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Abstract

Let G = Sp(2n) be the symplectic group over Z. We present a certain
kind of deformation of the nilpotent cone of G with G-action. This enables
us to make direct links between the Springer correspondence of sp

2n
over

C, that over characteristic two, and our exotic Springer correspondence.
As a by-product, we obtain a complete description of our exotic Springer
correspondence.

Introduction

Let G = Sp(2n) be the symplectic group over Z. Let k be an algebraically closed
field. Let g be the Lie algebra of G defined over Z. Let N denote the subscheme
of nilpotent elements of g. Let Gk, gk, and Nk denote the specializations of G,
g, and N to k, respectively.

Springer [Spr76] defines a correspondence between the set of Gk-orbits in
Nk and a certain set of Weyl group representations (with a basis) when chark

is good (i.e. not equal to 2). This correspondence, together with the so-called
“A-group data”, lifts to a one-to-one correspondence.

This story is later deepened in two ways. One is Lusztig’s generalized
Springer correspondence [Lus84], which serves as a basis of his theories on
Chevalley groups. The other is Joseph’s realization [Jos83], which serves a
model of the structure of the primitive spectrum of the enveloping algebra of
gC.

In our previous paper [K09], we found that a certain Hilbert nilcone N gives
a variant of one aspect of the above mentioned Lusztig’s theory (c.f. [KL87]
and [Lus88]). Quite unexpectedly, our correspondence gives a one-to-one corre-
spondence without the “A-group data”, which is needed in the original Springer
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correspondence for Weyl groups of type C. Therefore, it seems natural to seek
some meaning of N.

The main theme of this paper is to give one explanation of N. Roughly
speaking, our conclusion is that N is a model of NF2

over Z, which is “better”
than N in a certain sense.

To see what we mean by this, we need a more precise formulation: Let T be
a maximal torus of G. We define the Weyl group of (G, T ) as W := NG(T )/T .
We denote the set of isomorphism classes of irreducible representations of W
by W∨. Let V1 be the vector representation. Put V2 := ∧2V1. We denote
V1 ⊕ V2 by V. Let ǫ1, . . . , ǫn be the standard choice of T -weight basis of G (see
eg. Bourbaki [Bou02]). We denote the “positive part” of g and V by n and V+,
respectively (c.f. §1.2). Let N be the Hilbert nilcone of (G,V) over Z. We have
a natural map

ν : G×B V+ −→ N,

which we regard as a counter-part of the Springer resolution.

Theorem A. The variety N is normal and flat over Z. Moreover, the number
of Gk-orbits of Nk is independent of the characteristic of k.

Theorem B. Let k = F2. There exists a Gk-equivariant flat family π : NS −→
A1

k with the following properties:

1. We have π−1(t) ∼= Nk for t 6= 0;

2. There exists an isogeny F1 : Nk −→ π−1(0), which is an endomorphism
as varieties.

Moreover, for a Gk-orbit Ok ⊂ Nk, there exists a flat subfamily of single Gk-
orbits OS ⊂ NS such that OS ∩ π−1(0) = F1(Ok).

Theorem A claims that our variety N behaves well with respect to the spe-
cializations. Theorem B claims that we can regard N as a model of Nk in a
certain sense.

To illustrate these, let us describe the orbit correspondence of Theorem B,
together with the corresponding Springer correspondences:

Example C (The orbit correspondence for n = 2). Let tC be a Cartan subalgebra
of gC. Let R = {±ǫi ± ǫj}1≤i,j≤2\{0} ⊂ t∗C be the set of roots of gC. We choose
its positive simple roots as α1 = ǫ1 − ǫ2 and α2 = 2ǫ2. Let x[λ] ∈ g and
v[λ] ∈ V be T -eigenvectors with T -weight λ, respectively. We refer the Springer
correspondence of N by ordinary and that of N by exotic. Then, representatives
of Gk-orbits of Nk and Nk corresponding to each member of W∨ are:

W∨ dim. ordinary (chark 6= 2) ordinary (chark = 2) exotic
sign 1 0 0 0
Ssign 1 x[2ǫ1] x[2ǫ1] v[ǫ1]
Lsign 1 x[α1] x[α1] v[α1]
regular 2 x[α1] x[α1] + x[2ǫ1] v[α1] + v[ǫ1]
triv 1 x[α1] + x[α2] x[α1] + x[α2] v[α1] + v[ǫ2]

Theorem B gives an isogeny between the Springer fibers of Nk and Nk when
chark = 2. This implies that the Springer correspondences associated to Nk and
Nk must coincide up to scalar multiplication of their basis.
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To see this phenomenon more closely, we employ the Joseph model of the
Springer representations. Following Joseph [Jos83], we define the orbital variety
attached to a GC-orbit OC ⊂ NC as an irreducible component of the intersection
OC∩nC. Let us denote the set of orbital varieties attached to OC by Comp(OC).
Similarly, let OC ⊂ NC be a GC-orbit and let Comp(OC) be the set of irreducible
components of OC∩V+

C . We also call a member of Comp(OC) an orbital variety
(attached to OC).

Joseph found that the leading terms of T -equivariant Hilbert polynomials
of Comp(OC) yield an irreducible W -module which is contained in the Springer
representation attached to OC. These polynomials are usually called the Joseph
polynomials. In representation-theoretic context (originally pursued by Joseph),
Comp(OC) is precisely the set of Lagrangian subvarieties of OC corresponding
to highest weight modules of gC and these polynomials build up “asymptotic
Goldie ranks” of primitive ideals of U(gC) (see eg. [Jos97]).

In view of Hotta [Hot84] (see also Joseph [Jos89] or Chriss-Ginzburg [CG97]),
it is straightforward to see that Joseph’s construction extends to the case of our
exotic Springer correspondence. In particular, we have the notion of Joseph
polynomials attached to each orbit of N.

