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On q-deformed glℓ+1-Whittaker function III

Anton Gerasimov, Dimitri Lebedev, and Sergey Oblezin

Abstract. We identify q-deformed glℓ+1-Whittaker functions with a specialization of Mac-
donald polynomials. This provides a representation of q-deformed glℓ+1-Whittaker functions in

terms of Demazure characters of affine Lie algebra ĝlℓ+1. We also define a system of dual Hamil-
tonians for q-deformed glℓ+1-Toda chains and give a new integral representation for q-deformed
glℓ+1-Whittaker functions. Finally an expression of q-deformed glℓ+1-Whittaker function as a
matrix element of a quantum torus algebra is derived.

Introduction

In [GLO1] an explicit expression for a q-deformed glℓ+1-Whittaker function was proposed. This
expression provides a q-version of the Casselman-Shalika-Shintani formula [Sh], [CS]. More precisely
the q-deformed glℓ+1-Whittaker function is given by a character of an infinite-dimensional GL(ℓ+
1,C) × C∗-module. It was remarked in [GLO1] that multiplied by a simple factor the q-deformed
glℓ+1-Whittaker functions have a representation as character of a finite-dimensional GL(ℓ+1,C)×
C∗-modules. In this note we identify these modules as particular Demazure modules of affine
Lie algebra ĝlℓ+1 (see Theorem 3.2). This easily follows from two interpretations of Macdonald
polynomials Pλ(x; q, t) specialized at t = 0. Below we express q-deformed glℓ+1-Whittaker functions

in terms of Pλ(x; q, t = 0). On the other hand a relation between characters of ĝlℓ+1 Demazure
modules and Pλ(x; q, t = 0) was established previously by Sanderson [San1]. Note that the results
of [San1] were generalized to simply-laced semisimple Lie algebras in [I]. We are going to consider
the generalization of the constructions of this note to the simply-laced case elsewhere.

The explicit expression for q-deformed glℓ+1-Whittaker function was derived in [GLO1] by
considering a limit t → ∞ of the Macdonald polynomials Pλ(x; q, t). In this paper using the
same limit we derive a set of dual Hamiltonian operators of q-deformed glℓ+1-Toda chain. The
Whittaker function constructed in [GLO1] is a common eigenfunction of these dual Hamiltonian
operators as well as standard Hamiltonian operators of q-deformed glℓ+1-Toda chain. We also
consider a limit t → 0 of Macdonald polynomials and relate it with q-deformed glℓ+1-Whittaker
function. However in this interpretation of Whittaker function the role of standard Hamiltonian
Toda operators and the dual ones is reversed. This leads to a new integral representation of q-
deformed glℓ+1-Whittaker function which is an analog of Mellin-Banes integral representation for
glℓ+1-Whittaker function [KL]. In some sense this representation of q-deformed Whittaker function
is dual to the one considered in [GLO1].

According to Kostant [Ko], g-Whittaker functions naturally arise as matrix elements of infinite-
dimensional representations of U(g). Using an embedding of U(g) into a tensor product of several
copies of Heisenberg algebras one obtains a realization of g-Whittaker functions as matrix elements
of several copies of Heisenberg algebras. In this paper we construct analogous representation of
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q-deformed glℓ+1-Whittaker function as a particular matrix element of several copies of quantum
torus algebras. We demonstrate that this representation is compatible with a q-version of Kostant
representation.

Finally note that we realize a q-deformed Whittaker function multiplied by simple factor as
a character of a finite-dimensional Demazure module of affine Lie algebra. As for q-deformed
Whittaker function per se we describe a representation of q-deformed gl2-Whittaker function as a
character of a certain infinite-dimensional representation in the cohomology of line bundles over
a semi-infinite manifold [GLO1]. This character can be considered as a proper substitute of a
semi-infinite Demazure character of ĝl2 [GLO2]. We are going to discuss this interpretation ( and
its generalization to glℓ+1) in [GLO3].

The paper is organized as follows. In Section 1 we describe basic properties of Macdonald
polynomials. In particular, using the self-duality of Macdonald polynomials we define a dual system
of Macdonald operators. In Section 2 we propose two explicit expressions for q-deformed glℓ+1-
Whittaker functions as common eigenfunctions of q-deformed glℓ+1-Toda chain. We also construct
a system of dual Hamiltonians for q-deformed glℓ+1-Toda chain. In Section 3 the q-deformed glℓ+1-

Whittaker functions are identified with Demazure characters for affine Lie algebra ĝlℓ+1. Finally in
Section 4 a representation of q-deformed glℓ+1-Whittaker function as a matrix element of a quantum
torus algebra is derived.
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1 Macdonald polynomials

In this section we recall the standard facts about Macdonald polynomials. The basic reference is
[Mac] (see also [Ch] for details and further developments).

Consider symmetric polynomials in variables (x1, . . . , xℓ+1) over the field Q(q, t) of rational
functions in q, t. Given a partition λ = (λ1, λ2, . . . , λℓ+1), that is the set of non-negative integers
such that λ1 ≥ λ2 ≥ · · · ≥ λℓ+1. Let � be the partial ordering on the set of partitions; precisely,
given two partitions λ′, λ we write λ′ � λ when λ′k ≤ λk for k = 1, . . . , ℓ+ 1.

Let mλ and πλ be polynomial basis of the space of symmetric polynomials indexed by partitions
λ:

mλ =
∑

σ∈Sℓ+1

xλ1

σ(1)
xλ2

σ(2)
· . . . · x

λℓ+1

σ(ℓ+1)
,

πλ = πλ1πλ2 · . . . · πλℓ+1
, πn =

ℓ+1∑

k=1

xn
k ,

where Sℓ+1 is the permutation group of ℓ+1 elements. Define a scalar product 〈 , 〉q,t on the space
of symmetric functions over Q(q, t) as follows

〈πλ, πλ′〉q,t = δλ,λ′ · zλ(q, t),
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where

zλ(q, t) =
∏

n≥1

nmnmn! ·
∏

λk 6=0

1 − qλk

1 − tλk
, mn =

∣∣{k|λk = n}
∣∣.

In the following we always imply q < 1.

Definition 1.1 Macdonald polynomials Pλ(x; q, t) are symmetric polynomial functions over Q(q, t)
such that

Pλ = mλ +
∑

λ′�λ

uλλ′mλ′ ,

with uλλ′ ∈ Q(q, t), and for λ 6= λ′ 〈
Pλ, Pλ′

〉
q,t

= 0.

In the following we slightly extend the notion of Macdonald polynomials Pλ(x; q, t) to the case
of generalized partitions λ = (λ1, λ2, . . . , λℓ+1), λ1 ≥ λ2 ≥ · · · ≥ λℓ+1, λi ∈ Z using the relation

P(λ1,λ2,...,λℓ+1)(x; q, t) =
( ℓ+1∏

j=1

z
λℓ+1

j

)
P(λ1−λℓ+1,λ2−λℓ+1,...,λℓ−λℓ+1,0)(x; q, t)

Although now Pλ(x; q, t) are not necessary polynomials we use the term ’Macdonald polynomial’
for thus defined Pλ(x; q, t).

