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DEFORMATION QUANTIZATION WITH GENERATORS AND RELATIONS

DAMIEN CALAQUE, GIOVANNI FELDER, AND CARLO A. ROSSI

Abstract. In this paper we prove a conjecture of B. Shoikhet which claims that two quantization procedures arising
from Fourier dual constructions actually coincide.

1. Introduction

There are two ways to quantize a polynomial Poisson structure π on the dual V ∗ of a finite dimensional complex
vector space V , using Kontsevich’s formality as a starting point.

The first (obvious) way is to consider the image U(π~) of π~ = ~π through Kontsevich’s L∞-quasi-isomorphism

U : Tpoly(V
∗) −→ Dpoly(V

∗) ,

and to take m⋆ := m+ U(π~) as a ⋆-product quantizing π, m being the standard product on S(V ) = OV ∗ .

The main idea, due to B. Shoikhet [8], behind the second (less obvious) way is to deform the relations of S(V )
instead of the product m itself.

Consider for example a constant Poisson structure π on V ∗: the deformation quantization of S(V ) w.r.t. ~π is the
Moyal–Weyl algebra S(V )[[~]] with Moyal product ⋆ given by

f1 ⋆ f2 = m

(
exp

~π

2
(f1 ⊗ f2)

)
,

where π is understood here as a bidifferential endomorphism of S(V ) ⊗ S(V ). On the other hand, it is well-known
that the Moyal–Weyl algebra associated to π is isomorphic to the free associative algebra over C[[~]] with generators
xi (for {xi} a basis of V ) by the relations

xi ⋆ xj − xj ⋆ xi = ~πij .

The construction we are interested in generalizes to any polynomial Poisson structure π on V ∗ the two ways of
characterizing the Moyal–Weyl algebra associated to π.

More conceptually, S(V ) is a quadratic Koszul algebra of the form T (V )/〈R〉, where R is the subspace of V ⊗2

spanned by vectors of the form xi ⊗ xj − xj ⊗ xi, {xi} as in the previous paragraph. The right-hand side of the
identity S(V ) = T(V )/〈R〉 can be viewed as the 0-th cohomology of the free associative dg (short for differential

graded from now on) algebra T(∧−(V )) over C, where ∧−(V ) is the graded vector space ∧−(V ) =
⊕0

p=−d+1 ∧
−(V )p =⊕0

p=−d+1 ∧
−p+1(V ) and differential δ on generators {xi1 , xi1,i2 , . . . } of ∧−(V ) specified by

δ(xi1 ) = 0, δ(xi1,i2) = xi1 ⊗ xi2 − xi2 ⊗ xi1 , etc.

Observe that the differential δ dualizes the product of the graded commutative algebra ∧(V ∗): in fact, ∧(V ∗) is
the Koszul dual of S(V ), and the above complex comes from the identification S(V ) = Ext∧(V ∗)(C,C) by explicitly
computing the cohomology on the right-hand side w.r.t. the bar resolution of C as a (left) ∧(V ∗)-module (the above
dg, short for differential graded, algebra is the cobar construction of S(V ), and δ is the cobar differential). The above
dg algebra is acyclic except in degree 0; the 0-th cohomology is readily computed from the above formulæ and equals
precisely T(V )/〈R〉.

Therefore, the idea is to prove that the property of being Koszul and Koszul duality between S(V ) and ∧(V ∗) is
preserved (in a suitable sense, which will be clarified later on) by deformation quantization.

Namely, one makes use of the graded version [3] of Kontsevich’s formality theorem, applied to the Fourier dual
space V [1]. We then have an L∞-quasi-isomorphism

V : Tpoly(V
∗) ∼= Tpoly(V [1]) −→ Dpoly(V [1]) ,

and the image V(π̂~) of π̂~, where •̂ is the isomorphism Tpoly(V
∗) ∼= Tpoly(V [1]) of dg Lie algebras (graded Fourier

transform), defines a deformation quantization of the graded commutative algebra ∧(V ∗) as a (possibly curved)
A∞-algebra.

This work has been partially supported by SNF Grant 200020-122126.
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In the context of the Formality Theorem with 2 branes [2], the deformation quantization of ∧(V ∗) is Koszul dual
(in a suitable sense) w.r.t. the first deformation quantization of S(V ), and the (possibly curved) A∞-structure on
the deformation quantization of ∧(V ∗) induces a deformation δ~ of the cobar differential δ, which in turn produces
a deformation I⋆ of the two-sided ideal I = 〈R〉 in T(V ) of defining relations of S(V ).