Theorem D. Let k = F2. Let OC be a GC-orbit of NC. Then, there exists
G-stable locally closed subsets O ⊂ N and O ⊂ N such that

1. We have OC = O⊗ C;

2. The variety O⊗k is a single Gk-orbit which corresponds to a unique dense
open Gk-orbit of O⊗ k;

3. The Joseph polynomials of OC and that of OC are equal up to scalar.

It may worth to mention that there exists some orbit O of N which does not
correspond to an orbit of NC. In this case, our version of Joseph polynomials
realize a Weyl group representation which cannot be realized by the usual Joseph
polynomials. To illustrate this phenomenon, we compare Joseph polynomials
for Sp(4):

Example E (Joseph polynomials for n = 2). Keep the setting of Example C. By
the natural W -action on t∗C, we have a W -action on C[tC] = C[ǫ1, ǫ2] preserving
each degree. Each Joseph polynomial belongs to C[tC] and hence admits a W -
action. The list of Joseph polynomials corresponding to each member of W∨

via Example C is:

W∨ dim. ordinary (chark 6= 2) ordinary (chark = 2) exotic
sign 1 4ǫ1ǫ2(ǫ

2
1 − ǫ22) 4ǫ1ǫ2(ǫ

2
1 − ǫ22) ǫ1ǫ2(ǫ

2
1 − ǫ22)

Ssign 1 2(ǫ21 − ǫ22) 2(ǫ21 − ǫ22) (ǫ21 − ǫ22)
Lsign 1 N/A 4ǫ1ǫ2 ǫ1ǫ2
regular 2 α1, 2ǫ2 α1, 2ǫ2 α1, ǫ2
triv 1 1 1 1

Note that the C-span of polynomials in each entry of the above table recovers
the original member of W∨.

Since our exotic Springer correspondence shares a similar flavor with the
usual Springer correspondence of type A, it is natural to expect a combinatorial
description. To state this, we need:
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Definition F. Let (µ, ν) be a pair of partitions such that |µ|+ |ν| = n. For a

partition λ, we put λ<
i :=

∑
j<i λj and λ≤

i :=
∑

j≤i λj . We define

D0
i (µ) :=

∏

µ<
i <k<l≤µ

≤
i

(ǫ2k − ǫ2l ), D
+
i (µ, ν) :=

∏

ν<
i <k<l≤ν

≤
i

(ǫ2k+|µ| − ǫ2l+|µ|), and

D(µ, ν) :=
∏

i>|µ|

ǫi ×
∞∏

i=1

D0
i (µ)D

+
i (µ, ν).

Theorem G. For each G-orbit O of N, there exists a pair of partitions (µ, ν)
and X ∈ Comp(O) such that the Joseph polynomial of X is a scalar multiplica-
tion of D(µ, ν).

Since (µ, ν) in Theorem G is easily computable, this completes a determi-
nation of our exotic Springer correspondence. Taking account into Theorem D,
we have determined some special Joseph polynomials which we cannot compute
easily from their naive definitions.

The organization of this paper is as follows:
In §1, we fix convention and introduce our variety N. Then, we describe its

set of defining equations in §2. Our system of defining equations is explicit and
behaves nice with respect to the restriction to certain linear subvariety. These
facts enable us to prove that N is normal in §3. This proves the first part of
Theorem A. Also, we introduce a parameterization of orbits of N over Z or k.
The §4 contains the main observations of this paper. Namely, we observe:

• the adjoint representation g of a symplectic group over characteristic two
is not irreducible;

• this reducibility enables one to define a natural deformation of g, and its
subvariety N in characteristic two;

• the special fiber such that (the deformation of) g becomes decomposable
is isogenous to V;

• the above three observations are sufficient to construct a “deformation”
from N (general fiber) to N (special fiber) in characteristic two.

These observations enable us to prove Theorem B. In §5, we define a particular
element of the Weyl group attached to each orbit of N which cut-off a particular
part of the orbit. In §6, we see that every orbit of Nk extends to an orbit of
N in order to prove the second part of Theorem A. The §§7–8 are devoted
to the equi-dimensionality of the orbital varieties attached to N. Its proof is
nothing but a minor modification of the Steinberg-Spaltenstein-Joseph theorem,
which we present here for the reference purpose. (So I claim no originality here.)
These are preparatory steps to the later sections. In §9, we use the results in the
previous sections to prove Theorem D. With the help of previous sections and
Joseph’s theory, the only missing piece boils down to the rigidity of the torus
character. In §10, we construct a special orbital variety from an orbit of N in
order to prove Theorem G. The main difficulty in the couse of its proof is that
we cannot expect some orbital variety to be a linear subspace contrary to the
type A case. We make a trick coming from the symmetry of Joseph polynomials
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to avoid this difficulty.

With the technique developed in this paper, a similar construction applied
to G∨ = SO(2n+1) yields an analogue of Theorem D for special representations
of the Weyl groups of Sp(2n) and SO(2n + 1). However, as the work of Tian
Xue [Xue08] suggests, there might be a better formulation of the connection
between these two cases.

Finally, one word of caution is in order. We work not over SpecZ but a
neighborhood of SpecF2 in the main body of this paper. The reason is that two
is the only bad prime for symplectic groups and the corresponding statements
are more or less trivial (or inexistent) with respect to the reduction to the other
primes.

1 Preliminaries

1.1 Convention

Consider a ring

A := Z[p−1, ζN ; p,N ∈ Z>0, (p, 2) = 1, ζ2
N−1

N = 1] ⊂ Q.

This is a local ring with a unique maximal ideal (2). Let K be the quotient field
of A and let k be the residual field of A. We have k = F2.

For a partition λ = (λ1, λ2, . . .), we define λ
<
i :=

∑
j<i λj and λ>

i :=
∑

j>i λj

for each i. We also use the notation λ≤
i := λ<

i+1 and λ≥
i := λ>

i−1. We put

|λ| := (λ)≥1 . We denote the dual partition of λ by tλ.
For a scheme X over A, we denote its specializations to k and K by Xk

and XK, respectively. In addition, assume that X admits an action of a group
scheme G over A. By a G-orbit on X , we refer a flat subfamily O of X over A
such that OK is a single GK-orbit. For a map of commutative rings A → D, we
define X (D) the set of D-valued points of X . For each e ∈ G(A), we denote by
X e the e-fixed part of X . We denote by H•(X ,C) the Borel-Moore homology
of XC.

