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0 An effective version of a theorem of Kawamata

on the Albanese map

Zhi Jiang

October 25, 2010

To any smooth complex projective variety X are associated an abelian
variety Alb(X) of dimension q(X) := h1(X,OX), its Albanese variety, and a
morphism aX : X → Alb(X), the Albanese map, which are very useful tools
to study the geometry of X .

Kawamata proved in [K] that when the Kodaira dimension κ(X) is zero,
the Albanese map is an algebraic fiber space, which means that:

• aX is surjective;

• the fibers of aX are connected.

This kind of result (especially the second part) yields for example birational
characterizations of abelian varieties: X is birational to an abelian variety if
and only if κ(X) = 0 and q(X) = dim(X).

However, the vanishing of κ(X) is not an effective condition (it means
that the plurigenera Pm(X) := h0(X,ωm

X ) are all 0 or 1 when m > 0 and
that one of them is 1). It is therefore natural to try to prove the same result
with weaker and effective assumptions on the plurigenera of X .

For the surjectivity of aX , this was done in a series of articles initiated
by Kollár ([Ko1]), followed by Ein and Lazarsfeld ([EL]) and later by Hacon
and Pardini ([HP]) and Chen and Hacon ([CH4]), who proved that aX is
surjective if 0 < Pm(X) ≤ 2m− 3 for some m ≥ 2, or if P3(X) = 4. We put
here the finishing touch to this series by proving the following optimal result
(Theorem 2.8).

Theorem Let X be a smooth complex projective variety. If

0 < Pm(X) ≤ 2m− 2
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for some m ≥ 2, the Albanese map aX : X → Alb(X) is surjective.

When C is a smooth projective curve of genus 2, we have Pm(C) = 2m−1
for m ≥ 2. However aC : C → Alb(C) is not surjective. This example shows
that without other assumptions, our bound is optimal.

As far as connectedness of the fibers of the Albanese map is concerned,
they were no previous results in that direction. The main purpose of this
paper is to show that there exists a similar effective criterion for the Al-
banese morphism to be an algebraic fiber space. More pecisely, we prove the
following optimal bound (Theorem 3.1 and Theorem 3.3).

Theorem Let X be a smooth complex projective variety. If P1(X) =
P2(X) = 1, or if

0 < Pm(X) ≤ m− 2

for some m ≥ 3, the Albanese map aX : X → Alb(X) is an algebraic fiber
space.

Hacon and Pardini show in [HP] that for varieties with P3(X) = 2 and
q(X) = dim(X), the Albanese map aX : X → Alb(X) is a double covering.
Hence aX is surjective but does not have connected fibers. Furthermore,
Pm(X) = m − 1 for any odd m ≥ 3. From this example, we see that our
result is optimal to a large extent.

As mentioned above, this criterion yields a numerical birational charac-
terization of abelian varieties by adding q(X) = dim(X) to its hypotheses.
The results and constructions developed here also lead to explicit descrip-
tions of varieties with q(X) = dim(X) and small plurigenera, in the line of
the series of papers [CH1], [CH4], [HP], and [H1]. For example, we can get
a complete description of varieties with P2(X) = 2 and q(X) = dim(X). We
will come back to this in a future article.

1 Preliminaries

In this section we recall several theorems which will be used later. Through-
out this article, we work over the fied of complex numbers and we denote
numerical equivalence by ≡.

Vanishing theorem. We state a result of Kollár ([Ko1], 10.15), which was
generalized later by Esnault and Viehweg.
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Theorem 1.1 (Kollár, Esnault-Viehweg) Let f : X → Y be a surjective
morphism from a smooth projective variety X to a normal variety Y . Let
L be a line bundle on X such that L ≡ f ∗M + ∆, where M is a Q-Cartier
Q-divisor on Y and (X,∆) is klt. Then,

a) Rjf∗(ωX ⊗ L) is torsion free for j ≥ 0;

b) if in addition, M is big and nef, H i(Y,Rjf∗(ωX ⊗L)) = 0 for all i > 0
and all j ≥ 0.

Cohomological support loci. These were first studied by Green and
Lazarsfeld for the canonical bundle in [GL1] and [GL2], through their generic
vanishing theorems. Simpson also contributed to the subject ([S]).

Let X be a smooth projective variety and let F be a coherent sheaf on
X . The cohomological support loci of F are defined as

Vi(X,F ) = {P ∈ Pic0(X) | H i(X,F ⊗ P ) 6= 0},

which we often write as Vi(F ).

GV-objects. These were first considered by Hacon in [H2] and systemati-
cally studied by Pareschi and Popa in [PP]. In this paper, we just need to
consider GV-sheaves with respect to the universal Poincaré line bundle.

Definition 1.2 A sheaf F on X is called a GV-sheaf if

codimPic0(X) Vi(F ) ≥ i

for all i ≥ 0.

Let aX : X → A be the Albanese map of X ; then Pic0(X) is isomorphic

to the dual abelian variety Â. Let M be an ample line bundle on Â. We
denote by M̂ its Fourier-Mukai transform, which is a locally free sheaf on A
(see [Mu]). Let φM : Â → A be the standard isogeny induced by M ; then

φ∗

MM̂∨ ≃ H0(M)⊗M . Consider the cartesian diagram:

X̂
ϕM

−−−→ X

a
X̂

y aX

y

Â
φM

−−−→ A

(1)

Hacon proved the following theorem in [H2] (it was later generalized by
Pareschi and Popa in [PP] Theorem A):
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Theorem 1.3 Let F be a coherent sheaf on a smooth projective variety X.
If H i(X̂, ϕ∗

MF ⊗a∗
X̂
M) = 0, for all i > 0 and any sufficiently ample M , then

F is a GV-sheaf.

Finally, the following elementary lemma from [HP] will frequently be
used.

Lemma 1.4 Let X be a smooth projective variety, let L and M be line bun-
dles on X, and let T ⊂ Pic0(X) be a subvariety of dimension t. If for some
positive integers a and b and all P ∈ T , we have h0(X,L ⊗ P ) ≥ a and
h0(X,M ⊗ P−1) ≥ b, then h0(X,L⊗M) ≥ a+ b+ t− 1.

2 When is the Albanese map surjective?

In this section I use the language of asymptotic multiplier ideal sheaves.
However many of the ideas come from [Ko1], [HP], and [H2].

Lemma 2.1 Suppose that f : X → Y is a surjective morphism between
smooth projective varieties, L is a Q-divisor on X, and the Iitaka model
of (X,L) dominates Y . Assume that D is a nef Q-divisor on Y such that
L+ f ∗D is a divisor on X. Then we have

H i(Y,Rjf∗(OX(KX + L+ f ∗D)⊗ J (||L||)⊗Q)) = 0,

for all i ≥ 1, j ≥ 0, and all Q ∈ Pic0(X).

