (A, Ti) = 0 for all 1 < k < r, see Section [T.11
Recall that all indecomposable direct summands of T; are of the form M|[syax, s] where
1 < s <r. We fix such an s.

For each 1 < k < r there is a short exact sequence
n: 0— M[k™, knin] = Mk, knin] = My — 0.
Applying Homy (V;, —) yields a projective resolution
0 — Homp (V3, M[k™, kmin]) — Homp (Vi, M [k, kmin]) — Homy (Vi, M) — 0
of Bij-modules.
If k <'s, then Homp (M[k™, kmin), M [Smax, $]) = 0. Since Fj is an equivalence, we get
Homp, (Homy (Vi, M k™, kmin]), Homa (Vi, M[smax, s])) = 0.
This implies Ext}gi(Ak, Homa (Vi, M [Smax, 5])) = 0.
Next, assume that k > s. We have a short exact sequence
i 00— M[s™, Smin] = M[Smax; Smin] — M [Smax, $| — 0.

Applying Homp (—, My) yields Ext} (M[smax, s], My) = 0. Thus Ext} (Mg, M[smax, s]) =
0. This implies

Ext};vi (Mpe, M [Smax 8]) = Extj (Ag, Homa (Vi, M [$max. 8])) = 0.
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Here we used that Ext}x(M [Smaxs Smin)s Mg) = 0 (since M [Smax, Smin] 1S Cw-projective-
injective), and Homp (M [s™, Smin], Mx) = 0 by Lemma This finishes the proof of
(ii). O
Corollary 11.2. The modules Homp (Vi, I; ), 1 < j < n are the indecomposable F(A)-
projective-injectives modules.

Proof. This follows from Theorem [IT.1], (iii) and Section IT.11 O

Each A-filtration of the indecomposable projective Bj-module Homy (V;, Vi) looks as
follows:

Ay,
A,

Ao
(We just displayed the factors of the (unique) A-filtration of Homy (V4, Vi).)

We can now reformulate parts of Proposition [10.5] as follows:

Proposition 11.3. For a A-module X € Cy, and a = (aq,...,a,) the following are equiv-
alent:

(1) X € Cumyas
(2) dima (F(X)) = (a1, .., a).

Proof. Since A = Homy (V;, My), it is clear that (iii) in Proposition [[0.5] and (2) are
equivalent. O

We know that Bj is an algebra of finite global dimension. Thus one can define the
Ringel form

<X7 Y>Bi = <M(X)7M(Y)>B

1

= (~1)dim Ext}, (X,Y).

Jj=0
The next lemma gives the values of (—, —) g, applied to standard modules.
Lemma 11.4. For 1 <k,s <r we have
0 if k <s,
(Ak, Ag) g, = dim Homp, (Ag, Ag) — dim Ext]lgi(Ak, Ag) =141 if k= s,

(My, My)g if k> s.

Proof. As before, for 1 <t < r we set P, := Homy(V;, V;) and A; := Homp (V;, M;). We
know that proj.dim(A;) < 1 for all ¢. Thus

<Ak, A8>Bi = dim HomBi(Ak, AS) — dim EthBi(Akv As)
The cases k < s and k = s are clear, see Section [[1.1l Thus, assume k > s. The short
exact sequence
0>V =V, — M, —0
yields a projective resolution
0> P~ —>P,— A —0
of Ag. We apply Homy (—, M) and obtain an exact sequence
0— HomBi(Ak, AS) — HomBi(Pk, As) — HomBi(Pkf,As) — EthBi(Ak, As) — 0.
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This implies
(Ak, Ag)p, = dim Homp, (Py, As) — dim Homp, (Py—, Ag)
= dim Homp (Vj, M) — dim Homy (V- , M)
= (My, My)q-
For the third equality we use Lemma O

11.3. Example. For an arbitrary C,-maximal rigid A-module T, it seems to be difficult
to determine when Endy (7")°P is quasi-hereditary and when not.

Even if @) is a quiver with underlying graph
1—2—3
there are maximal rigid modules whose endomorphism algebra is not quasi-hereditary:

Let w = wo be the longest Weyl group element in Wg. Let T" be the Cy,-maximal rigid

A-module
2 @ 2 & 2 ©® ! 2 @1 2 366D 2 3
3 1 3 1 :

3 2 1
The quiver of Endp (7)°P looks as follows:

It is not difficult to show that Enda(T")°P is not a quasi-hereditary algebra.

12. MUTATIONS OF CLUSTERS VIA DIMENSION VECTORS

12.1. Dimension vectors of rigid modules. Let A be a finite-dimensional K-algebra.
For m > 0 let A™ be the free A-module of rank m. By mod(A, m) we denote the affine
variety of m-dimensional A-modules. (One can define mod(A4,m) as the variety of K-
algebra homomorphisms A — M,,(K).) If U is a submodule of A™ such that A™/U is
m-dimensional, then the Richmond stratum S(U, A™) is the subset of mod(A, m) consisting
of the modules X such that there exists a short exact sequence

0—-U—-A"—= X —0,
see [Rm]. A more general situation was studied by Bongartz [Ba.

Theorem 12.1 ([Rm|, Theorem 1]). The Richmond stratum S(U, A™) is a smooth, irre-
ducible, locally closed subset of mod(A, m), and

dim S(U, A™) = dim Homx (U, A™) — dim End(U).
Proposition 12.2. Assume that gl. dim(A) < co. Let M and N be rigid A-modules of
projective dimension at most one. If dim(M) = dim(N), then M = N.
Proof. Let m be the K-dimension of M and N. Thus, there are projective resolutions
0P A" M-—-0 and 0—P - A" =+ N—=0

of M and N, respectively. Here we used that the projective dimensions of M and N are
at most one. Since dim(M) = dim(N), we get dim(P) = dim(P’). Since A is a finite-
dimensional algebra of finite global dimension, its Cartan matrix is invertible. In other
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words, the dimension vectors of the indecomposable projective A-modules are linearly
independent. Thus we get P = P’.

Since M and N are rigid, their GL,,(K)-orbits are open in mod(A,m). In particular,
these orbits are open in the Richmond stratum S(P, A™). But S(P, A™) is irreducible,
and therefore it can contain at most one open orbit. It follows that M = N. O

Now, let C,, = Fac(V;) be defined as before, and let T'=T, & --- & T, be a fixed basic
Cyw-maximal rigid module and set B := End (7)°P.

Corollary 12.3. Let X and Y be indecomposable rigid modules in Cy,. If
dimp (HOII]A (T7 X)) =dimpg (HOIIlA(T, Y))?
then X 2Y.

Proof. Use Corollary [2.17] and Proposition [2.19](vi), and then apply Proposition 1221 O

12.2. Mutations via dimension vectors. We now explain how to calculate mutations
of clusters via dimension vectors. We start with some notation: For d = (dy,...,d,) and
f=(f1,...,fr) in Z" define

max{d,f} := (h1,...,hy)

where hy = max{ds, fs} for 1 < s < r. Set Max{d,f} := d if ds > f, for all s. In this
case, we write d > f. Of course, Max{d, f} = d implies max{d,f} = d. By |d| we denote
the sum of the entries of d.

Let T" be a quiver without loops and without 2-cycles and with vertices 1,...,r. Some
of these vertices can be considered as frozen vertices, i.e. one cannot perform a mutation
at these vertices.

Now replace each vertex s of I by some dg € Z". Thus we obtain a new quiver IV whose
vertices are elements in Z'.

For k not a frozen vertex, define the mutation pqg, (I") of I'" at the vertex dj in two
steps:

(1) Replace the vertex dj of I by

dj = —dp +max{ > di, > d;

where the sums are taken over all arrows in IV which start, respectively end in the
vertex dg;

(2) Change the arrows of IV following Fomin and Zelevinsky’s quiver mutation rule for
the vertex dy.

Thus starting with IV we can use iterated mutation and obtain quivers whose vertices
are elements in Z".

For example, if for each s we choose d; = —e,, where e is the sth canonical basis
vector of Z", then the resulting vertices (i.e. elements in Z") are the denominator vectors
of the cluster variables of the cluster algebra A(B(I")°) associated to I', compare with [FZ5|
Section 7, Equation (7.7)]. (The variables attached to the frozen vertices serve as (non-
invertible) coefficients. To obtain the denominator vectors as defined in [FZ5] one has to
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ignore the entries corresponding to these n coefficients.) It is an open problem, if these
denominator vectors actually parametrize the cluster variables of A(B(I")°).

We will show that for an appropriate choice of I' and of the initial vectors dg, the
quivers obtained by iterated mutation of I are in bijection with the seeds and clusters
of A(B(T')°). All resulting vertices (including the ds) will be elements in N”, and we will
show that for our particular choice of initial vectors, we can use “Max” instead of “max”
in the formula above. (This holds for all iterated mutations.)

For the rest of this section let T'=T1 & - - - ® T} be a basic C,,-maximal rigid A-module,
and set B := End (T)°P.

Proposition 12.4. Let R= R @ --- &1} be a basic Cy-mazimal rigid A-module. Let
705 Ry RS R0 and 1.0 RIS R ISR, -0

be the two exchange sequences associated to an indecomposable direct summand Ry of R
which is not Cy,-projective-injective. Then dim Homy (T, R') # dim Homy (T, R"), and we
have

dimn y (Hom, (T, By)) + dim, (Hom (T, BY)) =
= max{dim g (Homy (T, R')), dim z(Hom (T, R"))}.

Furthermore, the following are equivalent:

(i) 0’ is Fp-exact;
(ii) dim Homy (7, R") > dim Homy (7, R");
(1) dimg (Homa (T, R')) > dimy, (Hom (T, R"))

Proof. By Corollary [ZI8 we know that Homy (7, R) is a classical tilting module over B.
Thus we can apply [Ha2, Lemma 2.2] and assume without loss of generality that

Exth(Homy (T, Ry,), Homu (T, R})) = 0.
By Proposition 2.12],
1 = dim Ext} (R, Ry) > dim Extp, (R, Ry)
= dim Exth(Homu (T, R}), Homy (T, Ry,)) > 0.
This implies Extj (R}, Ry) = Extp, (Rj, Rp). Thus ' is Fr-exact, and

Homn (T, f") Homn (T,9")
e e

n: 0 — Homa (T, Ry) Homy (T, R') Homu (T, R;,) = 0

is a (non-split) short exact sequence. If we apply Homy (T, —) to 1, we obtain an exact
sequence

Homn (T, f") Homn (T,g")
—

0 — Homy (T, R}) Homy (T, R") Homy (T, Ry).
Now Homy (7, ¢”) cannot be an epimorphism, since that would yield a non-split ex-
tension and we know that Extl(Homa (7T, Ri), Homa(T, R;)) = 0. Thus for dimension
reasons we get dim Homy (7, R') > dim Homy (7, R”). Using the functors Homp(P, —)
where P runs through the indecomposable projective B-modules, it also follows that
dimp(Homy (7, R)) > dimg(Homa (7, R")). Finally, the formula for dimension vectors
follows from the exactness of 7. O

Proposition [12.4] yields an easy combinatorial rule for the mutation of C,,-maximal rigid
modules. Let R = R1 & --- ® R, be a basic C,-maximal rigid A-module. Without loss of
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generality we assume that R,_,11,..., R, are Cy-projective-injective. For 1 < s < r let
d; := dimp(Homy (T, Ry)).

As before, let I'r be the quiver of Enda(R)°P. The vertices of I'g are labeled by the
modules Rs. For each s we replace the vertex labeled by Rs by the dimension vector ds.
The resulting quiver is denoted by I'y.