We understand that the intersection ∩ of two (sub-)schemes are set-theoretic.
(I.e. we consider the reduced part of the scheme-theoretic intersection.) The
scheme-theoretic intersection is denoted by ∩̇.

For a scheme Y over k, we denote its (geometric) Frobenius endomorphism
by Fr. Here geometric means that the induced map Fr∗ : OY → OY is k-linear
and (suitable) local coordinates are changed to its 2nd power.

1.2 Notation and Terminology

Let G = Sp(2n,A) be the symplectic group of rank n over A. Let B ⊃ T
be its Borel subgroup and a maximal torus defined over A. Put N := [B,B].
Denote the opposite unipotent radical of N (with respect to T ) by N−. Let
W := NG(T )/T be the Weyl group of G. We denote by X∗(T ) the weight
lattice of T . Let R be the set of roots of (G, T ) with its positive part R+

determined by B. Consider an A-module V1 := A2n, for which G acts by the
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multiplication of matrices. Let V2 := ∧2V1 (⊂ ∧2(V1)C) be the A-module with
the natural G-module structure. Let g be the Lie algebra of G over A, whose
integral structure is Sym2V1 = (V1 ⊗A V1)

S2 . Let b, t, n be the intersections of
Lie algebras corresponding to BC, TC, NC with g inside of gC, respectively.

Fix a Z-basis ǫ1, . . . , ǫn of X∗(T ) such that R+ = {ǫi ± ǫj}i<j ∪ {2ǫi}i ⊂
X∗(T ). For each i, we put αi := ǫi− ǫi+1 (1 ≤ i < n), 2ǫn (i = n). Let si be the
reflection of W corresponding to αi. Let ℓ : W → Z denote the length function
on W with respect to s1, . . . , sn.

We put V := V1⊕V2. For a T -weight λ 6= 0, let V[λ] be the T -eigenpart of V
with its weight λ. Let V+ be the sum of T -weight spaces of V with its weights
in Q≥0R

+ −{0}. For a T -subrepresentation V ⊂ V, we denote by Ψ(V ) the set
of T -weights λ with V[λ] 6= {0}.

For each w ∈ W , we denote (one of) its lift by ẇ ∈ NG(T ). For a T -stable
subset S in V or g, we define wS := ẇS.

We denote the flag variety G/B by B.
Let N be the G-subscheme of V defined by the positive degree part A[V]G+

of A[V]G.
Let N be the space of ad-nilpotent elements of g.

Theorem 1.1 (Hesselink [Hes79]). We have N (k) =
⋃

g∈G(k) Ad(g)n(k).

Theorem 1.1 implies that the natural map (the Springer resolution over A)

µ : G×B n −→ N

is surjective at the level of points.
For a Gk-module V over k, we define its Frobenius twist V [1] as the compo-

sition
Gk −→ GL(V )

Fr
−→ GL(V ) ⊂ Endk(V ).

2 Defining equations of N

Let e ∈ T be an element such that ǫi(e) = c (for every 1 ≤ i ≤ n), where
c ∈ A is an element with sufficiently high order after taking modulo two. In
particular, we assume ZG(e) ∼= GL(n,A), V e

1 = {0}, and V e
2
∼= Mat(n,A). Put

G0 := ZG(e). Consider a direct sum decomposition

g = g−2 ⊕ g0 ⊕ g2, and V = V−2 ⊕ V−1 ⊕ V0 ⊕ V1 ⊕ V2 (2.1)

determined by the eigenvalues of the action of e (indicated as subscript). Here
g±2 and Vi (−2 ≤ i ≤ 2) are G0-modules. We have g0 ∼= V0 as G0-modules.
Let n0 := LieG0 ∩ n, which we may regard as a subspace of V0. We define
G−2, G2, N0 to be the unipotent subgroups of G corresponding to g−2, g2, and
n0, respectively. We fix an identification Sn = NG0

(T )/T ∼= 〈si; i < n〉 ⊂ W .
We define

J :=

(
0 −1n
1n 0

)
.

We have V2
∼= Alt(2n,A) as GL(2n,A)-modules. Hence, it restricts to a

G-module isomorphism. Let Pf be the Pfaffian associated to X = {xij}ij =
{−xji}ij ∈ Alt(2n). It is defined as

Pf(X) =
1

n!

∑

σ

sgn(σ)xσ(1)σ(2) · · ·xσ(2n−1)σ(2n), (2.2)

6



where σ runs over all permutations of S2n such that σ(2m − 1) < σ(2m) for
every 1 ≤ m ≤ n. By using Pf, we define polynomials 1 = P0, P1, . . . , Pn on V2

as
n∑

i=0

tn−iPi(X) = Pf(tJ−X) (X ∈ V2
∼= Alt(2n)).

We have Pi ∈ A[V2]
G by

Pf(tJ−X) = det(g)Pf(tJ−X) = Pf(tgJtg − gXtg) = Pf(tJ− gXtg)

for each g ∈ G(K).

Proposition 2.1. By means of the G-module isomorphism V2
∼= Alt(2n), the

variety (N ∩ V2) is identified with the common zeros of P1, . . . , Pn.

Proof. Under the isomorphism V2
∼= Alt(2n), the subspace V0 ⊂ V2 corresponds

to

Alt(2n)0 = {{xij} ∈ Alt(2n);xij = 0 for 1 ≤ i, j ≤ n or n < i, j ≤ 2n}.

Substituting them into the definition of Pfaffians, we deduce

Pf(tJ−X) = (−1)n det(t1n − Y ) where X =

(
0 −Y
tY 0

)
.

This implies
A[V2]

G ⊃ A[Pi; i ≥ 1] ∼= A[V[0]]Sn

via the restriction map. By the Dadok-Kac classification [DK85] table 2, we
know that

C[V2]
G ∼= C[V0]

G0 ∼= C[V[0]]Sn .

This implies that {Pi}ni=1 generates the ideal
〈
A[V2]

G
+

〉
as desired.