Proof. Let m > 0 be such that mL is a divisor and J (||L||) = J ( 1
m
|mL|)

([L], §11.2). Let H be a very ample divisor on Y . By assumption there exists
an integer t > 0 such that |tmL− f ∗H| is non-empty. Let µ : X

′

→ X be a
log resolution such that:

µ∗|tmL| = |L1|+
∑

i

aiFi,

µ∗|tmL− f ∗H| = |L2|+
∑

i

biFi,

where |L1| and |L2| are base-point-free,
∑

i aiFi and
∑

i biFi are the fixed divi-
sors, and

∑
i Fi+Exc(µ) is a divisor with simple normal crossings (SNC) sup-

port. Since J (||L||) = J ( 1
m
|mL|), we also have J (||L||) = J ( 1

tm
|tmL|),

hence

J (||L||) = µ∗OX′

(
KX′/X −

⌊∑
i aiFi

tm

⌋)
.

4



Take

B1 = D1 +
∑

i

aiFi ∈ µ∗|tmL|

B2 = D2 +
∑

i

biFi ∈ µ∗|tmL− f ∗H|

where D1 ∈ |L1| and D2 ∈ |L2| are general elements, so that B1 + B2 is a
divisor with SNC support. We then show that for k > 0 large enough,

⌊
kB1 +B2

(k + 1)tm

⌋
=

⌊∑
i aiFi

tm

⌋
. (2)

It is obvious that

⌊
kB1 +B2

(k + 1)tm

⌋
=

⌊∑
i(kai + bi)Fi

(k + 1)tm

⌋
. We write ai

tm
= mi + si

with mi =
⌊

ai
tm

⌋
. Then,

⌊∑
i aiFi

tm

⌋
=

∑

i

miFi.

Because H is very ample on Y , we have bi ≥ ai. Write bi = ai + ci, with
ci ≥ 0. Then,
⌊∑

i

(kai + bi)

(k + 1)tm
Fi

⌋
=

⌊∑

i

((k + 1)ai + ci)

(k + 1)tm
Fi

⌋
=

⌊∑

i

(mi + si +
ci

(k + 1)tm
)Fi

⌋
.

Since 0 ≤ si < 1, we can let k ≥ 0 be large enough such that si+
ci

(k+1)tm
< 1,

and this implies (2). Then by local vanishing ([L], Theorem 9.4.1),

Rjf∗(OX(KX + L+ f ∗D)⊗ J (||L||)⊗Q)

= Rj(f ◦ µ)∗
(
OX′

(
KX′ + µ∗L+ µ∗f ∗D −

⌊
kB1 +B2

(k + 1)tm

⌋
+ µ∗Q

))
, (3)

for all j ≥ 0. We also have

µ∗L+ µ∗f ∗D −

⌊
kB1 +B2

(k + 1)tm

⌋
+ µ∗Q

≡ µ∗L+ µ∗f ∗D − µ∗
kL

k + 1
− µ∗

L

k + 1
+ µ∗f ∗

H

(k + 1)tm
+

{
kB1 +B2

(k + 1)tm

}

≡ µ∗f ∗
H

(k + 1)tm
+ µ∗f ∗D +

{
kB1 +B2

(k + 1)tm

}
.
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So Theorem 1.1 gives us that

H i
(
Y,Rj(f ◦ µ)∗OX′ (KX′ + µ∗L+ µ∗f ∗L−

⌊
kB1 +B2

(k + 1)tm

⌋
+ µ∗Q)

)
= 0,

for all i ≥ 1, all j ≥ 0, and all Q ∈ Pic0(X). By (3), this proves the lemma.
�

The following lemma is essentially Proposition 2.12 in [HP]. I use Lemma
2.1 to make the proof a little bit simpler.

Lemma 2.2 Let f : X → Y be a surjective morphism between smooth pro-
jective varieties and assume that the Iitaka model of X dominates Y . Fix a
torsion element Q ∈ Pic0(X) and an integer m ≥ 2. Then h0(X,ωm

X ⊗ Q⊗
f ∗P ) is constant for all P ∈ Pic0(Y ).

Proof. We consider h0(X,ωm
X ⊗ Q ⊗ f ∗P ) as a function of P ∈ Pic0(Y ).

Let P0 ∈ Pic0(Y ) be such that h0(X,ωm
X ⊗ Q ⊗ f ∗P0) = h is maximal. We

are going to prove that

h0(X,ωm
X ⊗Q⊗ f ∗P0 ⊗ f ∗P ) = h,

for any torsion P ∈ Pic0(Y ). Since P0+{torsion points} is dense in Pic0(Y ),
we then deduce the lemma from semicontinuity.

Let P1, P2, and Q1 be such that Pm
1 = P0, P

m
2 = P and Qm

1 = Q. From
the properties of asymptotic multiplier ideal sheaves ([L], Theorem 11.1.8),
we know that

H0(X,ωm
X ⊗Q⊗ f ∗P0 ⊗ f ∗P )

= H0
(
X,ωm

X ⊗Q⊗ f ∗P0 ⊗ f ∗P ⊗ J (||ωm
X ⊗Qm

1 ⊗ f ∗Pm
1 ⊗ f ∗Pm

2 ||)
)

= H0
(
X,ωm

X ⊗Q⊗ f ∗P0 ⊗ f ∗P ⊗ J (||ωm−1
X ⊗Qm−1

1 ⊗ f ∗Pm−1
1 ⊗ f ∗Pm−1

2 ||)
)
.

Since P is a torsion point, there exists N > 0 such that PN = OY . For k > 0
large enough and divisible, we have

J (||ωm−1
X ⊗Qm−1

1 ⊗ f ∗Pm−1
1 ⊗ f ∗P i

2||)

= J (
1

kN
|(ωm−1

X ⊗Qm−1
1 ⊗ f ∗Pm−1

1 ⊗ f ∗P i
2)

kN |)

= J (||ωm−1
X ⊗Qm−1

1 ⊗ f ∗Pm−1
1 ||),
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for all i ≥ 0. Hence we have

H0(X,ωm
X ⊗Q⊗ f ∗P0 ⊗ f ∗P )

= H0
(
X,ωm

X ⊗Q⊗ f ∗P0 ⊗ f ∗P ⊗ J (||ωm−1
X ⊗Qm−1

1 ⊗ f ∗Pm−1
1 ||)

)

= H0
(
Y, f∗

(
ωm
X ⊗Qm−1

1 ⊗ f ∗Pm−1
1 ⊗ J (||ωm−1

X ⊗Qm−1
1 ⊗ f ∗Pm−1

1 ||)

⊗Q1 ⊗ f ∗P1 ⊗ f ∗P
))
.

We then apply Lemma 2.1 (the Iitaka model of (X,ωm−1
X ⊗Qm−1

1 ⊗ f ∗Pm−1
1 )

dominates Y by assumption) to get that

h0(X,ωm
X⊗Q⊗f ∗P0⊗f ∗P ) = χ

(
Y, f∗

(
ωm
X⊗Q⊗J (||ωm−1

X ⊗Qm−1
1 ⊗f ∗Pm−1

1 ||)
))

is the constant h. �

Lemma 2.3 Suppose that f : X → Z is an algebraic fiber space between
smooth projective varieties. Assume that Pm(X) 6= 0, for some m ≥ 2, that
H is a big Q-divisor on Z, and that K is a nef Q-divisor on Z such that
H1 ≡ H +K is a big and nef divisor. Then,

1) we have

H i
(
Z,Rjf∗

(
OX(KX + (m− 1)KX/Z + f ∗H1)

⊗ J (||(m− 1)KX/Z + f ∗H||)
)
⊗ P

)
= 0,

for all i ≥ 1, j ≥ 0 and all P ∈ Pic0(Z).