For1<k<r—mnlet
0—>Ry—R —-R,—0 and 0— R, —>R' > R, —0

be the two resulting exchange sequences. We can now easily compute the dimension vector
of the Enda (T')°P-module Homy (T, R}), namely Proposition 12:4] yields that

—di+ > g, a, A I D og, g, di] > de—nij ||,

d* = d' H CZ—W7 R* -
% dim p(Hom ( i) {_dk+2dk—>dj d; otherwise,

where the sums are taken over all arrows in I'; which start, respectively end in the vertex
d;. More precisely, we have

(5) dj = —dp+maxq > di, > d;

di—>dk dk—>dj

and we know that

(6) max Z d;, Z d; p = Max Z d;, Z d;
j

Remark 12.5. Let T' = 17 @ --- & T, be a basic Cy-maximal rigid module, and let
BT .= ((S;,S;))1<i j<r be the matrix of the Ringel form of the algebra B := End, (T)°P.
Let X be a T-reachable A-module, see Section Bl Set d := dimgz(Homy (7, X)) € N".
Define

gr(X):=d- BT,

where d is considered as a row vector. As explained in [FK| Section 4] the entries of
gr(X), which correspond to the non-C,-projective-injective direct summands T} of T
form precisely the g-vector of px with respect to the initial cluster (éry,...,d7, ).

12.3. Examples (Dimension vectors of B;-modules). Let @ be a quiver with under-
lying graph 1 — 2 ——3 and let i:=(3,1,2,3,1,2). Thus I'; looks as follows:

—>2

/N

\4—>1
NS

5
6 ——3
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The following picture shows the quiver I'y; of End (V;)°P where the vertices corresponding
to the modules V.
3 2

2 _—

1 1

Here is the quiver I'|; whose vertices are the dimension vectors dim g, (Homy (V4, Vi)):

1 1 0 1

1 00— 1 0
1 0 1 0
1 1 0 1
2 1 —— 1 1
1 1 0 1
1 0 1 0
1 0 1 0
1 1 0 1

Next, let us look at an example of type Ao. Thus, let @ be a quiver with underlying

graph
3
/N
1—2

and let i:=(3,2,1,3,2,1). The quiver I'y; of Endy(V;)°P looks as follows:

. . /.
Here is the quiver Iy
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12.4. Example (Mutations via dimension vectors). Let @) be a quiver with un-
derlying graph 1 ——2—3 and let i := (i7,...,41) := (1,3,2,1,3,2,1) be a reduced
expression. As before, let V; = V1 @ --- @ V7. The indecomposable C,,-projective-injectives
are Vs, Vg and V7. Let us compute the dimension vectors dim g (Homy (V3, My)).

9 3 1 . 6 2 0 . 2 0 0 . 3 1 0
dlm(Al)—4 22 dl_m(Ag)—3411 dl_m(Ag)—Ollo dl_HKA4)—22OO
2,00 0,0,0 g4 1.0 0
dim(Ajz) = 1,0 dim(Ag) = 0,0 dim(A;) = 0%,°
Here is the quiver T'y:

7 4 1
N AN\
5—m—>2
NS
6 3
The following picture shows the quiver F/Vi' Its vertices are the dimension vectors of the

Endy (V;)°P- modules Homy (V4, V). These dimension vectors can be constructed easily
using Lemma

13 4 1 12 4 1 9 3 1

8 2 8 2 6 2

6 \ /62\ /4
20
1

1 1

20 00

1

11 01

Now let us mutate the A-module V4. We have
12 4 1

dimp (Hom (i, Vi) = s 2

We have to look at all arrows starting and ending in the corresponding vertex of I'},, and
add up the entries of the attached dimension vectors, as explained in Section [12.2] Slnce

13 4 1 8 2 0
‘ 8 2 ‘+2" 41 ‘:70>69:‘ 6 2 ‘+2-‘ 5 1 ‘,
6 2 31 4 2 471
we get
13 4 1 6 2 0 12 4 1 13 4 0
dimg (Homp (V;, V)= 8 2 +2- 471 — "8 2 = "8 2
dimp, ( NURY) 6 2 301 6 2 6 2
. , )
and the quiver I v (Vi) looks as follows:
13 4 1 13 4 0 9 3 1
8 2 8 2 6 2
6 2 6 2
| ~ / \ /
N
| . / \ /
| 8 2 0 6 2 0
5 1
I 1 3 1
l i \ /
e
| ~
2 0 0 2 0
10 10
11 0 1
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Note that we cannot control how the arrows between vertices corresponding to the three
indecomposable C,-projective-injectives behave under mutation. But this does not matter,
because these arrows are not needed for the mutation of seeds and clusters. In the picture,
we indicate the missing information by lines of the form - - — . This process can be
iterated, and our theory says that each of the resulting dimension vectors determines
uniquely a cluster variable.

12.5. Mutations via A-dimension vectors. Using Lemma we can explicitly com-
pute the dimension vector of the Bj-module Ay = Homp(Vj, M) for all 1 < s < r.
Recall that the kth entry of this dimension vector is just dim Homy (Vj, M). Thus, the
K-dimension of Ay is

dim(A;) = dim Homy (V;, M) = Zdim Homp (Vi My).
k=1

Define
da = (dim(Aq),...,dim(A,)).
Now let R = R1 & --- ® R, be a basic C,-maximal rigid A-module, and suppose that

Ry is not Cy-projective-injective. Then we can mutate R in direction Rj. We obtain two
exchange sequences

0—Ry—-R —-R,—0 and 0— R, > R'— R, —0

with R, R” € add(R/Ry,).
For brevity, set
d, = di_mA(HOmA(Vi,Rs))

for all 1 < s < r. Similarly to the definition of F’R in Section [12.2] let P’}’2 be the quiver
which is obtained from the quiver of Enda(R)°P by replacing the vertex corresponding to
R, by the A-dimension vector d.

For d = (dy,...,d,) and £ = (f1,..., fr) in Z" define

T
d-f:=> difi
i=1
Proposition 12.6. The A-dimension vector of the Bj-module Homy (V;, Ry) is

d: {_dk " zdi—>dk d; if Zdi—ﬂlk d;-da > de—ﬂlj d; - da,

BT —dy > dy—d, dj  otherwise.

Here the sums are taken over all arrows of the quiver of T}, which start, respectively end
in the verter dy.

Proof. This follows immediately from our results in Section [12.2] O

12.6. Example (Mutations via A-dimension vectors). We repeat Example[12.4] but
this time we work with A-dimension vectors. Let @ and i be as before. The following
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picture shows the quiver I"(/i . Its vertices are the A-dimension vectors of the Endy (V;)°P-
modules Homy (V;, V).

1 1 1 0 1 1 0 0 1
0 0 0 0 0 0
00\ 00\ /00
0 0 O 0 0 O
1 1 0 1
0 0 0 0
0 0 O 0 0 O
0 0 0 0
1 1

Again, let us mutate the A-module V4. We have
dim s (Homa(Vi, V) = U0 Lo

We have to look at all arrows starting and ending in the corresponding vertex of I'Y, -, and
to add up the entries of the attached A-dimension vectors, as explained in the previous
section. In this example it is clear that the ingoing arrows yield the required larger
dimension, since the calculation with outgoing arrows would produce a A-dimension vector
with negative entries, which is not possible. Thus the quiver FZ v, (V0) looks as follows:

1 1 1 1 0 0 0 0 1
0 0 0 2 0 0
0 0 0 0 0 0
RN / \ /
N
| R / \ /
| 0 0 O 0 0 O
1 1 0 1
! 0 0 0
| - \ /
7
[
0 0 O 0 0 O
0 0 0 0
1 1 1

13. A SEQUENCE OF MUTATIONS FROM V; TO Tj

13.1. The algorithm. Let i := (i,,...,i1) be a reduced expression of a Weyl group
element. For 1 <i,5 < n set
_Cij if 4 75 j,
qij =

0 otherwise.

(The ¢;; are the entries of the Cartan matrix C' of our Kac-Moody Lie algebra g, see
Section Il Note that this definition of ¢;; is equivalent to the one in Section 2.4l) As
before, we define a quiver I'; as follows: The vertices of I'j are 1,2,...,r. For 1 <s,t <r
there are g;, ;, arrows from s to t provided ¢+ > st >t > s. These are called the ordinary
arrows of I'y. Furthermore, for each 1 < s < r there is an arrow s — s~ provided s~ > 0.
These are the horizontal arrows of T;.

As before, let Vi =V, @& ---®V, and M; = M1 & --- ® M,.. We know that the quiver I';
can be identified with the quiver I'y; of the endomorphism algebra B; = Endx (V;)°P. The
vertices of I'y; are labeled by Vi,...,V,. More precisely, the vertex s of I'; corresponds to
the vertex Vi = M][s, smin] of I'y;, where 1 < s <.
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Recall that for 1 < j<nand 1<k <7+ 1, we defined
kljl =1 <s<k—1]is=j}l,
tj = (r+ 1l
kpin := min{l < s <7r|isg =i}

Now we describe an algorithm which yields a sequence of mutations starting with I'y; and
ending with I'7; (see Section for the definition of 7j). The proof is done by induction
onr—n.

Before going into details let us describe the general idea of this algorithm. Assume that
@ is the linearly oriented quiver

m—sm—1 2 1

of type A,,. We would like to find a sequence of mutations which transforms () into the
quiver QP

m-=——m—1 2 1

with opposite linear orientation. This can be done by applying the following m — 1 se-
quences of mutations:

Q' = pim—1- o1 (Q)y Q% = pm—z -+ g (QY), -, QM= (QM?).

Now one easily checks that Q™! = Q°P. If we delete all ordinary arrows of I'; we obtain
a disjoint union of linearly oriented quivers of type A,,, for various m; > 1. The main idea
of the following algorithm is to apply a sequence of mutations to I'; which (in the same
way as explained above) reverses the orientation of these subquivers of type A,,, without
causing too many changes for the remaining ordinary arrows.

In the following, we just ignore the symbols of the form M]a,b] in case a < b.
Step 1: We mutate the following
ry =ty — 1 —1[i1]
vertices of F(‘)/i :=I'y; in the given order:

M[l(l.[m) 1(1.[i1})] M[l(l[hHl) 1(1[21})] M[1(1[21]+2) 1(1[21])] M[l(tzl 2) 1(1[21])]'
Under the identification I'y; = I';, this sequence of mutations corresponds to the sequence
of mutations

.
,ul L /1/1(7'1*1) ©:--+0 /J’ (1) © lulmln

min mm

We obtain a new quiver I‘%/i with 71 new vertices

M[l(l.[il]'l'l) 1(1.[2'1}4-1)] M[l( [i1]+2) 1(1[11]4-1)] M[1(1[11]+3) 1(1.[2'1}4'1)]

min 7 Tmin min 7 Tmin min 7 Tmin

Y (i T e

min » “min

Step 2: We mutate the following
ro 1= tiz —1- Q[ig]
vertices of F%/i in the following order:

M[2(2[i2}) 2(2[2'2})] M[2(2[i2}+1) 2(2[1'2})] M[2(2[i2]+2) 2(2[i2])] M[Q(ti2_2) 2(2[1'2])]‘

min ’ “min min » “min min » “min min » “min

This mutation sequence corresponds to

_>
2 7= Hy(rg—1) O+ * O flo(1) O A2, -

min min
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We obtain a new quiver I‘%/i with 79 new vertices

MY @i +D) §roClial+2) pClisl4D) ) pio(lial43) H(2lil+1)

min 7 Tmin min min ’ “min

M[z(tlg _1) 2(2[22]+1)] .

Step k: We mutate the following
rE =ty — 1 — klig]
vertices of F]‘“/,_l in the following order:
MR RS, M, b ) s k).

This mutation sequence corresponds to

_>
Fik 2= Hy rp=1) @+ O Jyp (1) O [y, -

min mln

We obtain a new quiver F"f/i with 7, new vertices

M[k(k[lk]"‘l) k(k[lk]‘f‘l)] M[k(k[lk]+2) k(k[lk]‘f‘l)] M[k(k[lk]+3) k(k[ZkH‘l)]

min » Ymin min » Ymin min » Vmin

[k(tzk 1) k(k[zk]-i-l)]

min ? 7’min

The algorithm stops when all vertices are of the form M [kyax, k‘] This will happen after

r(i) = Z tj(th_ 1)

J=1

mutations. Define

pi = fiy 00 i3 0 fif.