Corollary 2.2. We have N ∼= A[V]/(Pi; 1 ≤ i ≤ n).

Proof. It is clear from the isomorphism C[V]G ∼= C[V2]
G, which can be read off

from the Dadok-Kac classification ([DK85] table 2).

For the later use, we prove a lemma.

Lemma 2.3. Let Y ∈ Alt(n) and let Z ∈ Mat(n). Then, we have

Pi

(
Y Z

−tZ 0

)
= Pi

(
0 Z

−tZ 0

)

for each i.

Proof. By the pigeon hole principle, if a Pfaffian term

sgn(σ)xσ(1)σ(2) · · ·xσ(2n−1)σ(2n)

in (2.2) satisfies σ(2m−1), σ(2m) ≤ n for somem, then there existsm′ such that

σ(2m′ − 1), σ(2m′) > n. Then, this term cannot contribute to Pf

(
Y Z

−tZ 0

)
,

which implies the result.
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3 Geometric construction of N

We retain the setting of the previous section.
Let F := G×B V+. Consider the map

ν : F = G×B V+ −→ V.

We denote the specialization of ν to K and k by νK and νk, respectively. Since
the fiber of ν is naturally isomorphic to a closed subscheme of a flag variety, ν
is projective.

Lemma 3.1. We have G(V0 ⊕ V1 ⊕ V2) = G(V[0]⊕ V+) = V.

Proof. The subgroup G0B ⊂ G is parabolic. It preserves (V0 ⊕ V1 ⊕ V2) ⊂ V.
Hence, G(V0 ⊕ V1 ⊕ V2) is a closed subscheme of V. Thus, it suffices to show
the corresponding statement over C. It is well-known that

(G0)C(V0 ∩ (V[0]⊕ V+))C = (V0)C.

Therefore, it suffices to show the map

ν̃ : G×B (V[0]⊕ V+) −→ V

extending ν is surjective after specializing to C. We have NC = ImνC by [K09]
1.2 1). By the proof of Proposition 2.1, we have V[0]C ∩NC = {0}. Therefore,
we deduce that

dim Imν̃C ≥ dimNC + dimV[0]C = dimVC

by V[0]C ⊂ Imν̃C. Since Imν̃C ⊂ VC is a closed subscheme, we conclude the
result.

Corollary 3.2. We have N(k) = G(k)V+(k) ⊂ V(k). 2

Proof. By Lemma 3.1 and the fact that the map ν̃ (borrowed from the proof
of Lemma 3.1) is flat over A, we deduce that G(k)(V0 ⊕ V1 ⊕ V2)(k) = V(k).
Since N(k) is G(k)-stable, we have

N(k) = G(k)(N ∩ V0 ⊕ V1 ⊕ V2)(k).

By Lemma 2.3, we have

(N ∩ V0 ⊕ V1 ⊕ V2)(k) = (N ∩ V0)(k) × (V1 ⊕ V2)(k).

By the description of the nilpotent cone of g0(k) ∼= V0(k), we deduce

(N ∩V0)(k) = G0(k)(V0 ∩V+)(k).

Taking account into the fact that V1 and V2 are G0-stable, we conclude the
result.

Lemma 3.3. The map ν is semi-small with respect to the stratification given
by G-orbits. The same holds for νk provided if G(k)\N(k) < ∞.

Proof. This is a straight-forward generalization of the results in [K09] §1.1.
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Remark 3.4. By a result of Borho-MacPherson (c.f. [CG97] §8.9), our exotic
Springer correspondence (a bijection between GC-orbits of NC and irreducible
representations of W ) implies that νC must be strictly semi-small. (Otherwise
there must be some GC-orbit which does not correspond to an irreducible rep-
resentation of W .)

Proposition 3.5. The differentials dP1, . . . , dPn of the polynomials P1, . . . , Pn

are linearly independent up to codimension two subscheme of N.

Proof. By [K09] 1.2 6), a non-dense orbit of GK in NK has codimension at least
two. Hence it suffices to check the assertion for an open subset of Nk. By
Lemma 3.1, we can replace Nk with Nk ∩ (V0 ⊕V1 ⊕V2)k. By Lemma 2.3 and
the proof of Proposition 2.1, it suffices to prove the assertion on the dense open
(G0)k-orbit of (Nk∩(V0)k), which is the regular nilpotent orbit of GL(n)k. This
is well-known (or is easily checked).

Corollary 3.6. The scheme N is regular in codimension one.

Proof. The schemeN is a complete intersection up to codimension two locus.

Proposition 3.7. The scheme N is Cohen-Macaulay.

Proof. We have
A[V[0]]Sn ∼= A[V]G = A[P1, . . . Pn].

As a consequence, we deduce that A[V[0]] is a free A[V[0]]Sn -module by the
Pittie-Steinberg theorem. It follows that the multiplication map A[V/V[0]]⊗A

A[V]G → A[V] equip A[V] the structure of a free A[V/V[0]]⊗A A[V]G-module.
We have A[N] ∼= A[V]⊗A[V]G A. This is a free A[V/V[0]]-module, which implies
that N is Cohen-Macaulay.

Corollary 3.8. The scheme N is flat over A.

Proof. A free A[V/V[0]]-module is automatically flat over A[V/V[0]].

Theorem 3.9. The scheme N is normal.

Proof. By the Serre criterion and Propositions 3.5 and 3.7, it suffices to show
that N is integral. The intersection

N∩̇(V1 ⊕ V0 ⊕ V2)

is integral since N∩̇V0 is so. Let I1 = (Pi) and I2 := (xij = 0; i, j > n) be ideals
of A[V], where {xij} ∈ Alt(2n) ∼= V2. Then, the ideal I := I0 + I1 is prime.
The set of A-valued points T (A) ∼= (A×)n is Zariski dense in T . By the Bruhat
decomposition, it follows that G(A) is Zariski dense in G. By Lemma 3.1, this
implies that

I1 = I1 +
⋂

g∈G(A)

(g∗I2) =
⋂

g∈G(A)

(I1 + g∗I2) =
⋂

g∈G(A)

g∗I

=
⋂

g∈G(A)

(g∗I ⊗A K) ∩A[V] =
〈
K[V]G+

〉
∩ A[V].