We are then able to prove the following result, first conjectured by Shoikhet in [7, Conjecture 2.6]:

Theorem 1.1 (see Theorem 2.7). Given a polynomial Poisson structure π on V ∗ as above, the algebra A~ :=(
S(V )[[~]],m⋆

)
is isomorphic to the quotient of T(V )[[~]] by the two-sided ideal I⋆; the isomorphism is an ~-deformation

of the standard symmetrization map from S(V ) to T(V ).

Remark 1.2. We mainly consider here a formal polynomial Poisson structure of the form ~π, but all the arguments
presented here apply as well to any formal polynomial Poisson structure π~ = ~π1 + ~2π2 + · · · , where πi is a
polynomial bivector field.

The paper is organized as follows. In Section 2 we start with a recollection on A∞-algebras and bimodules. We
then formulate the formality theorem with two branes of [2] in a form suitable for the application at hand. After
this we describe the deformation of the cobar complex obtained from V(π̂~) and prove Theorem 1.1. We conclude
the paper with three examples, see Section 3: the cases of constant, linear, and quadratic Poisson structures.

Acknowledgment. We express our gratitude to the anonymous referee for the careful reading of the manuscript and
for many useful comments and suggestions, which have helped us improve the paper.

2. A deformation of the cobar construction of the exterior coalgebra

2.1. A∞-algebras and (bi)modules of finite type. We first recall the basic notions of the theory of A∞-algebras
and modules, see [2, 5] to fix the conventions and settle some finiteness issues. Note that we allow non-flat A∞-
algebras in our definition. Let T(V ) = C⊕V ⊕V ⊗2⊕· · · be the tensor coalgebra of a Z-graded complex vector space
V with coproduct ∆(v1, . . . , vn) =

∑n
i=0(v1, . . . , vi)⊗ (vi+1, . . . , vn) and counit η(1) = 1, η(v1, . . . , vn) = 0 for n ≥ 1.

Here we write (v1, . . . , vn) as a more transparent notation for v1 ⊗ · · · ⊗ vn ∈ T(V ) and set () = 1 ∈ C. Let V [1] be
the graded vector space with V [1]i = V i+1 and let the suspension s : V → V [1] be the map a 7→ a of degree −1. Then
an A∞-algebra over C is a Z-graded vector space B together with a codifferential dB : T(B[1]) → T(B[1]), namely a
linear map of degree 1 which is a coderivation of the coalgebra and such that dB ◦dB = 0. A coderivation is uniquely
given by its components dkB : B[1]⊗k → B[1], k ≥ 0 and any set of maps : B[1]⊗k → B[1] of degree 1 uniquely extends

to a coderivation. This coderivation is a codifferential if and only if
∑

j+k+l=n dnB ◦ (id⊗j ⊗ dkB ⊗ id⊗l) = 0 for all

n ≥ 0. The maps dkB are called Taylor components of the codifferential dB. If d
0
B = 0, the A∞-algebra is called flat.

Instead of dkB it is convenient to describe A∞-algebras through the product maps mk
B = s−1 ◦ dkB ◦ s⊗k of degree

2 − k. If mk
B = 0 for all k 6= 1, 2 then B with differential m1

B and product m2
B is a differential graded algebra. A

unital A∞-algebra is an A∞-algebra B with an element 1 ∈ B0 such that

m2
B(1, b) = m2

B(b, 1) = b, ∀b ∈ B,

mj
B(b1, . . . , bj) = 0, if bi = 1 for some 1 ≤ i ≤ j and j 6= 2.

The first condition translates to d2B(s1, b) = b = (−1)|b|−1d2B(b, s1), if b ∈ B[1] has degree |b|. A right A∞-module M
over an A∞-algebra B is a graded vector space M together with a degree one codifferential dM on the cofree right
T(B[1])-comoduleM [1]⊗T(B[1]) cogenerated by M . The Taylor components are djM : M [1]⊗B[1]⊗j →M [1] and in

the unital case we require that d1M (m, s1) = (−1)|m|−1m and djM (m, b1, . . . , bj) = 0 if some bj is s1. Left modules are
defined similarly. An A∞-A-B-bimodule M over A∞-algebras A, B is the datum of a codifferential on the T(A[1])-

T(B[1])-bicomodule T(A[1])⊗M [1]⊗T(B[1]), given by its Taylor components dj,kM : A[1]⊗j ⊗M [1]⊗B[1]k →M [1].
The following is a simple but important observation.