Thus we have
wi(Vi) = T;.

As an example, assume @ is a Dynkin quiver of type Eg. Thus the underlying graph of
Q@ looks as follows:

7

5—6—8—4—3—2—1
Let ¢ := sgs7565554535251. Then w := ¢!% is the longest element in the Weyl group W
of @, and i:=(8,...,2,1,...,8,...,2,1) is a reduced expression (with 120 entries) of w.
We get ¢; = 15 for all 8 vertices j of Q). Then our algorithm says that starting with V; we
reach T; after r(i) = 8 - 105 = 840 mutations.
We now want to describe what happens to the quiver F]‘“,i_l when we apply the mutation
sequence ,LT;Z . First, we need some notation:

For each 1 < j <n let
pj =min{l <s <r|i;=j},
wj = min{0,k < s <r|i; =j}.
Note that pgo) = pj. The sequence

0 (1 (ru;—1)
(pg )7p§ )77pj ! )
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of vertices of F]‘“/i_l is called the j-chain of Fl‘ﬁ,i_l, provided u; # 0. If u; = 0, then we have
an empty j-chain. The sequence

@ o, pY)

is the extended j-chain.

Each full subgraph of F"f/i_l given by the vertices of a single extended j-chain looks as
follows:

p(tj_1) — (_ruj+1) <_p(ruj) o Cre=l) _>p§_2) _>p§1) _>p§0)

J J J J

The arrows of the extended j-chains (1 < j < n), are the horizontal arrows of F]‘“/i_l. In
the mutation sequence
Jir -+ 0 Jike] o ik
( j) (Tuj+1) (t;—1)

there are no mutations at the vertices pjru D RN 2 . These are called the

frozen vertices of F]‘“/,_l.

To describe the quiver I‘]‘“/i, it is enough to study the effect of ;T)k on the n — 1 full

subgraphs of F"“/i which consist of the ix-chain together with one extended j-chain, where
1<j<nandj#ig.

For brevity, set s = s = kpin, t = ¢t = pj. Let ¢ = g;, ; be the number of edges
between i; and j in the underlying graph of ). The following picture shows how the
arrows between the ig-chain and an extended j-chain in F"f/i_l look like (we have 1 < j <n
with i # j, and we use the notation u —¢—= v if there are ¢ arrows from u to v):

s(az) s(azfl) e S(az) s(al)

yid Sa A Ny \q\ e S e

$(0=) (b=—1) e $(b2) $(01)

Here s(%) belongs to the ij-chain, and (%) belongs to the extended j-chain for all 1 < i < z.
(The g arrows from s(2) t0 ¢(%=) do not exist necessarily. But the first ¢ arrows between
the ig-chain and the j-chain (counted from the right) always start at the ig-chain. We do
not display any arrows between frozen vertices, they don’t play any role.)

The mutation sequence ,LT;Z consists of mutations at the vertices 8(0), s(l), .. ,S(Tk_l). By
definition,

ol =ik (T41).

After applying /Tk), the horizontal arrows of the ig-chain stay the same, except the arrow
se) — s(v=1) changes its orientation and becomes s("#) < (=1 The vertex s+
becomes an additional frozen vertex of F]f/i .

The arrows between the ig-chain and the j-chain change as follows:

s(az—l) s(azfl_l) e 8((12—1) 8((11—1)
e o v \q\ \q\ yd A

$(b2) $(bz—1) e $(b2) $(b1)

(In case 5(9) = s, the ¢ arrows from 5@~ to ¢(®2) do not exist.)
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We illustrate this again in a more explicit example: Here is a possible subgraph before
we apply ,u_k), where 7 = 8 and 1, = 6:

S(tik_l) <~ =< 8(8) — 8(7) — 8(6) — 3(5) — 8(4) — 8(3) — 8(2) — S(l) — S(O)

AN \
/’/ BN /’/ ~__ /’/ ! /’/
=) <—— oo <— 4(8) =<— (7)) =— $(6) — (5) — (1) — $(3) —= ¢(2) — (1) —= 4(0)

(The numbers r and r, ; are determined by the orientation of the horizontal arrows in
the above picture.)

This is how it looks like after we applied /Tk) to the r; vertices of the ij-chain:

S(tik_l) < < 3(8) - 3(7) — 3(6) — 3(5) e 3(4) — 3(3) —— 3(2) I 3(1) I 3(0)

| o N
tt=1) <— o =—1(8) =— (1) =—¢(6) —>¢(5) —= t(4) —= ¢(3) —= ¢(2) —= (1) —= +(0)

Again, possible arrows between frozen vertices are not shown.

Note that if we start with our initial C,,-maximal rigid module Vj, and if we only perform
the r(i) mutations described in the algorithm, then we obtain the subset

{Mb,a] |1<a<b<ri,=1p}

of the set of indecomposable rigid modules of C,,. In particular, this subset contains all
modules My, = Mk, k] where 1 < k <r. The next theorem describes the precise exchange
relation obtained in each of the r(i) steps of the algorithm above.

We use our description of mutations via A-dimension vectors from Section [12.5]in order
to show that the mutation M (s S(k[zsb] of M(s, s [SD] is indeed M|[s™ (k[stl)]

? “min min ’ mln

In formula (7)) below we just write M[b,a] instead of dpsp - (Recall that for any A-
module X and any constructible function f € M we have dx(f) := f(X). This defines
an element dx in M*.)

Theorem 13.1 (Generalized determinantal identities). Let My = My @ --- @ M,. Then
for 1 <k,s <r with iy = i, we have

(7) Mls S(k-[iS})]-M[s"' s( [ls]+1)] M[s+ S(R-[is])]-M[S s(’f_[is]'l'l)] +

? “min ? “min 7 “min ? “min

o I M TT Mgy,

tt>st>t>s I+>s5T>8>1>5min

Proof. Formula ([7]) is just an exchange relation corresponding to the mutation of the

module M[s, s](ml[:lsb] with M]s, sggl[:f})] = M|[st, sgi[i3}+l)]. More precisely, the mutation
of Ms, sggl[:f})] happens during the mutation sequence /Tk), which is part of the mutation
sequence [i;. ([

Remark 13.2. It is not hard to see that the above theorem can be also stated as follows:
For1§t<8§7‘withis:ij:iwehave

M(s,tT] M[s™,t] = M[s,t] M H M]s ()%
JeN{i}

where in addition to the notation in [0.8 we set t7(j) := min{r+1,t +1 < k <7 |ip = j}.
Fomin and Zelevinsky [FZ1, Theorem 1.17] prove generalized determinantal identities
associated to pairs of Weyl group elements for all Dynkin cases (including the non-simply
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laced cases). Using the material of Section [1, formula (7)) can be seen as a generalization
of some of their identities to the symmetric Kac-Moody case.

Corollary 13.3. The functions dpp,, - .., 0m, are algebraically independent. In particular,
Clom,, - .-, 00, ], the subalgebra of M* generated by the Onr, ’s is just a polynomial ring in
r variables.

Proof. Clearly, the functions dnz(1,1,..15 -+ Onfrr,) 2re algebraically independent, since
Vi, = Mk, kmin| and any product of the functions dy;, . . ., dy; lies in the dual semicanonical
basis. Here we use that V; is rigid and then we apply [GLSI, Theorem 1.1]. We claim
that each function dp/p with 1 < a < b < r and i, = 4 is a rational function in
oMy, ---,00m,. In particular, each dy, is a rational function in dp,, ..., 0, . This implies
that dps,,...,0n, are algebraically independent.

We prove our claim by induction on r and on the length I([b,a]) == |[{a <k <b| i =
ip}| of the interval [b,a]. For r = 1 the statement is clear. Also, if I([b,a]) = 1, then
M][b,a] = M, and we are done as well. Thus assume by induction that our claim is true
for all intervals [d, ¢] of length at most m for some m > 1. All intervals of length m + 1

are of the form [b*,a] for some 1 < a < b < r. We have a = bﬁﬁf]) for some 1 < k < r.

We also assume by induction that our claim holds for all intervals [d, ¢] with b+ > d. Our
formula () yields

1
-+ _ = . + +71)
(8) M[bT,a] = ] (M{b,a] - M[b+,a*])
1 H Ve D, H i 1Kl g
- 7ﬂj[bya+] . [tvtmint ]qbt ’ [l7lminl ]qbl

tt>bt>t>b IT>b+>b>1>bnin

The intervals on the right hand side of this equation all have either length at most m, or
they are of the form [d, ¢] with b* > d. This finishes the proof. O

In fact, we will show that for any A-module X € C,, we have 0x € C[dps,, ..., 0], see
Theorem [I5.1] In particular, for all 1 < & < r the rational function éy, is a polynomial in

T T

Another proof of the polynomiality of the functions d,, was found by Kedem and
Di Francesco [DFK, Lemma B.7], using ideas of Fomin and Zelevinsky (in particular [BFZ,
Lemma 4.2]). We thank these four mathematicians for communicating their insights to us
at MSRI in March 2008.

13.2. Example. Let () be a quiver with underlying graph

1—3—2

Here we use the notation ¢—a— j if there are a edges between ¢ and j. Let i :=
(1105 --,01) == (2,3,2,1,2,1,3,1,2,1). This is a reduced expression for a Weyl group
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element in Wg. The quiver I'; looks as follows:

For the mutation sequence u; we get

pi = b oo i o if
= (id) o (id) o (u2) o (id) o (uep2) © (11) © (pa) © (u3p1) o (uspepz) © (Hsp3pa)

Here are the quivers Ff:

r! ¢ 5 3 1
///;// 3/ 3/ \3
- A 2
10 8 6 2
N '/ \ 2/
N //2 2\ /
N
9 4
I 7 5 3 1
_ = s
10= 8 6 2
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-3 3 / 3/
// ? /

10 8 6 2
N . /// \2 /
AN \ 4

9

rﬁz

\\\ // \4/

r$=r)="}0 //> /3 1
10 = 8 6
< ;A

~ /2
K — /

Applying formula (7)) to M|s, I(J;[:l“‘})] = M6, GEm[n D] M]6,2] we get the following:

M][6,2] - M[8,6] = M[8,2] - M[6,6] + M[7,3]> - M[4,4]> (s=6k=2).

Thus, we have

M8,2] = M[éﬁ] (M[6,2] - M[8,6] — M[7,3]* - M[4,4]%) .
Similarly, we obtain
M][2,2] - M[6,6] = M[6,2] + M[5,3]> - M[4,4] (s=2k=2),
M][6,6] - M[8,8] = M[8,6] + M[7,7]> (s =6,k =6),
M][5,3] - M[7,5] = M[7,3] - M[5,5] + M[6,6]> - M[4,4]? (s =5k =3),
M][3,3] - M[5,5] = M[5,3] + M[4, 4] (s =3,k=3),
M][5,5] - M[7,7] = M[7,5] + M][6,6]> (s =5k=5).

By our double induction (on r and on the length of the intervals [b,al]), in each of the
above equations, we can write the functions M|[6,2], M8, 6], M[7,3], M[5,3] and M]7,5],
respectively, as a rational function of the functions appearing in the same equation. Now
one can use these equations to express /g as a rational function in dpr,...,dns-
Remarkably, this rational function is a polynomial.

Finally, we display the dimension vectors of the modules My, ..., Mg:
5i(1) = 100 5i(2) = 310 5i(3) = 830 51(4) = 2481
5i(5) = 40 1 2 5i(6) = 189 03 8 5i(7) = 527 176 22 51(8) = 1392 465 58
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As an exercise, the reader can compute 5;(9) and $3;(10).
Exchange equations are always homogeneous. For example,
M][5,3] - M[7,5] = M[7,3] - M[5,5] + M[6,6]> - M[4,4]?

is an equation of degree 5 20° .