We have (νC)∗OFC

∼= C[N] by [K09] 1.2 and the Zariski main theorem. In
particular, C[N] and its subring K[N] are integral. Therefore, the RHS is an
ideal whose quotient does not contain a zero divisor.
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Theorem 3.10. The image of ν is equal to N.

Proof. Since F is smooth over A, the A-algebra

B := Γ(V, ν∗OF ) = Γ(F,OF )

is torsion-free over A. Hence, B is flat and integral over A.
We have C⊗A B ∼= (νC)∗OFC

∼= C[N]. By the proof of Theorem 3.9, we have

〈
A[V]G+

〉
=

〈
C[V]GC

+

〉
∩ A[V].

In particular, the natural map A[V] ∋ f 7→ f.1 ∈ B factors through A[N].
Here we have (Imν)(C) = N(C) and (Imν)(k) = N(k) as sets. This implies
that B must be normal since A[N] is so. Therefore, we conclude B = A[N] as
desired.

Definition 3.11 (Marked partitions). A marked partition λ = (λ, a) is a par-
tition λ = (λ1 ≥ λ2 ≥ . . .) of n, together with a sequence a = (a1, a2, . . .) of
integers such that:

1. 0 ≤ ak ≤ λk for each k;

2. ak = 0 if λk+1 = λk;

3. λp − λq > ap − aq > 0 if p < q and ap 6= 0 6= aq.

Let X = X1 ⊕X2 ∈ N. Since V ∗
1
∼= V1, we can regard X2 ∈ End(V1) via the

embedding

X2 ∈ V2

∼=
−→ Alt(V1) ⊂ (V1)⊠ (V1) ∼= EndA(V1). (3.1)

Definition 3.12. Let λ = (λ, a) be a marked partition of n. An element X ∈ N

is said to have K-invariant λ if the following conditions hold:

• X2 is a nilpotent element with its Jordan type (λ1, λ1, λ2, λ2, . . .);

• There exists a family of vectors {ξ(i)}i≥0 ∈ (V1)K such that:

1. ξ(i) 6= 0 if and only if ai 6= 0;

2. X1 =
∑

j X
λj−aj

2 ξ(j);

3. Xλi−1
2 ξ(i) 6= 0 and Xλi

2 ξ(i) = 0 for each i such that ξ(i) 6= 0.

We say that X ∈ N have k-invariant λ if the same conditions hold by replacing
every K by k. The K-invariant (resp. the k-invariant) of X is denoted by
λ(XK) = (λ(XK), a(XK)) (resp. λ(Xk)). We define Oλ to be the locally closed
subscheme of NK whose K-valued points shares the K-invariant λ.

It is standard that the K-invariants and k-invariants are invariants under
the G-action.

Theorem 3.13 ([K09] Theorem 1.14). Two points X,Y ∈ NK are GK-conjugate
iff X and Y share the same K-invariant. In particular, (Oλ)K is a single GK-
orbit. 2
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4 A geometric family of nilcones

We assume the same setting as in the previous section. The Gk-module gk has a
non-trivial B-eigenvector with its weight ǫ1+ ǫ2. This yields the following short
exact sequence of Gk-modules:

0 −→ (V2)k −→ gk −→ (V1)
[1]
k −→ 0. (4.1)

Thus, we have a Gk-equivariant flat deformation

πV : V −→ A1
k

of gk such that π−1
V (0) ∼= (V1)

[1]
k ⊕(V2)k and π−1

V (x) ∼= gk (x 6= 0) as Gk-modules.
Let V+ ⊂ V be its Bk-equivariant smooth subfamily such that V+ ∩ π−1

V (0) ∼=(
V +
1

)[1]
k

⊕ (V +
2 )k and V+ ∩ π−1

V (x) ∼= nk (x 6= 0).

By (4.1) and the isomorphism Sym2V1
∼= g over A, we have the following

Gk-equivariant map

ml : Vk = (V1)k ⊕ (V2)k ∋ (X1 ⊕X2) 7→ Sym2X1 +X2 ∈ gk.

This map isGk-equivariant and finite as a map between affine algebraic varieties.
By restriction, we obtain a commutative diagram

A1
k × V+

k

ml // V+

{0} × V+
k

OO

F1// {0} × (V +
1 )

[1]
k ⊕ (V +

2 )k

OO , (4.2)

where the map ml is the natural prolongization of the map ml, and the map
F1 is the product of the Frobenius map of the first component of V+

k and the
identity map of the second component of V+

k .

Let F := (Gk × A1
k) ×

(Bk×A1
k
) V+. This is a flat family over A1

k. We define
NS := (Gk × A1

k)V
+ ⊂ V . We define π := πV |NS

. The diagram (4.2) gives a
Gk-equivariant commutative diagram

A1
k × Fk

��

m̃l // F

��

{0} × Fk

νk

��

oo

A1
k ×Nk

ml // NS {0} ×Nk
oo

. (4.3)

Here the vertical arrows are defined as (Gk × A1
k)- or Gk-translations of (4.2)

inside A1
k ×Vk, V , or Vk, respectively. Thanks to the surjectivity of ml at (4.2)

and Theorem 1.1 and Corollary 3.2, the map ml at (4.3) is surjective at the
level of points. Since F is flat over A1

k, it follows that NS is flat over A1
k. Let

m : Nk −→ Nk be the map obtained by the specialization of ml to the fiber at
the point {1} ∈ A1

k.

Theorem 4.1. Each Gk-orbit O of Nk extends to a flat family of Gk-orbits in
NS with its general fiber isomorphic to m(O). Moreover, this yields a one-to-
one correspondence between Gk-orbits of Nk and Nk which preserves the closure
relations.
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Proof. The map m is a G(k)-equivariant isomorphism at the level of k-valued
points. Hence, we have an equi-dimensional one-to-one correspondence between
the Gk-orbits of Nk and Nk.

We have an equi-dimensional family OS := ml(A1
k ×O) for each Gk-orbit O.

