
ar
X

iv
:1

00
1.

35
45

v3
  [

m
at

h.
R

T
] 

 6
 J

ul
 2

01
1

KAC-MOODY GROUPS AND CLUSTER ALGEBRAS

CHRISTOF GEISS, BERNARD LECLERC, AND JAN SCHRÖER

Abstract. Let Q be a finite quiver without oriented cycles, let Λ be the associated
preprojective algebra, let g be the associated Kac-Moody Lie algebra with Weyl group
W , and let n be the positive part of g. For each Weyl group element w, a subcategory Cw

of mod(Λ) was introduced by Buan, Iyama, Reiten and Scott. It is known that Cw is a
Frobenius category and that its stable category Cw is a Calabi-Yau category of dimension
two. We show that Cw yields a cluster algebra structure on the coordinate ring C[N(w)]
of the unipotent group N(w) := N ∩ (w−1N−w). Here N is the pro-unipotent pro-group
with Lie algebra the completion n̂ of n. One can identify C[N(w)] with a subalgebra of
U(n)∗gr, the graded dual of the universal enveloping algebra U(n) of n. Let S

∗ be the
dual of Lusztig’s semicanonical basis S of U(n). We show that all cluster monomials of
C[N(w)] belong to S

∗, and that S∗
∩C[N(w)] is a C-basis of C[N(w)]. Moreover, we show

that the cluster algebra obtained from C[N(w)] by formally inverting the generators of the
coefficient ring is isomorphic to the algebra C[Nw ] of regular functions on the unipotent
cell Nw of the Kac-Moody group with Lie algebra g. We obtain a corresponding dual
semicanonical basis of C[Nw]. As one application we obtain a basis for each acyclic
cluster algebra, which contains all cluster monomials in a natural way.
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1. Introduction

1.1. This is the continuation of an extensive project to obtain a better understanding of
the relations between the following topics:

(i) Representation theory of quivers,
(ii) Representation theory of preprojective algebras,
(iii) Lusztig’s (semi)canonical basis of universal enveloping algebras,
(iv) Fomin and Zelevinsky’s theory of cluster algebras,
(v) Frobenius categories and 2-Calabi-Yau categories,
(vi) Cluster algebra structures on coordinate algebras of unipotent groups, Bruhat cells

and flag varieties.

The topics (i) and (iii) are closely related. The numerous connections have been studied by
many authors. Let us just mention Lusztig’s work on canonical bases of quantum groups,
and Ringel’s Hall algebra approach to quantum groups. An important link between (ii)
and (iii), due to Lusztig [Lu1, Lu2] and Kashiwara and Saito [KS] is that the elements of
the (semi)canonical basis are naturally parametrized by the irreducible components of the
varieties of nilpotent representations of a preprojective algebra.

Cluster algebras were invented by Fomin and Zelevinsky [BFZ, FZ2, FZ3], with the
aim of providing a new algebraic and combinatorial setting for canonical bases and total
positivity. One important breakthrough was the insight that the class of acyclic cluster
algebras with a skew-symmetric exchange matrix can be categorified using the so-called
cluster categories. Cluster categories were introduced by Buan, Marsh, Reineke, Reiten
and Todorov [BMRRT], see also [Ke]. In a series of papers by some of these authors and
also by Caldero and Keller [CK1, CK2], it was established that cluster categories have
all necessary properties to provide the mentioned categorification. We refer to the nice
overview article [BM] for more details on the development of this beautiful theory which
established a strong connection between the topics (i), (iv) and (v). More recently, a
different and more general type of categorification using representations of quivers with
potentials was developed by Derksen, Weyman and Zelevinsky [DWZ1, DWZ2]. This
provides another strong link between topics (i) and (iv).

In [GLS5] we showed that the representation theory of preprojective algebras Λ of
Dynkin type (i.e. type A, D or E) is also closely related to cluster algebras. We proved
that mod(Λ) can be regarded as a categorification of a natural (upper) cluster structure
on the polynomial algebra C[N ]. Here N is a maximal unipotent subgroup of a complex
Lie group of the same type as Λ. Let n be its Lie algebra, and let U(n) be the universal
enveloping algebra of n. The graded dual U(n)∗gr can be identified with the coordinate
algebra C[N ]. By means of our categorification, we were able to prove that all the cluster
monomials of C[N ] belong to the dual of Lusztig’s semicanonical basis of U(n). Note that
the cluster algebra C[N ] is in general not acyclic.

The aim of this article is a vast generalization of these results to the more general setting
of symmetric Kac-Moody groups and their unipotent cells. We also provide additional tools
for studying the associated categories and cluster structures. For many cluster algebras we
construct a basis (called dual semicanonical basis) which contains all cluster monomials in
a natural way. In particular, we obtain such a basis for all acyclic cluster algebras. Also, we
construct a dual PBW-basis of the cluster algebras involved. This provides another close
link between Lie theory and the representation theory of preprojective algebras. We show
that the coordinate rings C[N(w)] and C[Nw] are genuine cluster algebras in a natural
way, and not just upper cluster algebras in the sense of [BFZ].
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Let us give some more details. We consider preprojective algebras Λ = ΛQ attached
to quivers Q which are not necessarily of Dynkin type. These algebras are therefore
infinite-dimensional in general. The category nil(Λ) of all finite-dimensional nilpotent
representations of Λ is then too large to be related to a cluster algebra of finite rank.
Moreover, it does not have projective or injective objects, and it lacks an Auslander-
Reiten translation. However, Buan, Iyama, Reiten and Scott [BIRS] have attached to
each element w of the Weyl group W =WQ of Q a subcategory Cw of nil(Λ). They show
that the categories Cw are Frobenius categories and the corresponding stable categories Cw
are Calabi-Yau categories of dimension two. (These results were also discovered and proved
independently in [GLS7] in the special case when w is an adaptable element of W .) Each
subcategory Cw contains a distinguished maximal rigid Λ-module Vi associated to each
reduced expression i = (ir, . . . , i1) of w. (A module X is called rigid if Ext1Λ(X,X) = 0.)

Special attention is given to the algebra Bi := EndΛ(Vi)
op, which turns out to be quasi-

hereditary. There is an equivalence between Cw and the category of ∆-filtered Bi-modules.
This allows us to describe mutations of maximal rigid Λ-modules in Cw in terms of the
∆-dimension vectors of the corresponding Bi-modules.

To the subcategory Cw we associate a cluster algebra A(Cw) which in general is not
acyclic, and we show that Cw can be seen as a categorification of the cluster algebra A(Cw).
Each of the modules Vi provides an initial seed of this cluster algebra. (As a very special
case, we also obtain in this way a new categorification of every acyclic cluster algebra with
a skew-symmetric exchange matrix and a certain choice of coefficients.) The proof relies
on the fact that the algebra A(Cw) has a natural realization as a certain subalgebra of
the graded dual U(n)∗gr, where n is now the positive part of the symmetric Kac-Moody
Lie algebra g = n− ⊕ h ⊕ n of the same type as Λ. We show that again all the cluster
monomials belong to the dual of Lusztig’s semicanonical basis of U(n).

Next, we prove that A(Cw) has a simple monomial basis coming from the objects of
the additive closure add(Mi), where Mi = M1 ⊕ · · · ⊕ Mr is another Λ-module in Cw
associated to a reduced expression i of w. The modules Mk are rigid, but Mi is not rigid,
except in some trivial cases. We call it the dual PBW-basis of A(Cw), and regard it as a
generalization (in the dual setting) of the bases of U(n) constructed by Ringel in terms of
quiver representations, when g is finite-dimensional [Ri4]. We use this to prove that A(Cw)
is spanned by a subset of the dual semicanonical basis of U(n)∗gr. Thus, we obtain a natural
basis of A(Cw) containing all the cluster monomials. We call it the dual semicanonical
basis of A(Cw). We prove that A(Cw) is isomorphic to the coordinate ring of the finite-
dimensional unipotent subgroup N(w) of the symmetric Kac-Moody group attached to
g. Moreover, we show that the cluster algebra obtained from A(Cw) by formally inverting
the generators of the coefficient ring is isomorphic to the algebra of regular functions on
the unipotent cell Nw of the Kac-Moody group. This solves Conjecture IV.3.1 of [BIRS].

Note also that in the Dynkin case the unipotent cells Nw are closely related to the
double Bruhat cells of type (e, w), whose coordinate ring is known to be an upper cluster
algebra by a result of [BFZ]. However, our proof is different and shows that C[Nw] is not
only an upper cluster algebra but a genuine cluster algebra.

Finally, we explain how the results of this paper are related to those of [GLS6], in
which a cluster algebra structure on the coordinate ring of the unipotent radical NK of a
parabolic subgroup of a complex simple algebraic group of type A,D,E was introduced.
We give a proof of Conjecture 9.6 of [GLS6].
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1.2. Remark. Our preprint [GLS7] contains special cases of the main results of this arti-
cle: When w is an adaptable Weyl group element, we constructed and studied the subcate-
gories Cw independently of [BIRS], using different methods. For this case, [GLS7] contains
a proof of [BIRS, Conjecture IV.3.1]. Since [GLS7] is already cited in several published
articles, we decided to keep it on the arXiv as a convenient reference, but it will not be
published in a journal.

1.3. Notation. Throughout let K be an algebraically closed field. For a K-algebra A
let mod(A) be the category of finite-dimensional left A-modules. By a module we always
mean a finite-dimensional left module. Often we do not distinguish between a module
and its isomorphism class. Let D := HomK(−,K) : mod(A) → mod(Aop) be the usual
duality.

For a quiver Q let rep(Q) be the category of finite-dimensional representations of Q
over K. It is well known that we can identify rep(Q) and mod(KQ).

By a subcategory we always mean a full subcategory. For an A-module M let add(M)
be the subcategory of all A-modules which are isomorphic to finite direct sums of direct
summands of M . A subcategory U of mod(A) is an additive subcategory if any finite direct
sum of modules in U is again in U . By Fac(M) (resp. Sub(M)) we denote the subcategory
of all A-modules X such that there exists some t ≥ 1 and some epimorphism M t → X
(resp. monomorphism X →M t).

For an A-moduleM let Σ(M) be the number of isomorphism classes of indecomposable
direct summands of M . An A-module is called basic if it can be written as a direct sum
of pairwise non-isomorphic indecomposable modules.

For an A-module M and a simple A-module S let [M : S] be the Jordan-Hölder mul-
tiplicity of S in a composition series of M . Let dim(M) := dimA(M) := ([M : S])S
be the dimension vector of M , where S runs through all isomorphism classes of simple
A-modules.

For a set U we denote its cardinality by |U |. If f : X → Y and g : Y → Z are maps,
then the composition is denoted by gf = g ◦ f : X → Z.

If U is a subset of aK-vector space V , then let SpanK〈U〉 be the subspace of V generated
by U .

By K(X1, . . . ,Xr) (resp. K[X1, . . . ,Xr]) we denote the field of rational functions (resp.
the polynomial ring) in the variables X1, . . . ,Xr with coefficients in K.

Let C be the field of complex numbers, and let N = {0, 1, 2, . . .} be the natural numbers,
including 0. Set N1 := N \ {0}.

Recommended introductions to representation theory of finite-dimensional algebras and
Auslander-Reiten theory are the books [ARS, ASS, GR, Ri1].

2. Definitions and known results

2.1. Preprojective algebras and nilpotent varieties. Let Q = (Q0, Q1, s, t) be a
finite quiver without oriented cycles. (As usual, Q0 is the set of vertices, Q1 is the set of
arrows, an arrow a ∈ Q1 starts in a vertex s(a) and terminates in t(a).) Let

Λ = ΛQ = KQ/(c)
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be the associated preprojective algebra. We assume that Q is connected and has vertices
Q0 = {1, . . . , n}. Here K is an algebraically closed field, KQ is the path algebra of the
double quiver Q of Q which is obtained from Q by adding to each arrow a : i→ j in Q an
arrow a∗ : j → i pointing in the opposite direction, and (c) is the ideal generated by the
element

c =
∑

a∈Q1

(a∗a− aa∗).

Clearly, the path algebra KQ is a subalgebra of Λ. Let πQ : mod(Λ)→ mod(KQ) be the
corresponding restriction functor.

A Λ-module M is called nilpotent if a composition series of M contains only the simple
modules S1, . . . , Sn associated to the vertices of Q. Let nil(Λ) be the abelian category of
finite-dimensional nilpotent Λ-modules.

Let d = (d1, . . . , dn) ∈ Nn. By

rep(Q, d) =
∏

a∈Q1

HomK(Kds(a) ,Kdt(a))

we denote the affine space of representations of Q with dimension vector d. Furthermore,
let mod(Λ, d) be the affine variety of elements

(fa, fa∗)a∈Q1 ∈
∏

a∈Q1

(
HomK(Kds(a) ,Kdt(a))×HomK(Kdt(a) ,Kds(a))

)

such that the following holds:

(i) For all i ∈ Q0 we have
∑

a∈Q1:s(a)=i

fa∗fa =
∑

a∈Q1:t(a)=i

fafa∗ .

By Λd we denote the variety of all (fa, fa∗)a∈Q1 ∈ mod(Λ, d) such that the following
condition holds:

(ii) There exists some N such that for each path a1a2 · · · aN of length N in the double
quiver Q of Q we have fa1fa2 · · · faN = 0.

(It is not difficult to check that Λd is indeed an affine variety, namely for a fixed d we
can choose N = d1 + · · · + dn in condition (ii) above.) If Q is a Dynkin quiver, then (ii)
follows already from condition (i). One can regard (ii) as a nilpotency condition, which
explains why the varieties Λd are often called nilpotent varieties. Note that rep(Q, d) can
be considered as a subvariety of Λd. In fact rep(Q, d) forms an irreducible component of
Λd. Lusztig [Lu1, Section 12] proved that all irreducible components of Λd have the same
dimension, namely

dim rep(Q, d) =
∑

a∈Q1

ds(a)dt(a).

One can interpret Λd as the variety of nilpotent Λ-modules with dimension vector d. The
group

GLd =

n∏

i=1

GLdi(K)

acts on mod(Λ, d), Λd and rep(Q, d) by conjugation. Namely, for g = (g1, . . . , gn) ∈ GLd

and x = (fa, fa∗)a∈Q1 ∈ mod(Λ, d) define

g.x := (gt(a)fag
−1
s(a), gs(a)fa∗g

−1
t(a))a∈Q1 .
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The action on Λd and rep(Q, d) is obtained via restriction. The isomorphism classes of
Λ-modules in mod(Λ, d) and Λd, and KQ-modules in rep(Q, d), respectively, correspond
to the orbits of these actions. For a moduleM in mod(Λ, d), (resp. in Λd or in rep(Q, d)),
let GLd .M denote its GLd-orbit.

There is a bilinear form 〈−,−〉 = 〈−,−〉Q : Zn × Zn → Z associated to Q defined by

〈d, e〉 := 〈d, e〉Q :=
∑

i∈Q0

diei −
∑

a∈Q1

ds(a)et(a).

The dimension vector of a KQ-module M is denoted by dim(M) = dimQ(M). (Note that
dimQ(M) = dimΛ(M), since we can consider M also as a Λ-module.) For KQ-modules
M and N set

〈M,N〉 := 〈M,N〉Q := dim HomKQ(M,N)− dim Ext1KQ(M,N).

It is known that 〈M,N〉 = 〈dim(M),dim(N)〉. Let (−,−) = (−,−)Q : Zn × Zn → Z be
the symmetrization of the bilinear form 〈−,−〉, i.e. (d, e) := 〈d, e〉+ 〈e, d〉. For Λ-modules
X and Y set

(X,Y )Q := 〈πQ(X), πQ(Y )〉Q + 〈πQ(Y ), πQ(X)〉Q.

Lemma 2.1 ([CB, Lemma 1]). For any Λ-modules X and Y we have

dim Ext1Λ(X,Y ) = dim HomΛ(X,Y ) + dim HomΛ(Y,X)− (X,Y )Q.

In particular, dim Ext1Λ(X,X) is even, and dim Ext1Λ(X,Y ) = dim Ext1Λ(Y,X).

Corollary 2.2. For a nilpotent Λ-module X with dimension vector d the following are
equivalent:

• The closure GLd .X of GLd .X is an irreducible component of Λd;
• The orbit GLd .X is open in Λd;
• Ext1Λ(X,X) = 0.

2.2. Semicanonical bases. We recall the definition of the dual semicanonical basis and
its multiplicative properties, following [Lu1, Lu2, GLS1, GLS4]. From now on, assume
that K = C.

For each dimension vector d = (d1, . . . , dn) we defined the affine variety Λd. A subset
C of Λd is said to be constructible if it is a finite union of locally closed subsets. For a
C-vector space V , a function

f : Λd → V

is constructible if the image f(Λd) is finite and f−1(m) is a constructible subset of Λd for
all m ∈ V .

The set of constructible functions Λd → C is denoted by M(Λd). This is a C-vector
space. Recall that the group GLd acts on Λd by conjugation. By M(Λd)

GLd we denote
the subspace of M(Λd) consisting of the constructible functions which are constant on the
GLd-orbits in Λd. Set

M̃ :=
⊕

d∈Nn

M(Λd)
GLd .

For f ′ ∈M(Λd′)
GLd′ , f ′′ ∈M(Λd′′)

GLd′′ and d = d′+ d′′ we define a constructible function

f := f ′ ⋆ f ′′ : Λd → C

in M(Λd)
GLd by

f(X) :=
∑

m∈C

mχc

({
U ⊆ X | f ′(U)f ′′(X/U) = m

})
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for all X ∈ Λd, where U runs over the points of the Grassmannian of all submodules of
X with dim(U) = d′. Here, for a constructible subset V of a complex variety we denote
by χc(V ) its (topological) Euler characteristic with respect to cohomology with compact

support. This turns M̃ into an associative C-algebra.

Remark 2.3. Note that the product ⋆ defined here is opposite to the convolution product
we have used in [GLS1, GLS3, GLS4]. This new convention turns out to be better adapted
to our choice of categorifying C[N(w)] and C[Nw] by categories closed under factor mod-
ules. It is also compatible with our choice in [GLS6] of categorifying coordinate rings of
partial flag varieties by categories closed under submodules.

For the canonical basis vector ei := dim(Si) we know that Λei is just a point, which (as
a Λ-module) is isomorphic to the simple module Si. Define 1i : Λei → C by 1i(Si) := 1.

ByM we denote the subalgebra of M̃ generated by the functions 1i where 1 ≤ i ≤ n. Set
Md :=M∩M(Λd)

GLd . It follows that

M =
⊕

d∈Nn

Md

is an Nn-graded C-algebra. Let U(n) be the enveloping algebra of the positive part n of
the Kac-Moody Lie algebra g associated to Q, see Sections 4.1 and 4.2.

Theorem 2.4 (Lusztig [Lu2]). There is an isomorphism of Nn-graded C-algebras

U(n)→M

defined by Ei 7→ 1i for 1 ≤ i ≤ n.

Let Irr(Λd) be the set of irreducible components of Λd.

Theorem 2.5 (Lusztig [Lu2]). For each Z ∈ Irr(Λd) there is a unique fZ : Λd → C in
Md such that fZ takes value 1 on some dense open subset of Z and value 0 on some dense
open subset of any other irreducible component Z ′ of Λd. Furthermore, the set

S := {fZ | Z ∈ Irr(Λd), d ∈ Nn}

is a C-basis of M.

The basis S is called the semicanonical basis of M. By Theorem 2.4 we just identify
M and U(n) and consider S also as a basis of U(n). Since U(n) is a cocommutative Hopf
algebra, its graded dual

U(n)∗gr =
⊕

d∈Nn

U∗
d

is a commutative C-algebra. LetM∗
d be the dual space ofMd, and set

M∗ :=
⊕

d∈Nn

M∗
d.

Again we identifyM∗ and U(n)∗gr.

For X ∈ Λd define an evaluation function

δX :Md → C

by δX(f) := f(X).

It is not difficult to show that the map X 7→ δX from Λd toM∗
d is constructible in the

above sense. So on every irreducible component Z ∈ Irr(Λd) there is a Zariski open set
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on which this map is constant. Define ρZ := δX for any X in this open set. The C-vector
spaceM∗

d is spanned by the functions δX with X ∈ Λd. Then by construction

S∗ := {ρZ | Z ∈ Irr(Λd), d ∈ Nn}

is the basis ofM∗ ≡ U(n)∗gr dual to Lusztig’s semicanonical basis S of U(n).

In case X is a rigid Λ-module, the orbit of X in Λd is open, its closure is an irreducible
component Z, and δX = ρZ belongs to S∗.

For a module X ∈ Λd and an m-tuple i = (i1, . . . , im) with 1 ≤ ij ≤ n for all j, let
Fi,X denote the projective variety of composition series of type i of X. Thus an element
in Fi,X is a flag

(0 = X0 ⊂ X1 ⊂ · · · ⊂ Xm = X)

of submodules Xj of X such that for all 1 ≤ j ≤ m the subfactor Xj/Xj−1 is isomorphic
to the simple Λ-module Sij associated to the vertex ij of Q. Let

di : Λd → C

be the map which sends X ∈ Λd to χc(Fi,X). It follows from the definition of ⋆ that
di = 1i1 ⋆ · · · ⋆ 1im . The C-vector space Md is spanned by the maps di. We have
δX(di) = χc(Fi,X).

Theorem 2.6 ([GLS1]). For X,Y ∈ nil(Λ) we have δXδY = δX⊕Y .

In [GLS4] a more complicated formula than the one in Theorem 2.6 is given, expressing
δXδY as a linear combination of δZ where Z runs over all possible middle terms of non-split
short exact sequences with end terms X and Y . The formula is especially useful when
dim Ext1Λ(X,Y ) = 1. In this case, the following hold:

Theorem 2.7 ([GLS4, Theorem 2]). Let X,Y ∈ nil(Λ). If dim Ext1Λ(X,Y ) = 1 with

0→ X → E′ → Y → 0 and 0→ Y → E′′ → X → 0

the corresponding non-split short exact sequences, then

δXδY = δE′ + δE′′ .

2.3. Frobenius categories. Let A be a K-algebra. Let C be a subcategory of a module
category mod(A) which is closed under extensions. Clearly, we have

Ext1C(X,Y ) = Ext1A(X,Y )

for all modules X and Y in C. An A-module C in C is called C-projective (resp. C-
injective) if Ext1A(C,X) = 0 (resp. Ext1A(X,C) = 0) for all X ∈ C. If C is C-projective
and C-injective, then C is also called C-projective-injective. We say that C has enough
projectives (resp. enough injectives) if for each X ∈ C there exists a short exact sequence
0 → Y → C → X → 0 (resp. 0 → X → C → Y → 0) where C is C-projective (resp.
C-injective) and Y ∈ C. If C has enough projectives and enough injectives, and if these
coincide (i.e. an object is C-projective if and only if it is C-injective), then C is called a
Frobenius subcategory of mod(A). In particular, C is a Frobenius category in the sense of
Happel [Ha1]. Of course, for A = Λ, an A-module C in C is C-projective if and only if it
is C-injective, see Lemma 2.1.

By definition the objects in the stable category C are the same as the objects in C,
and the morphism spaces HomC(X,Y ) are the morphism spaces in C modulo morphisms
factoring through C-projective-injective objects. The category C is a triangulated category
in a natural way [Ha1], where the shift is given by the relative inverse syzygy functor

Ω−1 : C → C.
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For all X and Y in C there is a functorial isomorphism

HomC(X,Ω
−1(Y )) ∼= Ext1C(X,Y ).

The category C is a 2-Calabi-Yau category, if for all X,Y ∈ C there is a functorial isomor-
phism

Ext1C(X,Y ) ∼= DExt1C(Y,X).

2.4. Frobenius categories associated to Weyl group elements. By Î1, . . . , În we
denote the indecomposable injective Λ-modules with socle S1, . . . , Sn, respectively. Here
S1, . . . , Sn are the 1-dimensional simple Λ-modules corresponding to the vertices of the

quiver Q. (The modules Îi are infinite-dimensional if Q is not a Dynkin quiver.)

For a Λ-module X and a simple module Sj let soc(j)(X) := socSj
(X) be the sum of

all submodules U of X with U ∼= Sj. (In this definition, we do not assume that X is
finite-dimensional.) For a sequence (j1, . . . , jt) of indices with 1 ≤ jp ≤ n for all p, there
is a unique chain

0 = X0 ⊆ X1 ⊆ · · · ⊆ Xt ⊆ X

of submodules of X such that Xp/Xp−1 = soc(jp)(X/Xp−1). Define soc(j1,...,jt)(X) := Xt.

For the rest of this section, let i = (ir, . . . , i1) be a reduced expression of an element w
of the Weyl groupW =WQ of Q. (By definition, this is the Weyl group of the Kac-Moody
Lie algebra g associated to Q, see Section 4.1.) For 1 ≤ k ≤ r let

Vk := Vi,k := soc(ik,...,i1)

(
Îik

)
,

and set Vi := V1⊕· · ·⊕Vr. (The module Vi is dual to the cluster-tilting object constructed
in [BIRS, Section III.2].) Define

Ci := Fac(Vi) ⊆ nil(Λ).

For 1 ≤ j ≤ n let kj := max{1 ≤ k ≤ r | ik = j}. Define Ii,j := Vi,kj and set

Ii := Ii,1 ⊕ · · · ⊕ Ii,n.

The category Ci and the module Ii depend only on w, and not on the chosen reduced
expression i of w. Therefore, we define

Cw := Ci and Iw := Ii.

(If Q is a Dynkin quiver, and w = w0 is the longest Weyl group element, then Cw =
nil(Λ) = mod(Λ).) Without loss of generality, we assume that for each 1 ≤ j ≤ n there is
some 1 ≤ k ≤ r with ik = j. Otherwise, we could just replace Q by a quiver with fewer
vertices. Note also that Cw = add(Iw) if and only if ik 6= is for all k 6= s. In this case,
most of our theory becomes trivial.

The following three theorems are proved in [BIRS]. They were also obtained indepen-
dently and by different methods in [GLS7] in the case when w is adaptable.

Theorem 2.8. For any Weyl group element w the following hold:

(i) Cw is a Frobenius category;
(ii) The stable category Cw is a 2-Calabi-Yau category;
(iii) Cw has n indecomposable Cw-projective-injective modules, namely the indecompos-

able direct summands of Iw;
(iv) Cw = Fac(Iw).
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We denote the relative inverse syzygy functor of Cw by Ω−1
w .

Recall that a Λ-module T is rigid if Ext1Λ(T, T ) = 0. Let C be a subcategory of mod(Λ),
and let T ∈ C be rigid. Recall that for all X,Y ∈ mod(Λ) we have dim Ext1Λ(X,Y ) =
dim Ext1Λ(Y,X). We need the following definitions:

• T is C-maximal rigid if Ext1Λ(T ⊕X,X) = 0 with X ∈ C implies X ∈ add(T );
• T is a C-cluster-tilting module if Ext1Λ(T,X) = 0 with X ∈ C implies X ∈ add(T ).

Theorem 2.9. For a rigid Λ-module T in Cw the following are equivalent:

(i) Σ(T ) = length(w);
(ii) T is Cw-maximal rigid;
(iii) T is a Cw-cluster-tilting module.

For 1 ≤ k ≤ r let

k− := max{0, 1 ≤ s ≤ k − 1 | is = ik},

k+ := min{k + 1 ≤ s ≤ r, r + 1 | is = ik}.

For 1 ≤ i, j ≤ n let qij be the number of edges between the vertices i and j of the
underlying graph of our quiver Q.

Following Berenstein, Fomin and Zelevinsky we define a quiver Γi as follows: The
vertices of Γi are just the numbers 1, . . . , r. For 1 ≤ s, t ≤ r there are qis,it arrows from s
to t provided t+ ≥ s+ > t > s. These are called the ordinary arrows of Γi. Furthermore,
for each 1 ≤ s ≤ r there is an arrow s → s− provided s− > 0. These are the horizontal
arrows of Γi.

On the other hand, let A be a K-algebra, and let X = Xn1
1 ⊕ · · · ⊕ X

nt
t be a finite-

dimensional A-module, where theXi are pairwise non-isomorphic indecomposable modules
and ni ≥ 1. Let Si = SXi

be the simple EndA(X)op-module corresponding to Xi. Then
HomA(X,Xi) is the indecomposable projective EndA(X)op-module with top Si. The basic
facts on the quiver ΓX of the endomorphism algebra EndA(X)op are collected in [GLS5,
Section 3.2]. In particular, we have a 1-1 correspondence between the vertices of ΓX and
the modules X1, . . . ,Xt.

Theorem 2.10. The module Vi is Cw-maximal rigid, and we have ΓVi
= Γi.

For example, let Q be a quiver with underlying graph 1 2 3 . Then i :=
(i7, . . . , i1) := (3, 1, 2, 3, 1, 2, 1) is a reduced expression of a Weyl group element w ∈ WQ.
The quiver Γi looks as follows:

6 // 3 //

����
��

�
����

��
�

1

����
��

�
����

��
�

5 //

����
��

�

^^=====

^^=====

2

����
��

�

^^=====

^^=====

7 // 4

^^=====

We often try to visualize Λ-modules. For example, let Q be the quiver

1

a

��

b

��=
==

==

2

c����
��

�

3
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and let i := (i6, . . . , i1) := (3, 2, 1, 3, 2, 1). Then the Λ-module Vi = V1 ⊕ · · · ⊕ V6 looks as
follows:

V1 = 1 V2 = 1
2 V3 =

1
1 2
3

V4 =
1

1 2
2 3
1

V5 =
1

1 2
1 2 3
3 1
2

V6 =

1
1 2

1 2 3
2 3 1
1 2
3

The numbers can be interpreted as basis vectors or as composition factors. For ex-
ample, the module V5 is a 9-dimensional Λ-module with dimension vector dimΛ(V5) =
(d1, d2, d3) = (4, 3, 2). More precisely, one could display V5 as follows:

1

b����
��

�

1
b

����
��

� a

��=
==

==
2

c����
��

�

1

a ��=
==

==
2

b∗

��=
==

==c

����
��

�
3

a∗����
��

�

3

c∗ ��=
==

==
1

b����
��

�

2

This picture shows how the different arrows of the quiver Q of Λ act on the 9 basis vectors
of V5. For example, one can see immediately that the socle of X is isomorphic to S2, and
the top is isomorphic to S1 ⊕ S1 ⊕ S1.

2.5. Relative homology for Cw. We recall some notions from relative homology theory
which, for Artin algebras, was developed by Auslander and Solberg [AS1, AS2].

Let A be a K-algebra, and let X,Y,Z, T ∈ mod(A). Set

FT := HomA(T,−) : mod(A)→ mod(EndA(T )
op).

