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DONALDSON = SEIBERG-WITTEN

FROM MOCHIZUKI’S FORMULA AND INSTANTON COUNTING

LOTHAR GÖTTSCHE, HIRAKU NAKAJIMA, AND KŌTA YOSHIOKA

Abstract. We propose an explicit formula connecting Donaldson invariants and Seiberg-
Witten invariants of a 4-manifold of simple type via Nekrasov’s deformed partition func-
tion for the N = 2 SUSY gauge theory with a single fundamental matter. This formula
is derived from Mochizuki’s formula, which makes sense and was proved when the 4-
manifold is complex projective. Assuming our formula is true for a 4-manifold of simple
type, we prove Witten’s conjecture and sum rules for Seiberg-Witten invariants (super-
conformal simple type condition), conjectured by Mariño, Moore and Peradze.
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1. Introduction

Let X be a smooth, compact, connected, and oriented 4-manifold with b1 = 0 and
b+ ≥ 3 odd. We set

(K2
X) := 2χ(X) + 3σ(X), χh(X) :=

χ(X) + σ(X)

4
.

When X is a complex projective surface, these are the self-intersection of the canonical
bundle and the holomorphic Euler characteristic respectively, and our notation is consis-
tent.

Let ξ ∈ H2(X,Z), α ∈ H2(X) and p ∈ H0(X) be the point class. In [40] Witten
explained that the generating function D

ξ(α) of Donaldson invariants (see (2.3) for the
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definition) is related to Seiberg-Witten invariants by

D
ξ(α) :=

∑

n,k

1

k!

(
Dξ,n(αk) +

1

2
Dξ,n(αkp)

)

= 2(K
2
X)−χh(X)+2(−1)χh(X)e(α

2)/2
∑

s

SW(s)(−1)(ξ,ξ+c1(s))/2e(c1(s),α),

(1.1)

where ( , ) is the intersection form, (α2) = (α, α), SW(s) is the Seiberg-Witten invariant
of a spinc structure s, and c1(s) = c1(S

+) ∈ H2(X,Z) is the first Chern class of the spinor
bundle of s. And X is assumed to be of SW-simple type, i.e., c1(s)

2 = (K2
X) if SW(s) 6= 0.

Witten’s argument was based on Seiberg-Witten’s ansatz [37] of N = 2 SUSY gauge
theory, which is a physical theory underlying Donaldson invariants [39]. It was not given
in a way which mathematicians can justify, so (1.1) becomes Witten’s conjecture among
mathematicians.

Let us explain the main point of Witten’s argument. (See [27, Introduction] for a more
detailed exposition for mathematicians.) Seiberg-Witten’s ansatz roughly says that the
N = 2 SUSY gauge theory is controlled by a family of elliptic curves (called Seiberg-
Witten curves)

y2 = 4x(x2 + ux+ Λ4)

parametrized by u ∈ C. Here Λ is a formal variable used to count the dimension of
instanton moduli spaces in the prepotential of the theory. (In the Donaldson series, one
usually sets Λ = 1.) Witten explained that Dξ(α) is given by an integration over u ∈ C,
and the integrand is supported only at points u = ±2Λ2, where the corresponding elliptic
curve is singular, when b+ ≥ 3. Those points contribute as given on the right hand side
of (1.1).

In mathematics, the Seiberg-Witten curves appear as elliptic curves for the σ-function
in Fintushel-Stern’s blow-up formula [11] for Donaldson invariants, and the parameter u
corresponds to the point class p. However, no mathematician succeeded to make Witten’s
argument rigorous.

An alternative mathematically rigorous approach was proposed by Pidstrigach and
Tyurin [36], and further pursued by Feehan-Leness [8]. It is based on moduli spaces
of SO(3)-monopoles, which are a higher rank analog of U(1)-monopoles used to define
Seiberg-Witten invariants. In particular, under a certain technical assumption on a prop-
erty of SO(3)-monopole moduli spaces, Feehan-Leness [8] (see also [6, 7], in particular [9,
Th. 3.1]) showed that Donaldson invariants have the form

(1.2) Dξ,n(αkpl) =
∑

s

fk,l(χh(X), (K2
X), s, ξ, α, s0) SW(s),

where the coefficients fk,l are not explicit, but depend only on the χh(X), (K2
X) and various

intersection products among s, ξ, α, s0. Here s0 is an auxiliary spinc structure needed for
SO(3)-monopole moduli spaces. As an application, they proved Witten’s conjecture for
X which satisfies (K2

X) ≥ χh(X) − 3 or is abundant, i.e., the orthogonal complement of
Seiberg-Witten classes contains a hyperbolic sublattice [9].

For a complex projective surfaceX , Mochizuki, motivated by [36, 8] (and also by [4, 14]),
proved a formula expressing Donaldson invariants in the form (1.2), but the coefficients
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fk,l are given as residue of an explicit C∗-equivariant integral over the product of Hilbert
schemes of points on X (see Theorem 4.1). He obtained the formula by applying the
Atiyah-Bott-Lefschetz fixed point formula to the algebro-geometric counterpart of SO(3)-
monopole moduli spaces.

Our first main result (Theorem 4.4) says that Mochizuki’s coefficients are given by
leading terms, denoted by F0, H , A, B of Nekrasov’s deformed partition function for
the N = 2 SUSY gauge theory with a single fundamental matter, which is the physics
counterpart of the SO(3)-monopole theory. Thus the coefficients are ‘equivariant SO(3)-
monopole invariants for R4’ in some sense.

The proof is almost the same as that of the authors’ wall-crossing formula of Donaldson
invariants with b+ = 1, expressed in terms of Nekrasov’s partition function for the pure
gauge theory [15]: By a cobordism argument (due to Ellingsrud-Göttsche-Lehn [5]), it is
enough to show it for toric surfaces. Then the integral is given as the product of local
contributions from torus fixed points of X , and the local contribution can be considered
as the case X = R4. Thus it is, by its definition, Nekrasov’s partition function.

From this result, we see that Mochizuki’s coefficients depend on the various data in the
same way as those of Feehan-Leness. In particular, they make sense also for a smooth
4-manifold X . (Here s0 is given by the complex structure.) Hoping that Mochizuki’s
coefficients are the same as those of Feehan-Leness1, we propose a conjecture: our formula
remains true for a smooth 4-manifold of SW-simple type (Conjecture 4.5).

Nekrasov’s partition functions are defined in a mathematically rigorous way and have
explicit combinatorial expressions in terms of Young diagrams [33]. Furthermore, the
leading part F0 is given by certain period integrals over Seiberg-Witten curves [26, 34, 3],
H is explicit, and A, B are also given in terms of Seiberg-Witten curves [27]. The proofs
in [26, 27] were given only for the pure theory, but we extend them for the theory with one
matter in this paper using the theory of perverse coherent sheaves [31]. Thus Mochizuki’s
coefficients are now given by residue of a differential form expressed by Seiberg-Witten
curves.

The pole, at which we take the residue, is at u = ∞. It is very deep pole, and a direct
computation of the residue looks difficult. Fortunately there is a hint: a similar problem,
for certain limits of Donaldson invariants with b+ = 1, was analyzed by Göttsche-Zagier
[16]. Observing that their differential is defined on P1, holomorphic outside ∞, ±2Λ2,
they showed that it is enough to compute the residues at poles ±2Λ2 which are simple,
and proved an analog of Witten’s conjecture. Also this picture is close to Witten’s original
intuition2.

Let us emphasize that the extension of the differential to P1 is already a nontrivial
assertion. In the original formulation the parameter u was a formal variable used to
introduce a generating function of invariants. Therefore it is, a priori, defined only in the
formal neighborhood of u = ∞. The extension is done, so far, by an explicit formula

1See §4.2 for our heuristic proof of this hope. This paper is motivated by Feehan-Leness’ papers, but
the proof is independent.

2G. Moore pointed out us that the u-plane integrand is a total derivative, at least if we take a derivative
with respect to the metric. See [22, (11.16)]
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of the differential. Thus the geometric picture of moduli spaces becomes obscure at the
points ±2Λ2.

Our situation is similar to one in [16], but slightly different. The Seiberg-Witten curve
for the theory with a fundamental matter is

y2 = 4x2(x+ u) + 4mΛ3x+ Λ6,

and has one more parameter m, called the mass of the matter field. And in our formula,
this m is chosen so that the above curve is singular. Therefore the family of curves is
different from what Witten used. We have two features of the new family. First since the
curves are singular, the differential is written by elementary functions, not by modular
functions as in [16]. This makes our computation much easier. Second, more importantly,
we get another pole besides ∞, ±2Λ2, which is called the superconformal point in physics
literature. (In the main text, we change the variable from u to another variable φ called
the contact term.)

The contribution of this point to the gauge theory with one matter was studied by
Mariño, Moore and Peradze [20] at a physical level of rigor. They argued that the partition
function must be regular at the superconformal point and then this condition leads to sum
rules on Seiberg-Witten invariants, i.e., X must satisfy the following condition.

Definition 1.3 ([20]). Suppose that a 4-manifold X is of SW-simple type. We say X is
of superconformal simple type if (K2

X) ≥ χh(X)− 3 or

(1.4)
∑

s

(−1)(w̃2(X),w̃2(X)+c1(s))/2 SW(s)(c1(s), α)
n = 0

for any integral lift w̃2(X) of w2(X) and 0 ≤ n ≤ χh(X)− (K2
X)− 4.

Remark that (K2
X) ≥ χh(X)− 3 is the condition which Feehan-Leness [9] assumed to

prove Witten’s conjecture. It should be remarked that they also proved that X is of
superconformal simple type if X is abundant under the same technical assumption as
before [10, 9].

We analyze the residue of our differential at the superconformal point and show that
1) the fact that D

ξ(α), up to sign, depends only on (ξ mod 2) implies that X is of su-
perconformal simple type, and 2) the differential is regular at the superconformal point
if X is of superconformal simple type. Thus the residue vanishes at the superconformal
point, and hence we prove Witten’s conjecture for a 4-manifold X of simple type under
Conjecture 4.5, and under no assumption for a complex projective surface X .

Acknowledgments. The authors thank Takuro Mochizuki for explanations of his results
and discussion over years. The second-named author is grateful to Yuji Tachikawa for
discussions on Seiberg-Witten curves, and to Thomas Leness and Gregory Moore for
useful comments.

The project began when the second and third-named authors were visiting the Inter-
national Centre for Theoretical Physics in Aug. 2006. Part of the calculation was done
while the second-named author was visiting Mathematical Institute of the University of
Bonn, and the third-named author was at Max Planck Institute for Mathematics. The
authors thank all the institutes for the hospitality.
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2. Preliminaries (I) – Donaldson and Seiberg-Witten invariants

2.1. Donaldson invariants. Let y = (2, ξ, n) ∈ Heven(X,Z). We take a Riemannian
metric g onX and consider the moduli spaceM(y) of irreducible anti-self-dual connections
on the adjoint bundle ad(P ) of a principal U(2)-bundle P with c1(P ) = ξ, c2(P ) = n.
For a generic metric g, this is a manifold of dimension 8n− 2(ξ2)− 6χh(X). A choice of
an orientation of H+, a maximal positive definite subspace of H2(X) with respect to the
intersection pairing, gives an orientation on M(y).

Let P → X × M(y) be a universal PU(2)-bundle and let µ : Hi(X) → H4−i(M(y))
be the µ-map defined by µ(β) := −1

4
p1(P)/β. Then the Donaldson invariant of X is a

polynomial on H0(X)⊕H2(X) defined by

(2.1) Dξ,n(αkpl) =

∫

M(y)

µ(α)kµ(p)l,

where p ∈ H0(X) is the point class. This is nonzero only when k + 2l = 4n − (ξ2) −
3χh(X). As M(y) is not compact, this integral must be justified by using the Uhlenbeck
compactification of M(y). When b+ ≥ 3 as we assumed, the integral is independent of
the choice of the Riemannian metric g. The moduli space does not change by a twisting
of P by a line bundle, since the adjoint bundle remains the same. Only the orientation is
different. Thus the integral depends only on ξ mod 2 ∈ H2(X,Z/2) up to sign.

We consider the generating function

Dξ(exp(αz + px)) =
∑

n,k,l

Dξ,n(αkpl)
zkxl

k! l!
Λ4n−(ξ2)−3χh(X).

Since n can be read off from k, l as above, the variable Λ is redundant, and we often put
Λ = 1, but it is also useful when we will consider the partition function.

Definition 2.2. A 4-manifold X is of KM-simple type if for any ξ and α,

∂2

∂x2
Dξ = 4Λ4Dξ.

For a 4-manifold of KM-simple type, we define

(2.3) D
ξ(α) := Dξ(exp(α)(1 +

1

2
p)) =

∑

n,k

Dξ,n(αk)
1

k!
+

1

2

∑

n,k

Dξ,n(αkp)
1

k!
.

Kronheimer-Mrowka’s structure theorem [17] says that there is a finite distinguished
collection of 2-dimensional cohomology classes Ki ∈ H2(X,Z) and nonzero rational num-
bers βi such that

D
ξ(α) = exp((α2)/2)

∑

i

(−1)(ξ,ξ+Ki)/2βi exp(Ki, α).

Each Ki is an integral lift of the second Stiefel-Whitney class w2(X).
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2.2. Complex projective surfaces. Now suppose X is a complex projective surface.
Take an ample line bundle H and consider the moduli space MH(y) of torsion free H-
semistable sheaves E with c1(E) = ξ, c2(E) = n. Here we assume ξ is of type (1, 1). We
take the orientation on H+ given by c1(H) and the complex orientation on H0,2(X).

It is known that Donaldson invariants can be defined using MH(y) instead of M(y) in
(2.1) if MH(y) is of expected dimension [18, 23]. We define the µ-map by using a universal
sheaf E instead of P, as µ(β) = (c2(E) − c1(E)2/4)/β. The orientation we used above is
differed from the complex orientation by (−1)(ξ,ξ+KX)/2, where KX is the canonical class.

If MH(y) is not of expected dimension, we consider the blow-up at sufficiently many
points p1, . . . , pN disjoint from cycles representing α, p. Then the moduli becomes of
expected dimension on the blow-up if N is sufficiently large. We then use the blow-up
formula as the definition of the integral over MH(y). See [15, §1.1] for detail.