Macdonald polynomials can be equivalently characterized as common eigenfunctions of a set of
Hamiltonians Hr

Hr Pλ(x; q, t) = cr(q
λ)Pλ(x; q, t), (1.1)

cr(q
λ) = χr(q

λt̺) =
∑

Ir

∏

i∈Ir

qλi t̺i , (1.2)

where the eigenvalues χr(z) are characters of fundamental representations
∧r

Cℓ+1 of glℓ+1, ̺i =
ℓ+ 1 − i and we define qλt̺ = (qλ1t̺1 , . . . , qλℓ+1t̺ℓ+1). Here the sum is over ordered subsets

Ir = {i1 < i2 < . . . < ir} ⊂ {1, 2, . . . , ℓ+ 1}.

Explicitly Hr are given by

Hr =
∑

Ir

tr(r−1)/2
∏

i∈Ir, j /∈Ir

txi − xj

xi − xj

∏

i∈Ir

Txi
, r = 1, . . . , ℓ+ 1, (1.3)

and difference operators Txi
are defined as

Txi
f(x1, . . . , xi, . . . , xℓ+1) = f(x1, . . . , qxi, . . . , xℓ+1),

for i = 1, . . . , ℓ+ 1. The simplest operator is given by

H1 =
ℓ+1∑

i=1

∏

i6=j

txi − xj

xi − xj
Txi

. (1.4)
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Let t < 1 and

∆(x|q, t) =
∏

i6=j

∞∏

n=0

1 − xix
−1
j qn

1 − txix
−1
j qn

.

Define another scalar product on symmetric functions of (ℓ+ 1)-variables x1, . . . , xℓ+1 as follows

〈f, g〉′q,t =
1

(ℓ+ 1)!

∮

Γ

ℓ+1∏

i=1

dxi

2πıxi
f(x−1) g(x)∆(x|q, t), (1.5)

where the integration domain Γ is such that each xi goes around xi = 0 and is in the region defined

by inequalities t < |xi/xj | < t−1. Difference operators H
glℓ+1
r are self-adjoint with respect to 〈 , 〉′q,t:

〈f,H
glℓ+1
r g〉′q,t = 〈H

glℓ+1
r f, g〉′q,t .

The following statement was proved in [AOS].

Proposition 1.1 The following relations hold

1.

P
glℓ+1

λ (x; q, t) =
1

ℓ!

〈P
glℓ
λ , P

glℓ
λ 〉q,t

〈P
glℓ
λ , P

glℓ
λ 〉′q,t

×

×

∫

Γ

ℓ∏

i=1

dyi

2πıyi
Cℓ+1,ℓ(x, y

−1|q, t)P
glℓ
λ (y; q, t)∆(y|q, t),

(1.6)

where the integration domain Γ is as in (1.5) with the additional conditions |xiy
−1
j | < 1, i =

1, . . . ℓ+ 1, j = 1, . . . , ℓ.

2.

P
glℓ+1

λ+(ℓ+1)k (x; q, t) =
( ℓ+1∏

j=1

xk
j

)
P

glℓ+1

λ (x; q, t). (1.7)

Here λ+(ℓ+1)k = (λ1+k, . . . , λℓ+k, k) is a partition obtained from λ by a substitution λj → λj +k,
j = 1, . . . , ℓ+ 1 and

Cℓ+1,ℓ(x, y|q, t) =
ℓ+1∏

i=1

ℓ∏

j=1

∞∏

n=0

1 − txiyjq
n

1 − xiyjqn
,

〈P
glℓ
λ , P

glℓ
λ 〉′q,t =

∏

1≤i<j≤ℓ

∞∏

n=0

1 − tj−iqλi−λj+n

1 − tj−i+1qλi−λj+n
·

1 − tj−iqλi−λj+n+1

1 − tj−i−1qλi−λj+n+1
,

〈P
glℓ
λ , P

glℓ
λ 〉q,t =

ℓ∏

i=1

ℓ∏

k=i

λk−λk+1∏

n=1

1 − tk−i qλi−λk+1+1−n

1 − tk+1−i qλi−λk+1−n
,

where λℓ+1 = 0 is assumed in the last formula.
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These relations provide a recursive construction of Macdonald polynomials corresponding to arbi-
trary partitions.

Macdonald polynomials respect a remarkable symmetry (see e.g. [Ch]). Let us define the
normalized Macdonald polynomial Φλ(x; q, t) as follows

Φλ(x; q, t) = t
Pℓ+1

i=1 λiρi

∞∏

n=0

∏

1≤i<j≤ℓ

1 − t2qλi−λj+n

1 − tqλi−λj+n
Pλ(x; q, t), (1.8)

where ρi = ̺i − ℓ/2 = 1 − i+ ℓ/2 for i = 1, . . . , ℓ+ 1.

In the following we will always imply that t = q−k, k ∈ Z and q < 1. Then for any partitions λ
and µ we have:

Φλ(qµ−kρ; q, t) = Φµ(qλ−kρ; q, t). (1.9)

Define dual Macdonald Hamiltonians by

H∨
r (qλ) = Hr(q

λ tρ), r = 1, . . . , ℓ+ 1. (1.10)

Normalized Macdonald polynomials satisfy the following eigenvalue problems.

Proposition 1.2 For any partitions λ and µ the normalized Macdonald polynomials satisfy the
following system of equations

{
Hr(x)Φλ(x; q, t) = cr(q

λ)Φλ(x; q, t),

H∨
r (qλ)Φλ(x; q, t) = c∨r (x)Φλ(x; q, t),

(1.11)

where

cr(q
λ) = χr(q

λt̺) =
∑

Ir

∏

i∈Ir

qλi t̺i ,

c∨r (x) = χr(x t
ℓ/2) = trℓ/2

∑

Ir

∏

i∈Ir

xi.
(1.12)

Proof: Let µ be any partition and let x = qµ, then

Hr(q
µ)Φλ(qµ; q, t) = t

rℓ
2

∑

Ir

( ∏

i∈Ir

qλi tρi

)
Φλ(qµ; q, t).

