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HEREDITARY CATEGORIES WITH SERRE DUALITY WHICH ARE

GENERATED BY PREPROJECTIVES

CARL FREDRIK BERG AND ADAM-CHRISTIAAN VAN ROOSMALEN

Abstract. We show that every k-linear abelian Ext-finite hereditary category with Serre du-
ality which is generated by preprojective objects is derived equivalent to the category of repre-
sentations of a strongly locally finite thread quiver.
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1. Introduction

Throughout, let k be an algebraically closed field. In [12], Reiten and Van den Bergh classify k-
linear abelian hereditary Ext-finite noetherian categories with Serre duality. One result in there is
that every such category is a direct sum of a category without nonzero projectives, and a category
generated by preprojective objects. The latter categories were of specific interest since there was
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no known way to relate them –through equivalences or derived equivalences– to known abelian
categories. Reiten and Van den Bergh gave a construction by formally inverting the (right) Serre
functor, and in [15] Ringel gave a construction using ray quivers. (In [5] it was shown that these
categories were derived equivalent to representations of strongly locally finite quivers, i.e. quivers
whose indecomposable projective and injective representations have finite length.)

Reiten and Van den Bergh asked whether every hereditary categories with Serre duality is
derived equivalent to a noetherian one, and thus fit –up to derived equivalence– into their classifi-
cation. In [14] however, Ringel gave a class of counterexamples. Reiten then asks in [13] whether
it is feasible to have a classification of hereditary categories with Serre duality which are generated
by preprojectives, but not necessarily noetherian.

This paper is the third paper of the authors to answer this question (the other two being [5, 6]);
we provide an answer to this question up to derived equivalence in terms of representations of
thread quivers (see below):

Theorem 1.1. Let A be a k-linear abelian hereditary Ext-finite category with Serre duality which
is generated by preprojective objects. Then DbA ∼= Db repk Q where Q is a strongly locally finite
thread quiver.

The undefined concepts in this theorem will be introduced below. Roughly speaking a thread
quiver is a (possibly infinite) quiver where some of the arrows have been replaced by locally discrete
(=without accumulation points) linearly ordered set. Strong local finiteness is an additional
finteness property ensuring that the category of finitely presented representations has Serre duality.

The proof of this theorem consists out of two steps. In the first step (up to and including §5) we
prove a version of Theorem 1.1 under an additional assumption, namely condition (*) explained
below. The rest of this paper will be devoted to removing this condition.

The first part of this paper (§3,§4, and §5) follows the proof of [5, Theorem 4.4] closely. Although
we reintroduce all relevant concepts, some familiarity with the proof of [5, Theorem 4.4] might be
helpful to the reader to better understand our arguments below.

We will start our overview of the paper with §4, where we discuss so-called split t-structures
(for definition, we refer to §4.1). Our main result is the following theorem (compare with [16,
Theorem 1]), which describes the heart of a bounded split t-structure.

Theorem 1.2. Let A be an abelian category and let H be a full subcategory of DbA such that
DbA is the additive closure of

⋃

t∈Z
H[t] and Hom(H[s],H[t]) = 0 for t < s, then H is an abelian

hereditary category derived equivalent with A.

Let A be an abelian hereditary Ext-finite category with Serre duality. We are thus interested in
finding a split t-structure such that the heart is of the form repQ for a strongly locally finite thread
quiver Q. In particular this means that the category of projectives Q of H is a semi-hereditary
dualizing k-variety, i.e. a Hom-finite Karoubian categoryQ such that modQ is abelian, hereditary,
and has Serre duality.

To help find such t-structures, we introduce hereditary sections: a full additive subcategory of
DbA is a hereditary section if there is a split t-structure on DbA and the category of projectives
of its hereditary heart coincides with Q (see Theorem 4.15).

Given a hereditary section Q in DbA, the full replete (=closed under isomorphisms) additive
subcategory generated by all indecomposables of the form τnX , X ∈ indQ and n ∈ Z will
be denoted by ZQ. This coincides with the full additive subcategory of DbA generated by all
indecomposables lying in the Auslander-Reiten components of DbA intersecting with Q.

In order to find hereditary sections, we first introduce the (right) light cone distance d•(−,−)
and the round trip distance d(−,−) working on indDbA in §3 as follows: for all X,Y ∈ indDbA

d•(X,Y ) = inf{n ∈ Z | there is a path from X to τ−nY }

and
d(X,Y ) = d•(X,Y ) + d•(Y,X).

We then have following characterization of a hereditary section (Proposition 4.14): a full additive
subcategory Q of DbA is a hereditary section if and only if
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(1) d•(X,Y ) ≥ 0, for all X,Y ∈ indQ, and
(2) if X ∈ indQ and d(X,Y ) < ∞ for a Y ∈ indDbA, then Y ∈ ZQ.

For a set T ⊆ indZQ, we define d•(T , X) = infT∈T d•(T,X), d•(X, T ) = infT∈T d•(T,X), and
d(T , X) = d•(T , X) + d•(X, T ).

Following the proof of [5, Theorem 4.4], we find a set T ∈ indQ such that d(T , X) < ∞ for all
X ∈ indQ and we choose a hereditary section QT such that

d•(T , X) =

⌊

d(T , X)

2

⌋

for all X ∈ indQT where ⌊·⌋ is the floor function.
If T is chosen to satisfy some extra properties (as given in Lemma 5.4, but in particular T

has to be countable), then Theorem 5.10 yields that the QT is indeed a semi-hereditary dualizing
k-variety. Thus if ZQ generates DbA as thick triangulated category, then DbA ∼= Db repQ for a
strongly locally finite thread quiver Q. That T can indeed be chosen to satisfy the extra needed
assumptions, is exactly the condition (*) mentioned earlier.

Condition (*) can easily be stated as (see §5.1):

(*) : there is a countable subset T ⊆ indZQ such that d(T , X) < ∞, for all X ∈ indZQ.

Hereditary sections not satisfying condition (*) seem to be rather artificial yet they do occur,
even when the corresponding heart is, for example, generated by preprojectives (see Example 5.3)!

We now come to the second part of the article (§6 and 7) where we will remove the condition
(*) from the assumptions.

The first step to understanding condition (*) better is to make a distinction between thread
objects and nonthread objects in Q, whose definitions we now give. As an easy consequence of
Serre duality on DbA, it will turn out that Q has left and right almost split maps, thus for every
A ∈ indQ, there are nonsplit maps f : A → M and g : N → A in Q such that every nonsplit map
A → X or Y → A factors though f or g, respectively. We will say A is a thread object if both M

and N are indecomposable. An indecomposable object which is not a thread object will be called
a nonthread object.

One major step in understanding condition (*) will be showing that there are only countably
many nonthread objects (Proposition 6.19); this will be the main result in §6.2.

Thus without enlarging the set T ⊆ Q above to much, we may assume it contains every
nonthread object in indQ. If ZQ does not satisfy condition (*), then there are objects X which
lie “too far from nonthread objects”, thus d(A,X) = ∞ for every nonthread object A. Such
objects X will be divided into two classes: ray objects and coray objects. If there is a nonthread
object A such that d•(A,X) < ∞, then the thread object X will be called a ray object; if there
is a nonthread object A such that d•(X,A) < ∞, then X will is called a coray object. If Q has
nonthread objects (and we may always reduce to this case), connectedness implies one of these
conditions is satisfied.

On the ray objects, we define an equivalence relation (see §6.3) given by X ∼ Y if and only if
d•(X,Y ) < ∞ or d•(Y,X) < ∞. A full additive category generated by an equivalence class of ray
objects will be called a ray and it is shown in 6.29 that there may only be a countable number or
rays.

In order to enlarge Q, we will add an object M for every ray R, called the mark of R. This
should be seen as a nonthread object “lying on the far side of R”.

As shown in Example 7.3 we cannot expect to find a hereditary section Q′ such that Q and all
marks of all rays lie in ZQ′. However, if DbA is generated by ZQ, then this will always be the
case.

Thus in §7 we will construct a hereditary section Q′ such that ZQ′ satisfies condition (*) and
ZQ ⊆ ZQ′. Theorem 1.1 will follow from this.

Acknowledgments The authors like to thank Idun Reiten, Sverre Smalø, Jan Šťov́ıček, and
Michel Van den Bergh for many useful discussions and helpful ideas. The second author also
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2. Conventions and Preliminaries

2.1. Conventions. Throughout, let k be an algebraically closed field. All categories will be
assumed to be k-linear.

We will fix a universe U and assume that (unless explicitly noted) all our categories are U-
categories, thus HomC(X,Y ) ∈ U for any category C and all objects X,Y ∈ ObC. A category C is
called U-small (or just small) if Ob C ∈ U .

Let C be a Krull-Schmidt category. By ind C we will denote a set of chosen representatives of
isomorphism classes of indecomposable objects of C. If C′ is a Krull-Schmidt subcategory of C, we
will assume ind C′ ⊆ ind C.

If C is a triangulated category with Serre duality (see below) and Q is a full Krull-Schmidt sub-
category, then we will denote by ZQ the unique full additive replete (= closed under isomorphisms)
subcategory of C with indZQ = {τnX | X ∈ indQ, n ∈ Z}. If Q1 and Q2 are Krull-Schmidt sub-
categories of C such that ZQ1

∼= ZQ2 as subcategories of C, then we will say Q1 and Q2 are
Z-equivalent.

An (ordered) path between indecomposables X and Y in a Krull-Schmidt category C is a
sequence X = X0, X1, . . . , Xn = Y of indecomposables such that Hom(Xi, Xi+1) 6= 0 for all 0 ≤
i ≤ n−1. A nontrivial path is a path where there are i, j ∈ {0, 1, . . . , n} such that rad(Xi, Xj) 6= 0.
If there is no nontrivial path from X to X , then we will say X is directing.

We will say a Krull-Schmidt category C is connected if for all indecomposables X,Y , there is a
sequence X = X0, X1, . . . , Xn = Y of indecomposables such that there is either a path from Xi

to Xi+1 or from Xi+1 to Xi, for all 0 ≤ i ≤ n− 1.
If C is a Krull-Schmidt category and A,B ∈ ind C then we will denote by [A,B] the full

replete additive category containing every indecomposable C′ ∈ indC with Hom(A,C′) 6= 0 and
Hom(C′, B) 6= 0. We define ]A,B] similarly, but with the extra condition that C′ 6∼= A. The
subcategories [A,B[ and ]A,B[ are defined in an obvious way.

2.2. Abelian hereditary categories. An abelian categoryA is said to be Ext-finite if dimExti(X,Y ) <

∞ for all i ∈ N and X,Y ∈ ObA. If Exti(X,Y ) = 0 for all i ≥ 2, then A is called hereditary. If

Exti(X,Y ) = 0 for all i ≥ 1, we will say A is semi-simple.
For an abelian category A, we will denote by DbA its bounded derived category. There is a

fully faithful functor i : A → DbA mapping every X ∈ A to the complex which is X in degree 0
and 0 in all other degrees. We will often suppress this embedding and write X ∈ ObDbA instead
of iX ∈ ObDbA.

When A is hereditary, the bounded derived category DbA has the following well-known de-
scription ([9, 10, 17]): every object X ∈ DbA is isomorphic to the direct sums of its homologies.

2.3. Serre duality and almost split maps. Let C be a k-linear Hom-finite triangulated cate-
gory. A Serre functor [7] is a k-linear additive equivalence S : C → C such that for any two objects
A,B ∈ ObC, there is an isomorphism

Hom(A,B) ∼= Hom(B, SA)∗

of k-vector spaces, natural in A and B. Here, (−)∗ denotes the vector space dual.
A Serre functor will always be an exact equivalence. If A is an Ext-finite abelian category, then

we will say that A has Serre duality if and only if DbA has a Serre functor.
It has been shown in [12] that an Ext-finite hereditary category has Serre duality if and only if

A has Auslander-Reiten sequences and there is a 1-1-correspondence between the indecomposable
projective objects and the indecomposable injective objects via their simple top and simple socle,
respectively.

It has also been shown in [12] that S ∼= τ [1] where τ : DbA → DbA is the Auslander-Reiten
translate. In particular, an Ext-finite triangulated category has Serre duality if and only if it has
Auslander-Reiten triangles.
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A map f : A → B is said to be left (or right) almost split if every non-split map A → X (or
X → B) factors through f .

2.4. Thread quivers and dualizing k-varieties. We recall some definitions from [1, 2]. A Hom-
finite additive category a where idempotents split will be called a finite k-variety. The functors
a(−, A) and a(A,−)∗ from a to mod k will be called standard projective representations and stan-
dard injective representations, respectively. We will write mod a for the category of contravariant
functors a → mod k which are finitely presentable by standard projectives.