2) the sheaf

f∗
(
OX(KX + (m− 1)KX/Z)⊗ J (||(m− 1)KX/Z + f ∗H||)

)

has rank Pm(Xz), where Xz is a general fiber of f .

Proof. The point here is the weak positivity of f∗(ω
m−1
X/Z ), due to Viehweg

([V2] Theorem 4.1 and Corollary 7.1, or [Ko1] Proposition 10.2). There are
two conclusions:

A. the Iitaka model of (X, (m− 1)KX/Z + f ∗H) dominates Z and
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B. there exists k > 0 sufficient big and divisible such that the restriction:

H0(X,OX(km(m−1)KX/Z+kmf ∗H)) → H0(Xz,OXz
(km(m−1)KXz

))

is surjective, where z ∈ Z is a general point.

By A, we can directly apply Lemma 2.1 to deduce item 1) in the lemma.
We take a log resolution τ : X

′

→ X such that the restriction τz : X
′

z →
Xz is also a log resolution for sufficiently general z ∈ Z (see [L], Theorem
9.5.35) and fix such a point z ∈ Z. Set

• τ ∗|km(m− 1)KX/Z + kmf ∗H| = |L1|+ E1,

• τ ∗z |mKXz
| = |L2|+ E2,

where |L1| and |L2| are base-point-free, E1 and E2 are the fixed divisors, and
E1 + Exc(τ) has SNC support. We have

E1|X′

z
� k(m− 1)E2 (4)

by B. Let f
′

: X
′ τ
−→ X

f
−→ Z be the composition of morphisms. Then f

′

is
flat over a dense Zariski open subset of Z. Hence the sheaf

f
′

∗

(
OX

′ (KX
′ + (m− 1)τ ∗KX/Z −

⌊
E1

km

⌋
)
)

has rank

h0
(
X

′

z,OX′

z

(
mKX′

z
−

⌊
E1

km

⌋
|X′

z

))
= Pm(Xz).

We have the following inclusions

f∗τ∗OX
′

(
KX

′ + (m− 1)τ ∗KX/Z −

⌊
E1

km

⌋)

⊂ f∗
(
OX(KX + (m− 1)KX/Z)⊗ J (||(m− 1)KX/Z + f ∗H||)

)

⊂ f∗(OX(mKX))⊗ OZ(−(m− 1)KZ).

Since the latter sheaf has rank Pm(Xz), the middle sheaf f∗
(
OX(KX + (m−

1)KX/Z)⊗ J (||(m− 1)KX/Z + f ∗H||)
)
also has rank Pm(Xz). �
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Under the assumptions of Lemma 2.3, we fix a big and base-point-free
divisor H . For n > 0, we set

Jm−1,n = J (||(m− 1)KX/Z +
1

n
f ∗H||)

Fm−1,n = f∗
(
OX(KX + (m− 1)KX/Z)⊗ Jm−1,n).

By Lemma 2.3, Fm−1,n has rank Pm(Xz) > 0. These sheaves were first
considered by Hacon in [H2].

Lemma 2.4 We have Jm−1,n ⊃ Jm−1,n+1 and there exists N > 0 such that
for any n ≥ N , one has Fm−1,n = Fm−1,N . We will denote by Fm−1,H the
fixed sheaf Fm−1,N .

Proof. We may suppose that k > 0 is such that the linear series |k(n +
1)n((m−1)KX/Z +

1
n
f ∗H)| and |k(n+1)n((m−1)KX/Z +

1
n+1

f ∗H)| compute

Jm−1,n and Jm−1,n+1, respectively. Let τ : X
′

→ X be a log resolution for
both linear series. We can write

τ ∗|k(n+ 1)n(m− 1)KX/Z + k(n+ 1)f ∗H| = |L1|+ E1,

τ ∗|k(n+ 1)n(m− 1)KX/Z + knf ∗H| = |L2|+ E2,

where L1 and L2 are base-point-free and E1 and E2 are fixed divisors. Since
H is base-point-free, we have E2 � E1. By the definition of asymptotic
multiplier ideal sheaves, Jm−1,n ⊃ Jm−1,n+1.
Take H1 very ample on Z such that H1−H is a nef divisor. Then by Lemma
2.3, we have

H i(Z, f∗
(
OX(KX + (m− 1)KX/Z)⊗ Jm−1,n

)
⊗ OZ(H1)) = 0,

for i ≥ 1. Using Hacon’s argument in the proof of Proposition 5.1 in [H2],
there exists N > 0 such that for n ≥ N , the inclusion

f∗(OX(KX + (m− 1)KX/Z)⊗ Jm−1,N)⊗ OZ(H1)

⊃ f∗(OX(KX + (m− 1)KX/Z)⊗ Jm−1,n)⊗ OZ(H1)

is an equality. This implies that the inclusion

f∗(OX(KX+(m−1)KX/Z)⊗Jm−1,N) ⊃ f∗(OX(KX+(m−1)KX/Z)⊗Jm−1,n)

is again an equality. �
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Lemma 2.5 Under the above assumptions, namely f : X → Z is an al-
gebraic fiber space between smooth projective varieties and Pm(X) 6= 0 with
m ≥ 2, we suppose moreover that Z is of maximal Albanese dimension and
that H is a big and base-point-free divisor on Z pulled back from Alb(Z).
Then Fm−1,H is a nonzero GV-sheaf.

Proof. We apply Theorem 1.3. Let M be any ample divisor on Pic0(Z).
We have cartesian diagrams as in (1):

X̂
υM−−−→ X

f̂

y f

y
Ẑ

ϕM−−−→ Z

a
Ẑ

y aZ

y

Pic0(Z)
φM

−−−→ Alb(Z)

where horizontal maps are étale. By Theorem 11.2.16 in [L], for any n > 0,

υ∗

MJ (||(m− 1)KX/Z +
1

n
f ∗H||) = J (||(m− 1)KX̂/Ẑ +

1

n
f̂ ∗ϕ∗

MH||),

hence by flat base change

ϕ∗

Mf∗
(
OX(KX + (m− 1)KX/Z)⊗ J (||(m− 1)KX/Z +

1

n
f ∗H||)

)

= f̂∗
(
OX̂(KX̂ + (m− 1)KX̂/Ẑ)⊗ J (||(m− 1)KX̂/Ẑ +

1

n
f̂ ∗ϕ∗

MH||)
)
.