Let us make a change variables µ→ µ−kρ. Then using self-duality (1.9) of Macdonald polynomials
one obtains

Hr(q
µtρ)Φµ(qλtρ; q, t) = t

rℓ
2

∑

Ir

( ∏

i∈Ir

qλi tρi

)
Φµ(qλtρ; q, t). (1.13)

Shifting variables λ→ λ+ kρ we have

Hr(q
µtρ)Φµ(qλ; q, t) = t

rℓ
2

∑

Ir

( ∏

i∈Ir

qλi

)
Φµ(qλ; q, t). (1.14)

Note that Φλ(x; q, t) are polynomials in x and thus can be characterized by its values at x = qµ,
µ ∈ Zℓ+1. Interchanging variables λ↔ µ and denotingH∨

r (qλ) = Hr(q
λtρ) we obtain the statement

of the proposition 2
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2 q-deformed glℓ+1-Whittaker function

In [GLO1] an explicit construction of a q-deformed glℓ+1-Whittaker function Ψ
glℓ+1
z (p

ℓ+1
) on the

lattice p
ℓ+1

= (pℓ+1,1, . . . , pℓ+1,ℓ+1) ∈ Zℓ+1 was given. The construction is based on a particular
degeneration of the defining relations for Macdonald polynomials. In this section using the same de-
generation we define dual Hamiltonians for q-deformed glℓ+1-Toda chain. We also consider another
degeneration procedure which also leads to q-deformed Toda chain but the role of the Hamiltoni-
ans and the dual Hamiltonians is interchanged. This leads to the second explicit expression for
q-deformed Whittaker functions considered as common eigenfunctions of (dual) Hamiltonians of
q-deformed Toda chain.

2.1 First explicit formula

The q-deformed glℓ+1-Whittaker functions are a common eigenfunction of q-deformed glℓ+1-Toda
chain Hamiltonians:

H
glℓ+1
r (p

ℓ+1
) =

∑

Ir

(
X̃

1−δi2−i1, 1

i1
· . . . · X̃

1−δir−ir−1, 1

ir−1
· X̃

1−δir+1−ir, 1

ir

)
Ti1 · . . . · Tir , (2.1)

where we assume ir+1 = ℓ+ 2. We use here the following notations

Tif(p
ℓ+1

) = f(p̃
ℓ+1

) p̃ℓ+1,k = pℓ+1,k + δk,i,

and
X̃i = 1 − qpℓ+1,i−pℓ+1,i+1+1, i = 1, . . . , ℓ X̃ℓ+1 = 1.

The first nontrivial Hamiltonian is given by:

H
glℓ+1

1 (p
ℓ+1

) =

ℓ∑

i=1

(1 − qpℓ+1,i−pℓ+1,i+1+1)Ti + Tℓ+1. (2.2)

The corresponding eigenvalue problem can be written in the following form:

H
glℓ+1
r (p

ℓ+1
)Ψ

glℓ+1
z1,...,zℓ+1(pℓ+1

) = (
∑

Ir

∏

i∈Ir

zi) Ψ
glℓ+1
z1,...,zℓ+1(pℓ+1

). (2.3)

The main result of [GLO1] can be formulated as follows. Denote by P(ℓ+1) ⊂ Zℓ(ℓ+1)/2 a subset
of parameters pk,i, k = 1, . . . , ℓ, i = 1, . . . , k satisfying the Gelfand-Zetlin conditions pk+1,i ≥
pk,i ≥ pk+1,i+1. Let Pℓ+1,ℓ ⊂ P(ℓ+1) be a set of p

ℓ
= (pℓ,1, . . . , pℓ,ℓ) satisfying the conditions

pℓ+1,i ≥ pℓ,i ≥ pℓ+1,i+1.

Theorem 2.1 The common solution of the eigenvalue problem (2.3) can be written in the following
form. For p

ℓ+1
being in the dominant domain pℓ+1,1 ≥ . . . ≥ pℓ+1,ℓ+1 the solution is given by

Ψ
glℓ+1
z1,...,zℓ+1(pℓ+1

) =
∑

pk,i∈P
(ℓ+1)

ℓ+1∏

k=1

z
P

i pk,i−
P

i pk−1,i

k

×

ℓ∏
k=2

k−1∏
i=1

(pk,i − pk,i+1)q!

ℓ∏
k=1

k∏
i=1

(pk+1,i − pk,i)q! (pk,i − pk+1,i+1)q!

,

(2.4)
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where we use the notation (n)q! = (1 − q)...(1 − qn). When p
ℓ+1

is outside the dominant domain
we set

Ψ
glℓ+1
z1,...,zℓ+1(pℓ+1,1, . . . , pℓ+1,ℓ+1) = 0.

Formula (2.4) can be written in the recursive form.

Corollary 2.1 The following recursive relation holds

Ψ
glℓ+1
z1,...,zℓ+1(pℓ+1

) =
∑

p
ℓ
∈Pℓ+1,ℓ

∆(p
ℓ
) z

P

i pℓ+1,i−
P

i pℓ,i

ℓ+1 Qℓ+1,ℓ(pℓ+1
, p

ℓ
|q)Ψglℓ

z1,...,zℓ
(p

ℓ
),

where

Qℓ+1,ℓ(pℓ+1
, p

ℓ
|q) =

1
ℓ∏

i=1
(pℓ+1,i − pℓ,i)q! (pℓ,i − pℓ+1,i+1)q!

,

∆(p
ℓ
) =

ℓ−1∏

i=1

(pℓ,i − pℓ,i+1)q! .

(2.5)

Lemma 2.1 The q-deformed glℓ+1-Whittaker function at pℓ+1,i = k + 1 for i ≤ r, pℓ+1,i = k, for
i > r is proportional to the character χr(z) of the fundamental representation ΛrC of glℓ+1

Ψ
glℓ+1
z1,...,zℓ+1(k + 1, . . . k + 1, k, . . . k) =

( ℓ+1∏

i=1

zk
i

)
χr(z) =

( ℓ+1∏

i=1

zk
i

) ∑

Ir

∏

i∈Ir

zi .

Proof: Directly follows from the general expression (2.4) 2

Example 2.1 Let g = gl2, p2,1 := p1 ∈ Z, p2,2 := p2 ∈ Z and p1,1 := p ∈ Z. The function

Ψgl2
z1,z2

(p1, p2) =
∑

p2≤p≤p1

zp
1z

p1+p2−p
2

(p1 − p)q!(p− p2)q!
, p1 ≥ p2 ,

Ψgl2
z1,z2

(p1, p2) = 0, p1 < p2 ,

is a common eigenfunction of mutually commuting Hamiltonians

H
gl2
1 = (1 − qp1−p2+1)T1 + T2, H

gl2
2 = T1T2.

2.2 Dual Hamiltonians for glℓ+1-Toda chain

The Hamiltonian operators of q-deformed glℓ+1-Toda chain can be obtained by a degeneration of
Macdonald operators discussed in the previous section (see e.g. [GLO1]). Similarly the degeneration
of dual Macdonald operators leads to a set of dual Hamiltonians of q-deformed glℓ+1-Toda chain.