Following [6, Proposition 4.1] we will say a finite k-variety a is dualizing [2] if and only if a
has pseudokernels and pseudocokernels (thus mod a and mod a◦ are abelian, where a

◦ is the dual
category of a), every standard projective object is cofinitely generated by standard injectives, and
every standard injective object is finitely generated by standard projectives.

A finite k-variety a is called semi-hereditary if and only if the category mod a is abelian and
hereditary. It has been shown ([18, Proposition 4.2], see also [3, Theorem 1.6]) that a is semi-
hereditary if and only if every full (preadditive) subcategory with finitely many elements is semi-
hereditary.

Let a be a finite k-variety. It has been shown in [6] that mod a is an abelian and hereditary
category with Serre duality if and only if a is a semi-hereditary dualizing (finite) k-varieties. Thread
quiver were then introduced in order to classify these semi-hereditary dualizing k-varieties.

A thread quiver consists of the following information:

• A quiver Q = (Q0, Q1) where Q0 is the set of vertices and Q1 is the set of arrows.
• A decomposition Q1 = Qs

∐

Qt. Arrows in Qs will be called standard arrows, while arrows
in Qt will be referred to as thread arrows. Thread arrows will be drawn by dotted arrows.

• With every thread arrow α, there is an associated linearly ordered set Tα, possibly empty.
When not empty, we will write this poset as a label for the thread arrow. A finite linearly
ordered poset will just be denoted by its number of elements.

When Q is a thread quiver, we will denote by Qr the underlying quiver, thus forgetting labels
and the difference between arrows and thread arrows. We will say Q is strongly locally finite when
Qr is strongly locally finite, i.e. all indecomposable projective and injective representations have
finite dimension as k-vector spaces.

Let Q be a strongly locally finite thread quiver. With every thread t ∈ Qt, we denote by
f t : k(· → ·) −→ kQr the functor associated with the obvious embedding (· → ·) −→ Qr. We
define the functor

f :
⊕

t∈Qt

k(· → ·) −→ kQr.

With every thread t, there is an associated linearly ordered set Tt. We will write Lt = N · (Tt
→
×

Z) · −N. Denote by

gt : k(· → ·) −→ kLt

a chosen fully faithful functor given by mapping the extremal points of · → · to the minimal and
maximal objects of L, respectively. We will write

g :
⊕

t∈Qt

k(· → ·) −→
⊕

t∈Qt

kLt.

The category kQ is defined to be a 2-push-out of the following diagram.

⊕

t∈Qt
k(· → ·)

f //

g

��

kQr

i

���
�

�

⊕

t∈Qt
kLt

j
//____ kQ

We have the following result which classifies the semi-hereditary dualizing k-varieties in function
of strongly locally finite thread quivers.
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Figure 1. Sketches of ZA∞-, ZA∞
∞-, and ZD∞-components

Theorem 2.1. [6] Every semi-hereditary dualizing k-variety is equivalent to a category of the
form kQ where Q is a strongly locally finite thread quiver.

We will also use the following result ([6, Corollary 6.4]).

Proposition 2.2. A semi-hereditary dualizing k-variety has only countably many sinks and sources.

2.5. Sketching categories. Throughout this paper, sketches of categories (or more precisely,
the Auslander-Reiten quiver) will be provided for the benefit of the reader. All examples will be
directed categories, and we will use the conventions used in [18] (see also [14, 15]).

We will consider only three shapes of Auslander-Reiten components: those of the form ZA∞,
ZA∞

∞, and ZD∞, which will be represented by squares, triangles, and triangles with a doubled
side, respectively (see Figure 1). These components will be ordered such that the maps go from
left to right.

Whenever a triangulated category comes equiped with a t-structure, this will be suitably indi-
cated on the corresponding sketch.

3. Round Trip Distance and Light Cone Distance

In [5], the round trip distance and light cone distance were introduced for stable translation
quivers of the form ZQ. These distances proved valuable to discuss sections of ZQ. Our goal of
describing the category of projectives Q is similar and we wish to employ similar techniques to
this case. We will have to generalize the techniques of [5] somewhat since the category ZQ does
not have to be generalized standard in our present setting. The definitions coincide in case this
connecting component is generalized standard.

In this section, let C = DbA where A is an abelian Ext-finite category with Serre duality.
Although A is not required to be hereditary, it follows from Corollary 3.9 that our definitions are
only nontrivial if C has directing objects, which implies that A is derived equivalent to a hereditary
category (see Theorem 4.4).

3.1. Light cone distance. For all X,Y ∈ ind C, we define the (right) light cone distance as

d•(X,Y ) = inf{n ∈ Z | there is a path from X to τ−nY }.

In particular, d•(X,Y ) ∈ Z ∪ {±∞}.

Remark 3.1. Even when X and Y lie in the same Auslander-Reiten component, the right light cone
distance does not need to coincide with the one given in [5], as the following example illustrates.
The difference is that the definition above takes all maps into account when determining paths,
while the definition in [5] only considers irreducible morphisms.

Example 3.2. Let a be the semi-hereditary dualizing k-variety whose thread quiver is

•
//
//•

The Auslander-Reiten quiver of Db mod a containing the standard projectives of mod a via the
standard embedding is of the form ZA∞

∞. On the left hand side of Figure 2 we have labeled the
vertices with the right light cone distance d•(X,−) as a stable translation quiver (as in [5]), while
on the right hand side we have used the definition of right light cone distance given in this article.
For the benefit of the reader, the arrows between indecomposable projective objects have been
drawn in black.
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Figure 2. The Auslander-Reiten quiver of the category ZQ in Example 3.2 where
every vertex has been labeled with d•(X,−). For this, the Auslander-Reiten
quiver on the left has been interpreted as a stable translation quiver, while on the
right we have used the category ZQ to determine the right light cone disatnce.

The following lemma is stated for easy reference.

Lemma 3.3. For all X,Y ∈ ind C, we have d•(X, τnY ) = d•(τ−nX,Y ) = d•(X,Y ) + n.

Note that the function d• is not symmetric. It does however satisfy the triangle inequality.

Proposition 3.4. For all X,Y, Z ∈ ind C, we have

d•(X,Z) ≤ d•(X,Y ) + d•(Y, Z),

whenever this sum is defined.

Proof. The proof follows directly from the definition. �

For a subsets T1, T2 ⊆ ind C, we define the right light cone distance in an obvious way:

d•(T1, T2) = inf
T1 ∈ T1
T2 ∈ T2

d•(T1, T2).

The following result follows from the triangle inequality.

Corollary 3.5. Let X ∈ ind C and T1, T2 ⊆ ind C, we have

d•(T1, T2) ≤ d•(T1, X) + d•(X, T2),

whenever this sum is defined.

We now continue to define a right and left light cone distance sphere by

S•(X,n) = {Y ∈ indDbA | d•(X,Y ) = n}

and

S•(X,n) = {Y ∈ indDbA | d•(Y,X) = n},

respectively, for any n ∈ Z and X ∈ Ob C. Finally, we will denote

S•
Q(X,n) = S•(X,n) ∩ indQ and SQ

• (X,n) = S•(X,n) ∩ indQ.
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3.2. Connection with directing objects. Although the left and right light cone distances
between any two indecomposables are defined, we can only expect nontrivial results in the case
where both are directing.

We start by recalling following result.

Proposition 3.6. [16, Lemma 3] Let X
u //Y

v //Z
w //X [1] be a triangle where X,Y are

indecomposable and u is nonzero and noninvertible. Let Z1 be a direct summand of Z. The maps
v1 : Y → Z1 and w1 : Z1 → X [1] induced by v and w, respectively, are nonzero and noninvertible.

Proposition 3.7. Let X,Y, Z ∈ ind C such that d•(X,Z) = 0. For all non-zero f ∈ Hom(X,Y )
and g ∈ Hom(Y, Z) we have that gf is non-zero. In particular, d•(X,Z) = 0 implies Hom(X,Z) 6=
0.

Proof. Without loss of generality, we may assume g is not an isomorphism, and hence C = cone(g :
Y → Z) is nonzero. It follows from Proposition 3.6 that Hom(Z,Ci) 6= 0 for every direct summand
Ci of C. Using Serre duality we find Hom(Ci[−1], τZ) 6= 0, and therefore d•(Ci[−1], Z) ≤ −1.

The triangle inequality then gives d•(X,Ci[−1]) ≥ d•(X,Z) − d•(Ci[−1], Z) ≥ 1 and hence
Hom(X,C[−1]) = 0. We deduce that f : X → Y does not factor through C[−1] and hence gf is
non-zero. �

Proposition 3.8. An object X ∈ ind C is directing if and only if d•(X,X) = 0, or equivalently,
X is non-directing if and only if d•(X,X) = −∞.

Proof. It is clear that directing implies d•(X,X) = 0. To prove the other implication, assume
there is a nontrivial path

X = X0
f0
→ X1

f1
→ · · ·

fn−1

→ Xn
fn
→ X.

Since d•(X,X) = 0, the triangle inequality yields d•(Xi, Xj) = 0 for all i, j ∈ {0, . . . , n}. Propo-
sition 3.7 now gives that f = fn . . . f1f0 is non-zero.

Since X is indecomposable, EndX is a finite dimensional local algebra and thus every element
is either nilpotent or invertible. Proposition 3.7 yields f is not nilpotent, hence it is invertible, a
contradiction. �

Corollary 3.9. Let X,Y ∈ ind C such that d•(X,Y ) ∈ Z, then both X and Y are directing.

Proof. Using triangle inequality, we have d•(X,Y ) ≤ d•(X,X) + d•(X,Y ), and hence 0 ≤
d•(X,X). We always have d•(X,X) ≤ 0, so we get d•(X,X) = 0. Proposition 3.8 shows X

is directing. Showing Y is directing is similar. �

Corollary 3.10. Let X ∈ ind C. If X is directing, then so is every indecomposable Y in the
Auslander-Reiten component of X.

Proof. Since Y lies in the same Auslander-Reiten component as X , we know d•(X,Y ) < ∞.
Then by Proposition 3.8 and triangle inequality, 0 = d•(X,X) ≤ d•(X,Y ) + d•(Y,X), and hence
d•(Y,X) > −∞. Invoking Corollary 3.9 completes the proof. �

3.3. Round trip distance. For X,Y ∈ ind C, we define the round trip distance d(X,Y ) as the
symmetrization of the right light cone distance, thus

d(X,Y ) = d•(X,Y ) + d•(Y,X),

whenever this is well-defined. It is easy to see that d(X,Y ) depends only on the τ -orbit of X and
Y , thus d(X,Y ) = d(τnX, τmY ) for all m,n ∈ Z (compare with Lemma 3.3).

When we restrict ourselves to indecomposables of ZQ, where Q is the category of projectives
of a hereditary category A with Serre duality, then we know that both d•(X,Y ) and d•(Y,X) will
be in Z ∪ {∞}, hence d(X,Y ) will be well-defined.

Following proposition shows d defines a pseudometric.

Proposition 3.11. Let ZQ as above. For all X,Y, Z ∈ indZQ we have

(1) d(X,Y ) ≥ 0
(2) d(X,X) = 0
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(3) d(X,Y ) = d(Y,X)
(4) d(X,Z) ≤ d(X,Y ) + d(Y, Z)

Proof. The claims (2), (3), and (4) follow from Proposition 3.8, the definition, and Proposition
3.4, respectively. Since then 0 = d(X,X) ≤ d(X,Y ) + d(Y,X) = 2d(X,Y ), the first claim holds
as well. �

A round trip distance sphere is defined in an obvious way.

4. Hereditary sections

Let A be an abelian hereditary Ext-finite category with Serre duality. In what follows, we
shall discuss the category of projectives of hereditary categories H derived equivalent to A. These
projectives will form hereditary sections in DbA and, likewise, a hereditary section in DbA will
give a hereditary category H derived equivalent to A.

We start with a some results concerning split t-structures.

4.1. Split t-structures. The concept of a t-structure was introduced by Bĕılinson, Bernstein and
Deligne in [4]. Specifically, we will be interested in so-called split t-structures of which the heart
will be a hereditary category ([16]).

Definition 4.1. A t-structure on a triangulated category C is a pair (D≥0, D≤0) of non-zero
full subcategories of C satisfying the following conditions, where we denote D≤n = D≤0[−n] and
D≥n = D≥0[−n]

(1) D≤0 ⊆ D≤1 and D≥1 ⊆ D≥0

(2) Hom(D≤0, D≥1) = 0
(3) ∀Y ∈ C, there exists a triangle X → Y → Z → X [1] with X ∈ D≤0 and Z ∈ D≥1.