It follows that

ϕ∗

MFm−1,H = f̂∗
(
OX̂(KX̂+(m−1)KX̂/Ẑ)⊗J (||(m−1)KX̂/Ẑ+

1

n
f̂ ∗ϕ∗

MH||)
)

for all n ≫ 0. Since H is a divisor pulled back by aZ , we can take n such
that na∗

Ẑ
M − ϕ∗

MH is nef. Then Lemma 2.3 gives us the vanishing of

H i(Ẑ, ϕ∗

MFm−1,H ⊗ a∗
Ẑ
M),

for all i > 0 and we are done. �
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Lemma 2.6 In the situation of Lemma 2.5, denoting by aZ : Z → A the
Albanese morphism of Z, we have RjaZ∗(Fm−1,H) = 0, for all j > 0. Hence

Vi(Fm−1,H) = Vi(aZ∗(Fm−1,H)),

for all i ≥ 0.

Proof. Suppose that RtaZ∗(Fm−1,H) 6= 0 for some t > 0. Let H1 be a
ample divisor on A such that

Hk(A,RjaZ∗(Fm−1,H)⊗ OA(H1)) = 0

for all k ≥ 1 and j ≥ 0 and

H0(A,RtaZ∗(Fm−1,H)⊗ OA(H1)) 6= 0.

By the Leray spectral sequence, we have

H t(Z,Fm−1,H ⊗ OZ(a
∗

ZH1)) 6= 0.

Since H is pulled back from A, we may take H1 such that a∗ZH1 − H is
big and nef, then by Lemma 2.3, we have H t(Z,Fm−1,H ⊗ OZ(a

∗

ZH1)) = 0,
which is a contradiction. Thus RjaZ∗(Fm−1,H) = 0 for all j > 0. For any
P ∈ Pic0(Z), we have H i(Z,Fm−1,H ⊗ a∗ZP ) ≃ H i(A, aZ∗(Fm−1,H) ⊗ P ),
hence Vi(Fm−1,H) = Vi(aZ∗(Fm−1,H)) for all i ≥ 0. �

Corollary 2.7 The cohomological support V0(Fm−1,H) is not empty.

Proof. By Lemma 2.5, Fm−1,H is a GV-sheaf, hence ([H2], Corollary 3.2)

V0(Fm−1,H) ⊃ V1(Fm−1,H) ⊃ · · · ⊃ Vd(Fm−1,H).

If V0(Fm−1,H) is empty, Vi(Fm−1,H) is empty for all i ≥ 0, hence

H i(Z,Fm−1,H ⊗ a∗ZP ) = H i(A, aZ∗Fm−1,H ⊗ P ) = 0,

for all i ≥ 0. By the properties of the Fourier-Mukai transform on an abelian
variety (see [Mu]), aZ∗Fm−1,H = 0. However this is impossible since aZ is
generically finite and Fm−1,H is a sheaf with positive rank. �
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Theorem 2.8 Let X be a smooth projective variety. If

0 < Pm(X) ≤ 2m− 2,

for some m ≥ 2, the Albanese map aX : X → Alb(X) is surjective.

Proof. If aX is not surjective, by Ueno’s theorem ([M], Theorem (3.7)),
upon replacing X by a birational model, there exists a surjective morphism
f1 : X → Z1 onto a smooth variety Z1 of general type of dimension d >
0 such that Z1 → Alb(Z1) is a birational map onto its image and Z1 →
P(H0(Z1,OZ1

(KZ1
))) is a map generically finite onto its image. Obviously,

Pk(Z1) ≥
(
d+k
d

)
for all k ≥ 1. Taking the Stein factorization and making

birational modifications, we may suppose that there is an algebraic fiber
space f : X → Z such that Z is a smooth variety of general type and of
maximal Albanese dimension d, and Pk(Z) ≥

(
d+k
k

)
for all k ≥ 1.

We let H be a big and base-point-free divisor pulled back by the Albanese
morphism aZ : Z → Alb(Z). By Corollary 2.7, V0(Fm−1,H) is not empty thus
there exists P ∈ Pic0(Z) such that h0(Z,Fm−1,H ⊗ P ) ≥ 1. Hence

h0(X,OX(KX + (m− 1)KX/Z)⊗ f ∗P ) ≥ 1. (5)

On the other hand, we have h0(X,OX((m− 1)f ∗KZ)) ≥
(
d+m−1
m−1

)
. We get

h0(X,OX(mKX)⊗ f ∗P ) ≥

(
d+m− 1

m− 1

)
. (6)

Since Z is of general type, the Iitaka model of (X,KX) dominates Z because
of (5), hence we apply Lemma 2.2 to get h0(X,OX(mKX)) ≥

(
d+m−1
m−1

)
.

If dim(Z) = d ≥ 2, then Pm(X) ≥
(
m+1
2

)
≥ 2m− 1, which is a contradic-

tion.
If dim(Z) = 1, Pm(X) = h0(Z, f∗(ω

m
X/Z) ⊗ ωm

Z ). As in Corollary 3.6 in

[V1], f∗(ω
m
X/Z) is a nonzero nef vector bundle on Z hence has nonnegative

degree. By the Riemann-Roch theorem, we obtain Pm(X) ≥ 2m − 1, again
a contradiction. �

Remark 2.9 The proof follows ideas of Kollár’s ([Ko1]), later improved by
Hacon and Pardini. Briefly speaking, Kollár proved that Pm(X) ≥ Pm−2(Z)
and Hacon and Pardini used the finite map

|(m− 2)KZ + P | × |KX + (m− 1)KX/Z +KZ − f ∗P | → |mKX |,
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where P ∈ Pic0(Z), to give a better estimate of Pm(X). However, the
dimension h0(Z,OZ(kKZ)) grows very fast with k, so my starting point was
to prove Pm(X) ≥ Pm−1(Z) by applying the theory of GV-sheaves.

Corollary 2.10 Suppose that 0 < Pm(X) <
(
d+m
m−1

)
for some m ≥ 2 and

d ≥ 1. Then κ(aX(X)) ≤ d.

Proof. It is just (6) in the proof of Theorem 2.8, where by Ueno’s theorem
d is the Kodaira dimension of aX(X). �

3 When does the Albanese map have con-

nected fibers?

Ein and Lazarsfeld in [EL] gave another proof of Kawamata’s theorem based
on the generic vanishing theorem. Their proof is actually very close to an
effective result. With the help of a proposition of Chen and Hacon, we prove
the following:

Theorem 3.1 Let X be a smooth projective variety with P1(X) = P2(X) =
1. The Albanese map aX : X → Alb(X) is an algebraic fiber space.

Proof. Let A be the Albanese variety of X . The Albanese morphism is
already surjective by [HP]. Suppose that it has non-connected fibers. We
start with the Stein factorization of aX and, resolving singularities and inde-
terminacies, we can assume that aX admits a factorization

X
g
−→ V

b
−→ A,

where b is a generically finite non birational morphism, g is surjective with
connected fibers, V is smooth and projective. Since aX is the Albanese
morphism of X , V is not birational to an abelian variety. Thus V is of
maximal Albanese dimension and by Chen and Hacon’s characterization of
abelian varieties ([CH1], Theorem 3.2), we have P2(V ) ≥ 2. We set dim(X) =
n and dim(V ) = dim(A) = d.