13.3. The shift functor in C,, via mutations. Fix a reduced expression i = (i,,...,71)
of some Weyl group element w. As before, let T} := I, ® Q,(V;). Define

Wi =1, & Q,y(Wi).
In Section [I3.1] we defined a sequence of mutations
P = Hip 0 O I = gy O O flsy © flsy
where 1 < s, <r for all p, such that
(Vi) = s,y 00 sy 0 pisy (Vi) = Ty and g {(T}) = pasy 0 sy © -+ 0 s, ) (T3) = Vi
Clearly, if R is a basic Cy,-maximal rigid module such that R = pip, o - - o i, (V4), then we
have R = pip, 0 -+ 0 pip, © ,Ui_l(Ti)-

Now define an involution
() L PN SR <r [ K =71} = (Lo \ L <k <7 [ K7 =r+1)
by
<k(m)>* — k(tj—2—m)

min min ’
where j :=i;_. . Observe that every 1 < s < r can be written as kr(nnz for some unique k
(namely k£ = s) and some unique 0 < m < t; — 1. The following picture illustrates how
(—)* permutes the vertices of T;:

T

k(tj_l) o k(tj_z) N k(tj_g) N k(tj_‘l) e k(z)

min min min min

min

Set
(:ui_l)* = Hsy O flgy ©0 0O Ns:(i)'

Proposition 13.4. Let R be a basic Cy,-maximal rigid module which is mutation equivalent
to Vi. Then I, ® QY (R) and I, ® Qu(R) are mutation equivalent to V;. More precisely,
let

R=pzo0---op, (Vi) and R=pg, o opg(T}).

Then we have

Ly @ Q;l(R) =pz; o opy(Ty)  and Ty & Qu(R) = pgy 0 0 pgr (Vi)

Besides Q,'(R), we can also compute §,,(R) by just knowing a sequence of mutations
from V; to R. This works because V; and T are connected via a known sequence of
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mutations, namely u; if we start at V;, and py L if we start at T;. The following picture
illustrates the situation:

(85 )" ;
Wi <t B T
14
: s :
Suzgo Ohzx §uzto---ouz1 Suzgo“'ouz;
0 ¢ 0
¢ $ ¢
Iy ® Qu(R) R L, ® Q' (R)

Proof. As before, for 1 < j < n set p; := min{l < s <r |, = j}. Note that pg-tj_l) =
Pimax @0d pj = pj .. In the following pictures we display only the relevant horizontal
arrows. The quiver I'y; looks as follows:

M[pgh.—l),pl] N M[pgt1.—2),p1] e M[pgl)’pl] - M[p:ljpl]

Mp Y pa] = MIpl" ™ pa] == —= M[p, pu] == Mlpn, pn]
Next, we display the quiver I'7y:

M[plmax7p1] D M[plma)(?p:([l)] - M[plmax,pg2)] - = M[plmax’pgtl—l)]

M [Prsass Prl == M{Pragyaes P ] == M{Praggaes P ] <= == M "

We know that I,, ® Q1 (V) = T;. In particular, we have
— s—1 s
M p1]) = Mgy 7))

J jmax’pj
forall1 <j<nand1l<s<t;—1. Thus I'y looks like this:

MIp{" ™ pr] == 905 (M[pr, ) <— 0 (MY, pal) <= - <= 1 (M ]

Mpii ™Y, o) <= 9 (Mpn, p]) <= Q. (ML pa]) <= -+ == Qu (Ml pa])

w
The n vertices of the form M [pg-tj _1),pj] at the “left” of both quivers I'y; and I'zy are

frozen vertices, to all other vertices we can apply the mutation operation.

Now let
0T —>T —-TF—0
be an exchange sequence associated to the cluster algebra R(C,,V;). This yields an ez-
change triangle T, — T" — T — Ty[1] in the stable category C,. Note that Tj[1] =
QuH(Ty). Tt follows that Ty[1] — T'[1] — Ty[1] — Tx[2] is an exchange triangle as well.
There is an associated exchange sequence

0— QT —» T QNT) — QN TF) = 0
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where I is some module in add(1,,). Thus, if we mutate the basic C,,-maximal rigid module
L, ® Qy1(T) in direction Q'(Ty), we obtain (Qy(T%))* = Q,'(T}). We argue similarly

to show that the mutation of I, ® Q,,(T") in direction Q,(T}) gives (2 (Tk))* = Quw(T).
This finishes the proof. U

Corollary 13.5. If a A-module R is V;-reachable, then QZ (R) is Vi-reachable for all z € 7.

13.4. Example. Let Q be a quiver with underlying graph 1 2 3 4 and let
i:=(i10,...,41) = (1,2,1,3,2,1,4,3,2,1). Then we get

3t 3 2
FVi 12 12 1 1
3 2
1251 L3 1,
2
AN / \ /
123 1
2,4 2,
AN /
Ly
3
4
and
T 5 4

NLSON S
\2/3\

274 3

\./
/

Again, we identify the vertices of I'y; and I'r; with the indecomposable direct summands
of Vi and Tj, respectively. As before, we identify I'y; and the quiver I';, which looks as
follows:

Fi (EPVi) 10 8 ) 1
\9/ \6/ \2/
\7/ \3/
N/
4
We have
:ulzlmo LI
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Mutation of Vj at V5 yields the following quiver:

34 f’m
\3/1 VRN
N/

Fu5(\/}) 2 1

1

NS

The associated exchange sequences are
0—(1,3)— 1@(123)—)(12)%0 and 00— (;2)— (1y)a(

Next, we mutate at V5. The exchange sequences looks as follows:

0 ("2 ) (3@ (1,3,) = (1,8) =0
3

2 1 3 1 3
and 0— (1_3) = ( 23)69(1234)—>( 2.4) =0
2
Set R := (ug o p5)(V;). Thus we have R = R5 @ Rg @ V;/(V5 @ V) with

1 3
R;=1,3 and Rs= 2,4

To calculate Q,'(R), we have to compute (ug o us+)(Ti). Mutation of T} at 5* = 5
yields the following quiver:

4 /_\
4
3 3
3 4
3
4
3

LG 2 4

1 2

N /2
3\2

\2/

The associated exchange sequences are
4 3
0—>234—>34@23 — 434 —=0 and 0—>34—>4@234—>234—>0.
Next, we mutate at 6 = 2. The exchange sequences looks as follows:

2
0=2—,%, =23, -0 and 0—3, = 3,20
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We get Q1(R) := Q' (Rs) @ Q' (Rg) © Ty /(T5 @ Tg) with
Q' (Rs) = 3, and Q '(Re) = 2.

14. IRREDUCIBLE COMPONENTS ASSOCIATED TO C,,

14.1. Module varieties. Let I' := (I'g,I'1, s,t) be a finite quiver with vertex set I'g =
{1,...,r}, arrow set I'1 and maps s,t: 'y — I'g which map an arrow a to its start vertex
s(a) and its terminal vertex t(a), respectively. In this section, we interpret dimension
vectors f = (f1,..., fr) for I" as maps f: Iy — N. We consider the affine space

mOd(CF7f) = rep(r7 f) — H (cf(t(a))Xf(s(a))
a€l’y

of representations of I' with dimension vector f. Here CP*? denotes the vector space of
(p X g)-matrices with entries in C. This coincides with our definitions in Section 2.1 except
that we now work with spaces CP*? of matrices rather than spaces Homg(C?, CP) of linear
maps. So each element in mod(CI, f) is of the form M = (M(a))qer, where M(a) is a
matrix of size f(t(a)) x f(s(a)).

The group
GLg := ] GLg(;)(C)
i€lg
acts from the left by conjugation on mod(CIL,f), i.e. for M = (M (a))qer, € mod(CI,f)
and g = (g(7))ier, € GLf we have

(9-M)(a) = g(t(a))M (a)g(s(a)) ™"

for all @ € T';. The orbits of GLg on mod(CT, f) correspond to the set of isomorphism
classes of CI-modules with dimension vector f. Given a path p = a;---aa; in T' (i.e.
ai,...,a; are arrows with s(a;4+1) = t(a;) for 1 <i <1 —1) we define

M(p) := M(a) - -- M(az)M (ay)

for any M € mod(CT,f). More generally, for any element p € e;CI'e; we have M(p) €
Cf@Oxf0)  since p is a linear combination of paths from j to . (For k € 'y we denote the
associated path of length 0 by er.) Set s(p) := j and t(p) :=i. If I C CI is a finitely
generated ideal contained in the ideal generated by all paths of length 2, we may assume
that it is generated by elements p, ..., py wWith p € e;, Cl'e,, for certain sy, t;, € I'g where
1<k <gq. Let A:=CT'/I. We consider the affine GL¢-variety

mod (A, f) :={M € mod(CI',f) | M(px) =0 for 1 <k < q}.

Again, the GLg-orbits correspond to the isomorphism classes of A-modules with dimension
vector f.
Given M € mod(A,f) and M’ € mod(A,f") we identify any homomorphism ¢ €
Hom 4 (M, M') with a family of matrices
(p(k)ker, € [] CTEX®
kel
such that

p(t(0)) M (b) = M'(b)(s(D))



70 CHRISTOF GEISS, BERNARD LECLERC, AND JAN SCHROER

for all b € I'y. In other words, the diagram

s(b
) L2 rsmy)

M(b)l lM’(b)
cre) 2 e

commutes for all b € I'y.

14.2. A stratification of AY. Recall that for X € nil(A) we have X € C, if and only if
there is a (unique) filtration

0=XoCX;C---CX, =X

by submodules such that Xj /X 1 = M,?’“ for some ap > 0 for all 1 < k < r, see
Proposition [I0.2l In this case, we have

dim p, (Homy (V;, X)) = > az dimp, (Ay),
k=1

i.e. a:= (ay,...,a,) is the A-dimension vector of Homp (V;, X). Thus, with

pla) = 3" ax dimy (My)
k=1

we may consider
A* :={X € Ay | X has afiltration 0 = Xg C X; C--- C X, = X
with Xk/Xk—l = M]?k, 1<k< r}.
In other words, A* = {X € A q) | X € Casya}- Define

d={X€eAa| X €Cy}.

wa

We get a finite decomposition
Ay = | a0
aeN", u(a)=d

into disjoint subsets.

Lemma 14.1. A® is an irreducible constructible subset of A ).

Proof. We know from Proposition [[0.5] that X € A? if and only if there exists a short
exact sequence

0—>@Vk“f %@Vk"’“ —-+X =0
k=1 k=1
with V- =0 if k= = 0. Now the result follows from [Bol Section 2.1]. O

Remark 14.2. It is not hard to see that for X € nil(A) the following are equivalent

(i) X € Cu;
(ii) Homp(D(Jy), X) =0 = Ext{(D(A/Jy), X).

Here J; is by definition the ideal of A which is as a C-vector space generated by all paths
p in Q with p # e;, and we set Jy, := J;. --- J;,. It follows that AY is an open subset in
Aq and it follows that A? is a locally closed subset of A However, we will not need
this fact.

n(a@)-
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14.3. Review of Bongartz’s bundle construction. Following Bongartz [Bo, Section 4],
we apply the above definitions and conventions in order to relate the varieties A* and
mod(Bj, f). Assume that

f= Z akdi_mBi(Ak).
k=1
Recall that this implies dim Homa (Vy, X) = f(k) for all X € A?. It follows, that

{(X,¢) | X € A* and ¢ € Homy (Vj, X)}
is a (usually non-trivial) algebraic vector bundle of rank f(k) over A?. Thus, setting
f):={(i,j) eEN] |1 <i<rand1<j<f(i)}
we consider
H* == {(X, (¢ yerry) | X € A* and
(gog ),...,gpgz))) is a basis of Homp(Vy, X), 1 <k <r}
equipped with a left GLg-action given by

g9-(X, (<P§k))(k,j)el(f)) =(9-X,(go (P§k))(k,j)el(f))7
and with a right GLg-action given by
£(k)
(X, (sﬁgk))( kj)el(f)) Z% hi i (k) (k. j)er(e))-

Here hy j(k) denotes the entry in row ¢ and column j of the matrix hy. Clearly, the map
m: H* — A?
defined by

k
(X, (Cﬁg ))(k,j)el(f)) = X
is a GLg-equivariant GLg-principal bundle.