Lemma 2.1. If M is an A∞-A-B-bimodule and A is a flat A∞-algebra then M with Taylor components d0,kM is a

right A∞-module over B.

Morphisms of A∞-algebras (A∞-(bi)modules) are (degree 0) morphisms of graded counital coalgebras (respectively,
(bi)comodules) commuting with the codifferentials. Morphisms of tensor coalgebras and of free comodules are again
uniquely determined by their Taylor components. For instance a morphism of right A∞-modules M → N over B is
uniquely determined by the components fj : M [1]⊗B[1]⊗j → N [1].

Definition 2.2. A morphism between cofree (left-, right-, bi-) comodules over the cofree tensor coalgebra is said to
be of finite type if all but finitely many of its Taylor components vanish. Therefore, by abuse of terminology, we may
speak of a morphism of finite type between (left-, right-, bi-) A∞-modules over an A∞-algebra.
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The identity morphism is of finite type and the composition of morphisms of finite type is again of finite type.
The unital algebra of endomorphisms of finite type of a right A∞-module M over an A∞-algebra B is the 0-

th cohomology of a differential graded algebra End−B(M) = ⊕j∈ZEnd
j
−B(M). The component of degree j is the

space of endomorphisms of degree j of finite type of the comodule M [1] ⊗ T(B[1]). The differential is the graded

commutator δf = [dM , f ] = dM ◦ f − (−1)jf ◦ dM for f ∈ Endj−B(M). If M is an A∞-A-B-bimodule and A is
flat, then End−B(M) is defined and the left A-module structure induces a left action LA, which is a morphism of

A∞-algebras A → End−B(M): its Taylor components are Lj
A(a)

k(m ⊗ b) = dj,kM (a⊗m ⊗ b), a ∈ A[1]⊗j , m ∈ M [1],

b ∈ B[1]⊗k.

Lemma 2.3. Let M be a right A∞-module over a unital A∞-algebra B. Then the subspace End−B+(M) of endo-

morphisms f such that fj(m, b1, . . . , bj) = 0 whenever bi = s1 for some i, is a differential graded subalgebra.

We call this differential graded subalgebra the subalgebra of normalized endomorphisms.

Proof. It is clear from the formula for Taylor components of the composition that normalized endomorphisms form
a graded subalgebra: (f ◦ g)k =

∑
i+j=k f

j ◦ (gi ⊗ id⊗j

B[1]). The formula for the Taylor components of the differential

of an endomorphism f is

(δf)k =
∑

i+j=k

(
djM ◦ (f i ⊗ id⊗j

B[1])− (−1)|f |f i ◦ (djM ⊗ id⊗i
B[1])

−(−1)|f |fk−j+1 ◦ (idM [1] ⊗ id⊗i
B[1] ⊗ djB ⊗ id

⊗(k−i−j)
B[1] )

)
.

If f is normalized and bi = s1 for some i, then only two terms contribute non-trivially to (δf)k(m, b1, . . . , bk), namely
fk−1(m, b1, . . . , d

2
B(s1, bi+1), . . . ) (or d

1
M (fk−1(m, b1, . . . , bk−1), s1) if i = k) and fk−1(m, b1, . . . , d

2
B(bi−1, s1), . . . ) (or

fk−1(d1M (m, s1), b2, . . . ) if i = 1). Due to the unital condition these two terms are equal up to sign, hence cancel
together. �

The same definitions apply to A∞-algebras and A∞-bimodules over C[[~]] with completed tensor products and
continuous homomorphisms for the ~-adic topology, so that for vector spaces V,W we have V [[~]] ⊗C[[~]] W [[~]] =
(V ⊗CW )[[~]] and HomC[[~]](V [[~]],W [[~]]) = HomC(V,W )[[~]]. A flat deformation of an A∞-algebra B is an A∞-algebra
B~ over C[[~]] which, as a C[[~]]-module, is isomorphic to B[[~]] and such that B~/~B~ ≃ B. Similarly we have flat de-
formations of (bi)modules. A right A∞-moduleM~ over B~ which is a flat deformation ofM over B is given by Taylor

coefficients djM~
∈ HomC(M [1]⊗B[1]⊗j ,M [1])[[~]]. The differential graded algebra End−B~