Proposition 2.1 1. Let t = q−k, q < 1. Define the limit k → ∞ of the Macdonald (dual) operators

Hr(x) = lim
k→∞

D(x)Hr(xq
−kρ)D(x)−1 =

=
∑

Ir

(
X

1−δi1, 1

i1
·X

1−δi2−i1, 1

i2
· . . . ·X

1−δir−ir−1, 1

ir

)
Txi1

· . . . · Txir
,

(2.6)
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H∨
r (qλ) = lim

k→∞
qkr(2ℓ+1−r)/2G(qλ)H∨

r (qλ+k̺)G(qλ)−1 =

= qr(r−1)/2
∑

Ir

∏

i∈Ir, j /∈Ir

qλj

qλj − qλi

∏

i∈Ir

Tλi
,

(2.7)

here r = 1, . . . , ℓ+ 1 and we set Xi = 1 − x−1
i−1xi, X1 = 1, Tλi

λj = λjTλi
+ δij and we assume

D(x) =

ℓ+1∏

i=1

x−k̺i

i ,

G(qλ) = (−1)ℓ
Pℓ+1

i=1 λi q−ℓ
Pℓ+1

i=1 λi/2
∏

i<j

q(λi−λj)2/2. (2.8)

2. Let

Ψλ(x) = lim
k→∞

G(qλ)D(x) Φλ+k̺(xq
−kρ; q, t), (2.9)

then the following relations hold

Hr(x)Ψλ(x) = χr(q
λ)Ψλ(x),

H∨
r (qλ)Ψλ(x) =

(
qr(r−1)/2

r∏

i=1

xi

)
Ψλ(x),

(2.10)

for r = 1, . . . , ℓ+ 1.

Proof: Direct calculations 2

Observe that the following relation between (2.6) and (2.1) holds

Hglℓ+1(p
ℓ+1

) = Hr(x), xi = qpℓ+1, ℓ+2−i+̺ℓ+2−i , i = 1, . . . , ℓ+ 1,

for r = 1, . . . , ℓ+ 1.

The limit t = q−k → ∞, k → ∞ was used in [GLO1] to obtain Hamiltonians of q-deformed
glℓ+1-Toda chain. There is a “dual” limit t = q−k, k → −∞ which also leads to (dual) Hamiltonians
of q-deformed glℓ+1-Toda chain but the Hamiltonians and the dual Hamiltonians are interchanged.

Proposition 2.2 1. Let t = q−k, q < 1. Define the limit k → −∞ of the Macdonald (dual)
operators and their common eigenfunction as follows

Ĥr(x) = lim
k→−∞

qkr(r−1)/2Hr(x) =
∑

Ir

∏

i∈Ir , j /∈Ir

xj

xj − xi

∏

i∈Ir

Txi
, (2.11)

Ĥ∨
r (qλ) = lim

k→−∞
qkrℓ/2 D̂(qλ)H∨

r (qλ) D̂(qλ)−1 =

=
∑

Ir

(
X̂

1−δi1, 1

i1
· X̂

1−δi2−i1, 1

i2
· . . . · X̂

1−δir−ir−1, 1

ir

)
Tλi1

· . . . · Tλir
,

(2.12)
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X̂i = 1 − qλi−λi+1 and X̂1 = 1. We assume here D̂(qλ) =
∏ℓ+1

i=1 q
kλiρi.

2. Define

Ψ̂λ(x) = lim
k→−∞

D̂(qλ)Φλ(x; q, t). (2.13)

Then the following equations hold

Ĥr(x) Ψ̂λ(x) = qλℓ+2−r+...+λℓ+1 Ψ̂λ(x),

Ĥ∨
r (qλ) Ψ̂λ(x) = χr(x) Ψ̂λ(x).

(2.14)

Proof. 1. The formula for Ĥr follows straightforwardly. 2. For t = q−k we obtain

D̂(qλ)H∨
r (qλ) D̂(qλ)−1 = trℓ/2

∑

Ir

∏

i∈Ir, j /∈Ir

∏

i<j

tj+1−iqλi − qλj

tj−iqλi − qλj

∏

i>j

qλi − ti−1−jqλj

qλi − ti−jqλj

∏

i∈Ir

Tλi
,

due to the following identity

r(r − 1)

2
+

∑

i∈Ir

(
ρi + bi, Ir

)
=

rℓ

2
,

where bi,Ir =
∣∣{j /∈ Ir | j < i

}∣∣.
Thus under the limit t→ 0 one gets the following.

tj+1−iqλi − qλj

tj−iqλi − qλj
−→ 1, i < j,

qλi+1 − qλi

qλi+1 − tqλi
−→ 1−qλi−λi+1 ,

qλi − ti−1−jqλj

qλi − ti−jqλj
−→ 1, i > j+1,

2

Remark 2.1 Let λ be a partition, then

1.

Ĥr(x1, . . . , xℓ+1) = q−
r(r−1)

2 H∨
r (x1, . . . , xℓ+1),

Ĥ∨
r (qλ1 , . . . , qλℓ+1) = ∆(qλ)Hr(q

λℓ+1+̺ℓ+1, . . . , qλ1+̺1)∆(qλ)−1,
(2.15)

for r = 1, . . . , ℓ+ 1 and

∆(qλ) =

ℓ∏

i=1

(λi − λi+1)q! (2.16)

2. The specialization of Macdonald polynomial at t = 0

Ψ̂λ(x) = Pλ(x; q, t = 0), (2.17)

satisfies equations (2.14).

Proof: Proof of (1) is straightforward and the statement of (2) easily follows from (2.13) and
(1.8) 2
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2.3 Second explicit formula

Now we construct an integral representation for q-deformed Whittaker functions by taking t → 0
limit of the recursive construction of Macdonald polynomials.

In the limit t → 0 the Macdonald scalar product on symmetric functions of (ℓ + 1)-variables
x1, . . . , xℓ+1 is reduced to

〈f, g〉′q,t=0 =
1

(ℓ+ 1)!

∮

Γ0

ℓ+1∏

i=1

dxi

2πıxi
f(x−1) g(x)∆(x|q, t = 0), (2.17)

where

∆(x|q, 0) =
∏

i6=j

∞∏

n=0

(1 − xix
−1
j qn).

and the integration domain Γ0 is such that each xi goes over a small circle around xi = 0.

The limit t→ 0 of the recursive kernel Cℓ+1,ℓ is given by

Cℓ+1,ℓ(x, y|q, t = 0) =

ℓ+1∏

i=1

ℓ∏

j=1

∞∏

n=0

1

1 − xiyjqn
.

Proposition 2.3 1. Given a partition λ = (λ1, . . . , λℓ) the following recursive relation holds

P
glℓ+1

λ (x; q, t = 0) =
Aℓ

ℓ!

∫

Γ0

ℓ∏

i=1

dyi

2πıyi
Cℓ+1,ℓ(x, y

−1|q, t = 0)×

×P
glℓ
λ (y; q, t = 0)∆(y|q, t = 0),

(2.18)

where

Aℓ = lim
t→0

〈P
glℓ
λ , P

glℓ
λ 〉q,t

〈P
glℓ
λ , P

glℓ
λ 〉′q,t

=

∞∏

m=1

(1 − qm)ℓ−1 · (λℓ)q! ,

and the contour of integration Γ0 is as in (2.17) with additionally conditions xiy
−1
j < 1.