In order to define a map my: H* — mod(Bj, f) we write B; = CI'/I for an admissible
ideal I, and we identify the vertices I'g = {1,2,...,r} with the summands Vi,...,V, of V;.
Recall that I' = I';. Thus we may think of each arrow b: ¢ — j in I'y as a certain element
b € Homy (V;,V;). With these identifications

(X, (05 ) gyere) = (M(B)ver,
is determined by
(s(b)) Ry b
®; ob= Z gpg( ))Mu,j(b).
u=1

Here M, ;j(b) denotes the entry in row u and column j of the matrix M(b). It is easy
to verify that my is a GLg-invariant GLg-equivariant morphism, if we view mod(Bj, f)
with the right GLg-action induced from the usual left action via the anti-automorphism
h + h~! of GL¢. Moreover, by construction

T (X, (‘P;k))(k,j)el(f)) = Homy (W4, X)

as a Bj-module. Thus, in fact Im(me) = F(A, f), where F (A, f) is the subset of mod(B;, f)
consisting of the A-filtered Bj-modules with dimension vector f. It is shown in [CBS|
Corollary 1.5] that F(A,f) is open in mod(Bj,f). Since m; is a GLg-principal bundle it
follows from Lemma T4 that F(A,f) = ma(r; *(A?)) is also irreducible. In particular,
F(A,f) is an irreducible component of mod(B;, f).
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Finally, for mo(X, ((p‘gk))(k’j)ej(f)) = M we have
dim GLg .X = dim GL4 —dim Endj (X)
dim 7,1 (GLq .X) = dim GLgq —dim End(X) + dim GL¢
dim (GLg .M) = dim GL¢ —dim Endy (X).
The last equation holds, since the functor F;: C,, — F(A) which maps X to Homy (V3, X)

is an equivalence of additive categories. By the same token m, ' (M. GL¢) = m; '(GLq . X).
We conclude dim 7, (M) = dim GL4. Thus we proved the following:

Lemma 14.3. For a € N" and

f =" apdimp, (Ag)
k=1

there exists a variety H® with a GLq-GLg-action together with two surjective morphisms

Ha
N
A® F(A )

such that 71 is a GLq-equivariant GLg-principal bundle, and 7o is a GLg-equivariant and
GLg-invariant morphism. Moreover, dimmy (M) = dim GLq for all M € F(A,f).

Since C,, = Fac(1j), it is easy to see that for g € GLgq and h € H* with g.h = h we have
g=1larLy-

Remark 14.4. It seems plausible that with a dual bundle construction, as in [Bol 4.3],
one can show that 7o is a GLg-principal bundle.

14.4. Parametrization of components.
Lemma 14.5. For a = (a1,...,a,), d = pu(a) and f =37, ap dimp (Ay) we have
dim F(A, f) = dim GL¢ —(d, d)o.

Proof. For any N € F(A,f) we have proj.dimp (N) < 1, thus Ext} (N, N) = 0, which

implies that N is a smooth point [Gel 3.7] of the scheme mod(B;,f). "Recall that u(a) =
> p—q ar dim(My). Now Voigt’s Lemma [Gal, 1.3] and our Lemma[IT.4lallow the calculation

dim F(A, f) = dim GL¢ .N + dim Extp (N, N)
= dim GL¢ —(f, f) 5,

= dim GLg — Zaz<Ak7Ak>Bi + Z akas<Ak,As>Bi

k=1 1<s<k<r

=dim GLe — [ Y ap(Mp, Mp)g + > apas(My, My)q
k=1 1<s<k<r

= dim GLf —<d, d>Q.
For the fourth equality we used Lemma [IT.4] and the fact that
(Ak, Ap)p; = 1 = (M, My)q-
This finishes the proof. O
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Proposition 14.6. The (Zariski-) closure Z* of A* is an irreducible component of A,,(a)-
In particular, Z? is the unique irreducible component of A which contains a dense open
subset which belongs to A?.

w(a)

Proof. We know from Lemma [[4.T]that A® is an irreducible constructible subset of A ;).
Thus, Z# is an irreducible subvariety of A, ). Since A (5) is equi-dimensional, it remains
to show that

dim A* = dim GLq —(d,d)g = dim Aq4.
Recall that d = p(a) and

f= Z akdi_mBi(Ak).
k=1
As before, F(A,f) denotes the irreducible open subset of A-good modules in the affine
GLg-variety mod(Bj, f) of Bi-modules with dimension vector f. By Lemma we know
that
dim F(A,f) = dim GL¢ —(d, d)g.
In Section [[4.3] we constructed a GLgq-GLg-variety H? together with surjective morphisms

Ha
N
A2 F(A,f)

with m a GLg-equivariant GLg-principal bundle, and w9 a GLg-equivariant morphism
with all fibers having the same dimension as GLgq. Our claim about the dimension of A?
follows. O

Let M = M{* & --- & M for some a = (a1,...,a,) € N. We just proved that Z? is
an irreducible component of A, ,). Let us denote the corresponding dual semicanonical
basis vector pza by sps. Thus there is a dense open subset U* C Z? such that s); = §x

for all X € U?.

15. A puaL PBW-BASIS AND A DUAL SEMICANONICAL BASIS FOR A(Cy)

In this section we prove Theorem [3.1 and Theorem We also deduce from these
results the existence of semicanonical bases for the cluster algebras R(Cy,T") and R(Cy, T')
obtained by inverting and specializing coefficients, respectively.

15.1. Proof of Theorem [3.1l. By the definition of the cluster algebra A(C,, T'), its initial
seed is (y, B(T)°) where y = (y1,...,yr). In particular, A(C,,T) is a subalgebra of F :=
C(y1y.--,yr). Since T is rigid, by Theorem and [GLSI1, Theorem 1.1] every monomial
in the o7, belongs to the dual semicanonical basis S*, hence the d7, are algebraically

independent, and (d7,,...,d7.) is a transcendence basis of the subfield G it generates
inside the fraction field of U(n);,. Let : F — G be the field isomorphism defined by

(yr) = 07, where 1 < k < r. Combining Theorems 2.7 and we see that the cluster
variable z of A(Cy,T') obtained from the initial seed (y, B(7)°) through a sequence of seed
mutations in successive directions k1, . .., ks will be mapped by ¢ to dx, where X € C,, is the
indecomposable rigid module obtained by the same sequence of mutations of rigid modules.
It follows that ¢ restricts to an isomorphism from A(C,,, T') to R(Cy,T'). This isomorphism
is completely determined by the images of the elements y;, hence the unicity. The cluster
monomials are mapped to elements g where R is a (not necessarily C,,-maximal or basic)
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rigid module in C,,, hence an element of S*. More precisely, the cluster monomials in
R(Cy,T) are the elements dr, where R runs through the set of all T-reachable modules
(see Section 3.1l for the definition of T-reachable). This finishes the proof of Theorem Bl

15.2. Proof of Theorem Let M = My @ ---® M, be as before. For 1 <k <r we
proved that dim (M) = Fi(k). Set (k) := Bi(k).
We have
(C[5M1, . 75Mr] - R(Cw,Vi) - Span(c(cSX | X € Cw>,
where the first inclusion follows from the observation that each of the A-modules M, for
1 < k < r is the direct summand of a C,-maximal rigid module on the mutation path
from V; to Tj, see Section I3l The second inclusion follows from the observation that

Spanc(dx | X € Cy) is an algebra. This follows from the fact that C, is an additive
category together with Theorem

For each M € add(M;) we constructed a dual semicanonical basis vector sy, see the
explanation at the end of Section I44l If M = M}, is an indecomposable direct summand
of Mj, then sy = 6y, . (For every rigid A-module R € nil(A), the function dr belongs to
the dual semicanonical basis. The modules M}, are rigid by Corollary [0.91)

The following theorem is a slightly more explicit statement of Theorem

Theorem 15.1. Let w be a Weyl group element, and let i = (iy,...,11) be a reduced
expression of w. Then the following hold:

(i) We have
R(Cw,Vl) = C[5M17 ... ,(5]\/[7,] = Span(c(éx ’ X e Cw>;
(ii) The set
{0n | M € add(M;)}
is a C-basis of R(Cy, Vi);
(iii) The subset
S:; = {SM ‘ M e add(Mi)}

of the dual semicanonical basis is a C-basis of R(Cy, Vi), and all cluster monomials
of R(Cyw, V;) belong to S .

The basis {0y | M € add (M)} will be called dual PBW-basis of R(Cy, Vi), and S the
dual semicanonical basis of R(Cy, Vi). The proof of this theorem will be given after a series
of lemmas.

Let

be the root space decomposition of n. We consider n as a subspace of the universal
enveloping algebra U(n). Since we identify U(n) and M, we can think of an element f in
ng as a constructible function f: Ay — C in M.

Lemma 15.2. Let f € ng. Ifd € {B(k) |1 <k <r}, then
f(X) =0 for all X € Cy.
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Proof. Let X € Cy, and let f € ng with f(X) # 0. In particular, f € My, and we have
d=dim(X) € AT. We know that X € Cpy, » for some a = (ay,...,a,). Thus

dim(X) = > aj, dim(My).

k=1
By Lemma 2] Af, = {8(k) | 1 < k < r} is a bracket closed subset of A*. Thus d = (3(s)
for some 1 < s < r. This finishes the proof. O
As before, let i = (i,...,71) be a reduced expression of a Weyl group element w, and

let
P:{pm\meN(‘])}

be an i-compatible PBW-basis of U(n), see Sections and (431

Lemma 15.3. Let py, € P where m = (m;)jes. If mj >0 for some j > r, then
Pm(X) =0 for all X € Cy.
Equivalently, 0x (pm) = 0 for all X € Cy.

Proof. We regard py, as an element of M, hence as a convolution product

(m1)

P = P e py" s pme)
Let us assume that s > r and ms > 0. It follows that py, = p * ps where

1 m m Ms— ms—

Now let X € C,. Then
pm(X) = (p*ps)(X) = Z mXc({U cX | p(U)ps(X/U) = m})
meC

Since C,, is closed under factor modules, we get X/U € C,, for all submodules U of X.
Now Lemma yields ps(X/U) = 0 for all such U. Thus we proved that pm(X) = 0 for
all X € Cy. O

Recall from Section 3] that
P ={(p)™ - (p;)™ | mi >0forall 1 <k <r}
is a subset of the dual PBW-basis P* of U(n)g,. The following lemma is of central impor-

tance:

Lemma 15.4. For 1 < k <r we have p; = dn, (up to rescaling of py).

Proof. For each 1 < k < r there exists some m = (m;);>1 such that py,(My) # 0, since

on,, € M* = U(n)g, is a linear combination of elements in P*. Let s be the natural

number with ms > 1, but m; = 0 for all j > s.

By Lemma [I53] if s > 7, then py(X) = 0 for all modules X € C,, a contradiction.
Thus, we know that s < r. We even know that s < k, since M} is an object of the
subcategory C, of Cy,, where u = s;, - - - 54,5,

If s = k, then for dimension reasons m; = --- = mgp_1 = 0 and my = 1. So we get
Pm = Pk-

Finally, assume s < k. Since py(My) # 0, we know that M}, has a filtration

0=U10CU11C - CUiym =Uz0gCUz1 C---CUzppy, =Uz0C - CUgpp, = My,
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such that p;(U; j/U; j—1) # 0 for all 1 <i < s and 1 < j < m;. But we know that p; lies
in Mg;). In other words, we have dim(U; ;/U; j—1) = B(i). This implies that 3(k), the
dimension vector of My, is a positive integer linear combination of 5(i)’s with ¢ < k. More
precisely,

B(k) =miB(1) + -+ msf(s).
But 3(1),...,5(s) belong to the bracket closed set A}l where v :=s;,_ - - - s;,8;,. Thus (k)
is also in A", which is a contradiction, since s < k.