(M~) of endomorphism of

finite type is then defined as the direct sum of the homogeneous components of Endfinitecomod−T(B[1])(M [1]⊗T(B[1]))[[~]]

with differential δ~ = [dM~
, ]. Thus its degree j part is the C[[~]]-module

EndjB~
(M~) =

(
⊕k≥0Hom

j(M [1]⊗B[1]⊗k,M [1])
)
[[~]],

where Homj is the space of homomorphisms of degree j between graded vector spaces over C.
Finally, the following notation will be used: if φ : V1[1] ⊗ · · ·Vn[1] → W [1] is a linear map and Vi,W are graded

vector spaces or free C[[~]]-modules, we set

φ(v1| · · · |vn) = s−1φ(sv1 ⊗ · · · ⊗ svn), vi ∈ Vi.

2.2. Formality theorem for two branes and deformation of bimodules. Let A = S(V ) be the symmetric
algebra of a finite dimensional vector space V , viewed as a graded algebra concentrated in degree 0. Let B = ∧(V ∗) =
S(V ∗[−1]) be the exterior algebra of the dual space with ∧i(V ∗) of degree i 1. For any graded vector space W , the
augmentation module over S(W ) is the unique one-dimensional module on which W acts by 0. Let A~ = (A[[~]], ⋆)
be the Kontsevich deformation quantization of A associated with a polynomial Poisson bivector field ~π. It is an
associative algebra over C[[~]] with unit 1. The graded version of the formality theorem, applied to the same Poisson
bracket (more precisely, to the image of ~π w.r.t. the isomorphism of dg Lie algebras Tpoly(A) ∼= Tpoly(B)), also
defines a deformation quantization B~ of the graded commutative algebra B. However B~ is in general a unital
A∞-algebra with non-trivial Taylor components dkB~

for all k including k = 0. Still, the differential graded algebra
End−B~

(M~) is defined since A~ is an associative algebra and thus a flat A∞-algebra. The following result is a
consequence of the formality theorem for two branes (=submanifolds) in an affine space, in the special case where
one brane is the whole space and the other a point, and is proved in [2]. It is a version of the Koszul duality between
A~ and B~.

1In the case at hand, V is a graded vector space concentrated in degree 0 and the identification ∧(V ∗) = S(V ∗[−1]) as graded

algebras is canonical. For a more general graded vector space V , S(V ∗[−1]) and ∧(V ∗) are different objects; still, Sn(V ∗[−1]) is
canonically isomorphic to ∧

n(V ∗)[−n] for every n by the décalage isomorphism, which is simply the identity when V is concentrated in
degree 0.
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Proposition 2.4. Let A = S(V ), B = ∧(V ∗) for some finite dimensional vector space V and let A~, B~ be their

deformation quantizations corresponding to a polynomial Poisson bracket.

(i) There exists a one-dimensional A∞-A-B-bimodule K, which, as a left A-module and as a right B-module, is

the augmentation module, and such that LA : A→ End−B(K) is an A∞-quasi-isomorphism.

(ii) The bimodule K admits a flat deformation K~ as an A∞-A~-B~-bimodule such that LA~
: A~ → End−B~

(K~)
is an A∞-quasi-isomorphism.

(iii) The A∞-A~-B~-bimodule K~ is in particular a right A∞-module over the unital A∞-algebra B~. The first

Taylor component L1
A~

sends A~ to the differential graded subalgebra End−B
+

~

(K~) of normalized endomor-

phisms.

The proof of (i) and (ii) is contained in [2]. The claim (iii) follows from the explicit form of the Taylor components

d1,jK~
, given in [2], appearing in the definition of L1

A:

L1
A~

(a)j(1|b1| · · · |bj) = d1,jK~
(a|1|b1| . . . |bj).

Namely d1,jK~
is a power series in ~ whose term of degree m is a sum over certain directed graphs with m vertices in

the complex upper half-plane (vertices of the first type) and j + 2 ordered vertices on the real axis (vertices of the
second type). To each vertex of the first type is associated a copy of ~π; to the first vertex of the second type is
associated a, to the second 1, and to the remaining j vertices the elements bi. An example of such a graph is depicted
in Figure 4, Subsection 3.2.