Let D[n,m] = D≥n ∩D≤m . We will say the t-structure (D≥0, D≤0) is bounded if and only if every
object of C is contained in some D[n,m]. We call (D≥0, D≤0) split if every triangle occurring in
(3) is split.

It is shown in [4] that the heart H = D≤0∩D≥0 is an abelian category. Unfortunately, if A is an
abelian category, then not every t-structure on DbA defines a heart H which is derived equivalent
to A. Following proposition shows that in our setting we may expect derived equivalence between
A and H.

Proposition 4.2. Let A be an abelian category and let (D≥0, D≤0) be a bounded t-structure
on DbA. If all the triangles X → Y → Z → X [1] with X ∈ D≤0 and Z ∈ D≥1 split, then
D≤0 ∩D≥0 = H is hereditary and DbA ∼= DbH as triangulated categories.

Proof. It is well known that the category IndA of left exact contravariant functors from A to
Mod k is a k-linear Grothendieck category and that the Yoneda embedding of A into IndA is a
full and exact embedding. By [11, Proposition 2.14], this embedding extends to a full and exact
embedding DbA → Db IndA.

Since all triangles X → Y → Z → X [1] with X ∈ D≤0 and Z ∈ D≥1 split, we may use [12,
Lemma I.3.5] to see that H is hereditary. It is now an easy consequence of [4, Proposition 3.1.16]
that DbA ∼= DbH as triangulated categories. �

Remark 4.3. Since the above category IndA is not a U-category, we tacitly assume an enlargement
of the universe.

We will say a subcategory D of DbA is closed under successors if it satisfies the following
property: if X ∈ D and Y ∈ indDbA such that Hom(X,Y ) 6= 0 or Y ∼= X [1], then Y ∈ D. As the
following theorem shows, this is a useful property to find split t-structures.

Theorem 4.4. Let A be a connected abelian category and let D be a nontrivial full subcategory of
DbA closed under successors, then (D≥0, D≤0) is a bounded and split t-structure on DbA where
D≤0 = D and D≥1 = D⊥.
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Proof. It is straightforward to check (D≥0, D≤0) defines a split t-structure. It follows from [16,
Lemma 7] that it is also bounded. �

Combining the previous theorem with [16, Theorem 1], we get the following attractive descrip-
tion of a hereditary heart in a derived category.

Corollary 4.5. Let A be an abelian category and let H be a full subcategory of DbA such that
DbA is the additive closure of

⋃

t∈Z
H[t] and Hom(H[s],H[t]) = 0 for t < s, then H is an abelian

hereditary category derived equivalent with A.

Remark 4.6. In [16, Theorem 1] one starts with a full subcategory H of a triangulated category
T (not necessarily a derived category) and obtains that T is equivalent as additive category to
DbH, for a hereditary category H. In Theorem 4.4 and Corollary 4.5 we restrict ourselves to the
case where T is a derived category (with the induced triangulated structure) and find T ∼= DbH
as triangulated categories.

4.2. Definition and characterization of hereditary sections. Before defining a hereditary
section, we need a preliminary concept. Throughout, let A be an abelian Ext-finite category with
Serre duality and write C = DbA.

Definition 4.7. Let Q be a full subcategory of C. We will say Q is convex if every path in C
starting and ending in Q lies entirely in Q. A subcategory Q of C is called τ-convex if ZQ is
convex.

Example 4.8. Any object X ∈ ind C spans a convex subcategory Q of C if and only if X is
directing in C.

Remark 4.9. Since there is always a trivial path between isomorphic objects, a convex subcategory
will always be replete.

In what follows Q will consists only of directing objects. In this case, we may give an alternative
formulation of τ -convex: Q will be τ -convex if and only if for every X ∈ ind C, the condition
d(Q, X) 6= ∞ implies that Q meets the τ -orbit of X .

Definition 4.10. A hereditary section is a nontrivial (= having at least one nonzero object), full,
convex, and τ -convex additive subcategory Q of C such that Q meets every τ -orbit at most once.

Remark 4.11. The notion of a hereditary section is self-dual. If Q is a hereditary section in C,
then Q◦ is a hereditary section in C◦.

Remark 4.12. If A is semi-simple, then S ∼= idDbA such that τ ∼= [−1]. Since a hereditary section
Q of DbA may meet every τ -orbit at most once, we have that X ∈ ObQ implies that X [n] 6∈ ObQ
for all n 6= 0.

Example 4.13. If A is a hereditary abelian Ext-finite category with Serre duality with QA as
category of projectives, then QA is a hereditary section in DbA. In Theorem 4.15 the converse of
this statement will be shown.

Proposition 4.14. The subcategory Q is a hereditary section if and only if it is a full and τ-convex
additive subcategory Q of C such that d•(X,Y ) ≥ 0 for all X,Y ∈ indQ.

Proof. We may assumeDbA is connected. Furthermore, the statement is trivial ifA is semi-simple,
thus assume the global dimension of A is at least one.

Assume Q is a hereditary section in DbA. If d•(X,Y ) < 0, then there is a path from X to τY .
Since A is not semi-simple, there is also a path from τY to Y and thus, using that Q is convex,
we see that τY ∈ Q, a contradiction. This proves one direction.

Assume Q is a full and τ -convex additive subcategory of ind C such that d•(X,Y ) ≥ 0 for all
X,Y ∈ Q. Since d•(X, τ−nX) < 0 for all n > 0, Q contains at most one object from each τ -orbit.

Assume X,Y ∈ Q with paths from X to Z and from Z to Y , thus d•(X,Z) ≤ 0 and d•(Z, Y ) ≤
0. Since Q is τ -convex, Q contains an object of the τ -orbit of Z. Using the triangle inequality,
we find d•(X,Y ) ≤ d•(X,Z) + d•(Z, Y ) ≤ 0. Since we have assumed d•(X,Y ) ≥ 0, we see
d•(X,Z) = 0 and d•(Z, Y ) = 0. Thus Lemma 3.3 shows that the object Q contains from the
τ -orbit of Z must be Z itself. Hence Q is convex. �
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We now come to the main result about hereditary sections, characterizing them to be categories
of projectives of a hereditary heart.

Theorem 4.15. Let A be a connected Ext-finite abelian category with Serre duality and let Q be a
hereditary section of DbA, then there exists an Ext-finite abelian hereditary category H with Serre
duality, such that A is derived equivalent to H and the category of projectives of H is given by Q.

Proof. If A is semi-simple, the category H is just Q itself. Thus assume now that A is not
semi-simple.

Let D be the full replete additive subcategory of DbA spanned by all indecomposable objects
X with d•(X,Q) ≥ 0 and d•(Q, X) < ∞. We check that D satisfies the conditions of Theorem
4.4.

Let X ∈ indQ. Since d•(X,Q) = d•(Q, X) = 0 we know that X ∈ ObD, and Lemma 3.3
shows that τX 6∈ ObD such that D is indeed a nontrivial subcategory of DbA.

Let X ∈ indD and Y ∈ indDbA such that Hom(X,Y ) 6= 0, or thus in particular d•(X,Y ) ≤ 0.
The triangle inequality implies that Y ∈ indD. Furthermore, the conditions on A imply there is
an Auslander-Reiten triangle X → MX → τ−X → X [1], such that Proposition 3.6 yields that
d•(X,X [1]) ≤ 0. As above the triangle inequality will implies that X [1] ∈ D.

We conclude that the conditions of Theorem 4.4 are indeed satisfied such that there is a split
t-structure on DbA with D≤0 = D and D≥1 = D⊥. Denote the hereditary heart by H. We only
need to show that the catgeory of projectives QH of H coincides with Q in DbA.

Note that Q ⊆ D and Q[−1] ⊆ D⊥, so that Q ⊆ H.
Let X ∈ indQH, thus X ∈ indD but τX 6∈ indD. In this case, we have d•(X,Q) = 0 such

that τ -convexity implies that X ∈ indQ. If X ∈ indQ, then τX 6∈ indD but X ∈ H such that X
is a projective object in H and hence X ∈ indQH. We conclude that Q ∼= QH as subcategories of
DbA. �

Observation 4.16. Since every hereditary section is the image of the category of projectives
of a hereditary category in its derived category, we see that every hereditary section Q of C is
semi-hereditary, a partial tilting set, has left and right almost split maps, and consists of only
directing objects.

Remark 4.17. Theorem 4.15 shows that, given a hereditary section Q, there is a t-structure on
DbA such that Q is the category of projectives of the heart H. However, the t-structure is not
uniquely determined by Q as the next example illustrates.

Example 4.18. Let Q be the thread quiver x
1 //y , and let Q be the standard hereditary

section in Db repQ. Denote by Px ∈ Q the indecomposable object associated with x. The
category Db repQ is sketched in Figure 3.

We find a smaller hereditary section Q′ spanned by all objects A ∈ Q with d(Px, A) < ∞, thus
Q′ contains exactly those indecomposables ofQ which lie in the same Auslander-Reiten component
of Db repQ as Px.

There are at least two different hearts in Db repQ such that Q′ is the category of projectives,
as shown in Figure 3. The middle picture corresponds to the t-structure given in the proof of
Theorem 4.15.

The following statement is a special case of Proposition 4.14.

Corollary 4.19. Let A be an abelian hereditary Ext-finite k-linear category satisfying Serre duality
and let Q be the category of projectives of A. Let Q′ be a full preadditive subcategory of DbA such
that ZQ = ZQ′ and d•(X,Y ) ≥ 0 for all X,Y ∈ indQ′, then Q′ is a hereditary section in DbA.

4.3. (Co)reflective subcategories of hereditary sections. We prove an analogue of Propo-
sition [6, Proposition 5.2] for hereditary sections. We introduce the following notation. Let A be
an Ext-finite abelian category and Q a hereditary section in DbA. For any object Z ⊆ ObDbA,
we define Q⊥Z as the full subcategory of Q left-orthogonal on Z, thus

A ∈ ObQ⊥Z ⇔ ∀Z ∈ Z : RHom(A,Z) = 0.
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Figure 3. Illustration of Example 4.18

Proposition 4.20. Let Q be a hereditary section in DbA.

(1) Let Z ⊂ ObDbA with
∑

Z∈Z dimHom(A,Z) < ∞ for all A ∈ Q and Hom(Z1, Z2[n]) = 0

for all Z1, Z2 ∈ ObDbA and n ∈ Z \ {0}. Then the embedding Q⊥Z → Q has a left and a
right adjoint.

(2) Let X,Y ∈ Q. The embedding [X,Y ] → Q has a left and a right adjoint.

Proof. Theorem 4.15 yields there is a hereditary category H ⊂ DbA with Q as its category of
projectives. The proof is obtained by repeating the proof of [6, Proposition 5.2] in H. �

4.4. Criterium for being a dualizing k-variety. We will be interested in hereditary sections
which are dualizing k-varieties. The following criterion will be useful.

Proposition 4.21. A hereditary section Q is dualizing if and only if for every A ∈ indQ there
are C1, C2 ∈ ObQ such that for every B ∈ indQ

(1) Hom(B,C1) 6= 0 when d•(A,B) = 0, and
(2) Hom(C2, B) 6= 0 when d•(B,A) = 0.

Proof. Let H be a hereditary category of which Q is the category of projectives (Theorem 4.15).
The first statement is equivalent to saying there is an epimorphism Q(−, C1) → Q(A,−)∗ and the
second statement is equivalent to saying there is a monomorphism Q(−, A) → Q(C2,−)∗. Since
the cokernel of the first map and the kernel of the second map are finitely generated projectives,
we know that Q(−, A) is cofinitely presented and Q(A,−) is finitely presented.

By Observation 4.16 Q is semi-hereditary and thus Corollary 2.1 yields the required result. �

4.5. Light cone. Let A be an abelian category with Serre duality and X ∈ DbA be an inde-
composable directing object. We define the light cone centered on X to be full replete additive
category QX with indQX = S•(X, 0), thus QX is generated by those indecomposable objects Y
such that X admits a path to Y , but no path to τY . Using Proposition 4.14 one easily checks
that QX is a hereditary section.

IfA is connected then Theorem 4.15 shows thatQX defines a t-structure with heart a hereditary
category HX . We will refer to HX as the light cone tilt centered on X . A similar construction
has been used by Ringel in [16].