Mochizuki defines the invariants by using the obstruction theory on the moduli spaces
of pairs of sheaves and their sections with a suitable stability condition. When the vector
y is primitive, the stability is equivalent to the semistability for MH(y), and Mochizuki’s
moduli is a projective bundle over MH(y). If, furthermore, the moduli space MH(y) is of
expected dimension, the virtual fundamental class coincides with the ordinary one, and
hence Mochizuki’s invariants are equal to the usual Donaldson invariants ([21, Lem. 7.3.5]).
In order to prove that his invariant coincides with the above invariant for any y, one needs
to prove the blow-up formula for Mochizuki’s. It follows a posteriori from our main result
that this is true. It should be possible to give a more direct proof by combining the theory
of perverse coherent sheaves [29, 30, 31] with Mochizuki’s method.

2.3. Seiberg-Witten invariants. Let s be a spinc structure and let c1(s) = c1(S
+) ∈

H2(X) be the first Chern class of its spinor bundle.
Let N(s) be the moduli space of the solutions of monopole equations. This is a compact

manifold (more precisely, after a perturbation) of dimension d(s) := (c1(s)
2 − (KX)

2)/4.
It has the orientation induced from that of H+ as in the case of Donaldson invariants. Let
Q be the S1-bundle associated with the evaluation homomorphism from the gauge group
at a point in X , and c1(Q) be its first Chern class. The Seiberg-Witten invariant of s is
defined as

SW(s) :=

∫

N(s)

c1(s)
d(s)/2

This is independent of the choice of g and the perturbation.
We call s (or c1(s)) a Seiberg-Witten class if SW(s) 6= 0. It is known that there are

only finitely many Seiberg-Witten classes.

Definition 2.4. A 4-manifold X is of SW-simple type if SW(s) is zero for all s with
d(s) > 0.

For c ∈ H2(X ;Z) which is a lift of w2(X), we define SW(c) as the sum

SW(c) =
∑

c1(s)=c

SW(s).

When X is a complex projective surface, it is known that all Seiberg-Witten classes
are of type (1,1). The moduli space N(s) is identified with the moduli space of pairs of a
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holomorphic line bundle and its section. It is an unperturbed moduli space, and does not
have the expected dimension d(s) in general, but can be equipped with an obstruction
theory to define the invariants [13]. It is also known that X is of SW-simple type.

We will not use so much on results on Seiberg-Witten invariants, except the most basic
one:

SW(−s) = (−1)χh(X) SW(s),

where −s is the complex conjugate of the spinc structure s. (See e.g., [24, Cor. 6.8.4].)

2.4. Witten’s conjecture. Witten’s conjecture states that if X is of SW-simple type,
it is also of KM-simple type and βi, Ki are determined by Seiberg-Witten invariants. See
(1.1) in Introduction.

Example 2.5. Let X be a K3 surface. The Donaldson series is known [35]:

D
ξ(α) = (−1)

(ξ,ξ)
2 exp((α2)/2).

The only Seiberg-Witten class is c1(s) = 0 and SW(s) = 1.

Example 2.6. Let X be a quintic surface in P3. The Donaldson series was given in [17,
Example 2]:

D
0(α) = 8 exp((α2)/2) sinh(KX , α),

D
KX(α) = −8 exp((α2)/2) cosh(KX , α).

We have χh = 5, (K2
X) = 5. The Seiberg-Witten classes are ±KX , and SW(−KX) = 1,

SW(KX) = (−1)χh = −1 by [24, Prop. 7.3.1].

Example 2.7. LetX be an elliptic surfaceX without multiple fibers such thatH1(X,OX) =
0. Let f be the class of a fiber. We have KX = OX(df) with χh(X) = d+2 and (K2

X) = 0.
The Donaldson series is given by Fintushel-Stern [12]:

D
0(α) = exp((α2)/2) sinhχh(X)−2(f, α).

The Seiberg-Witten invariants were computed by Friedman-Morgan [13]:

SW((2p− d)f) = (−1)p
(
d

p

)
for p = 0, . . . , d, SW(c) = 0 for other c.

2.5. Superconformal simple type. Let us briefly study the superconformal simple type
condition (Definition 1.3) in this subsection. More examples can be found in [20].

If we take another integral lift w̃′
2(X) of w2(X) in (1.4), we have (−1)(w̃

′

2(X),w̃′

2(X)+c1(s))/2 =

(−1)(w̃2(X),w̃2(X)+c1(s))(−1)((w̃
′

2(X)−w̃2(X))/2)2 . Therefore it is enough to assume (1.4) for some

integral lift w̃2(X) of w2(X). We will consider the case when X is a complex projective
surface, and take KX as a lift.

IfX is a minimal surface of general type, we have the Noether’s inequality (K2
X)/2+2 ≥

χh(X) − 1. Together with (K2
X) ≥ 1, it implies (K2

X) ≥ χh(X) − 3. Thus X is of
superconformal simple type by definition ([20, §7.1]). In fact, it is known that the Seiberg-
Witten classes are ±KX , and SW(−KX) = 1, SW(KX) = (−1)χh(X) (see e.g., [24]).
Therefore we cannot have a nontrivial identity like (1.4).
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We consider

SW(α) :=
∑

s

(−1)
(KX,KX+c1(s))

2 SW(s) exp (c1(s), α).

The condition (1.4) is equivalent to SW(α) having zero of order ≥ χh(X)− (K2
X)− 3 at

α = 0. We have

SW(−α) = (−1)χh(X)−(K2
X )SW(α)

by SW(−c) = (−1)χh(X) SW(c). Therefore SW is an even (resp. odd) function if χh(X)−
(K2

X) is even (resp. odd). Therefore the order of zero is automatically ≥ χh(X)−(K2
X)−2

under the above condition.

Example 2.8 ([20, §7.2]). LetX be an elliptic surface X without multiple fibers such that
H1(X,OX) = 0. Let f be the class of a fiber. Then KX = OX(df) with χh(X) = d + 2.
We have (K2

X) = 0. The Seiberg-Witten invariants were computed by Friedman-Morgan
[13] as in Example 2.7. Therefore

SW(α) = (−2)χh(X)−2 sinhχh(X)−2(f, α).

This has zero of order χh(X) − 2 at α = 0. Hence X is of superconformal simple type.
This example can be generalized to the case of elliptic surfaces with multiple fibers.

Example 2.9 ([20, §7.3]). Consider a one point blow-up X̂ → X . Let C be the excep-

tional divisor. We have (K2
X̂
) = (K2

X)− 1 and χh(X̂) = χh(X). Let us add the subscript

X and X̂ to the Seiberg-Witten invariants SW (and SW) in order to clarify which sur-
face we consider. Then we have SWX̂(c ± C) = SWX(c) for c ∈ H2(X) and the other
SWX̂(c+ nC) vanish. Therefore

SWX̂(α+ zC) = −2SWX(α) sinh(z).

Thus SWX(α) has a zero of order ≥ χh(X)− (K2
X)− 3 at α = 0 if and only if SWX̂ has

a zero of order ≥ χh(X) − (K2
X) − 2 = χh(X̂) − (K2

X̂
) − 3 at (α, z) = 0. Thus X is of

superconformal simple type if and only if so is X̂ .

From these two examples and the classification of complex surfaces, we conclude that
all complex projective surfaces with pg > 0, b1 = 0 are of superconformal simple type.
(See [20, §7.3].)

3. Preliminaries (II) – Instanton counting

3.1. Framed moduli spaces of torsion free sheaves. We briefly recall the framed
moduli spaces of torsion free sheaves on P2. See [25, Chap. 2] and [27, §3] for more detail.

Let ℓ∞ be the line at infinity of P2. A framed sheaf (E,ϕ) on P2 is a pair

• a coherent sheaf E, which is locally free in a neighborhood of ℓ∞, and
• an isomorphism Φ: E|ℓ∞ → O⊕r

ℓ∞
, where r is the rank of E.

Let M(r, n) be the moduli space of framed sheaves (E,ϕ) of rank r and c2(E) = n.
This is a nonsingular quasi-projective variety of dimension 2rn. It has an ADHM type
description.
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Let M0(r, n) be the corresponding Uhlenbeck partial compactification. There is a pro-
jective morphism π : M(r, n) → M0(r, n). This is a crepant resolution of M0(r, n).

Let C∗ × C∗ act on P2 by [z0 : z1 : z2] 7→ [z0 : tz1 : tz2], where the line ℓ∞ at infinity
is z0 = 0. Let T be the maximal torus of SLr(C) consisting of diagonal matrices and let

T̃ = C∗×C∗×T . It acts on M(r, n) as follows: the first factor C∗×C∗ acts by pull-backs
of sheaves E, and T acts by the change of the framing ϕ. It also acts on M0(r, n) and π

is equivariant. We consider the equivariant homology group H T̃
∗ (M(r, n)), H T̃

∗ (M0(r, n)).
Let [M(r, n)], [M0(r, n)] be the fundamental classes.

Fixed pointsM(r, n)T̃ are parametrized by r-tuples of Young diagrams ~Y = (Y1, . . . , Yr).
Each Yα corresponds to a monomial ideal Iα of the polynomial ring C[x, y], and gives a
framed rank 1 sheaf. The direct sum I1 ⊕ · · · ⊕ Ir is a torus fixed point. The equivariant
Euler class Eu(T~YM(r, n)) of the tangent space of M(r, n) at ~Y is given by a certain
combinatorial formula (see [27, §§3,4]), but its explicit form will not be used in this
paper. On the other hand, M0(r, n) has a unique fixed point: the rank r trivial sheaf
together with a singularity concentrated at the origin.

Let ε1, ε2, a1,. . . , ar (with a1+ · · ·+ ar = 0) be the coordinates of the Lie algebra of T̃ .
We also use the notation ~a = (a1, . . . , ar). The equivariant cohomology H∗

T̃
(pt) of a single

point is naturally identified with the polynomial ring S(T̃ ) := C[ε1, ε2, a2, . . . , ar]. Let

S(T̃ ) be its quotient field. The localization theorem for the equivariant homology group

says that the push-forward homomorphism ι0∗ of the inclusion M0(r, n)
T̃ → M0(r, n)

induces an isomorphism of equivariant homology groups after tensoring by S(T ). Since

M0(r, n)
T̃ is a single point, as we remarked above, we have

ι0∗ : H
T̃
∗ (M0(r, n)

T̃ )⊗S(T ) S(T ) = S(T )
∼=−→ H T̃

∗ (M0(r, n))⊗S(T ) S(T ).

Let ι−1
0∗ be the inverse of ι0∗.

We also have an isomorphism

ι∗ : H
T̃
∗ (M(r, n)T̃ )⊗S(T ) S(T ) = S(T )⊕#{~Y } ∼=−→ H T̃

∗ (M(r, n))⊗S(T ) S(T ),

where ι : M(r, n)T̃ → M(r, n). By the functoriality of pushforward homomorphisms, we
have

(3.1)
∑

~Y

◦ι−1
∗ = ι−1

0∗ ◦ π∗,

where
∑

~Y is the map S(T )⊕#{~Y } → S(T ) defined by taking sum of components.
Since M(r, n) is smooth, ι−1

∗ is given by

ι∗(•)
Eu(T~YM(r, n))

,

where ι∗ is the pull-back homomorphism of equivariant cohomology groups, considered as
a map between equivariant homology groups via Poincaré duality.

Nekrasov’s deformed partition function for the pure gauge theory is defined as the
generating function of ι−1

0∗ π∗[M(r, n)], where we let n run. By the discussion above, it
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is the generating function of 1/Eu(T~YM(r, n)) for all ~Y . It was introduced in [33] and
studied in [34, 26, 27].

3.2. The partition function for the theory with fundamental matters. We need
a variant of the partition function. It is called the partition function for the theory with
fundamental matters in the physics literature.

Over the moduli space M(r, n), we have a natural vector bundle V, whose fiber at
(E,ϕ) is H1(E(−ℓ∞)). It has rank n. If E denotes the universal sheaf on P2 ×M(r, n),
we have V = R1q2∗(E ⊗ q∗1(O(−ℓ∞))), where q1, q2 are the projection from P2 → M(r, n)
to the first and second factors respectively.

In fact, a computation shows that it is more natural to replace H1(E(−ℓ∞)) by the L2-
kernel of the Dirac operatorDA : E⊗S− → E⊗S+, where A is the instanton corresponding
to E (assuming it is locally free). This is simply given by tensoring the half canonical

bundle K
1/2

C2 of C2, i.e. a trivial line bundle with weight e−(ε1+ε2)/2. This makes sense even
if E is not locally free, so we can consider it as a definition of the kernel of the Dirac
operator.

For a positive integer Nf , we consider a vector space M = CNf , called the flavor

space. The group GL(M) naturally acts on M . Let TM be the diagonal subgroup. Let
~m = (m1, . . . , mNf

) denote an element in LieTM . We consider the equivariant class

Eu(V ⊗ K
1/2
C2 ⊗ M) ∩ [M(r, n)]. This has the degree (or virtual dimension) (2r − Nf )n.

The theory is called conformal when Nf = 2r and asymptotically free when Nf < 2r. We
assume Nf < 2r hereafter. We set γ := 2r −Nf .

We define the instanton part of the partition function

(3.2) Z inst(ε1, ε2,~a, ~m; Λ) =

∞∑

n=0

Λγnι−1
0∗ π∗

(
Eu(V ⊗K

1/2

C2 ⊗M) ∩ [M(r, n)]
)
,

where Λ is a formal variable.
Using (3.1) we can replace ι−1

0∗ π∗ by
∑

~Y ι−1
∗ . Then we get

(3.3) Z inst(ε1, ε2,~a, ~m; Λ) =

∞∑

n=0

Λγ|~Y |Eu(V|~Y ⊗K
1/2

C2 ⊗M)

Eu(T~YM(r, n))
,

where V|~Y is the fiber of V at the fixed point ~Y , and |~Y | is the sum of numbers of boxes
in Young diagrams Yα. The right hand side has a combinatorial expression, which will be
not used in this paper.

It is known that

(1) ε1ε2 logZ
inst(ε1, ε2,~a, ~m; Λ) is regular at ε1, ε2 = 0, and hence has the expansion

(3.4)

F inst
0 (~a, ~m; Λ)+(ε1+ε2)H

inst(~a, ~m; Λ)+ε1ε2A
inst(~a, ~m; Λ)+

ε21 + ε22
3

Binst(~a, ~m; Λ)+· · · .

(2) The leading term F inst
0 (~a, ~m; Λ) is the instanton part of the Seiberg-Witten prepo-

tential.
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For the pure theory (i.e., Nf = 0) these were proved by the second and third-named
authors [26], Nekrasov-Okounkov [34], and Braverman-Etingof [3] independently. The
proof in [34] works also for theories with matters. We also need to know the next three
terms H , A, B. These were computed in [27] for the pure theory. The corresponding
results for our case r = 2, Nf = 1 along the argument in [26, 27] will be explained below
(§6). We need to use the theory which we have developed in [29, 30, 31]. In particular, we
have H inst ≡ 0, which means that the partition function is ‘topological’: H inst is coupled
with ε1 + ε2 = −c1(KC2), which depends on the complex structure, but it vanishes.