Since P1(X) = P2(X) = 1, 0 ∈ V0(X,ωX) is an isolated point ([EL],
Proposition 2.1). Hence 0 ∈ V0(V, g∗ωX) is also an isolated point. By Propo-
sition 2.5 in [CH3], for any v 6= 0 in H1(V,OV ), the sequence

0 → H0(V, g∗ωX)
∪v
−→ H1(V, g∗ωX) → · · ·

∪v
−→ Hd(V, g∗ωX) → 0

13



is exact. Since b is surjective, we may, through the map b∗, considerH1(A,OA)
as a subspace of H1(V,OV ). Then, as in the proof of Theorem 3 in [EL], we
have an exact complex of vector bundles on P = P(H1(A,OA)) = Pd−1:

0 → H0(V, g∗ωX)⊗ OP(−d) → H1(V, g∗ωX)⊗ OP(−d+ 1) → · · ·

· · · → Hd(V, g∗ωX)⊗ OP → 0.

Take (v1, . . . , vd) a basis for H1(A,OA). By chasing through the diagram, we

obtain that H0(V, g∗ωX)
∧v1∧···∧vd−−−−−−→ Hd(V, g∗ωX) is an isomorphism.

By Theorem 3.4 in [Ko3],

Hd(X,ωX) ≃
⊕

i

H i(V,Rd−ig∗ωX).

Hence we have

H0(V, g∗ωX) ≃

∧v1∧···∧vd //

≃

��

Hd(V, g∗ωX)
� _

��

H0(X,ωX)
∧g∗(v1∧···∧vd)

// Hd(X,ωX)

By Hodge conjugation and Serre duality Hd(X,ωX) ≃ H0(X,Ωn−d
X ). We

will denote by E ⊂ H0(X,Ωn−d
X ) the nonzero subspace corresponding to

Hd(V, g∗ωX) ⊂ Hd(X,ωX). Let (η1, . . . , ηd) in H0(A,ΩA) be the conjugate
basis of (v1, . . . , vd). By Serre duality and Hodge conjugation, we get from
the above diagram that

E
∧g∗(η1∧···∧ηd)
−−−−−−−−→ H0(X,ωX)

is an isomorphism. Since η1 ∧ · · · ∧ ηd is a nonzero section of KV , we have
KX � g∗KV . We deduce P2(X) ≥ P2(V ) ≥ 2, which is a contradiction. �

The proof of Theorem 3.1 is closely related to Green and Lazarsfeld’s
generic vanishing theorem, which is Hodge-theoretic. Meanwhile Theorem
2.8 relies heavily on the weak positivity theorem of Viehweg. It is natural to
ask whether we can use the ideas in section 2 to prove other criteria to tell
when the Albanese map is an algebraic fiber space.
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We again let A be Alb(X). Suppose that aX : X → A is surjective but
has non-connected fibers. We take the Stein factorization and obtain that
aX factors as X

g
−→ V

b
−→ A where V is normal and finite over A with, again

P2(V ) ≥ 2. The problem here is that we cannot expect the image of the
Iitaka fibration of V to be of general type.

Fortunately, a structure theorem for varieties of maximal Albanese di-
mension due to Kawamata (Theorem 13 in [K]) tells us that the situation is
still manageable.

Theorem 3.2 (Kawamata) Let b : V → A be a finite morphism from a
projective normal algebraic variety to an abelian variety. Then κ(V ) ≥ 0

and there are an abelian subvariety K of A, étale covers Ṽ and K̃ of V and
K respectively, a projective normal variety Ŵ , and a finite abelian group G,
which acts on K̃ and faithfully on Ŵ , such that:

(1) Ŵ is finite over A/K, of general type and of dimension κ(V ),

(2) Ṽ is isomorphic to K̃ × Ŵ ,

(3) V = Ṽ /G = (K̃ × Ŵ )/G, where G acts diagonally and freely on Ṽ .

The construction of Ŵ and Ṽ is crucial for our purpose so I will recall
the proof of this theorem following Kawamata.

Let δ : V
′

→ V be a birational modification of V such that V
′

is smooth
and there exists a morphism h

′

: V
′

→ W
′

such that W
′

is also smooth
and h

′

is a model of the Iitaka fibration of V . Then a general fiber V
′

w
′ of

h
′

is smooth, of Kodaira dimension 0, and generically finite over an abelian
variety, hence by Kawamata’s theorem, V

′

w′ is birational to an abelian variety

and (b◦ δ)(V
′

w′ ) is then an abelian subvariety of A, denoted by Kw′ . Since w
′

moves continuously, Kw
′ is a translate of a fixed abelian subvariety K ⊂ A

for every w
′

∈ W
′

. Let π : A → A/K be the quotient map.
Consider the Stein factorization

π ◦ b : V
h
−→ W

bW−→ A/K.

Since general fibers of h
′

are contracted by π ◦ b ◦ δ, hence by h ◦ δ, the map
h ◦ δ factors through h

′

by rigidity, and we get the following commutative
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diagram:

V
′ δ //

h
′

��

V
b

finite
//

h

��

V0
� � //

��

A

π
��

W
′ δ

′

// W
bW

finite
// W0

� � // A/K

(7)

where W is normal, bW is finite, h : V → W has connected fibers, δ and δ
′

are birational, and V0 and W0 are the images of V and W in A and A/K
respectively.

By Poincaré reducibility, there exists an isogeny Ã/K → A/K such that

A ×A/K Ã/K ≃ K × Ã/K. We then apply the étale base change (·) ×A/K

Ã/K → · in the diagram (7) and get the following commutative diagram:

Ṽ
b̃

finite
//

h̃

��

{{xxxxxxx
K × W̃0 = Ṽ0

��

� � //

wwnnnnnnnnn
K × Ã/K

��

wwooooooooo

V

fiber

space
h

��

b //

��

V0
� � //

��

A

��

W̃
b̃W

finite
//

||xx
xx

xx
x

W̃0

wwoooooooooooo

� � // Ã/K

wwooooooooo

W
bW

finite
// W0

� � // A/K

where W̃0 is some connected component of the inverse image of W0 in Ã/K,

Ṽ is some connected component of V ×V0
Ṽ0, W̃ is some connected component

of W ×W0
W̃0, and all slanted arrows are étale.

Let us look at

Ṽ
b̃

finite
//

h̃
��

K × W̃0

��

W̃
b̃W

finite
// W̃0.

A general fiber of h̃ is an étale cover of a general fiber of h hence an étale
cover of K, thus isomorphic to an abelian variety K̃.
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The morphism b̃ is étale over a product K × U0 for U0 a dense Zariski
open subset of W̃0:

h̃−1(U)

smooth

��

b̃ // K × U0

��

U // U0.

The group K acts on Ṽ0 = K × W̃0, and on K × U0. The infinitesimal
action corresponds to vector fields, which lift to b̃−1(K × U0) because b̃ is
étale there.