Each graph contributes a multidifferential operator acting on a, b1, . . . , bj times a weight, which is an integral of a
differential form on a compactified configuration space of m points in the complex upper half-plane and j+2 ordered
points on the real axis modulo dilations and real translations. The convention is that to each directed edge of such a
graph is associated a derivative acting on the element associated to the final point of the said edge and a 1-form on
the corresponding compactified configuration space.

Therefore, since each bi may be regarded as a constant polyvector field on V ∗, there is no edge with final point
at a vertex of the second type where a bi sits (and obviously also where the constant function 1 sits). If j ≥ 1 and bi
belongs to C for some 1 ≤ i ≤ j, the vertex of the second type where bi sits is neither the starting nor the final point
of any directed edge: since j ≥ 1, the dimension of the corresponding compactified configuration space is strictly
positive. We may use dilations and real translations to fix vertices (of the first and/or second type) distinct from the
one where bi sits: thus, there would be a 1-dimensional submanifold (corresponding to the interval, where the vertex
corresponding to bi sits), over which there is nothing to integrate, hence the corresponding weight vanishes.

We turn to the description of the differential graded algebra Endj
−B

+

~

(K~). Let B+ = ⊕j≥1 ∧
j (V ∗) = ∧(V ∗)/C.

We have
Endj

−B
+

~

(K~) = (⊕k≥0Hom
j(K[1]⊗B+[1]⊗k,K[1]))[[~]],

with product

(φ · ψ)(1|b1| · · · |bn) =
∑

k

ψ(1|b1| . . . |bk)φ(1|bk+1| · · · |bn).

It follows that the algebra Endj
−B

+

~

(K~) is isomorphic to the tensor algebra T(B+[1]∗)[[~]] generated by Hom(K[1]⊗

B+[1],K[1]) ≃ B+[1]∗. In particular it is concentrated in non-positive degrees.

Lemma 2.5. The restriction δ~ : B
+[1]∗ → T(B+[1]∗)[[~]] of the differential of End−B+

~

(K~) ≃ T(B+[1]∗)[[~]] to the

generators is dual to the A∞-structure dB~
in the sense that

(δ~f)
k(z ⊗ b) = (−1)|f |f(z ⊗ dkB~

(b)), z ∈ K[1], b ∈ B[1]⊗k,

for any f ∈ Hom(K[1]⊗B+[1],K[1]) ≃ B+[1]∗

Proof. The A∞-structure of B~ is given by Taylor components dkB~
: B[1]⊗k → B[1]. By definition the differential on

Endj
−B

+

~

(K~) is the graded commutator δ~f = [dK~
, f ]. In terms of Taylor components,

(δ~f)
k(z ⊗ b1 ⊗ · · · ⊗ bk) = dk−1

K~
(f(z ⊗ b1)⊗ b2 ⊗ · · · ⊗ bk)− (−1)|f |f(dk−1

K~
(z ⊗ b1 ⊗ · · · ⊗ bk−1)⊗ bk)+

+ (−1)|f |f(z ⊗ dkB~
(b1 ⊗ · · · ⊗ bk)).

The first two terms vanish if bi ∈ B+[1] for degree reasons. �

Thus LA~
induces an isomorphism from A~ to the cohomology in degree 0 of End−B

+

~

(K~) ≃ T(B+[1]∗)[[~]].

Remark 2.6. For ~ = 0 this complex is Adam’s cobar construction of the graded coalgebra B∗, which is a free
resolution of S(V ).
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Theorem 2.7. The composition

L1
A~

: A~ → End−B
+

~

(K~)
≃
→ T(B+[1]∗)[[~]],

induces on cohomology an algebra isomorphism

L1
A~

: A~ → T(V )/
(
T(V )⊗ δ~((∧

2V ∗)∗)⊗ T(V )
)
,

where δ~ : (∧
2V ∗)∗ → T(V )[[~]] is dual to ⊕k≥0d

k
B~

: (B+[1]0)⊗k = V ⊗k → B+[1]1 = ∧2V ∗.

Proof. The fact that the map is an isomorphism follows from the fact that it is so for ~ = 0, by the classical Koszul
duality. As the cohomology is concentrated in degree 0 it remains so for the deformed differential δ~ over C[[~]].