Since we will only consider the case r = 2, Nf = 1, we denote a2, m1 simply by a, m
respectively. In application to Mochizuki’s formula below, we need to specialize a = m.

This is well-defined: Setting a = m means that we restrict the acting group from T̃ × TM

to a smaller subgroup. But the smaller subgroup still has the same fixed points (as TM

acts trivially), and the fixed point formula can be specialized.
In view of Conjecture 4.5, it is desirable to have a direct definition of the parti-

tion function in terms of the Uhlenbeck compactification M0(r, n), not appealing to
the algebro-geometric object M(r, n). Since V is not a pull-back from M0(r, n), this
is a nontrivial problem. If we consider M0(r, n) as an affine algebraic variety, then

π∗

(
Eu(V ⊗K

1/2

C2 ⊗M) ∩ [M(r, n)]
)
is a limit of the formal T̃ ×TM -character of the space

of sections of certain virtual sheaves on M0(r, n) as in [26, §4]. It should be possible to
replace this virtual sheaf by a complex of vector bundles.

4. Mochizuki’s formula and the partition function

As we mentioned in Introduction, we will use Mochizuki’s formula relating Donaldson
invariants and Seiberg-Witten invariants. Before stating his formula, let us briefly explain
the idea behind its proof. A reader can safely jump to §4.1 if he/she accepts Mochizuki’s
formula. But the authors encourage the reader to learn Mochizuki’s beautiful ideas. Of
course he/she should read the book [21] for more detail.

When X is a complex projective surface, Mochizuki first developed the obstruction
theory for moduli spaces of pairs of sheaves and sections and related spaces. Then he
obtained a general machinery to write down the difference of invariants for two moduli
spaces defined with different stability condition. A point is to introduce a C∗-equivariant
obstruction theory on the ‘master space’ containing two moduli spaces as C∗-fixed point
loci. He integrated the class exp(µ(αz + px)) ∪ a over the master space, where a is
the generator of the equivariant cohomology group H∗

C∗(pt) of a single point. Since the
integral vanishes at the nonequivariant limit a = 0, the sum of residues of fixed point
loci contributions is zero by the Atiyah-Bott-Lefschetz fixed point formula. This gives
the difference of the invariants as the sum of residues of ‘exceptional’ fixed points loci
contributions. The exceptional fixed points are products of lower rank sheaves and pairs.
Up to this point, the framework is essentially the same as the SO(3)-monopole cobordism
program, except for a systematic usage of the obstruction theory. But a crucial difference
is that Mochizuki’s obstruction theory enables him to treat moduli spaces as if they are
smooth. In particular, his ‘residues’ are given explicitly in terms of equivariant Euler
classes of virtual normal bundles.
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He applied this theory to the case of moduli spaces of rank 2 pairs. When a stability
condition is suitably chosen, moduli spaces of pairs are projective bundles over moduli of
genuine sheaves, thus the invariants are reduced to Donaldson invariants. On the other
hand, for another stability condition, moduli spaces become the empty set. The difference
of the invariants, which is just Donaldson invariants, is given by the sum of residues of
equivariant integrals over other ‘exceptional’ fixed point loci, which are moduli spaces of
pairs of rank 1 sheaves with sections of one factor. These exceptional contribution can
be identified with a product of the Seiberg-Witten invariant and an equivariant integral
over the product X [n1] ×X [n2] of Hilbert schemes of points in X . This is because rank 1
sheaves are just ideal sheaves twisted by line bundles. The class Q appearing the formula
below is the equivariant Euler class of the normal bundle mentioned above.

4.1. Mochizuki’s formula. Let y = (2, ξ, n), α, p, z, x as in the definition of Donaldson
invariants (§2.1). Suppose that we have decompositions ξ = ξ1+ ξ2, n− (ξ1, ξ2) = n1+n2.
We denote by eξi the holomorphic line bundle whose first Chern class is ξi. Let Ii (resp.
OZi

) denote the universal ideal sheaf (resp. subscheme) over X×X [ni]. Their pull-backs to
X×X [n1]×X [n2] are denoted by the same notation. Let q2 : X×X [n1]×X [n2] → X [n1]×X [n2]

be the projection.
Let C∗ act trivially on X [n1] × X [n2] and consider the equivariant cohomology group

H∗
C∗(X [n1] × X [n2]) ∼= H∗(X [n1] × X [n2])[a], where a is the variable for H∗

C∗(pt), i.e.,
H∗

C∗(pt) = C[a]. We consider the following equivariant cohomology classes onX [n1]×X [n2]:

P (I1e
ξ1−a ⊕ I2e

ξ2+a) := exp(− ch2(I1e
ξ1−a− ξ

2 ⊕ I2e
ξ2+a− ξ

2 )/(αz + px)),

Q(I1e
ξ1−a ⊕ I2e

ξ2+a) := Eu(−Ext∗q2(I1e
ξ1−a, I2e

ξ2+a)) Eu(−Ext∗q2(I2e
ξ2+a, I1e

ξ1−a)),

where Ext∗q2 is the alternating sum Ext0q2 −Ext1q2 +Ext2q2 , and Ext•q2 is the derived functor
of the composite q2∗ ◦ Hom.

Roughly speaking, Q is the equivariant Euler class of the virtual normal bundle of
X [n1]×X [n2] inMH(y). Here one should consider that the embedding is given by (I1, I2) 7→
eξ1I1⊕ eξ2I2. And P is the restriction of the integrand appearing in Donaldson invariants.
But the precise formulation requires the master space, and is omitted in this paper.

Note that Q is invertible in H∗(X [n1] × X [n2])[a, a−1] as it has a form Q(I1e
ξ1−a ⊕

I2e
ξ2+a) = aN + (lower degree in a) for some N . We consider the following class in

H∗(X [n1] ×X [n2])[a, a−1]:

Ψ̃ (ξ1, ξ2, n1, n2; a)

:=
P (I1e

ξ1−a ⊕ I2e
ξ2+a)

Q(I1eξ1−a ⊕ I2eξ2+a)

Eu(H∗((O/I1)e
ξ1)) Eu(H∗((O/I2)e

ξ2+2a))

(2a)n1+n2−pg
,

where H∗(O/Ii) is the alternating sum of the higher direct image sheaves R•q2∗(O/Ii).
This is the same as Mochizuki’s Ψ ([21, §1.4.2]), except that we do not take the residue
with respect to a. Therefore we put ‘̃ ’ in the notation.

We set

Ã(ξ1, y; a) = 21−χ(y)
∑

n1+n2=n−(ξ1,ξ2)

∫

X[n1]×X[n2]

Ψ̃(ξ1, ξ2, n1, n2; a),
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where χ(y) is the Euler characteristic of the class y. By Riemann-Roch, we have

χ(y) =
(ξ, ξ −KX)

2
+ 2χh(X)− n.

Theorem 4.1 ([21, Th. 1.4.6]). Assume that χ(y) > 0, (ξ,H)/2 > (KX , H) and (ξ,H) >
(c1(s) +KX , H) for any Seiberg-Witten class s. Then we have

1

2

∫

MH(y)

exp(µ(αz + px)) =
∑

ξ1

SW(ξ̃1) Res
a=∞

Ã(ξ1, y; a)da,

where ξ̃1 := 2ξ1 −KX .

Let us give several remarks.

Remarks 4.2. (1) The left hand side is Mochizuki’s definition of the invariant using the
obstruction theory. It is equal to the usual Donaldson invariant if y is primitive and
MH(y) is of expected dimension. This is not an essential assumption, as we explained in
§2.2.

(2) Mochizuki took the residue at a = 0, instead of a = ∞. But ours is just the negative

of Mochizuki’s, as Ã(ξ1, y; a) is in C[a, a−1].
(3) The factor 1/2 in the left hand side comes from Mochizuki’s convention. He

considered the integration over the moduli space of oriented sheaves. There is a nat-
ural étale proper morphism from the oriented moduli space to the usual one of degree
(rank)−1 = 1/2.

(4) The assumption is satisfied if we replace y by yekH for sufficiently large k. But
it is not clear, a priori, that the right hand side is independent of k. This will become

important for our later analysis of the residue of Ã.

(5) Mochizuki denoted the usual Seiberg-Witten invariant by S̃W and set SW(ξ1) =

S̃W(2ξ1 −KX). We keep SW for the notation of the usual Seiberg-Witten invariant. On
the other hand, the Seiberg-Witten class 2ξ1 −KX will naturally appears in the Witten’s
formula (1.1). Therefore we have denoted it by ξ̃1. Thus our SW(ξ̃1) is Mochizuki’s
SW(ξ1).

(6) Since the expected dimension dimMH(y) is 4n− (ξ2)− 3χh(X), we have

(4.3) 4χ(y) = ((ξ −KX)
2)− (K2

X)− dimMH(y) + 5χh(X).

4.2. Formula in terms of the partition function. Now we prove our first main result.
Recall y = (2, ξ, n). Let us introduce the generating function of the Ã(ξ1, y; a):

B(ξ1, ξ; a) :=
∑

n

Λ4n−(ξ2)−3χh(X)Ã(ξ1, (2, ξ, n); a).
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Theorem 4.4. We have

B(ξ1, ξ; a)da = −da

a
(−1)(ξ,ξ+KX)/2+(KX ,KX+ξ̃1)/2+χh(X)2−2χh(X)−(ξ−KX−ξ̃1,ξ−KX)/2

×
(
2a

Λ

)((ξ−KX)2)+(K2
X)+3χh(X)−2(ξ−KX ,ξ̃1)

exp
(
−(ξ −KX − ξ̃1, α)az − a2x

)

× exp

[
1

3

∂F inst
0

∂ log Λ
x+

(
1

8

∂2F inst
0

∂a2
+

1

4

∂2F inst
0

∂a∂m
+

1

8

∂2F inst
0

∂m2

)
((ξ −KX)

2)

− 1

4

(
∂2F inst

0

∂a∂m
+

∂2F inst
0

∂a2

)
(ξ −KX , ξ̃1)

+
1

6

(
∂2F inst

0

∂a∂ log Λ
+

∂2F inst
0

∂m∂ log Λ

)
(ξ −KX , α)z −

1

6

∂2F inst
0

∂a∂ log Λ
(ξ̃1, α)z

+
1

18

∂2F inst
0

(∂ log Λ)2
(α2)z2 + χh(X)(12Ainst − 8Binst) + (K2

X)

(
Binst − Ainst +

1

8

∂2F inst
0

∂a2

)]
,

where ξ̃1 = 2ξ1 −KX as above, and the derivatives of F inst
0 , Ainst and Binst are evaluated

at (a,m,Λ) = (a, a,Λ4/3a−1/3).

Observe that our formula does not depend on the complex structure of X when we
consider the canonical class KX as a choice of a spinc structure. Therefore, the above
expression makes sense for a smooth 4-manifold X . Further observe that KX appears in
the above expression only as either (K2

X) or the combination ξ −KX , except in the sign
factor. If we ignore the sign, the Donaldson invariants depend only on (ξ mod 2), so we
can consider ξ − KX as auxiliary cohomology class. The only requirement is that it is
equal to (ξ mod 2) + w2(X) in H2(X,Z/2).

Therefore we pose the following:

Conjecture 4.5. Mochizuki’s result (Theorem 4.1) holds for a smooth 4-manifold X with

b1 = 0, b+ ≥ 3 odd, up to sign, if we replace Ã(ξ1, y; a) by coefficients of B(ξ1, ξ; a) in
Theorem 4.4.

We have the conditions (ξ,H)/2 > (KX , H), (ξ,H) > (c1(s)+KX , H), which we do not
know how to interpret for a smooth 4-manifold X . Therefore we just ignore this condition
and conjecture that Mochizuki’s result holds without it.

This conjecture is compatible with Feehan-Leness’ result (1.2). Our formula in The-

orem 4.4 involves only the intersection pairings among ξ̃1, ξ − KX and α. Their for-
mula involves an auxiliary cohomology class, denoted by Λ in [9, Th. 3.1], is equal to
Λ = c1(s0) + ξ for a chosen spinc structure s0. We take the canonical spinc structure of
the complex surface X as s0, so their Λ should be identified with our ξ −KX . In fact, Λ
satisfies the same condition which we have assumed for ξ −KX . It is required to satisfy
the same condition as χ(y) > 0 thanks to (4.3) (written as ‘I(Λ) > δ’ [loc. cit.]). We also

remark that the exponent ((ξ−KX)
2) + (K2

X) + 3χh(X)− 2(ξ−KX , ξ̃1) of 2a/Λ is equal

to −r(Λ, c1(s)) in [7, (1.12)] if we take Λ = ξ −KX , s = ξ̃1 and replace (K2
X) by (c1(s)

2).
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Thus our conjecture follows immediately if the coefficients fk,l appearing in Feehan-
Leness’ formula (1.2) are the same as ours. This does not directly follow from Feehan-
Leness’ statement itself, as Seiberg-Witten invariants satisfy nontrivial relations, namely
superconformal simple type condition, therefore the coefficients are not uniquely deter-
mined.

The authors’ heuristic proof is the following: there is a morphism from Mochizuki’s
master space to the moduli space of SO(3)-monopole when X is complex projective. Then
by the functoriality of pushforward homomorphisms as used in (3.1), the contributions
of Seiberg-Witten invariants are the same for Mochizuki’s and Feehan-Leness’ formulas.
Since Feehan-Leness’ formula is universal, it is enough to calculate them for complex
projective X , and our calculation gives the answer.

This proof works only for X of simple type and for which there is a complex projective
surface X0 with χ(X) = χ(X0), σ(X) = σ(X0). To generalize it for hypothetical X of
non-simple type, we need to connect Feehan-Leness’ coefficients with Nekrasov partition
function more directly.

Proof of Theorem 4.4. The proof is similar to that of the wall-crossing formula for b+ =
1 in [15]. When the argument is really the same, we just point to the corresponding
argument in [loc. cit.].

We denote a in Mochizuki’s Ã by s for a moment.
We first write B as a product of the ‘perturbative term’, i.e., an expression independent

of n1, n2 and the ‘instanton part’, which is 1 if n1 = n2 = 0. For the term P , we have

P (I1e
ξ1−s ⊕ I2e

ξ2+s)

= exp(−(ξ2 − ξ1, α)sz − s2x) exp([c2(I1) + c2(I2)]/(αz + px)).