2. Given a partition λ = (λ1, . . . , λℓ)

P
glℓ+1

λ+(ℓ+1)k(x; q, t = 0) =
( ℓ+1∏

j=1

xk
j

)
P

glℓ+1

λ (x; q, t = 0), (2.19)

where λ+ (ℓ+ 1)k = (λ1 + k, . . . , λℓ + k, k).

Proof: We have

〈P
glℓ
λ , P

glℓ
λ 〉′q,t=0 =

ℓ−1∏

i=1

∞∏

m=1

1

(1 − qλi−λi+1+m)
,

〈P
glℓ
λ , P

glℓ
λ 〉q,t=0 =

ℓ−1∏

i=1

(λi − λi+1)q! × (λℓ)q!

where
∏0

m=1(1 − qm) = 1 is assumed. Thus we obtain the recursive relation (2.18) 2

These relations provide a recursive construction of a q-deformed Whittaker function correspond-
ing to an arbitrary partition. Note that the property of Macdonald polynomial being symmetric
function of variables z1, . . . , zℓ+1 remains true in the limit t→ 0.
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Proposition 2.4 Let zi := xℓ+1,i for i = 1, . . . , ℓ+1. Define the function MBΨ
glℓ+1
z1,...,zℓ+1(pℓ+1

) given
for the dominant domain pℓ+1,1 ≥ . . . ≥ pℓ,1,ℓ+1 by an integral expression

MBΨ
glℓ+1
z1,...,zℓ+1(pℓ+1

) = (q, q)ℓ(ℓ−1)/2
∞

∫

S

ℓ∏

n=1;j≤n

dxnj

2πıxnj

×
ℓ+1∏

n=1

n∏

j=1

( xn,j

xn−1,j

)pℓ+1, n
ℓ∏

n=1

n∏
k=1

n+1∏
m=1

Γq(x
−1
nkxn+1,m)

n!
∏
s 6=p

Γq(xnsx
−1
np )

,

(2.19)

where the contour S is obtained by induction from the contours Γ0 defined in the Proposition 2.3
and outside of the dominant domain by

MBΨ
glℓ+1
z1,...,zℓ+1(pℓ+1,1, . . . , pℓ+1,ℓ+1) = 0.

Then the function MBΨ
glℓ+1
z1,...,zℓ+1(pℓ+1

) possess the following properties
1. It is Sℓ+1-symmetric:

MBΨ
glℓ+1
zσ(1),...,zσ(ℓ+1)

(p
ℓ+1

) = MBΨ
glℓ+1
z1,...,zℓ+1(pℓ+1

), σ ∈ Sℓ+1,

2. It is a common eigenfunction of (dual) Hamiltonians Hr, H
∨
r :

H
glℓ+1
r (p

ℓ+1
) MBΨz(pℓ+1

) = χr(z)
MBΨz(pℓ+1

),

q−r(r−1)/2H∨
r (z)MBΨz(pℓ+1

) =
( r∏

i=1

qpℓ+1,i

)
MBΨz(pℓ+1

) ,
(2.20)

for r = 1, . . . , ℓ+ 1.

This integral representation is a q-version of Mellin-Barnes integral representation for glℓ+1-

Whittaker functions introduced in [KL]. Let us compare MBΨ
glℓ+1
z with the function Ψ

glℓ+1
z given

by (2.4).

Proposition 2.5 q-deformed glℓ+1-Whittaker function given by (2.4) is a Sℓ+1-symmetric func-
tion

Ψ
glℓ+1
zσ(1),...,zσ(ℓ+1)

(p
ℓ+1

) = Ψ
glℓ+1
z1,...,zℓ+1(pℓ+1

), σ ∈ Sℓ+1.

Proof: We prove this statement by the induction. Given a glℓ-Whittaker function which is
symmetric

Ψglℓ
zσ(1),...zσ(ℓ)

(p
ℓ
) = Ψglℓ

z1,...,zℓ
(p

ℓ
), σ ∈ Sℓ.

The function Ψglℓ+1 then given by

Ψglℓ
z1,...,zℓ,zℓ+1

(p
ℓ+1

) =
∑

p
ℓ
∈Pℓ+1,ℓ

Cℓ+1,ℓ(q) z
Pℓ+1

j=1 pℓ+1,j−
Pℓ

j=1 pℓ,j

ℓ+1 Ψglℓ
z1,...,zℓ

(p
ℓ
).

The space of solutions of q-deformed glℓ+1-Toda chain invariant with respect to Sℓ ⊂ Sℓ+1 is (ℓ+1)-
dimensional. Thus to verify that (2.4) is Sℓ+1-invariant one should check that it is invariant at
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ℓ+ 1 particular values of p
ℓ+1

. Let us take p
ℓ+1

corresponding to fundamental representations. By
Lemma 2.1 the corresponding q-Whittaker functions are given by characters of glℓ+1-fundamental
representations and thus explicitly Sℓ+1-invariant 2

The function MBΨ
glℓ+1
z1,...,zℓ+1(pℓ+1

) satisfies the full set of equations (i.e. including dual Hamil-

tonians) and the function Ψ
glℓ+1
z1,...,zℓ+1(pℓ+1

) satisfies the original q-deformed Toda equations. Thus
one has

Ψ
glℓ+1
z1,...,zℓ+1(pℓ+1

) = C(z1, . . . , zℓ+1)
MBΨ

glℓ+1
z1,...,zℓ+1(pℓ+1

).

Proposition 2.6

Ψ
glℓ+1
z1,...,zℓ+1(pℓ+1

) = MBΨ
glℓ+1
z1,...,zℓ+1(pℓ+1

).

Proof: Denote

Ψ̃
glℓ+1
z1,...,zℓ+1(pℓ+1

) = ∆(p
ℓ+1

)Ψ
glℓ+1
z1,...,zℓ+1(pℓ+1

),

∆(p
ℓ+1

)MBΨ
glℓ+1
z1,...,zℓ+1(pℓ+1

) = Pp
ℓ+1

(z; q, t = 0).

Then Ψ̃
glℓ+1
z1,...,zℓ+1(pℓ+1

)|pℓ+1,i=0
= 1 and P(0,0,··· ,0)(z; q, t = 0) = 1 by definition of Macdonald poly-

nomials. Thus C(z1, . . . , zℓ+1) = 1 2

Remark 2.2 The normalized q-deformed glℓ+1-Whittaker function coincides with a t = 0 special-
ization of Macdonald polynomial

Ψ̃
glℓ+1
z (p

ℓ+1
) = Pλ(z; q, t = 0), λ = (pℓ+1,1, . . . , pℓ+1,ℓ+1). (2.20)

3 q-Whitaker functions as characters of affine Demazure modules

In this Section we identify the normalized q-deformed glℓ+1-Whittaker function Ψ̃
glℓ+1
z (p

ℓ+1
) with

characters of affine Lie algebra ĝlℓ+1 Demazure modules. This straightforwardly follows from a

characterization of the normalized q-deformed ĝlℓ+1-Whittaker function as a specialization of Mac-
donald polynomials Pλ(z; q, t) at t = 0 (see Remark 2.2) and a relation of Pλ(z; q, t = 0) with
characters of Demazure modules of affine Lie algebra ĝlℓ+1 established in [San1].