This induces an action of K̃ on h̃−1(U) = b̃−1(K × U0) hence a rational

action on Ṽ . Let k̃ ∈ K̃ and let k ∈ K be its image. Let Γ̃ ⊂ Ṽ × Ṽ and
Γ ⊂ Ṽ0 × Ṽ0 be the graphs of the actions of k̃ and k respectively. We have

Ṽ × Ṽ

(̃b,̃b)
��

Γ̃? _oo
p̃r1

//

��

Ṽ

b
��

Ṽ0 × Ṽ0 Γ? _oo
pr1

// Ṽ0,

(8)

where (̃b, b̃) is finite and pr1 is an isomorphism. We see that p̃r1 is finite and

birational hence an isomorphism because Ṽ is normal. Thus the action of k̃
is an isomorphism. So K̃ acts on Ṽ and b̃ is equivariant for the K̃-action on
Ṽ and the K-action on Ṽ0.

Set G1 = K̃/K. For y ∈ W̃0 general, we have

h̃−1b̃W
−1
(y) = b̃−1

W (y)× K̃ = b̃−1(K × {y}),

hence
deg b̃ = ♯G1 · deg b̃W .

Set Ŵ0 = b̃−1(k × W̃0) for k ∈ K general. Then Ŵ0 is normal and G1

acts on Ŵ0 (Ŵ0 may be not connected). We have a diagram:

Ŵ0

deg b̃:1
//

♯G1:1

��

k × W̃0

W̃
deg b̃W :1

// W̃0,
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hence Ŵ0/G1 = W̃ .

Note that G1 acts on K̃ × Ŵ0 diagonally and freely (because the action

is free on K̃). By the K̃-action, we have a morphism ϕ : K̃ × Ŵ0 → Ṽ and
there is a commutative diagram:

K̃ × Ŵ0

��

ϕ
// Ṽ

h̃
��

Ŵ0
finite //

W̃ .

Thus ϕ is finite because any contracted curve is in some K̃ × w̃ but because
of the K̃-action, this is impossible.

From the diagram, we have a finite morphism K̃×Ŵ0 → Ṽ ×W̃ Ŵ0. Since
it is birational over U , it is an isomorphism. Hence

Ṽ = (Ṽ ×W̃ Ŵ0)/G1 = (K̃ × Ŵ0)/G1.

We then let Ŵ be a connected component of Ŵ0 and let
˜̃
V = K̃ × Ŵ . Then

˜̃
V is still a Galois étale cover of Ṽ . There exists a commutative diagram:

˜̃
V

//

��

K̃ × Ã/K

��

Ṽ //

��

K × Ã/K

��

V // A.

We then conclude that
˜̃
V is a connected component of V ×A (K̃× Ã/K). Let

G2 be the finite abelian group (K̃×Ã/K)/A. Then V =
˜̃
V /G = (K̃×Ŵ )/G,

for some quotient group G of G2, where G acts diagonally. Since any quotient
of K̃ by a subgroup of G is still an abelian variety, we may assume that G
acts faithfully on Ŵ .

A crucial fact is that Ŵ is of general type because

κ(Ŵ ) = κ(
˜̃
V ) = κ(V ) = dim(W ) = dim(Ŵ ).
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We put everything in a commutative diagram:

˜̃
V = K̃ × Ŵ

π
Ṽ //

ĥ=pr2

��

Galois étale

((

Ṽ
πV //

h̃

��

V

h

��

b

finite
// A

π

��

Ŵ
b
W̃

Galois
//

b
Ŵ

66W̃
πW

finite
// W

bW

finite
// A/K.

(9)

We are now ready to prove the main theorem.

Theorem 3.3 Let X be a smooth projective variety. If

0 < Pm(X) ≤ m− 2,

for some m ≥ 3, the Albanese map aX : X → A is an algebraic fiber space.

Proof. By Theorem 2.8, aX is already surjective. Suppose that it has non-

connected fibers. Again we have the Stein factorization aX : X
g
−→ V

b
−→ A,

where g has connected fibers, V is normal, and b is finite not birational.
Applying the above description of the structure of V in (7) and (9), we get
the following commutative diagram:

X ×V
˜̃
V

πX //

ĝ

��

X

g

��

aX

$$IIIIIIIIIIIII

˜̃
V

Galois

étale
//

ĥ
��

V

h

��

b // A

π

��

Ŵ
b
Ŵ // W

bW // A/K,

(10)

where πX is étale Galois with Galois group G,
˜̃
V = Ŵ × K̃, and Ŵ is of

general type.
There exists a dense Zariski open subset U of W such that U and b−1

Ŵ
(U)

are smooth and h ◦ g and ĥ ◦ ĝ are smooth over U and b−1

Ŵ
(U) respectively.
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Through Hironaka’s resolution of singularities, we can blow up W and X
along smooth subvarieties of W − U and X − (h ◦ g)−1(U) respectively and
assume that W is smooth. Similarly, let W1 and X1 be the smooth projective

varieties obtained by blowing-up Ŵ and X ×V
˜̃
V along subvarieties of Ŵ −

b−1

Ŵ
(U) and X ×V

˜̃
V − (bŴ ◦ ĥ ◦ ĝ)−1(U) respectively such that we have the

following commutative diagram:

X1

ǫ

##GG
GG

GG
GG

G

πX1 //

f1

��

X

f

��

X ×V
˜̃
V

πX

;;wwwwwwwww

W1

bW1 // W,

(11)

where W1 is of general type, bW1
is generically finite and ǫ is the blow-up of

X ×V
˜̃
V . We write

KX1
= π∗

X1
KX + E,

where E is an effective exceptional divisor for πX1
, f1(E) is a subvariety of

W1 − b−1
W1

(U), and

πX1∗
OX1

= πX∗ǫ∗OX1
= πX∗OX×V Ṽ =

⊕

χ∈G∗

Pχ,

where Pχ ∈ Pic0(X) is the torsion line bundle corresponding to χ ∈ G∗.
In order to prove the theorem, we will need to treat two cases, κ(W ) > 0

or κ(W ) = 0. The strategies of the proofs are the same so I will treat the first
case in detail and explain how very similar arguments work for the second
case.

Lemma 3.4 Let X be a smooth projective variety with Pm(X) > 0 for some
m ≥ 2. Let f : X → W be as above. The Iitaka model of (X, (m−1)KX/W +
f ∗KW ) dominates W.

Proof. We use the same notation as above. In (11), we already know that
W1 is of general type so by Viehweg’s result (see the proof of Lemma 2.3),
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the Iitaka model of (X1, (m − 1)KX1/W1
+ f ∗

1KW1
) dominates W1. On the

other hand, we can write

(m− 1)KX1/W1
+ f ∗

1KW1

= π∗

X1
((m− 1)KX/W + f ∗KW )− (m− 2)f ∗

1KW1/W + (m− 1)E. (12)

SinceKW1/W is effective, the Iitaka model of (X1, π
∗

X1
((m−1)KX/W+f ∗KW )+

(m− 1)E) dominates W1. Hence for any ample divisor H on W , there exists
N > 0 such that π∗

X1
OX(N((m−1)KX/W +f ∗KW )−f ∗H)⊗OX1

(N(m−1)E)
has a nonzero section. Since πX1∗

OX1
(N(m − 1)E) = πX1∗

OX1
is a direct

sum of torsion line bundles, there exists k > 0 such that kN((m−1)KX/W +
f ∗KW )−kf ∗H is effective. Therefore the Iitaka model of (X, (m−1)KX/W +
f ∗KW ) dominates W . �

Since KW is not necessarily big, we cannot directly apply Lemma 2.3.
But we still have:

Lemma 3.5 Under the assumptions of Lemma 3.4, the sheaf

f∗(OX(KX + (m− 1)KX/W + f ∗KW )⊗ J (||(m− 1)KX/W + f ∗KW ||))

is nonzero, of rank Pm(Xw), where Xw is a general fiber of f .