Thus the perturbative term is exp(−(ξ2− ξ1, α)sz− s2x). For Q, the perturbative term is

Eu(H∗(OX(ξ1 − ξ2))e
−2s) Eu(H∗(OX(ξ2 − ξ1))e

2s)

= (−2s)χ(OX(ξ1−ξ2))(2s)χ(OX(ξ2−ξ1))

= (−1)
(ξ1−ξ2,ξ1−ξ2−KX )

2
+χh(X)(2s)((ξ1−ξ2)2)+2χh(X)

= (−1)
(ξ,ξ−KX )

2
+(KX ,ξ2)+χh(X)(2s)((ξ1−ξ2)2)+2χh(X).

We also have 21−χ(y)(2s)pg−n1−n2 whose perturbative part is

21−
(ξ,ξ−KX )

2
−2χh(X)+(ξ1,ξ2)(2s)χh(X)−1.

For the power of Λ, the perturbative part is

Λ4(ξ1,ξ2)−(ξ2)−3χh(X) = Λ−((ξ1−ξ2)2)−3χh(X).

Combining all these terms, we find that the perturbative part of B is

(4.6) (−1)
(ξ,ξ−KX )

2
+(KX ,ξ2)+χh(X)

× 1

s

(
2s

Λ

)((ξ1−ξ2)2)+3χh(X)

e−(ξ2−ξ1,α)sz−s2x2−2χh(X)− (ξ,ξ−KX )

2
+(ξ1,ξ2).
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By the argument in [loc. cit., §5], it is enough to compute the instanton part for a toric
surface X .

We write χ := χ(X) for brevity. Let p1, p2, ..., pχ be the torus fixed points, xi, yi the
torus equivariant coordinates at pi and w(xi), w(yi) the weights of the torus action. As

in [loc. cit., §3.2] we apply the Atiyah-Bott-Lefschetz fixed point formula to Ã(ξ1, y; s).
At torus fixed points, the ideal sheaves I1, I2 are the intersection of ideal sheaves sup-
ported at points pi. Accordingly the cohomology groups in Q and the matter factor
Eu(H∗((O/I1)e

ξ1)) Eu(H∗((O/I2)e
ξ2+2s)) decompose as products of local contributions

at pi. As in [loc. cit., §3.2] we will identify these local contributions with factors in the
partition function Z inst.

Let us first study how variables appearing in Z inst will be identified with expressions in
the local contribution of Ã at pi. The variables ε1, ε2 in Z inst are identified with w(xi),
w(yi). In order to identify a1, a2, consider the factor Q. In the definition of the partition
function the first Chern class of the universal sheaf is normalized to be 0 as a1 + a2 = 0.
In view of [loc. cit., Lemma 3.4], this normalization must be performed for Q as

Ext∗q2(I1e
ξ1−s, I2e

ξ2+s) = Ext∗q2(I1e
ξ1−s−ξ/2, I2e

ξ2+s−ξ/2).

Thus we get the same expression appearing in P , and we will identify variables as

a1 = −s+ ι∗pi(ξ1 − ξ/2) = −s− ι∗pi(ξ2 − ξ1)/2,

a2 = s+ ι∗pi(ξ2 − ξ/2) = s+ ι∗pi(ξ2 − ξ1)/2

in Z inst and Ã. Here ι∗pi is the pull-back homomorphism associated with the inclusion ιpi
of the fixed point pi into X .

Accordingly we normalize the matter factor as

Eu(H∗((O/I1)e
ξ1)) Eu(H∗((O/I2)e

ξ2+2s))

= Eu(H∗((O/I1)e
ξ1−s−ξ/2+s+ξ/2)) Eu(H∗((O/I2)e

ξ2+s−ξ/2+s+ξ/2)).

Recalling that we put K
1/2
C2 in the partition function, we identify the variable m for the

matter with s+ ι∗pi(ξ −KX)/2, as ξα − s− ξ/2 is aα for α = 1, 2.
Next we consider the variable Λ. After removing the perturbative part as above, we

consider Λ4(n1+n2) in B. On the other hand, we use Λ3(n1+n2) in the definition of the parti-
tion function. We combine this with sn1+n2 in Ψ̃ , which we then absorb into the variable
Λ in the partition function (3.2). Therefore Λ in (3.2) will be replaced by Λ4/3s−1/3.

Now we use the argument in [loc. cit., §3.2] to write the instanton part of B in terms
of the partition function:

lim
ε1,ε2→0

Res
s=0

χ∏

i=1

Z inst(w(xi), w(yi), ι
∗
pi
(
ξ2 − ξ1

2
) + s, ι∗pi(

ξ −KX

2
) + s;

Λ4/3

s1/3
eι

∗

pi
(αz+px

3
))

We need to explain the last expression eι
∗

pi
(αz+px

3
). This comes from exp([c2(I1) +

c2(I2)]/(αz + px)), which is the instanton part of P . We use the same argument as
in [loc. cit., Cor. 3.18], which was based on [27, §4.5]. Let us briefly recall the point of
the argument: We can put more variables ~τ = (τρ)ρ≥1 into the partition function Z inst as
in [loc. cit., (1.4)], [27, §4.2]. But we only need τ1 since we only use ch2 and not higher
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Chern classes in the Donaldson invariants. Then τ1 can be absorbed into the variable Λ as
ch2 is determined by n of M(r, n). We identify τ1 = −ι∗pi(αz+ px) as in [loc. cit.]. In fact,
the absorption of τ1 into Λ is simpler than in [27, §4.2], as we do not put the perturbative

term in the partition function. We just need to note that it is a multiplication of eι
∗

pi
(αz+px

3
)

instead of eι
∗

pi
(αz+px

4
), because we use Λγn = Λ3n instead of Λ4n in the definition of the

partition function.
We now use the expansion (3.4) together with H inst = 0. As in [loc. cit., proof of

Th. 4.2], we have

χ∏

i=1

Z inst(w(xi), w(yi), i
∗
pi
(
ξ2 − ξ1

2
) + s, i∗pi(

ξ −KX

2
) + s; Λ(

Λ

s
)
1
3 ei

∗

pi
(αz+px

3
))

= exp

[∑

i

1

w(xi)w(yi)

(
F inst
0 +

∂F inst
0

∂a
i∗pi(

ξ2 − ξ1
2

) +
∂F inst

0

∂m
i∗pi(

ξ −KX

2
) +

∂F inst
0

∂ log Λ
i∗pi(

αz + px

3
)

+
1

2

∂2F inst
0

∂a2
i∗pi(

ξ2 − ξ1
2

)2 +
∂2F inst

0

∂a∂m
i∗pi(

ξ2 − ξ1
2

)i∗pi(
ξ −KX

2
) +

1

2

∂2F inst
0

∂m2
i∗pi(

ξ −KX

2
)2

+
∂2F inst

0

∂a∂ log Λ
i∗pi(

ξ2 − ξ1
2

)i∗pi(
αz + px

3
)+

∂2F inst
0

∂m∂ log Λ
i∗pi(

ξ −KX

2
)i∗pi(

αz + px

3
)+

1

2

∂2F inst
0

∂ log Λ2
i∗pi(

αz + px

3
)2

+w(xi)w(yi)A
inst +

w(xi)
2 + w(yi)

2

3
Binst

)]

= exp

[
1

3

∂F inst
0

∂ log Λ
x+

1

8

∂2F inst
0

∂a2
((ξ2 − ξ1)

2) +
1

4

∂2F inst
0

∂a∂m
(ξ2 − ξ1, ξ −KX) +

1

8

∂2F inst
0

∂m2
((ξ −KX)

2)

+
1

6

∂2F inst
0

∂a∂ log Λ
(ξ2 − ξ1, α)z +

1

6

∂2F inst
0

∂m∂ log Λ
(ξ −KX , α)z +

1

18

∂2F inst
0

∂ log Λ2
(α2)z2 + χ(X)Ainst + σ(X)Binst

]

+O(ε1, ε2),

where we evaluate the derivatives of F inst
0 , Ainst, Binst at a2 = a = s, m = s, Λ = Λ4/3

s1/3
.

We now safely change s back to a.

We use χ(X) = 12χh(X)− (KX)
2, σ(X) = (K2

X)− 8χh(X), ξ = ξ1 + ξ2, ξ̃1 = 2ξ1 −KX

and (ξ̃21) = (K2
X) to get the assertion, where the last equality is nothing but the SW-simple

type condition. �

5. Blow-up formula for the partition function

We start to analyze the partition function in this section. Our technique is the same
as one in [26, 27, 28]: we study the blow-up formula of the partition function.

5.1. Partition function on the blow-up. Let p : P̂2 → P2 be the blow-up of P2 at the

origin [1 : 0 : 0]. Let C = p−1([1 : 0 : 0]) be the exceptional divisor. Let M̂(r, k, n) be

the moduli space of framed sheaves (E,Φ) on P̂2 with rank r, c1(E) = kC, (c2(E)− (r−
1)c1(E)2/(2r), [P̂2]) = n, where the framing is defined on p−1(ℓ∞). (See [26, §3] or [27,
§3.2].) This is nonsingular quasi-projective of dimension 2rn. We normalize as 0 ≤ k < r.
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This is always possible by twisting by a power of O(C). There is a projective morphism

π̂ : M̂(r, k, n) → M0(r, n− k(r − k)/2r).

We pull-back the C∗×C∗-action on P2 to P̂2. Then we have an action of T̃ on M̂(r, k, n)

as in the case of M(r, n). The action is lifted to the universal sheaf E on P̂2 × M̂(r, k, n).

The morphism π̂ is T̃ -equivariant.
We define µ(C) as appeared in the definition of Donaldson’s invariants:

µ(C) =

(
c2(E)−

r − 1

2r
c1(E)2

)
/[C] ∈ H2

T̃
(M̂(r, k, n)).

Over M̂(r, k, n) we have two natural vector bundles, which correspond to V:
V0 := R1q2∗(E ⊗ q∗1O(−ℓ∞)), V1 := R1q2∗(E ⊗ q∗1O(C − ℓ∞)).

These are vector bundles of rank n + k2/(2r) − k/2 and n + k2/(2r) + k/2 respectively
thanks to the vanishing of other higher direct image sheaves, and play a fundamental role

in the ADHM type description of M̂(r, k, n) (see e.g., [29]).
Therefore we have two possible choices of matters on blow-up. Here we take V0 since

the V1 version can be reduced to the V0 one after twisting by the line bundle O(C). We
define the partition function (or better to call the correlation function since we put the
operator µ(C)) as in (3.2) by

Ẑ inst
c1=kC(ε1, ε2,~a, ~m; t; Λ)

:= ΛNfk(r−k)/(2r)
∞∑

n=0

Λγnι−1
0∗ π̂∗

(
etµ(C) ∩ Eu

(
V0 ⊗ p∗(K

1/2

C2 )⊗M
)
∩ [M̂(r, k, n)]

)
.

Here p∗(K
1/2

C2 ) looks a little bit artificial, but is necessary as in the case of C2. The square

root K
1/2

Ĉ2
does not make sense since Ĉ2 is not spin.

As in the case of the original partition function Z inst(ε1, ε2,~a, ~m; Λ), this one also has
a combinatorial expression like (3.3). We do not write it down here, we only explain

the parameter set for the fixed points. Similar to the case of M(r, n)T̃ , it is the set of

triples (~k, ~Y 1, ~Y 2) of an r-tuple of integers ~k = (k1, . . . , kr) and the pair of r-tuples of

Young diagrams ~Y 1 = (Y 1
1 , . . . , Y

1
r ), ~Y

2 = (Y 2
1 , . . . , Y

2
r ). The corresponding framed sheaf

is I1(k1C) ⊕ · · · ⊕ Ir(krC), where Iα is an ideal sheaf fixed by the C∗ × C∗-action. The

blow-up Ĉ2 has two fixed points p1, p2, and Iα is given by two monomial ideals with
respect to toric coordinates at p1 and p2. In this way, Iα is parametrized by a pair of
Young diagrams (Y 1

α , Y
2
α ).

From this combinatorial description of the fixed point set, we can write down the

correlation function Ẑ inst
c1=kC as sum over the lattice for {~k} of products of two Z inst’s

for p1, p2, and contribution from line bundles O(kαC). We postpone to write down the
explicit formula until we introduce the perturbative term in the next subsection.

5.2. Perturbative term. The partition function defined above does not behave well in
many aspects. It is more natural to add what is called the perturbative term, which is an
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explicit function. We recall its definition in this subsection. We return back to arbitrary
r, Nf .

Let γε1,ε2(x; Λ) be the function used to define the perturbative part of the partition
function in [27, §E]:

γε1,ε2(x; Λ) =
1

ε1ε2

{
−1

2
x2 log

(x
Λ

)
+

3

4
x2

}
+

ε1 + ε2
2ε1ε2

{
−x log

(x
Λ

)
+ x
}

− ε21 + ε22 + 3ε1ε2
12ε1ε2

log
(x
Λ

)
+

∞∑

n=3

(n− 3)!cn(−x)2−n,

(5.1)

where cn is defined by

1

(1− e−ε1t)(1− e−ε2t)
=

∞∑

n=0

cnt
n−2.

If we consider the equivariant cohomology group H∗
T 2(C2) of C2 with respect to the two

dimensional torus action, we have

cn =

∫

C2

Toddn(C
2),

where Toddn is the degree n part of the Todd genus, and
∫
C2 is defined by the localization

formula applied to C2: ι∗0(•)/Eu(T0C
2). Here 0 is the unique fixed point and ι0 is the

inclusion {0} → C2.
If γ0(x; Λ) = −1

2
x2 log(x/Λ) + 3

4
x2 denotes the leading part of γε1,ε2(x; Λ) (‘genus 0

part’), we have

γε1,ε2(x; Λ) =

∞∑

n=0

∫

C2

Toddn(C
2)γ

(n)
0 (x).

We introduce the function for the matter contribution as

δε1,ε2(x; Λ) := γε1,ε2(x− ε1 + ε2
2

; Λ)

=
1

ε1ε2

{
−1

2
x2 log

(x
Λ

)
+

3

4
x2

}
+

ε21 + ε22
24

log
(x
Λ

)
+ · · · .

The shift −(ε1 + ε2)/2 is identified with KC2/2, and is compatible with our shift for the
instanton partition function.

We define the full partition function as

Z(ε1, ε2,~a, ~m; Λ) := exp

[
−
∑

~α∈∆
γε1,ε2(〈~a, ~α〉; Λ) +

∑

f,α

δε1,ε2(aα +mf ; Λ)

]
Z inst(ε1, ε2,~a, ~m; Λ).