A short exact sequence

0→ Z → Y → X → 0

is FT -exact if 0 → FT (Z) → FT (Y ) → FT (X) → 0 is exact. By FT (X,Z) we denote the
set of equivalence classes of FT -exact sequences with end terms X and Z as above.

Let YT be the subcategory of all X ∈ mod(A) such that there exists an exact sequence

(1) · · ·
f3
−→ T3

f2
−→ T1

f1
−→ T0

f0
−→ X → 0

where Ti ∈ add(T ) for all i and the short exact sequences

0→ Ker(fi)→ Ti → Im(fi)→ 0

are FT -exact for all i ≥ 0. We call sequence (1) an add(T )-resolution of X. We say that
(1) has length at most d if Tj = 0 for all j > d. Note that

add(T ) ⊆ YT .

Dually, one defines add(T )-coresolutions

0→ X
g0
−→ T0

g1
−→ T1

g2
−→ T2

g3
−→ · · ·

where we require now that the sequences

0→ Im(gi)→ Ti → Coker(gi)→ 0
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are F T -exact, where F T is the contravariant functor HomA(−, T ).

For X ∈ YT and Z ∈ mod(A) let ExtiFT
(X,Z), i ≥ 0 be the cohomology groups of the

cocomplex obtained by applying the functor HomA(−, Z) to the sequence

· · ·
f3
−→ T2

f2
−→ T1

f1
−→ T0.

Lemma 2.11 ([AS1]). For X ∈ YT and Z ∈ mod(A) there is a functorial isomorphism

Ext1FT
(X,Z) ∼= FT (X,Z).

Proposition 2.12 ([AS2, Proposition 3.7]). For X ∈ YT and Z ∈ mod(A) there is a
functorial isomorphism

ExtiFT
(X,Z)→ ExtiEndA(T )op(HomA(T,X),HomA(T,Z))

for all i ≥ 0.

Corollary 2.13. The functor

HomA(T,−) : YT → mod(EndA(T )
op)

is fully faithful. In particular, HomA(T,−) has the following properties:

(i) If X ∈ YT is indecomposable, then HomA(T,X) is indecomposable;
(ii) If HomA(T,X) ∼= HomA(T, Y ) for some X,Y ∈ YT , then X ∼= Y .

Note that Corollary 2.13 follows already from [Au, Section 3], see also [APR, Lemma
1.3 (b)].

Corollary 2.14. Let T ∈ mod(A), and let C be an extension closed subcategory of YT . If

ψ : 0→ HomA(T,X)
HomA(T,f)
−−−−−−−→ HomA(T, Y )

HomA(T,g)
−−−−−−−→ HomA(T,Z)→ 0

is a short exact sequence of EndA(T )
op-modules with X,Y,Z ∈ C, then

η : 0→ X
f
−→ Y

g
−→ Z → 0

is a short exact sequence in mod(A).

Now we apply the above ideas to the category Cw. The following proposition is proved
in [GLS7] for adaptable w and in [BIRS] for arbitrary w. In a more general framework it
is proved in [KR].

Proposition 2.15. Let T be a Cw-maximal rigid module, and let X ∈ Cw. Then there
exists an add(T )-resolution of the form

0→ T1 → T0 → X → 0

and an add(T )-coresolution of the form

0→ X → T ′
0 → T ′

1 → 0.

Corollary 2.16. For each Cw-maximal rigid module T we have Cw ⊆ YT .

Corollary 2.17. For each X ∈ Cw the projective dimension of the EndΛ(T )
op-module

HomΛ(T,X) is at most one.

Corollary 2.18 ([Iy, Theorem 5.3.2]). If T and R are Cw-maximal rigid Λ-modules, then
the EndΛ(T )

op-module HomΛ(T,R) is a classical tilting module, and

EndEndΛ(T )op(HomΛ(T,R)) ∼= EndΛ(R).
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2.6. The cluster algebra A(Cw, T ). We refer to [FZ4] for an excellent survey on cluster
algebras. Here we only recall the main definitions and introduce a cluster algebra A(Cw, T )
associated to a Weyl group element w and a Cw-maximal rigid Λ-module T .

If B̃ = (bij) is any r × (r − n)-matrix with integer entries, then the principal part B of

B̃ is obtained from B̃ by deleting the last n rows. Given some 1 ≤ k ≤ r−n define a new

r × (r − n)-matrix µk(B̃) = (b′ij) by

b′ij =




−bij if i = k or j = k,

bij +
|bik|bkj + bik|bkj|

2
otherwise,

where 1 ≤ i ≤ r and 1 ≤ j ≤ r − n. One calls µk(B̃) a mutation of B̃. If B̃ is an integer

matrix whose principal part is skew-symmetric, then it is easy to check that µk(B̃) is also
an integer matrix with skew-symmetric principal part. In this case, Fomin and Zelevinsky

define a cluster algebra A(B̃) as follows. Let F = C(y1, . . . , yr) be the field of rational

functions in r commuting variables y1, . . . , yr. Define y := (y1, . . . , yr). One calls (y, B̃)

the initial seed of A(B̃). For 1 ≤ k ≤ r − n define

y∗k :=

∏
bik>0 y

bik
i +

∏
bik<0 y

−bik
i

yk
.

The pair (µk(y), µk(B̃)), where µk(y) is obtained from y by replacing yk by y∗k, is the

mutation in direction k of the seed (y, B̃).

Now one can iterate this process of mutation and obtain inductively a set of seeds.
Thus each seed consists of an r-tuple of algebraically independent elements of F called a
cluster and of a matrix called the exchange matrix. The elements of a cluster are its cluster
variables. Given a cluster (f1, . . . , fr), the monomials fm1

1 fm2
2 · · · fmr

r where mk ≥ 0 for
all k are called cluster monomials. A seed has r − n neighbours obtained by mutation in
direction 1 ≤ k ≤ r − n. One does not mutate the last n elements of a cluster, they serve

as ”coefficients” and belong to every cluster. The cluster algebra A(B̃) is by definition
the subalgebra of F generated by the set of all cluster variables appearing in all seeds
obtained by iterated mutation starting with the initial seed.

It is often convenient to define a cluster algebra using an oriented graph, as follows.
Let Γ be a quiver without loops or 2-cycles with vertices {1, . . . , r}. We can define an
r × r-matrix B(Γ) = (bij) by setting

bij = (number of arrows j → i in Γ)− (number of arrows i→ j in Γ).

Let B(Γ)◦ be the r× (r−n)-matrix obtained by deleting the last n columns of B(Γ). The
principal part of B(Γ)◦ is skew-symmetric, hence this yields a cluster algebra A(B(Γ)◦).

We apply this procedure to our subcategory Cw. Let T = T1 ⊕ · · · ⊕ Tr be a basic
Cw-maximal rigid Λ-module with Tk indecomposable for all k. Without loss of generality
assume that Tr−n+1, . . . , Tr are Cw-projective-injective. By ΓT we denote the quiver of the
endomorphism algebra EndΛ(T )

op. We then define the cluster algebra

A(Cw, T ) := A(B(ΓT )
◦).

In particular, we denote byA(Cw) the cluster algebraA(Cw, Vi) attached to the Cw-maximal
rigid module Vi of Section 2.4. Thus A(Cw) := A(B(Γi)

◦). (Up to isomorphism of cluster
algebras, this definition does not depend on the choice of i, see Section 3.1.)
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2.7. Mutation of rigid modules. The results of this section are straightforward gener-
alizations of results in [GLS5], see [GLS7, Sections 12,13,14] and [BIRS].

Let A be a K-algebra, and M be an A-module. A homomorphism f : X → M ′ in
mod(A) is a left add(M)-approximation of X if M ′ ∈ add(M) and the induced map

HomA(f,M) : HomA(M
′,M)→ HomA(X,M)

is surjective. A morphism f : V →W is called left minimal if every morphism g : W →W
with gf = f is an isomorphism. Dually, one defines right add(M)-approximations and
right minimal morphisms. Some well known basic properties of approximations can be
found in [GLS5, Section 3.1].

Proposition 2.19. Let T be a basic Cw-maximal rigid Λ-module, and let X be an inde-
composable direct summand of T which is not Cw-projective-injective. Then there are short
exact sequences

0→ X
f ′

−→ T ′ g′
−→ Y → 0

and

0→ Y
f ′′

−→ T ′′ g′′
−→ X → 0

such that the following hold:

(i) f ′ and f ′′ are minimal left add(T/X)-approximations, and g′ and g′′ are minimal
right add(T/X)-approximations;

(ii) Y ⊕T/X is a basic Cw-maximal rigid Λ-module (in particular Y is indecomposable),
and X 6∼= Y ;

(iii) dim Ext1Λ(Y,X) = dim Ext1Λ(X,Y ) = 1;
(iv) We have add(T ′) ∩ add(T ′′) = 0;
(v) The quiver ΓT of EndΛ(T )

op has no loops and no 2-cycles;
(vi) We have

gl.dim(EndΛ(T )
op) =





3 Cw 6= add(Iw),

1 Cw = add(Iw) and n > 1,

0 Cw = add(Iw) and n = 1.

In the situation of the above proposition, we call {X,Y } an exchange pair associated to
T/X, and we write

µX(T ) = Y ⊕ T/X.

We say that Y ⊕ T/X is the mutation of T in direction X. The short exact sequence

0→ X
f ′

−→ T ′ g′
−→ Y → 0

is the exchange sequence starting in X and ending in Y . Thus, we have

µY (µX(T )) = T.

Let T = T1 ⊕ · · · ⊕ Tr be a basic Cw-maximal rigid Λ-module with Tk indecomposable
for all k. Without loss of generality we assume that Tr−n+1, . . . , Tr are Cw-projective-
injective. As in Section 2.6 write B(T ) := B(ΓT ) = (tij)1≤i,j≤r, and let B(T )◦ = (tij) be
the r × (r − n)-matrix obtained from B(T ) by deleting the last n columns.

For 1 ≤ k ≤ r − n let
0→ Tk → T ′ → T ∗

k → 0

and
0→ T ∗

k → T ′′ → Tk → 0
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be exchange sequences associated to the direct summand Tk of T . It follows that

T ′ =
⊕

tik<0

T−tik
i and T ′′ =

⊕

tik>0

T tik
i .

Set

T ∗ = µTk
(T ) = T ∗

k ⊕ T/Tk.

The quivers of the endomorphism algebras EndΛ(T )
op and EndΛ(µTk

(T ))op are related via
Fomin and Zelevinsky’s mutation rule:

Theorem 2.20. Let w be a Weyl group element. For a basic Cw-maximal rigid Λ-module
T as above and 1 ≤ k ≤ r − n we have

B(µTk
(T ))◦ = µk(B(T )◦).

2.8. Categorification. An (additive) categorification of a cluster algebra A(B̃) as in
section 2.6 is given by the following:

(A) A C-linear, Hom-finite Frobenius category E with a cluster structure in the sense
of [BIRS, II.1] on the basic E-maximal rigid objects.

(B) A basic E-maximal rigid object T such that B(ΓT )
◦ = B̃.

(C) A cluster character χ? : obj(E)→ C(y1, . . . , yr) in the sense of Palu [Pa, Definition
1.2], with triangles replaced by short exact sequences.

(D) The cluster character χ? induces a bijection between basic, T -reachable E-maximal

rigid objects and clusters in A(B̃).

Remark 2.21. (1) Conditions (A)-(C) imply obviously that each cluster monomial in

A(B̃) is of the form χR for some E-rigid object R. Thus condition (D) is a kind of
injectivity requirement for χ?.

(2) By the results in Section 2.7 we have a cluster structure on Cw. We can take
T = Vi, for which we know ΓVi

by Theorem 2.10. By Theorems 2.6 and 2.7 our δ? is
a good candidate for a cluster character. In fact, by Theorems 3.1 and 3.2 below, we
know that δX ∈ A(B(ΓVi

)◦) for all X ∈ Cw. (By Theorem 3.1 the algebra A(B(ΓVi
)◦)

is up to isomorphism a subalgebra of M∗.) Property (D) holds in our situation because
of the construction of the dual semicanonical basis. For this reason we call (Cw, Vi) a
categorification of A(B(ΓVi

)◦).

3. Main results

In this section, let K = C be the field of complex numbers.

3.1. The cluster algebra A(Cw) as a subalgebra of M∗ ≡ U(n)∗gr. For a reduced
expression i = (ir, . . . , i1) of a Weyl group element w let T (Cw) be the graph with vertices
the isomorphism classes of basic Cw-maximal rigid Λ-modules and with edges given by
mutations. Let T = T1 ⊕ · · · ⊕ Tr be a vertex of T (Cw), and let T (Cw, T ) denote the con-
nected component of T (Cw) containing T . Two modules in T (Cw) are mutation equivalent
if they belong to the same connected component. A Λ-module X is called T -reachable if
X ∈ add(R) for some vertex R of T (Cw, T ). Denote by R(Cw, T ) the subalgebra of M∗

generated by the δRi
(1 ≤ i ≤ r) where R = R1⊕· · ·⊕Rr runs over all vertices of T (Cw, T ).

The following theorem is our first main result. The proof is given in Section 15.1.

Theorem 3.1. Let w be a Weyl group element. Then the following hold:
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(i) There is a unique isomorphism ι : A(Cw, T )→R(Cw, T ) such that

ι(yi) = δTi
(1 ≤ i ≤ r);

(ii) If we identify the two algebras A(Cw, T ) and R(Cw, T ) via ι, then the clusters of
A(Cw, T ) are identified with the r-tuples δ(R) = (δR1 , . . . , δRr ), where R runs over
the vertices of the graph T (Cw, T ). In particular, {δX | X is T -reachable} is the
set of cluster monomials in R(Cw, T ), and all cluster monomials belong to the dual
semicanonical basis S∗ of M∗ ≡ U(n)∗gr.

The proof of Theorem 3.1 relies on Theorem 2.20 and the multiplication formula in
Theorem 2.7.

Write R(Cw) := R(Cw, Vi). (The algebra R(Cw) and its cluster algebra structure do not
depend on i, since all Cw-maximal rigid modules of the form Vi are mutation equivalent,
see [BIRS, Proposition III.4.3].) Theorem 3.1 shows that the cluster algebra A(Cw) is
canonically isomorphic to the subalgebra R(Cw) of U(n)∗gr.

As an application, our theory provides an algorithm which computes the Euler charac-
teristics χc(Fk,R) for all cluster monomials δR in R(Cw) and all composition series types
k = (k1, . . . , ks), see Section 18.2. This is quite remarkable, since starting from the defini-
tions this seems to be an impossible task in almost all cases.

3.2. Dual PBW-bases and dual semicanonical bases. Let i = (ir, . . . , i1) be a re-
duced expression of a Weyl group element w. Let Vi = V1 ⊕ · · · ⊕ Vr be defined as before.
For each 1 ≤ k ≤ r there is a canonical embedding

ιk : Vk− → Vk.

Here we set V0 := 0. Let Mk be the cokernel of ιk, and define

Mi :=M1 ⊕ · · · ⊕Mr.

These modules play an important role in our theory. (In case w is adaptable and i is
Qop-adapted, the module Mi is a terminal KQ-module in the sense of [GLS7].)

In the spirit of Ringel’s construction of PBW-bases for quantum groups [Ri4], we con-
struct dual PBW-bases for our cluster algebras A(Cw). The following theorem is our
second main result. The proof will be given in Section 15.

Theorem 3.2. Let i = (ir, . . . , i1) be a reduced expression of a Weyl group element w,
and let Mi =M1 ⊕ · · · ⊕Mr be defined as above.

(i) The cluster algebra R(Cw) is a polynomial ring in r variables. More precisely, we
have

R(Cw) = C[δM1 , . . . , δMr ] = SpanC〈δX | X ∈ Cw〉;

(ii) The set {δM |M ∈ add(Mi)} is a C-basis of R(Cw);
(iii) The subset S∗w := S∗∩R(Cw) of the dual semicanonical basis is a C-basis of R(Cw)

containing all cluster monomials.

Let R̃(Cw) be the algebra obtained from R(Cw) by formally inverting the elements δP
for all Cw-projective-injectives P . In other words, R̃(Cw) is the cluster algebra obtained
from R(Cw) by inverting the generators of its coefficient ring. Similarly, let R(Cw) be
the cluster algebra obtained from R(Cw) by specializing the elements δP to 1. For both

cluster algebras R̃(Cw) and R(Cw) we get a C-basis which is easily obtained from the dual
semicanonical basis S∗w and again contains all cluster monomials, see Sections 15.5 and
15.6.
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3.3. The shift functor in Cw. As mentioned before, the category Cw is a triangulated
category with shift functor Ω−1

w . Recall that Vi = V1⊕· · ·⊕Vr is a basic Cw-maximal rigid
module. Set Ti := Iw ⊕ Ω−1

w (Vi). In Section 13.1 we construct a sequence of mutations
which starts in Vi and ends in Ti. This mutation sequence is crucial for the proof of some of
our results. (For example, it helps to show that the coordinate rings C[N(w)] and C[Nw]
are generated by the set of cluster variables.)

Now let R = R1 ⊕ · · · ⊕ Rr be any Cw-maximal rigid Λ-module, which is mutation
equivalent to Vi. Suppose that we know a sequence of mutations starting in Vi and ending
in R. Then we can use the mutation sequence from Vi to Ti to obtain a mutation sequence
between R and Iw ⊕ Ω−1

w (R), and between R and Iw ⊕ Ωw(R), see Section 13.3.

3.4. Unipotent subgroups and cells. Let w be a Weyl group element and put ∆+
w :=

{α ∈ ∆+ | w(α) < 0}. Let

n(w) =
⊕

α∈∆+
w

nα

be the corresponding sum of root subspaces of n, see Section 4.3. This is a finite-
dimensional nilpotent Lie algebra. Let N(w) be the corresponding finite-dimensional
unipotent group, see Section 5.2.

The maximal Kac-Moody group attached to g as in [Ku, Chapter 6] comes with a pair of
subgroups N and N− (denoted by U and U− in [Ku]). Note that later on for the definition
of generalized minors in Section 7 we also have to work with the minimal Kac-Moody
group (denoted by Gmin in in [Ku, 7.4]). We have

N(w) = N ∩ (w−1N−w).

We also define the unipotent cell

Nw := N ∩ (B−wB−)

where B− is the standard negative Borel subgroup of the Kac-Moody group.

Every Λ-module X in Cw gives rise to a linear form δX ∈ M
∗ ≡ U(n)∗gr and by means

of the identification U(n)∗gr ≡ C[N ] to a regular function ϕX on N .

The following theorem, proved in Section 8, is our third main result.

Theorem 3.3. The algebras C[N(w)] and C[Nw] of regular functions on N(w) and Nw,
respectively, have a cluster algebra structure. For each reduced expression i = (ir, . . . , i1)
of w, the tuple ((ϕVi,1

, . . . , ϕVi,r
), B(ΓVi

)◦) provides an initial seed of these cluster algebra
structures. The functions ϕVi,k

∈ C[N ] can be interpreted as generalized minors. We
obtain natural cluster algebra isomorphisms

C[N(w)] ∼= R(Cw) and C[Nw] ∼= R̃(Cw).

As a result, we have obtained a categorification in the sense of 2.8 of the cluster algebra
structure on C[N(w)] and C[Nw].

3.5. Example. We are going to illustrate some of the previous results on an example. Let
Q be a quiver with underlying graph 1 2 3 4 and let i := (3, 4, 2, 1, 3, 4, 2, 1).
This is a reduced expression of the Weyl group element w := s3s4s2s1s3s4s2s1. The cat-
egory Cw contains 18 indecomposable modules, and 4 of these are Cw-projective-injective.
The stable category Cw is triangle equivalent to the cluster category CQ.
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The maximal rigid module Vi has 8 indecomposable direct summands, namely

V1 = 1 V2 = 1
2 V3 = 4 V4 =

1
2 4
3

V5 = Ii,1 = 2
1 V6 = Ii,2 =

2 4
1 3
2

V7 = Ii,4 =
1
2
3
4

V8 = Ii,3 =
2

1 3
2 4
3

Similarly, Ti has 4 non-Cw-projective-injective indecomposable direct summands, namely

T1 = 2 T2 = 2 4
3 T3 =

1
2
3

T4 = 2
3 .

Here we set Tk := Ω−1
w (Vk) for 1 ≤ k ≤ 4.

The group N can be taken to be the group of upper unitriangular 5× 5 matrices with
complex coefficients. Given two subsets I and J of {1, 2, . . . , 5} with |I| = |J |, we denote
by DIJ ∈ C[N ] the regular function mapping an element x ∈ N to its minor DIJ(x) with
row subset I and column subset J . We get

ϕV1 = D{1},{2} ϕV2 = D{12},{23} ϕV3 = D{1234},{1235} ϕV4 = D{123},{235}

ϕV5 = D{1},{3} ϕV6 = D{12},{35} ϕV7 = D{1234},{2345} ϕV8 = D{123},{345}

ϕT1 = D{12},{13} ϕT2 = D{123},{135} ϕT3 = D{123},{234} ϕT4 = D{123},{134}.

The unipotent subgroup N(w) consists of all 5× 5 matrices of the form



1 u1 u2 u7 u4
0 1 u5 u8 u6
0 0 1 0 0
0 0 0 1 u3
0 0 0 0 1



, (u1, . . . , u8 ∈ C).

The unipotent cell Nw is a locally closed subset of N defined by the following equations
and inequalities:

Nw = {x ∈ N | D{1},{4}(x) = D{1},{5}(x) = D{12},{45}(x) = 0, D{1},{3}(x) 6= 0,

D{12},{35}(x) 6= 0, D{123},{345}(x) 6= 0, D{1234},{2345}(x) 6= 0}.

Note that the 4 inequalities are given by the non-vanishing of the 4 regular functions ϕIi,j ,
1 ≤ j ≤ 4 attached to the indecomposable Cw-projective-injective modules. We have

D{1},{4} = ϕ 3
2

1

D{1},{5} = ϕ 4
3

2
1

D{12},{45} = ϕ 3
2 4

1 3
2

.

Our results show that the polynomial algebra C[N(w)] has a cluster algebra structure,
of which (ϕV1 , ϕV2 , ϕV3 , ϕV4 , ϕIi,1 , ϕIi,2 , ϕIi,3 , ϕIi,4) is a distinguished cluster. Its coefficient
ring is the polynomial ring in the four variables (ϕIi,1 , ϕIi,2 , ϕIi,3 , ϕIi,4). The cluster mu-
tations of this algebra come from mutations of the basic Cw-maximal rigid Λ-modules.
Moreover, if we replace the coefficient ring by the ring of Laurent polynomials in the four
variables (ϕIi,1 , ϕIi,2 , ϕIi,3 , ϕIi,4), we obtain the coordinate ring C[Nw].

4. Kac-Moody Lie algebras

From now on, let K = C be the field of complex numbers. In this section we recall
known results on Kac-Moody Lie algebras.
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4.1. Kac-Moody Lie algebras. Let Γ = (Γ0,Γ1, γ) be a finite graph (without loops).
It has as set of vertices Γ0, edges Γ1 and γ : Γ1 → P2(Γ0) determining the adjacency of
the edges; here P2(Γ0) denotes the set of two-element subsets of Γ0. If Γ0 = {1, 2, . . . , n}
we can assign to Γ a symmetric generalized Cartan matrix CΓ = (cij)1≤i,j≤n, which is an
n× n-matrix with integer entries

cij :=

{
2 if i = j,

−
∣∣γ−1({i, j})

∣∣ if i 6= j.

Obviously, the assignment Γ 7→ CΓ induces a bijection between isomorphism classes of
graphs with vertex set {1, 2, . . . , n} and symmetric generalized Cartan matrices in Zn×n

up to simultaneous permutation of rows and columns.

For a quiver Q = (Q0, Q1, s, t) as defined in Section 2.1, its underlying graph |Q| :=
(Q0, Q1, q) is given by q(a) = {s(a), t(a)} for all a ∈ Q1 i.e. it is obtained by “forgetting”
the orientation of the edges. We write CQ := C|Q| := (cij)i,j.

Let g := gQ := g(CQ) be the (symmetric) Kac-Moody Lie algebra (see [Ka]) associated
to Q, which is defined as follows: Let h be a C-vector space of dimension 2n− rank(CQ),
and let Π := {α1, . . . , αn} ⊂ h∗ and Π∨ := {α∨

1 , . . . , α
∨
n} ⊂ h be linearly independent

subsets of the vector spaces h∗ and h, respectively, such that

αi(α
∨
j ) = cij

for all i, j.

Let h∗ = h∗1 ⊕ h∗2 be a vector space decomposition, where h∗1 is just the subspace with
basis Π, and h∗2 is any direct complement of h∗1 in h∗. Let (−,−) : h∗ × h∗ → C be the
standard bilinear form, defined by (αj , αj) := αi(α

∨
j ), (αi, x) := (x, αi) := x(α∨

i ), and

(x, y) := 0 for all x, y ∈ h∗2 and 1 ≤ i, j ≤ n. Note that αi(α
∨
j ) = (dim(Si),dim(Sj))Q,

where (−,−)Q is the bilinear form defined in Section 2.1.

Now g = (g, [−,−]) is the Lie algebra over C generated by h and the symbols ei and
fi (1 ≤ i ≤ n) satisfying the following defining relations:

(L1) [h, h′] = 0 for all h, h′ ∈ h,
(L2) [h, ei] = αi(h)ei, and [h, fi] = −αi(h)fi,
(L3) [ei, fi] = α∨

i and [ei, fj ] = 0 for all i 6= j,
(L4) (ad(ei)

1−cij )(ej) = 0 for all i 6= j,
(L5) (ad(fi)

1−cij )(fj) = 0 for all i 6= j.

(For x, y ∈ g and m ≥ 1 we set ad(x)(y) := ad(x)1(y) := [x, y] and ad(x)m+1(y) :=
ad(x)m([x, y]).)

The Lie algebra g is finite-dimensional if and only if Q is a Dynkin quiver. In this case,
this is the usual Serre presentation of the simple Lie algebra associated to Q.

Conversely, if g = g(C) is a Kac-Moody Lie algebra defined by a symmetric generalized
Cartan matrix C, we say that g is of type Γ if C = CΓ. This is well defined for symmetric
Kac-Moody Lie algebras. We call Γ the Dynkin graph of g.

For α ∈ h∗ let
gα := {x ∈ g | [h, x] = α(h)x for all h ∈ h}.

One can show that dim gα <∞ for all α. By

R :=
n∑

i=1

Zαi
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we denote the root lattice of g. Define R+ := Nα1 ⊕ · · · ⊕Nαn. The roots of g are defined
as the elements in

∆ := {α ∈ R \ {0} | gα 6= 0}.

Set ∆+ := ∆ ∩ R+ and ∆− := ∆ ∩ (−R+). One can show that ∆ = ∆+ ∪ ∆−. The
elements in ∆+ and ∆− are the positive roots and the negative roots, respectively. The
elements in {α1, . . . , αn} are positive roots of g and are called simple roots.

One has the triangular decomposition g = n− ⊕ h⊕ n with

n− =
⊕

α∈∆+

g−α and n =
⊕

α∈∆+

gα.

The Lie algebra n is generated by e1, . . . , en with defining relations (L4). Set nα := gα if
α ∈ R+ \ {0}.

For 1 ≤ i ≤ n define an element si in the automorphism group Aut(h∗) of h∗ by

si(α) := α− α(α∨
i )αi

for all α ∈ h∗. The subgroup W ⊂ Aut(h∗) generated by s1, . . . , sn is the Weyl group
of g. The elements si are called Coxeter generators of W . The identity element of W is
denoted by 1. The length l(w) of some w 6= 1 in W is the smallest number t ≥ 1 such that
w = sit · · · si2si1 for some 1 ≤ ij ≤ n. In this case (it, . . . , i2, i1) is a reduced expression for
w. Let R(w) be the set of all reduced expressions for w. We set l(1) = 0.

A root α ∈ ∆ is a real root if α = w(αi) for some w ∈ W and some i. It is well known
that dim gα = 1 if α is a real root. By ∆re we denote the set of real roots of g. Define
∆+

re := ∆re ∩∆+.

Finally, let us fix a basis {̟j | 1 ≤ j ≤ 2n− rank(CQ)} of h
∗ such that

̟j(α
∨
i ) = δij , (1 ≤ i ≤ n, 1 ≤ j ≤ 2n − rank(CQ)).

The ̟j are the fundamental weights. We denote by

P := {ν ∈ h∗ | ν(α∨
i ) ∈ Z for all 1 ≤ i ≤ n}

the integral weight lattice, and we set

P+ := {ν ∈ P | ν(α∨
i ) ≥ 0 for all 1 ≤ i ≤ n}.

The elements in P+ are called integral dominant weights. We have

P =
n⊕

j=1

Z̟j ⊕

2n−rank(CQ)⊕

j=n+1

C̟j and P+ =
n⊕

j=1

N̟j ⊕

2n−rank(CQ)⊕

j=n+1

C̟j

Define

P :=

n⊕

j=1

Z̟j and P
+
:=

n⊕

j=1

N̟j.

The lattice P can be naturally identified with the weight lattice of the derived subalgebra
g′ := [g, g] of g.
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4.2. The universal enveloping algebra U(n). The universal enveloping algebra U(n)
of the Lie algebra n is the associative C-algebra defined by generators E1, . . . , En and
relations

1−cij∑

k=0

(−1)kE
(k)
i EjE

(1−cij−k)
i = 0

for all i 6= j, where the cij are the entries of the generalized Cartan matrix CQ, and let

E
(k)
i := Ek

i /k!.

We have a canonical embedding ι : n → U(n) which maps ei to Ei for all 1 ≤ i ≤ n. We
consider n as a subspace of U(n), and we also identify ei and Ei.

Let

J =

{
N1 if dim(n) =∞,

{1, 2, . . . , d} if dim(n) = d.

Let P := {pi | i ∈ J} be a C-basis of n such that P ∩ nα is a basis of nα for all positive
roots α. We assume that {e1, . . . , en} ⊂ P. Thus ei is a basis vector of the (1-dimensional)
space nαi

. For k ≥ 0 define

p
(k)
i := pki /k!.

Let N
(J)

be the set of tuples (mi)i∈J of natural numbers mi such that mi = 0 for all but

finitely many mi. For m = (mi)i≥1 ∈ N
(J)

define

pm := p
(m1)
1 p

(m2)
2 · · · p(ms)

s

where s is chosen such that mj = 0 for all j > s.

Theorem 4.1 (Poincaré-Birkhoff-Witt). The set

P :=
{
pm |m ∈ N

(J)
}

is a C-basis of U(n).