Dually we define the co-light cone and the co-light cone tilt centered on X .
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Lemma 4.22. In the light cone tilt centered on X, we have Hom(X,P ) 6= 0, for all projectives
P .

Proof. The result follows directly from Proposition 3.7. �

Lemma 4.23. In the light cone tilt centered on X, all projectives objects have an injective reso-
lution.

Proof. Let P be a projective and consider the canonical map P → SX⊗Hom(P, SX)∗ with kernel
K. Since P is projective, the kernel needs to be projective as well.

It is straightforward to check that Hom(X,K) = 0, hence K = 0 and the canonical map is

a monomorphism. An injective resolution is then given by 0 → P
f
→ SX ⊗ Hom(P, SX)∗ →

coker f → 0. �

Proposition 4.24. In a light cone tilt, all preprojectives have projective and injective resolutions.

Proof. It suffices to show this for all indecomposable preprojective objects. Every such object is
of the form τ−nY for an indecomposable projective object Y . We will prove the statement by
induction on n. If n = 0 then the statement is Lemma 4.23.

Assume that τ−nY has a projective and an injective resolution. If 0 → τ−nY → I → J → 0 is
an injective resolution of τ−nY then 0 → S

−1I → S
−1J → τ−n−1Y → 0 is a projective resolution

of τ−n−1Y . Since the projectives S−1I and S−1J have injective resolutions, the same holds for
τ−n−1Y . �

5. Hereditary sections Z-equivalent to dualizing k-varieties

5.1. The condition (*). Let A be a connected abelian hereditary Ext-finite category satisfying
Serre duality and denote the category of projectives by Q. We will assume ZQ is connected.

If Q is a dualizing k-variety, then Q(−, A) is cofinitely presented. This means that at least one
source S maps non-zero to A, hence d•(S,A) = 0. Dually we find that A maps non-zero to at
least one sink T , such that d•(A, T ) = 0.

Proposition 2.2 yields there are only a countable amount of sinks and sources, hence Q satisfies
the following property: there is a countable subset T ⊆ indQ such that d(T , X) = 0, for all
X ∈ indQ.

We will weaken this property to :

(*) : there is a countable subset T ⊆ indZQ such that d(T , X) < ∞, for all X ∈ indZQ.

It is thus clear (*) needs to be satisfied when Q is a dualizing k-variety. Moreover if there is
a hereditary section Q′ in DbA with ZQ = ZQ′ where Q′ is a dualizing k-variety, then ZQ also
needs to satisfy condition (*).

Before giving an example where condition (*) is not satisfied, we recall following definitions.

Definition 5.1. Let P be a poset. The subset T ⊆ P is said to be cofinal if for every X ∈ P
there is a Y ∈ T such that X ≤ Y . The least cardinality of the cofinal subsets of P is called the
cofinality of P and is denote by cofinP .

Dually, one defines a coinitial subset of P and the coinitiality of P is denoted by coinitP .

Next example shows (*) is not always satisfied.

Example 5.2. Let L be a linearly ordered and locally discrete set such that cofinL > ℵ0. For

example, if T is a linearly ordered set with cofinT > ℵ0 we may define the poset L = T
→
× Z.

Let P be the poset N · (T
→
× Z) · −N, thus kP is the semi-hereditary dualizing k-variety given

by the thread quiver ·
T // · . We may sketch the category as the upper part of Figure 4.

In mod kP , we consider a new hereditary category H by choosing a hereditary section Q in
mod kP generated by all standard projectives of the form P(−, A) where A ∈ N or A ∈ L. The
category H is marked with gray in Figure 4.

The new category H has category of projectives Q and ZQ does not satisfy (*).
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{

{L

L

Figure 4. Illustration of Example 5.2

{L
Figure 5. Sketch of a category generated by preprojective objects, but which
does not satisfy condition (*).

Example 5.3. Let H′ be the dual category of the category H defined in Example 5.2 (see Figure
5). This category is generated by preprojective objects. Denote by Q′ the category of projectives
of H′. It is clear that ZQ′ does not satisfy condition (*).

The following lemma says that, under the condition (*), we can choose the set T to satisfy
some additional properties.

Lemma 5.4. Let Q be a hereditary section such that ZQ satisfy condition (*). There is a countable
subset T = {Ti}i∈I ⊆ indZQ, with I ⊆ N, satisfying the following properties.

(1) d(T , X) < ∞ for all X ∈ indZQ,
(2) d(Tj , Tk) = ∞ for all j < k and where Tj = {Ti}i≤j,
(3) d•(Ti, Tj) ≥ max{i, j} for all i 6= j.

Proof. The first condition is exactly condition (*), so we may assume there is a countable subset
T = {Ti}i∈I ⊆ indZQ satisfying the first property.

For the second property, consider T ′ = {Tk ∈ T | ∀j < k : d(Tj , Tk) = ∞} instead of T . It is
clear that T ′ ⊆ indZQ satisfies the second condition. It follows from the triangle inequality that
d(T ′, X) < ∞ for all X ∈ ZQ.
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For the last property, assume T = {Ti}i∈I ⊆ indZQ is a countable set satisfying the first
two properties. To ease notations, assume I = {0, 1, . . . , n} or I = N. We will define sets Si

recursively. Firstly let S0 = {T0}. For every i > 0, choose an object Si on the τ -orbit of Ti such
that d•(Si−1, Si) ≥ i and d•(Si,Si−1) ≥ i (see Lemma 3.3). This is possible since, by the second
condition, one of these will be infinite.

The set S = ∪i∈ISi satisfies the required properties. �

5.2. Finding a dualizing k-variety Z-equivalent to Q. LetA be a connected Ext-finite abelian
category with Serre duality and let Q be a hereditary section. We have remarked above that Q
(or ZQ) needs to satisfy condition (*) for there to be a hereditary section Q′ which is a dualizing
k-variety and Z-equivalent to Q. The main result of this section will be to show the condition (*)
is also sufficient, namely if Q is a hereditary section in DbA such that there is a countable set
T ⊆ indZQ with d(T , X) < ∞ for all X ∈ indZQ, then Q is Z-equivalent to a semi-hereditary
dualizing k-variety QT .

We start by choosing such a set T and constructing an associated hereditary section QT . We
will then show that QT is a dualizing k-variety.

Construction 5.5. We start by choosing a set T with the properties of Lemma 5.4. Associated
to this set T , we will consider the full subcategory QT of DbA as follows: for every X ∈ indZQ,
fix a τ -shift of X such that

d•(T , X) =

⌊

d(T , X)

2

⌋

.

Example 5.6. Let a be the dualizing k-variety given by the thread quiver ·
2 // · thus a is

equivalent to k(N · Z · Z · −N). The Auslander-Reiten quiver of Db mod a is as sketched in the
upper part of Figure 6. We will consider the hereditary section Q spanned by all objects of
a ⊂ Db mod a lying in a ZA∞

∞-component. The corresponding hereditary category A is as given
by the middle part of Figure 6.

We choose a set T = {T0, T1} as in Figure 7, satisfying the conditions d(T0, T1) = ∞ and
d•(T0, T1) ≥ 1 from Lemma 5.4. In Figure 7, the light cones S•(T , 0) and S•(T , 0) have been
marked by black arrows, and the corresponding full subcategory QT of DbA has been indicated
by ’•’.

We first verify that QH defined above is indeed a hereditary section.

Proposition 5.7. The subcategory Q defined in Construction 5.5 is a hereditary section.

Proof. According to Corollary 4.19 we only need to check that d•(Y, Z) ≥ 0 for all Y, Z ∈ indQH.
Using the triangle inequality, we find

d•(Y, Z) ≥ d•(T , Z)− d•(T , Y )

=

⌊

d(T , Z)

2

⌋

−

⌊

d(T , Y )

2

⌋

≥ 0

if d(T , Y ) ≤ d(T , Z), and

d•(Y, Z) ≥ d•(Y, T )− d•(Z, T )

=

⌈

d(T , Y )

2

⌉

−

⌈

d(T , Z)

2

⌉

≥ 0.

if d(T , Z) ≤ d(T , Y ). �

Lemma 5.8. Let A,B ∈ indQT with Hom(A,B) 6= 0, then

(1) d(T , A)− 1 ≤ d(T , B) ≤ d(T , A) + 1,
(2) (a) d•(T , A)− 1 ≤ d•(T , B) ≤ d•(T , A)

(b) d•(A, T ) ≤ d•(B, T ) ≤ d•(A, T ) + 1
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Figure 6. Illustrations for mod a, A, and H of Example 5.6

Proof. Since Hom(A,B) 6= 0, one finds

0 = d•(A,B)

≥ d•(T , B)− d•(T , A)

=

⌊

d(T , B)

2

⌋

−

⌊

d(T , A)

2

⌋

.

Hence d•(T , B) ≤ d•(T , A) and d(T , B) ≤ d(T , A) + 1. Likewise, one finds

0 = d•(A,B)

≥ d•(A, T )− d•(B, T )

=

⌈

d(T , A)

2

⌉

−

⌈

d(T , B)

2

⌉

so that d•(A, T ) ≤ d•(B, T ) and d(T , A)− 1 ≤ d(T , B). The required inequalities follow readily.
�

Lemma 5.9. For any A ∈ indQT , there is a finite subset TA
• ⊆ T with the following property:

∀B ∈ indQT : d•(A,B) = 0 ⇒ d•(B, T ) = d•(B, TA
• ).

Proof. Fix a Ti ∈ T such that d•(T , A) = d•(Ti, A). Let Tj ∈ T such that d•(B, T ) = d•(B, Tj)
for some B ∈ S•

Q(A, 0). If i 6= j, then using the triangle inequality we find

d•(T , A) + d•(B, T ) = d•(Ti, A) + d•(B, Tj)

= d•(Ti, A) + d•(A,B) + d•(B, Tj)

≥ d•(Ti, Tj) ≥ max{i, j}.
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T0

T1

•

•

•

•

•

•

•

•

•

Figure 7. The light cones and chosen hereditary section of Example 5.6

By Lemma 5.8 we know that d•(B, T ) ≤ d•(A, T ) + 1 so that

d•(T , A) + d•(A, T ) + 1 ≥ max{i, j}.

This shows that j is bounded and hence that TA
• is finite. �

Theorem 5.10. Let A be a connected abelian hereditary category satisfying Serre duality with
category of projectives QA. Assume that ZQA satisfies (*). Then there is a hereditary section QT

in ZQA which is a dualizing k-variety, and ZQT = ZQ.

Proof. Let QT be a hereditary section as described in Construction 5.5. We need to check that
the two conditions of Proposition 4.21 are satisfied. We will only prove the first part, the second
part is shown dually.
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Let A ∈ indQT and divide the set of indecomposables B ∈ indQT with d•(A,B) = 0 into
subsets

ST,i = {B ∈ indQ | d•(A,B) = 0, d•(B, T ) = d•(B, T ) = i}

where i ∈ Z, T ∈ T . It follows from Lemmas 5.8 and 5.9 that only finitely many of these subsets
are nonempty.

For each of these nonempty subsets ST,i we will construct, in two steps, an object CT,i ∈ QT

such that Hom(B,CT,i) 6= 0 when B ∈ ST,i. The object

C =
⊕

ST,i 6=∅

CT,i

is then the required object from the first condition of Proposition 4.21.
Let QA be the light cone centered on A and let HA be an associated hereditary category in

the sense of Theorem 4.15, thus HA is the hereditary heart of a t-structure on DbA such that
the category of projectives of HA correspond to QA. In particular any B ∈ ST,i corresponds to
a projective object in HA and because Hom(B, τ−iT ) 6= 0 (due to Proposition 3.7) we know that
τ−iT ∈ ObHA[0]. Moreover, since d•(A, τ−iT ) 6= −∞, we know that τ−iT is even a preprojective
object in HA. Proposition 4.24 shows there is a projective cover X → τ−iT in HA. Note that
Hom(B,X) 6= 0 for all B ∈ ST,i.

Let Y be a maximal direct summand of X such that for every indecomposable direct summand
Y ′ of Y there is a B ∈ ST,i with Hom(B, Y ′) 6= 0, thus d•(B, Y ′) = 0. Using the triangle inequality
we find d•(Y ′, T ) = d•(Y ′, T ) = i, and d•(T , Y ′) ≥ d•(T , T )− d•(Y ′, T ) = −i.

In general the object Y does not have to lie on QT . In the second step of this construction, we
will use the object Y to construct the required object CT,i.