Here the map F1 is finite. As a result, OS is an equi-dimensional family such
that each fiber contains a unique dense open Gk-orbit.

The number of Gk-orbits of Nk is finite by [Hes79]. It is clear that OS is
irreducible. The family NS is locally trivial along A1\{0}. It follows that the
open dense Gk-orbit of OS is constant along A1\{0}.

Conversely, each Gk-orbit O ⊂ Nk determines a Gk-orbit O′ ⊂ F1(N) via

O′ open
→֒ π−1(0) ∩O′

S ⊂ O′
S, (4.4)

where O′
S is a family of single Gk-orbits O in NS along A1\{0}. Here O′ is

uniquely determined since O′
S = ml(A1 ×O′′) for some Gk-orbit O′′ of Nk.

Since O′ = F1(O′′), this establishes a one-to-one correspondences between
Gk-orbits in Nk, that of Nk, and families of single Gk-orbits of NS , which is
compatible with the bijection induced by m. Now the closure relation of Nk

extends to the closure relation of OS, which guarantees that the closure relation
is preserved by m.

Since A1
k is one-dimensional, OS yields the required flat family.

In the below, we denote the one-to-one correspondence from the set of Gk-
orbits of Nk to that of Nk described in Theorem 4.1 by df.

Corollary 4.2. The numbers of Gk-orbits in Nk and Nk are equal to the number
of GK-orbits in NK.

Proof. By Spaltenstein [Spa83] 3.9, we deduce that the number of Gk-orbits in
Nk is equal to the set of bi-partitions of n. Hence, Theorem 3.13 implies the
result (see also Theorem 5.1).

Corollary 4.3. Two Gk-orbits in Nk are equal if and only if their k-invariants
are equal. 2

5 Special elements of Weyl groups

Keep the setting of the previous section. In this section, we always work over
an algebraically closed field and drop the specific field from the notation.

Theorem 5.1 ([K09] Theorem 1.14 and Proof of Proposition 1.16). Let λ =
(λ, a) be a marked partition of n. We define a sequence of integers b = (b1, b2, . . .)
as

bi :=

{
ai (ai 6= 0)

max {{aj + λi − λj ; j < i} ∪ {aj; j ≥ i}} (ai = 0)
.

Then, we define two partitions µλ and νλ as

µλ

i = bi, ν
λ

i = λi − bi.

The pair (µλ, νλ) gives a bi-partition of n. Moreover, this assignment establishes
a bijection between the set of marked partitions of n and the set of bi-partitions
of n. 2
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We refer the bi-partition (µλ, νλ) the associated bi-partition of a marked par-
tition λ. Let Oλ be the G-orbit with its K-invariant (or k-invariant, depending
on the base field) λ.

Definition 5.2 (Special elements). Let λ be a marked partition and let (µ, ν) :=
(µλ, νλ) be its associated bi-partition. We define an element wλ ∈ W as

wλǫi =





ǫn−m+1 (i = (tµ)≥m)

−ǫ|ν|+(tµ)<m+i−(tµ)>m−m+1 ((tµ)>m < i < (tµ)≥m)

−ǫ(tν)>m+i−(tν)<m−|µ| (|µ|+ (tν)<m < i ≤ |µ|+ (tν)≤m)

,

where m is some natural number. We put Vλ := V+ ∩ w
−1

λ V+. We define a
sequence of integers dλ := {dλi }

µ1+ν1
i=0 as dλ0 := 0 and

dλ1 := (tµ)≥µ1
, . . . , dλµ1

:= (tµ)≥1 , d
λ

µ1+1 := |µ|+ (tν)≤1 , . . . , d
λ

µ1+ν1
:= |µ|+ (tν)≤ν1 .

We may drop the superscript λ if the meaning is clear from the context.

Lemma 5.3. Keep the setting of Definition 5.2.

1. We have ǫi − ǫj 6∈ Ψ(Vλ) if and only if i ≥ j or one of the following
conditions hold for some natural number m:

(a) (tµ)>m < i, j < (tµ)≥m;

(b) |µ|+ (tν)<m < i, j ≤ |µ|+ (tν)≤m;

(c) j = (tµ)≥m, 1 ≤ i ≤ |µ|, and i 6∈ {(tµ)≥l }l>m.

2. We have ǫi + ǫj ∈ Ψ(Vλ) if and only if i 6= j and i, j ∈ {(tµ)≥m}m;

3. We have ǫi ∈ Ψ(Vλ) if and only if i ∈ {(tµ)≥m}m.

Proof. Straight-forward.

For each α ∈ R+, we denote the corresponding unipotent one-parameter
subgroup of G by Uα ⊂ N .

Lemma 5.4. Keep the setting of Definition 5.2. We have

Vλ ⊂ B(Vλ ∩ (V0 ⊕ V1)),

where V0 ⊂ V2 and V1 ⊂ V1 are G0-stable subspaces defined at (2.1).

Proof. We put γm := ǫ
(tµ)

≥
m
. By Lemma 5.3, we have ǫi + ǫj ∈ Ψ(Vλ) only if

i, j ∈ {(tµ)≥m}m. Moreover, i < j and ǫi + ǫj ∈ Ψ(Vλ) implies ǫi − ǫj ∈ Ψ(Vλ).
We put

U+ :=
∏

l≤m

Uγl+γm
,V◦

0 :=
⊕

l>m

V[γl − γm], and V◦
2 :=

⊕

l<m

V[γl + γm].

We have V◦
0,V

◦
2 ⊂ Vλ. By a weight comparison, we deduce

U+V
λ = U+((V

◦
0 + V◦

2) ∩ Vλ) + Vλ.

Here U+V
◦
0 ⊂ V◦

0 + V◦
2 is a dense open subset. Thus, we conclude

Vλ ⊂ U+(Vλ ∩ (V0 ⊕ V1)) ⊂ B(Vλ ∩ (V0 ⊕ V1))

as desired.
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Lemma 5.5. Keep the setting of Definition 5.2. We define

Vλ

01 :=
⊕

i≤dµ1

V[ǫi]⊕
⊕

l<m

⊕

dl < i ≤ dl+1

dm < j ≤ dm+1

V[ǫi − ǫj ].