As a graded vector space, B+[1]∗ = V ⊕ (∧2V ∗)∗ ⊕ · · · , with (∧iV ∗)∗ in degree 1 − i. Therefore the complex
T(B+[1]∗)[[~]] is concentrated in non-positive degrees and begins with

· · · →
(
T(V )⊗ (∧2V ∗)∗ ⊗ T(V )

)
[[~]] → T(V )[[~]] → 0.

Thus to compute the degree 0 cohomology we only need the restriction of the Taylor components dkB~
on T(V ∗) =

T(B+[1])0, whose image is in B[1]1 = ∧2V ∗. �

This theorem gives a presentation of the algebra A~ by generators and relations. Let x1, . . . , xd ∈ V be a system
of linear coordinates on V ∗ dual to a basis e1, . . . , ed. Let for I = {i1 < · · · < ik} ⊂ {1, . . . , d}, xI ∈ (∧kV ∗)∗ be dual
to the basis ei1 ∧ · · · ∧ eik . Then A~ is isomorphic to the algebra generated by x1, . . . , xd subject to the relations
δ~(xij) = 0. Up to order 1 in ~ the relations are obtained from the cobar differential and the graph of Figure 1.

δ~(xij) = xi ⊗ xj − xj ⊗ xi − ~Sym(πij) +O(~2).

Here Sym is the symmetrization map S(V ) → T(V ).

· · ·b1 b2 b3 b4 bm

π~

· · ·

Figure 1 - The only admissible graph contributing to dmB~
at order 1 in ~

The lowest order of the isomorphism induced by L1
A on generators xi ∈ V of A~ = S(V )[[~]] was computed in [2]:

L1
A(xi) = xi +O(~).

The higher order terms O(~) are in general non-trivial (for example in the case of the dual of a Lie algebra, see
below).

By comparing our construction with the arguments in [7], we see that the differential d~ corresponds to the image
of V(π̂~), where the notations are as in the introduction, by the quasi-isomorphism Φ1 in [7, Subsection 1.4]. Hence,
Theorem 2.7 provides a proof of [7, Conjecture 2.6] with the amendment that the isomorphism A~ → T(V )/I⋆ is not
just given by the symmetrization map but has non-trivial corrections.

3. Examples

We now want to examine more closely certain special cases of interest. We assume here that the reader has some
familiarity with the graphical techniques of [2,3,6]. To obtain the relations δ~(xij) we need dmB~

(b1| · · · |bm) ∈ ∧2V ∗[[~]],

for bi ∈ V ∗ ⊂ B+. The contribution at order n in ~ to this is given by a sum over the set Gn,m of admissible graphs
with n vertices of the first type and m of the second type.
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3.1. The Moyal–Weyl product on V . Let π~ = ~π be a constant Poisson bivector on V ∗, which is uniquely
characterized by a complex, skew-symmetric matrix d× d-matrix πij .

In this case, Kontsevich’s deformed algebra A~ has an explicit description: the associative product on A~ is the
Moyal–Weyl product

(f1 ⋆ f2) = m ◦ exp
1

2
π~,

where π~ is viewed here as a bidifferential operator, the exponential has to be understood as a power series of
bidifferential operators, and m denotes the (C[[~]]-linear) product on polynomial functions on V ∗. On the other hand,
it is possible to compute explicitly the complete A∞-structure on B~.

Lemma 3.1. For a constant Poisson bivector π~ on V ∗, the A∞-structure on B~ has only two non-trivial Taylor

components, namely

(1) d0B~
(1) = ~π, d2B~

(b1|b2) = (−1)|b1|b1 ∧ b2, bi ∈ B~, i = 1, 2.

Proof. We consider dmB~
first in the case m = 0. Admissible graphs contributing to d0B~

belong to Gn,0, for n ≥ 1.
For n ≥ 2, all graphs give contributions involving a derivative of πij and thus vanish. There remains the only graph
in G1,0, whence the first identity in (1).

By the same reasons, dmB~
is trivial, if m ≥ 1 and m 6= 2: in the case m = 1, we have to consider contributions

coming from admissible graphs in Gn,1, with n ≥ 1, which vanish for the same reasons as in the case m = 0.
For m ≥ 3, contributions coming from admissible graphs in Gn,m, n ≥ 1, are trivial by a dimensional argument.
Finally, once again, the only possibly non-trivial contribution comes from the unique admissible graph in G0,2

which gives the product. �

As a consequence, the differential δ~ can be explicitly computed, namely

δ~(xij) = xi ⊗ xj − xj ⊗ xi − ~πij .