Let us expand the perturbative part as

−
∑

~α∈∆
γε1,ε2(〈~a, ~α〉; Λ) +

∑

f,α

δε1,ε2(aα +mf ; Λ)

=
1

ε1ε2

(
F pert
0 + (ε1 + ε2)H

pert + ε1ε2A
pert +

ε21 + ε22
3

Bpert + · · ·
)
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as in the instanton part.
For a future reference, we give explicit formulas for some terms when r = 2, Nf = 1:

Hpert = π
√
−1a,

∂F pert
0

∂ log Λ
= −3a2 +m2,

∂2F pert
0

∂(log Λ)2
= 0,

− 1

γ

∂2F pert
0

∂ log Λ∂a
= 2a,

∂2F pert
0

∂a2
= 8 log

−2
√
−1a

Λ
− log

(a+m)(−a +m)

Λ2
,

∂2F pert
0

∂a∂m
= log

(−a+m

Λ

)
− log

(
a+m

Λ

)
,

∂2F pert
0

∂m2
= − log

(−a+m

Λ

)
− log

(
a+m

Λ

)
,

∂2F pert
0

∂m∂ log Λ
= 2m,

Apert =
1

2
log

(−2
√
−1a

Λ

)
,

Bpert =
1

2
log

(−2
√
−1a

Λ

)
+

1

8
log

(
(m− a)(m+ a)

Λ2

)
.

(5.2)

5.3. Blow-up formula. Similarly we put the perturbative part to the correlation func-
tion on the blow-up as

Ẑc1=kC(ε1, ε2,~a, ~m; t; Λ)

:= exp

[
−
∑

~α∈∆
γε1,ε2(〈~a, ~α〉; Λ) +

∑

f,α

δε1,ε2(aα +mf ; Λ)

]
Ẑ inst(ε1, ε2,~a, ~m; t; Λ).

As in [27, §4.4], we get the following

(5.3) Ẑc1=kC(ε1, ε2,~a, ~m; t; Λ)

= exp

[
t

γ

((
r

12
(2r +Nf − 2) +

Nf

2

k2

r

)
(ε1 + ε2) + (

r

2
− k)

∑

f

mf

)]

×
∑

~k

Z

(
ε1, ε2 − ε1,~a+ ε1~k, ~m+

(
k

r
− 1

2

)
ε1~e; Λe

tε1/γ

)

× Z

(
ε1 − ε2, ε2,~a+ ε2~k, ~m+

(
k

r
− 1

2

)
ε2~e; Λe

tε2/γ

)
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by analyzing the fixed points in M̂(r, k, n) and then using a difference equation satisfied

by the perturbative term. Here ~k runs over

{
~k = (k1, . . . , kr) ∈ Qr

∣∣∣∣
∑

kα = 0, kα ≡ −k

r
mod Z

}
.

This is slightly different from the ~k which appeared in the parametrization of the fixed

point set M̂(r, k, n)T̃ : We subtract k/r from each factor so that the sum of entries becomes
0.

The complete proof will be given in [32], but is a straightforward modification of the
original one.

In [31, Th. 2.1] we proved the following vanishing theorem:

(5.4)
Ẑc1=0(ε1, ε2,~a, ~m; t; Λ)

Z(ε1, ε2,~a, ~m; Λ)
= 1 +O(tmax(r+1,2r−Nf )).

This is a generalization of the vanishing theorem for the pure theory (Nf = 0), which
was proved by the dimension counting argument in [26]. The proof of this generalization
requires the theory of perverse coherent sheaves in [29, 30, 31], but there is a similar flavor
with the original one. In particular, the exponent 2r−Nf , which is written γ here, comes

from the formula for deg
(
Eu(V ⊗K

1/2

C2 ⊗M) ∩ [M(r, n)]
)
= (2r −Nf)n = γn.

From (5.3) together with (5.4), we can prove

(1) ε1ε2 logZ(ε1, ε2,~a, ~m; Λ) is regular at ε1, ε2 = 0.
(2) The instanton part satisfies Z inst(ε1,−2ε1,~a, ~m; Λ) = Z inst(2ε1,−ε1,~a, ~m; Λ).

The proofs of these assertions are exactly as in [27, §5.2] and [26, Lem. 7.1] respectively.
They will be reproduced in [32] for this version, and are not repeated here.

We expand the partition function as in (3.4):

ε1ε2 logZ(ε1, ε2,~a, ~m; Λ)

= F0(~a, ~m; Λ) + (ε1 + ε2)H(~a, ~m; Λ) + ε1ε2A(~a, ~m; Λ) +
ε21 + ε22

3
B(~a, ~m; Λ) + · · · .

From the symmetry property (2) of Z, we see that H comes only from the perturbative
part. This is already explained above. As in [27, §5.3] (which has the sign mistake) we
have

H(~a, ~m; Λ) = −π
√
−1〈~a, ρ〉,

where ρ is one half of the sum of the positive roots.
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As in [27, §6] we can take the limit of (5.3) to get

(5.5) lim
ε1,ε2→0

Ẑc1=kC(ε1, ε2,~a, ~m; t; Λ)

Z(ε1, ε2,~a, ~m; Λ)

= exp

[
− 1

2

∑

f,f ′

∂2F0

∂mf∂mf ′

(
k

r
− 1

2

)2

+ A−B

− t

γ

{∑

f

(
k

r
− 1

2

)(
∂2F0

∂ log Λ∂mf

−mfr

)}
− 1

γ2

∂2F0

∂(log Λ)2
t2

2

]

×ΘEk

(
− 1

2π
√
−1

∂2F0

∂~a∂mf

(
k

r
− 1

2

)
− t

γ

1

2π
√
−1

∂2F0

∂~a∂ log Λ

∣∣∣∣∣ τ
)
,

where ΘEk
is the Riemann theta function with the characteristic Ek as in [27, §B]. The

period matrix τ is given by

τkl = − 1

2π
√
−1

∂2F0

∂ak∂al
.

Here we change the coordinate from (a2, . . . , ar) to the root system coordinate defined as

~a =
∑

aiα∨
i by simple coroots α∨

i = (0, . . . , 0,
i

1,
i+1

−1, 0, . . . , 0), i = 1, . . . , r.
In the r = 2 case, we have a1 = a1 = −a2 = −a. Therefore we need to note ∂/∂~a =

−∂/∂a when we use (5.5).
For a later purpose, we need another vanishing for c1 6= 0:

(5.6) Ẑc1=kC(ε1, ε2,~a, ~m; t; Λ) = O(tk(r−k))

for 0 < k < r. This is [31, Th. 2.5]. This is again proved by a version of the dimension
counting argument, and k(r−k) appears as the dimension of the Grassmannian of k-planes
in Cr.

5.4. Lower terms. We assume r = 2, Nf = 1 hereafter. Therefore γ = 3.
Let us define a function u by

(5.7) u := − 1

γ

(
∂F0

∂ log Λ
−m2

)
= a2 − 1

γ

∂F inst
0

∂ log Λ
.

In the formula in Theorem 4.4, this appears as the coefficient of x. Note that x is a variable
for the µ-class of the point. Its gauge theoretic interpretation is already implicitly used
in the proof of Theorem 4.4, but becomes clear if we look again the partition function as
follows: Consider

(5.8)

∑∞
n=0 Λ

γnι−1
0∗ π∗

(
ch2(E)/[0] ∩ Eu(V ⊗K

1/2
C2 ⊗M) ∩ [M(2, n)]

)

∑∞
n=0 Λ

γnι−1
0∗ π∗

(
Eu(V ⊗K

1/2
C2 ⊗M) ∩ [M(2, n)]

) ,

where [0] is the equivariant homology class of the origin. The denominator is nothing but
Z inst(ε1, ε2, a,m; Λ), and we have ch2(E)/[0] = a2 − nε1ε2. Therefore this is equal to

a2 − ε1ε2
γ

∂

∂ log Λ
logZ inst(ε1, ε2, a,m; Λ).
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From the expansion (3.4), this converges to (5.7) at ε1, ε2 = 0. In other words, the
function u is the limit of (5.8) at ε1, ε2 = 0.

This can be generalized as follows. A power up (p > 0) is the limit of (5.8) where
ch2(E)/[0] is replace by its pth power, since terms with higher derivatives of F inst

0 disappear
at ε1, ε2 = 0.

In [31, Th. 2.6] a general structural result of the blow-up formula was proved. An
integral

ι−1
0∗ π̂∗

(
etµ(C) ∩ Eu

(
V0 ⊗ p∗(K

1/2
C2 )⊗M

)
∩ [M̂(2, k, n)]

)

appearing in the correlation function on the blow-up, can be written as a linear combina-
tion of

ι−1
0∗ π̂∗

(
(ch2(E)/[0])p ∩ Eu

(
V ⊗K

1/2

C2 ⊗M
)
∩ [M(2, n− k(2− k)/4− j)]

)

for various p, j ≥ 0, where coefficients are in C[m, ε1, ε2][[t]]. (In higher rank cases, we
also need higher Chern classes.) Moreover, the coefficients depend on p, j (and k), but
not on n. Therefore the ratio

Ẑc1=C(ε1, ε2, a,m; t; Λ)

Z(ε1, ε2, a,m; Λ)

is a formal power series in t with coefficients in C[m, ε1, ε2, u,Λ]. Here the finiteness as
power series in u, Λ comes from the cohomological degree reason.

In particular, when we expand the ratio in t, we only get finitely many powers of Λ,
and the coefficients can be computed from the integrals over finitely many moduli spaces.
By using the combinatorial expressions of the partition and correlation functions, these
are really possible to compute. We use a Maple program to get

lim
ε1,ε2→0

Ẑc1=C(ε1, ε2, a,m; t; Λ)

Z(ε1, ε2, a,m; Λ)

= −Λt− t3

3!
Λu− t5

5!
Λ
(
u2 + 2mΛ3

)
− t7

7!
Λ
(
u3 + 6umΛ3 + 6Λ6

)
+O(t9).

(5.9)

In fact, we have computed the ratio, before taking limε1,ε2→0, but imposing ε1 + ε2 = 0
instead. Otherwise, the program runs very slow.

Let us check the cohomological degree, which we briefly mentioned above. We have
deg Λ = degm = 1, deg u = 2. Then the coefficient of tn has degree n.

6. Seiberg-Witten curves

In this section we determine coefficients F0, A, B of Z in terms of certain ‘periods’
of a family of elliptic curves, called the Seiberg-Witten curves. Our derivation of the
Seiberg-Witten curves is analogous to Fintushel-Stern’s method [11]: They described (in
fact, before Seiberg-Witten’s work) that the blow-up formula of Donaldson invariants is
given by elliptic integrals, associated with cubic curves of Weierstrass form. And the
moduli parameter u for the cubics is coupled to the µ-class of the point. We define u,
and derive cubic curves in the same way by using the partition function Z instead of
Donaldson invariants. The cubic curves are the Seiberg-Witten curves for the theory with
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one fundamental matter. In fact, our derivation is much simpler, as we already see the
theta function in the blow-up formula3

6.1. Elliptic curve. As before, we set

(6.1) τ := − 1

2π
√
−1

∂2F0

∂a2

and the corresponding elliptic curve Eτ with the period τ . We put

q = exp(π
√
−1τ) = exp

(
−1

2

∂2F0

∂a2

)
.

We have defined u in (5.7). Since

u = a2 +O(Λ),

we can take u as a variable instead of a2 if Λ is sufficiently small. This viewpoint will
be taken later since the curve Eτ will be explicitly given as a cubic curve so that its
coefficients are polynomials in u. This u is the coordinate of what Seiberg-Witten called
the u-plane, a family of vacuum states.

We realize the elliptic curve Eτ as C/(Zω + Zω′) = C/(Zω + Zωτ), where

(6.2) ω := −2π
√
−1

(
∂u

∂a

)−1

=

(
1

2π
√
−1

1

γ

∂2F0

∂a∂ log Λ

)−1

.

Using the Weierstrass ℘-function associated with Zω + Zω′, we can realize Eτ in the
Weierstrass form:

y2 = 4x3 − g2x− g3.

Then the blow-up formula for the c1 = C case (5.5) can be re-written in terms of the
σ-function:

lim
ε1,ε2→0

Ẑc1=C(ε1, ε2, a,m; t; Λ)

Z(ε1, ε2, a,m; Λ)
= − exp

[
A− B − t2

{
1

2γ2

∂2F0

∂ log Λ2
+

π2

6ω2
E2(τ)

}]
σ(t)

θ′11(0)

ω
.

We compare the expansion

e−Tt2σ(t) = t − T t3 +

(
T 2

2
− g2

2 · 5!

)
t5 +

(
−T 3

3!
+

Tg2
2 · 5! −

6g3
7!

)
t7 + · · ·

3In higher rank cases, the story becomes much more complicated, as we need to show that the theta
function is associated with a hyper-elliptic curve. See [32].
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with our computation of lower terms of the blow-up formula (5.9). We get

exp(A− B)
θ′11(0)

ω
= Λ,(6.3)

1

2γ2

∂2F0

∂ log Λ2
+

π2

6ω2
E2(τ) = −u

6
,(6.4)

g2 =
4

3
u2 − 4mΛ3,(6.5)

g3 = − 8

27
u3 +

4

3
umΛ3 − Λ6.(6.6)

In particular, the curve Eτ has the Weierstrass form

y2 = 4x3 − (
4

3
u2 − 4mΛ3)x+

8

27
u3 − 4

3
umΛ3 + Λ6.

Replacing x by x+ u/3, we get

(6.7) y2 = 4x2(x+ u) + 4mΛ3x+ Λ6.

This is nothing but the Seiberg-Witten curve for the theory with one fundamental matter,
determined at first in [38]. There is a vast literature on this curve. For example, [1] was
useful for the authors.

The discriminant ∆ = g32 − 27g23 is given by

(6.8) ∆ = −Λ6(16u3 − 16u2m2 − 72umΛ3 + 64m3Λ3 + 27Λ6).

Let e1 − u/3, e2 − u/3, e3 − u/3 be the solutions of the right hand side of (6.7) = 0.
We number them as in [2, p.361]:

(6.9)
e1 =

1

3

(π
ω

)2
(θ400 + θ401), e2 =

1

3

(π
ω

)2
(θ410 − θ401),

e3 = −1

3

(π
ω

)2
(θ410 + θ400).

We can revert the role of u and a. We consider u as a variable and introduce the cubic
curve (6.7). We define the function a by the formula (6.2). Since da/du 6= 0, we can
consider a (or a2) as a variable. Then we define F0 by (6.4).

The blow-up formula is further simplified as

lim
ε1,ε2→0

Ẑc1=C(ε1, ε2, a,m; t; Λ)

Z(ε1, ε2, a,m; Λ)
= −eut

2/6σ(t)Λ.