Summarizing, we proved that pm (M) # 0 if and only if py, = pr. Now we can rescale
our PBW-basis elements pg, and we obtain without loss of generality that px(My) = 1.
Thus we proved that

1 if pm = pr,
5Mk (pm) = pm(Mk) = o . F
0 otherwise.
In other words, dpr, = p;. O
Corollary 15.5. Under the identification U(n);, = M* we have

’Pl* = {5M ’ M e add(Mi)} .

Proof. By definition
Pi={(p)™ - (pp)™ |mp>0forall 1 <k <r}CP"

This implies the result, since p; = dy,, and éx - 6y = dxgy for all nilpotent A-modules X
and Y. 0

Proof of Theorem 5.1 Let X € C,. By Lemma [I5.3] and Corollary I5.5] dx is a linear
combination of dual PBW-basis vectors of the form 0y, with M € add(M;). Hence dx €
Clony s - -+, 00,], and

Span(c<5X ‘ X e Cw> - (C[(le, R 75Mr] - R(Cw,Vl)
Using the known reverse inclusions we get (i) and (ii) of Theorem [I5.1]

Next, let M = M{* & --- @& M be a module in add(M;). Set a := (ay,...,a,). Then
sy = 0x for some module X in Z2. In particular, X is contained in C,. Thus, by what
we proved up to now we get

sy =0x € R(Cw, Vl)
For dimension reasons this implies that
Sy i={sy | M € add(M;)} = S*NR(Cy, Vi)

is a C-basis of R(Cy,V;). By what we proved before, the set of cluster monomials of
R(Cy, V;) are a subset of S . This finishes the proof of Theorem [I5.11 O

By Theorem [I5.1] we know that
Thus Proposition yields the following result:

Proposition 15.6. Under the identification U(n)z, = C[N] the cluster algebra R(Cy, V)

N'(w)

gets identified to the ring of invariants C[N] , which is isomorphic to C[N(w)].

Corollary 15.7. Let i = (iy,...,i1) be a reduced expression of w. For X € C,, the
function ¢x € C[N] is determined by its values on {x;(t) | t = (tr,...,t1) € (C*)"} where
zi(t) i= @i, () - - @iy (t2) @i, (1)
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Proof. Let @,1p € C[NJV' ™). Then ¢ = ¢ if and only if p(z;(t)) = ¥(x;(t)) for all

€ (C*)": Recall that each z € N can be written as © = yy’ for a unique (y,y’) €
N(w) x N'(w). For z € N* we have m,(z) = y. Furthermore, the image of , is dense
in N(w), see Proposition It is well known that the set {z;(¢) | t € (C*)"} contains a
dense open subset of N*. For x = z;(t) we get

p(mu(x)) = @(y) = o(yy') = ().
For the second equality we used that ¢ is N'(w)-invariant. Since ¢ is a regular map,

its values on the whole of N(w) are already determined by its values on m,(zi(t)), t €
(C*)r. O

15.3. Proof of Theorem 3.3l By Proposition 8.3l we know that C[N"] is the localization
of the ring C[N (w)] with respect to the minors D, ,,-1(s,). By Proposition [I5.6] C[N (w)]
is equal to the cluster algebra R(Cy,,V;). By Proposition 0] the minors D w—1(y)
coincide with the functions ¢x where X runs through the set of indecomposable C,,-
projective-injectives. In other words, the D, ,~1(,) coincide with the generators of the

coefficient ring of R(Cy, V;). Hence C[N"] is equal to the cluster algebra R(Cyp, V3).

15.4. Example. Let us discuss an example of base change between P;" and S;,. Let ) be
a quiver with underlying graph 1 — 2 —3 and let i := (ig,...,41) := (2,3,1,2,3,1),
which is a reduced expression of the Weyl group element w := s95351525351. As before,
let Vi=Vi®---@® Vg and Mj = My @ --- ® Mg, where as always My = M|k, k]. The
A-modules V}, are the following:
Vi=M =1 Vo=DMy=3 Va=Mz=1,3
V4:M[4,1]:123 Vs=M[5,2] = "2, V6:M[6,3]:1§3.

The initial cluster of our cluster algebra R(Cy, Vi) looks as follows:

3

/\/ //\/
\/\

We have

My=,3 My=1, Mg = 2.
There are only three more indecomposable A-modules, namely

Wh=2, Wy =2 Ws=,2,.
Observe that Q(Vj,) = Wy, for 1 <k < 3.

The functions 6y, can be computed easily. Indeed, for all j and &, the variety Fj 5, is
either empty or a single point, so x.(Fj a, ) is either 0 or 1. Using Theorem [I3.1] we get
5V4 — 5M1 : 5M4 - 5M37
vy = Ony * S5 — O,
OV = O - Ontg — Onay ~ O -
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Some further exchange relations are
Ovy 0wy = vy - Oy + Ov; 0y, 0,
0y 0w, = Oy + Oy,
v, 0w, = Oy + v
The cluster variables in R(C,, ;) are
{6m,, 0v,, 0w, |1 <k <6,4<s<6and1l<t<3}.

(Here we consider the three coefficients dy;, with 4 < k < 6 also as cluster variables.) Using
the above formulas we get

5W3 = 6M15M26M6 - 6M15M4 - 5M25M5 + 6M37

5W2 — 5M15M6 - 5M57

Oow, = 00 — Oy

So we wrote all cluster variables as linear combinations of dual PBW-basis vectors.

15.5. Generalities on bases of algebras. A A-module M = &} _, M,;* in add(M;) has
gaps if for each 1 < j < n there is some 1 < k < r with i, = j and ax = 0. In other words,
M has gaps if and only if M has no direct summand of the form

Mi(IiJ) = M, @---@MkJr @ M,

where i, = j.
Lemma 15.8. Let M = M' @& M" be in add(M;) such that
M" =~ M;(I; ;)

for some 1 < j <n. Then we have sp; = Sy - Sy

Proof. We have sy = 0p, ;, and I is Cy-projective-injective. The claim follows now
easily from [GLS1, Theorem 1.1] in combination with the explanations in [GLS1, Section
2.6). O

Let B := {b; | i > 1} be a K-basis of a commutative K-algebra A. For some fixed n > 1
let C := {b1,...,by}. A basis vector b € B is called C-free if b ¢ b;B for some b; € C.
Assume that the following hold:

(i) For all b; € C we have ;B C B;

(ii) If 7' - b2rb = bii .. bEn Y for some zi, 7, > 0 and some C-free elements b,1’ € B,
then b =’ and z; = 2/ for all 7.

It follows that B = {b7" ---bZb | b € B is C-free, z; > 0}. Define
A=A/ —1,...,b, — 1).

For a € A, let a be the residue class of @ in A. Furthermore, let Ay, ;. be the localization
of A at by,...,b,. The following lemma is easy to show:

Lemma 15.9. With the notation above, the following hold:

(1) The set B :={b|b is C-free} is a K-basis of A;
(2) The set By, . p, =1{b7"---bib | b€ B is C-free,z; € Z} is a K-basis of Ap,, . b,



KAC-MOODY GROUPS AND CLUSTER ALGEBRAS 79

15.6. Inverting and specializing coefficients. One can rewrite the basis S} appearing
in Theorem as

So={(65,.)* -+ (01, )" sm | M € add(M;), M has gaps, 2z > 0} .

The next two theorems deal with the situation of invertible coefficients and specialized
coefficients.

Theorem 15.10 (Invertible coefficients). The set
Sk = {0 ) (61,,,)""sn | M € add(M;), M has gaps,z; € L}

1s a C-basis of ﬁ(Cw,Vi), and g; contains all cluster monomials of the cluster algebra

R(Cw, V3).

Next, we specialize all n coefficients dy, ; of the cluster algebra R(Cy, Vi) to 1. We obtain
a new cluster algebra R(C,, V;) which does not have any coefficients. The residue class of
dx € R(Cy,V;) is denoted by dy. The residue class of a dual semicanonical basis vector
sy is denoted by s,

Theorem 15.11 (No coefficients). The set
Sy = {sm | M € add(M;), M has gaps}

is a C-basis of R(Cy, Vi), and S;, contains all cluster monomials of the cluster algebra
R(Cuw, Vi).

Proof of Theorem [I510 and Theorem [[5. 11 Let B := {b; | i > 1} := S be the dual
semicanonical basis of R(Cy, V;). We can label the b; such that

{bl,. .. ,bn} = {5Ii,17’ .. 75[i,n} .

Using Lemma [I5.8] it is easy to check that the elements b; satisfy the properties (i) and
(ii) mentioned in Section [5.51 Then apply Lemma 5.9 O

16. ACYCLIC CLUSTER ALGEBRAS

In this section we will study the case of acyclic cluster algebras, which is of special
interest. As before, let ) be an acyclic quiver with vertices 1,...,n. Without loss of
generality we assume that ¢ < j whenever there is an arrow a: ¢ — j in (). We define two
Weyl group elements ¢ := s, - - - s951 and w := ¢2. For simplicity we assume that Q is not
a linearly oriented quiver of type A,. This implies that i :== (n,...,2,1,n,...,2,1) is a
reduced expression of w. Define V; =V, ®--- ® Vo, and M; = M1 @ - - - & Mo, as before.

It follows that for 1 < j < n we have M; = I; and M, 1; = 79(I;). Here I; denotes
the indecomposable injective K Q-module with socle S;, and 7¢ is the Auslander-Reiten
translation in mod(KQ).

Observe that R(Cy, V) is an acyclic cluster algebra associated to @ having n non-
invertible coefficients, whereas R(C,,V;) is the acyclic cluster algebra associated to @
having no coefficients.

Theorem 16.1. With w and i as above, the following hold:

(i) R(Cw, Vi) = (C[5M17 e ’5M2n] = Span(C<5X | X € Cu);
(ii) {op | M € add(M;)} and {sy | M € add(M;)} are both a C-basis of R(Cw, Vi);
(iii) {sp; | M € add(M;), M has gaps} is a C-basis of R(Cw, Vi);
(iv) {0 | M € add(M;), M has gaps} is a C-basis of R(Cy, Vi);
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(v) There is an isomorphism of cluster algebras R(Cy, Vi) = Ag, where Ag is the
coefficient-free acyclic cluster algebra associated to Q).

Proof. Parts (i), (ii) and (iii) were already proved before for arbitrary reduced expressions
of arbitrary Weyl group elements. Part (v) is clear from our description of the initial seed
(labeled by V;) for the cluster algebra R(Cy, V;). It remains to prove (iv): We have

R(Cw, Vi) = @Rd
deN™

where R is the C-vector space with basis {s); | M € add(M;) Nrep(Q,d)}. We know that
{0p | M € add(M;) Nrep(Q, d)} is a basis of Ry as well. After specializing the coefficients

or;, 1 <j<mntol, we get
Cw;‘i 6}} 7zd

deNn
where R, is the C-vector space with basis
{sp; | M € add(M;) Nrep(Q,d), M has gaps} .
Now one can use the formula
5Ii,i = 6Mn+i '5Mz‘ - H 5Mn+j ’ H 5Mk
j—>i i—k

(where the products are taken over all arrows of @ which start and end in i, respectively)
and an induction on the number of vertices of @ to show that for every M € add(M;)
which has gaps, the vector s;, is a linear combination of elements of the form J,;, where

M’ in add(M;) has gaps and |dim(M’)| < |dim(M)|. For dimension reasons we get that the
vectors 0, with M’ having gaps form a linearly independent set. This implies (iv). O

It is interesting to compare Theorem [I6.],(iv) to Berenstein, Fomin and Zelevinsky’s
construction of a basis for the acyclic cluster algebra Ag. Let y := (yi1,...,yn) be the
initial cluster whose exchange matrix B is encoded by @, as in Section Let y7,...,y;
be the n cluster variables obtained from y by one mutation in each of the n possible
directions. Thus the n sets {y1,...,yn} \ {yx} U {y;} form the neighboring clusters of our
initial cluster y. Using a simple Grébner basis argument, the following is shown in [BFZ]:

Theorem 16.2 (Berenstein, Fomin, Zelevinsky). The monomials
{7 )™ -y (yn)™ | pisgi 2 0, pigi = 0}
form a C-basis of the acyclic cluster algebra Ag.