Let j ∈ Z be the smallest integer such that ⌊ i+j
2 ⌋ = j, thus an object Z ′ ∈ indZQT with

j ≤ d•(T , Z ′) ≤ d•(T , B) and d•(Z ′, T ) = i would lie in the subcategory QT , if B ∈ indST,i.
Note that j ≤ d•(T , B) for all B ∈ ST,i.

Let Tf ⊆ T be the subset consisting of all objects Tk ∈ T such that d•(Tk, T ) < i + j. Since
T satisfies the conditions of Lemma 5.4, this is necessarily a finite set. Note that the triangle
inequality implies that any T ′ ∈ T with d•(T ′, Y ′) < j lies in Tf . We now apply Lemma 5.11
below to the hereditary section QA with i1 = −i and i2 = j + 1. We obtain a full subcategory
Q′

A of QA and a right adjoint r : QA → Q′
A to the embedding. We will write Z for the maximal

direct summand of r(Y ) such that for every indecomposable direct summand Z ′ of Z there is a
B ∈ ST,i with Hom(B,Z ′) 6= 0. Note that Hom(B,Z) 6= 0 for all B ∈ ST,i.

We claim that every direct summand Z ′ of Z lies in QT . Note that Hom(Z ′, r(Y )) 6= 0 and thus
Hom(Z ′, Y ) 6= 0. This implies that d•(Z ′, Y ′) 6= 0, for a direct summand Y ′ of Y , and thus the
triangle inequality gives d•(Z ′, T ) ≤ d•(Y ′, T ) = i. There is also a B ∈ ST,i with d•(B,Z ′) = 0,
and we use the triangle inequality to shows that d•(Z ′, T ) ≥ i. We conclude that d•(Z ′, T ) = i.

Next, Lemma 5.11 yields that j ≤ d•(Tf , Z ′). Since Tf ⊆ T we know that d•(Tf , Z ′) ≤
d•(T , Z ′). To proof that j ≤ d•(T , Z ′), let T ′ ∈ T such that d•(T ′, Z ′) < j. Then d•(T ′, T ) ≤
d•(T ′, Z ′) + d•(Z ′, T ) < j + i and thus by definition we have T ′ ∈ Tf . This shows that indeed
j ≤ d•(T , Z ′).

Since there is a B ∈ ST,i with d•(B,Z ′) = 0 we know that d•(T , Z ′) ≤ d•(T , B). We conclude
that Z ′ ∈ QT . This shows that Z is the required object CT,i ∈ Q. �

We have used the following lemma.

Lemma 5.11. Let Q be a hereditary section in DbA, and let Tf ⊂ indZQ be a finite set. Let
i1, i2 ∈ Z with i1 ≤ i2. There is a full subcategory Q′ ⊆ Q satisfying the following properties:

(1) the embedding Q′ → Q has a left and a right adjoint,
(2) if A ∈ indQ with i2 < d•(T , A), then A ∈ indQ′,
(3) if A ∈ indQ with i1 ≤ d•(T , A) ≤ i2, then A 6∈ indQ′.

Proof. Let H be a hereditary heart corresponding to the hereditary section Q as in the dual of
Theorem 4.15, thus such that Q corresponds to the image of the category of injectives of H into
DbA.
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Write Tf = {T0, T1, . . . , Tk} and consider the set Z = {τ jTi | Ti ∈ Tf , i1 ≤ j ≤ i2}. By
possibly removing some elements from Z, we may assume every element Z ∈ Z lies in H ⊂ DbA.
Furthermore, every element of Z is directed so we can write Z = {Z0, Z1, . . . , Zl} such that
Ext(Zb, Za) = 0 whenever a ≤ b.

We define a full replete subcategory Q′ of Q as follows:

A ∈ ObQ′ ⇔ ∀Z ∈ Z : RHom(Z,A) = 0.

We prove that the category Q′ is the category from the statement of the lemma. Note that
Lemma 3.3 implies that RHom(Z,A) = 0 for all Z ∈ Z when i2 < d•(Tf , A), and that Proposition
3.7 implies that Hom(Z,A) 6= 0 for some Z ∈ Z when i1 ≤ d•(Tf , A) ≤ i2.

Set Z(0) = Z0. For 0 < a ≤ l we define Z(a) = Z(a−1) ⊕ Za if Ext(Za, Z
(a−1)) = 0, and by the

universal extension
0 → Z(a−1) → Z(a) → Za ⊗k Ext(Za, Z

(a−1)) → 0

if Ext(Za, Z
(a−1)) 6= 0. It is straightforward to verify that Ext(Z(l), Z(l)) = 0. Since A is an

injective object in H, we now have

A ∈ ObQ′ ⇔ Hom(Z(l), A) = 0.

The required result now follows from (the dual of) Proposition 4.20. �

6. Nonthread objects and threads in hereditary sections

6.1. d•-in-between and threads. As with dualizing k-varieties, the concepts of threads will be
paramount in our discussion of hereditary sections. However, a major difference between dualizing
k-varieties and hereditary sections is that in the latter one can encounter so-called broken threads
and a sort of half-open threads, called rays or corays. To describe these cases, we start with a
definition.

Let Q be a hereditary section in DbA where A is an abelian category with Serre duality and
let X,Y ∈ indQ with d•(X,Y ) < ∞. We will say Z ∈ indQ is d•-in-between X and Y if
d•(X,Y ) = d•(X,Z) + d•(Z, Y ). We denote the full replete additive subcategory of Q generated
by all indecomposables d•-in-between X and Y by [X,Y ]•Q, thus

ind[X,Y ]•Q = {Z ∈ indQ | d•(X,Z) + d•(Z, Y ) = d•(X,Y )}.

If there is no confusion, we will often write [X,Y ]• instead of [X,Y ]•Q.
We will define ]X,Y ]•Q to be the full replete additive subcategory of [X,Y ]•Q spanned by the

objects not supported on X . Likewise one defines [X,Y [•Q and ]X,Y ]•Q

Remark 6.1. If d•(X,Y ) = 0, then [X,Y ]•Q = [X,Y ].

Example 6.2. Let Q be the quiver given by
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Denote by Pi the projective object in repQ associated with the vertex i of Q. Let Q be the
standard hereditary section in Db repQ. We have

ind[Pa, Pe]
•
Q = {Pa, Pb, Pd, Pe}

ind[Pb, Pd]
•
Q = {Pa, Pb, Pc, Pd, Pe}

ind[Pa, Pd]
•
Q = {Pa, Pd}

ind[Pd, Pa]
•
Q = {Pa, Pd, Pc}

Note that ind[Pb, Pd]
• 6⊆ ind[Pa, Pe]

• (even though Pb, Pd ∈ ind[Pa, Pe]
•) and that [Pa, Pd]

• 6∼=
[Pd, Pa]

•.
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Figure 8. Illustration of Example 6.8

Remark 6.3. As the previous example indicates, the subcategories [X,Y ]• are the replacement of
d•-geodesics on a quiver.

Proposition 6.4. Let X,Y ∈ Q with n = d•(X,Y ) < ∞. The sets ind[X,Y ]•Q and ind[X, τ−nY ]
intersect the same τ-orbits.

Proof. This follows immediately from Lemma 3.3. �

Example 6.5. Let Q be the quiver from Example 6.2. The light cones centered on Pa, Pb and Pd

are given by
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Corollary 6.6. Let X,Y, Z ∈ indQ with d•(X,Y ) < ∞ and Z ∈ [X,Y ]•. In this case [X,Z]• ⊆
[X,Y ]• and [Z, Y ]• ⊆ [X,Y ]•.

Definition 6.7. Let X ∈ indQ. It follows from Observation 4.16 that Q has right and left almost
split maps. Let X → M and N → X be a left and right almost split map, respectively. If M and
N are indecomposable, we will say X is a thread object. We will denote M and N by X+ and X−,
respectively. An object which is not a thread object is called a nonthread object.

If [X,Y ]• consists of only thread objects in Q, then we call [X,Y ]• a thread . If furthermore
d•(X,Y ) > 0 or d•(X,Y ) = 0, then we call [X,Y ]• a broken thread or an unbroken thread ,
respectively.

Example 6.8. Let a = kQ where Q is the thread quiver · // · Thus a = k(N · −N) and the
indecomposable projectives of mod a are given by a(−, n) and a(−,−n) for n ∈ N.

The Auslander-Reiten quiver of Db mod a may be sketched as in the upper part of Figure 8
where the triangles represent ZA∞-components and where the category mod a has been marked
with gray.

We will denote by Q the hereditary section in Db mod a corresponding to the projectives of
mod a. The interval [a(−, 1), a(−,−1)] = [a(−, 1), a(−,−1)]• ⊂ indQ is an (unbroken) thread.



HEREDITARY CATEGORIES WITH SERRE DUALITY WHICH ARE GENERATED BY PREPROJECTIVES 21

Consider the hereditary section Q′ ⊆ Db mod a spanned by all objects of the form a(−, n) and
τa(−,−n) where n ∈ N as in the lower part of Figure 8. Now [a(−, 1), τa(−,−1)]• ⊂ indQ′ is a
broken thread.

A reason to introduce thread objects is given by the following observation: let X,Y ∈ indQ
and consider the left adjoint l to the embedding i : [X,Y ] → Q (see Proposition 4.20). Let A be
any indecomposable object in Q. If A does not lie in [X,Y ], then the only thread object which
can occur as a direct summand of l(A) is X . Indeed, let Z be a thread object which is a direct
summand of l(A). If Z 6∼= X then Z− ∈ Ob[X,Y ]. Since Q is semi-hereditary, we know that
dimHom(l(A), Z) > dimHom(l(A), Z−). However, since no map A → Z is a split map, we have
dimHom(A, iZ) = dimHom(A, iZ−). A contradiction.

This proves the following lemma.

Lemma 6.9. Let X,Y ∈ indQ and let l be a left adjoint to the embedding i : [X,Y ] → Q. A
thread object in ]X,Y ] cannot be a direct summand of l(A), for any A ∈ indQ \ ind[X,Y ].

Example 6.10. Let Q be the quiver

f
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=

a // b // c // d // e

Denote by Pi ∈ ind repQ an indecomposable projective associated with the vertex i of Q, let Q
be the standard hereditary section in Db repQ, and let l : Q → [Pb, Pd] be the left adjoint to the
embedding [Pb, Pd] → Q. We have that l(Pf ) ∼= Pb ⊕ Pc.

Let A,B ∈ indQ. While the subcategory [A,B] will only be nontrivial if Hom(A,B) 6= 0,
a similar statement is not true for [A,B]•. In fact, as Remark 6.1 indicates we will mostly be
interested in cases where d•(A,B) 6= 0. This means however, as the following example shows, that
we can encounter situations where we consider [A,B]• where d•(B,A) = 0.

Example 6.11. Let Q be the quiver A5 with linear orientation, thus Q is given by

a //b //c //d //e

Denote by Pi ∈ ind repQ an indecomposable projective associated with the vertex i of Q, and let
Q be the standard hereditary section in Db repQ. We have that [Pd, Pb]

• = [Pb, Pd].

In some sense the interval [Pd, Pb]
• from the previous example does not have the “natural”

orientation. The following lemma and Proposition 6.14 below indicate that we can look at the
neighbors of Pb and Pd to somewhat compensate for this lack of orientation.

Lemma 6.12. Let Q be a hereditary section, and let A,B ∈ indQ with d•(A,B) < ∞.

(1) If A 6= B, then A and B have a least one neighbor lying in [A,B]•. An X ∈ ind[A,B]•

with A 6= X 6= B has at least two (non-isomorphic) direct neighbors in [A,B]•.
(2) Assume [A,B]• is a thread (with A 6= B) in Q. If B− 6∈ [A,B]•, then A−, B+ ∈ ind[A,B]•

and d•(B,A) < ∞.

Proof. The first result follows immediately from Proposition 6.4. For the second result, let B =
B0 → B1 → B2 → · · · be a (possibly finite) sequence of direct successors. Since B− does not lie
in [A,B]•, and B is a thread object, we know B1 lies in [A,B]•. If B1 6= A, then it is a thread
object and we know B2 also lies in [A,B]•.

Iteration shows either the entire sequence lies in [A,B]•, or some Bi = A. Since d•(Bj+1, Bj) =
1, we find that d•(Bj , B) = j. This shows that Bi = A where i = d•(A,B) and that both B+ = B1

and A− = Bi−1 lie in [A,B]•. �

Example 6.13. Let Q be the quiver given by

a //b //c //d //e
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Denote by Pi ∈ ind repQ an indecomposable projective associated with the vertex i of Q, and let
Q be the standard hereditary section in Db repQ. Since we have ind[Pb, Pd]

• = {Pb, Pc, Pd} =
ind[Pd, Pb]

•, both [Pb, Pd]
• and [Pd, Pb]

• are threads. We easily see that the results of the previous
lemma are valid in this case.