(cf. [27, §6.3].) This is the form of Fintushel-Stern’s blow-up formula for the Donaldson
invariants if we replace the curve appropriately, i.e., the Seiberg-Witten curve for the pure
theory.
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6.2. Seiberg-Witten differential. In this subsection, we write a as an integral of a
certain differential form dS on the Seiberg-Witten curve. It is the usual framework to
relate the Seiberg-Witten curve and the partition function. This is not necessary for our
computation of derivatives of F0, but we explain it for completeness.

Let Q(x) be the right hand side of (6.7). We set

dS :=
Q′(x)dx

4xy
.

We differentiate (6.7) to get
2ydy = Q′(x)dx.

Therefore

dS =
dy

2x
.

We differentiate (6.7) by u after setting y to be constant:

0 = Q′(x)
∂x

∂u

∣∣∣∣
y=const

+ 4x2.

Hence
∂

∂u
dS

∣∣∣∣
y=const

= − dy

2x2

∂x

∂u

∣∣∣∣
y=const

=
2dy

Q′(x)
=

dx

y
.

Therefore

(6.10) a =
1

2π
√
−1

∫

A

dS

up to a constant independent of u.
Note that dS has a pole at x = 0. We have y = ±Λ3, hence the residue is

Res
x=0,y=±Λ3

dS = ±m.

Therefore we need to specify the A-cycle in (6.10), otherwise the residue is well-defined
only up to Zm. This is possible by studying the perturbative part of the integral, but we
leave the details to [32].

6.3. Genus 1 part. We next determine the coefficients A and B. This was done in [27,
§7.1] for the pure theory. We use the same method.

Consider the blow-up formula (5.3) for c1 = C and take the coefficient of t0 · (ε1 + ε2).
By (5.6) it is zero. As in [loc. cit.] we get

∂

∂a
(A− 1

3
B) = −1

3

∂

∂a
log θ′11(0).

Therefore we have

exp(A− 1

3
B) = Cθ′11(0)

−1/3

for some constant C independent of a. Together with (6.3) we get

expA =
(
C3Λ−1ω−1

)1/2
, expB =

(
CΛ−1ω−1

)3/2
θ′11(0) = C3/2(2π)−1/2Λ−3/2∆1/8,

where ∆ = 16 (π/ω)12 (θ′11(0)/π)8 is the discriminant.
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The perturbative part of expA is
(−2

√
−1a

Λ

)1/2

.

On the other hand, ω−1/2 = (−2π
√
−1)−1/2(∂u/∂a)1/2 has

(−2π
√
−1)−1/2

√
2a.

Therefore

expA

(−
√
−1

Λ

∂u

∂a

)−1/2

has the perturbative part 1. On the other hand, from the discussion above, this is a con-
stant independent of a. From the degree consideration as in [loc. cit.], it is a homogeneous
element. However the instanton part is a formal power series in Λ/a and m/a. Therefore
it must be 1. Hence

(6.11) expA =

(−
√
−1

Λ

∂u

∂a

)1/2

, expB =
√
−1Λ−3/2∆1/8.

6.4. Derivatives of F0. We will redo the computation in this subsection at the point
a = m again later, so the reader can safely jump to the next section. But we just want to
point out that the derivatives of F0 can be computed before specializing a = m.

Let us re-write the blow-up formula (5.5) for c1 = 0 in terms of the σ-function:

(6.12) lim
ε1,ε2→0

Ẑc1=0(ε1, ε2, a,m; t; Λ)

Z(ε1, ε2, a,m; Λ)

= θ01(0) exp

[
−1

8

∂2F0

∂m2
+ A− B − η

ω

(
ω

4π
√
−1

∂2F0

∂a∂m

)2

+ t

{
1

γ

(
m+

1

2

∂2F0

∂ log Λ∂m

)
+

η

2π
√
−1

∂2F0

∂a∂m

}
+

ut2

6

]
σ3(t−

ω

4π
√
−1

∂2F0

∂a∂m
),

where η = ζ(ω/2) = π2E2(τ)/6ω. Taking the coefficients of t0, t1, t2 and comparing with
(5.4), we get

θ01(0) exp

[
−1

8

∂2F0

∂m2
+ A−B − ηω

(
1

4π
√
−1

∂2F0

∂a∂m

)2
]
σ3(−

ω

4π
√
−1

∂2F0

∂a∂m
) = 1,(6.13)

1

γ

(
m+

1

2

∂2F0

∂ log Λ∂m

)
+

η

2π
√
−1

∂2F0

∂a∂m
+

d

dt
(log σ3)(−

ω

4π
√
−1

∂2F0

∂a∂m
) = 0,(6.14)

u

3
+

d2

dt2
(log σ3)(−

ω

4π
√
−1

∂2F0

∂a∂m
) = 0.(6.15)

Since the second derivative of log σ is (−1) times the Weierstrass ℘-function, we have

u

3
= − d2

dt2
(log σ3)(−

ω

4π
√
−1

∂2F0

∂a∂m
) = ℘(

ω3

2
− ω

4π
√
−1

∂2F0

∂a∂m
)(6.16)
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from the last equation. Therefore

− ω

4π
√
−1

∂2F0

∂a∂m
=

∫ 0

∞

dx

y
− ω3

2
=

∫ 0

e3−u/3

dx

y
,

where y is as in (6.7) and u/3 is replaced by 0 since the quadratic term of (6.7) is 4u.
Note that this 0 is the point where dS has a pole.

7. Partition functions at the singular point

Recall that we need to specialize a = m in Theorem 4.4. At this point, the Seiberg-
Witten curve is singular, and many formulas are simplified.

7.1. The special point a = m. Recall that the period τ of the Seiberg-Witten curve
was given by the second derivative of F0 with respect to a (6.1). Its perturbative part
is given by (5.2). In particular, q = exp(π

√
−1τ) vanishes at a = m since it contains a

factor −a+m. Therefore θ00 → 1, θ01 → 1, θ10 → 0 at a = m, and hence we have e2 = e3
from (6.9). The cycle encircling e2, e3 vanishes and the curve develops singularities.

The blow-up formula (6.12) is not suitable for the specialization e2 = e3, as it contains
an expression ∂2F0/∂a∂m, which has log(−a+m)/Λ in the perturbative part. We observe
that

ω3

2
− ω

4π
√
−1

∂2F0

∂a∂m
= − ω

4π
√
−1

(
∂2F0

∂a2
+

∂2F0

∂a∂m

)

does not contain the term log(−a+m)/Λ in the perturbative part. Hence we can evaluate
this term at a = m. Therefore we use σ, instead of σ3 in (6.12):

lim
ε1,ε2→0

Ẑc1=0(ε1, ε2,~a, ~m; t; Λ)

Z(ε1, ε2,~a, ~m; Λ)

=
√
−1Λ exp

[
− 1

8

(
∂2F0

∂m2
+ 2

∂2F0

∂a∂m
+

∂2F0

∂a2

)
− ηω

{
1

4π
√
−1

(
∂2F0

∂a∂m
+

∂2F0

∂a2

)}2

+
t

γ

{
1

2

(
∂2F0

∂ log Λ∂m
− 2m

)}
+ π

√
−1

t

ω

+
tη

2π
√
−1

(
∂2F0

∂a∂m
+

∂2F0

∂a2

)
+

t2u

6

]

× σ

(
t− ω

4π
√
−1

(
∂2F0

∂a∂m
+

∂2F0

∂a2

))
.

Now we can specialize e2 = e3: the σ-function becomes

σ(t) =
ω

π
sin(

π

ω
t) exp

[
1

6

(π
ω

)2
t2
]
.

We also note

ηω =
π2

6
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at e2 = e3. Therefore

lim
ε1,ε2→0

Ẑc1=0(ε1, ε2,~a, ~m; t; Λ)

Z(ε1, ε2,~a, ~m; Λ)

=

√
−1ωΛ

π
exp

[
− 1

8

(
∂2F0

∂m2
+ 2

∂2F0

∂a∂m
+

∂2F0

∂a2

)

+
t

γ

{
1

2

(
∂2F0

∂ log Λ∂m
− 2m

)}
+ π

√
−1

t

ω
+

t2

6

(
u+

(π
ω

)2)
]

× sin

(
π

ω
t− 1

4
√
−1

(
∂2F0

∂a∂m
+

∂2F0

∂a2

))
.

As before, we take the coefficients of t0, t1, t2, compare with (5.4) and get

1 =

√
−1ωΛ

π
exp

[
−1

8

(
∂2F0

∂m2
+ 2

∂2F0

∂a∂m
+

∂2F0

∂a2

)]

× sin

(
− 1

4
√
−1

(
∂2F0

∂a∂m
+

∂2F0

∂a2

))
,

(7.1)

0 =
1

γ

{
1

2

(
∂2F0

∂ log Λ∂m
− 2m

)}
+

π
√
−1

ω

+
π

ω
cot

(
− 1

4
√
−1

(
∂2F0

∂a∂m
+

∂2F0

∂a2

))
,

(7.2)

0 =
1

3

(
u+

(π
ω

)2)
−
(π
ω

)2
sin−2

(
− 1

4
√
−1

(
∂2F0

∂a∂m
+

∂2F0

∂a2

))
.(7.3)

7.2. Miscellaneous identities. We assume a = m hereafter, and solve equations (7.1,
7.2, 7.3) to write down various derivatives of F0 explicitly.

Since e1−u/3 = 2/3 (π/ω)2−u/3, e2−u/3 = e3−u/3 = −1/3 (π/ω)2−u/3 is a solution
of y2 = 4x2(x+ u) + 4aΛ3x+ Λ6, we have

4

(
x+

u

3
+

1

3

(π
ω

)2)2(
x+

u

3
− 2

3

(π
ω

)2)
= 4x2(x+ u) + 4aΛ3x+ Λ6.

Thus
(
u+

(π
ω

)2)2(
u− 2

(π
ω

)2)
=

27

4
Λ6,(7.4)

(
u+

(π
ω

)2)(
u−

(π
ω

)2)
= 3aΛ3.(7.5)

This suggests the possibility to replace a by u − (π/ω)2 or u + (π/ω)2. Therefore we write
various functions in terms of u and π/ω instead of a. In fact, we will find that it is even
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more natural to introduce a function T given by

T :=
1

3

(
u+

(π
ω

)2)
=

1

3

(
u− 1

4

(
∂u

∂a

)2
)
.

Up to constant multiple, this is the contact term for surfaces in the physics literature,
say in [22, 19]. It will give the contribution of the intersection number (α2) in Donaldson
invariants in view of our formula in Theorem 4.4, thanks to (7.7) proved just below.

The perturbative parts of u and 1/4 (∂u/∂a)2 cancel out, so the perturbative part of T is
0. An explicit computation shows

(7.6) T =
1

2a
Λ3 +O(Λ6).

By (6.4) together with E2(τ) = 1 when a = m, we have

(7.7)
∂2F0

∂(log Λ)2
= −3

(
u+

(π
ω

)2)
= −9T.

Since ∆ vanishes at a = m, we have ∂∆
∂a

+ ∂∆
∂m

= 0. Therefore we get

0 =

(
3u2 − 2a2u− 9

2
aΛ3

)(
∂u

∂a
+

∂u

∂m

)
− 2u2a− 9

2
uΛ3 + 12a2Λ3

from (6.8). Using (7.4, 7.5), we find

−2u2a− 9

2
uΛ3 + 12a2Λ3 =

4

Λ3

(π
ω

)6
T,

3u2 − 2a2u− 9

2
aΛ3 = − 4

Λ6

(π
ω

)6
T 2.

(7.8)

Therefore

(7.9) − 1

γ

(
∂2F0

∂ log Λ∂m
− 2m

)
− 2π

√
−1

ω
=

∂u

∂a
+

∂u

∂m
= Λ3T−1

Plugging (7.9) to (7.2), we obtain

π

ω
cot

(
− 1

4
√
−1

(
∂2F0

∂a∂m
+

∂2F0

∂a2

))
=

1

2
Λ3T−1.

The left hand side is

π
√
−1

ω

exp
[
−1

2

(
∂2F0

∂a∂m
+ ∂2F0

∂a2

)]
+ 1

exp
[
−1

2

(
∂2F0

∂a∂m
+ ∂2F0

∂a2

)]
− 1

.
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Hence

(7.10) exp

[
−1

2

(
∂2F0

∂a∂m
+

∂2F0

∂a2

)]

= −
(
2π

√
−1

ω
+ Λ3T−1

)/ (
2π

√
−1

ω
− Λ3T−1

)

=
1

4
T−1

(
2π

√
−1

ω
+ Λ3T−1

)2

,

where we have used (7.4) in the last equality.
By (7.1) and (7.3) we have

(7.11) exp

[
−1

4

(
∂2F0

∂m2
+ 2

∂2F0

∂a∂m
+

∂2F0

∂a2

)]
= − 1

Λ2
T.

By (7.10) and (7.11) we obtain

(7.12) exp

[
−1

2

(
∂2F0

∂m2
+

∂2F0

∂a∂m

)]
=

4T 3

Λ4

(
2π

√
−1

ω
+ Λ3T−1

)−2

.

7.3. Computation of instanton parts. Since we will express Mochizuki’s formula in
terms of instanton parts of derivatives of F0 and A, B, we need to compute them. Since
their perturbative parts are explicit functions, we just subtract them from the full partition
functions. We denote instanton parts by putting ‘inst’ as sub/superscripts.

We have

(7.13)
1

γ

∂F inst
0

∂ log Λ
=

1

γ

(
∂F0

∂ log Λ
+ 2a2

)
= −u+ a2

from the perturbative part of ∂F0/log Λ and the definition of u in (5.7).
Since exp [−1/4 (∂2F0/∂m2 + 2∂2F0/∂a∂m + ∂2F0/∂a2)] has − (2a/Λ)−1 as the perturbative part,

we get

(7.14) exp

[
−1

4

(
∂2F inst

0

∂m2
+ 2

∂2F inst
0

∂a∂m
+

∂2F inst
0

∂a2

)]
=

2a

Λ3
T

from (7.11). Note that the left hand side starts with 1 as a formal power series in Λ. This
is compatible with the expansion of the right hand side in (7.6).

In the same way, we get

(7.15) exp

[
−1

2

(
∂2F inst

0

∂a∂m
+

∂2F inst
0

∂a2

)]
=

1

4

(
2a

Λ

)3

T−1

(
2π

√
−1

ω
+ Λ3T−1

)2

from (7.10), and

(7.16) exp

[
−1

2

(
∂2F inst

0

∂m2
+

∂2F inst
0

∂a∂m

)]
=

2T 3

Λ3a

(
2π

√
−1

ω
+ Λ3T−1

)−2

from (7.12).
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We need a trick to compute the instanton part of q = exp (−1/2∂2F0/∂a2), since it vanishes
at a = m. For the moment we no longer set a = m and consider

q2inst = exp

(
−∂2F inst

0

∂a2

)
= q2

(−2
√
−1a

Λ

)8(
(m+ a)(m− a)

Λ2

)−1

=
q2

m− a

(−2
√
−1a

Λ

)8(
m+ a

Λ2

)−1

.