Starting with the initial seed (y, Bg), which corresponds to I'; = I'y;, we perform the
sequence of mutations py, - - - 1. In each step we obtain a new cluster variable which we
denote by y,t. Note that ler = yj, but already yg and y; may be different. Observe that
P - - propr1 (Bg) = Bg. We get that

((y],---.y0), Bo)

is a seed of the cluster algebra Ag where

{y177yn}m{y177yn} .

Our version of Theorem [16.2] looks then as follows:
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Theorem 16.3. The monomials
{2 )™ | i 2 0, pigi = 0f
form a C-basis of the acyclic cluster algebra Ag.

Note that the initial cluster (y1,...,y,) comes from V; and the cluster (yI, . ,yil) comes

from Tj.

17. COORDINATE RINGS OF UNIPOTENT RADICALS

In this section, we assume that @ is of finite Dynkin type A,D,[E. We first recall some
standard notation (we refer the reader to [GLS6] for more details). The group G is now a
simple complex algebraic group of the same type as Q. Let J be a subset of the set I of
vertices of (), and let K be the complementary subset. To K one can attach a standard
parabolic subgroup Bx containing the Borel subgroup B = HN. We denote by Ng the
unipotent radical of Bg. This is a subgroup of N. Let Wi be the subgroup of the Weyl
group W generated by the reflections s, with k£ € K. This is a finite Coxeter group and
we denote its longest element by wé{ . The longest element of W is denoted by wy.

In finite type, the preprojective algebra A is finite-dimensional and selfinjective. In
agreement with [GLS6], we shall denote by P; the indecomposable projective A-module
with top S; and by @Q; the indecomposable injective module with socle S;. We write

Q =PQ;, and P,=EHP;
jeJ jeJ
In [GLS6] we have shown that C[Nk] is naturally isomorphic to the subalgebra

Rk := Spanc(px | X € Sub(Qy))

of C[N]. As before, Sub(Q ) is the full subcategory of mod(A) whose objects are submod-
ules of direct sums of finitely many copies of @Qy. This allowed us to introduce a cluster
algebra A; C Rk, whose cluster monomials are of the form ¢x with X a rigid module in
Sub(Q ). We conjectured that in fact Ay = Rk, see |GLS6, Conjecture 9.6].

We are going to prove that this conjecture follows from the results of this paper. Let

w := wowX, and let i be a reduced expression for w.

Lemma 17.1. We have Nx = N'(wk) = N(wow{f).

Proof. We know that N’ (w(lf ) is the subgroup of N generated by the one-parameter sub-
groups N(a) with a > 0 and w{f (a) > 0. These are exactly the one-parameter subgroups
of N which do not belong to the Levi subgroup of By, hence the first equality follows.
Now, since N = wgN_wyp, we have

N'(w§) = Nn (wf Nuf) = N0 (wifwoN_wowl’) = N(wowi).
U

As before, let Fac(P;) be the subcategory of mod(A) whose objects are factor modules
of direct sums of finitely many copies of Pj.

Lemma 17.2. We have C,,,x = Fac(Py).
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Proof. By Proposition[@.1] we know that the indecomposable C,-projective-injective object
I; ; with socle S; satisfies

PL,; = Dwi,wé(wo(wiy (Z S I)

By [GLS6, §6.2], it follows that I;; = 5w(§<in where €wé< is the functor defined in |GLS6),

§5.2]. It readily follows that I;; is the indecomposable projective-injective object of
Fac(Py) with simple socle S;. Hence C,, owis and Fac(Pjy) have the same projective-injective
generator. O

Let S denote the selt-duality of mod(A) induced by the involution a +— a* mapping an
arrow a of () to its opposite arrow a*, see [GLS2], §1.7]. This restricts to an anti-equivalence
of categories Fac(Py) — Sub(Q), that we shall again denote by S.

Lemma 17.3. For every X € nil(A) and every n € N we have
px(n™h) = (1) Xpg0x)(n).

Proof. We know that N is generated by the one-parameter subgroups z;(t) attached to
the simple positive roots. By Proposition we have

ox (@i (t1) - - w3, (k) = > xelFiax)

a=(a1,...,a)ENF

a1 ag
ety

a1!~-ak!’

Now, if n = x;, (t1) -~ @4, (t), we have n= = @y, (—tx) - - x;, (—t1) and the result follows
from the fact that Fa x = ]:ifollo)p’ S(x)? where iy, and a,, denote the sequences obtained by
reading i and a from right to left. U

We can now prove the following:

Theorem 17.4. Conjecture 9.6 of |[GLS6| holds.

Proof. As before, let w := wowé( , and let i be a reduced expression of w. The cluster
algebra R(Cy) = R(Fac(Py)) is isomorphic to A via the map px + ¢g(x). This comes
from the fact that S: Fac(P;) — Sub(Q;) is an anti-equivalence which maps the C,-
maximal rigid module V; used to define the initial seed of R(C,) to the maximal rigid
module Uj of [GLS6, §9.2] used to define the initial seed of A ;. (Here we assume that j is
the reduced expression of w{ wq obtained by reading the reduced expression i of wowg from
right to left.) In particular the cluster variables ¢z, which, by Theorem [I5.1] generate
R(Fac(Py)) = C[N (wow{)] are mapped to cluster variables ¢g(ns,) of Aj. They also form
a system of generators of the polynomial algebra C[N (wow )] = C[Nk] by Lemma [I7.3]
because the map n — n~! is a biregular automorphism of Nx. Hence A; = C[Nkg]. O

Remark 17.5. The previous discussion shows that we obtain two different cluster algebra
structures on C[Ng], coming from the two different subcategories Fac(Py) and Sub(Q ).
When using Fac(P;) = Cwowé\r, we regard C[Nk]| as the subring of N’ (wow{)( )-invariant
functions of C[N] for the action of N'(wow{S) on N by right translations, see Section Bl
This allows us to relate the first cluster structure to the cluster structure of the unipotent
cell C[N™%3' ], see Proposition BBl When using Sub(Q.), we regard C[Ng] as the subring
of N'(wow{)-invariant functions of C[N] for the action of N'(wow{) = N(w{) on N by
left translations. These functions can then be “lifted” to B-invariant functions on G for
the action of By on G by left translations. This allows us to “lift” the second cluster

structure to a cluster structure on C[B;\G], see [GLS6), §10].
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18. REMARKS AND OPEN PROBLEMS

18.1. Calculation of M;j(R). Let i be a reduced expression of a Weyl group element w,
and let R be a Vj-reachable A-module, see Section Bl Based on Theorem B.1] we can
combine Corollary [I0.7] and Proposition [12.4] to determine algorithmically M;(R). (For
the definition of M;(R) see Section [I0l) Recall that the Vj-reachable modules R are in 1-1
correspondence with the cluster monomials g in R(C,,).

18.2. Calculation of Euler characteristics. Let i be a reduced expression of a Weyl
group element w, and let R be a Vj-reachable A-module, and let j = (j1,...,Jp). By
Proposition the Euler characteristic x.(Fj r) is equal to the coefficient of ¢; ---¢, in
or(xj (t1) - -~ ;5,(tp)). Using mutations, we can express algorithmically ¢ as a Laurent
polynomial in the functions ¢y, ..., ¢y,. Now we can use the calculations from Section
to compute all the Euler characteristics x.(Fj r)-

18.3. Open orbit conjecture. It is known that the (specialized) dual canonical basis
B* and the dual semicanonical basis S* of M* = U(n);, do not coincide, see [GLSI]
Section 1.5]. But one might at least hope that both bases have some interesting elements
in common:

Conjecture 18.1 (Open Orbit Conjecture). Let Z be an irreducible component of Ag4,
and let by and pz be the associated dual canonical and dual semicanonical basis vectors of
M*. If Z contains an open GLg-orbit, then by = pz.

We know that each cluster monomial of the cluster algebra A(C,,) is of the form pyz,
where Z contains an open GLg-orbit. So if the conjecture is true, then all cluster monomials
belong to the dual canonical basis.

18.4. Example. Finally, we would like to ask the following question. Is it possible to
realize every element of the dual canonical basis of M* as a §-function? We know several
examples of elements b of B* which do not belong to §*. In all these examples, b is however
equal to 0x for a non-generic A-module X. (We say that X € nil(A) is genericif dx € S*.)

Let us look at an example. Let Q be the quiver 1 ==—2 and let A be the associated
preprojective algebra. For A € C* we define representations M (A, 1) and M(\,2) of @ as
follows:
(1) (61)

C and M(\2):= 2
) (53)

Let ¢: rep(Q, (2,2)) — A(a,2) be the obvious canonical embedding. Clearly, the image of ¢

is an irreducible component of Ay 9y, which we denote by Zg. It is not difficult to check
that the set

M(\1) = C

{MA\1) @ M(p,1) | A, peC}
is a dense subset of Zg. It follows that

OMOADBM (1) = PZg

is an element of the dual semicanonical basis S*. It is easy to check that

OM(x2) 7 OMAL)®M (u1)-
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Indeed, the variety Fj x of composition series of type j = (1,2, 1,2) has Euler characteristic
2 for X = M(\, 1) & M(p,1) and Euler characteristic 1 for X = M(A,2). Furthermore,
one can show that

Onm(r2) = bz,
belongs to the dual canonical basis B* of M*.

Note that the functions dp7(x 1)@nrr(u,1) and dpz(x,2) do not belong to any of the subalge-
bras R(Cy), since M (A,1) and M()\,2) are regular representations of the quiver @ for all
A

Acknowledgements. We are grateful to @Qyvind Solberg for answering our questions
on relative homology theory. We thank Shrawan Kumar for his kind help concerning
Kac-Moody groups. It is a pleasure to thank the Mathematisches Forschungsinstitut
Oberwolfach (MFO) for two weeks of hospitality in July/August 2006, where this work
was started. Furthermore, the first and second authors like to thank the Max-Planck
Institute for Mathematics in Bonn for a research stay in September - December 2006 and
October 2006, respectively. We also thank the Sonderforschungsbereich/Transregio SFB
45 for financial support. The three authors are grateful to the Mathematical Sciences
Research Institute in Berkeley (MSRI) for an invitation in Spring 2008 during which
substantial parts of this work were written. The first author was partially supported
by PAPIIT grant IN103507-2 and CONACYT grant 81948. All three authors thank the
Hausdorff Center for Mathematics in Bonn for financial support.

REFERENCES

[Ab] E. Abe, Hopf algebras. Cambridge Tracts in Mathematics 74. Cambridge University Press, 1980.

[ASS] I. Assem, D. Simson, A. Skowroriski, Elements of the representation theory of associative alge-
bras. Vol. 1. Techniques of representation theory. London Mathematical Society Student Texts, 65.
Cambridge University Press, Cambridge, 2006. x+458 pp.

[Au] M. Auslander, Representation theory of artin algebras. I. Comm. Alg. 1 (1974), 177-268.

[APR] M. Auslander, M. Platzeck, 1. Reiten, Coxeter functors without diagrams. Trans. Amer. Math. Soc.
250 (1979), 1-46.