The basis P is called a PBW-basis of U(n). For d = (d1, . . . , dn) ∈ Nn let Ud be
the subspace of U(n) spanned by the elements of the form ei1ei2 · · · eim , where for each
1 ≤ i ≤ n the set {k | ik = i, 1 ≤ k ≤ m} contains exactly di elements. It follows that

U(n) =
⊕

d∈Nn

Ud.

This turns U(n) into an Nn-graded algebra.

Furthermore, U(n) is a cocommutative Hopf algebra with comultiplication

∆: U(n)→ U(n)⊗ U(n)

defined by ∆(x) := 1⊗ x+ x⊗ 1 for all x ∈ n. It is easy to check that

(2) ∆(pm) =
∑

k

pk ⊗ pm−k,

where the sum is over all tuples k = (ki)i≥1 with 0 ≤ ki ≤ mi for every i.

By U∗
d we denote the vector space dual of Ud. Define the graded dual of U(n) by

U(n)∗gr :=
⊕

d∈Nn

U∗
d .
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It follows that U(n)∗gr is a commutative associative C-algebra with multiplication defined

via the comultiplication ∆ of U(n): For f ′, f ′′ ∈ U(n)∗gr and x ∈ U(n), we have

(f ′ · f ′′)(x) =
∑

(x)

f ′(x(1))f
′′(x(2)),

where (using the Sweedler notation) we write

∆(x) =
∑

(x)

x(1) ⊗ x(2).

Let P∗ :=
{
p∗m |m ∈ N

(J)
}
be the dual PBW-basis of U(n)∗gr, where

p∗m(pn) :=

{
1 if m = n,

0 otherwise.

The element in P∗ corresponding to pi ∈ P is denoted by p∗i . It follows from (2) that

p∗m · p
∗
n = p∗m+n,

that is, each element p∗m in P∗ is equal to a monomial in the p∗i ’s. Hence, the graded dual
U(n)∗gr can be identified with the polynomial algebra C[p∗1, p

∗
2, . . .] (with countably many

variables p∗i ).

4.3. The Lie algebra n(w). Let

n̂ :=
∏

α∈∆+

nα

be the completion of n. A subset Θ ⊆ ∆+ is bracket closed if for all α, β ∈ Θ with
α+ β ∈ ∆+ we have α+ β ∈ Θ. In this case, we define

n̂(Θ) :=
∏

α∈Θ

nα.

Since Θ is bracket closed, n̂(Θ) is a Lie subalgebra of n̂. One calls Θ bracket coclosed if
∆+ \Θ is bracket closed.

For w ∈ W set ∆+
w := {α ∈ ∆+ | w(α) < 0}. It is well known that for each reduced

expression (ir, . . . , i2, i1) ∈ R(w) we have

∆+
w = {αi1 , si1(αi2), . . . , si1si2 · · · sir−1(αir)}.

For 1 ≤ k ≤ r set

βi(k) :=

{
αi1 if k = 1,

si1si2 · · · sik−1
(αik) otherwise.

The set ∆+
w contains l(w) positive roots, all of these are real roots, see for example [Ku,

1.3.14]. The next lemma is also well known.

Lemma 4.2. For every w ∈W , the set ∆+
w is bracket closed and bracket coclosed.

Let n(w) := n̂(∆+
w) be the nilpotent Lie algebra associated to w. We have

n(w) =
⊕

α∈∆+
w

nα

and dim n(w) = l(w).

Again, let i = (ir, . . . , i1) be a reduced expression. As in Section 4.2 we choose a C-basis
P = {pj | j ∈ J} such that P ∩ nα is a basis of nα for all positive roots α. The resulting
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PBW-basis P = {pm | m ∈ N
(J)
} of U(n) is called i-compatible provided the vector pk

belongs to nβi(k) for all 1 ≤ k ≤ r. In this case

Pi :=
{
p
(m1)
1 p

(m2)
2 · · · p(mr)

r | mk ≥ 0 for all 1 ≤ k ≤ r
}

is a PBW-basis of the universal enveloping algebra U(n(w)) of n(w), and

P∗
i := {(p∗1)

m1(p∗2)
m2 · · · (p∗r)

mr | mk ≥ 0 for all 1 ≤ k ≤ r}

is the corresponding dual PBW-basis of the graded dual U(n(w))∗gr.

4.4. Highest weight modules. A U(g)-moduleM is a weight module or h-diagonalizable
if

M =
⊕

µ∈h∗

Mµ

where

Mµ := {m ∈M | h ·m = µ(h)m for all h ∈ h} .

For each vector v ∈ Mµ let wt(v) := µ be its weight. Analogously, one defines when a
right U(g)-module is a weight module.

A U(g)-module M is a highest weight module if the following hold:

• M is a weight module;
• There is a vector v ∈M with U(g) · v =M ;
• ei · v = 0 for all i.

A right U(g)-module M is a lowest weight module if the following hold:

• M is a weight module;
• There is a vector u ∈M with u · U(g) =M ;
• u · fi = 0 for all i.

When we work with right U(g)-modules, we invert the usual ordering on weights. So if M
is a lowest weight right U(g)-module, then the vector u (which is uniquely determined up
to a non-zero scalar) has actually the lowest weight of M . Indeed, if m ∈ Mµ and h ∈ h,
then we have

(m · ei) · h = (µ(h)m) · ei − (αi(h)m) · ei = (µ− αi)(h)(m · ei).

Here we used that [h, ei] = hei − eih = αi(h)ei. So m · ei has weight µ− αi.

4.5. Construction of highest weight modules. In this section we present some of our
results from [GLS3] in a form convenient for our present purpose. For ν ∈ P+ we write

Îν :=

n⊕

i=1

Î
ν(α∨

i )
i .

For 1 ≤ i ≤ n and a nilpotent Λ-module X we denote by G(i,X) the variety of submodules
Y of X such that X/Y ∼= Si. Similarly, if

soc(X) =
n⊕

i=1

Smi

i
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and ν ∈ P+ is such that ν(α∨
i ) ≥ mi for 1 ≤ i ≤ n, then we have an embedding X →֒ Îν .

In this case, we denote by G(i, ν,X) the variety of submodules Y of Îν such that X ⊂ Y
and Y/X ∼= Si. Hence, if dim(X) = β and f ∈ Mβ−αi

, we can form the following sum

Σ :=
∑

m∈C

mχc({Y ∈ G(i,X) | f(Y ) = m}).

For convenience we shall denote such an expression by an integral, for example,

Σ =

∫

Y ∈G(i,X)
f(Y ).

Similarly, there exists a partition

G(i,X) =

m⊔

j=1

Aj

into constructible subsets such that δY = δY ′ for all Y, Y ′ ∈ Aj . Then, choosing arbitrary
Yj ∈ Aj for j = 1, . . . ,m, we can also denote by an integral the following element of
M∗

β−αi ∫

Y ∈G(i,X)
δY =

m∑

j=1

χc(Aj)δYj
.

Theorem 4.3. Let λ ∈ P be an integral weight, and letMlow(λ) be the lowest weight Verma
right U(g)-module (with underlying vector space U(n)) with lowest weight λ. Under the
identifications

Mlow(λ) ≡ U(n) ≡M

the corresponding right U(g)-module structure on M is described as follows: The genera-
tors ei ∈ n, fi ∈ n−, h ∈ h act on g ∈ Mβ by

(g · ei)(X
′) =

∫

Y ∈G(i,X′)
g(Y ),

(g · fi)(X) =

∫

Y ∈G(i,ν,X)
g(Y )− (ν − λ)(α∨

i )g(X ⊕ Si),

g · h = (λ− β)(h)g,

where X ′ ∈ Λβ+αi
, X ∈ Λβ−αi

and ν ∈ P+ are as above.

Note that g · ei = g ∗ 1i by our convention for the multiplication inM. Moreover, the
formula for g · fi ∈Mβ−αi

is in fact independent of the choice of ν.

For each h-diagonalizable right U(g)-module

M =
⊕

µ∈h∗

Mµ

one can consider the dual representation

M∗ =
⊕

µ∈h∗

M∗
µ

defined by M∗
µ := HomC(Mµ,C). It acquires the structure of a left U(g)-module via

(x · φ)(m) := φ(m · x), (x ∈ U(g), m ∈M).
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Consider the canonical epimorphism from the Verma module Mlow(λ) to the irreducible
lowest weight right U(g)-module Llow(λ). For the corresponding dual representations we
obtain an inclusion

L∗
low(λ) →֒M∗

low(λ).

It is well known that L∗
low(λ) is isomorphic to the irreducible highest weight left U(g)-

module L(λ) with highest weight λ. This yields the following realization of the integrable
module L(λ) in terms of δ-functions.

Theorem 4.4. Let λ ∈ P+ be an integral dominant weight. The subspace

U(λ) := SpanC〈δX | X submodule of Îλ〉

of U(n)∗gr carries the above-mentioned structure of an irreducible highest weight left U(g)-
module L(λ). For such X with dim(X) = β the action of the Chevalley generators of U(g)
is given by

ei · δX =

∫

Y ∈G(i,X)
δY ,

fi · δX =

∫

Y ′∈G(i,λ,X)
δY ′ ,

h · δX = (λ− β)(h)δX .

Note that U(n)∗gr carries also a right U(n)-module structure coming from the left regular
representation of U(n). In order to describe it, we introduce the following definition. For
X ∈ Λβ we denote by G′(i,X) the variety of submodules Y of X such that dim(Y ) = αi.
Each element of this space is isomorphic to Si and clearly G′(i,X) is a projective space.
It is easy to see that

δX · ei =

∫

S∈G′(i,X)
δX/S .

Under the above identification M∗
low(λ) ≡ U(n)∗gr, the subspace of U(n)∗gr carrying the

U(g)-module L(λ) can be described as follows.

Corollary 4.5. For λ ∈ P+ we have

U(λ) =
{
φ ∈ U(n)∗gr | φ · e

λ(α∨
i )+1

i = 0 for all 1 ≤ i ≤ n
}
.

Proof. The nilpotent Λ-module X is isomorphic to a submodule of Îλ if and only if

δX · e
λ(α∨

i )+1
i = 0

for every i. The claim then follows from Theorem 4.4. �

Note that for λ, µ ∈ P+ we have U(λ) = U(µ) if and only if

λ− µ ∈

2n−rank(CQ)⊕

j=n+1

C̟j .
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5. Unipotent groups

5.1. The group N and its coordinate ring C[N ]. The completion n̂ of n defined in 4.3,
is a pro-nilpotent pro-Lie algebra, see [Ku, Section 6.1.1]. Let N be the pro-unipotent
pro-group with Lie algebra n̂. We refer to Kumar’s book [Ku, Section 4.4] for all missing
definitions.

We can assume that N = n̂ as a set and that the multiplication of N is defined via the
Baker-Campbell-Hausdorff formula. Hence the exponential map Exp: n̂ → N is just the
identity map.

Put H := U(n)∗gr. This is a commutative Hopf algebra. We can regard H as the
coordinate ring C[N ] of N , that is, we can identify N with the set

maxSpec(H) ≡ Homalg(H,C)

of C-algebra homomorphisms H → C. An element f ∈ Homalg(H,C) is determined by
the images ci := f(p∗i ) for all i ≥ 1.

It is well known (see e.g. [Ab, §3.4]) that Homalg(H,C) can also be identified with the
group G(H◦) of all group-like elements of the dual Hopf algebra H◦ of H, by mapping
f ∈ Homalg(H,C) to

yf =
∑

m

(
∏

i

cmi

i

)
pm ∈ G(H

◦).

Note that the map f 7→ yf does not depend on the choice of the PBW-basis P = {pm |

m ∈ N(J)}. Note also that G(H◦) is contained in the vector space dual H∗ of H, which is

the completion Û(n) of U(n) with respect to its natural grading. When we use this second
identification, an element x ∈ N = n̂ is simply represented by the group-like element

exp(x) :=
∑

k≥0

xk/k!

in Û(n). To summarize, we have H = U(n)∗gr ≡ C[N ] and

N ≡ maxSpec(H) ≡ Homalg(H,C) ≡ G(H
◦) ⊂ H◦ ⊂ H∗ ≡ Û(n).

5.2. The unipotent groups N(w) and N ′(w). Let Θ be a bracket closed subset of ∆+,
and let

N(Θ) := Exp(n̂(Θ))

be the corresponding pro-unipotent pro-group. For example, if α ∈ ∆+
re, then Θα := {α}

is bracket closed. In this case, N(α) is called the one-parameter subgroup of N associated
to α. We have an isomorphism of groups N(α) ∼= (C,+).

If Θ is bracket closed and bracket coclosed, then set N ′(Θ) := N(∆+ \Θ). In this case,
the multiplication in N yields a bijection [Ku, Lemma 6.1.2]

m : N(Θ)×N ′(Θ)→ N.

For w ∈W let N(w) := N(∆+
w). This is a unipotent algebraic group of dimension l(w),

and its Lie algebra is n(w). Again we can identify U(n(w))∗gr ≡ C[N(w)]. Similarly, define

N ′(w) := N ′(∆+
w).
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6. Evaluation functions and generating functions of Euler

characteristics

Recall the identifications M∗ ≡ U(n)∗gr = C[N ]. To every X ∈ nil(Λ), we have associ-
ated a linear form δX ∈ U(n)∗gr. We shall also denote the evaluation function δX by ϕX

when we regard it as a function on N . For 1 ≤ i ≤ n define xi : C→ N by

xi(t) := exp(tei) =
∑

k≥0

(tei)
k

k!

The following formula shows how to evaluate ϕX on a product of xi(t)’s.

Proposition 6.1. Let X ∈ nil(Λ), and let i = (i1, . . . , ik) be any sequence with 1 ≤ ij ≤ n
for all 1 ≤ j ≤ k. We have

ϕX(xi1(t1) · · · xik(tk)) =
∑

a=(a1,...,ak)∈Nk

χc(Fia,X)
ta11 · · · t

ak
k

a1! · · · ak!
.

Here ia is short for the sequence (i1, . . . , i1, . . . , ik, . . . , ik) consisting of a1 letters i1 followed
by a2 letters i2, etc.

Proof. By Section 5.1 we can regard xi1(t1) · · · xik(tk) as an element of Û(n), namely,

xi1(t1) · · · xik(tk) =
∑

a=(a1,...,ak)∈Nk

ta11 · · · t
ak
k

a1! · · · ak!
ea1i1 · · · e

ak
ik
.

It follows from the identification of ϕX with δX that

ϕX(xi1(t1) · · · xik(tk)) =
∑

a=(a1,...,ak)∈Nk

ta11 · · · t
ak
k

a1! · · · ak!
δX(ea1i1 · · · e

ak
ik
).

Now, in the geometric realization M of the enveloping algebra U(n) in terms of con-
structible functions, ea1i1 · · · e

ak
ik

becomes the convolution product 1a1i1 ⋆ · · · ⋆ 1
ak
ik

and it is
easy to see that

δX(1a1i1 ⋆ · · · ⋆ 1
ak
ik
) = χc(Fia,X).

This finishes the proof. �

Remark 6.2. The formula for ϕX given in [GLS5, §9] involves descending flags instead
of ascending flags of submodules of X. This is because in the present paper we have taken
a convolution product ⋆ opposite to that of our previous papers, see Remark 2.3.

Proposition 6.1 says that we can think of the ϕ-functions ϕX as generating functions of
Euler characteristics.

For i = (i1, . . . , ik) and a = (a1, . . . , ak) as above and X ∈ nil(Λ) let Fi,a,X be the
projective variety of partial composition series of type (i,a) of X. Thus an element of
Fi,a,X is a chain

0 = X0 ⊆ X1 ⊆ · · · ⊆ Xk = X

of submodules of X such that Xj/Xj−1
∼= S

aj
ij

for all 1 ≤ j ≤ k. There is an obvious

surjective morphism πi,a : Fia,X → Fi,a,X whose fibers are all isomorphic to

F (Ca1)× · · · × F (Cak) ,

where F (Cm) is the variety of complete flags of subspaces in Cm. In particular, we have

χc (Fia,X) = χc (Fi,a,X) a1! · · · ak!.
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Summarizing, we get

ϕX(xi1(t1) · · · xik(tk)) =
∑

a=(a1,...,ak)∈Nk

χc(Fi,a,X)ta11 · · · t
ak
k .

7. Generalized minors

7.1. Generalized minors. We start with some generalities on Kac-Moody groups. Let
Gmin be the Kac-Moody group with Lie(Gmin) = g defined in [Ku, 7.4]. It has a refined
Tits system

(Gmin,NormGmin(H), N ∩Gmin, N−,H).

Write Nmin := Gmin ∩ N . Moreover, Gmin is an affine ind-variety in a unique way [Ku,
7.4.8].

For any real root α of g, the one-parameter subgroup N(α) is contained in Gmin, and
the N(α) together with H generate Gmin as a group. We have an anti-automorphism
g 7→ gT of Gmin which maps N(α) to N(−α) for each real root α, and fixes H. We have
another anti-automorphism g 7→ gι which fixes N(α) for every real root α, and hι = h−1

for every h ∈ H.

For each γ ∈ h∗ there is a character H → C∗, a 7→ aγ defined by exp(h)γ := eγ(h) for
all h ∈ h.

For 1 ≤ i ≤ n we have a unique homomorphism ϕi : SL2(C)→ Gmin satisfying

ϕi

(
1 t
0 1

)
= exp(tei), ϕi

(
1 0
t 1

)
= exp(tfi), (t ∈ C).

We define

si := ϕi

(
0 −1
1 0

)
.

For w ∈ W , we define w := sir · · · si1 , where (ir, . . . , i1) is a reduced expression for w.
Thus, we choose for every w ∈ W a particular representative w of w in the normalizer
NormGmin(H).

Let L(λ) denote the irreducible highest weight g-module with highest weight λ ∈ P+.
Let uλ be a highest weight vector of L(λ). This is an integrable module, so it is also a
representation of Gmin. For a reduced expression i = (ir, . . . , i1) of a Weyl group element
w, the vector

si1 · · · sir(uλ) ∈ L(λ)

is an extremal weight vector of L(λ), i.e. it belongs to the extremal weight space L(λ)w(λ).
For a U(g)-module V and a weight vector v ∈ Vµ define

fmax
i v := f

(m)
i v

wherem ≥ 0 is maximal such that f
(m)
i v 6= 0. Similarly, define emax

i . The following results
can be found in [Jo, Section 4.4.3]: We have

si1si2 · · · sir(uλ) = fmax
i1 fmax

i2 · · · fmax
ir (uλ)

and

ei1f
max
i2 · · · fmax

ir (uλ) = 0.

Furthermore,
wt (si1 · · · sir(uλ)) = wt (si2 · · · sir(uλ))− b1αi1

where b1 := −(si1 · · · sir(λ), αi1) = (si2 · · · sir(λ), αi1).
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We have the following analogue of the Gaussian decomposition.

Proposition 7.1. Let G0 be the subset N− ·H ·N
min of Gmin.

(i) The subset G0 is dense open in Gmin and each element g ∈ G0 admits a unique
factorization g = [g]−[g]0[g]+ with [g]− ∈ N−, [g]0 ∈ H and [g]+ ∈ N

min.
(ii) The map g 7→ [g]+ (resp. g 7→ [g]0) is a morphism of ind-varieties from G0 to

Nmin (resp. to H).

Part (i) follows from the fundamental properties of a refined Tits system [Ku, Theorem
5.2.3]. For part (ii), see [Ku, Proposition 7.4.11].

Following Fomin and Zelevinsky [FZ1] we can now define for each ̟j a generalized
minor ∆̟j,̟j

as the regular function on Gmin such that

∆̟j,̟j
(g) = [g]

̟j

0 , (g ∈ G0).

For w ∈W , we also define ∆̟j ,w(̟j) by

∆̟j ,w(̟j)(g) := ∆̟j ,̟j
(gw).

The generalized minors ∆̟j ,̟j
(g) have the following alternative description.

Proposition 7.2. Let g ∈ Gmin. The coefficient of u̟j
in the projection of gu̟j

on the
weight space L(̟j)̟j

is equal to ∆̟j ,̟j
(g).

Proof. Set uj := u̟j
. Let g = [g]−[g]0[g]+ ∈ G0. We have [g]+uj = uj, and [g]0uj =

[g]
̟j

0 uj . The result then follows from the fact that [g]−uj is equal to uj plus elements in
lower weights. �

Proposition 7.3. We have

G0 =
{
g ∈ Gmin | ∆̟j ,̟j

(g) 6= 0 for all 1 ≤ j ≤ n
}
.

Proof. Set uj := u̟j
. We use the Birkhoff decomposition [Ku, Theorem 5.2.3]

Gmin =
⊔

w∈W

N−wHN
min,

where G0 is the subset of the right-hand side corresponding to w = e. If g = [g]−[g]0[g]+ ∈
G0, then ∆̟j ,̟j

(g) = [g]
̟j

0 6= 0. Conversely, if g 6∈ G0 we have g = n−whn for some

n− ∈ N−, n ∈ N
min, h ∈ H and w 6= e. Then for some j we have w(̟j) 6= ̟j and whnuj

is a multiple of the extremal weight vector wuj. Since the projection of n−wuj on the
highest weight space of L(̟j) is zero, it follows that ∆̟j,̟j

(g) = 0. Finally, note that for

any j > n the minor ∆̟j ,̟j
does not vanish on Gmin. Indeed, the corresponding highest

weight irreducible module L(̟j) is one-dimensional since ̟j(α
∨
i ) = 0 for any i. Hence in

the above description of G0, we may omit the minors ∆̟j ,̟j
with j > n. �

7.2. The module L(λ) as a subspace of C[N ]. For w ∈ W and 1 ≤ j ≤ n, we denote
by

D̟j ,w(̟j)

the restriction of the generalized minor ∆̟j ,w(̟j) to N
min. For example, D̟j ,̟j

is equal

to the constant function 1. In Section 9.1 we are going to show that each (restricted)
generalized minor D̟j ,w(̟j) can be identified with a generating function ϕX for a certain
Λ-module X. In order to do this, we need to recall some results on Kac-Moody groups.
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Let G′ := [Gmin, Gmin] be the group constructed by Kac and Peterson [KP], see [Ku,
Section 7.4.E (1)]. The associated Lie algebra is g′ = [g, g].

Let C[G′]s.r. denote the algebra of strongly regular functions on G′ [KP, §2C]. Define
the invariant ring

C[N−\G
′]s.r. :=

{
f ∈ C[G′]s.r. | f(ng) = f(g) for all n ∈ N−, g ∈ G

′
}
.

This ring is endowed with the usual left action of G′ given by

(g · f)(g′) := f(g′g), (f ∈ C[N−\G
′]s.r., g, g

′ ∈ G′).

It was proved by Kac and Peterson [KP, Corollary 2.2] that as a left G′-module, it de-
composes as follows

C[N−\G
′]s.r. =

⊕

λ∈P
+

L(λ).

This is a multiplicity-free decomposition, in which the irreducible highest weight module
L(λ) is carried by the subspace

S(λ) =
{
f ∈ C[N−\G

′]s.r. | f(hg) = ∆λ(h)f(g) for all h ∈ H, g ∈ G
′
}
,

where we denote

∆λ :=

n∏

j=1

∆
λ(α∨

j )
̟j ,̟j .

Clearly, ∆λ is contained in S(λ), and it is a highest weight vector. Moreover, for any
w ∈W , the 1-dimensional extremal weight space of S(λ) with weight w(λ) is spanned by

∆w(λ) :=

n∏

j=1

∆
λ(α∨

j )

̟j ,w(̟j)
.

Now consider the restriction map

ρ : C[N−\G
′]s.r. → C[Nmin]s.r.

given by restriction of functions from G′ to Nmin.

Lemma 7.4. For every λ ∈ P
+
, the restriction

ρλ : S(λ)→ C[Nmin]s.r.

of ρ to S(λ) is injective.

Proof. Let B′
− be the Borel subgroup of G′ with unipotent radical N−. We have

Nmin ⊂ G0 ∩G
′ = B′

−N
min.

It follows that the natural projection from G′ onto B′
−\G

′ restricts to an embedding

of Nmin, with image the open subset of the flag variety X = B′
−\G

′ defined by the
non-vanishing of the minors ∆̟j ,̟j

. Now C[N−\G
′]s.r. can be regarded as the multi-

homogeneous coordinate ring of X with homogeneous components S(λ), where λ runs

through P
+
. It follows that C[Nmin] can be identified with the subring of degree 0 homo-

geneous elements of the localized ring obtained from C[N−\G
′]s.r. by formally inverting

the element

∆ :=

n∏

j=1

∆̟j ,̟j
.

Therefore, the restriction ρλ of ρ to every homogeneous piece S(λ) is an embedding. �
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It follows that we can transport the G′-module structure from S(λ) to ρ(S(λ)) by setting

g · ϕ := ρ(g · ρ−1
λ (ϕ)), (g ∈ G′, ϕ ∈ ρ(S(λ))).

In this way, we can identify the highest weight module L(λ) with the subspace ρ(S(λ)) of
C[Nmin]s.r.. The highest weight vector is now ρ(∆λ) = 1, and the extremal weight vectors
are the (restricted) generalized minors

Dw(λ) :=
n∏

j=1

D
λ(α∨

j )

̟j ,w(̟j)
,

for w ∈W .

At this point, we note that a strongly regular function on Nmin is just the same as
an element of U(n)∗gr. Indeed, the elements of C[Nmin]s.r. are the restrictions to Nmin of
the linear combinations of matrix coefficients of the irreducible integrable representations

L(λ) with λ ∈ P
+

of G′, see [KP, Lemma 4.2]. Now, by Theorem 4.4, we can realize
every L(λ) as a subspace of U(n)∗gr, and every f ∈ U(n)∗gr belongs to such a subspace for

λ =
∑n

i=1 li̟i with the li ≫ 0. It follows that each element of U(n)∗gr can be seen as a
matrix coefficient for some L(λ), and vice versa. We can therefore identify

C[Nmin]s.r. ≡ U(n)∗gr ≡ C[N ].

Moreover, these two ways of embedding L(λ) in C[N ] coincide.

Lemma 7.5. Let λ ∈ P
+
. Under the identification U(n)∗gr ≡ C[Nmin]s.r., the subspace

U(λ) defined in Theorem 4.4 coincides with ρ(S(λ)).

Proof. The natural right action of U(n) on U(n)∗gr defined before Corollary 4.5 coincides

with the right action of U(n) on C[Nmin]s.r. obtained by differentiating the right regular
representation of Nmin:

(f · n)(x) = f(nx), (x, n ∈ Nmin, f ∈ C[Nmin]s.r.).

Consider first the case of a fundamental weight λ = ̟j . It is easy to check that

∆̟j ,̟j
(xi(t)g) =

{
∆̟j ,̟j

(g) if i 6= j,
∆̟j ,̟j

(g) + t∆̟j,̟j
(sjg) if i = j.

Now, the subspace ρ(S(λ)) is spanned by the functions n 7→ ∆̟j ,̟j
(ng), (n ∈ N−, g ∈

G′). By differentiating the previous equation with respect to t and setting t = 0, we obtain
that

ρ(S(λ)) ⊆
{
f ∈ C[Nmin]s.r. | f · ei = 0 for i 6= j, f · e2j = 0

}
.

Hence, using Corollary 4.5, we see that ρ(S(λ)) is contained in the embedding of L(̟j) into
the dual Verma module M∗

low(̟j). Since these spaces have the same graded dimensions,

they must coincide. The case of a general λ ∈ P
+
follows using the fact that

∆λ =
n∏

j=1

∆
λ(α∨

j )
̟j ,̟j

and that the ei’s act as derivations on C[Nmin]s.r.. �
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8. The coordinate rings C[N(w)] and C[Nw]

8.1. The coordinate ring C[N(w)] as a ring of invariants. Again, we fix a reduced
expression i = (ir, . . . , i1) of a Weyl group element w. Assume that

P = {pm |m ∈ N
(J)
}

is an i-compatible PBW-basis of U(n). Note that this PBW-basis of U(n) and also the
corresponding dual PBW-basis of U(n)∗gr are homogeneous with respect to the (root lattice)
Nn-grading of U(n). We write |m| = d ∈ Nn in case pm is a homogeneous element of degree

d ∈ Nn. Let us denote by (ei)i∈J the usual coordinate vectors of Z
(J)

. For example,
|ek| = βi(k) for 1 ≤ k ≤ r.

The multiplication µ : U(n)⊗U(n)→ U(n) is given by its effect on the PBW-basis, say

pm · pn =
∑

|k|=|m+n|

ckm,n pk.

Next, the comultiplication µ∗ : C[N ] → C[N ] ⊗ C[N ] is a ring homomorphism, so it is
determined by the value on the generators p∗i = p∗ei . By construction, we have

µ∗(p∗i ) =
∑

|m+n|=|ei|

ceim,n (p
∗
m ⊗ p

∗
n)

Lemma 8.1. Let 1 ≤ i ≤ r and 0 6= n ∈ N
(J)

such that nj = 0 for 1 ≤ j ≤ r. Then
ceim,n = 0.

Proof. Let m = m< + m> such that m<
j = 0 for j > r and m>

j = 0 for 1 ≤ j ≤ r, so

pm = pm< · pm> . Since ∆+
w is bracket closed and coclosed we have

pm> · pn =
∑

|k′|=|m>+n|

ck
′

m>,npk′

with k′j = 0 for 1 ≤ j ≤ r. Thus

pm · pn =
∑

|k′|=|m>+n|

ck
′

m>,npk′+m< .

Putting k = k′ +m< we get ckm,n = ck
′

m>,n. Thus, if in our situation ckm,n 6= 0 then kj 6= 0

for some k > r. �

Now, let us turn to the subgroups N(w) and N ′(w). Consider the ideals

I(w) := (p∗r+1, p
∗
r+2, . . .), I ′(w) := (p∗1, . . . , p

∗
r)

in C[N ]. Then we have

N(w) = {ν ∈ Homalg(C[N ],C) | ν(I(w)) = 0}, and

N ′(w) = {ν ′ ∈ Homalg(C[N ],C) | ν ′(I ′(w)) = 0}.

In other words we have canonically C[N(w)] = C[N ]/I(w) and C[N ′(w)] = C[N ]/I ′(w).

We consider the action of N ′(w) on N via right multiplication. By definition, this comes
from the left action of N ′(w) on C[N ] given by

ν ′ · f = (id ⊗ ν ′)µ∗(f)

for f ∈ C[N ] and ν ′ ∈ N ′(w). (Here we identify C[N ]⊗ C ≡ C[N ] in the canonical way.)
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We denote by C[N ]N
′(w) the invariant subring for this group action.

Proposition 8.2. Consider the injective ring homomorphism

π̃∗w : C[N(w)]→ C[N ]

defined by p∗i + I(w) 7→ p∗i for 1 ≤ i ≤ r. The corresponding morphism (of schemes)
π̃w : N → N(w) is N ′(w)-invariant and is a retraction for the inclusion of N(w) into N .