To state precisely the relation between Whittaker functions and Demazure modules let us start
recalling the notion of a Demazure module [De] (see [Ku], [M] for a general case of Kac-Moody
algebras). Let g be a Kac-Moody algebra with Cartan matrix ‖aij‖, h ⊂ b ⊂ g be a Cartan and
Borel subalgebras. Let R ⊂ h∗ be a corresponding root system, R+ ⊂ R be a subset of positive
roots corresponding to the Borel subalgebra b, α1, . . . , αr ∈ R+ be a set of simple roots. Denote
(λ, µ) the scalar product on h∗ induced by the Killing form on g. Given a root α let α∨ = 2α/(α,α)
be the corresponding coroot where we identify h ≡ h∗ using quadratic form ( , ). The weight lattice
P is given by P = {λ ∈ h∗ : (λ, α∨),∈ Z α ∈ R}. The weight lattice is generated by fundamental
weights ω1, . . . , ωr defined by the conditions (ωi, α

∨
j ) = δij . The set of dominant weights is given

by P+ = {λ ∈ P : (λ, α∨) ≥ 0, α ∈ R}. The Weyl group W is defined as a group of reflections
sα : h∗ → h∗, α ∈ R

sα : λ −→ λ− (λ, α∨)α,
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and is generated by reflections si corresponding to simple roots αi. An expression of a Weyl group
element w as a product w = si1 · · · sil which has minimal length is called reduced decomposition
for w and its length l(w) = l is called a length of w. Let T be a Cartan torus Lie(T ) = h. The
group of characters X = X(T ) of T is isomorphic to the weight lattice P of g. Its group algebra
Z[T ] = R(T ) is the representation ring of T and is generated by formal exponents {eµ : µ ∈ P},
with the multiplication eλ · eµ = eλ+µ.

Let ω be a dominant weight of g and V (ω) be an integrable irreducible highest weight represen-
tation of the enveloping algebra U(g) with the highest weight ω. For any w ∈ W the weight w(ω)
subspace V [w(ω)](ω) in V (ω) is one-dimensional. Let Vw(ω) ⊆ V (ω) be a U(b)-submodule generated
by enveloping algebra U(b) of the Borel subalgebra b acting on V [w(ω)](ω). The U(b)-module Vw(ω)
is called Demazure module. Characters of Vw(ω) are defined as

chVw(ω) =
∑

µ∈P

(dimV [µ]
w (ω))eµ,

and can be calculated using Demazure operators as follows. Define Demazure operators corre-
sponding to simple root αi as

Dsi
eµ =

eµ − e−αiesi(µ)

1 − e−αi
,

where si ∈ W is a simple reflection corresponding to αi. Demazure operators commute with
W -invariant elements in Z[T ] and satisfy the following relations

D2
si

= Dsi
, (Dsi

Dsj
)mij = 1,

where mij are equal to
mij = 2, 3, 4, 6, ∞,

for the values of entries of Cartan matrix ‖aij‖ satisfying

aijaji = 0, 1, 2, 3, ≥ 4,

respectively. Here we imply x∞ := 1. These relations provide a correctly defined map w 7→ Dw:

w = si1si2 · · · sij 7−→ Dw = Dsi1
Dsi2

· · · Dsij
.

Given a reduced (minimal length) decomposition w = si1si2 · · · sij of an element w ∈ W we have
for the character of Vw(ω)

chVw(ω) = Dsi1
Dsi2

· · · Dsij
eω. (3.1)

Now let g be the affine Lie algebra ĝlℓ+1. The corresponding root system can be realized as a set of
vectors in Rℓ+2,1 supplied with a bi-linear symmetric form defined in the bases {e1, . . . , eℓ+1, e+, e−}
by

(ei, ej) = δij , (e±, ei) = (e±, e±) = 0, (e+, e−) = 1.

Simple roots of ĝlℓ+1 are given by

α1 = e1 − e2, α2 = e2 − e3, . . . αℓ = eℓ − eℓ+1, α0 = e+ − (e1 − eℓ+1).

The fundamental weights ω0, ω1 . . . , ωℓ+1 are defined by the conditions (ωi, α
∨
j ) = δij

ω1 = e1 + e−, ω2 = e1 + e2 + e−, . . . ωℓ+1 =

ℓ+1∑

j=1

ej + e−, ω0 = e−.

13



In the following we will also use the standard notation δ = α0 +
∑ℓ

i=1 αi = e+. The Weyl group
W has natural decomposition W = Ẇ × Q where Q is a lattice generated by simple coroots and
Ẇ is the Weyl group of the finite-dimensional Lie algebra glℓ+1. Define a projection of the weight

lattice P of ĝlℓ+1 onto the weight lattice Ṗ of the finite-dimensional algebra glℓ+1

ω = λ1e1 + · · · + λℓ+1eℓ+1 + ke− + re+ −→ ω̇ = λ1e1 + · · · + λℓ+1eℓ+1.

The projection on the lattice Ṗ of the action of the generators of W on e− +
∑
λiei is given by

si (λ1, . . . , λℓ+1) = (λ1, . . . , λi−1, λi+1, λi, λi+2, . . . , λℓ+1),

s0 · (λ1, . . . , λℓ+1) = (λℓ+1 + 1, λ2, . . . , λℓ, λ1 − 1).

Note that |ω| =
∑ℓ+1

i=1 λi is invariant under the action of W .

Lemma 3.1 A set of orbits of W acting on the weight lattice Ṗ of glℓ+1 can be identified with
Z × (Z/Zℓ+1) and a set of representatives can be chosen as follows

λ̇k,i = (k + 1, . . . , k + 1, k, . . . , k) = k1̇ + ω̇i,

where 1 = (1, . . . , 1) and ω̇i are fundamental weights of glℓ+1.

Proof: Using Ẇ one can transform any weight of glℓ+1 to a dominant one λ̇ = (λ1 ≥ λ2 ≥ · · · ≥
λℓ+1). Now using elements W transforming dominant weights to dominant we can change weights
in such a way that the difference λi − λi+1 is either 1 or 0 2

Define homomorphism
π : Z[T ] → Z[z1, . . . , zℓ+1, q]

π(eωi) = z1 · · · zi, π(eω0) = 1, π(eδ) = q.