Proof. We use the diagram (11). Since W1 is of general type, as in Lemma
2.3, by Viehweg’s result, there exists k > 0 such that for w1 a general point
of W1 and Xw1

⊂ X1 the fiber of f1, the restriction:

H0(X1,OX1
(km(m−1)KX1/W1

+kmf ∗

1KW1
)) → H0(Xw1

,OXw1
(km(m−1)KXw1

))

is surjective. Since KW1/W � 0, by (12), we have

H0(X1,OX1
(km(m− 1)KX1/W1

+ kmf ∗

1KW1
))

⊆ H0(X1,OX1
(km(m− 1)π∗

X1
KX/W + kmπ∗

X1
f ∗KW + km(m− 1)E)).

Since E is πX1
-exceptional, we conclude that

|km(m− 1)π∗

X1
KX/W + kmπ∗

X1
f ∗KW + km(m− 1)E|

= |km(m− 1)π∗

X1
KX/W + kmπ∗

X1
f ∗KW |+ km(m− 1)E.
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We also know that f1(E) is a proper subvariety of W1. These imply that the
restriction:

H0(X1,OX1
(km(m− 1)π∗

X1
KX/W + kmπ∗

X1
f ∗KW ))

→ H0(Xw1
,OXw1

(km(m− 1)KXw1
)) (13)

is surjective.
Set w = bW1

(w1), and let Xw be the fiber of f . In the following diagram

π−1
X1
f−1(U) //

��

f−1(U)

��

b−1
W1

(U) // U,

all the morphisms are smooth. Hence πXw1
= πX1

|Xw1
: Xw1

→ Xw is
étale and the pull-back of H0(Xw,OXw

(km(m − 1)KXw
)) is a subspace of

H0(Xw1
,OXw1

(km(m− 1)KXw1
)).

On the other side, we have

H0(X1,OX1
(k(m− 1)π∗

X1
KX/W + kπ∗

X1
f ∗KW ))

=
⊕

χ∈G∗

π∗

X1
H0(X,OX(k(m− 1)KX/W + kf ∗KW )⊗ Pχ). (14)

Let M be the order of G. Take a resolution τ : X
′

→ X such that τ : X
′

w →
Xw is also a resolution and

• τ ∗|Mkm(m− 1)KX/W +Mkmf ∗KW | = |H|+ EM ,

• τ ∗|OX(km(m−1)KX/W+kmf ∗KW )⊗Pχ| = |Hχ|+Eχ, for each χ ∈ G∗,

• τ ∗|km(m− 1)KXw
| = |Hw|+ Ew,

• τ ∗|mKXw
| = |H

′

w|+ E
′

w,

such that H , Hχ, Hw, and H
′

w are base-point-free and EM , Eχ, Ew, E
′

w are
the fixed divisors, with SNC supports.

Let X
′

1 be a smooth model of the main component of X1×X X
′

(the irre-
ducible component that dominates X1). We have the following commutative
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diagram:

X
′

1

π
X

′

1 //

τ1

��

X
′

τ

��

X1

πX1 //

f1
��

X

f

��

W1

bW1 // W.

Let U1 = X1 − E. Then πX1
is étale on U1, hence U1 ×X X

′

is irreducible
and smooth. Since f1(E) is a proper subvariety of W1, we can assume that
there exists a divisor E

′

of X
′

1 such that X
′

1 − E
′

is just U1 ×X X
′

and
f1τ1(E

′

) is a proper subvariety of W1. Let X
′

w1
be the fiber of f1τ1. Then

πX′

w1

= πX
′

1

|X′

w1

: X
′

w1
→ X

′

w is Galois étale. We have another commutative

diagram involving morphisms between fibers:

X
′

w1

π
X

′

w1

étale
//

τ11:1

��

X
′

w

τ 1:1

��

Xw1

πXw1

étale
// Xw.

We then write

τ ∗1 |km(m− 1)π∗

X1
KX/W + kmπ∗

X1
f ∗KW |

= |π
′
∗

X1
τ ∗(km(m− 1)KX/W + kmf ∗KW )|

= |H
′

|+ E
′

1,

where E
′

1 is the fixed divisor. Let F be the maximal divisor which is �
Eχ for all χ ∈ G∗. By (14), π∗

X
′

1

F � E
′

1. Hence, by (13), we conclude

that π∗

X
′

1

F |X′

w1

is fixed in τ ∗1 |km(m − 1)KXw1
| and in particular is fixed in

π∗

X′

w1

τ ∗|km(m−1)KXw
|, so π∗

X
′

1

F |X′

w1

� π∗

X′

w1

Ew. Since πX′

w1

is étale, we have

π∗

X′

w1

(F |X′

w
) � π∗

X
′

1

F |X′

w1

� π∗

X′

w1

Ew.
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We conclude that F |X′

w
� Ew.

Since for any χ ∈ G∗, we have the natural multiplication

H0(X,OX(km(m− 1)KX/W + kmf ∗KW )⊗ Pχ)
⊗M

→ H0(X,OX(Mkm(m− 1)KX/W +Mkmf ∗KW )),

we obtain EM � MF , hence EM |X′

w
� MEw � Mk(m − 1)E

′

w. This is just
(4) in the proof of 2) of Lemma 2.3, and we can then finish the proof as there.

�

We may write Lemma 3.5 in a more general form:

Proposition 3.6 Assume that we have the following commutative diagram
between smooth projective varieties:

X1

πX1 //

f1
��

X

f
��

W1

bW1 // W,

where Pm(X) > 0, the morphism πX1
is birationally equivalent to an étale

morphism and its exceptional divisor E is such that f1(E) is a proper subva-
riety of W1, πX1∗

OX1
=

⊕
α Pα is a direct sum of torsion line bundles on X,

W1 is of general type, and bW1
is generically finite and surjective. Then the

sheaf

f∗(OX(KX + (m− 1)KX/W + f ∗KW )⊗ J (||(m− 1)KX/W + f ∗KW ||))

is nonzero, of rank Pm(Xw), where Xw is a general fiber of f .

According to Lemma 3.5,

FX = bW∗f∗(OX(KX+(m−1)KX/W+f ∗KW )⊗J (||(m−1)KX/W+f ∗KW ||)))

is a nonzero sheaf on A/K. By Lemma 2.1 and Lemma 3.4, it is an IT-sheaf
of index 0.