As a consequence, π̃∗w identifies C[N(w)] with C[N ]N
′(w) = C[p∗1, . . . , p

∗
r ].

Proof. We have

µ∗(p∗i ) = 1⊗ p∗i + p∗i ⊗ 1 +
∑

|m+n|=|ei|

ceim,n (p
∗
m ⊗ p

∗
n)

where in the last sum |m| 6= 0 6= |n|. Thus for 1 ≤ i ≤ r and ν ′ ∈ N ′(w) we get

ν ′ · p∗i = 1 · 0 + p∗i · 1 +
∑

|m+n|=|ei|

ceim,np
∗
m · ν

′(p∗n)

with the last sum vanishing by Lemma 8.1 and the definition of N ′(w). In other words,

p∗i ∈ C[N ]N
′(w) for 1 ≤ i ≤ r. Thus, π̃w : N → N(w) is N ′(w)-invariant, that is, π̃w(nn

′) =
π̃w(n) for any n

′ ∈ N ′(w).

Now, since the multiplication map N(w) × N ′(w) → N is bijective, each N ′(w)-orbit
on N is of the form n · N ′(w) for a unique n ∈ N(w). We conclude that the inclusion
N(w) →֒ N is a section for π̃w. Our claim follows. �

8.2. The coordinate ring C[Nw] as a localization of C[N ]N
′(w). Let us now consider

the groups N(w) and N ′(w) introduced in Section 5.2.

Lemma 8.3. We have

N(w) = N ∩ (w−1N−w),

N ′(w) = N ∩ (w−1Nw),

N ′(w) ∩Nmin = Nmin ∩ (w−1Nminw).

Proof. This follows from [Ku, 5.2.3] and [Ku, 6.2.8]. �

It follows that ∆̟j,w−1(̟j) is invariant under the action of N ′(w) ∩Nmin on Gmin via

right multiplication. Indeed, for g ∈ Gmin and n′ ∈ N ′(w)∩Nmin, we have n′w−1 = w−1n′′

for some n′′ ∈ N ′(w) ∩Nmin, hence

∆̟j ,w−1(̟j)(gn
′) = ∆̟j ,̟j

(gn′w−1) = ∆̟j ,̟j
(gw−1n′′)

= ∆̟j ,̟j
(gw−1) = ∆̟j ,w−1(̟j)(g).

Define

Ow :=
{
n ∈ Nmin | ∆̟j ,w−1(̟j)(n) 6= 0 for all 1 ≤ j ≤ n

}
.

This is the open subset of Nmin consisting of elements n such that wnT ∈ G0. Indeed,

∆̟j ,w−1(̟j)(n) = ∆̟j ,̟j
(nw−1) = ∆̟j ,̟j

((nw−1)T ) = ∆̟j ,̟j
(wnT ),

since w−1 = wT . Following [BZ, Section 5], we can now define the map η̃w : Ow → Nmin

given by
η̃w(z) := [wzT ]+.

Recall that Nw = N ∩ (B−wB−), see Section 3.4.
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Proposition 8.4. The following properties hold:

(i) The map η̃w is a morphism of ind-varieties.
(ii) The image of η̃w is Nw.
(iii) η̃w(x) = η̃w(y) if and only if x = yn′ for some n′ ∈ N ′(w) ∩Nmin.
(iv) η̃w restricts to a bijective morphism N(w) ∩Ow → Nw.
(v) We have Nw ⊂ Ow, and η̃w restricts to a bijection ηw : Nw → Nw.
(vi) The inverse of ηw is given by η−1

w (x) = ηw−1(xι)ι for x ∈ Nw. It follows that ηw
is an automorphism of Nw.

Proof. Property (i) follows from Proposition 7.1 (ii). Next, we have

[wzT ]+ = ([wzT ]−1
0 [wzT ]−1

− )wzT ∈ B−wB−.

This shows that the image of η̃w is contained in Nw. The rest of (ii) and (iii) is proved
as in [BZ, Proposition 5.1]. Property (iv) follows from (ii), (iii), and the decomposition
Nmin = N(w)× (N ′(w)∩Nmin). Finally, (v) and (vi) are proved exactly in the same way
as in [BZ, Propositions 5.1, 5.2]. �

Proposition 8.5. The map π̃w restricts to a morphism πw : Nw → Ow ∩ N(w). This is
an isomorphism with inverse

η−1
w η̃w : Ow ∩N(w)→ Nw.

In particular, Nw is an affine variety with coordinate ring identified to the localized ring

C[N ]
N ′(w)
∆w

, where

∆w :=

n∏

j=1

∆̟j ,w−1(̟j).

Proof. By Proposition 8.4 (iv) and (v), we know that η−1
w η̃w is a bijection. On the other

hand π̃w(N
w) ⊆ Ow ∩N(w) because Nw ⊂ Ow. Now, by Proposition 8.4 (iii), we have

η̃w(πw(x)) = η̃w(x) = ηw(x)

for every x ∈ Nw. Hence η−1
w η̃wπw(x) = x for every x in Nw. So we have η−1

w η̃wπw = idNw ,
and this proves that πw is the inverse of η−1

w η̃w.

These maps are morphisms of varieties so they induce isomorphisms

C[Nw]
∼
−→ C[N(w) ∩Ow] = C[N(w)]∆w

∼
−→ C[N ]

N ′(w)
∆w

.

�

The following commutative diagram displays the different morphisms appearing in
Propositions 8.4 and 8.5:

N
π̃w // N(w) Ow

η̃w // Nmin

Nw
πw

∼ //

ι

aaDDDDDDDDD

ηw

88N(w) ∩Ow
∼ //

ι
ffLLLLLLLLLL

ι

99ssssssssss

Nw

ι

<<yyyyyyyyy

(The arrows labelled with ι are inclusion maps.)
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9. The modules Vk and Mk

For the entire section, we fix a reduced expression i = (ir, . . . , i1) of a Weyl group
element w, and as before let Vi = V1 ⊕ · · · ⊕ Vr and Mi = M1 ⊕ · · · ⊕Mr. Recall that for
each 1 ≤ k ≤ r there is a short exact sequence

0→ Vk− → Vk →Mk → 0

of Λ-modules.

9.1. Generalized minors as ϕ-functions. For 1 ≤ k ≤ r set

w−1
≤k := si1 · · · sik .

Proposition 9.1. For 1 ≤ k ≤ r we have

ϕVk
= D̟ik

,w−1
≤k

(̟ik
).

In particular, we have ϕIi,j = D̟j ,w−1(̟j) for every 1 ≤ j ≤ n.

Proof. Using Lemma 7.5, we can realize the fundamental module L(̟ik) as the subspace
ρ(S(̟ik)) of C[N ]. Then using Theorem 4.4, the definition of Vk (see Section 2.4) and
the discussion in Section 7.1, we can check that the function ϕVk

is an extremal weight

vector of weight w−1
≤k(̟ik) in L(̟ik), hence it coincides with D̟ik

,w−1
≤k

(̟ik
) up to a scalar.

Moreover, its image under emax
ik
· · · emax

i1
is equal to 1, so the normalizations agree and we

have ϕVk
= D̟ik

,w−1
≤k

(̟ik
). �

Corollary 9.2. For 1 ≤ k ≤ r we have dim(Vk) = ̟ik − si1si2 · · · sik(̟ik).

Proof. The statement follows from the following general fact: Assume that δX ∈ U(λ)
for some weight λ ∈ P+ and some Λ-module X. When we consider δX as an element of
L(λ) ≡ U(λ), Theorem 4.4 implies that wt(δX) = λ− dim(X). �

Recall that for 1 ≤ k ≤ r we defined

βi(k) =

{
αi1 if k = 1,

si1 · · · sik−1
(αik) otherwise.

Corollary 9.3. For 1 ≤ k ≤ r we have dim(Mk) = βi(k).

Proof. By Corollary 9.2 we know that dim(Vk) = ̟ik − si1si2 · · · sik(̟ik) for each 1 ≤ k ≤
r. By the definition of Mk we have

dim(Mk) = dim(Vk)− dim(Vk−)

= si1si2 · · · sik− (̟ik)− si1si2 · · · sik(̟ik)

= si1si2 · · · sik−

(
̟ik − sik−+1

· · · sik(̟ik)
)
.

But

sj(̟ik) =

{
̟ik if j 6= ik,

̟ik − αik if j = ik.

It follows that

dim(Mk) = si1si2 · · · sik−

(
̟ik −̟ik + si

k−+1
· · · sik−1

(αik)
)

= si1si2 · · · sik−1
(αik).

This finishes the proof. �
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Corollary 9.4. We have ∆+
w = {dim(M1), . . . ,dim(Mr)}.

9.2. Example. Let Q be a quiver with underlying graph

1

==
==

= 2 3

��
��

�

4

Let w be the Weyl group element s3s4s2s1s4. The set of reduced expressions for w is
R(w) = {(3, 4, 2, 1, 4), (3, 4, 1, 2, 4)}. We have

∆+
w = { 0 0 0

1 , 1 0 0
1 , 0 1 0

1 , 1 1 0
1 , 1 1 1

2 } .

Let i = (3, 4, 2, 1, 4). We get

Vi = V1 ⊕ · · · ⊕ V5 = 4 ⊕ 4
1 ⊕ 4

2 ⊕
4

1 2
4
⊕

4
1 2
4
3

and

Mi =M1 ⊕ · · · ⊕M5 = 4 ⊕ 4
1 ⊕ 4

2 ⊕
4

1 2 ⊕
4

1 2
4
3
.

Note that add(Mi) is neither closed under factor modules nor under submodules. We have

Cw = add (Vi ⊕ 4
1 2 ) .

We can think of Cw as a categorification of a cluster algebra of type A1 with four coefficients.

9.3. Example. Let Q be a quiver with underlying graph 1 2 3 Then i :=
(i7, . . . , i1) := (3, 1, 2, 3, 1, 2, 1) is a reduced expression of a Weyl group element w ∈ WQ.
The indecomposable direct summands of Vi are

V1 = 1 V2 = 1 1
2 V3 =

1 1 1
2 2
1

V4 =
1 1
2
3

V5 =
1 1 1 1 1 1
2 2 2 2
1 3 1

2

V6 =
1 1 1 1 1 1 1 1 1
2 2 2 2 2 2
1 3 1 3 1

2 2
1

V7 =
1 1 1 1
2 2 2
1 1
2
3

.

Here, the Λ-modules are represented by their socle filtration. The indecomposable Cw-
projective-injective modules are V5, V6 and V7. The corresponding functions ϕVk

are given
by

ϕV1 = D̟1,s1(̟1) ϕV2 = D̟2,s1s2(̟2) ϕV3 = D̟1,s1s2s1(̟1)

ϕV4 = D̟3,s1s2s1s3(̟3) ϕV5 = D̟2,s1s2s1s3s2(̟2)

ϕV6 = D̟1,s1s2s1s3s2s1(̟1) ϕV7 = D̟3,s1s2s1s3s2s1s3(̟3).

9.4. Example. We continue to discuss the example from Section 3.5. Thus Q is a quiver
with underlying graph 1 2 3 4 . Note that the Weyl group WQ is the sym-
metric group S5, and the generators si are the transpositions (i, i + 1). The generalized
minors become ordinary minors. More precisely, for w ∈ S5 and i ∈ {1, 2, 3, 4, 5} we have

∆̟i,w(̟i) = ∆{1,2,...,i},w({1,2,...,i}),
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since we may identify S5 with the group of permutation matrices in GL5. Here ∆I,J

denotes the minor in C[SL5] with row set I and column set J . As in Section 3.5 let
w := s3s4s2s1s3s4s2s1 and i := (i8, . . . , i1) := (3, 4, 2, 1, 3, 4, 2, 1). We get

xi(t) := x3(t8)x4(t7)x2(t6)x1(t5)x3(t4)x4(t3)x2(t2)x1(t1) =

=




1 t5 + t1 t5t2 0 0
0 1 t6 + t2 t6t4 t6t4t3
0 0 1 t8 + t4 t8(t7 + t3) + t4t3
0 0 0 1 t7 + t3
0 0 0 0 1



.

A straightforward calculation shows:

D̟1,w
−1
≤1(̟1)

= D{1},{2} = t5 + t1,

D̟2,w
−1
≤2(̟2)

= D{1,2},{2,3} = t6(t5 + t1) + t2t1,

D̟4,w
−1
≤3(̟4)

= D{1,2,3,4},{1,2,3,5} = t7 + t3,

D̟3,w
−1
≤4(̟3)

= D{1,2,3},{2,3,5} = t8(t7(t6(t5 + t1) + t2t1) + t6t3(t5 + t1) + t3t2t1)

+ t4t3t2t1,

D̟1,w
−1
≤5(̟1)

= D{1},{3} = t5t2,

D̟2,w
−1
≤6(̟2)

= D{1,2},{3,5} = t6t5t4t3t2,

D̟4,w
−1
≤7(̟4)

= D{1,2,3,4},{2,3,4,5} = t7t4t2t1,

D̟3,w
−1
≤8(̟3)

= D{1,2,3},{3,4,5} = t8t7t6t5t4t2.

Here the evaluation of the minors is always on xi(t). Due to the structure of the modules
Vk described in Section 3.5, we could also use Proposition 6.1 and calculate directly that

ϕVk
(xi(t)) = D̟ik

,w−1
≤k

(̟ik
)(xi(t))

for all 1 ≤ k ≤ 8.

9.5. Refined socle and top series. For any Λ-module X ∈ Cw there exists a unique
chain

0 = Xr ⊆ · · · ⊆ X1 ⊆ X0 = X

of submodules of X such that Xk−1/Xk = socSik
(X/Xk). This is called the refined socle

series of type i of X. Define
si(X) := (pr, . . . , p1)

where pk := dim(Xk−1/Xk) for 1 ≤ k ≤ r. Similarly, there exists a unique chain

0 = Yr ⊆ · · · ⊆ Y1 ⊆ Y0 = X

of submodules of X such that Yk−1/Yk = topSik
(Yk−1) for all 1 ≤ k ≤ r. This is called

the refined top series of type i of X. Define

ti(X) := (qr, . . . , q1)

where qk := dim(Yk−1/Yk) for 1 ≤ k ≤ r. (For a simple module S and a module M let
topS(M) be the intersection of all submodules U of M with M/U ∼= S.)

The existence of refined socle and top series of type i of X ∈ Cw comes from the fact
that Vi generates the category Cw. It follows directly from the definitions that each module
Vk has a refined socle and top series of type i. Now one easily checks that this property
also holds for factor modules of modules in add(Vi).
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The uniqueness of refined socle and top series of type i implies the following result:

Lemma 9.5. Let i = (ir, . . . , i1) be a reduced expression of w, and let X ∈ Cw. Set
s := si(X) = (pr, . . . , p1) and t := ti(X) = (qr, . . . , q1). Then the following hold:

(i) We have

Fis,X
∼=

r∏

k=1

F (Cpk) and Fit,X
∼=

r∏

k=1

F (Cqk) .

In particular,

χc(Fis,X) =

r∏

k=1

pk! and χc(Fit,X) =

r∏

k=1

qk!.

(ii) Fi,s,X and Fi,t,X both consist of a single point. In particular, χc(Fi,s,X) = 1 and
χc(Fi,t,X) = 1.

Observe that (ik, . . . , it) is a reduced expression for the Weyl group element wk,t :=
siksik−1

· · · sit for all 1 ≤ t ≤ k ≤ r. Set j := (ir, . . . , i2). For 1 ≤ k ≤ r define

bk := bi,k := −(sik · · · sir(̟ir ), αik) = (sik+1
· · · sir(̟ir ), αik),

and set bi := (br, . . . , b1).

Proposition 9.6. For i and j as above, the following hold:

(i) topSi1
(Vj,r−1) = 0;

(ii) topSi1
(Vi,r) = Sb1

i1
;

(iii) si(Vi,r) = ti(Vi,r) = bi.

Proof. For r = 1 the statements are obvious. Thus assume r ≥ 2. Let u̟ir
be a highest

weight vector in L(̟ir). Since i = (j, i1) is a reduced expression, we know from Section 7.1
that

(3) ei1(si2 · · · sir(u̟ir
)) = 0.

By Proposition 9.1 we can identify si2 · · · sir(u̟ir
) with ϕVj,r−1

. We have topSi1
(Vj,r−1) ∼=

Sc
i1

for some c ≥ 0. Let U be the unique submodule such that Vj,r−1/U = topSi1
(Vj,r−1).

We get

e
(c)
i1
ϕVj,r−1

= ϕU 6= 0.

But if c ≥ 1, then equation (3) yields e
(c)
i1
ϕVj,r−1

= 0, a contradiction. This implies c = 0.
So we proved (i). To show (ii) we use that ϕVi,r

can be identified with

si1si2 · · · sir(u̟ir
) = fmax

i1

(
si2 · · · sir(u̟ir

)
)
= fmax

i1

(
ϕVj,r−1

)
.

We have wt
(
si1 · · · sir(u̟ir

)
)
= wt

(
si2 · · · sir(u̟ir

)
)
− b1αi1 , see Section 7.1. This implies

(ii). Finally, it follows by induction on r that si(Vi,r) = ti(Vi,r) = bi. This finishes the
proof. �
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9.6. Computation of the Euler characteristics χc(Fk,Vk
). By Proposition 6.1, to

evaluate ϕVk
on xj1(t1) · · · xjp(tp), we need to know the Euler characteristic χc(Fk,Vk

)
for arbitrary types k of composition series. These Euler characteristics can in turn be
calculated via a simple algorithm that we shall now describe.

To this end, it will be convenient to embed U(n)∗gr ≡ C[N ] in the shuffle algebra F ∗, as
explained in [Le, §2.8]. As a C-vector space, F ∗ has a basis consisting of all words

w[k] := w[k1, k2, . . . , ks] := wk1wk2 · · ·wks , (1 ≤ k1, . . . , ks ≤ n, s ≥ 0),

in the letters w1, . . . , wn. The multiplication in F ∗ is the classical commutative shuffle
product of words with unit the empty word w[], see e.g. [Re] and [Le, §2.5]. By [Le,
Propositions 9 and 10], for any X ∈ nil(Λ) the image of ϕX in this embedding is just the
generating function

gX :=
∑

k

χc(Fk,X)w[k]

of the Euler characteristics χc(Fk,X) for all types k of composition series. (The Euler
characteristic χc(Fk,X) is equal to the coefficient of t1 · · · ts in ϕX(xk1(t1) · · · xks(ts)).)

Let λ ∈ P+ and 1 ≤ i ≤ n. Define endomorphisms ρλ(ei), ρλ(fi) of the vector space F ∗

by

ρλ(ei)(w[j1, . . . , jk]) := δi,jkw[j1, . . . , jk−1],

ρλ(fi)(w[j1, . . . , jk]) :=

k∑

l=0

(λ− αj1 − · · · − αjl)(α
∨
i )w[j1, . . . , jl, i, jl+1, . . . , jk].

Proposition 9.7. The formulas above extend to a representation ρλ : U(g) → EndC(F
∗)

of U(g). This turns F ∗ into a U(g)-module. The image of C[N ] in its embedding in F ∗

is a U(g)-submodule isomorphic to the dual Verma module M∗
low(λ), see Section 4.5. In

particular the set

{ρλ(fi1 · · · fis)(w[]) | 1 ≤ i1, . . . , is ≤ n, s ≥ 0}

spans the irreducible module L(λ), considered as a submodule of M∗
low(λ).

The above formulas for ρλ(ei) and ρλ(fi) can be obtained by specializing q to 1 in the
formulas of the proof of [Le, Proposition 50]. We omit the details.

By Proposition 9.1, for 1 ≤ k ≤ r we have

ϕVk
= D̟ik

,w−1
≤k

(̟ik
).

By Section 7.1 we know that ϕVk
is obtained by acting on the highest weight vector u̟ik

of L(̟ik) with the product f
(b1)
i1
· · · f

(bk)
ik

of divided powers of the Chevalley generators,
where bk = bi,k is defined as in Section 9.5. Therefore we have

(4) gVk
= ρ̟ik

(
f
(b1)
i1
· · · f

(bk)
ik

)
(w[]).

Hence to calculate the generating function gVk
one only needs to apply b1 + · · · + bk =

dim(Vk) times the above combinatorial formula for ρ̟ik
(fi). Thus we have obtained an

algorithm for calculating all Euler characteristics χc(Fk,Vk
).
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9.7. Example. We continue the example of Section 9.3. Clearly, we have

gV1 = ρ̟1(f1)(w[]) = ̟1(α
∨
1 )w[1] = w[1].

Similarly

gV2 = ρ̟2(f
(2)
1 f2)(w[]).

Now we calculate successively

ρ̟2(f2)(w[]) = ̟2(α
∨
2 )w[2] = w[2],

ρ̟2(f1)(w[2]) = ̟2(α
∨
1 )w[1, 2] + (̟2 − α2)(α

∨
1 )w[2, 1] = 2w[2, 1],

ρ̟2(f1)(2w[2, 1]) = 2(̟2(α
∨
1 )w[1, 2, 1] + (̟2 − α2)(α

∨
1 )w[2, 1, 1]

+(̟2 − α2 − α1)(α
∨
1 )w[2, 1, 1])

= 4w[2, 1, 1].

Hence, taking into account that f
(2)
1 = f21 /2, we get

gV2 = 2w[2, 1, 1].

Similar applications of formula (4) yield the following results

gV3 = ρ̟1

(
f
(3)
1 f

(2)
2 f1

)
(w[]) = 4w[1, 2, 1, 2, 1, 1] + 12w[1, 2, 2, 1, 1, 1],

gV4 = ρ̟3

(
f
(2)
1 f2f3

)
(w[]) = 2w[3, 2, 1, 1],

gV7 = ρ̟3

(
f
(4)
1 f

(3)
2 f

(2)
1 f2f3

)
(w[])

= 288w[3, 2, 1, 1, 2, 2, 2, 1, 1, 1, 1] + 144w[3, 2, 1, 1, 2, 2, 1, 2, 1, 1, 1]
+96w[3, 2, 1, 2, 1, 2, 2, 1, 1, 1, 1] + 48w[3, 2, 1, 1, 2, 2, 1, 1, 2, 1, 1]
+48w[3, 2, 1, 2, 1, 1, 2, 2, 1, 1, 1] + 48w[3, 2, 1, 2, 1, 2, 1, 2, 1, 1, 1]
+48w[3, 2, 1, 1, 2, 1, 2, 2, 1, 1, 1] + 16w[3, 2, 1, 2, 1, 2, 1, 1, 2, 1, 1]
+16w[3, 2, 1, 2, 1, 1, 2, 1, 2, 1, 1] + 16w[3, 2, 1, 1, 2, 1, 2, 1, 2, 1, 1].

The generating functions gV5 and gV6 are too large to be included here. For example gV5

is a linear combination of 402 words.

9.8. The modules M [b, a]. For 1 ≤ k ≤ r let

k− := max{0, 1 ≤ s ≤ k − 1 | is = ik},

k+ := min{k + 1 ≤ s ≤ r, r + 1 | is = ik},

kmin := min{1 ≤ s ≤ r | is = ik},

kmax := max{1 ≤ s ≤ r | is = ik}.

Set k(0) := k, and for an integer m define k(m−1) := (k(m))− and k(m+1) := (k(m))+. For
1 ≤ j ≤ n and 1 ≤ k ≤ r + 1 let

k−(j) := max{0, 1 ≤ s ≤ k − 1 | is = j},

and

k[j] := |{1 ≤ s ≤ k − 1 | is = j}|,

and set tj := (r + 1)[j].

For 1 ≤ a ≤ b ≤ r with ia = ib define M [b, a] := Vb/Va− . (For convenience, we define
V0 = Vr+1 = 0.) We have a short exact sequence

0→M [a−, bmin]→M [b, bmin]→M [b, a]→ 0.
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Note that amin = bmin, since we assume ia = ib. For 1 ≤ k ≤ r we have M [k, kmin] = Vk
and M [k, k] =Mk. One can visualize a module M [b, a] by

Mb

Mb−

· · ·
Ma

We have

Vi =

r⊕

k=1

M [k, kmin].

For each k we have a short exact sequence

0→M [k, kmin]→M [kmax, kmin]→M [kmax, k
+]→ 0.

Note that M [kmax, kmin] = Ii,ik is Cw-projective-injective. Define

Tk := Ti,k :=

{
Vk if k+ = r + 1,

M [kmax, k
+] otherwise.

Thus if k+ 6= r + 1, then Ω−1
w (Vk) = Tk. Define Ti := T1 ⊕ · · · ⊕ Tr. In other words, we

have

Ti =
r⊕

k=1

M [kmax, k] = Iw ⊕ Ω−1
w (Vi).

9.9. Computation of dim HomΛ(Vk,Ms).

Lemma 9.8. Let 1 ≤ k, s ≤ r.

(i) If k ≤ s, then we have

dim HomΛ(Vk,Ms) = dim HomΛ(Mk,Ms) ∼=

{
0 if k < s,

1 if k = s.

(ii) If k > s, then

dim HomΛ(Vk,Ms) =

{∑
m≥0,k(−m)>s (Mk(−m) ,Ms)Q if ik 6= is,

1 +
∑

m≥0,k(−m)>s (Mk(−m) ,Ms)Q if ik = is.

(iii) We have

dim HomΛ(Vk, Vs) = dim HomΛ(Vk,Ms ⊕Ms− ⊕ · · · ⊕Msmin
).

Proof. We have short exact sequences

η : 0→ Vk−
ιk−→ Vk

πk−→Mk → 0 and ψ : 0→ Vs−
ιs−→ Vs

πs−→Ms → 0.

First, assume that k < s. Then the module Mk is contained in C(is,...,i1) and also
in C(is−1,...,i1) Now Vs is C(is,...,i1)-projective-injective and Vs− is C(is−1,...,i1)-projective-
injective. This implies

dim HomΛ(Mk, Vs−) = dim HomΛ(Mk, Vs) and dim Ext1Λ(Mk, Vs−) = 0.

Now apply HomΛ(Mk,−) to the sequence ψ and get HomΛ(Mk,Ms) = 0. Next, ap-
ply HomΛ(−,Ms) to η. We have HomΛ(Mk,Ms) = 0 and by induction we also get
HomΛ(Vk− ,Ms) = 0. This implies HomΛ(Vk,Ms) = 0.

Next, let k = s. We apply HomΛ(−,Mk) to η. Since HomΛ(Vk− ,Mk) = 0, we get
dim HomΛ(Vk,Mk) = dim HomΛ(Mk,Mk).
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Applying HomΛ(Vk,−) to η gives an exact sequence

0→ HomΛ(Vk, Vk−)
HomΛ(Vk,ιk)
−−−−−−−−→ HomΛ(Vk, Vk)

HomΛ(Vk ,πk)
−−−−−−−−→ HomΛ(Vk,Mk)→ 0.

Here we use that Vk− is contained in C(ik ,...,i1) and Vk is C(ik ,...,i1)-projective-injective. Thus
every homomorphism h : Vk → Mk factors through πk. In other words, there exists some
g : Vk → Vk such that πk ◦ g = h. Now Vk is indecomposable, so the endomorphism ring
EndΛ(Vk) is local. Therefore g = λidVk

+g′ for some nilpotent endomorphism g′ and some
λ ∈ K. Now we easily see that the image of g′ is contained in ιk(Vk−). Thus h = λπk.
This implies dim HomΛ(Vk,Mk) = 1.

Finally, assume that k > s. Then Lemma 2.1 yields

dim Ext1Λ(Vk,Ms) = dim HomΛ(Vk,Ms) + dim HomΛ(Ms, Vk)− (Vk,Ms)Q

= dim HomΛ(Vk,Ms) + dim HomΛ(Ms, Vk)

− (Vk− ,Ms)Q − (Mk,Ms)Q

= dim HomΛ(Vk,Ms) + dim HomΛ(Ms, Vk) + dim Ext1Λ(Vk− ,Ms)

− dim HomΛ(Vk− ,Ms)− dim HomΛ(Ms, Vk−)− (Mk,Ms)Q.

Since s < k, we have dim HomΛ(Ms, Vk−) = dim HomΛ(Ms, Vk) and Ext1Λ(Vk,Ms) =
Ext1Λ(Vk− ,Ms) = 0. Thus we get

dim HomΛ(Vk,Ms) = (Mk,Ms)Q + dim HomΛ(Vk− ,Ms).

The result follows by induction.

To prove (iii) we just apply HomΛ(Vk,−) to the short exact sequence 0→ Vs− → Vs →
Ms → 0, and then use induction. �

Note that in general we have dim HomΛ(Vk,Ms) 6= dim HomΛ(Mk,Ms).

Corollary 9.9. For 1 ≤ k ≤ r we have Ext1Λ(Mk,Mk) = 0.

Proof. Again we use the short exact sequence

η : 0→ Vk− → Vk →Mk → 0.

The three modules in this sequence are contained in C(ik,...,i1). In particular, Vk is C(ik,...,i1)-

projective-injective. This implies Ext1Λ(Vk,Mk) = 0. We have HomΛ(Vk− ,Mk) = 0 by
Lemma 9.8. Thus, applying the functor HomΛ(−,Mk) to η we get Ext1Λ(Mk,Mk) = 0. �

Corollary 9.10. For 1 ≤ k ≤ r with k− 6= 0 we have dim Ext1Λ(Mk, Vk−) = 1.

Proof. Apply HomΛ(Mk,−) to the sequence η appearing in the proof of Corollary 9.9. �

10. The add(Mi)-stratification of Cw

10.1. The stratification. Let a = (a1, . . . , ar) be a tuple of nonnegative integers, and
let CMi,a be the category of all Λ-modules X such that there exists a chain

0 = X0 ⊆ X1 ⊆ · · · ⊆ Xr = X

of submodules of X with Xk/Xk−1
∼=Mak

k for all 1 ≤ k ≤ r.

Lemma 10.1. If X is a module in CMi,a and CMi,b, then a = b.
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Proof. Let a = (a1, . . . , ar) and b = (b1, . . . , br). There is a short exact sequence

0→ Xr−1 → X →Mar
r → 0.

Lemma 9.8 and induction shows that HomΛ(Xr−1,Mr) = 0. Thus dim HomΛ(X,Mr) =
ar. Similarly, we get dim HomΛ(X,Mr) = br. Thus ar = br, and by induction we get
ak = bk for all 1 ≤ k ≤ r. �

Define

CMi
:=

⋃

a∈Nr

CMi,a.

Lemma 10.2. We have Cw = CMi
.

Proof. The category Cw contains all Mk, and Cw is closed under extensions. This implies
CMi
⊆ Cw.