Since q vanishes at a = m, we get

q2inst
∣∣
m=a

= −Λ
∂(q2)

∂a

∣∣∣∣
m=a

(
2a

Λ

)7

.

The discriminant ∆ has an expansion ω12∆ = (2π)12(q2 − 24q4 + · · · ), so

ω12 ∂∆

∂a

∣∣∣∣
m=a

=
∂

∂a
(ω12∆)

∣∣∣∣
m=a

= (2π)12
∂(q2)

∂a

∣∣∣∣
m=a

.

We differentiate (6.8) by a to get

(7.17)
∂∆

∂a

∣∣∣∣
m=a

= −16Λ6

(
3u2 − 2a2u− 9

2
aΛ3

)
∂u

∂a
= −

√
−1

(
2π

ω

)7

T 2,

where we have used (7.8). Therefore

(7.18) q2inst = exp

(
−∂2F inst

0

∂a2

)
= Λ

√
−1

(
2π

ω

)−5(
2a

Λ

)7

T 2.

It is to be understood that all functions are evaluated at a = m unless an equation
contains an expression ‘m− a’.

Substituting (7.18) into (7.15) we get

exp

(
−∂2F inst

0

∂a∂m

)
=

1√
−1Λ

T−4

(
2a

Λ

)−1(
2π

ω

)5(
π
√
−1

ω
+

Λ3

2T

)4

.

Then we substitute this into (7.16) to get

(7.19) exp

(
−∂2F inst

0

∂m2

)
=

√
−1

Λ7
T 10

(
2a

Λ

)−1(
2π

ω

)−5(
π
√
−1

ω
+

Λ3

2T

)−8

.

Let us consider instanton parts of other derivatives: we have

(7.20)
∂2F inst

0

∂a∂ log Λ
+

∂2F inst
0

∂m∂ log Λ
= 6a− 3Λ3T−1

from the definition (5.7) of u and (7.9). We also have

(7.21)
∂2F inst

0

∂m∂ log Λ
= −3

(
Λ3T−1 +

2π
√
−1

ω

)
,

from the definition of ω (6.2) and its perturbative part.
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From (6.11) we have

(7.22) expAinst =

(
1

2a

∂u

∂a

)1/2

=

(
1√
−1a

π

ω

)1/2

.

In order to compute the instanton part of B, we use the same technique as for q,
since B also vanishes at a = m. The perturbative part of B is 1/2 log (−2

√
−1a/Λ) +

1/8 log ((m−a)(m+a)/Λ2) . Thus we have

expBinst =
√
−πΛ−3/2

(
∆

m− a

)1/8(−2
√
−1a

Λ

)−1/2(
m+ a

Λ2

)−1/8

from (6.11). Therefore at m = a, we have

exp 8Binst = Λ−11

(
−∂∆

∂a

)(
2a

Λ

)−5

.

Using (7.17), we get

(7.23) exp 8Binst =
√
−1Λ−11

(
2π

ω

)7(
2a

Λ

)−5

T 2.

7.4. The variable φ. In the partition function, we need to substitute Λ4/3a−1/3 into Λ.
We denote the substitution by •|Λ=Λ4/3a−1/3 .

Let T := T |Λ=Λ4/3a−1/3 . By (7.6) it has the expansion Λ4/2a2 + · · · . So we can choose

the branch of its square root so that it starts as
√
T = Λ2/

√
2a + · · · . We set

(7.24) φ :=

√
T

Λ
.

From (7.4,7.5) we have
(
u|Λ=Λ4/3a−1/3 +

(π
ω

)2∣∣∣∣
Λ=Λ4/3a−1/3

)2(
u|Λ=Λ4/3a−1/3 − 2

(π
ω

)2∣∣∣∣
Λ=Λ4/3a−1/3

)
=

27

4
Λ8a−2,

(
u|Λ=Λ4/3a−1/3 +

(π
ω

)2∣∣∣∣
Λ=Λ4/3a−1/3

)(
u|Λ=Λ4/3a−1/3 −

(π
ω

)2∣∣∣∣
Λ=Λ4/3a−1/3

)
= 3Λ4.

From the second equation and the definition of φ, we get
(7.25)(

1

Λ2
u

)∣∣∣∣
Λ=Λ4/3a−1/3

=
1

2

(
3φ2 + φ−2

)
,

(
1

Λ2

(π
ω

)2)∣∣∣∣
Λ=Λ4/3a−1/3

=
1

2

(
3φ2 − φ−2

)
.

Substituting this to the first equation, we obtain

(7.26)
1

4
Λ2a−2 = φ4

(
−1

2
φ2 +

1

2φ2

)
=

1

2
φ2
(
−φ4 + 1

)
.

Therefore

(7.27)
da

a
= − dφ

φ(1− φ4)
(1− 3φ4).
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By the above formulas, all the terms computed in §7.3 can be expressed merely by φ. Hence
we will treat φ as a variable instead of a. We will write the differential B(ξ1, ξ; a)da, of
which we take the residue in Mochizuki’s formula in terms of φ. The explicit formula will
be given in the next section, but it is already clear that it will involve several square roots
and rational expressions in φ, when we expand it as a series in x and z. We will see that
square roots, in fact, do not appear, so we get a rational differential in φ defined over P1.

We will use the residue theorem to re-write Mochizuki’s formula as sum of residues at
other poles in the next section. But it is instructive to see the meaning of poles at this
stage.

Since φ = Λ/
√
2a+ · · · , we have φ = 0 at a = ∞. By (7.26) there are other point φ4 = 1

giving a = ∞. By (7.27) they are indeed poles of the differential. From (7.25) we have

u2
∣∣
Λ=Λ4/3a−1/3 = 4Λ4.

As u is coupled with the variable x for the µ-class of the point in the formula in Theo-
rem 4.4, these correspond to the KM-simple type condition in Definition 2.2. In [40] it
was noted that the Seiberg-Witten curve (for the pure theory) has singularities at those
points, and they give the Seiberg-Witten invariant contribution to Donaldson invariants.
Therefore even before the actual calculation, it is natural to expect that the residues at
φ4 = 1 give what is expected in Witten’s conjecture (1.1).

There are other poles, which is already seen in (7.25), at φ4 = 1/3. At those points
π/ω =

√
−1/2∂u/∂a vanishes. It means that the Seiberg-Witten curve completely degenerates

as we have e1 = e2 = e3. It is called a superconformal point in the physics literature, and
is the origin of the superconformal simple type condition [20]. Therefore it is natural to
expect that the residue at φ4 = 1/3 is related to the superconformal simple type condition.
We will see that this is indeed so.

8. Computation

8.1. Explicit expression of the differential. Substituting all terms computed in the
previous section into the formula in Theorem 4.4, we obtain
(8.1)

B(ξ̃1, ξ; a)da = − (−1)
(ξ,ξ+KX )−(K2

X )−(KX,ξ̃1)

2
+χh(X) 1− 3φ4

1− φ4

dφ

φ

× exp

[
−Λ2

2

(
3φ2 + φ−2

)
x− 1

2
φ2Λ2(α2)z2

]
φ−((ξ−KX)2)−(KX)2−3χh(X)

×
(

1√
2
φ−2

(√
1− φ4 −

√
1− 3φ4

))(ξ−KX ,ξ̃1)

× exp

(
Λ√
2
φ−1

(√
1− 3φ4(ξ̃1, α)z −

√
1− φ4(ξ −KX , α)z

))

×
(√

2
√
1− 3φ4

)(K2
X)−χh(X)

.
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This is a simple substitution except that we need to take square roots or 8th roots for
some expressions. For example, the term with ((ξ −KX)

2) is

2−1/2

(
2a

Λ

)
exp

[
1

8

(
∂2F inst

0

∂m2
+ 2

∂2F inst
0

∂a∂m
+

∂2F inst
0

∂a2

)]∣∣∣∣∣
Λ=Λ4/3a−1/3

.

From (7.14) the square of this is equal to Λ2/T. Since the leading term of the above is√
2a/Λ, we find that it is equal to Λ/

√
T = φ−1 from our choice of

√
T. We use the same

argument for other expressions involving square roots.

When we expand Ã(ξ1, y; a) into a formal power series in z, x as
∑

k,l Ak,lz
kxl, we

will be interested in the case k + 2l = 4n − (ξ2) − 3χh(X) = dimMH(y), otherwise the
residue at φ = 0 vanishes by the cohomology degree reason. Note also that dimMH(y) ≡
−(ξ2)− 3χh(X) mod 4 is independent of n. Therefore we decompose B(ξ̃1, ξ; a) as

B(ξ̃1, ξ; a) = B(0)(ξ̃1, ξ; a) + B(1)(ξ̃1, ξ; a) + B(2)(ξ̃1, ξ; a) + B(3)(ξ̃1, ξ; a)

according to (k + 2l) mod 4. If we write variables (x, z), those are given explicitly as

B(p)(ξ̃1, ξ; a)(x, z) =
1

4

3∑

q=0

(
√
−1)−qpB(ξ̃1, ξ; a)((−1)qx, (

√
−1)qz).

We will be concerned with B(dimMH(y))(ξ̃1, ξ; a), where we understand dimMH(y) modulo
4 as explained above.

We will be interested in the sum over all Seiberg-Witten classes ξ̃1. Therefore we can
combine the contribution for ξ̃1 and −ξ̃1, using SW(−ξ̃1) = (−1)χh(X) SW(ξ̃1). Hence we
will be interested in

(8.2) B(dimMH (y))(ξ̃1, ξ; a) + (−1)χh(X)B(dimMH (y))(−ξ̃1, ξ; a).

Proposition 8.3. (1) The combination B(p)(ξ̃1, ξ; a)da+(−1)χh(X)B(p)(−ξ̃1, ξ; a)da is un-

changed under the the sign change of
√
1− 3φ4.

(2) Suppose that p ≡ dimMH(y) mod 2. Then B(p)(ξ̃1, ξ; a)da is unchanged under the

simultaneous sign change of
√

1− φ4 and
√

1− 3φ4.

In particular, if p ≡ dimMH(y) mod 2, B(p)(ξ̃1, ξ; a)da+(−1)χh(X)B(p)(−ξ̃1, ξ; a)da con-

tains even powers of
√

1− 3φ4 and
√
1− φ4, and hence is a rational 1-form in φ.

(3) The expression B(dimMH (y))(ξ̃1, ξ; a)da+(−1)χh(X)B(dimMH (y))(−ξ̃1, ξ; a)da is a ratio-

nal 1-form in φ4.

Proof. (1) Looking at (8.1), we see that the replacement of
√
1− 3φ4 by −

√
1− 3φ4

has the same effect as the replacement of ξ̃1 by −ξ̃1 together with the multiplication by
(−1)χh(X), as

1√
2φ2

(
√

1− φ4 +
√
1− 3φ4) =

{
1√
2φ2

(
√

1− φ4 −
√
1− 3φ4)

}−1

and
(−1)(KX ,KX−ξ̃1)/2 = (−1)(KX ,KX+ξ̃1)/2(−1)(K

2
X).
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Therefore the combination B(p)(ξ̃1, ξ; a)da+ (−1)χh(X)B(p)(−ξ̃1, ξ; a)da is unchanged.

(2) Looking at (8.1), we find that the replacement
√

1− φ4,
√

1− 3φ4 by −
√

1− φ4,

−
√

1− 3φ4 has the same effect as the replacement of (x, z) by (x,−z) together with

the multiplication by (−1)(ξ−KX ,ξ̃1)+(K2
X)−χh(X). From the definition, the first replacement

gives the multiplication by (−1)p. Now the assertion follows from the following:

(ξ −KX , ξ̃1) + dimMH(y) ≡ (ξ −KX , ξ̃1) + (ξ2) + χh(X)

≡ (ξ −KX , KX) + (ξ,KX) + χh(X) ≡ (K2
X)− χh(X) (mod 2).

(8.4)

For a later purpose we need a refinement:

(ξ −KX , ξ̃1) + (K2
X) + 3χh(X) ≡ (ξ −KX , ξ̃1) + (K2

X)− (ξ2)− dimMH(y) (mod 4)

= (ξ −KX , ξ̃1 −KX) + (ξ,KX − ξ)− dimMH(y).

(8.5)

(3) Looking at (8.1) again, we find that the replacement of φ by
√
−1φ has the same

effect as the replacement (x, z) by (−x,−
√
−1z) together with the multiplication by

(−1)(ξ−KX ,ξ̃1)(
√
−1)−((ξ−KX)2)−(KX)2−3χh(X).

The first replacement gives the multiplication by (
√
−1)−dimMH(y). Therefore the assertion

follows from

− dimMH(y)− 2(ξ −KX , ξ̃1)−
{
((ξ −KX)

2) + (K2
X) + 3χh(X)

}

≡ (ξ2) + 3χh(X)− 2(ξ −KX , KX)−
{
((ξ −KX)

2) + (K2
X) + 3χh(X)

}
≡ 0 (mod 4).

�

From the form of B(ξ̃1, ξ; a)da in (8.1), we find that the differential (8.2) has poles
possibly only at φ4 = 0, ∞, 1 and 1/3. Mochizuki’s formula is given by the residue at
φ4 = 0. The power of φ, containing −(ξ − KX)

2 is very negative since ξ is sufficiently
ample when we apply Mochizuki’s formula to compute Donaldson invariants. Therefore
it is not so easy to compute the residue at φ4 = 0 directly. Therefore we use the residue
theorem (

Res
φ4=0

+ Res
φ4=∞

+ Res
φ4=1

+ Res
φ4=1/3

)
[the differential (8.2)] = 0,

to compute residues at ∞, 1, 1/3 instead.

8.2. Residue at φ = ∞. We first treat the simplest (possible) pole φ = ∞. Recall that

we expand B(ξ̃1, ξ; a)da as formal power series in x, z and take coefficients of xkzl with

k+2l = 4n−(ξ2)−3χh(X) = dimMH(y). Let us denote this part as B[dimMH(y)](ξ̃1, ξ; a)da.