If we replace the quiver Q by

a //b //c doo eoo

then, with the same notations as above, ind[Pd, Pb]
• = {Pb, Pc, Pd} would not be a thread. Note

that P−
b 6∈ [Pd, Pb]

•, but also P−
d 6∈ [Pd, Pb]

•.

The following proposition resembles Proposition [6, Proposition 6.2].

Proposition 6.14. Let [X,Y ]• be a thread. If [X,Y ]• and [X,Y ′]• share an indecomposable apart
from X, then [X,Y ]• ⊆ [X,Y ′]• or [X,Y ′]• ⊆ [X,Y ]•.

Proof. We will work in the light cone QX centered on X . Write n = d•(X,Y ) and n′ = d•(X,Y ′).

The assumption in the statement shows there is a Z ∈ ind]X, τ−nY ] ∩ ind]X, τ−n′

Y ′]. Note that
]X, τ−nY ] is a thread.

Proposition 4.20 yields that the embedding [X, τ−nY ] → QX has a right adjoint r : Q →

[X, τ−nY ]. Since Z ∈ ind]X, τ−nY ] and Hom(iZ, τ−n′

Y ′) 6= 0, we find that r(τ−n′

Y ′) has a
nonzero direct summand lying in ]X, τ−nY ].

Lemma 6.9 yields that either τ−n′

Y ′ ∈ Ob]X, τ−nY [ and thus [X, τ−n′

Y ′] ⊆ [X, τ−nY ] by

Corollary 6.6, or that Hom(τ−nY, r(τ−n′

Y ′)) 6= 0 and thus τ−nY ∈ Ob]X, τ−n′

Y ′] so that

[X, τ−nY ] ⊆ [X, τ−n′

Y ′].
Applying Proposition 6.4 shows the required property. �

Example 6.15. Let Q be the quiver A5 with linear orientation, thus Q is given by

a //b //c //d //e

Denote by Pi ∈ ind repQ an indecomposable projective associated with the vertex i of Q, and let
Q be the standard hereditary section in Db repQ. The threads [Pc, Pb]

• and [Pc, Pd]
• do have Pc

in common, but no other indecomposable. Neither thread is a subcategory of the other such that
the result from Proposition 6.14 does not hold.

6.2. Nonthread objects. In this subsection, we will give a short discussion of the nonthread
objects of Q. Our main result will be that, if ZQ is connected, Q has only countably many
nonthread objects.

Lemma 6.16. Let Q be a hereditary section in DbA and let X ∈ indQ.

(1) For every Y ∈ indQ with d•(X,Y ) = 0, there are only finitely many nonthread objects in
[X,Y ].

(2) For every Y ∈ indQ with d•(X,Y ) ∈ Z, there are only finitely many nonthread objects in
[X,Y ]•.

(3) Assume X is a nonthread object. For every Y ∈ indQ with d•(X,Y ) ∈ Z, there is a
nonthread object Z ∈ [X,Y ]• such that ]Z, Y [• has no nonthread objects.

Proof. (1) Let A be a nonthread object in [X,Y ]. If A is not isomorphic to X or Y , then
Lemma 6.12 implies there are (nonzero) almost split maps NA → A and A → MA in
Q. Since A is a nonthread object, either MA or NA is not indecomposable. Seeking a
contradiction, assume there are infinitely many nonthread objects A such that NA is not
indecomposable.

Let A be a heart of a t-structure associated with Q as in Theorem 4.15. We denote
Z = im(Y → SX ⊗Hom(Y, SX)∗) and K = ker(Y → SX ⊗ Hom(Y, SX)∗).

Since Q is semi-hereditary (Observation 4.16) and dimHom(X,Y ) < ∞, there can only
be finitely many objects A ∈ ind[X,Y ] such that dimHom(X,NA) > Hom(X,A). There
are hence infinitely many objects A ∈ ind[X,Y ] such that dimHom(X,NA) = Hom(X,A).
Any direct summand B of NA not lying in [X,Y ] is necessarily a direct summand of K,



HEREDITARY CATEGORIES WITH SERRE DUALITY WHICH ARE GENERATED BY PREPROJECTIVES 23

but K is a finitely generated projective object. We conclude that there are infinitely many
nonthread objects A ∈ [X,Y ] such that NA is not indecomposable.

Likewise, one shows there are only finitely many nonthread objects A ∈ [X,Y ] such
that MA is not indecomposable.

(2) Seeking a contradiction, assume [X,Y ]•Q has infinitely many nonthread objects in Q.
Denote n = d•(X,Y ) and let QX be the light cone centered on X . It follows from
the previous part that [X, τ−nY ] has only finitely many nonthread objects in QX , thus
infinitely many nonthread objects in [X,Y ]•Q are either a sink or a source with exactly
two direct neighbors. Denote by {Ai}i∈I ⊆ ind[X,Y ]•Q such an infinite set of sinks and
sources, and denote by A′

i the object in ind[X, τ−nY ] lying in the same τ -orbit as Ai (see
Proposition 6.4). We define a partial ordering on I by i ≤ j ⇔ Hom(A′

i, A
′
j) 6= 0.

Since QX is semi-hereditary (Observation 4.16) and dimHom(X, τ−nY ) < ∞, we know
that there is an infinite linearly ordered subposet J of I. Furthermore either infinitely
many elements of {Aj}j∈J are sinks or infinitely many are sources.

If Aj is a sink, then d•(Aj , Ak) > 0 when j, k ∈ J with j < k. Also note that,
since A′

j ∈ [X,A′
k], Proposition 6.4 shows that Aj ∈ [X,Ak]

• and thus d•(X,Ak) =

d•(X,Aj) + d•(Aj , Ak). We infer that d•(X,Aj) > d•(X,Ak) for any k > j and hence
{Aj}j∈J cannot have infinitely many sinks.

Likewise one shows that {Aj}j∈J cannot have infinitely many sources. A contradiction.
(3) Take a nonthread object Z ∈ ind[X,Y [• such that [Z, Y [• has a minimal number of

nonthread objects. Using Corollary 6.6 it is easy to see that Z is the only nonthread
object in [Z, Y [•.

�

Lemma 6.17. Let Q be a hereditary section in DbA and let X ∈ indQ.

(1) There are only finitely many nonthread objects Y such that ]X,Y [ is nonempty and has
no nonthread objects.

(2) There are only countably many nonthread objects Y ∈ indQ with d•(X,Y ) = 0.
(3) There are only countably many nonthread objects Y ∈ indQ with d•(X,Y ) < ∞.

Proof. (1) Let X → M be a left almost split map in Q. Let M ′ be an indecomposable sum-
mand of M and let Y1, Y2 be two nonisomorphic nonthread objects with Hom(M ′, Y1) 6= 0
and Hom(M ′, Y2) 6= 0 such that ]X,Y1[ and ]X,Y2[ are nonempty and have no nonthread
objects. Note that this implies that Y1 6∼= M ′ 6∼= Y2. In particular we know that M ′ is a
thread object in Q.

The embedding i : [M ′, Y1] → Q has a right adjoint iR. Since Hom(Y1, Y2) = 0 we know
that the object i◦ iR(Y2) lies in [M ′, Y1[. However, every indecomposable direct summand
of i ◦ iR(Y2) is a thread object in Q, contradicting Lemma 6.9.

(2) Denote by NX
i the set of all nonthread objects Y indQ such that d•(X,Y ) = 0 and ]X,Y [

has exactly i nonthread objects. Lemma 6.16 yields that it is sufficient to prove that the
set ∪i∈NN

X
i is countable.

It was shown above that NX
0 is finite for all X ∈ indQ; we will proceed by induction.

Assume therefore that NZ
j is finite for every j < i and every Z ∈ indQ. We will prove

that NX
i is finite. Let Y ∈ NX

i and let Z be a nonthread object in ]X,Y [, thus Z ∈ NX
j

for some j < i. Corollary 6.6 yields that Y ∈ NZ
k for some k < i so that

NX
i ⊆

⋃

j,k<i

⋃

Z∈NX
j

NZ
k .

Since the right hand side is a finite union of finite sets, the left hand side is finite as well.
This shows that the set ∪i∈NN

X
i is countable.

(3) We will prove there are only countably many nonthread objects Y with d•(X,Y ) = n.
Seeking a contradiction, assume there are uncountably many such nonthread objects.
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Let QX be the light cone centered on X . Every nonthread object Y ∈ Q with
d•(X,Y ) = n corresponds to an object Y ′ = τ−nY ∈ QX . It follows from the pre-
vious part that QX has only countably many nonthread objects, such that uncountably
many nonthread objects Y ∈ Q with d•(X,Y ) = n correspond to thread objects Y ′ ∈ QX .
In particular, we know that Y has either exactly two (nonisomorphic) direct predecessors
or direct successors in Q.

We define a new hereditary sectionQn generated by the indecomposables τ−mAA where
A ∈ indQ and mA = min(d•(X,A), n). Note that Q0 = Q. To prove that Qn is indeed
a hereditary section, it suffices to show that d•(τ−mAA, τ−mBB) ≥ 0 for all A,B ∈ indQ
(see Corollary 4.19). We have

d•(τ−mAA, τ−mBB) = d•(A,B) +mA −mB

≥ d•(A,B) + d•(X,A)−mB

≥ d•(X,B)−mB ≥ 0

Let Y ∈ indQ be a nonthread object with d•(X,Y ) = n. If Y has two direct prede-
cessors M1,M2 in Q, then it follows from the triangle inequality that d•(X,M1) ≥ n and
d•(X,M2) ≥ n such that Y ′ is a nonthread object in Qn. Since X and Y ′ both lie in Qn

and d•(X,Y ′) = 0, we know there are only countably many of such objects.
Consider the case where Y has two direct successors N1, N2 in Q. For any direct

successor Ni we have d•(Y,Ni) = 0 and d•(Ni, Y ) = 1 such that the triangle inequality
shows that either d•(X,Ni) = n or d•(X,Ni) = n− 1.

If both d•(X,N1) = n and d•(X,N2) = n, then Y ′ is a nonthread object in Qn with
d•(X,Y ′) and we know there are only countably many of such objects. We may thus
assume that d•(X,N1) = n− 1. In this case τ−n+1N1 is a nonthread object in Qn−1 since
τ−n+1N1 has at least two nonisomorphic direct predecessors: τ−n+1Y and one lying in
[X, τ−n+1N1]. Thus τ

−n+1Y is a direct neighbor of a nonthread object τ−n+1N1 in Qn−1,
and there can again only be countably many of these objects.

�

Proposition 6.18. Let A be an abelian category with Serre duality and let Q be a hereditary
section in DbA. If ZQ is connected then for every X,Y ∈ indQ with d(X,Y ) there is a sequence
X = X0, X1, X2, . . . , Xn = Y in indQ such that

(1) either d•(Xi, Xi+1) < ∞ or d•(Xi+1, Xi) < ∞ for all 0 ≤ i ≤ n− 1, and
(2) d•(Xi, Xi+2) = d•(Xi+2, Xi) = ∞, for all 0 ≤ i ≤ n− 2, and
(3) the objects Xi are nonthread objects in Q, for 1 ≤ i ≤ n− 1.

Proof. The existence of the sequence satisfying the first two properties follows from the connect-
edness of ZQ and the triangle inequality, so we need only to prove the last property. It suffices
to prove the following statement: let X,Y, Z ∈ indQ with d•(X,Z) < ∞ and d•(Y, Z) < ∞. If
d•(X,Y ) = ∞ and d•(Y,X) = ∞, then there is a nonthread object Z ′ ∈ indQ with d•(X,Z ′) < ∞
and d•(Y, Z ′) < ∞.

We may assume all A ∈ indQ with d•(X,A) < ∞ and d•(Y,A) < ∞ are thread objects. Let
A be such a thread object such that d•(X,A) + d•(Y,A) ≥ 0 is minimal. Using the triangle
inequality, we see that d•(X,A) = d•(X,B) and d•(Y,A) = d•(Y,B) for B = A+. This implies
that A ∈ ind[X,B]• and A ∈ ind[Y,B]•. Proposition 6.14 shows A lies in the co-light cone QB

centered on B.
The embedding [τd

•(X,B)X,B] → QB has a left adjoint l : QB → [τd
•(X,B)X,B]. Consider

the object l(τd
•(Y,B)Y ). By our initial assumption, every direct summand of l(τd

•(Y,B)Y ), except
possibly B, will be a thread object in QB.