Vice versa, assume X ∈ Cw. By Proposition 2.15 there exists a short exact sequence

ε : 0→ V ′′ f
−→ V ′ g

−→ X → 0

with V ′, V ′′ ∈ add(Vi) and g is a minimal right add(Vi)-approximation. We call ε a
minimal add(Vi)-resolution of length at most one. Since Vr is Cw-projective-injective, by
the minimality of g we know that V ′′ does not contain a direct summand isomorphic to Vr.
Let U be the unique submodule of V ′ such that V ′/U ∼= Mar

r with ar maximal. Clearly,
we have

U ∼= V ar
r−
⊕ V ′/V ar

r .

By Lemma 9.8 and induction, the image of f is contained in U . We have V ′/ Im(f) ∼= X.
Let Xr−1 := g(U). We get X/Xr−1

∼= Mar
r , and by passing to the restriction maps, we

obtain a short exact sequence

0→ V ′′ f ′

−→ V ar
r−
⊕ V ′/V ar

r → Xr−1 → 0.

This is an add(Vi)-resolution of Xr−1. By possibly deleting a direct summand of f ′ of the
form id: V a

r− → V a
r− , this yields again a minimal add(Vi)-resolution of length at most one

of Xr−1. The result follows by induction. �

For X ∈ CMi,a set

Mi(X) :=Ma1
1 ⊕ · · · ⊕M

ar
r .

Recall that Bi := EndΛ(Vi)
op.

For a Λ-module X ∈ Cw we want to compute the dimension vector of the Bi-module
HomΛ(Vi,X). The indecomposable projective Bi-modules are the modules HomΛ(Vi, Vk),
1 ≤ k ≤ r. Thus the entries of the dimension vector dimBi

(HomΛ(Vi,X)) are

dim HomBi
(HomΛ(Vi, Vk),HomΛ(Vi,X))

where 1 ≤ k ≤ r. By Corollaries 2.13 and 2.16 we have

HomBi
(HomΛ(Vi, Vk),HomΛ(Vi,X)) ∼= HomΛ(Vk,X).

For 1 ≤ k ≤ r define

∆k := HomΛ(Vi,Mk).

(In Section 11 we prove that Bi is a quasi-hereditary algebra and that the ∆k are the
corresponding standard modules.) The following result follows directly from Lemma 9.8.

Lemma 10.3. The dimension vectors dimBi
(∆k), 1 ≤ k ≤ r are linearly independent.
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Lemma 10.4. For all 1 ≤ k ≤ r we have

dimBi
(HomΛ(Vi, Vk)) = dimBi

(∆k) + dimBi
(∆k−) + · · · + dimBi

(∆kmin
).

Proof. Use the short exact sequence

0→ Vk− → Vk →Mk → 0

and an induction on k. �

The next result shows that Lemma 10.4 is just a special case of a general fact.

Proposition 10.5. For a Λ-module X ∈ Cw and a = (a1, . . . , ar) the following are equiv-
alent:

(i) X ∈ CMi,a;
(ii) There exists a short exact sequence

0→

r⊕

k=1

V ak
k−
→

r⊕

k=1

V ak
k → X → 0;

(iii) dimBi
(HomΛ(Vi,X)) = dimBi

(HomΛ(Vi,Mi(X))) =
∑r

k=1 ak dimBi
(∆k).

Proof. (i) =⇒ (ii): Assume X ∈ CMi,a with a = (a1, . . . , ar). By induction we get the
following diagram of morphisms with exact row and columns.

0

��

0

��⊕r−1
k=1 V

ak
k−

��

V ar
r−

��⊕r−1
k=1 V

ak
k

f

��

V ar
r

g

��
0 // Xr−1

��

ι // X
π // Mar

r

��

// 0

0 0

Since Vr is Cw-projective-injective, there exists a homomorphism g′ such that π ◦ g′ = g.
Then [f, g′] :

⊕r
k=1 V

ar
k → X is an epimorphism. Let Z := Ker([f, g′]). The Snake Lemma

yields an exact sequence
r−1⊕

k=1

V ak
k−

h′

−→ Z
h′′

−→ V ar
r−
.

Clearly, h′′ is an epimorphism, since f is an epimorphism. For dimension reasons h′ is a
monomorphism. Thus we get a short exact sequence

0→

r−1⊕

k=1

V ak
k−

h′

−→ Z
h′′

−→ V ar
r−
→ 0.
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Applying HomΛ(Vi,−) to this sequence yields an exact sequence of Bi-modules with a pro-
jective end term. Thus this sequence splits, and we get Z =

⊕r
k=1 V

ak
k−

. So we constructed
a short exact sequence

ηX : 0→
r⊕

k=1

V ak
k−
→

r⊕

k=1

V ak
k → X → 0.

(ii) =⇒ (iii): Apply HomΛ(Vi,−) to the short exact sequence ηX . Since Vi is rigid,
this yields a short exact sequence of Bi-modules, and we get

dimBi
(HomΛ(Vi,X)) = dimBi

(HomΛ(Vi,

r⊕

k=1

V ak
k ))− dimBi

(HomΛ(Vi,

r⊕

k=1

V ak
k−

))

=

r∑

k=1

ak (dimBi
(HomΛ(Vi, Vk))− dimBi

(HomΛ(Vi, Vk−)))

=

r∑

k=1

ak dimBi
(∆k).

This implies (iii).

(iii) =⇒ (i): Let X ∈ Cw, and assume dimBi
(HomΛ(Vi,X)) =

∑r
k=1 ak dimBi

(∆k).
Set a = (a1, . . . , ar). We know that X ∈ CMi,b for some b = (b1, . . . , br). By the impli-
cation (i) =⇒ (iii) we get dimBi

(HomΛ(Vi,X)) =
∑r

k=1 bk dimBi
(∆k). Since the vectors

dimBi
(∆1), . . . ,dimBi

(∆r) are linearly independent, we get ak = bk for all k. �

Corollary 10.6. For X,Y ∈ Cw we have dimBi
(HomΛ(Vi,X)) = dimBi

(HomΛ(Vi, Y )) if
and only if X,Y ∈ CMi,a for some a.

Proof. By Lemma 10.3 the dimension vectors dimBi
(∆k) are linearly independent. Now

use Proposition 10.5. �

A short exact sequence η : 0 → X → Y → Z → 0 of Λ-modules is called Mi-split if
Mi(X)⊕Mi(Z) ∼=Mi(Y ). Recall that FVi

:= HomΛ(Vi,−).

Corollary 10.7. For a short exact sequence η : 0 → X → Y → Z → 0 of Λ-modules in
Cw the following are equivalent:

(i) η is FVi
-exact;

(ii) η is Mi-split.

Proof. Clearly, η is FVi
-exact if and only if

dimBi
(HomΛ(Vi,X)) + dimBi

(HomΛ(Vi, Z)) = dimBi
(HomΛ(Vi, Y )).

By Proposition 10.5 this happens if and only if Mi(X) ⊕Mi(Z) ∼=Mi(Y ). �

10.2. Example. Let Q be a quiver with underlying graph

1 2 3

and let w0 be the longest Weyl group element in WQ. Thus we have Cw0 = mod(Λ). The
short exact sequences

η′ : 0→ 2 → 1
2 ⊕

3
2 → 1 3

2 → 0 and η′′ : 0→ 1 3
2 →

2
1 3
2
→ 2 → 0
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are exchange sequences in mod(Λ). Let i = (1, 2, 1, 3, 2, 1) and j = (2, 1, 2, 3, 2, 1) be
reduced expressions of w0. We get

Mi = 1 ⊕ 1
2 ⊕

1
2
3
⊕ 2 ⊕ 2

3 ⊕ 3 and Mj = 1 ⊕ 1
2 ⊕

1
2
3
⊕ 3 ⊕ 3

2 ⊕ 2 .

Now one easily observes that η′ is Mi-split and not Mj-split, and η
′′ is Mj-split but not

Mi-split.

11. Quasi-hereditary algebras associated to reduced expressions

11.1. Quasi-hereditary algebras. Let A be a finite-dimensional algebra. By P1, . . . , Pr

and Q1, . . . , Qr and S1, . . . , Sr we denote the indecomposable projective, indecomposable
injective and simple A-modules, respectively, where Si = top(Pi) = soc(Qi).

For a class U of A-modules let F(U) be the class of all A-modules X which have a
filtration

0 = X0 ⊆ X1 ⊆ · · · ⊆ Xt = X

of submodules such that all factors Xj/Xj−1 belong to U for all 1 ≤ j ≤ t. Such a filtration
is called a U -filtration of X. We call these modules the U -filtered modules.

Fix a bijective map ω : {S1, . . . , Sr} → {1, . . . , r}. Let ∆i be the largest factor module
of Pi such that [∆i : Sj] = 0 for all j with ω(Sj) > ω(Si), and set

∆ = {∆1, . . . ,∆r}.

The modules ∆i are called standard modules. The algebra A is called quasi-hereditary
if EndA(∆i) ∼= K for all i, and if AA belongs to F(∆). Quasi-hereditary algebras first
occured in Cline, Parshall and Scott’s [CPS] study of highest weight categories.

Note that the definition of a quasi-hereditary algebra depends on the chosen ordering
of the simple modules. If we reorder them, it could happen that our algebra is no longer
quasi-hereditary.

Now assume A is a quasi-hereditary algebra, and let F(∆) be the subcategory of ∆-
filtered A-modules. For X ∈ F(∆) let [X : ∆i] be the number of times that ∆i occurs as
a factor in a ∆-filtration of X. Then

dim∆(X) = ([X : ∆1], . . . , [X : ∆r]) ∈ Nr

is the ∆-dimension vector of X. Let ∇i be the largest submodule of Qi such that [∇i :
Sj] = 0 for all j with ω(Sj) > ω(Si), and let

∇ = {∇1, . . . ,∇r}.

The modules ∇i are called costandard modules. The following results (and the missing
definitions) can be found in [Ri2, Ri3]:

(i) There is a unique (up to isomorphism) basic tilting module T (∆∩∇) over A such
that

add(T (∆ ∩∇)) = F(∆) ∩ F(∇).

(ii) F(∆) is closed under extensions and under direct summands.
(iii) [Pi : ∆j] = [∇j : Si] for all 1 ≤ i, j ≤ r.
(iv) If X ∈ F(∆), then [X : ∆i] = dim HomA(X,∇i) for all i.
(v) HomA(∆i,∆j) = 0 for all i, j with ω(Si) > ω(Sj).
(vi) Ext1A(∆i,∆j) = 0 for all i, j with ω(Si) ≥ ω(Sj).
(vii) The F(∆)-projective modules are the projective A-modules. The F(∇)-injective

modules are the injective A-modules.
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(viii) The F(∆)-injective modules are the modules in add(T (∆ ∩ ∇)). The F(∇)-
projective modules are the modules in add(T (∆ ∩ ∇)).

(ix) If Ext1A(X,∇i) = 0 for all i, then X ∈ F(∆). Similarly, if Ext1A(∆i, Y ) = 0 for all
i, then Y ∈ F(∇).

The module T (∆∩∇) is called the characteristic tilting module of A. In general, T (∆∩∇)
is not a classical tilting module. (Here a tilting module is called classical provided its
projective dimension is at most one.) The endomorphism algebra EndA(T (∆ ∩ ∇)) is
called the Ringel dual of A. It is again a quasi-hereditary algebra in a natural way, see
[Ri2].

Following Ringel [Ri5], the finite-dimensional algebra A is strongly quasi-hereditary if
there is a bijective map ω : {S1, . . . , Sr} → {1, . . . , r} such that for each 1 ≤ k ≤ r there
is a short exact sequence

0→ Rk → Pk → Dk → 0

satisfying the following two properties:

(1) Rk is a direct sum of indecomposable projective A-modules Pj with ω(j) > ω(k);

(2) [Dk : Sj ] =

{
0 if ω(j) > ω(k),

1 if j = k.

Each strongly quasi-hereditary algebra is quasi-hereditary with ∆k = Dk for all k. Further-
more, we have proj.dim(∆k) ≤ 1 for all k. If each of the modules Rk is indecomposable,
then one easily checks that A is ∆-serial, i.e. each Pk has a unique ∆-filtration.

11.2. The algebra Bi is quasi-hereditary. As before, let Vi = V1 ⊕ · · · ⊕ Vr and Mi =
M1 ⊕ · · · ⊕Mr. Set Bi := EndΛ(Vi)

op. For 1 ≤ k ≤ r let S(k) be the (simple) top of the
indecomposable Bi-modules Pk := HomΛ(Vi, Vk). As before, define ∆k := HomΛ(Vi,Mk),
and set

∆ := {∆1, . . . ,∆r} .

Define ω : {S(1), . . . , S(r)} → {1, . . . , n} by ω(S(k)) := r − k + 1.

The following theorem was first proved in [GLS7, Section 16] for adaptable Weyl group
elements. Later the statement was generalized to arbitrary Weyl group elements by Iyama
and Reiten [IR]. Here we present a proof for the general case, which is very similar to our
original proof of the adaptable case.

Theorem 11.1. Let i be a reduced expression of a Weyl group element w. The following
hold:

(i) The algebra Bi = EndΛ(Vi)
op is strongly quasi-hereditary and ∆-serial with stan-

dard modules ∆ = {∆1, . . . ,∆r};
(ii) The functor HomΛ(Vi,−) yields an equivalence of categories Fi : Cw → F(∆);
(iii) T (∆ ∩ ∇) = HomΛ(Vi, Ti).

Proof. (i): We know that for each 1 ≤ k ≤ r there is a short exact sequence

η : 0→ Vk−
ιk−→ Vk →Mk → 0.

We apply the functor HomΛ(Vi,−) to this sequence and obtain a short exact sequence

0→ HomΛ(Vi, Vk−)→ Pk
H
−→ ∆k → 0
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of Bi-modules. Let ω(S(j)) ≥ ω(S(k)), and let F : HomΛ(Vi, Vj) → ∆k be a homo-
morphism of Bi-modules. Since HomΛ(Vi, Vj) is a projective Bi-module, there is a ho-
momorphism G : HomΛ(Vi, Vj) → Pk such that H ◦ G = F . There exists a Λ-module
homomorphism g : Vj → Vk such that G = HomΛ(Vi, g). Assume ω(S(j)) > ω(S(k)).
Since j < k, we know that Im(g) ⊆ ιk(Vk−). Thus Im(G) ⊆ Im(HomΛ(Vi, ιk)) = Ker(H).
But this implies F = 0. Therefore we have [∆k : S(j)] = 0. Next, we consider the case
ω(S(j)) = ω(S(k)). The endomorphism ring EndΛ(Vk) is local, and we work over an
algebraically closed field. Thus g = λidVk

+ g′ with g′ nilpotent and λ ∈ K. We have
soc(Vk) ⊆ Ker(g′). This implies Im(g′) ⊆ ιk(Vk−). Thus F = H◦G = H◦HomΛ(Vi, λidVk

).
In other words, HomBi

(Pk,∆k) is 1-dimensional. This finishes the proof of (i).

(ii): For X,Z ∈ Cw we have a functorial isomorphism

Ext1FVi
(X,Z)→ Ext1Bi

(HomΛ(Vi,X),HomΛ(Vi, Z)).

Thus the image of the functor

HomΛ(Vi,−) : Cw → mod(Bi)

is extension closed. Clearly, for all 1 ≤ k ≤ r the standard module ∆k is in HomΛ(Vi, Cw).
It follows that F(∆) ⊆ HomΛ(Vi, Cw).

Now let X ∈ Cw. By Lemma 10.2 we know that X ∈ CMi,a for some a = (a1, . . . , ar).
Thus there is a short exact sequence

η : 0→ Xr−1 → X →Mar
r → 0.

We claim that η is FVi
-exact: Clearly, η is FVr -exact, since Vr is Cw-projective-injective and

Xr−1 ∈ Cw. Since HomΛ(Vk,Mr) = 0 for all k < r, it follows that η is also FVk
-exact for all

such k. Clearly, HomΛ(Vi,M
ar
r ) is contained in F(∆). By induction also HomΛ(Vi,Xr−1)

is in F(∆). Since F(∆) is closed under extensions, and since η is FVi
-exact, we get that

HomΛ(Vi,X) is in F(∆). So we proved that F(∆) = HomΛ(Vi, Cw). Now Corollary 2.13
and Lemma 2.16 show that the restriction functor Fi : Cw → F(∆) is an equivalence of
categories.

(iii): It is enough to show that Ext1Λ(∆k, Ti) = 0 for all 1 ≤ k ≤ r, see Section 11.1.
Recall that all indecomposable direct summands of Ti are of the form M [smax, s] where
1 ≤ s ≤ r. We fix such an s.

For each 1 ≤ k ≤ r there is a short exact sequence

η : 0→M [k−, kmin]→M [k, kmin]→Mk → 0.

Applying HomΛ(Vi,−) yields a projective resolution

0→ HomΛ(Vi,M [k−, kmin])→ HomΛ(Vi,M [k, kmin])→ HomΛ(Vi,Mk)→ 0

of Bi-modules.

If k ≤ s, then HomΛ(M [k−, kmin],M [smax, s]) = 0. Since Fi is an equivalence, we get

HomBi
(HomΛ(Vi,M [k−, kmin]),HomΛ(Vi,M [smax, s])) = 0.

This implies Ext1Bi
(∆k,HomΛ(Vi,M [smax, s])) = 0.

Next, assume that k > s. We have a short exact sequence

ψ : 0→M [s−, smin]→M [smax, smin]→M [smax, s]→ 0.

Applying HomΛ(−,Mk) yields Ext1Λ(M [smax, s],Mk) = 0. Thus Ext1Λ(Mk,M [smax, s]) =
0. This implies

Ext1FVi
(Mk,M [smax, s]) = Ext1Bi

(∆k,HomΛ(Vi,M [smax, s])) = 0.
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Here we used that Ext1Λ(M [smax, smin],Mk) = 0 (since M [smax, smin] is Cw-projective-
injective), and HomΛ(M [s−, smin],Mk) = 0 by Lemma 9.8. This finishes the proof of
(iii). �

Corollary 11.2. The modules HomΛ(Vi, Ii,j), 1 ≤ j ≤ n are the indecomposable F(∆)-
projective-injectives modules.

Proof. This follows from Theorem 11.1, (iii) and Section 11.1. �

Each ∆-filtration of the indecomposable projective Bi-module HomΛ(Vi, Vk) looks as
follows:

∆k

∆k−

· · ·
∆kmin

(We just displayed the factors of the (unique) ∆-filtration of HomΛ(Vi, Vk).)

We can now reformulate parts of Proposition 10.5 as follows:

Proposition 11.3. For a Λ-module X ∈ Cw and a = (a1, . . . , ar) the following are equiv-
alent:

(1) X ∈ CMi,a;
(2) dim∆(Fi(X)) = (a1, . . . , ar).

Proof. Since ∆k = HomΛ(Vi,Mk), it is clear that (iii) in Proposition 10.5 and (2) are
equivalent. �

We know that Bi is an algebra of finite global dimension. Thus one can define the
Ringel form

〈X,Y 〉Bi
:= 〈dim(X),dim(Y )〉Bi

:=
∑

j≥0

(−1)jdim ExtjBi
(X,Y ).

The next lemma gives the values of 〈−,−〉Bi
applied to standard modules.

Lemma 11.4. For 1 ≤ k, s ≤ r we have

〈∆k,∆s〉Bi
= dim HomBi

(∆k,∆s)− dim Ext1Bi
(∆k,∆s) =





0 if k < s,

1 if k = s,

(Mk,Ms)Q if k > s.

Proof. As before, for 1 ≤ t ≤ r we set Pt := HomΛ(Vi, Vt) and ∆t := HomΛ(Vi,Mt). We
know that proj.dim(∆t) ≤ 1 for all t. Thus

〈∆k,∆s〉Bi
= dim HomBi

(∆k,∆s)− dim Ext1Bi
(∆k,∆s).

The cases k < s and k = s are clear, see Section 11.1. Thus, assume k > s. The short
exact sequence

0→ Vk− → Vk →Mk → 0

yields a projective resolution

0→ Pk− → Pk → ∆k → 0

of ∆k. We apply HomΛ(−,Ms) and obtain an exact sequence

0→ HomBi
(∆k,∆s)→ HomBi

(Pk,∆s)→ HomBi
(Pk− ,∆s)→ Ext1Bi

(∆k,∆s)→ 0.
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This implies

〈∆k,∆s〉Bi
= dim HomBi

(Pk,∆s)− dim HomBi
(Pk− ,∆s)

= dim HomΛ(Vk,Ms)− dim HomΛ(Vk− ,Ms)

= (Mk,Ms)Q.

For the third equality we use Lemma 9.8. �

11.3. Example. For an arbitrary Cw-maximal rigid Λ-module T , it seems to be difficult
to determine when EndΛ(T )

op is quasi-hereditary and when not.

Even if Q is a quiver with underlying graph

1 2 3

there are maximal rigid modules whose endomorphism algebra is not quasi-hereditary:
Let w = w0 be the longest Weyl group element in WQ. Let T be the Cw-maximal rigid
Λ-module

2
3 ⊕

2
1 3 ⊕

2
1 ⊕

1
2
3
⊕

2
1 3
2
⊕

3
2

1
.

The quiver of EndΛ(T )
op looks as follows:

2
3

// 2
1 3

��

2
1

oo

1
2
3

OO

2
1 3
2

oo // 3
2

1

OO

It is not difficult to show that EndΛ(T )
op is not a quasi-hereditary algebra.

12. Mutations of clusters via dimension vectors

12.1. Dimension vectors of rigid modules. Let A be a finite-dimensional K-algebra.
For m ≥ 0 let Am be the free A-module of rank m. By mod(A,m) we denote the affine
variety of m-dimensional A-modules. (One can define mod(A,m) as the variety of K-
algebra homomorphisms A → Mm(K).) If U is a submodule of Am such that Am/U is
m-dimensional, then the Richmond stratum S(U,Am) is the subset of mod(A,m) consisting
of the modules X such that there exists a short exact sequence

0→ U → Am → X → 0,

see [Rm]. A more general situation was studied by Bongartz [Bo].

Theorem 12.1 ([Rm, Theorem 1]). The Richmond stratum S(U,Am) is a smooth, irre-
ducible, locally closed subset of mod(A,m), and

dimS(U,Am) = dim HomA(U,A
m)− dim EndA(U).

Proposition 12.2. Assume that gl.dim(A) < ∞. Let M and N be rigid A-modules of
projective dimension at most one. If dim(M) = dim(N), then M ∼= N .

Proof. Let m be the K-dimension of M and N . Thus, there are projective resolutions

0→ P → Am →M → 0 and 0→ P ′ → Am → N → 0

of M and N , respectively. Here we used that the projective dimensions of M and N are
at most one. Since dim(M) = dim(N), we get dim(P ) = dim(P ′). Since A is a finite-
dimensional algebra of finite global dimension, its Cartan matrix is invertible. In other
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words, the dimension vectors of the indecomposable projective A-modules are linearly
independent. Thus we get P ∼= P ′.

Since M and N are rigid, their GLm(K)-orbits are open in mod(A,m). In particular,
these orbits are open in the Richmond stratum S(P,Am). But S(P,Am) is irreducible,
and therefore it can contain at most one open orbit. It follows that M ∼= N . �

Now, let Cw = Fac(Vi) be defined as before, and let T = T1 ⊕ · · · ⊕ Tr be a fixed basic
Cw-maximal rigid module and set B := EndΛ(T )

op.

Corollary 12.3. Let X and Y be indecomposable rigid modules in Cw. If

dimB(HomΛ(T,X)) = dimB(HomΛ(T, Y )),

then X ∼= Y .

Proof. Use Corollary 2.17 and Proposition 2.19,(vi), and then apply Proposition 12.2. �

12.2. Mutations via dimension vectors. We now explain how to calculate mutations
of clusters via dimension vectors. We start with some notation: For d = (d1, . . . , dr) and
f = (f1, . . . , fr) in Zr define

max{d, f} := (h1, . . . , hr)

where hs = max{ds, fs} for 1 ≤ s ≤ r. Set Max{d, f} := d if ds ≥ fs for all s. In this
case, we write d ≥ f . Of course, Max{d, f} = d implies max{d, f} = d. By |d| we denote
the sum of the entries of d.

Let Γ be a quiver without loops and without 2-cycles and with vertices 1, . . . , r. Some
of these vertices can be considered as frozen vertices, i.e. one cannot perform a mutation
at these vertices.

Now replace each vertex s of Γ by some ds ∈ Zr. Thus we obtain a new quiver Γ′ whose
vertices are elements in Zr.

For k not a frozen vertex, define the mutation µdk
(Γ′) of Γ′ at the vertex dk in two

steps:

(1) Replace the vertex dk of Γ′ by

d∗
k := −dk +max




∑

di→dk

di,
∑

dk→dj

dj





where the sums are taken over all arrows in Γ′ which start, respectively end in the
vertex dk;

(2) Change the arrows of Γ′ following Fomin and Zelevinsky’s quiver mutation rule for
the vertex dk.

Thus starting with Γ′ we can use iterated mutation and obtain quivers whose vertices
are elements in Zr.

For example, if for each s we choose ds = −es, where es is the sth canonical basis
vector of Zr, then the resulting vertices (i.e. elements in Zr) are the denominator vectors
of the cluster variables of the cluster algebra A(B(Γ)◦) associated to Γ, compare with [FZ5,
Section 7, Equation (7.7)]. (The variables attached to the frozen vertices serve as (non-
invertible) coefficients. To obtain the denominator vectors as defined in [FZ5] one has to
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ignore the entries corresponding to these n coefficients.) It is an open problem, if these
denominator vectors actually parametrize the cluster variables of A(B(Γ)◦).

We will show that for an appropriate choice of Γ and of the initial vectors ds, the
quivers obtained by iterated mutation of Γ′ are in bijection with the seeds and clusters
of A(B(Γ)◦). All resulting vertices (including the ds) will be elements in Nr, and we will
show that for our particular choice of initial vectors, we can use “Max” instead of “max”
in the formula above. (This holds for all iterated mutations.)

For the rest of this section let T = T1⊕ · · · ⊕Tr be a basic Cw-maximal rigid Λ-module,
and set B := EndΛ(T )

op.

Proposition 12.4. Let R = R1 ⊕ · · · ⊕ Tr be a basic Cw-maximal rigid Λ-module. Let

η′ : 0→ Rk
f ′

−→ R′ g′
−→ R∗

k → 0 and η′′ : 0→ R∗
k

f ′′

−→ R′′ g′′
−→ Rk → 0

be the two exchange sequences associated to an indecomposable direct summand Rk of R
which is not Cw-projective-injective. Then dim HomΛ(T,R

′) 6= dim HomΛ(T,R
′′), and we

have

dimB(HomΛ(T,Rk)) + dimB(HomΛ(T,R
∗
k)) =

= max{dimB(HomΛ(T,R
′)),dimB(HomΛ(T,R

′′))}.

Furthermore, the following are equivalent:

(i) η′ is FT -exact;
(ii) dim HomΛ(T,R

′) > dim HomΛ(T,R
′′);

(iii) dimB(HomΛ(T,R
′)) ≥ dimB(HomΛ(T,R

′′)).

Proof. By Corollary 2.18 we know that HomΛ(T,R) is a classical tilting module over B.
Thus we can apply [Ha2, Lemma 2.2] and assume without loss of generality that

Ext1B(HomΛ(T,Rk),HomΛ(T,R
∗
k)) = 0.

By Proposition 2.12,

1 = dim Ext1Λ(R
∗
k, Rk) ≥ dim Ext1FT

(R∗
k, Rk)

= dim Ext1B(HomΛ(T,R
∗
k),HomΛ(T,Rk)) > 0.

This implies Ext1Λ(R
∗
k, Rk) = Ext1FT

(R∗
k, Rk). Thus η

′ is FT -exact, and

η : 0→ HomΛ(T,Rk)
HomΛ(T,f

′)
−−−−−−−→ HomΛ(T,R

′)
HomΛ(T,g

′)
−−−−−−−→ HomΛ(T,R

∗
k)→ 0

is a (non-split) short exact sequence. If we apply HomΛ(T,−) to η
′′, we obtain an exact

sequence

0→ HomΛ(T,R
∗
k)

HomΛ(T,f
′′)

−−−−−−−−→ HomΛ(T,R
′′)

HomΛ(T,g
′′)

−−−−−−−−→ HomΛ(T,Rk).

Now HomΛ(T, g
′′) cannot be an epimorphism, since that would yield a non-split ex-

tension and we know that Ext1B(HomΛ(T,Rk),HomΛ(T,R
∗
k)) = 0. Thus for dimension

reasons we get dim HomΛ(T,R
′) > dim HomΛ(T,R

′′). Using the functors HomB(P,−)
where P runs through the indecomposable projective B-modules, it also follows that
dimB(HomΛ(T,R

′)) > dimB(HomΛ(T,R
′′)). Finally, the formula for dimension vectors

follows from the exactness of η. �

Proposition 12.4 yields an easy combinatorial rule for the mutation of Cw-maximal rigid
modules. Let R = R1 ⊕ · · · ⊕ Rr be a basic Cw-maximal rigid Λ-module. Without loss of
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generality we assume that Rr−n+1, . . . , Rr are Cw-projective-injective. For 1 ≤ s ≤ r let
ds := dimB(HomΛ(T,Rs)).

As before, let ΓR be the quiver of EndΛ(R)
op. The vertices of ΓR are labeled by the

modules Rs. For each s we replace the vertex labeled by Rs by the dimension vector ds.
The resulting quiver is denoted by Γ′

R.

For 1 ≤ k ≤ r − n let

0→ Rk → R′ → R∗
k → 0 and 0→ R∗

k → R′′ → Rk → 0

be the two resulting exchange sequences. We can now easily compute the dimension vector
of the EndΛ(T )

op-module HomΛ(T,R
∗
k), namely Proposition 12.4 yields that

d∗
k := dimB(HomΛ(T,R

∗
k)) =

{
−dk +

∑
di→dk

di if
∑

di→dk
|di| >

∑
dk→dj

|dj |,

−dk +
∑

dk→dj
dj otherwise,

where the sums are taken over all arrows in Γ′
R which start, respectively end in the vertex

dk. More precisely, we have

(5) d∗
k = −dk +max




∑

di→dk

di,
∑

dk→dj

dj





and we know that

(6) max




∑

di→dk

di,
∑

dk→dj

dj



 = Max




∑

di→dk

di,
∑

dk→dj

dj



 .