Let F̂X be the Fourier-Mukai transform of FX . By the properties of

this transformation ([Mu], Theorem 2.2), we know that F̂X is a W.I.T-

sheaf of index dim(A/K) and its Fourier-Mukai transform
̂̂
FX is isomorphic
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to (−1A/K)
∗FX . In particular, F̂X 6= 0. Therefore, by the Base Change

Theorem and the definition of the Fourier-Mukai transform, there exists P0 ∈
Pic0(A/K) such that h0(A/K,FX ⊗ P0) 6= 0. Thus for any P ∈ Pic0(A/K),

h0(A/K,FX ⊗ P ) = χ(FX ⊗ P ) = χ(FX ⊗ P0) = h0(A/K,FX ⊗ P0) ≥ 1.

Hence for any P ∈ Pic0(A/K), we have

h0(X,OX(KX + (m− 1)KX/W + f ∗KW )⊗ f ∗b∗WP )

≥ h0
(
X,OX(KX + (m− 1)KX/W + f ∗KW )⊗

J (||(m− 1)KX/W + f ∗KW ||)⊗ f ∗b∗WP
)

= h0
(
A/K, bW∗f∗(OX(KX + (m− 1)KX/W + f ∗KW )⊗

J (||(m− 1)KX/W + f ∗KW ||))⊗ P
)

= h0(A/K,FX ⊗ P )

≥ 1. (15)

Lemma 3.7 Let X and W be as in Lemma 3.4. Suppose κ(W ) > 0.
Then for any r ≥ 3, there exists a translate T ⊂ Pic0(A/K) of a positive-
dimensional torus, such that

h0(W,OW ((r − 2)KW )⊗ b∗WP ) ≥ r − 2,

for all P ∈ T .

Proof. Since κ(W ) > 0, there exist a positive-dimensional abelian sub-
variety T0 ⊂ Pic0(A/K) and a torsion point P0 ∈ Pic0(A/K) such that
b∗W (P0 + T0) ⊂ V0(ωW ) ([CH2], Corollary 2.4). Then we iterate Lemma 1.4
to get h0(W,OW ((r − 2)KW )⊗ b∗WP ) ≥ r − 2, for all P ∈ (r − 2)P0 + T0. �

If κ(W ) > 0, since mKX = KX +(m− 1)KX/W + f ∗KW +(m− 2)f ∗KW ,
again by (15), Lemma 3.7 and Lemma 1.4, we obtain

Pm(X) ≥ 1 +m− 2 + dim(T )− 1 ≥ m− 1,

which contradicts our assumption. Hence we have finished the proof in the
case κ(W ) > 0.
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If κ(W ) = 0, in the diagram (10), bW is surjective and finite and κ(W ) =
0, hence W is an abelian variety by Kawamata’s Theorem 3.2. We still
have (15), however KW is trivial, hence it is not enough for us to deduce a
contradiction. We will need new versions of Lemma 3.4 and Lemma 3.5.

First we go back to diagrams (10) and (11):

X1

πX1 //

g1
��

f1

��

X

g

��

f

��

V1

πV1 //

h1

��

V

h
��

W1

bW1 // W,

where V1 is birational to K̃ ×W1.
Since πV1

: V1 → V is birationally equivalent to the étale cover Ṽ → V ,
we have πV1∗

ωV1
=

⊕
χ∈G∗(ωV ⊗ Pχ). On the other hand, V1 is birational to

K̃ ×W1, hence h1∗ωV1
= ωW1

. Therefore, we have

bW1∗
ωW1

=
⊕

χ∈G∗

h∗(ωV ⊗ Pχ).

Since bW1
is generically finite and W1 is of general type, by Theorem 2.3

in [CH2], we know that the irreducible components of V0(bW1∗
ωW1

) gener-
ate Pic0(W ). Hence there exists a χ ∈ G∗ such that V0(h∗(ωV ⊗ Pχ)) is a
translated positive-dimensional abelian subvariety of Pic0(W ). We denote
h∗(ωV ⊗ Pχ) by Fχ. Since a general fiber of h is an abelian variety, Fχ is a
rank-1 torsion-free sheaf.

We can again birationally modify X so that f ∗Fχ is a line bundle on X .
We then have the following result similar to Lemma 3.4.

Lemma 3.8 Under the assumptions of Lemma 3.4, assume moreover that
κ(W ) = 0 and let Fχ be as above. Then the Iitaka model of (X, (m−1)KX−
(m− 2)f ∗Fχ) dominates W .

Proof. The proof is analogue to that of Lemma 3.4. We have

π∗

X1
((m− 1)KX − (m− 2)f ∗Fχ) + (m− 1)E (16)

= (m− 1)KX1/W1
+ f ∗

1KW1
+ (m− 2)f ∗

1KW1
− (m− 2)π∗

X1
f ∗Fχ.
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Since Fχ ⊂ bW1∗
ωW1

, we have an inclusion b∗W1
Fχ →֒ ωW1

, hence an inclusion

(m− 2)f ∗

1 b
∗

W1
Fχ = (m− 2)π∗

X1
f ∗Fχ →֒ (m− 2)f ∗

1ωW1
.

Using Viehweg’s result as in the proof of Lemma 3.4, we obtain that the
Iitaka model of π∗

X1
((m− 1)KX − (m− 2)f ∗Fχ) + (m− 1)E dominates W1.

We finish the proof by the same argument as in Lemma 3.4. �

We also need an analogue of Lemma 3.5.

Lemma 3.9 Under the same assumptions as in Lemma 3.8, the sheaf

f∗(OX(mKX − (m− 2)f ∗Fχ)⊗ J (||(m− 1)KX − (m− 2)f ∗Fχ||))

is nonzero of rank Pm(Xw), where Xw is a general fiber of f .

Proof. It is also parallel to the proof of Lemma 3.5. First, by Viehweg’s
result again, we have the surjectivity of the restriction map:

H0(X1,OX1
(km(m− 1)KX1/W1

+ kmf ∗

1KW1
))

→ H0(Xw1
,OXw1

(km(m− 1)KXw1
)).

Since E is πX1
-exceptional and (m− 2)f ∗

1KW1
� (m− 2)π∗

X1
f ∗Fχ, by (16),

we have the surjectivity of the restriction map:

H0(X1, π
∗

X1
OX1

(km(m− 1)KX − km(m− 2)f ∗Fχ))

→ H0(Xw1
,OXw1

(km(m− 1)KXw1
)).

Then the rest of the proof is the same as the proof of Lemma 3.5. �

By Lemma 3.8 and Lemma 3.9, we again conclude as in (15) that

h0(X,OX(mKX − (m− 2)f ∗Fχ)⊗ f ∗P ) ≥ 1,

for any P ∈ Pic0(W ).
As in the proof of Lemma 3.7, there exists a translate T ⊂ Pic0(W ) of

a positive-dimensional abelian variety such that h0(X,OX((m − 2)f ∗Fχ) ⊗
f ∗P ) ≥ m − 2, for any P ∈ T . We again have Pm(X) ≥ m − 1, which is a
contradiction. This finishes the proof of Theorem 3.3 in the case κ(W ) = 0.

In all, we have finished the proof of Theorem 3.3. �
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