However, there is at least one indecomposable direct summand which maps nonzero to A.
Lemma 6.9 shows that either τd

•(Y,B)Y ∈ [τd
•(X,B)X,B] or Hom(τd

•(Y,B)Y, τd
•(X,B)X) 6= 0. This

contradicts d•(X,Y ) = ∞ or d•(Y,X) = ∞, respectively. �

Proposition 6.19. Let A be an abelian category with Serre duality and let Q be a hereditary
section in DbA. If ZQ is connected, then Q has only countably many nonthread objects.
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Proof. If Q has no nonthread objects, then the statement is trivial. Thus assumeQ has at least one
nonthread object X . It follows from Proposition 6.18 that for every nonthread object Y ∈ indQ
there is a sequence X = X0, X1, X2, . . . , Xn = Y in indQ with either d•(Xi, Xi+1) < ∞ or
d•(Xi+1, Xi) < ∞ such that Xi is a nonthread object when 0 < i ≤ n. Lemma 6.17 then yields
that there are only countably many nonthread objects in Q. �

6.3. Rays and corays. Let A be an abelian Ext-finite category with Serre duality and Q a
hereditary section inDbA. Let T indQ be the subset of all nonthread objects. An objectX ∈ indQ
is called a ray object if d•(X, T ) = ∞ and is called a coray object if d•(T , X) = ∞.

Note that ray objects and coray objects are always thread objects.
We will define an equivalence relation on ray objects as follows: two ray objects X,Y ∈ indQ

are equivalent if and only if d•(X,Y ) < ∞ or d•(Y,X) < ∞. Reflexivity and symmetry are clear,
while transitivity follows from the following lemma.

Lemma 6.20. Let Q be a hereditary section and let X,Y, Z ∈ indQ be ray objects.

• If d•(X,Y ) < ∞ and d•(Y, Z) < ∞, then d•(X,Z) < ∞,
• if d•(Y,X) < ∞ and d•(Z, Y ) < ∞, then d•(Z,X) < ∞,
• if d•(X,Y ) < ∞ and d•(Z, Y ) < ∞, then d•(X,Z) < ∞ or d•(Z,X) < ∞,
• if d•(Y,X) < ∞ and d•(Y, Z) < ∞, then d•(X,Z) < ∞ or d•(Z,X) < ∞.

Proof. The first two cases follow from the triangle inequality. For the third case, we may assume
that both d•(X,Y ) = ∞ and d•(Y, Z) = ∞ as otherwise the required result would follow directly
from the triangle inequality. It follows from Lemma 6.12 that Y − ∈ [X,Y ]•Q and Y − ∈ [Z, Y ]•Q.
Proposition 6.14 yields the required result.

The last case is similar. �

The full replete additive subcategory of Q generated by an equivalence class of ray objects is
called a ray. A ray is necessarily infinite.

Dually, we define a coray as the full replete additive category generated by a maximal set of
coray objects such that for any two objects X,Y either d•(X,Y ) < ∞ or d•(Y,X) < ∞.

Example 6.21. The hereditary section in Example 5.2 has a ray, and the hereditary section in
Example 5.3 has a coray.

Example 6.22. Let a be the dualizing k-variety given by

A0
//A1

// //B−1
//B0

//B1
// //C−1

//C0

or, equivalently, given by the thread quiver ·
1 // · . The category Db mod a may be sketched as

the first part of Figure 9 where the triangles represent ZA∞-components, and the squares represent
ZA∞

∞-components. As usual, the abelian category mod a ⊂ Db mod a has been marked with gray.
Choosing a hereditary section Q spanned by objects of the form a(−, Ai) and τa(−, Bi) gives

rise to an abelian category as sketched in the second part of Figure 9. Here, Q has a ray, but no
coray.

Likewise, choosing a hereditary section Q spanned by objects of the form τ−a(−, Bi) and
τa(−, Ci) gives rise to an abelian category as sketched in the last part of Figure 9. We see that Q
has a coray, but no ray.

Note that if Q does not have any nonthread objects (thus T = ∅), then d•(T , X) = d•(X, T ) =
∞ for every X ∈ indQ so that every object is both ray object and a coray object. If ZQ is
furthermore connected, then Proposition 6.18 shows there is only one ray and one coray, and both
coincide with Q. Conversely it follows from Proposition 6.18 that if ZQ is connected and has an
object which is both a ray and a coray object then Q has no nonthread objects.

In light of Proposition 6.19, the following observation is obvious.

Observation 6.23. If Q is a connected hereditary section without rays or corays, then Q satisfies
the condition (*).
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Figure 9. Illustration of Example 6.22

Let R be a ray. We will say A ∈ indQ is an anchor of R if A is a nonthread object with
d•(A,X) < ∞ for all X ∈ indR, and it is the only nonthread object in [A,X ]•Q. Dually, a coancher
A′ of a coray R′ is defined to be a nonthread object with d•(X ′, A′) < ∞ for all X ′ ∈ indR′, and
it is the only nonthread object in [X ′, A′]•Q.

Proposition 6.24. Let Q be a hereditary section with at least one nonthread object. Let X,Y ∈
indQ be elements of the same ray R and let A ∈ indQ be a nonthread object with d•(A,X) < ∞.
Then we also have that d•(A, Y ) < ∞, and either [A,X ]• ⊆ [A, Y ]• or [A, Y ]• ⊆ [A,X ]• holds.

Proof. If d•(X,Y ) < ∞, then the triangle inequality implies that d•(A, Y ) < ∞. So assume that
d•(X,Y ) = ∞, thus also that d•(Y,X) < ∞. Lemma 6.12 then shows that X− lies in both [A,X ]•

and [Y,X ]• such that Proposition 6.14 then yields that Y ∈ [A,X ]•. We find that d•(A, Y ) < ∞.
To prove the second claim, note that by Lemma 6.12 we may assume, possibly by interchanging

X and Y , that [X,Y ]• is a thread containing Y −. Lemma 6.12 shows that Y − ∈ [A, Y ]•. Propo-
sition 6.14 then yields that X ∈ [A, Y ]•. From Corollary 6.6 we obtain that [A,X ]• ⊆ [A, Y ]•. �

Proposition 6.25. Let Q be a hereditary section with nonthread objects.

(1) Every ray has an anchor.
(2) A ray is uniquely determined by its anchor and a (unique) direct successor of the anchor

which lies d•-in-between the anchor and the ray.
(3) Only finitely many rays can share an anchor.

Proof. Let R be a ray. For any ray object X in R, Lemma 6.16 gives a nonthread object AX

which is the only nonthread object in [AX , X ]•Q. To show that R has an anchor, we wish to show
all these objects AX coincide.

Let X,Y ∈ R. By Lemma 6.12, we may assume that Y − ∈ [X,Y ]•. Since by d•(AY , Y ) = ∞,
Lemma 6.12 also yields that Y − ∈ [AY , X ]• such that Proposition 6.14 shows that X ∈ [AY , Y ]•.
Again using Lemma 6.12, we see that also X− ∈ [AY , Y ]•.

Consider a co-light cone QX centered on X . Denote by A′
X and A′

Y the objects in QY lying
in the τ -orbits of AX and AY , respectively. The embedding [A′

X , X ] → QX has a left adjoint
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Figure 10. A hereditary section which has no nonthread objects from Example
6.27 (the arrows between the indecomposable objects in the chosen hereditary
section have been drawn in black). Every vertex is labeled with d•(X,−).

l : [QX , A′
X ] → QX . Since Hom(A′

X , X−) 6= 0, we know that X is not the only direct summand
of l(A′

X). Lemma 6.9 then shows that either A′
X ∈ [A′

Y , X ], or Hom(A′
X , A′

Y ) 6= 0 and thus
A′

Y ∈ [A′
X , X ].

Proposition 6.4 shows that AX ∈ [AY , X ]• ⊆ [AY , X ]• or AY ∈ [AX , X ]•. We conclude that
AX

∼= AY . This shows that R has an anchor.
For the second point, let R be a ray with anchor A. Let X ∈ indR. It follows from Lemma

6.12 that at least one direct successor of A lies in [A,X ]•. Let A1 and A2 be two direct successors
of A, both lying in [A,X ]• where X ∈ indR. We see that both [A1, X ]• and [A2, X ]• are threads.
Again using Lemma 6.12, we see that X− lies in both of them. Applying Proposition 6.14 yields
that A1 = A2.

Let R1 and R2 be two rays with the same anchor A, and let X1 ∈ indR1 and X2 ∈ indR2.
It follows from 6.12 that there are neighbors A1, A2 ∈ indQ of A such that A1 ∈ [A,X1]

•
Q and

A2 ∈ [A,X2]
•
Q. If A1 = A2, then it follows from Proposition 6.14 that X1 and X2 lie on the same

thread. We conclude that the number of rays which have A as an anchor is limited by the number
of direct neighbors of A. �

Because of Proposition 6.25, it will sometimes be more convenient to assume a hereditary section
has a nonthread object and hence every ray and coray has an anchor and a coanchor, respectively.
The following examples show that this is not necessarily the case.

Example 6.26. The category of projectives Q of A from Example 5.6 forms a hereditary sec-
tion in DbA which has no nonthread objects. The hereditary section QT constructed in the
aforementioned exercise has nonthread objects and satisfies ZQ = ZQT .

Example 6.27. Let Q be the thread quiver

x
//
//y

as in Example 3.2. Let X be the indecomposable projective object corresponding to the vertex
x. In Db mod kQ there is a unique hereditary section which has no nonthread objects as given in
Figure 10.

The next proposition shows we can always replace a hereditary section without nonthread
objects by a hereditary section which has nonthread objects.
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Proposition 6.28. Let Q be a hereditary section in DbA. There is a hereditary section Q′ with
ZQ = ZQ′ having at least one nonthread object.

Proof. Assume Q has only thread objects. We define a new hereditary section Q1 generated by
the indecomposables τ−mY Y where Y ∈ Q and mY = min(d•(X,Y ), 1). To prove this is indeed
a hereditary section, it suffices to show that d•(τ−mY Y, τ−mZZ) ≥ 0 for all Y, Z ∈ indQ (see
Corollary 4.19). We have

d•(τ−mY Y, τ−mZZ) = d•(Y, Z) +mY −mZ

≥ d•(Y, Z) + d•(X,Y )−mZ

≥ d•(X,Z)−mZ ≥ 0

Let X ∈ indQ and X− ∈ indQ be the unique direct predecessor of X in Q. Since X is directed,
we have d•(X,X−) 6= 0. This shows that mX− = 1. We deduce that X is a nonthread object in
Q′. �

Proposition 6.29. Let ZQ be connected. Then Q has only countably many rays and corays.

Proof. If Q does not have any nonthread objects, then this statement is trivial. Otherwise, this
follows from Proposition 6.25 together with Proposition 6.19. �

7. Categories generated by ZQ

Let A be a k-linear abelian Ext-finite category with Serre duality and let Q be a nonzero
hereditary section in C = DbA. We will consider the case where DbA is generated by ZQ, thus the
smallest thick triangulated subcategory of DbA containing ZQ is DbA itself. This is, for example,
the case if Q is the standard hereditary section when A is generated by projectives or –more
generally– by preprojective objects.

IfQ satisfies the condition (*), then Theorem 5.10 shows thatDbA ∼= repQ for a strongly locally
finite thread quiver Q. We are thus interested in the case where Q does not satisfy condition (*).
In this case, there will always be rays and/or corays (see Observation 6.23). We will replace Q
by another another (larger) hereditary section Q′ such that ZQ ⊂ ZQ′ and such that Q′ does not
have rays nor corays. We may then apply Theorem 5.10 to obtain our main result: A is derived
equivalent to repQ′ for a locally finite thread quiver Q′.

We start by defining marks and comarks which will be used to enlarge Q.

7.1. Marks and comarks. While an anchor should indicate “the beginning” of a ray (how it is
attached to the nonthread objects), a mark should indicate “the direction” or “the ending” of a
ray.

Let Q be a hereditary section with at least one nonthread object and let R be a ray with anchor
A. Let B be the direct successor of A lying in [A,X ]•Q (see Proposition 6.25). The mark M of R is
defined to be the cone of the irreducible morphism τB → A. Since Hom(A, τB[1]) = 0, one easily
verifies using Proposition 3.6 (cf. [8, Corollary 1.4] or [18, Lemma 7.6]) that M is indecomposable.

Dually, one defines comarks for corays.

Example 7.1. Examples 5.2 and 6.22 are obtained starting from a thread quiver Q = x
P //z .