Remark 12.5. Let T = T1 ⊕ · · · ⊕ Tr be a basic Cw-maximal rigid module, and let
B(T ) := (〈Si, Sj〉)1≤i,j≤r be the matrix of the Ringel form of the algebra B := EndΛ(T )

op.
Let X be a T -reachable Λ-module, see Section 3.1. Set d := dimB(HomΛ(T,X)) ∈ Nr.
Define

g̃T (X) := d · B(T ),

where d is considered as a row vector. As explained in [FK, Section 4] the entries of
g̃T (X), which correspond to the non-Cw-projective-injective direct summands Tk of T
form precisely the g-vector of ϕX with respect to the initial cluster (δT1 , . . . , δTr ).

12.3. Examples (Dimension vectors of Bi-modules). Let Q be a quiver with under-
lying graph 1 2 3 and let i := (3, 1, 2, 3, 1, 2). Thus Γi looks as follows:

5 // 2

����
��

�

4

����
��

�

^^=====
// 1

^^=====

����
��

�

6 // 3

^^=====
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The following picture shows the quiver ΓVi
of EndΛ(Vi)

op where the vertices corresponding
to the modules Vk.

3
2

1 ``
BB

BB
B

2
1 \\

99
99

99
9

//

2
1 3
2

��

������

__

??
??

??
2//

1
2
3

~~
|||||

2
3

//
��

�������

Here is the quiver Γ′
Vi

whose vertices are the dimension vectors dimBi
(HomΛ(Vi, Vk)):

1 1
1 0

1 0 bb
FF

FF
FF

0 1
1 0

1 0 bb
FF

FF
FF

//

1 1
2 1

1 1

||
xxxxxx

bb
FF

FF
FF

0 1
1 1

0 1
//

1 0
1 0

1 1

||
xxxxxx

1 0
1 0

0 1
//

||
xxxxxx

Next, let us look at an example of type Ã2. Thus, let Q be a quiver with underlying
graph

3

��
��

��
==

==
==

1 2

and let i := (3, 2, 1, 3, 2, 1). The quiver ΓVi
of EndΛ(Vi)

op looks as follows:

1
1 2

2 3
1 UU

kk

VVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVV 1//

1
1 2

1 2 3
3 1
2

$$

JJJJJJJ

``

BB
BB

BB
BB

1
2

//
��

;;;;;;;;;;

1
1 2

1 2 3
2 3 1
1 2
3

�� {{
wwwwww

1
1 2
3

//
�� ��

����������

Here is the quiver Γ′
Vi
:

3 1
4 1

5 2SS
kk

WWWWWWWWWWWWWWWWWWWWWWWWW
2 1
3 1

3 2
//

2 0
3 1

4 1

""

FFFFFF

bb
FF

FF
FF

2 0
2 1

3 1
//
""

FFFFFF

1 0
2 0

3 1

�� ||
xxxxxx

1 0
2 0

2 1
//

�� ||
xxxxxx
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12.4. Example (Mutations via dimension vectors). Let Q be a quiver with un-
derlying graph 1 2 3 and let i := (i7, . . . , i1) := (1, 3, 2, 1, 3, 2, 1) be a reduced
expression. As before, let Vi = V1⊕· · · ⊕V7. The indecomposable Cw-projective-injectives
are V5, V6 and V7. Let us compute the dimension vectors dimBi

(HomΛ(Vi,Mk)).

dim(∆1) =
9 3 1
6 2

4 2
dim(∆2) =

6 2 0
4 1

3 1
dim(∆3) =

2 0 0
1 0

0 1
dim(∆4) =

3 1 0
2 0

2 0

dim(∆5) =
2 0 0
1 0

1 0
dim(∆6) =

0 0 0
0 0

1 0
dim(∆7) =

1 0 0
0 0

0 0
.

Here is the quiver Γi:

7 // 4

����
��

�
����

��
�

// 1

����
��

�
����

��
�

5

__>>>>>

__>>>>>
//

����
��

�
2

����
��

�

^^=====

^^=====

6 // 3

^^>>>>>

The following picture shows the quiver Γ′
Vi
. Its vertices are the dimension vectors of the

EndΛ(Vi)
op-modules HomΛ(Vi, Vk). These dimension vectors can be constructed easily

using Lemma 9.8.

13 4 1
8 2

6 2
// 12 4 1

8 2
6 2

zztttttt
zztttttt

// 9 3 1
6 2

4 2

zzuuu
uu

u
zzuuu

uu
u

8 2 0
5 1

4 1

ddJJJJJJ

ddJJJJJJ

//

zztttttt

6 2 0
4 1

3 1

zztttttt

ddJJJJJJ

ddJJJJJJ

2 0 0
1 0

1 1
// 2 0 0

1 0
0 1

ddJJJJJJ

Now let us mutate the Λ-module V4. We have

dimBi
(HomΛ(Vi, V4)) =

12 4 1
8 2

6 2
.

We have to look at all arrows starting and ending in the corresponding vertex of Γ′
Vi
, and

add up the entries of the attached dimension vectors, as explained in Section 12.2. Since
∣∣∣ 13 4 1

8 2
6 2

∣∣∣+ 2 ·
∣∣∣ 6 2 0

4 1
3 1

∣∣∣ = 70 > 69 =
∣∣∣ 9 3 1

6 2
4 2

∣∣∣+ 2 ·
∣∣∣ 8 2 0

5 1
4 1

∣∣∣ ,

we get

dimBi
(HomΛ(Vi, V

∗
4 )) =

13 4 1
8 2

6 2
+ 2 ·

6 2 0
4 1

3 1
−

12 4 1
8 2

6 2
=

13 4 0
8 2

6 2

and the quiver Γ′
µV4

(Vi)
looks as follows:

13 4 1
8 2

6 2
oo

J
J

J

�
�
�
�
�
�

13 4 0
8 2

6 2::

tttttt
::

tttttt

oo 9 3 1
6 2

4 2

''

zzuuu
uu

u
zzuuu

uu
u

8 2 0
5 1

4 1 dd
JJJJJJ

oo
oooo

6 2 0
4 1

3 1

$$

JJJJJJ $$

JJJJJJ

zztttttt

2 0 0
1 0

1 1

t
t

t
2 0 0
1 0

0 1
//
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Note that we cannot control how the arrows between vertices corresponding to the three
indecomposable Cw-projective-injectives behave under mutation. But this does not matter,
because these arrows are not needed for the mutation of seeds and clusters. In the picture,
we indicate the missing information by lines of the form ___ . This process can be
iterated, and our theory says that each of the resulting dimension vectors determines
uniquely a cluster variable.

12.5. Mutations via ∆-dimension vectors. Using Lemma 9.8 we can explicitly com-
pute the dimension vector of the Bi-module ∆s = HomΛ(Vi,Ms) for all 1 ≤ s ≤ r.
Recall that the kth entry of this dimension vector is just dim HomΛ(Vk,Ms). Thus, the
K-dimension of ∆s is

dim(∆s) = dim HomΛ(Vi,Ms) =
r∑

k=1

dim HomΛ(Vk,Ms).

Define

d∆ := (dim(∆1), . . . ,dim(∆r)).

Now let R = R1 ⊕ · · · ⊕ Rr be a basic Cw-maximal rigid Λ-module, and suppose that
Rk is not Cw-projective-injective. Then we can mutate R in direction Rk. We obtain two
exchange sequences

0→ Rk → R′ → R∗
k → 0 and 0→ R∗

k → R′′ → Rk → 0

with R′, R′′ ∈ add(R/Rk).

For brevity, set

ds := dim∆(HomΛ(Vi, Rs))

for all 1 ≤ s ≤ r. Similarly to the definition of Γ′
R in Section 12.2 let Γ′′

R be the quiver
which is obtained from the quiver of EndΛ(R)

op by replacing the vertex corresponding to
Rs by the ∆-dimension vector ds.

For d = (d1, . . . , dr) and f = (f1, . . . , fr) in Zr define

d · f :=

r∑

i=1

difi.

Proposition 12.6. The ∆-dimension vector of the Bi-module HomΛ(Vi, R
∗
k) is

d∗
k :=

{
−dk +

∑
di→dk

di if
∑

di→dk
di · d∆ >

∑
dk→dj

dj · d∆,

−dk +
∑

dk→dj
dj otherwise.

Here the sums are taken over all arrows of the quiver of Γ′′
R which start, respectively end

in the vertex dk.

Proof. This follows immediately from our results in Section 12.2 �

12.6. Example (Mutations via ∆-dimension vectors). We repeat Example 12.4, but
this time we work with ∆-dimension vectors. Let Q and i be as before. The following
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picture shows the quiver Γ′′
Vi
. Its vertices are the ∆-dimension vectors of the EndΛ(Vi)

op-

modules HomΛ(Vi, Vk).

1 1 1
0 0

0 0
// 0 1 1

0 0
0 0

zzuuu
uu

u
zzuuu

uu
u

// 0 0 1
0 0

0 0

zzuuu
uu

u
zzuuu

uu
u

0 0 0
1 1

0 0

ddIIIIII

ddIIIIII

//

zzuuu
uu

u

0 0 0
0 1

0 0

zzuuu
uu

u

ddIIIIII

ddIIIIII

0 0 0
0 0

1 1
// 0 0 0

0 0
0 1

ddIIIIII

Again, let us mutate the Λ-module V4. We have

dim∆(HomΛ(Vi, V4)) =
0 1 1
0 0

0 0
.

We have to look at all arrows starting and ending in the corresponding vertex of Γ′′
Vi
, and

to add up the entries of the attached ∆-dimension vectors, as explained in the previous
section. In this example it is clear that the ingoing arrows yield the required larger
dimension, since the calculation with outgoing arrows would produce a ∆-dimension vector
with negative entries, which is not possible. Thus the quiver Γ′′

µV4
(Vi)

looks as follows:

1 1 1
0 0

0 0
oo

I
I

I

�
�
�
�
�
�

1 0 0
0 2

0 0::

uu
uu

uu
::

uu
uu

uu

oo 0 0 1
0 0

0 0

''

zzuuu
uu

u
zzuuu

uu
u

0 0 0
1 1

0 0 dd
II

II
II

oo
oooo

0 0 0
0 1

0 0

$$

IIIIII $$

IIIIII

zzuuu
uu

u

0 0 0
0 0

1 1

u
u

u
0 0 0
0 0

0 1
//

13. A sequence of mutations from Vi to Ti

13.1. The algorithm. Let i := (ir, . . . , i1) be a reduced expression of a Weyl group
element. For 1 ≤ i, j ≤ n set

qij :=

{
−cij if i 6= j,

0 otherwise.

(The cij are the entries of the Cartan matrix C of our Kac-Moody Lie algebra g, see
Section 4.1. Note that this definition of qij is equivalent to the one in Section 2.4.) As
before, we define a quiver Γi as follows: The vertices of Γi are 1, 2, . . . , r. For 1 ≤ s, t ≤ r
there are qis,it arrows from s to t provided t+ ≥ s+ > t > s. These are called the ordinary
arrows of Γi. Furthermore, for each 1 ≤ s ≤ r there is an arrow s→ s− provided s− > 0.
These are the horizontal arrows of Γi.

As before, let Vi = V1 ⊕ · · · ⊕ Vr and Mi =M1 ⊕ · · · ⊕Mr. We know that the quiver Γi

can be identified with the quiver ΓVi
of the endomorphism algebra Bi = EndΛ(Vi)

op. The
vertices of ΓVi

are labeled by V1, . . . , Vr. More precisely, the vertex s of Γi corresponds to
the vertex Vs =M [s, smin] of ΓVi

, where 1 ≤ s ≤ r.
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Recall that for 1 ≤ j ≤ n and 1 ≤ k ≤ r + 1, we defined

k[j] := |{1 ≤ s ≤ k − 1 | is = j}|,

tj := (r + 1)[j],

kmin := min{1 ≤ s ≤ r | is = ik}.

Now we describe an algorithm which yields a sequence of mutations starting with ΓVi
and

ending with ΓTi
(see Section 9.8 for the definition of Ti). The proof is done by induction

on r − n.

Before going into details let us describe the general idea of this algorithm. Assume that
Q is the linearly oriented quiver

m // m− 1 // · · · // 2 // 1

of type Am. We would like to find a sequence of mutations which transforms Q into the
quiver Qop

m m− 1oo · · ·oo 2oo 1oo

with opposite linear orientation. This can be done by applying the following m − 1 se-
quences of mutations:

Q1 := µm−1 · · ·µ2µ1(Q), Q2 := µm−2 · · ·µ2µ1(Q
1), · · · , Qm−1 := µ1(Q

m−2).

Now one easily checks that Qm−1 = Qop. If we delete all ordinary arrows of Γi we obtain
a disjoint union of linearly oriented quivers of type Ami

for various mi ≥ 1. The main idea
of the following algorithm is to apply a sequence of mutations to Γi which (in the same
way as explained above) reverses the orientation of these subquivers of type Ami

without
causing too many changes for the remaining ordinary arrows.

In the following, we just ignore the symbols of the form M [a, b] in case a < b.

Step 1: We mutate the following

r1 := ti1 − 1− 1[i1]

vertices of Γ0
Vi

:= ΓVi
in the given order:

M [1
(1[i1])
min , 1

(1[i1])
min ],M [1

(1[i1]+1)
min , 1

(1[i1])
min ],M [1

(1[i1]+2)
min , 1

(1[i1])
min ], . . . ,M [1

(ti1−2)

min , 1
(1[i1])
min ].

Under the identification ΓVi
≡ Γi, this sequence of mutations corresponds to the sequence

of mutations
−→µ1 := µ

1
(r1−1)
min

◦ · · · ◦ µ
1
(1)
min

◦ µ1min
.

We obtain a new quiver Γ1
Vi

with r1 new vertices

M [1
(1[i1]+1)
min , 1

(1[i1]+1)
min ],M [1

(1[i1]+2)
min , 1

(1[i1]+1)
min ],M [1

(1[i1]+3)
min , 1

(1[i1]+1)
min ],

. . . ,M [1
(ti1−1)

min , 1
(1[i1]+1)
min ].

Step 2: We mutate the following

r2 := ti2 − 1− 2[i2]

vertices of Γ1
Vi

in the following order:

M [2
(2[i2])
min , 2

(2[i2])
min ],M [2

(2[i2]+1)
min , 2

(2[i2])
min ],M [2

(2[i2]+2)
min , 2

(2[i2])
min ], . . . ,M [2

(ti2−2)

min , 2
(2[i2])
min ].

This mutation sequence corresponds to

−→µ2 := µ
2
(r2−1)
min

◦ · · · ◦ µ
2
(1)
min

◦ µ2min
.
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We obtain a new quiver Γ2
Vi

with r2 new vertices

M [2
(2[i2]+1)
min , 2

(2[i2]+1)
min ],M [2

(2[i2]+2)
min , 2

(2[i2]+1)
min ],M [2

(2[i2]+3)
min , 2

(2[i2]+1)
min ],

. . . ,M [2
(ti2−1)

min , 2
(2[i2]+1)
min ].

Step k: We mutate the following

rk := tik − 1− k[ik]

vertices of Γk−1
Vi

in the following order:

M [k
(k[ik])
min , k

(k[ik])
min ],M [k

(k[ik]+1)
min , k

(k[ik])
min ],M [k

(k[ik ]+2)
min , k

(k[ik])
min ], . . . ,M [k

(tik−2)

min , k
(k[ik])
min ].

This mutation sequence corresponds to

−→µk := µ
k
(rk−1)

min

◦ · · · ◦ µ
k
(1)
min

◦ µkmin
.

We obtain a new quiver Γk
Vi

with rk new vertices

M [k
(k[ik]+1)
min , k

(k[ik ]+1)
min ],M [k

(k[ik ]+2)
min , k

(k[ik ]+1)
min ],M [k

(k[ik ]+3)
min , k

(k[ik]+1)
min ],

. . . ,M [k
(tik−1)

min , k
(k[ik]+1)
min ].

The algorithm stops when all vertices are of the form M [kmax, k]. This will happen after

r(i) :=

n∑

j=1

tj(tj − 1)

2

mutations. Define

µi :=
−→µr ◦ · · · ◦

−→µ2 ◦
−→µ1.

Thus we have

µi(Vi) = Ti.

As an example, assume Q is a Dynkin quiver of type E8. Thus the underlying graph of
Q looks as follows:

7

5 6 8 4 3 2 1

Let c := s8s7s6s5s4s3s2s1. Then w := c15 is the longest element in the Weyl group W
of Q, and i := (8, . . . , 2, 1, . . . , 8, . . . , 2, 1) is a reduced expression (with 120 entries) of w.
We get tj = 15 for all 8 vertices j of Q. Then our algorithm says that starting with Vi we
reach Ti after r(i) = 8 · 105 = 840 mutations.

We now want to describe what happens to the quiver Γk−1
Vi

when we apply the mutation

sequence −→µk. First, we need some notation:

For each 1 ≤ j ≤ n let

pj := min{1 ≤ s ≤ r | is = j},

uj := min{0, k ≤ s ≤ r | is = j}.

Note that p
(0)
j = pj. The sequence

(p
(0)
j , p

(1)
j , . . . , p

(ruj−1)

j )
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of vertices of Γk−1
Vi

is called the j-chain of Γk−1
Vi

, provided uj 6= 0. If uj = 0, then we have
an empty j-chain. The sequence

(p
(0)
j , p

(1)
j , . . . , p

(tj−1)
j )

is the extended j-chain.

Each full subgraph of Γk−1
Vi

given by the vertices of a single extended j-chain looks as
follows:

p
(tj−1)
j

· · ·oo p
(ruj+1)

j
oo p

(ruj )

j
//oo p

(ruj−1)

j
// · · · // p

(2)
j

// p
(1)
j

// p
(0)
j

The arrows of the extended j-chains (1 ≤ j ≤ n), are the horizontal arrows of Γk−1
Vi

. In
the mutation sequence

−→µr ◦ · · · ◦
−−→µk+1 ◦

−→µk

there are no mutations at the vertices p
(ruj )

j , p
(ruj+1)

j , . . . , p
(tj−1)
j . These are called the

frozen vertices of Γk−1
Vi

.

To describe the quiver Γk
Vi
, it is enough to study the effect of −→µk on the n − 1 full

subgraphs of Γk
Vi

which consist of the ik-chain together with one extended j-chain, where
1 ≤ j ≤ n and j 6= ik.

For brevity, set s = s(0) = kmin, t = t(0) = pj. Let q = qik,j be the number of edges
between ik and j in the underlying graph of Q. The following picture shows how the
arrows between the ik-chain and an extended j-chain in Γk−1

Vi
look like (we have 1 ≤ j ≤ n

with ik 6= j, and we use the notation u q // v if there are q arrows from u to v):

s(az)

qww{{ww

s(az−1)

qrryyrr

· · · s(a2)

qww{{ww

s(a1)

qww{{ww

t(bz) t(bz−1)

qJJ
ddJJ

· · ·

qHHH
ddHH

t(b2)

qDD
bbDDD

t(b1)

qGG
ccGG

Here s(ai) belongs to the ik-chain, and t
(bi) belongs to the extended j-chain for all 1 ≤ i ≤ z.

(The q arrows from s(az) to t(bz) do not exist necessarily. But the first q arrows between
the ik-chain and the j-chain (counted from the right) always start at the ik-chain. We do
not display any arrows between frozen vertices, they don’t play any role.)

The mutation sequence −→µk consists of mutations at the vertices s(0), s(1), . . . , s(rk−1). By
definition,

Γk
Vi

:= −→µk

(
Γk−1
Vi

)
.

After applying −→µk, the horizontal arrows of the ik-chain stay the same, except the arrow
s(rk) → s(rk−1) changes its orientation and becomes s(rk) ← s(rk−1). The vertex s(rk−1)

becomes an additional frozen vertex of Γk
Vi
.

The arrows between the ik-chain and the j-chain change as follows:

s(az−1)

qttyytt
s(az−1−1)

qpppxxppp

· · · s(a2−1)

qttyytt
s(a1−1)

qttyytt

t(bz) t(bz−1)

qLL
ffLL

· · ·

qKKK

eeKK

t(b2)

qDD
bbDDD

t(b1)

qJJ
eeJJ

(In case s(a1) = s, the q arrows from s(a1−1) to t(b1) do not exist.)
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We illustrate this again in a more explicit example: Here is a possible subgraph before
we apply −→µk, where rk = 8 and ruj

= 6:

s(tik−1) · · ·oo s(8)oo // s(7) //

qz
z

||zz

s(6) // s(5) //

qz
z

||zz

s(4) // s(3) // s(2) //

qz
z

||zz

s(1) //

qz
z

||zz

s(0)

t(tj−1) · · ·oo t(8)oo t(7)oo t(6)oo //

qDD

bbDD

t(5) // t(4) // t(3) //

qRRRRRR

hhRRRRRR

t(2) //

q

OO

t(1) // t(0)

(The numbers rk and ruj
are determined by the orientation of the horizontal arrows in

the above picture.)

This is how it looks like after we applied −→µk to the rk vertices of the ik-chain:

s(tik−1) · · ·oo s(8)oo s(7)oo // s(6) //

qllllll

vvllllll

s(5) // s(4) //

qllllll

vvllllll

s(3) // s(2) // s(1) //

qllllll

vvllllll

s(0)

qllllll

vvllllll

t(tj−1) · · ·oo t(8)oo t(7)oo t(6)oo //
q

OO

t(5) // t(4) // t(3) //

qDD

bbDD

t(2) //

qzz

<<zz

t(1) // t(0)

Again, possible arrows between frozen vertices are not shown.

Note that if we start with our initial Cw-maximal rigid module Vi, and if we only perform
the r(i) mutations described in the algorithm, then we obtain the subset

{M [b, a] | 1 ≤ a ≤ b ≤ r, ia = ib}

of the set of indecomposable rigid modules of Cw. In particular, this subset contains all
modulesMk =M [k, k] where 1 ≤ k ≤ r. The next theorem describes the precise exchange
relation obtained in each of the r(i) steps of the algorithm above.

We use our description of mutations via ∆-dimension vectors from Section 12.5 in order

to show that the mutation M [s, s
(k[is])
min ]∗ of M [s, s

(k[is])
min ] is indeed M [s+, s

(k[is]+1)
min ].

In formula (7) below we just write M [b, a] instead of δM [b,a]. (Recall that for any Λ-
module X and any constructible function f ∈ M we have δX(f) := f(X). This defines
an element δX inM∗.)

Theorem 13.1 (Generalized determinantal identities). Let Mi = M1 ⊕ · · · ⊕Mr. Then
for 1 ≤ k, s ≤ r with is = ik we have

(7) M [s, s
(k[is])
min ] ·M [s+, s

(k[is]+1)
min ] =M [s+, s

(k[is])
min ] ·M [s, s

(k[is]+1)
min ] +

+
∏

t+≥s+>t>s

M [t, t
(k[it])
min ]qisit ·

∏

l+≥s+>s>l>smin

M [l, l
(k[il])
min ]qisil .

Proof. Formula (7) is just an exchange relation corresponding to the mutation of the

module M [s, s
(k[is])
min ] with M [s, s

(k[is])
min ]∗ = M [s+, s

(k[is]+1)
min ]. More precisely, the mutation

of M [s, s
(k[is])
min ] happens during the mutation sequence −→µk, which is part of the mutation

sequence µi. �

Remark 13.2. It is not hard to see that the above theorem can be also stated as follows:
For 1 ≤ t < s ≤ r with is = ij = i we have

M [s, t+]M [s−, t] =M [s, t]M [s−, t+] +
∏

j∈I\{i}

M [s−(j), t+(j)]qij ,

where in addition to the notation in 9.8 we set t+(j) := min{r+1, t+1 ≤ k ≤ r | ik = j}.
Fomin and Zelevinsky [FZ1, Theorem 1.17] prove generalized determinantal identities
associated to pairs of Weyl group elements for all Dynkin cases (including the non-simply
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laced cases). Using the material of Section 7, formula (7) can be seen as a generalization
of some of their identities to the symmetric Kac-Moody case.

Corollary 13.3. The functions δM1 , . . . , δMr are algebraically independent. In particular,
C[δM1 , . . . , δMr ], the subalgebra of M∗ generated by the δMk

’s is just a polynomial ring in
r variables.

Proof. Clearly, the functions δM [1,1min], . . . , δM [r,rmin] are algebraically independent, since
Vk =M [k, kmin] and any product of the functions δV1 , . . . , δVr lies in the dual semicanonical
basis. Here we use that Vi is rigid and then we apply [GLS1, Theorem 1.1]. We claim
that each function δM [b,a] with 1 ≤ a ≤ b ≤ r and ia = ib is a rational function in
δM1 , . . . , δMb

. In particular, each δVk
is a rational function in δM1 , . . . , δMr . This implies

that δM1 , . . . , δMr are algebraically independent.

We prove our claim by induction on r and on the length l([b, a]) := |{a ≤ k ≤ b | ik =
ib}| of the interval [b, a]. For r = 1 the statement is clear. Also, if l([b, a]) = 1, then
M [b, a] = Mb and we are done as well. Thus assume by induction that our claim is true
for all intervals [d, c] of length at most m for some m ≥ 1. All intervals of length m + 1

are of the form [b+, a] for some 1 ≤ a ≤ b ≤ r. We have a = b
(k[ib])
min for some 1 ≤ k ≤ r.

We also assume by induction that our claim holds for all intervals [d, c] with b+ > d. Our
formula (7) yields

(8) M [b+, a] =
1

M [b, a+]
·
(
M [b, a] ·M [b+, a+]

)
−

−
1

M [b, a+]
·


 ∏

t+≥b+>t>b

M [t, t
(k[it])
min ]qibit ·

∏

l+≥b+>b>l>bmin

M [l, l
(k[il])
min ]qibil


 .

The intervals on the right hand side of this equation all have either length at most m, or
they are of the form [d, c] with b+ > d. This finishes the proof. �

In fact, we will show that for any Λ-module X ∈ Cw we have δX ∈ C[δM1 , . . . , δMr ], see
Theorem 15.1. In particular, for all 1 ≤ k ≤ r the rational function δVk

is a polynomial in
δM1 , . . . , δMr .

Another proof of the polynomiality of the functions δM [b,a] was found by Kedem and
Di Francesco [DFK, Lemma B.7], using ideas of Fomin and Zelevinsky (in particular [BFZ,
Lemma 4.2]). We thank these four mathematicians for communicating their insights to us
at MSRI in March 2008.

13.2. Example. Let Q be a quiver with underlying graph

3

2
==

==

1 3

2��

��

2

Here we use the notation i a j if there are a edges between i and j. Let i :=

(i10, . . . , i1) := (2, 3, 2, 1, 2, 1, 3, 1, 2, 1). This is a reduced expression for a Weyl group
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element in WQ. The quiver Γi looks as follows:

7

2

��

3jjjjjjjjjjj

ttjjjjjjjjjj

// 5

3
��

�

����
�

// 3

2
��
��
��
��
��

����
��

// 1

3
��

�

����
�

10 // 8

2
��

�

����
�

// 6

3>>>

__>>>

// 2

3TTTTTTTTTT

iiTTTTTTTTTT

2ppp

wwpppppppppp

9

2AAAA

``AAA

// 4

2WWWWWWWWWWWWWW

kkWWWWWWWWWWWWWW

2

ii

For the mutation sequence µi we get

µi =
−→µ10 ◦ · · · ◦

−→µ2 ◦
−→µ1

= (id) ◦ (id) ◦ (µ2) ◦ (id) ◦ (µ6µ2) ◦ (µ1) ◦ (µ4) ◦ (µ3µ1) ◦ (µ8µ6µ2) ◦ (µ5µ3µ1)

Here are the quivers Γk
i :

Γ1
i 7p

u
z

�
�

�

�

j j j j j j j j j j j 5oo // 3

3kkkkkkkkkk

uukkkkkkkkkk

// 1

2

��

10 // 8

2
��

�

����
�

// 6

3����

AA���

// 2

3<<<

]]<<<

2ppppppp

wwppppppp

9

A
A

A
A

// 4

2WWWWWWWWWWWWWW

kkWWWWWWWWWWWWWW 2....

VV..........

Γ2
i 7p

u
z

�
�

�

�

j j j j j j j j j j j 5oo //

3kkkkkkkkkk

uukkkkkkkkkk

3

3
<<

<

��<
<<

// 1

2

��

10

3fffffffffffffffff

22ffffffffffffffffff

8oo // 6

2jjjjjjjjjj

ttjjjjjjjjjj

// 2

3SSSSSSSSSS

iiSSSSSSSSSS

9

A
A

A
A

2���

??���

// 4

2OOOOOOO

ggOOOOOOO 2....

VV..........

Γ3
i 7p

u
z

�
�

�

�

j j j j j j j j j j j 5oo

3kkkkkkkkkk

uukkkkkkkkkk

3oo // 1

3
��

�

����
�

10

3fffffffffffffffff

22ffffffffffffffffff

8oo // 6

2jjjjjjjjjj

ttjjjjjjjjjj

// 2

3<<<<

]]<<<

9

A
A

A
A

2���

??���

// 4

2OOOOOOO

ggOOOOOOO

2���������

HH�����

Γ4
i 7p

u
z

�
�

�

�

j j j j j j j j j j j 5oo

3kkkkkkkkkk

uukkkkkkkkkk

3oo //

2
��
��
�

����
��
��
��
�

1

3
��

�

����
�

10

3fffffffffffffffff

22ffffffffffffffffff

8oo // 6

2
OOOOOOO

''OOOOOOO

// 2

3<<<<

]]<<<

9

A
A

A
A

2���

??���

2

11

// 4oo
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Γ5
i 7p

u
z

�
�

�

�

j j j j j j j j j j j 5oo

3kkkkkkkkkk

uukkkkkkkkkk

3oo

2
��
��
�

����
��
��
��
�

1oo

10

3fffffffffffffffff

22ffffffffffffffffff

8oo // 6

2
OOOOOOO

''OOOOOOO

// 2

3����

AA���

9

A
A

A
A

2���

??���

2

11

// 4oo

Γ6
i = Γ7

i 7p
u

z
�

�
�

�

i i i i i i i i i i i i 5oo

3kkkkkkkkkk

uukkkkkkkkkk

3oo

2
��
��
�

����
��
��
��
�

1

3ffffffffffffffffff

ssffffffffffffffffff

oo

10

3eeeeeeeeeeeeeeeeee

22eeeeeeeeeeeeeeeeeee

8oo

3ddddddddddddddddddddddddd

22ddddddddddddddddddddddddd

2
WWWWWWWWWWWWWW

++WWWWWWWWWWWWWW

6oo // 2

2ooooooo

wwooooooo

9

H
H

H
H

H
2���

??���

2

11

4oo

2OOOOOOO

ggOOOOOOO

Γ8
i = Γ9

i = Γ10
i 7p

u
z

�
�

�

�

h h h h h h h h h h h h h h 5oo

3kkkkkkkkkk

uukkkkkkkkkk

3oo

2
��
��
�

����
��
��
��
�

1

3ffffffffffffffffffff

ssfffffffffffffff

oo

10

3eeeeeeeeeeeeeeeeeeeeeeee

22eeeeeeeeeeeeeeee

8oo

3ddddddddddddddddddddddddd

22ddddddddddddddddddddddddd

2
WWWWWWWWWWWWWW

++WWWWWWWWWWWWWW

6oo 2oo

9

M
M

M
M

M
M

2���

??���

2

11

4oo

2ooooooo

77ooooooo

Applying formula (7) to M [s, s
(k[is])
min ] := M [6, 6

(2[i6])
min ] =M [6, 2] we get the following:

M [6, 2] ·M [8, 6] =M [8, 2] ·M [6, 6] +M [7, 3]3 ·M [4, 4]2 (s = 6, k = 2).