The following result was proved by Sanderson [San1].

Theorem 3.1 Let λk,i = ω0 + λ̇k,i and λ̇k,i ∈ Ṗ
+ is given by

λ̇k,i = (k + 1, . . . , k + 1, k, . . . k) = k · 1 + ω̇i.

Let w ∈W be such that for λ = w ·λk,i its projection λ̇ be antidominant weight i.e. λ1 ≤ λ2 ≤ · · · ≤
λℓ+1. Define λ̇′ = w0λ̇, where w0 ∈ Ẇ is an element having a reduce decomposition of maximal
length. Then the character of the Demazure module Vw(λk,i) satisfy the following relation

π
(
chVw(λk,i)

)
= q

1
2
(λ̇,λ̇)− 1

2
(λ̇k,i,λ̇k,i) Pλ̇′(z; q, t = 0),

where Pλ̇′(z; q, t) is a Macdonald polynomial corresponding to dominant partition λ̇′ (see Definition
1.1).

The modified q-deformed glℓ+1-Whittaker function is given by

Ψ̃
glℓ+1
z (p

ℓ+1
) = ∆(p

ℓ+1
)Ψ

glℓ+1
z (p

ℓ+1
),

where

∆(p
ℓ+1

) =

ℓ∏

i=1

(pℓ+1,i − pℓ+1,i+1)q!

and Ψ
glℓ+1
z (p

ℓ+1
) is defined by (2.4).
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Theorem 3.2 The following representation for the modified q-deformed glℓ+1-Whittaker function
holds

Ψ̃
glℓ+1
z (p

ℓ+1
) = q

1
2
(λ̇k,i,λ̇k,i)−

1
2
(λ̇,λ̇)π

(
chVw(λk,i)

)
, pℓ+1,i = (λ̇′)i.

Thus the finite sum (2.4) up to a simple multiplier provides expression for a characters of affine Lie
algebra Demazure module.

Example. Let us consider as an example the case of ℓ = 1. We have

chV(s1s0)m (ω0) = D(s1s0)m eω0 , chVs1(s0s1)m (ω1) = Ds1(s0s1)m eω1 ,

where ω0 = e− and ω1 = e− + e1. Note that due to the identity D2
1 = D1 both characters are

W1 = S2 invariant and thus are given by linear combination of gl2-characters.

λ̇0,0 = (0, 0), λ = (s1s0)
mω0, λ̇ = (−m,m), λ̇′ = (m,−m),

λ̇0,1 = (1, 0), λ = s1(s0s1)
mω1, λ̇ = (−m,m+ 1), λ̇′ = (m+ 1,−m),

and thus
π
(
chV(s1s0)m(ω0)

)
= qm2

Pm,−m(z1, z2; q, t = 0),

π
(
chVs1(s0s1)m(ω1)

)
= qm(m+1) Pm+1,−m(z1, z2; q, t = 0).

Let us note that there exists a generalization of the results in [San1] to the case of simply-laced
affine Lie algebras [I]. Also the structure of Demazure modules for arbitrary simply-laced affine Lie
group was clarified in [FL]. It was shown that as a module over corresponding finite-dimensional
Lie algebra it is a finite tensor product of finite-dimensional irreducible representations. In the
special case of ĝ = ĝlℓ+1 this is in complete agreement with the Proposition 3.4 in [GLO1]. Note
that the case ℓ = 1, 2 was considered before in [San2]. All this seems implies that the connection
between q-deformed Whittaker functions, specialization of Macdonald polynomials and Demazure
modules discussed above can be rather straightforwardly generalized at least to the simply-laced
case. We conjecture that this indeed so and are going to discuss the details elsewhere.

4 q-deformed Whittaker function as a matrix element

According to Kostant [Ko] g-Whittaker functions can be understood as matrix elements of infinite-
dimensional representations of universal enveloping algebra U(g) with action of Cartan subalgebra
h ⊂ g integrated to the action of the corresponding Cartan subgroup H ⊂ G. This interpretation
can be generalized to the case of q-deformed g-Whittaker functions considered as matrix elements
of infinite-dimensional representations of quantum groups Uq(g) (see e.g. [Et]). In this Section
we derive a representation of q-deformed glℓ+1-Whittaker functions given explicitly by (2.4) as a
matrix element of an infinite-dimensional representation of multidimensional quantum torus. Our
construction is based on an iterative application of the following standard identity (see e.g. [CK])

(X + T )n =
n∑

m=0

(
n

m

)

q

XmT n−m, TX = qXT

where
(

n
m

)
q

= (n)q!/(m)q!(n −m)q! is a q-binomial coefficient. This representation should arise in

the Kostant framework using a realization of Uq(glℓ+1) by difference operators generalizing Gauss-
Givental realization of U(glℓ+1) proposed in [GKLO]. We check this directly for g = sl2 leaving the
general case to another occasion.
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Let A(ℓ) be an associative algebra, {X±1
k,i , T

±1
k,i }, k = 1, . . . , ℓ; i = 1, . . . , k be a complete set of

generators satisfying relations

Tk,iXm,j = qδk,mδi,j ·Xm,jTk,i. (4.1)

Introduce a set of polynomials fn,i(z) ∈ A(ℓ)[z1, . . . , zℓ+1]

fn,i = fn,i(z;Xk,j, Tk,j), n = 1, . . . , ℓ+ 1; i = 1, . . . , n,

of degree deg fn, i = i in variables z = (z1, . . . , zℓ+1), defined by the following recursive relations:

fn, i = fn−1, iXn−1, i + zn fn−1, i−1Tn−1, i, i < n, (4.2)

where fn,0 = f00 = 1 and fn,n = z1 · · · zn with

fn,n = zn · fn−1,n−1 n = 1, . . . , ℓ+ 1.

In particular, we have f11 = z1 and f21 = f11X11 + z2f10T11 = z1X11 + z2T11.

Let V be a representation of A(ℓ), and V∗ be its dual. Consider |v+〉 ∈ V, 〈v−| ∈ V∗ such that
〈v−|v+〉 = 1 and satisfying the conditions

Ti,k|v+〉 = |v+〉, 〈v−|Xi,k = 〈v−|, i = 1, . . . , ℓ, k = 1, . . . , i.

Let us introduce normalized q-deformed glℓ+1-Whittaker function as

Ψ̃
glℓ+1
z1,...,zℓ+1(pℓ+1

) =

ℓ∏

k=1

(pℓ+1, k − pℓ+1, k+1)q! Ψ
glℓ+1
z1,...,zℓ+1(pℓ+1

).

Theorem 4.1 The following representation of q-deformed glℓ+1-Whittaker function holds

Ψ̃
glℓ+1
z1,...,zℓ+1(pℓ+1

) =
〈
v−

∣∣∣
ℓ+1∏

k=1

fℓ+1, k(z;Xn,i, Tn,i)
pℓ+1, k−pℓ+1, k+1

∣∣∣ v+
〉
, (4.3)

where we assume pℓ+1, ℓ+2 = 0.