In these examples, the simple projective Px ∈ repk Q also lies in the given hereditary section and
is the anchor of the unique thread. The mark is then given by Pz [0] ∈ Db repk Q.

Lemma 7.2. Let Q be a hereditary section with at least one nonthread object. Let R be a ray
with anchor A and mark M . For every X ∈ indR, we have d•(A,X) ≥ 0 and d•(X,M) < ∞.

Proof. The first statement is included in the definition of an anchor. For the second statement, let
B be the unique direct successor of A in [A,X ]• and write n = d•(A,X). From d•(A, τ−nX) = 0
and d•(B, τ−nX) = d•(A, τ−nX)− d•(A,B) = 0 follows (using Proposition 3.7)

dimHom(τ−nX,A[1]) = dimHom(A, τ−n+1X) = 0,

dimHom(τ−nX, τB[1]) = dimHom(B, τ−nX) 6= 0.
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Figure 11. Illustration of Example 7.3.

Applying Hom(τ−nX,−) to the triangleA → M → τB[1] → A[1] then yields that Hom(τ−nX,M) 6=
0 such that d•(τ−nX,M) ≤ 0 and hence also d•(X,M) ≤ n < ∞. �

In general, we may have d•(X,M) = −∞ as the following example shows.

Example 7.3. Let Q be the thread quiver

·

x
1 // y

77nnnnnn

''PPPPPP

·

Denote by Px and Py the indecomposable projective objects in repQ corresponding to the vertices
x and y respectively.

The category Db repQ is sketched in the upper part of Figure 11. Let Q be the standard
hereditary section, and let Q′ be the the hereditary section spanned by all indecomposables of Q
which do not lie in the Auslander-Reiten component of Py . Let H be a heart corresponding to
Q′ as in the lower part of Figure 11. The hereditary section Q′ has a unique ray R with anchor
the projective indecomposable Px and as mark the injective indecomposable SPx = Ix. Note that
d•(Ix, Px) = −∞.

7.2. Enlarging hereditary sections. This subsection is devoted to proving Proposition 7.4
below where we will extend ZQ to a subcategory of the form ZQ′ which does satisfy condition
(*). It will be the main step in the proof of Theorem 7.10. The proof will follow from Lemma 7.5
and Proposition 7.9.

Proposition 7.4. Let Q be a hereditary section with nonthread objects. Assume ZQ generates
DbA. Then there is a hereditary section Q′ such that ZQ′ generates DbA and satisfies condition
(*).

We start by giving a lemma we will use to find the required “larger” hereditary section.

Lemma 7.5. Let T ⊂ indDbA be a countable set such that d•(Ti, Tj) 6= −∞, for all Ti, Tj ∈ T .
Then there is a hereditary section Q′ in DbA such that T ⊂ ZQ′ and ZQ′ satisfies condition (*).

Proof. Possibly by taking different objects from the same τ -orbits, we may assume that d•(Ti, Tj) ≥
0 for all Ti, Tj ∈ T . Consider the full replete additive category C spanned by all indecomposables
X of DbA such that d(T , X) ∈ Z. We choose a new set T ′ from objects in C as in Lemma 5.4
(the proof carries over from ZQ′ to C) and define a full additive subcategory Q′ of C such that

d•(T , X) =
⌊

d(T ,X)
2

⌋

. As in Proposition 5.7 one shows Q′ is a hereditary section in DbA. �

We are thus reduced to finding a suitable set T satisfying the properties of the previous lemma.
We show that, if Q has nonthread objects, one can choose T to be the set of all nonthread objects,
all marks, and all comarks.
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x // · ·oo ·oo // · ·oo 1 // · ·oo // · · ·

Figure 12. An example of the thread quiver R1

For this, we first consider the following situation. Let R1 be the thread quiver whose underlying
quiver is an A∞-quiver with zig-zag orientation (the zigs and zags can have arbitrary finite length)
and where the thread arrows all point away from the base point x (see for example Figure 7.2).
Since R1 is a strongly locally finite thread quiver, we know that repR1 is a hereditary category
with Serre duality (Theorem 2.1). Denote by R1 the standard hereditary section in Db repR1 and
consider the light cone R2 centered on Px.

It is readily verified (for example by using the classification provided in [18]) that R2 is a

semi-hereditary dualizing k-variety given by a thread quiver R2 = x
P //z for a suitably chosen

linearly ordered poset P . Furthermore, the categories repR1 and repR2 are derived equivalent.
Let Q be a strongly locally finite thread quiver and let x be any vertex. We construct the

thread quivers Q1 and Q2 by identifying the vertex x ∈ Q with the base point of R1 and R2,
respectively.

Proposition 7.6. In the above situation, Q1 and Q2 are strongly locally finite thread quivers and
Db repQ1

∼= Db repQ2 as triangulated categories.

Proof. It is an easy observation that both thread quivers are indeed strongly locally finite such
that repQ1 and repQ2 have Serre duality. Denote by Q1 and Q2 the categories of projectives of
repQ1 and repQ2, respectively.

There is an obvious fully faithful functor from Q1 into ZQ2 lifting to a fully faithful exact
functor G : Db repQ1 → Db repQ2 which commutes with the Serre functor. To show G is an
equivalence it suffices to show the essential image of G contains Q2.

Let R2 = x
P // z be the thread quiver attached to the thread quiver Q to form Q2. We show

that the projective object Pz associated to z lies in the essential image of G. Let Py ∈ ind repQ1

be the unique direct successor of x lying in [Px, Pz] and let Iy be the corresponding injective; there
is a short exact sequence 0 → Px → Pz → Iy → 0. Both Px and Iy lie in ZQ1, and hence it
follows that Pz lies in the essential image of G. Since G commutes with the Serre functor, the
entire Auslander-Reiten component containing Pz also lies in the essential image of G. �

This situation will be encountered in the following case. Let Q be a hereditary section with
nonthread objects and satisfying condition (*). Let R be a ray in Q with anchor A. By Theorem
5.10 there is a hereditary section Q′ which is a semi-hereditary dualizing k-variety such that
ZQ = ZQ′. We will assume, for ease of notation, that A ∈ indQ′.

Denote by R′ the full additive subcategory of Q′ lying in ZR. For every Y ′ ∈ indR′, there
is a full additive subcategory [A, Y ′]•Q′ in Q′; denote by R′

1 the smallest full replete additive
subcategory containing all these [A, Y ′]•Q′ . Thus R′

1 contains A, every object Y ′, and every object
d•-in-between A and Y ′.

Let Q′ be a thread quiver of Q′ containing a vertex a corresponding to A and denote by R′
1 the

subquiver corresponding with R′
1.

Lemma 7.7. The thread quiver R′
1 described above is an A∞-quiver with zig-zag orientation (the

zigs and zags can have arbitrary finite length) and where the thread arrows all point away from the
base point a′.

Proof. For all Y ∈ R, we know that every X ∈ ind]A, Y ]•Q is a thread object. Hence for every
X ′ ∈ ind]A, Y ′]•Q′ (with Y ′ ∈ R′

1), we have only the following possibilities: either X ′ is a source
or a sink with exactly two direct successors or predecessors respectively, or X ′ is a thread object.

Let R′
1,r be the underlying quiver of R′

1, thus forgetting the distinction between thread arrows
and regular arrows. A straightforward argument shows that R′

1,r is either an A∞-quiver or an

Ãn-quiver (with arbitrary orientation).
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Since Proposition 6.25 yields there is a unique neighbor of A lying in [A, Y ]•Q, for all Y ∈ R,
we know R′

1,r is an A∞-quiver. Furthermore, since for every X ∈ indR, we have d•(A,X) < ∞,
all thread arrows in R1 point away from the base point a. �

We may now apply Proposition 7.6 to replace the subquiver R′
1 of Q′ by R′

2 = a
P //z and

obtain thus a quiver Q′
2. Let Q′

2 be the hereditary section in Db repQ′
2 given by the projective

representations in repQ′
2. Using the derived equivalence in Proposition 7.6, we will interpret Q′

2

as a hereditary section in DbA. Note that A,B ∈ indZQ′
2. It is now readily verified that Pz

corresponds to the mark M . Hence we have shown the following proposition.

Proposition 7.8. Let Q be a hereditary section with nonthread objects. Assume furthermore that
ZQ satisfies condition (*). Let R be a ray with mark X, then there is a hereditary section Q′ such
that X ∈ ZQ′ and ZQ ⊂ ZQ′.

We obtain following result.

Proposition 7.9. Let Q be a hereditary section with nonthread objects, such that ZQ generates
DbA. Let T be the set of all nonthread objects, all marks of rays, and all comarks of corays. Then
T is countable, and d•(X,Y ) 6= −∞, for all X,Y ∈ T . Furthermore, for every A ∈ ZQ, we have
d(T , A) ∈ Z.

Proof. Seeking a contradiction, let X,Y ∈ T such that d•(X,Y ) = −∞. Thus, for every n ∈ Z

there is a path X = Zn,0 → Zn,1 → · · · → Zn,kn
= τnY in DbA.

With an S ⊆ ZQ we associate the hereditary section QS generated by A ∈ QS with d(S, A) <
∞. If S is countable, then ZQS satisfies condition (*) by construction.

We will choose S such that ZQS generates all objects Zn,i as above. Furthermore, if X or Y
are a mark or comark of a ray or coray, we will assume S has at least one ray or coray object from
the corresponding ray or coray. It is clear that S can be chosen countably.

Proposition 7.8 yields that there is a hereditary section Q′
S such that X,Y ∈ ZQ′

S and ZQS ⊆
ZQ′

S , thus d•(X,Y ) 6= −∞. A contradiction, since we had assumed that all objects Zn,i were
generated by ZQ′

S .
We are left to proving that for every A ∈ ZQ, we have d(T , A) ∈ Z. Since T contains all

nonthread objects of Q, this should be clear when A is not a ray or coray object. In case A is a
ray or a coray object, then this follows easily from Proposition 7.2 or its dual, respectively. �

We can now use Proposition 7.4 to prove our main theorem.

Theorem 7.10. Let A be a k-linear abelian hereditary Ext-finite category with Serre duality and
assume DbA is generated by ZQ as triangulated category, then A is derived equivalent to repQ
for a strongly locally finite thread quiver Q.

Proof. This follows easily from Proposition 7.4 and Theorem 5.10. �

Corollary 7.11. Let A be a k-linear abelian hereditary Ext-finite category with Serre duality which
is generated by preprojective objects. Then A is derived equivalent to repQ where Q is a strongly
locally finite thread quiver.
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Henning Krause, eds.), London Mathematical Society Lecture Notes Series, vol. 332, Cambridge University
Press, Cambridge, 2007, pp. 105–146.

11. Wendy Lowen and Michel Van den Bergh, Deformation theory of abelian categories, Trans. Amer. Math. Soc.
358 (2006), no. 12, 5441–5483 (electronic).

12. I. Reiten and M. Van den Bergh, Noetherian hereditary abelian categories satisfying Serre duality, J. Amer.
Math. Soc. 15 (2002), no. 2, 295–366.

13. Idun Reiten, Hereditary categories with Serre duality, Representations of algebra. Vol. I, II, Bejing Norm. Univ.
Press, Bejing, 2002, pp. 109–121.

14. Claus Michael Ringel, The diamond category of a locally discrete ordered set, Representations of algebra. Vol.
I, II, Beijing Norm. Univ. Press, Beijing, 2002, pp. 387–395.

15. , A ray quiver construction of hereditary Abelian categories with Serre duality, Representations of
algebra. Vol. I, II, Beijing Norm. Univ. Press, Beijing, 2002, pp. 398–416.

16. , Hereditary triangulated categories, Compositio Math. (2005).
17. Michel Van den Bergh, Blowing up of non-commutative smooth surfaces, Mem. Amer. Math. Soc. 154 (2001),

no. 734, x+140.
18. Adam-Christiaan van Roosmalen, Classification of abelian hereditary directed categories satisfying Serre dual-

ity, Trans. Amer. Math. Soc. 360 (2008), no. 5, 2467–2503.

Carl Fredrik Berg, Institutt for matematiske fag, NTNU, 7491 Trondheim, Norway, (Currently
working for StatoilHydro R&D Centre, Arkitekt Ebbells veg 10, Rotvoll, 7053 Ranheim, Norway)

E-mail address: carlpaatur@hotmail.com

Adam-Christiaan van Roosmalen, Mathematisches Institut, Universität Bonn, Endenicher Allee 60,
53111 Bonn, Germany

E-mail address: vroosmal@math.uni-bonn.de