This provides the description of the Moyal–Weyl algebra as the algebra generated by xi with relations [xi, xj ] = ~πij .
We finally observe that the quasi-isomorphism L1

A~
coincides, by a direct computation, with the usual symmetriza-

tion morphism.

3.2. The universal enveloping algebra of a finite-dimensional Lie algebra g. We now consider a finite-
dimensional complex Lie algebra V = g: its dual space g

∗ with Kirillov–Kostant-Souriau Poisson structure. With
respect to a basis {xi} of g, we have

π = fk
ijxk∂i ∧ ∂j ,

where fk
ij denote the structure constant of g for the chosen basis.

It has been proved in [6, Subsubsection 8.3.1] that Kontsevich’s deformed algebra A~ is isomorphic to the universal
enveloping algebra U~(g) of g[[~]] for the ~-shifted Lie bracket ~[ , ].

On the other hand, we may, once again, compute explicitly the A∞-structure on B~.

Lemma 3.2. The A∞-algebra B~ determined by π~, where π is the Kirillov–Kostant–Souriau Poisson structure on

g
∗, has only two non-trivial Taylor components, namely

(2) d1B~
(b1) = dCE(b1), d2B~

(b1|b2) = (−1)|b1|b1 ∧ b2, bi ∈ B~, i = 1, 2,

where dCE denotes the Chevalley–Eilenberg differential of g, endowed with the rescaled Poisson bracket ~[•, •].

Proof. By dimensional arguments and because of the linearity of π~, there are only two admissible graphs in G1,0

and G2,0, which may contribute non-trivially to the curvature of B~, namely,

Figure 2 - The only admissible graphs in G1,0 and G2,0 respectively in the curvature of B~
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The operator OB
Γ for the graph in G1,0 vanishes, when setting x = 0. On the other hand, OB

Γ vanishes in virtue
of [6, Lemma 7.3.1.1].

We now consider the case m ≥ 1. We consider an admissible graph Γ in Gn,m and the corresponding operator OB
Γ :

the degree of the operator-valued form ωB
Γ equals the number of derivations acting on the different entries associated

to vertices either of the first or second type. Thus, the operator OB
Γ has a polynomial part (since all structures are

involved are polynomial on g
∗): since the polynomial part of any of its arguments in B~ has degree 0, the polynomial

degree of OB
Γ must be also 0. A direct computation shows that this condition is satisfied if and only if n+m = 2,

because π~ is linear.
Obviously, the previous identity is never satisfied if m ≥ 3, which implies immediately that the only non-trivial

Taylor components appear when m = 1 and m = 2. When m = 1, the previous equality forces n = 1: there is only
one admissible graph Γ in G1,1, whose corresponding operator is non-trivial, namely,

· · ·

· · ·

Figure 3 - The only admissible graph in G1,1 contributing to d1B~

The weight is readily computed, and the identification with the Chevalley–Eilenberg differential is then obvious.
Finally, when m = 2, the result is clear by previous computations. �

Thus δ~ is given by

δ~(xij) = xi ⊗ xj − xj ⊗ xi − ~

∑

k

fk
ijxk.

Hence we reproduce the result that A~ is isomorphic to U~(g). We now want to give an explicit expression for the
isomorphism L1

A~
.

We consider the expression L1
A~

(a)m(1|b1| · · · |bm) = d1,mK~
(a|1|b1| · · · |bm). Degree reasons imply that the sum of