Thus, we have

M [8, 2] =
1

M [6, 6]

(
M [6, 2] ·M [8, 6] −M [7, 3]3 ·M [4, 4]2

)
.

Similarly, we obtain

M [2, 2] ·M [6, 6] =M [6, 2] +M [5, 3]3 ·M [4, 4]2 (s = 2, k = 2),

M [6, 6] ·M [8, 8] =M [8, 6] +M [7, 7]3 (s = 6, k = 6),

M [5, 3] ·M [7, 5] =M [7, 3] ·M [5, 5] +M [6, 6]3 ·M [4, 4]2 (s = 5, k = 3),

M [3, 3] ·M [5, 5] =M [5, 3] +M [4, 4]2 (s = 3, k = 3),

M [5, 5] ·M [7, 7] =M [7, 5] +M [6, 6]3 (s = 5, k = 5).

By our double induction (on r and on the length of the intervals [b, a]), in each of the
above equations, we can write the functions M [6, 2],M [8, 6],M [7, 3],M [5, 3] and M [7, 5],
respectively, as a rational function of the functions appearing in the same equation. Now
one can use these equations to express δM [8,2] as a rational function in δM1 , . . . , δM8 .
Remarkably, this rational function is a polynomial.

Finally, we display the dimension vectors of the modules M1, . . . ,M8:

βi(1) = 0
1 0 βi(2) = 1

3 0 βi(3) = 3
8 0 βi(4) = 8

24 1

βi(5) = 13
40 2 βi(6) = 63

189 8 βi(7) = 176
527 22 βi(8) = 465

1392 58
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As an exercise, the reader can compute βi(9) and βi(10).

Exchange equations are always homogeneous. For example,

M [5, 3] ·M [7, 5] =M [7, 3] ·M [5, 5] +M [6, 6]3 ·M [4, 4]2

is an equation of degree 205
615 26 .

13.3. The shift functor in Cw via mutations. Fix a reduced expression i = (ir, . . . , i1)
of some Weyl group element w. As before, let Ti := Iw ⊕ Ω−1

w (Vi). Define

Wi := Iw ⊕ Ωw(Vi).

In Section 13.1 we defined a sequence of mutations

µi =
−→µr ◦ · · · ◦

−→µ1 = µsr(i) ◦ · · · ◦ µs2 ◦ µs1

where 1 ≤ sp ≤ r for all p, such that

µi(Vi) = µsr(i) ◦ · · · ◦ µs2 ◦ µs1(Vi) = Ti and µ−1
i (Ti) = µs1 ◦ µs2 ◦ · · · ◦ µsr(i)(Ti) = Vi.

Clearly, if R is a basic Cw-maximal rigid module such that R = µpt ◦ · · · ◦µp1(Vi), then we

have R = µpt ◦ · · · ◦ µp1 ◦ µ
−1
i (Ti).

Now define an involution

(−)∗ : {1, . . . , r} \ {1 ≤ k ≤ r | k+ = r + 1} → {1, . . . , r} \ {1 ≤ k ≤ r | k+ = r + 1}

by
(
k
(m)
min

)∗
:= k

(tj−2−m)
min ,

where j := ikmin
. Observe that every 1 ≤ s ≤ r can be written as k

(m)
min for some unique k

(namely k = s) and some unique 0 ≤ m ≤ tj − 1. The following picture illustrates how
(−)∗ permutes the vertices of Γi:

k
(tj−1)
min

// k
(tj−2)
min

// k
(tj−3)
min

// k
(tj−4)
min

// · · · // k
(2)
min

//
))tt

k
(1)
min

//
((uu

kmin

((vv

Set

(µ−1
i )∗ := µs∗1 ◦ µs∗2 ◦ · · · ◦ µs∗r(i).

Proposition 13.4. Let R be a basic Cw-maximal rigid module which is mutation equivalent
to Vi. Then Iw ⊕ Ω−1

w (R) and Iw ⊕ Ωw(R) are mutation equivalent to Vi. More precisely,
let

R = µzt ◦ · · · ◦ µz1(Vi) and R = µqu ◦ · · · ◦ µq1(Ti).

Then we have

Iw ⊕ Ω−1
w (R) = µz∗t ◦ · · · ◦ µz∗1 (Ti) and Iw ⊕ Ωw(R) = µq∗u ◦ · · · ◦ µq∗1(Vi).

Besides Ω−1
w (R), we can also compute Ωw(R) by just knowing a sequence of mutations

from Vi to R. This works because Vi and Ti are connected via a known sequence of
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mutations, namely µi if we start at Vi, and µ
−1
i

if we start at Ti. The following picture
illustrates the situation:

Wi

µz∗
t
◦···◦µz∗

1

��
�O
�O
�O
�O
�O
�O
�O

Vi
(µ−1

i
)∗

oo o/ o/ o/ o/ o/ o/ o/ o/ o/ o/
µi ///o/o/o/o/o/o/o/o/o/o/o

µzt◦···◦µz1

�� �O
�O
�O
�O
�O
�O
�O
�O

Ti

µz∗
t
◦···◦µz∗

1

��
�O
�O
�O
�O
�O
�O
�O

Iw ⊕ Ωw(R) R Iw ⊕ Ω−1
w (R)

Proof. As before, for 1 ≤ j ≤ n set pj := min{1 ≤ s ≤ r | is = j}. Note that p
(tj−1)
j =

pjmax and pj = pjmin. In the following pictures we display only the relevant horizontal
arrows. The quiver ΓVi

looks as follows:

M [p
(t1−1)
1 , p1]

// M [p
(t1−2)
1 , p1]

// · · · // M [p
(1)
1 , p1]

// M [p1, p1]

M [p
(tn−1)
n , pn]

// M [p
(tn−2)
n , pn]

// · · · // M [p
(1)
n , pn]

// M [pn, pn]

Next, we display the quiver ΓTi
:

M [p1max, p1] M [p1max, p
(1)
1 ]oo M [p1max, p

(2)
1 ]oo · · ·oo M [p1max, p

(t1−1)
1 ]oo

M [pnmax, pn] M [pnmax, p
(1)
n ]oo M [pnmax, p

(2)
n ]oo · · ·oo M [pnmax, p

(tn−1)
n ]oo

We know that Iw ⊕ Ω−1
w (Vi) = Ti. In particular, we have

Ω−1
w (M [p

(s−1)
j , pj ]) =M [pjmax, p

(s)
j ]

for all 1 ≤ j ≤ n and 1 ≤ s ≤ tj − 1. Thus ΓTi
looks like this:

M [p
(t1−1)
1 , p1] Ω−1

w (M [p1, p1])oo Ω−1
w (M [p

(1)
1 , p1])

oo · · ·oo Ω−1
w (M [p

(t1−2)
1 , p1])

oo

M [p
(tn−1)
n , pn] Ω−1

w (M [pn, pn])oo Ω−1
w (M [p

(1)
n , pn])

oo · · ·oo Ω−1
w (M [p

(tn−2)
n , pn])

oo

The n vertices of the form M [p
(tj−1)
j , pj ] at the “left” of both quivers ΓVi

and ΓTi
are

frozen vertices, to all other vertices we can apply the mutation operation.

Now let

0→ Tk → T ′ → T ∗
k → 0

be an exchange sequence associated to the cluster algebra R(Cw, Vi). This yields an ex-
change triangle Tk → T ′ → T ∗

k → Tk[1] in the stable category Cw. Note that Tk[1] =
Ω−1
w (Tk). It follows that Tk[1] → T ′[1] → T ∗

k [1] → Tk[2] is an exchange triangle as well.
There is an associated exchange sequence

0→ Ω−1
w (Tk)→ I ⊕ Ω−1

w (T ′)→ Ω−1
w (T ∗

k )→ 0
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where I is some module in add(Iw). Thus, if we mutate the basic Cw-maximal rigid module
Iw ⊕ Ω−1

w (T ) in direction Ω−1
w (Tk), we obtain (Ω−1

w (Tk))
∗ = Ω−1

w (T ∗
k ). We argue similarly

to show that the mutation of Iw ⊕Ωw(T ) in direction Ωw(Tk) gives (Ωw(Tk))
∗ = Ωw(T

∗
k ).

This finishes the proof. �

Corollary 13.5. If a Λ-module R is Vi-reachable, then Ωz
w(R) is Vi-reachable for all z ∈ Z.

13.4. Example. Let Q be a quiver with underlying graph 1 2 3 4 and let
i := (i10, . . . , i1) := (1, 2, 1, 3, 2, 1, 4, 3, 2, 1). Then we get

ΓVi
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2
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// 3
2

1
//
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||
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2
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��~~
~~

~~
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// 1

��		
		

		
		

3
2 4

1 3
2

``BBBB

// 2
1 3
2

``BBBBBB

//

~~||
||

|

1
2

����
��

��
�

]]:::::::

2
1 3
2 4
3

``BBBB

// 1 2
3

��~~
~~

~

__@@@@@@

1
2
3
4

``BBBB

and

ΓTi

4
3

2
1

  B
BB

B

4
3

2

  B
BB

BB
B

oo 4
3

��:
::

::
::

oo 4oo

3
2 4

1 3
2

  B
BB

B

>>|||||
3

2 4
3

??~~~~~~~

��@
@@

@@
@

oo 3
4

oo

DD								

2
1 3
2 4
3

  B
BB

B

>>|||||
2
3
4

AA�������
oo

1
2
3
4

??~~~~~

Again, we identify the vertices of ΓVi
and ΓTi

with the indecomposable direct summands
of Vi and Ti, respectively. As before, we identify ΓVi

and the quiver Γi, which looks as
follows:

Γi (≡ ΓVi
) 10 // 8 //

����
��

�
5

����
��

�
// 1

����
��

�

9

^^>>>>>
// 6

]];;;;;
//

����
��

2

����
��

]];;;;;

7

^^====
// 3

����
��

^^====

4

^^====

We have

µi =
−→µ10 ◦ · · · ◦

−→µ2 ◦
−→µ1

= (id) ◦ (id) ◦ (µ1) ◦ (id) ◦ (µ2) ◦ (µ5 ◦ µ1) ◦ (id) ◦ (µ3) ◦ (µ6 ◦ µ2) ◦ (µ8 ◦ µ5 ◦ µ1).
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Mutation of Vi at V5 yields the following quiver:

Γµ5(Vi)

4
3

2
1

// 3
2

1
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|

&&1 3
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��:
::

::
::

oo 1oo

3
2 4

1 3
2

``BBBB
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??~~~~~~~
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����
��

��
�

2
1 3
2 4
3

``BBBB

// 1 2
3

��~~
~~

~

__@@@@@@

1
2
3
4

``BBBB

The associated exchange sequences are

0→ ( 1 3
2 )→ 1 ⊕ (

2
1 3
2

)→ ( 2
1 )→ 0 and 0→ ( 2

1 )→ ( 1 2 )⊕ (
3

2
1

)→ ( 1 3
2 )→ 0

Next, we mutate at V6. The exchange sequences looks as follows:

0→ (
1 3
2 4
3

)→ ( 1 3
2 )⊕ (

2
1 3
2 4
3

)→ (
2

1 3
2

)→ 0

and 0→ (
2

1 3
2

)→ (
1
2
3
)⊕ (

3
2 4

1 3
2

)→ (
1 3
2 4
3

)→ 0

Set R := (µ6 ◦ µ5)(Vi). Thus we have R = R5 ⊕R6 ⊕ Vi/(V5 ⊕ V6) with

R5 = 1 3
2 and R6 =

1 3
2 4
3
.

To calculate Ω−1
w (R), we have to compute (µ6∗ ◦ µ5∗)(Ti). Mutation of Ti at 5∗ = 5

yields the following quiver:

Γµ5∗ (Ti)

4
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1

  B
BB

B

4
3

2
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2 4

��~~
~~

~~
~
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ww
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2 4
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]]:::::::

2
1 3
2 4
3

  B
BB
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2
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AA�������
oo
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??~~~~~

The associated exchange sequences are

0→ 3
2 4 →

3
4 ⊕

4
3

2
→ 4

3 → 0 and 0→ 4
3 → 4 ⊕

3
2 4
3
→ 3

2 4 → 0.

Next, we mutate at 6∗ = 2. The exchange sequences looks as follows:

0→ 2 → 3
2 4 →

3
4 → 0 and 0→ 3

4 →
2
3
4
→ 2 → 0.
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We get Ω−1
w (R) := Ω−1

w (R5)⊕ Ω−1
w (R6)⊕ Ti/(T5 ⊕ T6) with

Ω−1
w (R5) = 3

2 4 and Ω−1
w (R6) = 2 .

14. Irreducible components associated to Cw

14.1. Module varieties. Let Γ := (Γ0,Γ1, s, t) be a finite quiver with vertex set Γ0 =
{1, . . . , r}, arrow set Γ1 and maps s, t : Γ1 → Γ0 which map an arrow a to its start vertex
s(a) and its terminal vertex t(a), respectively. In this section, we interpret dimension
vectors f = (f1, . . . , fr) for Γ as maps f : Γ0 → N. We consider the affine space

mod(CΓ, f) = rep(Γ, f) =
∏

a∈Γ1

Cf(t(a))×f(s(a))

of representations of Γ with dimension vector f . Here Cp×q denotes the vector space of
(p×q)-matrices with entries in C. This coincides with our definitions in Section 2.1, except
that we now work with spaces Cp×q of matrices rather than spaces HomC(C

q,Cp) of linear
maps. So each element in mod(CΓ, f) is of the form M = (M(a))a∈Γ1 where M(a) is a
matrix of size f(t(a))× f(s(a)).

The group

GLf :=
∏

i∈Γ0

GLf(i)(C)

acts from the left by conjugation on mod(CΓ, f), i.e. for M = (M(a))a∈Γ1 ∈ mod(CΓ, f)
and g = (g(i))i∈Γ0 ∈ GLf we have

(g.M)(a) = g(t(a))M(a)g(s(a))−1

for all a ∈ Γ1. The orbits of GLf on mod(CΓ, f) correspond to the set of isomorphism
classes of CΓ-modules with dimension vector f . Given a path p = al · · · a2a1 in Γ (i.e.
a1, . . . , al are arrows with s(ai+1) = t(ai) for 1 ≤ i ≤ l − 1) we define

M(p) :=M(al) · · ·M(a2)M(a1)

for any M ∈ mod(CΓ, f). More generally, for any element ρ ∈ eiCΓej we have M(ρ) ∈

Cf(i)×f(j), since ρ is a linear combination of paths from j to i. (For k ∈ Γ0 we denote the
associated path of length 0 by ek.) Set s(ρ) := j and t(ρ) := i. If I ⊂ CΓ is a finitely
generated ideal contained in the ideal generated by all paths of length 2, we may assume
that it is generated by elements ρ1, . . . , ρq with ρk ∈ etkCΓesk for certain sk, tk ∈ Γ0 where
1 ≤ k ≤ q. Let A := CΓ/I. We consider the affine GLf -variety

mod(A, f) := {M ∈ mod(CΓ, f) |M(ρk) = 0 for 1 ≤ k ≤ q}.

Again, the GLf -orbits correspond to the isomorphism classes of A-modules with dimension
vector f .

Given M ∈ mod(A, f) and M ′ ∈ mod(A, f ′) we identify any homomorphism ϕ ∈
HomA(M,M ′) with a family of matrices

(ϕ(k))k∈Γ0 ∈
∏

k∈Γ0

Cf ′(k)×f(k)

such that

ϕ(t(b))M(b) =M ′(b)ϕ(s(b))
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for all b ∈ Γ1. In other words, the diagram

Cf(s(b))

M(b)
��

ϕ(s(b))//
Cf ′(s(b))

M ′(b)
��

Cf(t(b))
ϕ(t(b))

//
Cf ′(t(b))

commutes for all b ∈ Γ1.

14.2. A stratification of Λw
d . Recall that for X ∈ nil(Λ) we have X ∈ Cw if and only if

there is a (unique) filtration

0 = X0 ⊆ X1 ⊆ · · · ⊆ Xr = X

by submodules such that Xk/Xk−1
∼= Mak

k for some ak ≥ 0 for all 1 ≤ k ≤ r, see
Proposition 10.2. In this case, we have

dimBi
(HomΛ(Vi,X)) =

r∑

k=1

ak dimBi
(∆k),

i.e. a := (a1, . . . , ar) is the ∆-dimension vector of HomΛ(Vi,X). Thus, with

µ(a) :=

r∑

k=1

ak dimΛ(Mk)

we may consider

Λa := {X ∈ Λµ(a) | X has a filtration 0 = X0 ⊆ X1 ⊆ · · · ⊆ Xr = X

with Xk/Xk−1
∼=Mak

k , 1 ≤ k ≤ r}.

In other words, Λa = {X ∈ Λµ(a) | X ∈ CMi,a}. Define

Λw
d := {X ∈ Λd | X ∈ Cw}.

We get a finite decomposition

Λw
d =

⋃

a∈Nr , µ(a)=d

Λa

into disjoint subsets.

Lemma 14.1. Λa is an irreducible constructible subset of Λµ(a).

Proof. We know from Proposition 10.5 that X ∈ Λa if and only if there exists a short
exact sequence

0→
r⊕

k=1

V ak
k−
→

r⊕

k=1

V ak
k → X → 0

with Vk− = 0 if k− = 0. Now the result follows from [Bo, Section 2.1]. �

Remark 14.2. It is not hard to see that for X ∈ nil(Λ) the following are equivalent

(i) X ∈ Cw;
(ii) HomΛ(D(Jw),X) = 0 = Ext1Λ(D(Λ/Jw),X).

Here Ji is by definition the ideal of Λ which is as a C-vector space generated by all paths
p in Q with p 6= ei, and we set Jw := Jir · · · Ji1 . It follows that Λw

d is an open subset in
Λd and it follows that Λa is a locally closed subset of Λµ(a). However, we will not need
this fact.
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14.3. Review of Bongartz’s bundle construction. Following Bongartz [Bo, Section 4],
we apply the above definitions and conventions in order to relate the varieties Λa and
mod(Bi, f). Assume that

f =

r∑

k=1

ak dimBi
(∆k).

Recall that this implies dim HomΛ(Vk,X) = f(k) for all X ∈ Λa. It follows, that

{(X,ϕ) | X ∈ Λa and ϕ ∈ HomΛ(Vk,X)}

is a (usually non-trivial) algebraic vector bundle of rank f(k) over Λa. Thus, setting

I(f) :=
{
(i, j) ∈ N2

1 | 1 ≤ i ≤ r and 1 ≤ j ≤ f(i)
}

we consider

Ha := {(X, (ϕ
(i)
j )(i,j)∈I(f)) | X ∈ Λa and

(ϕ
(k)
1 , . . . , ϕ

(k)
f(k)) is a basis of HomΛ(Vk,X), 1 ≤ k ≤ r}

equipped with a left GLd-action given by

g.(X, (ϕ
(k)
j )(k,j)∈I(f)) = (g.X, (g ◦ ϕ

(k)
j )(k,j)∈I(f)),

and with a right GLf -action given by

(X, (ϕ
(k)
j )(k,j)∈I(f)).h = (X, (

f(k)∑

t=1

ϕ
(k)
t ht,j(k))(k,j)∈I(f)).

Here ht,j(k) denotes the entry in row t and column j of the matrix hk. Clearly, the map

π1 : H
a → Λa

defined by

(X, (ϕ
(k)
j )(k,j)∈I(f)) 7→ X

is a GLd-equivariant GLf -principal bundle.

In order to define a map π2 : H
a → mod(Bi, f) we write Bi = CΓ/I for an admissible

ideal I, and we identify the vertices Γ0 = {1, 2, . . . , r} with the summands V1, . . . , Vr of Vi.
Recall that Γ ≡ Γi. Thus we may think of each arrow b : i→ j in Γ1 as a certain element
b ∈ HomΛ(Vj , Vi). With these identifications

π2(X, (ϕ
(k)
j )(k,j)∈I(f)) = (M(b))b∈Γ1

is determined by

ϕ
(s(b))
j ◦ b =

f(t(b))∑

u=1

ϕ(t(b))
u Mu,j(b).

Here Mu,j(b) denotes the entry in row u and column j of the matrix M(b). It is easy
to verify that π2 is a GLd-invariant GLf -equivariant morphism, if we view mod(Bi, f)
with the right GLf -action induced from the usual left action via the anti-automorphism
h 7→ h−1 of GLf . Moreover, by construction

π2(X, (ϕ
(k)
j )(k,j)∈I(f)) ∼= HomΛ(Vi,X)

as a Bi-module. Thus, in fact Im(π2) = F(∆, f), where F(∆, f) is the subset of mod(Bi, f)
consisting of the ∆-filtered Bi-modules with dimension vector f . It is shown in [CBS,
Corollary 1.5] that F(∆, f) is open in mod(Bi, f). Since π1 is a GLf -principal bundle it
follows from Lemma 14.1 that F(∆, f) = π2(π

−1
1 (Λa)) is also irreducible. In particular,

F(∆, f) is an irreducible component of mod(Bi, f).
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Finally, for π2(X, (ϕ
(k)
j )(k,j)∈I(f)) =M we have

dim GLd .X = dim GLd−dim EndΛ(X)

dimπ−1
1 (GLd .X) = dim GLd−dim EndΛ(X) + dim GLf

dim (GLf .M) = dim GLf −dim EndΛ(X).

The last equation holds, since the functor Fi : Cw → F(∆) which maps X to HomΛ(Vi,X)
is an equivalence of additive categories. By the same token π−1

2 (M.GLf ) = π−1
1 (GLd .X).

We conclude dimπ−1
2 (M) = dim GLd. Thus we proved the following:

Lemma 14.3. For a ∈ Nr and

f =

r∑

k=1

ak dimBi
(∆k)

there exists a variety Ha with a GLd-GLf -action together with two surjective morphisms

Ha

π1

����
��

��
��

�
π2

��?
??

??
??

??

Λa F(∆, f)

such that π1 is a GLd-equivariant GLf -principal bundle, and π2 is a GLf -equivariant and
GLd-invariant morphism. Moreover, dimπ−1

2 (M) = dim GLd for all M ∈ F(∆, f).

Since Cw = Fac(Vi), it is easy to see that for g ∈ GLd and h ∈ Ha with g.h = h we have
g = 1GLd

.

Remark 14.4. It seems plausible that with a dual bundle construction, as in [Bo, 4.3],
one can show that π2 is a GLd-principal bundle.

14.4. Parametrization of components.

Lemma 14.5. For a = (a1, . . . , ar), d = µ(a) and f =
∑r

k=1 ak dimBi
(∆k) we have

dimF(∆, f) = dim GLf −〈d,d〉Q.

Proof. For any N ∈ F(∆, f) we have proj.dimBi
(N) ≤ 1, thus Ext2Bi

(N,N) = 0, which
implies that N is a smooth point [Ge, 3.7] of the scheme mod(Bi, f). Recall that µ(a) =∑r

k=1 ak dim(Mk). Now Voigt’s Lemma [Ga, 1.3] and our Lemma 11.4 allow the calculation

dimF(∆, f) = dim GLf .N + dim Ext1Bi
(N,N)

= dim GLf −〈f , f〉Bi

= dim GLf −




r∑

k=1

a2k〈∆k,∆k〉Bi
+

∑

1≤s<k≤r

akas〈∆k,∆s〉Bi




= dim GLf −




r∑

k=1

a2k〈Mk,Mk〉Q +
∑

1≤s<k≤r

akas(Mk,Ms)Q




= dim GLf −〈d,d〉Q.

For the fourth equality we used Lemma 11.4 and the fact that

〈∆k,∆k〉Bi
= 1 = 〈Mk,Mk〉Q.

This finishes the proof. �
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Proposition 14.6. The (Zariski-) closure Za of Λa is an irreducible component of Λµ(a).
In particular, Za is the unique irreducible component of Λµ(a) which contains a dense open
subset which belongs to Λa.

Proof. We know from Lemma 14.1 that Λa is an irreducible constructible subset of Λµ(a).
Thus, Za is an irreducible subvariety of Λµ(a). Since Λµ(a) is equi-dimensional, it remains
to show that

dimΛa = dim GLd−〈d,d〉Q = dimΛd.

Recall that d = µ(a) and

f =
r∑

k=1

ak dimBi
(∆k).

As before, F(∆, f) denotes the irreducible open subset of ∆-good modules in the affine
GLf -variety mod(Bi, f) of Bi-modules with dimension vector f . By Lemma 14.5 we know
that

dimF(∆, f) = dim GLf −〈d,d〉Q.

In Section 14.3 we constructed a GLd-GLf -variety H
a together with surjective morphisms

Ha

π1

����
��

��
��

�
π2

��?
??

??
??

??

Λa F(∆, f)

with π1 a GLd-equivariant GLf -principal bundle, and π2 a GLf -equivariant morphism
with all fibers having the same dimension as GLd. Our claim about the dimension of Λa

follows. �

Let M = Ma1
1 ⊕ · · · ⊕M

ar
r for some a = (a1, . . . , ar) ∈ Nr. We just proved that Za is

an irreducible component of Λµ(a). Let us denote the corresponding dual semicanonical
basis vector ρZa by sM . Thus there is a dense open subset Ua ⊆ Za such that sM = δX
for all X ∈ Ua.

15. A dual PBW-basis and a dual semicanonical basis for A(Cw)

In this section we prove Theorem 3.1 and Theorem 3.2. We also deduce from these

results the existence of semicanonical bases for the cluster algebras R̃(Cw, T ) and R(Cw, T )
obtained by inverting and specializing coefficients, respectively.

15.1. Proof of Theorem 3.1. By the definition of the cluster algebra A(Cw, T ), its initial
seed is (y, B(T )◦) where y = (y1, . . . , yr). In particular, A(Cw, T ) is a subalgebra of F :=
C(y1, . . . , yr). Since T is rigid, by Theorem 2.6 and [GLS1, Theorem 1.1] every monomial
in the δTk

belongs to the dual semicanonical basis S∗, hence the δTk
are algebraically

independent, and (δT1 , . . . , δTr) is a transcendence basis of the subfield G it generates
inside the fraction field of U(n)∗gr. Let ι : F → G be the field isomorphism defined by
ι(yk) = δTk

where 1 ≤ k ≤ r. Combining Theorems 2.7 and 2.20 we see that the cluster
variable z of A(Cw, T ) obtained from the initial seed (y, B(T )◦) through a sequence of seed
mutations in successive directions k1, . . . , ks will be mapped by ι to δX , whereX ∈ Cw is the
indecomposable rigid module obtained by the same sequence of mutations of rigid modules.
It follows that ι restricts to an isomorphism from A(Cw, T ) to R(Cw, T ). This isomorphism
is completely determined by the images of the elements yk, hence the unicity. The cluster
monomials are mapped to elements δR where R is a (not necessarily Cw-maximal or basic)
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rigid module in Cw, hence an element of S∗. More precisely, the cluster monomials in
R(Cw, T ) are the elements δR, where R runs through the set of all T -reachable modules
(see Section 3.1 for the definition of T -reachable). This finishes the proof of Theorem 3.1.

15.2. Proof of Theorem 3.2. Let Mi = M1 ⊕ · · · ⊕Mr be as before. For 1 ≤ k ≤ r we
proved that dim(Mk) = βi(k). Set β(k) := βi(k).

We have

C[δM1 , . . . , δMr ] ⊆ R(Cw, Vi) ⊆ SpanC〈δX | X ∈ Cw〉,

where the first inclusion follows from the observation that each of the Λ-modules Mk for
1 ≤ k ≤ r is the direct summand of a Cw-maximal rigid module on the mutation path
from Vi to Ti, see Section 13. The second inclusion follows from the observation that
SpanC〈δX | X ∈ Cw〉 is an algebra. This follows from the fact that Cw is an additive
category together with Theorem 2.6.

For each M ∈ add(Mi) we constructed a dual semicanonical basis vector sM , see the
explanation at the end of Section 14.4. If M =Mk is an indecomposable direct summand
of Mi, then sM = δMk

. (For every rigid Λ-module R ∈ nil(Λ), the function δR belongs to
the dual semicanonical basis. The modules Mk are rigid by Corollary 9.9.)

The following theorem is a slightly more explicit statement of Theorem 3.2:

Theorem 15.1. Let w be a Weyl group element, and let i = (ir, . . . , i1) be a reduced
expression of w. Then the following hold:

(i) We have

R(Cw, Vi) = C[δM1 , . . . , δMr ] = SpanC〈δX | X ∈ Cw〉;

(ii) The set

{δM |M ∈ add(Mi)}

is a C-basis of R(Cw, Vi);
(iii) The subset

S∗w := {sM |M ∈ add(Mi)}

of the dual semicanonical basis is a C-basis of R(Cw, Vi), and all cluster monomials
of R(Cw, Vi) belong to S∗w.

The basis {δM |M ∈ add(Mi)} will be called dual PBW-basis of R(Cw, Vi), and S
∗
w the

dual semicanonical basis of R(Cw, Vi). The proof of this theorem will be given after a series
of lemmas.

Let

n =
⊕

d∈∆+

nd

be the root space decomposition of n. We consider n as a subspace of the universal
enveloping algebra U(n). Since we identify U(n) andM, we can think of an element f in
nd as a constructible function f : Λd → C inMd.

Lemma 15.2. Let f ∈ nd. If d 6∈ {β(k) | 1 ≤ k ≤ r}, then

f(X) = 0 for all X ∈ Cw.
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Proof. Let X ∈ Cw, and let f ∈ nd with f(X) 6= 0. In particular, f ∈ Md, and we have
d = dim(X) ∈ ∆+. We know that X ∈ CMi,a for some a = (a1, . . . , ar). Thus

dim(X) =

r∑

k=1

ak dim(Mk).