Proof: Let us prove the Theorem by induction. We assume that the representation (4.3) for glℓ
holds

Ψ̃glℓ
z1,...,zℓ

(p
ℓ
) = 〈v− |

ℓ∏

k=1

fℓ, k(z
′)pℓ, k−pℓ, k+1 | v+ 〉,

where z′ = (z1, . . . , zℓ). The following recursive relation follows from (2.5)

Ψ̃
glℓ+1
z1,...,zℓ+1(pℓ+1

) =
∑

p
ℓ
∈Pℓ+1,ℓ

z
P

pℓ+1,i−
P

pℓ,k

ℓ+1 Q̃ℓ+1,ℓ(pℓ+1
, p

ℓ
|q) Ψ̃glℓ

z1,...,zℓ
(p

ℓ
),

(4.4)

where

Q̃ℓ+1,ℓ(pℓ+1
, p

ℓ
|q) =

ℓ∏

k=1

(
pℓ+1,k − pℓ+1,k+1

pℓ,k − pℓ+1,k+1

)

q
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Then (4.3) for glℓ+1 is obtained by repeated application of the identities

pℓ+1,k∑

pℓ,k=pℓ+1,k+1

z
pℓ+1,k−pℓ,k

ℓ+1

(
pℓ+1,k − pℓ+1,k+1

pℓ,k − pℓ+1,k+1

)

q

·

· (fℓ,k−1)
pℓ,k−1−pℓ,k(fℓ,k)

pℓ,k−pℓ+1,k+1 X
pℓ,k−pℓ+1,k+1

ℓ,k T
pℓ+1,k−pℓ,k

ℓ,k =

= (fℓ,k−1)
pℓ,k−1−pℓ+1,k

(
fℓ,kXℓ,k + zℓ+1fℓ,k−1Tℓ,k

)pℓ+1,k−pℓ+1,k+1

,

to convert q-binomial factors Q̃ℓ+1,ℓ in (4.4) 2

The representation (4.3) can be understood as a particular realization of q-deformed glℓ+1-
Whittaker function as a matrix element of an infinite-dimensional representation of Uq(glℓ+1). In
the following we demonstrate this for the simplest case q-deformed sl2-Whittaker function.

Quantum deformed universal enveloping algebra Uq(sl2) is generated by generators E,F,K
satisfying the relations

KE = qEK, KF = q−1FK, EF − FE = −
K −K−1q

1 − q
.

The center of Uq(sl2) is generated by a Casimir element

C = K +K−1 + (q + q−1 − 2)FE.

In irreducible representations the image of C is proportional to unite operator and we parametrize
the corresponding eigenvalue c as follows

c = −(z + z−1).

Consider a realization of Uq(sl2) (see e.g. [KLS])

K = −zu−1, E =
v−1(1 − u−1)

1 − q
, F = −

v(z − qz−1u)

1 − q
,

where uv = qvu. The general q-deformed sl2-Whittaker function is given by (compare with (2.17)
in [KLS] with ω1 = 1, q = exp(2ıπω1/ω2))

Φ(α1,α2)
z (x) = e−πx qıx/2 〈ψ

(α1)
L | qı x

2
H |ψ

(α2)
R 〉, (4.4)

where K = qH/2 and ψ
(α)
L /ψ

(α)
R are left/right Whittaker vectors defined by

Eψ
(α)
L = q1−α eıπα Kα

1 − q
ψ

(α)
L , Fψ

(α)
R = eıπα K

−α

1 − q
ψ

(α)
R ,

(T −1 + T − q(α1−α2+1)q−ıxT α1−α2)Φ(α1,α2)
z (x) = (z + z−1)Φ(α1,α2)

z (x), (4.5)

where T f(x) = f(x+ ı).

We would like to compare this representation with a representation given in the previous section.
The representation for ℓ = 1 adopted to the case of sl2 is given by

Ψz(n) =
1

(n)q!
〈v−| (zX + z−1T )n |v+〉, Ψ̃z(n) = 〈v−| (zX + z−1T )n |v+〉,
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where T |v+〉 = |v+ > and 〈v−|X = 〈v−|. The functions Ψz(n) and Ψ̃z(n) satisfy the following
equation

(T −1 + (1 − qn+1)T )Ψz(n) = (z + z−1)Ψz(n),

((1 − qn)T −1 + T )Ψ̃z(n) = (z + z−1)Ψ̃z(n),
(4.6)

where T f(n) = f(n+ 1). To reconcile the last equation in (4.6) and the equation (4.5) we take

α1 = 1, α2 = 2, x = ın.

Then one has
Φ(1,2)

z (ın) = 〈ψ
(1)
L | (−K)−n |ψ

(2)
R 〉,

and one would like to have the following relation for the q-deformed Whittaker function

Ψ̃z(n) = Φ(1,2)
z (ın). (4.7)

To make this identification one should should have the following relation

−K−1 = z−1u = z−1T + zX.

and demonstrate that 〈v−| and |v+〉 provide as representation for left and right Whittaker vectors

〈ψ
(1)
L | and |ψ

(2)
R 〉.

Consider the following unitary transformation

U−1(u, v)uU(u, v) = u+ z2v, U(u, v) =

∞∏

n=0

(1 + z2vu−1qn)−1 = Γq(−z
2vu−1),

where

Γq(x) =
1∏∞

j=0(1 − xqj)
.

Thus we have
U−1(u, v) v U(u, v) = (1 + z2vu−1)v,

U−1(u, v)uU(u, v) = (1 + z2vu−1)u,

U−1(u, v) v−1 U(u, v) = (1 + q−1z2vu−1)−1v−1,

U−1(u, v)u−1 U(u, v) = (1 + q−1z2vu−1)−1u−1.

The conjugated generators are then given by

K̂ = U−1(u, v)K U(u, v) = −z(1 + q−1z2vu−1)−1u−1,

Ê = U−1(u, v)E U(u, v) =
1

1 − q
(1 + q−1z2vu−1)−1v−1(1 − (1 + q−1z2vu−1)−1u−1),

F̂ = U−1(u, v)F U(u, v) = −
1

1 − q
(1 + z2vu−1)v(z − z−1q(1 + z2vu−1)u).

Proposition 4.1 The following identities hold

Ê|u = 1〉 = −
1

1 − q
K̂2|u = 1〉, F̂ |v = 1〉 =

1

1 − q
K̂−1|v = 1〉,

where v|v = 1 >= |v = 1 >, u|u = 1 >= |u = 1 >.

Proof: Direct calculations 2

Thus one can identify |v−〉 ≡ |u = 1〉 = |ψ
(2)
L 〉, |v+〉 ≡ |v = 1〉 = |ψ

(1)
R 〉 in the U -rotated bases.

This also provides an identification (4.7).
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