Then, we have BVλ
01 = BVλ.

Proof. We put Ψ := Ψ(Vλ ∩ (V0 ⊕V1)). Since Vλ ∩ (V0 ⊕V1) ⊂ Vλ
01, it suffices

to prove the inclusion

Vλ

01 ⊂ TN0(Vλ ∩ (V0 ⊕ V1)) ⊂ BVλ.

Here the second inclusion is obvious. We have

Ψ(Vλ

01)\Ψ = {ǫi; i ∈ [1, dµ1
]\{(tµ)≥m}m} ∪ {ǫi − ǫj; i < j, i 6∈ {(tµ)≥m}m ∋ j}.

We deduce that 


∏

i<|µ|

Uǫi−ǫ|µ|



V[ǫ|µ|] ⊂ Vλ

01 ∩ V1

is a dense open subset by the comparison of weights. We put

U− :=
∏

i<j;j∈{(tµ)≥m}m

Uǫi−ǫj ⊂ N0.

It is easy to see that U− does not depend on the order of the product. By the
comparison of weights, we have a dense open subset

U−(V
λ ∩V0) ⊂ Vλ

01 ∩ V0.

Applying the T -action, we conclude that the first inclusion is dense.

In the below, we denote by Vλ
i (i = 0, 1) the spaces Vλ

01 ∩ Vi coming from
the statement of Lemma 5.5 for each marked partition λ.

Proposition 5.6. Let λ be a marked partition. We have GVλ = Oλ.

Proof. By Definition 3.12 and Lemma 5.3, we deduce that Oλ ⊂ GVλ. Thus,
it suffices to check Vλ

01 ⊂ Oλ. We define an increasing filtration

{0} = F0 ( F1 ( · · · ( Fµ1+ν1−1 ( Fµ1+ν1 = V +
1 := V+ ∩ V1

as Fk :=
⊕

i≤dk
V[ǫi]. By a weight comparison, each x ∈ Vλ

0 preserves the flag
{Fk}k when regarded as an element of End(V1) as in (3.1). Moreover, the set
of elements x in Vλ

0 which satisfies

dimxlFk/Fk−l−1 = min{dimFk−m+1/Fk−m}lm=1 for every l

is dense in Vλ
0 . Let ξ ∈ Fµ1

∩V +
1 be an element such that there exists {ξ(i)}i ⊂

V +
1 which satisfies

ξ =
∑

i≥1

xλi−biξ(i), and xλi−1ξ(i) 6= 0 = xλiξ(i) if ξ(i) 6= 0.
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Under the above choice of x, this condition is an open condition. We rearrange
{ξ(i)} according to the following rules: If bi = aj for some j < i, then we
rearrange ξ(i), ξ(j) as 0, xλj−λiξ(i) + ξ(j), and let others unchanged. If bi =
aj − λj + λi for i > j, then we rearrange ξ(i), ξ(j) with 0, ξ(i) + ξ(j), and let
others unchanged.
We repeat this procedure for all possible pairs (i, j). We conclude that if we
have ξ(i) 6= 0 for every i such that ai 6= 0 after applying these procedures, then
ξ ⊕ x has K-invariant (λ, a). Since the former is an open condition on ξ, we
conclude the result.

Corollary 5.7. Under the setting of Proposition 5.6, we have

dimOλ = dimO(λ,0) + 2 |µ| .

Proof. We retain the setting of the proof of Proposition 5.6. Let ξ ∈ V +
1 . Then,

we have ξ ⊕ x ∈ Oλ if and only if ξ ∈
⊕

i≤|µ| V1[ǫi]. The Jordan type of x is λ

(unchanged) if we regard x ∈ End(V1) as either x ∈ End(V1) or x ∈ End(V−1).
Therefore, the fiber of the projection Oλ → O(λ,0) has dimension 2 dimFµ1

=
2 |µ| as desired.

6 Normality of nilcones in characteristic two

We assume the setting of §4.

Theorem 6.1. For each Gk-orbit Ok of Nk, there exists a G-orbit O of N such
that O ⊗ k = Ok.

Proof. Assume that Ok has k-invariant λ. Let OK be a GK-orbit of NK with K-

invariant λ. By Proposition 5.6 and Lemma 5.5, we have OK = GVλ
01 ⊂ V over

A. Since OK is irreducible and dominates SpecA, it is flat over A. Therefore,
OK is equi-dimensional over A. We have BVλ

01 = G2V
λ
01. For some (and in fact

generic) X ∈ Vλ
01(A) such that XK has K-invariant λ and Xk has k-invariant

λ, we have (Stab(G2)KXK)k = Stab(G2)kXk by identifying defining equations,

which are all linear. Applying the G0-action, we deduce that BVλ
01 contains a

dense open Gm-stable subvariety, which is flat over A. Therefore, we conclude

BVλ
01⊗k = Bk(Vλ

01)k via the equality of the leading terms of Hilbert polynomials
of k[V+

k ]-modules. By Proposition 5.6, we have OK ⊗ k = Ok and the latter is
irreducible. Hence, setting

O := OK −
⋃

O′:GK-orbit;O′(O

O′
K

yields the result.

Corollary 6.2. The variety Nk is normal.

Proof. Since N is Cohen-Macauley and flat over A, it suffices to prove that Nk

is regular in codimension one. By Theorem 6.1, it follows that every non-dense
Gk-orbit in Nk is codimension at least two. Therefore, we deduce the result.

Corollary 6.3. The map νk is strictly semi-small with respect to the stratifica-
tion given by Gk-orbits.
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Proof. For each G-orbit O of N, we choose X ∈ O(A). Then, the upper-
semicontinuity of fiber dimensions of ν−1(X) along A implies the strictness of
νk from that of νK.

Theorem 6.4. The variety Nk is normal.