By Lemma 4.2, ∆+
w = {β(k) | 1 ≤ k ≤ r} is a bracket closed subset of ∆+. Thus d = β(s)

for some 1 ≤ s ≤ r. This finishes the proof. �

As before, let i = (ir, . . . , i1) be a reduced expression of a Weyl group element w, and
let

P =
{
pm |m ∈ N

(J)
}

be an i-compatible PBW-basis of U(n), see Sections 4.2 and 4.3.

Lemma 15.3. Let pm ∈ P where m = (mj)j∈J . If mj > 0 for some j > r, then

pm(X) = 0 for all X ∈ Cw.

Equivalently, δX(pm) = 0 for all X ∈ Cw.

Proof. We regard pm as an element ofM, hence as a convolution product

pm = p
(m1)
1 ⋆ p

(m2)
2 ⋆ · · · ⋆ p(ms)

s .

Let us assume that s > r and ms > 0. It follows that pm = p ⋆ ps where

p :=
1

ms

(
p
(m1)
1 ⋆ p

(m2)
2 ⋆ · · · ⋆ p

(ms−1)
s−1 ⋆ p(ms−1)

s

)
.

Now let X ∈ Cw. Then

pm(X) = (p ⋆ ps)(X) =
∑

m∈C

mχc({U ⊆ X | p(U)ps(X/U) = m}).

Since Cw is closed under factor modules, we get X/U ∈ Cw for all submodules U of X.
Now Lemma 15.2 yields ps(X/U) = 0 for all such U . Thus we proved that pm(X) = 0 for
all X ∈ Cw. �

Recall from Section 4.3 that

P∗
i = {(p∗1)

m1 · · · (p∗r)
mr | mk ≥ 0 for all 1 ≤ k ≤ r}

is a subset of the dual PBW-basis P∗ of U(n)∗gr. The following lemma is of central impor-
tance:

Lemma 15.4. For 1 ≤ k ≤ r we have p∗k = δMk
(up to rescaling of pk).

Proof. For each 1 ≤ k ≤ r there exists some m = (mi)i≥1 such that pm(Mk) 6= 0, since
δMk

∈ M∗ ≡ U(n)∗gr is a linear combination of elements in P∗. Let s be the natural
number with ms ≥ 1, but mj = 0 for all j > s.

By Lemma 15.3, if s > r, then pm(X) = 0 for all modules X ∈ Cw, a contradiction.
Thus, we know that s ≤ r. We even know that s ≤ k, since Mk is an object of the
subcategory Cu of Cw, where u = sik · · · si2si1 .

If s = k, then for dimension reasons m1 = · · · = mk−1 = 0 and mk = 1. So we get
pm = pk.

Finally, assume s < k. Since pm(Mk) 6= 0, we know that Mk has a filtration

0 = U1,0 ⊆ U1,1 ⊆ · · · ⊆ U1,m1 = U2,0 ⊆ U2,1 ⊆ · · · ⊆ U2,m2 = U3,0 ⊆ · · · ⊆ Us,ms =Mk
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such that pi(Ui,j/Ui,j−1) 6= 0 for all 1 ≤ i ≤ s and 1 ≤ j ≤ mi. But we know that pi lies
in Mβ(i). In other words, we have dim(Ui,j/Ui,j−1) = β(i). This implies that β(k), the
dimension vector of Mk, is a positive integer linear combination of β(i)’s with i < k. More
precisely,

β(k) = m1β(1) + · · ·+msβ(s).

But β(1), . . . , β(s) belong to the bracket closed set ∆+
v where v := sis · · · si2si1 . Thus β(k)

is also in ∆+
v , which is a contradiction, since s < k.

Summarizing, we proved that pm(Mk) 6= 0 if and only if pm = pk. Now we can rescale
our PBW-basis elements pk, and we obtain without loss of generality that pk(Mk) = 1.
Thus we proved that

δMk
(pm) := pm(Mk) =

{
1 if pm = pk,

0 otherwise.

In other words, δMk
= p∗k. �

Corollary 15.5. Under the identification U(n)∗gr ≡M
∗ we have

P∗
i = {δM |M ∈ add(Mi)} .

Proof. By definition

P∗
i = {(p∗1)

m1 · · · (p∗r)
mr | mk ≥ 0 for all 1 ≤ k ≤ r} ⊆ P∗.

This implies the result, since p∗k = δMk
and δX · δY = δX⊕Y for all nilpotent Λ-modules X

and Y . �

Proof of Theorem 15.1. Let X ∈ Cw. By Lemma 15.3 and Corollary 15.5, δX is a linear
combination of dual PBW-basis vectors of the form δM with M ∈ add(Mi). Hence δX ∈
C[δM1 , . . . , δMr ], and

SpanC〈δX | X ∈ Cw〉 ⊆ C[δM1 , . . . , δMr ] ⊆ R(Cw, Vi).

Using the known reverse inclusions we get (i) and (ii) of Theorem 15.1.

Next, let M = Ma1
1 ⊕ · · · ⊕M

ar
r be a module in add(Mi). Set a := (a1, . . . , ar). Then

sM = δX for some module X in Za. In particular, X is contained in Cw. Thus, by what
we proved up to now we get

sM = δX ∈ R(Cw, Vi).

For dimension reasons this implies that

S∗w := {sM |M ∈ add(Mi)} = S
∗ ∩R(Cw, Vi)

is a C-basis of R(Cw, Vi). By what we proved before, the set of cluster monomials of
R(Cw, Vi) are a subset of S∗w. This finishes the proof of Theorem 15.1. �

By Theorem 15.1, we know that

R(Cw, Vi) = C[p∗1, . . . , p
∗
r].

Thus Proposition 8.2 yields the following result:

Proposition 15.6. Under the identification U(n)∗gr ≡ C[N ] the cluster algebra R(Cw, Vi)

gets identified to the ring of invariants C[N ]N
′(w), which is isomorphic to C[N(w)].

Corollary 15.7. Let i = (ir, . . . , i1) be a reduced expression of w. For X ∈ Cw, the
function ϕX ∈ C[N ] is determined by its values on {xi(t) | t = (tr, . . . , t1) ∈ (C∗)r} where
xi(t) := xir(tr) · · · xi2(t2)xi1(t1).
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Proof. Let ϕ,ψ ∈ C[N ]N
′(w). Then ϕ = ψ if and only if ϕ(xi(t)) = ψ(xi(t)) for all

t ∈ (C∗)r: Recall that each x ∈ N can be written as x = yy′ for a unique (y, y′) ∈
N(w) × N ′(w). For x ∈ Nw we have πw(x) = y. Furthermore, the image of πw is dense
in N(w), see Proposition 8.5. It is well known that the set {xi(t) | t ∈ (C∗)r} contains a
dense open subset of Nw. For x = xi(t) we get

ϕ(πw(x)) = ϕ(y) = ϕ(yy′) = ϕ(x).

For the second equality we used that ϕ is N ′(w)-invariant. Since ϕ is a regular map,
its values on the whole of N(w) are already determined by its values on πw(xi(t)), t ∈
(C∗)r. �

15.3. Proof of Theorem 3.3. By Proposition 8.5, we know that C[Nw] is the localization
of the ring C[N(w)] with respect to the minors D̟i,w−1(̟i). By Proposition 15.6, C[N(w)]
is equal to the cluster algebra R(Cw, Vi). By Proposition 9.1, the minors D̟i,w−1(̟i)

coincide with the functions ϕX where X runs through the set of indecomposable Cw-
projective-injectives. In other words, the D̟i,w−1(̟i) coincide with the generators of the

coefficient ring of R(Cw, Vi). Hence C[Nw] is equal to the cluster algebra R̃(Cw, Vi).

15.4. Example. Let us discuss an example of base change between P∗
i and S∗w. Let Q be

a quiver with underlying graph 1 2 3 and let i := (i6, . . . , i1) := (2, 3, 1, 2, 3, 1),
which is a reduced expression of the Weyl group element w := s2s3s1s2s3s1. As before,
let Vi = V1 ⊕ · · · ⊕ V6 and Mi = M1 ⊕ · · · ⊕M6, where as always Mk = M [k, k]. The
Λ-modules Vk are the following:

V1 =M1 = 1 V2 =M2 = 3 V3 =M3 = 1 3
2

V4 =M [4, 1] =
3

2
1

V5 =M [5, 2] =
1
2
3

V6 =M [6, 3] =
2

1 3
2
.

The initial cluster of our cluster algebra R(Cw, Vi) looks as follows:

V4 //

����
��

��
�

V1

����
��

��
�

3
2

1
//

~~||
||

|

1

����
��

��
�

V6 // V3

\\9999999

����
��

��
�

=
2

1 3
2

// 1 3
2

``BBBBBB

~~||
||

||

V5

\\9999999
// V2

\\9999999
1
2
3

``BBBBB

// 3

^^<<<<<<<

We have

M4 = 3
2 M5 = 1

2 M6 = 2 .

There are only three more indecomposable Λ-modules, namely

W1 = 2
3 W2 = 2

1 W3 = 2
1 3 .

Observe that Ω(Vk) =Wk for 1 ≤ k ≤ 3.

The functions δMk
can be computed easily. Indeed, for all j and k, the variety Fj,Mk

is
either empty or a single point, so χc(Fj,Mk

) is either 0 or 1. Using Theorem 13.1 we get

δV4 = δM1 · δM4 − δM3 ,

δV5 = δM2 · δM5 − δM3 ,

δV6 = δM3 · δM6 − δM4 · δM5 .
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Some further exchange relations are

δV3δW3 = δV4 · δV5 + δV1δV2δV6 ,

δV2δW2 = δW3 + δV4 ,

δV1δW1 = δW3 + δV5 .

The cluster variables in R(Cw, Vi) are

{δMk
, δVs , δWt | 1 ≤ k ≤ 6, 4 ≤ s ≤ 6 and 1 ≤ t ≤ 3} .

(Here we consider the three coefficients δVk
with 4 ≤ k ≤ 6 also as cluster variables.) Using

the above formulas we get

δW3 = δM1δM2δM6 − δM1δM4 − δM2δM5 + δM3 ,

δW2 = δM1δM6 − δM5 ,

δW1 = δM2δM6 − δM4 .

So we wrote all cluster variables as linear combinations of dual PBW-basis vectors.

15.5. Generalities on bases of algebras. A Λ-module M = ⊕r
k=1M

ak
k in add(Mi) has

gaps if for each 1 ≤ j ≤ n there is some 1 ≤ k ≤ r with ik = j and ak = 0. In other words,
M has gaps if and only if M has no direct summand of the form

Mi(Ii,j) :=Mkmax ⊕ · · · ⊕Mk+min
⊕Mkmin

where ik = j.

Lemma 15.8. Let M =M ′ ⊕M ′′ be in add(Mi) such that

M ′′ ∼=Mi(Ii,j)

for some 1 ≤ j ≤ n. Then we have sM = sM ′ · sM ′′.

Proof. We have sM ′′ = δIi,j , and Ii,j is Cw-projective-injective. The claim follows now
easily from [GLS1, Theorem 1.1] in combination with the explanations in [GLS1, Section
2.6]. �

Let B := {bi | i ≥ 1} be a K-basis of a commutative K-algebra A. For some fixed n ≥ 1
let C := {b1, . . . , bn}. A basis vector b ∈ B is called C-free if b /∈ biB for some bi ∈ C.
Assume that the following hold:

(i) For all bi ∈ C we have biB ⊆ B;

(ii) If bz11 · · · b
zn
n b = b

z′1
1 · · · b

z′n
n b′ for some zi, z

′
i ≥ 0 and some C-free elements b, b′ ∈ B,

then b = b′ and zi = z′i for all i.

It follows that B = {bz11 · · · b
zn
n b | b ∈ B is C-free, zi ≥ 0}. Define

A := A/(b1 − 1, . . . , bn − 1).

For a ∈ A, let a be the residue class of a in A. Furthermore, let Ab1,...,bn be the localization
of A at b1, . . . , bn. The following lemma is easy to show:

Lemma 15.9. With the notation above, the following hold:

(1) The set B := {b | b is C-free} is a K-basis of A;
(2) The set Bb1,...,bn := {bz11 · · · b

zn
n b | b ∈ B is C-free, zi ∈ Z} is a K-basis of Ab1,...,bn .



KAC-MOODY GROUPS AND CLUSTER ALGEBRAS 79

15.6. Inverting and specializing coefficients. One can rewrite the basis S∗w appearing
in Theorem 3.2 as

S∗w =
{
(δIi,1)

z1 · · · (δIi,n)
znsM |M ∈ add(Mi),M has gaps, zi ≥ 0

}
.

The next two theorems deal with the situation of invertible coefficients and specialized
coefficients.

Theorem 15.10 (Invertible coefficients). The set

S̃∗w :=
{
(δIi,1)

z1 · · · (δIi,n)
znsM |M ∈ add(Mi),M has gaps,zi ∈ Z

}

is a C-basis of R̃(Cw, Vi), and S̃∗w contains all cluster monomials of the cluster algebra

R̃(Cw, Vi).

Next, we specialize all n coefficients δIi,j of the cluster algebra R(Cw, Vi) to 1. We obtain
a new cluster algebra R(Cw, Vi) which does not have any coefficients. The residue class of
δX ∈ R(Cw, Vi) is denoted by δX . The residue class of a dual semicanonical basis vector
sM is denoted by sM .

Theorem 15.11 (No coefficients). The set

S∗w := {sM |M ∈ add(Mi),M has gaps}

is a C-basis of R(Cw, Vi), and S∗w contains all cluster monomials of the cluster algebra
R(Cw, Vi).

Proof of Theorem 15.10 and Theorem 15.11. Let B := {bi | i ≥ 1} := S∗w be the dual
semicanonical basis of R(Cw, Vi). We can label the bi such that

{b1, . . . , bn} =
{
δIi,1 , . . . , δIi,n

}
.

Using Lemma 15.8 it is easy to check that the elements bi satisfy the properties (i) and
(ii) mentioned in Section 15.5. Then apply Lemma 15.9. �

16. Acyclic cluster algebras

In this section we will study the case of acyclic cluster algebras, which is of special
interest. As before, let Q be an acyclic quiver with vertices 1, . . . , n. Without loss of
generality we assume that i < j whenever there is an arrow a : i→ j in Q. We define two
Weyl group elements c := sn · · · s2s1 and w := c2. For simplicity we assume that Q is not
a linearly oriented quiver of type An. This implies that i := (n, . . . , 2, 1, n, . . . , 2, 1) is a
reduced expression of w. Define Vi = V1 ⊕ · · · ⊕ V2n and Mi =M1 ⊕ · · · ⊕M2n as before.

It follows that for 1 ≤ j ≤ n we have Mj = Ij and Mn+j = τQ(Ij). Here Ij denotes
the indecomposable injective KQ-module with socle Sj, and τQ is the Auslander-Reiten
translation in mod(KQ).

Observe that R(Cw, Vi) is an acyclic cluster algebra associated to Q having n non-
invertible coefficients, whereas R(Cw, Vi) is the acyclic cluster algebra associated to Q
having no coefficients.

Theorem 16.1. With w and i as above, the following hold:

(i) R(Cw, Vi) = C[δM1 , . . . , δM2n ] = SpanC〈δX | X ∈ Cw〉;
(ii) {δM |M ∈ add(Mi)} and {sM |M ∈ add(Mi)} are both a C-basis of R(Cw, Vi);
(iii) {sM |M ∈ add(Mi),M has gaps} is a C-basis of R(Cw, Vi);
(iv) {δM |M ∈ add(Mi),M has gaps} is a C-basis of R(Cw, Vi);



80 CHRISTOF GEISS, BERNARD LECLERC, AND JAN SCHRÖER

(v) There is an isomorphism of cluster algebras R(Cw, Vi) ∼= AQ, where AQ is the
coefficient-free acyclic cluster algebra associated to Q.

Proof. Parts (i), (ii) and (iii) were already proved before for arbitrary reduced expressions
of arbitrary Weyl group elements. Part (v) is clear from our description of the initial seed
(labeled by Vi) for the cluster algebra R(Cw, Vi). It remains to prove (iv): We have

R(Cw, Vi) =
⊕

d∈Nn

Rd

whereRd is the C-vector space with basis {sM |M ∈ add(Mi) ∩ rep(Q, d)}. We know that
{δM |M ∈ add(Mi) ∩ rep(Q, d)} is a basis of Rd as well. After specializing the coefficients
δIi,j , 1 ≤ j ≤ n to 1, we get

R(Cw, Vi) =
⊕

d∈Nn

Rd

where Rd is the C-vector space with basis

{sM |M ∈ add(Mi) ∩ rep(Q, d),M has gaps} .

Now one can use the formula

δIi,i = δMn+i
· δMi

−
∏

j→i

δMn+j
·
∏

i→k

δMk

(where the products are taken over all arrows of Q which start and end in i, respectively)
and an induction on the number of vertices of Q to show that for every M ∈ add(Mi)
which has gaps, the vector sM is a linear combination of elements of the form δM ′ where
M ′ in add(Mi) has gaps and |dim(M ′)| ≤ |dim(M)|. For dimension reasons we get that the
vectors δM ′ with M ′ having gaps form a linearly independent set. This implies (iv). �

It is interesting to compare Theorem 16.1,(iv) to Berenstein, Fomin and Zelevinsky’s
construction of a basis for the acyclic cluster algebra AQ. Let y := (y1, . . . , yn) be the
initial cluster whose exchange matrix BQ is encoded by Q, as in Section 2.6. Let y∗1, . . . , y

∗
n

be the n cluster variables obtained from y by one mutation in each of the n possible
directions. Thus the n sets {y1, . . . , yn} \ {yk} ∪ {y

∗
k} form the neighboring clusters of our

initial cluster y. Using a simple Gröbner basis argument, the following is shown in [BFZ]:

Theorem 16.2 (Berenstein, Fomin, Zelevinsky). The monomials

{yp11 (y∗1)
q1 · · · ypnn (y∗n)

qn | pi, qi ≥ 0, piqi = 0}

form a C-basis of the acyclic cluster algebra AQ.

Starting with the initial seed (y, BQ), which corresponds to Γi ≡ ΓVi
, we perform the

sequence of mutations µn · · ·µ2µ1. In each step we obtain a new cluster variable which we

denote by y†k. Note that y†1 = y∗1, but already y
†
2 and y∗2 may be different. Observe that

µn · · ·µ2µ1(BQ) = BQ. We get that

((y†1, . . . , y
†
n), BQ)

is a seed of the cluster algebra AQ where

{y1, . . . , yn} ∩ {y
†
1, . . . , y

†
n} = ∅.

Our version of Theorem 16.2 looks then as follows:
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Theorem 16.3. The monomials
{
yp11 (y†1)

q1 · · · ypnn (y†n)
qn | pi, qi ≥ 0, piqi = 0

}

form a C-basis of the acyclic cluster algebra AQ.

Note that the initial cluster (y1, . . . , yn) comes from Vi and the cluster (y†1, . . . , y
†
n) comes

from Ti.

17. Coordinate rings of unipotent radicals

In this section, we assume that Q is of finite Dynkin type A,D,E. We first recall some
standard notation (we refer the reader to [GLS6] for more details). The group G is now a
simple complex algebraic group of the same type as Q. Let J be a subset of the set I of
vertices of Q, and let K be the complementary subset. To K one can attach a standard
parabolic subgroup BK containing the Borel subgroup B = HN . We denote by NK the
unipotent radical of BK . This is a subgroup of N . Let WK be the subgroup of the Weyl
group W generated by the reflections sk with k ∈ K. This is a finite Coxeter group and
we denote its longest element by wK

0 . The longest element of W is denoted by w0.

In finite type, the preprojective algebra Λ is finite-dimensional and selfinjective. In
agreement with [GLS6], we shall denote by Pi the indecomposable projective Λ-module
with top Si and by Qi the indecomposable injective module with socle Si. We write

QJ =
⊕

j∈J

Qj and PJ =
⊕

j∈J

Pj .

In [GLS6] we have shown that C[NK ] is naturally isomorphic to the subalgebra

RK := SpanC〈ϕX | X ∈ Sub(QJ)〉

of C[N ]. As before, Sub(QJ) is the full subcategory of mod(Λ) whose objects are submod-
ules of direct sums of finitely many copies of QJ . This allowed us to introduce a cluster
algebra AJ ⊆ RK , whose cluster monomials are of the form ϕX with X a rigid module in
Sub(QJ). We conjectured that in fact AJ = RK , see [GLS6, Conjecture 9.6].

We are going to prove that this conjecture follows from the results of this paper. Let
w := w0w

K
o , and let i be a reduced expression for w.

Lemma 17.1. We have NK = N ′(wK
0 ) = N(w0w

K
0 ).

Proof. We know that N ′(wK
0 ) is the subgroup of N generated by the one-parameter sub-

groups N(α) with α > 0 and wK
0 (α) > 0. These are exactly the one-parameter subgroups

of N which do not belong to the Levi subgroup of BK , hence the first equality follows.
Now, since N = w0N−w0, we have

N ′(wK
0 ) = N ∩

(
wK
0 Nw

K
0

)
= N ∩

(
wK
0 w0N−w0w

K
0

)
= N(w0w

K
0 ).

�

As before, let Fac(PJ ) be the subcategory of mod(Λ) whose objects are factor modules
of direct sums of finitely many copies of PJ .

Lemma 17.2. We have Cw0wK
0
= Fac(PJ ).
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Proof. By Proposition 9.1, we know that the indecomposable Cw-projective-injective object
Ii,i with socle Si satisfies

ϕIi,i = D̟i,wK
0 w0(̟i)

, (i ∈ I).

By [GLS6, §6.2], it follows that Ii,i = EwK
0
Qi, where EwK

0
is the functor defined in [GLS6,

§5.2]. It readily follows that Ii,i is the indecomposable projective-injective object of
Fac(PJ ) with simple socle Si. Hence Cw0wK

0
and Fac(PJ) have the same projective-injective

generator. �

Let S denote the self-duality of mod(Λ) induced by the involution a 7→ a∗ mapping an
arrow a of Q to its opposite arrow a∗, see [GLS2, §1.7]. This restricts to an anti-equivalence
of categories Fac(PJ)→ Sub(QJ), that we shall again denote by S.

Lemma 17.3. For every X ∈ nil(Λ) and every n ∈ N we have

ϕX(n−1) = (−1)dimXϕS(X)(n).

Proof. We know that N is generated by the one-parameter subgroups xi(t) attached to
the simple positive roots. By Proposition 6.1 we have

ϕX(xi1(t1) · · · xik(tk)) =
∑

a=(a1,...,ak)∈Nk

χc(Fia,X)
ta11 · · · t

ak
k

a1! · · · ak!
.

Now, if n = xi1(t1) · · · xik(tk), we have n−1 = xik(−tk) · · · xi1(−t1) and the result follows
from the fact that Fia,X

∼= Fi
aop
op ,S(X), where iop and aop denote the sequences obtained by

reading i and a from right to left. �

We can now prove the following:

Theorem 17.4. Conjecture 9.6 of [GLS6] holds.

Proof. As before, let w := w0w
K
0 , and let i be a reduced expression of w. The cluster

algebra R(Cw) = R(Fac(PJ)) is isomorphic to AJ via the map ϕX 7→ ϕS(X). This comes
from the fact that S : Fac(PJ) → Sub(QJ ) is an anti-equivalence which maps the Cw-
maximal rigid module Vi used to define the initial seed of R(Cw) to the maximal rigid
module Uj of [GLS6, §9.2] used to define the initial seed of AJ . (Here we assume that j is

the reduced expression of wK
0 w0 obtained by reading the reduced expression i of w0w

K
0 from

right to left.) In particular the cluster variables ϕMk
which, by Theorem 15.1, generate

R(Fac(PJ)) ≡ C[N(w0w
K
0 )] are mapped to cluster variables ϕS(Mk) of AJ . They also form

a system of generators of the polynomial algebra C[N(w0w
K
0 )] = C[NK ] by Lemma 17.3,

because the map n 7→ n−1 is a biregular automorphism of NK . Hence AJ = C[NK ]. �

Remark 17.5. The previous discussion shows that we obtain two different cluster algebra
structures on C[NK ], coming from the two different subcategories Fac(PJ ) and Sub(QJ).
When using Fac(PJ ) = Cw0wK

0
, we regard C[NK ] as the subring of N ′(w0w

K
0 )-invariant

functions of C[N ] for the action of N ′(w0w
K
0 ) on N by right translations, see Section 8.1.

This allows us to relate the first cluster structure to the cluster structure of the unipotent

cell C[Nw0wK
0 ], see Proposition 8.5. When using Sub(QJ), we regard C[NK ] as the subring

of N ′(w0w
K
0 )-invariant functions of C[N ] for the action of N ′(w0w

K
0 ) = N(wK

0 ) on N by
left translations. These functions can then be “lifted” to B−

K-invariant functions on G for

the action of B−
K on G by left translations. This allows us to “lift” the second cluster

structure to a cluster structure on C[B−
K\G], see [GLS6, §10].
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18. Remarks and open problems

18.1. Calculation of Mi(R). Let i be a reduced expression of a Weyl group element w,
and let R be a Vi-reachable Λ-module, see Section 3.1. Based on Theorem 3.1 we can
combine Corollary 10.7 and Proposition 12.4 to determine algorithmically Mi(R). (For
the definition of Mi(R) see Section 10.) Recall that the Vi-reachable modules R are in 1-1
correspondence with the cluster monomials δR in R(Cw).

18.2. Calculation of Euler characteristics. Let i be a reduced expression of a Weyl
group element w, and let R be a Vi-reachable Λ-module, and let j = (j1, . . . , jp). By
Proposition 6.1 the Euler characteristic χc(Fj,R) is equal to the coefficient of t1 · · · tp in
ϕR(xj1(t1) · · · xjp(tp)). Using mutations, we can express algorithmically ϕR as a Laurent
polynomial in the functions ϕV1 , . . . , ϕVr . Now we can use the calculations from Section 9.6
to compute all the Euler characteristics χc(Fj,R).

18.3. Open orbit conjecture. It is known that the (specialized) dual canonical basis
B∗ and the dual semicanonical basis S∗ of M∗ ≡ U(n)∗gr do not coincide, see [GLS1,
Section 1.5]. But one might at least hope that both bases have some interesting elements
in common:

Conjecture 18.1 (Open Orbit Conjecture). Let Z be an irreducible component of Λd,
and let bZ and ρZ be the associated dual canonical and dual semicanonical basis vectors of
M∗. If Z contains an open GLd-orbit, then bZ = ρZ.

We know that each cluster monomial of the cluster algebra A(Cw) is of the form ρZ ,
where Z contains an open GLd-orbit. So if the conjecture is true, then all cluster monomials
belong to the dual canonical basis.

18.4. Example. Finally, we would like to ask the following question. Is it possible to
realize every element of the dual canonical basis ofM∗ as a δ-function? We know several
examples of elements b of B∗ which do not belong to S∗. In all these examples, b is however
equal to δX for a non-generic Λ-module X. (We say that X ∈ nil(Λ) is generic if δX ∈ S

∗.)

Let us look at an example. Let Q be the quiver 1 2oo oo and let Λ be the associated
preprojective algebra. For λ ∈ C∗ we define representations M(λ, 1) and M(λ, 2) of Q as
follows:

M(λ, 1) := C C
(λ )

oo
( 1 )oo and M(λ, 2) := C2 C2

(

λ 1
0 λ

)

oo
( 1 0
0 1 )oo

Let ι : rep(Q, (2, 2)) → Λ(2,2) be the obvious canonical embedding. Clearly, the image of ι
is an irreducible component of Λ(2,2), which we denote by ZQ. It is not difficult to check
that the set

{M(λ, 1) ⊕M(µ, 1) | λ, µ ∈ C∗}

is a dense subset of ZQ. It follows that

δM(λ,1)⊕M(µ,1) = ρZQ

is an element of the dual semicanonical basis S∗. It is easy to check that

δM(λ,2) 6= δM(λ,1)⊕M(µ,1).
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Indeed, the variety Fj,X of composition series of type j = (1, 2, 1, 2) has Euler characteristic
2 for X = M(λ, 1) ⊕M(µ, 1) and Euler characteristic 1 for X = M(λ, 2). Furthermore,
one can show that

δM(λ,2) = bZQ

belongs to the dual canonical basis B∗ ofM∗.

Note that the functions δM(λ,1)⊕M(µ,1) and δM(λ,2) do not belong to any of the subalge-
bras R(Cw), since M(λ, 1) and M(λ, 2) are regular representations of the quiver Q for all
λ.
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[KP] V. Kac, D. Peterson, Regular functions on certain infinite-dimensional groups. Arithmetic and ge-
ometry, Vol II, 141–166, Progr. Math., 36, Birkhäuser Boston, Boston, MA, 1983.
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ics, 204. Birkhäuser Boston, Inc., Boston, MA, 2002.
[Le] B. Leclerc, Dual canonical bases, quantum shuffles and q-characters. Math. Z. 246 (2004), 691–732.
[Lu1] G. Lusztig, Quivers, perverse sheaves, and quantized enveloping algebras. J. Amer. Math. Soc. 4

(1991), no. 2, 365–421.
[Lu2] G. Lusztig, Semicanonical bases arising from enveloping algebras. Adv. Math. 151 (2000), no. 2,

129–139.
[Pa] Y. Palu, Cluster characters for 2-Calabi-Yau triangulated categories. Ann. Inst. Fourier (Grenoble)

58 (2008), no. 6, 22212248.
[Re] C. Reutenauer, Free Lie algebras. London Mathematical Society Monographs. New Series, 7. Oxford

Science Publications. The Clarendon Press, Oxford University Press, New York, 1993. xviii+269 pp.
[Rm] N. Richmond, A stratification for varieties of modules. Bull. London Math. Soc. 33 (2001), no. 5,

565–577.
[Ri1] C.M. Ringel, Tame algebras and integral quadratic forms. Lecture Notes in Mathematics, 1099.

Springer-Verlag, Berlin, 1984. xiii+376 pp.
[Ri2] C.M. Ringel, The category of modules with good filtrations over a quasi-hereditary algebra has

almost split sequences. Math. Z. 208 (1991), no. 2, 209–223.
[Ri3] C.M. Ringel, The category of good modules over a quasi-hereditary algebra. Proceedings of the Sixth

International Conference on Representations of Algebras (Ottawa, ON, 1992), 17 pp., Carleton-
Ottawa Math. Lecture Note Ser., 14, Carleton Univ., Ottawa, ON, 1992.

[Ri4] C.M. Ringel, PBW-bases of quantum groups. J. Reine Angew. Math. 470 (1996), 51–88.
[Ri5] C.M. Ringel, Iyama’s finiteness theorem via strongly quasi-hereditary algebras. Preprint (2009), 5 pp.

arXiv:0912.5001.

Christof Geiss

Instituto de Matemáticas

Universidad Nacional Autónoma de México
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