the degrees of the elements bi equals m; furthermore, if the degree of some bi is strictly bigger than 1, the previous
equality forces a different bj to have degree 0, whence the corresponding expression vanishes by Proposition 2.4,
(iii). Hence, the degree of each bi is precisely 1. We now consider a general graph Γ with n vertices of the first
type and m+ 2 ordered vertices of the second type; to each vertex of the first type is associated a copy of ~π, while
to the ordered vertices of the second type are associated a, 1 and the bis in lexicographical order. We denote by p
the number of edges departing from the n vertices of the first type and hitting the first vertex of the second type
(observe that in this situation edges departing from vertices of the first type can only hit vertices of the first type or
the first vertex of the second type): in the present framework, edges have only one color (we refer to [2, Section 7]
and [4, Subsection 3.2] for more details on the 4-colored propagators and corresponding superpropagators entering
the 2 brane Formality Theorem), thus there can be at most one edge hitting the first vertex of the second type,
whence p ≤ n. We now compute the polynomial degree of the multidifferential operator associated to the graph Γ:
it equals n − j − (2n − p) = p − j − n, where 0 ≤ j ≤ m is the number of edges from the last m vertices of the
second type hitting vertices of the first type. The first n comes from the fact that π is a linear bivector field. As
p− j − n ≥ 0 and p ≤ n, it follows immediately p = n and j = 0, i.e. the edges departing from the last m vertices of
the second type all hit the first vertex of the second type, and from each vertex of the first type departs exactly one
edge hitting the first vertex of the second type; the remaining n edges must hit a vertex of the first type.

In summary, a general graph Γ appearing in L1
A~

(a)(1|b1| · · · |bm) is the disjoint union of wheel-like graphs Wn,
n ≥ 1, and of the graph βm, m ≥ 0; such graphs are depicted in Figure 4.

Observe that the 1-wheel W1 appears here explicitly because of the presence of short loops in the 2 brane Formality
Theorem [2]: the integral weight of the 1-wheel has been computed in [4] and equals −1/4, while the corresponding
translation invariant differential operator is the trace of the adjoint representation of g. Any multiple of c1 = trg ◦ ad
defines a constant vector field on g

∗: either as an easy consequence of the Formality Theorem of Kontsevich [6] or
by an explicit computation using Stokes’ Theorem, c1 is a derivation of (A~, ⋆), where ⋆ is the deformed product on
A~ via Kontsevich’s deformation quantization.
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The integral weight of the graph βm is 1/m! and the corresponding multidifferential operator is simply the sym-
metrization morphism; the integral weight of the wheel-like graph Wn, n ≥ 2, has been computed in [9, 10] (observe
that, except the case n = 1, the integral weights of Wn for n odd vanish) and equal the modified Bernoulli numbers,
and the corresponding translation-invariant differential operators are cn = trg(ad

n(•)).

W5

· · ·

βm

Figure 4 - The wheel W5 with 5 spokes and the graph βm

Therefore, the isomorphism L1
A~

(for ~ = 1) equals the composition of the PBW isomorphism from S(g) to U(g)
with Duflo’s strange automorphism; the derivation −1/4 c1 of the deformed algebra (A, ⋆) is exponentiated to an
automorphism of the same algebra. (The fact that π is linear permits to set ~ = 1, see also [6, Subsubsection 8.3.1]
for an explanation.)

3.3. Quadratic algebras. Here we briefly discuss the case where V ∗ is endowed with a quadratic Poisson bivector
field π: this case has been already considered in detail in [2, Section 8], see also [8], where the property of the
deformation associated π~ of preserving the property of being Koszul has been proved.

The main feature of the quadratic case is the degree 0 homogeneity of the Poisson bivector field, which reflects
itself in the homogeneity of all structure maps. In particular the Kontsevich star-product on a basis of linear functions
has the form

xi ⋆ xj = xixj +
∑

k,l

Skl
ij (~)xkxl,

for some Skl
ij ∈ ~C[[~]]. Our results implies that this algebra is isomorphic to the quotient of the tensor algebra in

generators xi by relations

xi ⊗ xj − xj ⊗ xi =
∑

k,l

Rkl
ij (~)xk ⊗ xl,

for some Rkl
ij (~) ∈ ~C[[~]]. The isomorphism sends xi to

LA~
(xi) = xi +

∑

j

Lj
i (~)xj ,

for some Lj
i (~) ∈ ~C[[~]].

3.4. A final remark. We point out that, in [1], the authors construct a flat ~-deformation between a so-called non-
homogeneous quadratic algebra and the associated quadratic algebra: the characterization of the non-homogeneous
quadratic algebra at hand is in terms of two linear maps α, β, from R onto V and C respectively, which satisfy certain
cohomological conditions. In the case at hand, it is not difficult to prove that the conditions on α and β imply that
their sum defines an affine Poisson bivector on V ∗: hence, instead of considering α and β separately, as in [1], we
treat them together. Both deformations are equivalent, in view of the uniqueness of flat deformations yielding the
PBW property, see [1].
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