The residue at φ4 = 0 is the same as that of Ã(ξ1, y; a) by the cohomological degree reason,

but it is not equal to Ã(ξ1, y; a) itself as we still take the sum over all n. Recall that when

we use Mochizuki’s formula in Theorem 4.1, we expand B(dimMH (y))(ξ̃1, ξ; a)da in x, z,
compute the residue at φ4 = 0, and then take the sum over y. Thus we actually need to
compute the residue of B[dimMH (y)](ξ̃1, ξ; a)da.
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Proposition 8.6. B[dimMH(y)](ξ̃1, ξ; a)da+ (−1)χh(X)B[dimMH (y)](−ξ̃1, ξ; a)da is regular at

φ4 = ∞, if χ(y) > 0.

Proof. Terms appearing in (8.1) have the following order of vanishing at φ = ∞:

Order
φ=∞

(φ) = −1, Order
φ=∞

(
dφ

φ
) = −1, Order

φ=∞
(3φ2 + φ−2)k = −2k,

Order
φ=∞

(φ−1
√

1− φ4)l = −l, Order
φ=∞

(φ−1
√

1− 3φ4)l = −l,

Order
φ=∞

(
√
1− 3φ4) = −2

Therefore B[dimMH (y)](ξ̃1, ξ) + (−1)χh(X)B[dimMH(y)](−ξ̃1, ξ) has zero of order at least

− 1 + [((ξ −KX)
2) + (K2

X) + 3χ(OX)]− dimMH(y)− 2(K2
X) + 2χ(OX)

= (ξ, ξ − 2KX) + 5χ(OX)− dimMH(y)− 1.

This is equal to 4χ(y)− 1. The assertion follows. �

8.3. Residue at φ4 = 1. Next we study the residue at φ4 = 1. We will show that it is
identified with Witten’s formula.

By (8.1), the residue of B(ξ̃1, ξ; a)da at φ = 1 is given by

− 1

2
(−1)

(ξ,ξ+KX )−(K2
X )−(KX,ξ̃1)

2
+χh(X)e−2Λ2x− 1

2
Λ2(α2)z2

(√
2
√
−2
)(K2

X)−χh(X)

×
(

1√
2

(
−
√
−2
))(ξ−KX ,ξ̃1)

exp

(
Λ√
2

√
−2(ξ̃1, α)z

)

= − (−1)
(ξ,ξ+KX )−(K2

X )−(KX,ξ̃1)

2
+(K2

X) 2(K
2
X)−χh(X)−1 exp

[
−2Λ2x− 1

2
Λ2(α2)z2

]

×
(√

−1
)−{(ξ−KX ,ξ̃1)+(K2

X)−χh(X)}
exp

(
Λ
√
−1(ξ̃1, α)z

)
.

By (8.5)

(ξ −KX , ξ̃1) + (K2
X)− χh(X) ≡ (ξ −KX , ξ̃1 −KX) + (ξ,KX − ξ)− dimMH(y) mod 4.

We combine the first two terms, which are even, with the factor coming from ((K2
X) +

(KX , ξ̃1))/2:

− (KX , KX + ξ̃1)

2
+ (ξ −KX ,

ξ̃1 −KX

2
) +

(ξ,KX − ξ)

2
= −(ξ, ξ − ξ̃1)

2
− (KX , ξ̃1)

≡ (ξ, ξ − ξ̃1)

2
− (K2

X) (mod 2).

Hence we get

Res
φ=1

B(ξ̃1, ξ; a)da = − (−1)
(ξ,ξ+KX )+(ξ,ξ−ξ̃1)

2 2(K
2
X)−χh(X)−1 exp

[
−2Λ2x− 1

2
Λ2(α2)z2

]

×
(√

−1
)dimMH (y)

exp
(
Λ
√
−1(ξ̃1, α)z

)
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and
1

2
Res
φ=1

[
B(dimMH(y))(ξ̃1, ξ; a)da+ (−1)χh(X)B(dimMH(y))(−ξ̃1, ξ; a)da

]

= − (−1)
(ξ,ξ+KX )+(ξ,ξ−ξ̃1)

2 2(K
2
X)−χh(X)−3

×
[
e−2Λ2x− 1

2
Λ2(α2)z2

{(√
−1
)dimMH(y)

eΛ
√
−1(ξ̃1,α)z +

(√
−1
)− dimMH(y)

e−Λ
√
−1(ξ̃1,α)z

}

+ e2Λ
2x+ 1

2
Λ2(α2)z2

{
e−Λ(ξ̃1,α)z + (−1)− dimMH (y) eΛ(ξ̃1,α)z

}]
,

where we have used (ξ, ξ̃1) + χh(X) ≡ dimMH(y) (mod 2) (cf. (8.4)). The residues at
φ =

√
−1, −1, −

√
−1 are the same as above by Proposition 8.3(3). Thus we multiply the

above by 4 for the contribution from φ4 = 1.
This contribution satisfies the KM-simple type condition, i.e., it is killed by (∂/∂x)2 −

4Λ4. If we consider the contribution to the Donaldson series Dξ, we get

−(−1)
(ξ,ξ+KX )

2 2(K
2
X)−χh(X)+1e2Λ

2x+ 1
2
Λ2(α2)z2

∑

ξ̃1

SW(ξ̃1) (−1)
(ξ,ξ−ξ̃1)

2 e−Λ(ξ̃1,α)z.

Replacing ξ̃ by −ξ̃, removing the sign factor (−1)(ξ,ξ+KX)/2 as in §2.2 and multiplying with
the 2 from Mochizuki’s convention, we get the right hand side of (1.1) with the opposite
sign. Therefore, if the residue at φ4 = 1/3 vanishes, we obtain (1.1).

8.4. Residue at φ4 = 1/3.

Proposition 8.7. Suppose that X is of superconformal simple type. Then
∑

ξ̃1

SW(ξ̃1)B(dimMH (y))(ξ̃1, ξ; a)da

is regular at φ4 = 1/3.

Proof. Let

f(λ) :=
∑

ξ̃1

(−1)
(KX,KX+ξ̃1)

2 SW(ξ̃1)λ
(ξ−KX ,ξ̃1)

{
(−λ + λ−1)(ξ̃1, α)− (λ+ λ−1)(ξ −KX , α)

}k

,

where we assume k has the same parity as dimMH(y). By (8.4), we have f(λ) =

(−1)χh(X)−(K2
X )f(−λ).

By the superconformal simple type condition, we have

f (n)(1) = 0 for n = 0, . . . , χh(X)− (K2
X)− 3.

Therefore f(λ) ∈ (λ− 1)χh(X)−(K2
X )−2C[λ±]. Since f(−λ) is equal to f(λ) up to sign, we

also have f(λ) ∈ (λ+ 1)χh(X)−(K2
X )−2C[λ±]. Therefore

f(λ) ∈ (λ− λ−1)χh(X)−(K2
X )−2C[λ±].

From this we have the assertion by substituting 1/
√
2φ−2(

√
1− φ4 −

√
1− 3φ4) to λ . �
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Next we study the converse direction:

Proposition 8.8. Suppose that

Res
φ4=1/3


∑

ξ̃1

SW(ξ̃1)B(dimMH (y))(ξ̃1, ξ; a)da




depends only on (ξ mod 2) up to sign. Then X is of superconformal simple type.

Since the residues at the other poles depend only on (ξ mod 2) up to sign, the as-
sumption is satisfied. Therefore X is of superconformal simple type. Then the residue at
φ4 = 1/3 vanishes by the previous proposition, and the sum of the residues at φ4 = 0 and
φ4 = 1 is zero. This proves Witten’s conjecture (1.1).

Before starting the proof of Proposition 8.8, we give some preparation.
We fix ξ◦ and consider ξ = KX + t(ξ◦ − KX) with t ∈ 2Z≥0 + 1 as a function in t.

Replacing ξ̃1 by −ξ̃1 if necessary, we may assume (ξ◦ −KX , ξ̃1) ≥ 0. We expand (8.1) by
using the binomial theorem:

1

2

(
B(dimMH(y))(ξ̃1, ξ; a)da+ (−1)χh(X)B(dimMH(y))(−ξ̃1, ξ; a)da

)

= − (−1)
(ξ,ξ+KX )−(K2

X )−(KX,ξ̃1)

2 2(K
2
X)−χh(X)+1 φ4

1− φ4

dφ

φ

∑

i,j,k,l

φ−((ξ−KX)2)+(K2
X)−5χh(X)+k+2l

× (−1)i+k−j+(K2
X)−χh(X)Λk

(
(ξ −KX , ξ̃1)

i

)(
k

j

)
(ξ̃1, α)

j(ξ −KX , α)
k−j

×
(
1− φ4

2φ4

)((ξ−KX ,ξ̃1)−i+k−j)/2(
1− 3φ4

2φ4

)(i+j+(K2
X)−χh(X)+2)/2

×
(
−Λ2

2

(
3 + φ−4

)
x− 1

2
Λ2(α2)z2

)l
1

l!

zk

k!
,

where the summation runs over

2l + k ≡ dimMH(y) mod 4, i+ j + (K2
X)− χh(X) ≡ 0 mod 2.

Moreover, since we are interested in the residue at φ4 = 1/3, we only need to consider
terms with

(8.9) i+ j + (K2
X)− χh(X) + 2 ≤ −2.

We put

ζ =
1− 3φ4

2φ4
.
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Then the above is equal to
(8.10)

− (−1)
(ξ,ξ+KX )−(K2

X )−(KX,ξ̃1)

2 2(K
2
X)−χh(X)−1dζ

∑

i,j,k,l

(2ζ + 3){((ξ−KX)2)−(K2
X)+5χh(X)−k−2l}/4−1

× (−1)kΛk

(
(ξ −KX , ξ̃1)

i

)(
k

j

)
(ξ̃1, α)

j(ξ −KX , α)
k−j

× (ζ + 1)((ξ−KX ,ξ̃1)−i+k−j)/2−1 ζ (i+j+(K2
X)−χh(X)+2)/2

(
−Λ2 (ζ + 3) x− 1

2
Λ2(α2)z2

)l
1

l!

zk

k!
,

In order to illustrate the idea of the proof, let us first consider the simplest nontrivial
case (K2

X) − χh(X) = −5. (The case (K2
X)− χh(X) = −4 is too simple.) We only need

to consider terms with i+ j = 1, i.e., i = 1, j = 0 and i = 0, j = 1 by (8.9). Then, up to
a constant, the residue of (8.10) is

(−1)(KX ,KX+ξ̃1)/2
∑

k,l

3((ξ−KX)2)−(K2
X )+5χh(X)−k−2l}/4(−Λ)k

(
−3Λ2x− 1

2
Λ2(α2)z2

)l
1

l!

zk

k!

×
(
(ξ −KX , ξ̃1)(ξ −KX , α)

k + k(ξ̃1, α)(ξ −KX , α)
k−1
)
.

Since Λ, x, z are formal variables, each term for individual k, l must be independent of t.
Since (ξ −KX , ξ̃1)(ξ −KX , α)

k and k(ξ̃1, α)(ξ −KX , α)
k−1 have different degree in t (the

former has degree k+1, the latter has k− 1), they cannot cancel out. Therefore we must
have ∑

ξ̃1

(−1)(KX ,KX+ξ̃1)/2(ξ̃1, α) SW(ξ̃1) = 0.

This is the superconformal simple type condition when (K2
X)− χh(X) = −5.

Proof of Proposition 8.8. By the same reason as in the special case (K2
X)− χh(X) = −5,

each term for individual k, l must be independent of t.
We expand terms in (8.10) as

(2ζ + 3){((ξ−KX)2)−(K2
X)+5χh(X)−k−2l}/4−1 (ζ + 1)((ξ−KX ,ξ̃1)−i+k−j)/2−1

= 3{((ξ−KX)2)−(K2
X)+5χh(X)−k−2l}/4−1

×
[
1 + ζ

{
2

3

(
1

4

(
−(K2

X) + 5χh(X)− 2l
)
− 1

)
+

−i− j

2
− 1 +

k

3

+
(ξ −KX , ξ̃1)

2
+

2

3
((ξ −KX)

2)

}
+ · · ·

]
.

The coefficient of ζ l in [ ] has the leading term (as a polynomial in k)

(8.11)
∑

l1+l2=l

(−k)l1

4l1
2l1

3l1
1

l1!
× kl2

2l2
1

l2!
=

kl

3ll!
6= 0.

Moreover the coefficient of ζ l is a polynomial of (ξ −KX , ξ̃1) whose degree is at most l.
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When we multiply the above expression with ζ (i+j+(K2
X)−χh(X)+2)/2 in (8.10), it con-

tributes to the residue at ζ = 0 only if

i+ j = −2l + (χh(X)− (K2
X)− 4).

And the residue is a linear combination of

(ξ −KX , ξ̃1)
p+q((KX − ξ)2)r(α, ξ̃1)

j(ξ −KX , α)
k−j

of various p, q, r, j. (k is fixed, as we explained at the beginning.) Here q and r come

from the above expansion, and p appears when we expand
(
(ξ−KX ,ξ̃1)

i

)
. Therefore we have

0 ≤ p ≤ i and i 6= 0 implies p 6= 0

q + r ≤ l, q, r ≥ 0
(8.12)

Up to the factor 3−{((ξ−KX)2), each term is a polynomial in t with degree m := k− j+ p+
q+2r. We will consider each coefficient of tm whose sum over p, q, r, j and Seiberg-Witten
classes ξ̃1 must be 0 by our assumption.

We set jmax := χh(X) − (K2
X) − 4. Then j ≤ jmax and the equality holds if and only

if i = l = 0. We will check the superconformal simple type condition (1.4) by descending
induction on n. Starting from n = jmax, we check it n = jmax − 2, jmax − 4 and so on.

We assume
k − jmax ≤ m ≤ k, k − jmax ≡ m mod 2.

We will be interested in j + p+ q, which will appear as n in (1.4). We first note that

(8.13) j + p+ q ≤ i+ j + l = −l + (χh(X)− (K2
X)− 4) ≤ jmax.

The equality holds if and only if l = q = r = 0 and p = i = 0. We next note that

(8.14) j + p+ q = k −m+ 2(p+ q + r) ≥ k −m.

The equality holds if and only if p = q = r = 0 and (i, j) = (0, k − m). Thus each
coefficient of tm is

(8.15) A(α, ξ̃1)
k−m + ( higher order terms ),

where A 6= 0 by (8.11) and the higher order terms mean sum of monomials with j+p+q >
k −m.

We now start the descending induction on k−m. Start with k−m = jmax. Then (8.13,
8.14) imply j = jmax and p = q = r = 0 and i = n = 0. Thus there are no higher order
terms in the above expression, and we get the superconformal simple type condition (1.4)
for n = jmax.

If (1.4) is true for n > k − m, then the sum of higher order terms in (8.15) over ξ̃1
vanishes. Hence we also get (1.4) with n = k −m. This completes the proof. �
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