[ARS] M. Auslander, I. Reiten, S. Smalg, Representation theory of Artin algebras. Corrected reprint of
the 1995 original. Cambridge Studies in Advanced Mathematics, 36. Cambridge University Press,
Cambridge, 1997. xiv+425 pp.

[AS1] M. Auslander, @. Solberg, Relative homology and representation theory. I. Relative homology and
homologically finite subcategories. Comm. Algebra 21 (1993), no. 9, 2995-3031.

[AS2] M. Auslander, @. Solberg, Relative homology and representation theory. II. Relative cotilting theory.
Comm. Algebra 21 (1993), no. 9, 3033-3079.

[BZ] A. Berenstein, A. Zelevinsky, Total positivity in Schubert varieties. Comment. Math. Helv. 72 (1997),
128-166.

[BFZ] A. Berenstein, S. Fomin, A. Zelevinsky, Cluster algebras III: Upper bounds and double Bruhat
cells. Duke Math. J. 126 (2005), no. 1, 1-52.

[Bo] K. Bongartz, Minimal singularities for representations of Dynkin quivers. Comment. Math. Helv. 69
(1994), no.4, 575-611.

[BMRRT] A. Buan, R. Marsh, M. Reineke, I. Reiten, G. Todorov, Tilting theory and cluster combina-
torics. Adv. Math. 204 (2006), no. 2, 572-618.

[BM] A. Buan, R. Marsh, Cluster-tilting theory. In: Trends in Representation Theory of Algebras and
Related Topics, Contemp. Math. 406 (2006), 1-30.

[BIRS] A. Buan, O. Iyama, I. Reiten, J. Scott, Cluster structures for 2-Calabi-Yau categories and unipo-
tent groups. Compositio Math. 145 (2009), 1035-1079.

[CK1] P. Caldero, B. Keller, From triangulated categories to cluster algebras. Invent. Math. 172 (2008),
169-211.

[CK2] P. Caldero, B. Keller, From triangulated categories to cluster algebras II. Ann. Sci. Ecole
Norm. Sup. (4) 39 (2006), no. 6, 983-1009.



KAC-MOODY GROUPS AND CLUSTER ALGEBRAS 85

[CPS] E. Cline, B. Parshall, L. Scott, Finite-dimensional algebras and highest weight categories. J. Reine
Angew. Math. 391 (1988), 85-99.

[CB] W. Crawley-Boevey, On the exceptional fibres of Kleinian singularities. Amer. J. Math. 122 (2000),
1027-1037.

[CBS] W. Crawley-Boevey, J. Schréer, Irreducible components of varieties of modules. J. Reine Angew.
Math. 553 (2002), 201-220.

[DWZ1] H. Derksen, J. Weyman, A. Zelevinsky, Quivers with potentials and their representations I:
Mutations. Selecta Math. (N.S.) 14 (2008), no. 1, 59-119.

[DWZ2] H. Derksen, J. Weyman, A. Zelevinsky, Quivers with potentials and their representations II:
Applications to cluster algebras. J. Amer. Math. Soc. 23 (2010), no. 3, 749-790.

[DFK] P. Di Francesco, R. Kedem, Q-systems as cluster algebras II: Cartan matrix of finite type and the
polynomial property. Lett. Math. Phys. 89 (2009), no. 3, 183-216.

[FZ1] S. Fomin, A. Zelevinsky, Double Bruhat cells and total positivity. J. Amer. Math. Soc. 12 (1999),

no. 2, 335-380.

[FZ2] S. Fomin, A. Zelevinsky, Cluster algebras. I. Foundations. J. Amer. Math. Soc. 15 (2002), no. 2,
497-529.

[FZ3] S. Fomin, A. Zelevinsky, Cluster algebras. II. Finite type classification. Invent. Math. 154 (2003),
no. 1, 63-121.

[FZ4] S. Fomin, A. Zelevinsky, Cluster algebras: notes for the CDM-03 conference. Current developments
in mathematics, 2003, 1-34, Int. Press, Somerville, MA, 2003.

[FZ5] S. Fomin, A. Zelevinsky, Cluster algebras. IV. Coefficients. Compositio Math. 143 (2007), 112-164.

[FK] C. Fu, B. Keller, On cluster algebras with coefficients and 2-Calabi-Yau categories. Trans. Amer.
Math. Soc. 362 (2010), 859-895.

[Ga] P. Gabriel, Finite representation type is open. Representations of algebras, (Proc. Internat. Conf.,
Carleton Univ., Ottawa, Ont., 1974, Springer-Verlag, Berlin, 1975, Lecture Notes in Math., 488,
pp- 132-155.

[GR] P. Gabriel, A.V. Roiter, Representations of finite-dimensional algebras. Translated from the Russian.
With a chapter by B. Keller. Reprint of the 1992 English translation. Springer-Verlag, Berlin, 1997.
iv+177 pp.

[Ge] C. Geiff, Geometric methods in representation theory of finite-dimensional algebras. Representation
theory of algebras and related topics (Mexico City, 1994), CMS Conf. Proc., vol. 19, Amer. Math.
Soc., Providence, RI, 1996, pp. 53—63.

[GLS1] C. Geif, B. Leclerc, J. Schréer, Semicanonical bases and preprojective algebras. Ann. Sci. Ecole
Norm. Sup. (4) 38 (2005), no. 2, 193-253.

[GLS2] C. Geif, B. Leclerc, J. Schréer, Auslander algebras and initial seeds for cluster algebras. J. London
Math. Soc. (2) 75 (2007), 718-740.

[GLS3] C. Geif, B. Leclerc, J. Schrder, Verma modules and preprojective algebras. Nagoya Math. J. 182
(2006), 241-258.

[GLS4] C. Geifs, B. Leclerc, J. Schréer, Semicanonical bases and preprojective algebras II: A multiplication
formula. Compositio Math. 143 (2007), 1313-1334.

[GLS5] C. Geifs, B. Leclerc, J. Schrioer, Rigid modules over preprojective algebras. Invent. Math. 165
(2006), no. 3, 589-632.

[GLS6] C. Geif, B. Leclerc, J. Schréer, Partial flag varieties and preprojective algebras. Ann. Inst. Fourier
(Grenoble) 58 (2008), 825-876.

[GLST] C. Geifs, B. Leclerc, J. Schréer, Cluster algebra structures and semicanonical bases for unipotent
groups. Unpublished (2007), 121 pp. arXiv:math/0703039

[Hal] D. Happel, Triangulated categories in the representation theory of finite-dimensional algebras. Lon-
don Mathematical Society Lecture Note Series, 119. Cambridge University Press, Cambridge, 1988.
x+208 pp.

[Ha2] D. Happel, Partial tilting modules and recollement. Proceedings of the International Conference
on Algebra, Part 2 (Novosibirsk, 1989), 345-361, Contemp. Math., 131, Part 2, Amer. Math. Soc.,
Providence, RI, 1992.

[Iy] O. Iyama, Auslander correspondence. Adv. Math. 210 (2007), no. 1, 51-82.

[IR] O. Iyama, I. Reiten, 2-Auslander algebras associated with reduced words in Coxeter groups. Preprint
(2010), 14pp. arXiv:1002.3247.

[Jo] A. Joseph, Quantum groups and their primitive ideals. Ergebnisse der Mathematik und ihrer Gren-
zgebiete (3), 29. Springer-Verlag, Berlin, 1995. x+383pp.

[Ka] V. Kac, Infinite-dimensional Lie algebras. Third edition. Cambridge University Press, Cambridge,
1990. xxii+400pp.


http://arxiv.org/abs/math/0703039
http://arxiv.org/abs/1002.3247

86 CHRISTOF GEISS, BERNARD LECLERC, AND JAN SCHROER

[KP] V. Kac, D. Peterson, Regular functions on certain infinite-dimensional groups. Arithmetic and ge-
ometry, Vol II, 141-166, Progr. Math., 36, Birkhduser Boston, Boston, MA, 1983.

[KS] M. Kashiwara, Y. Saito, Geometric construction of crystal bases. Duke Math. J. 89 (1997), 9-36.

[Ke] B. Keller, On triangulated orbit categories. Doc. Math. 10 (2005), 551-581 (electronic).

[KR] B. Keller, I. Reiten, Cluster tilted algebras are Gorenstein and stably Calabi-Yau. Adv. Math. 211
(2007), 123-151.

[Ku] S. Kumar, Kac-Moody groups, their flag varieties and representation theory. Progress in Mathemat-
ics, 204. Birkh&user Boston, Inc., Boston, MA, 2002.

[Le] B. Leclerc, Dual canonical bases, quantum shuffles and g-characters. Math. Z. 246 (2004), 691-732.

[Lul] G. Lusztig, Quivers, perverse sheaves, and quantized enveloping algebras. J. Amer. Math. Soc. 4
(1991), no. 2, 365-421.

[Lu2] G. Lusztig, Semicanonical bases arising from enveloping algebras. Adv. Math. 151 (2000), no. 2,
129-139.

[Pa] Y. Palu, Cluster characters for 2-Calabi-Yau triangulated categories. Ann. Inst. Fourier (Grenoble)
58 (2008), no. 6, 22212248.

[Re] C. Reutenauer, Free Lie algebras. London Mathematical Society Monographs. New Series, 7. Oxford
Science Publications. The Clarendon Press, Oxford University Press, New York, 1993. xviii4+269 pp.

[Rm] N. Richmond, A stratification for varieties of modules. Bull. London Math. Soc. 33 (2001), no. 5,
565-577.

[Ril] C.M. Ringel, Tame algebras and integral quadratic forms. Lecture Notes in Mathematics, 1099.
Springer-Verlag, Berlin, 1984. xiii+376 pp.

[Ri2] C.M. Ringel, The category of modules with good filtrations over a quasi-hereditary algebra has
almost split sequences. Math. Z. 208 (1991), no. 2, 209-223.

[Ri3] C.M. Ringel, The category of good modules over a quasi-hereditary algebra. Proceedings of the Sixth
International Conference on Representations of Algebras (Ottawa, ON, 1992), 17 pp., Carleton-
Ottawa Math. Lecture Note Ser., 14, Carleton Univ., Ottawa, ON, 1992.

[Ri4] C.M. Ringel, PBW-bases of quantum groups. J. Reine Angew. Math. 470 (1996), 51-88.

[Ri5] C.M. Ringel, Iyama’s finiteness theorem via strongly quasi-hereditary algebras. Preprint (2009), 5 pp.
arXiv:0912.5001.

CHRISTOF GEISS
INSTITUTO DE MATEMATICAS
UNIVERSIDAD NACIONAL AUTONOMA DE MEXICO
C1UDAD UNIVERSITARIA
04510 Mgxico D.F.
MEXICO

FE-mail address: christof@math.unam.mx

BERNARD LECLERC
LMNO, UNIVERSITE DE CAEN
CNRS UMR 6139
F-14032 CAEN CEDEX
FRANCE

FE-mail address: bernard.leclerc@unicaen.fr

JAN SCHROER
MATHEMATISCHES INSTITUT
UNIVERSITAT BONN
ENDENICHER ALLEE 60
D-53115 BoNN
GERMANY

FE-mail address: schroer@math.uni-bonn.de


http://arxiv.org/abs/0912.5001

	1. Introduction
	2. Definitions and known results
	3. Main results
	4. Kac-Moody Lie algebras
	5. Unipotent groups
	6. Evaluation functions and generating functions of Euler characteristics
	7. Generalized minors
	8. The coordinate rings C[N(w)] and C[Nw]
	9. The modules Vk and Mk
	10. The add(Mi)-stratification of Cw
	11. Quasi-hereditary algebras associated to reduced expressions
	12. Mutations of clusters via dimension vectors
	13. A sequence of mutations from Vi to Ti
	14. Irreducible components associated to Cw
	15. A dual PBW-basis and a dual semicanonical basis for A(Cw)
	16. Acyclic cluster algebras
	17. Coordinate rings of unipotent radicals
	18. Remarks and open problems
	References