Proof. The isogeny ml : V 7→ g induces an injective map k[gk] →֒ k[Vk]. Since
this map is G(k)-equivariant, we have an inclusion k[gk]

G →֒ k[Vk]
G. The vari-

ety Nk is defined from N by reduction modulo 2. Hence, its defining equations
are coming from A[gA]

G, which are given by polynomials of degree 2, 4, . . . , 2n
(c.f. [Bou02]). In this proof, we understand that ǫ−i = −ǫi for every 1 ≤ i ≤ n.
We set {aij}ij ∈ Alt(V1)k ∼= (V2)k as the coordinates with respect to the T -
eigenbasis so that aij has eigenvalue ǫi+ǫj . Let {vi}i ∈ (V1)k be the T -eigenbasis
such that vi is of weight ǫi. Let cij be the T -eigenbasis of gk of weight ǫi + ǫj.
We set ci := cii and c̄i = c−i,−i. We have

ml∗(cij) = aij + vivj (i 6= j) or v2i (i = j).

Here we have Pk(a
2
ij) ∈ k[gk] ∩ k[Vk]

G. By explicit calculation, we have

Pk(a
2
ij) =

∑

I⊂[1,n];#I=k

∏

i∈I

cic̄i + lower terms with respect to {ci}.

It follows that the differentials of Pk(a
2
ij) with respect to c1, . . . , cn defines a

collection of linear independent differentials along the generic point, regardless
the values of aij .

By degree counting using the inclusions k[V
[1]
k ] ⊂ k[gk] ⊂ k[Vk], these are pre-

cisely the defining equations of Nk embedded into k[Vk]. The union of non-dense
orbit of Nk has codimension two (c.f. [Hes79] or Theorem 4.1). Therefore, the
defining equations of Nk defines a set of linearly independent differentials up to
codimension two. In conclusion, the same proof as the normality of Nk implies
the result.

Remark 6.5. The normality of the nilpotent cone of sp(2n) over a field of char-
acteristic 6= 2 is well-known. (See eg. Brion-Kumar [BK04] §5.)

7 Exotic orbital varieties: statement

In this section, the term “flat” means that the object is a flat scheme over
SpecA.

Let O be a G-orbit of N. We denote the set of irreducible components of
O∩V+ by Comp(O). We define Comp(O) for a G-orbit of O ⊂ N by replacing
V+ with n.

Similarly, we denote the set of irreducible components of O∗∩V
+
∗ (or O∗∩n∗)

by Comp(O∗) or Comp(O∗) for ∗ = C,K, k.
An element of Comp(O) or Comp(O) is called an orbital variety.

Theorem 7.1. Let OK be a GK-orbit. Let XK ∈ Comp(OK). Then, we have

1. dimXK = 1
2 dimOK;

2. There exists w ∈ W such that XK = BK(V
+
K ∩ wV+

K ).
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Moreover, the same statements hold when we replace K with k.

Proof. Postponed to §8.

Remark 7.2. 1) Theorem 7.1 is an “exotic” analogue of Joseph’s version of the
Steinberg-Spaltenstein theorem.
2) If the varietyG×BV+

C orOC admits a symplectic structure, then Theorem 7.1
follows from Kaledin [Kal06] or [CG97]. However, there exists no G-invariant
holomorphic symplectic form on both of them. We do not know whether it
exists when we drop the invariance.

Let Z := F ×N F and let p : Z → N be the projection. The following result
is a straight-forward generalization of [K09] §1.2 or [Ste74]:

Theorem 7.3 (Steinberg). The variety Z is flat of relative dimension dimN.
Moreover, it consists of #W irreducible components. 2

Lemma 7.4. Let O be a G-orbit in N . Then, Ok is a union of a single Gk-orbit
O′

k of dimension dimO and Gk-orbits of dimension < dimO.

Proof. Consider the natural embedding ι : NK ⊂ Mat(2n)K. It is well-known
that the induced map GK\NK →֒ GL(2n)K\Mat(2n)K is injective. (See eg.
Tanisaki [Tan85] P152 for this kind of phenomenon.) Hence, Ok is a union of
Gk-orbits with the same Jordan normal form (in Mat(2n, k).) By Hesselink
[Hes79], the maximal dimension of Gk-orbits in Ok is attained by a unique orbit
as desired.

Definition 7.5. Let X ∈ N. Then, we define a subscheme

GX := {g ∈ G;X ∈ gV+} ⊂ G.

It is clear that (GX)K admits a free left StabG(X)K-action and a free right
BK-action. The same statement holds if we replace K with k.

Let O be a G-orbit of N. For each X ∈ O, we define

EX := GX/B ⊂ B

and call it the (exotic) Springer fiber along X . By taking conjugation, we know
that (EX)K ∼= (EY )K and (EX)k ∼= (EY )k hold if X,Y ∈ O(A).

Lemma 7.6. Keep the setting of Definition 7.5. Let O be a G-orbit such that
X ∈ O(K). Let {Gi

X}i be the set of irreducible components of (GX)K. Then, the
assignment

Comp(OK) ∋ Gi
XX 7→ Gi

X/BK ⊂ (EX)K

establishes one-to-one correspondences between the sets of irreducible compo-
nents of OK ∩ V+

K , (GX)K, and (EX)K. The same statement holds if we replace
K with k.

Proof. The assignments Gi
X 7→ Gi

X/StabG(X)K ∼= Gi
XX ∈ Comp(OK) and

Gi
X 7→ Gi

X/BK gives a surjection from the set of irreducible components of
(GX)K and the other two sets. Hence, these assignments fail to be bijective
only if StabG(X)K or BK is not connected. The group StabG(X)K is connected
by [K09] Proposition 4.5. The Borel subgroup BK ⊂ GK is clearly connected.
Entirely the same proof works for k (including [K09] Proposition 4.5).

17



Let N(O) be the number of orbital varieties attached to some orbit O. In
the rest of this section, we assume

(♠)1 We have
∑

OK∈GK\NK
N(OK)

2 = #W .

(♠)2 There are at least N(OK) orbital varieties of Ok contained in the closures
of Comp(OK) for every G-orbit of N.

The statements (♠)1, (♠)2 themselves are proved at Corollary 9.4 and Corollary
9.5, respectively. (The results presented in the rest of this section is used only
in the proof of Theorem 9.6.)

Proposition 7.7. Let O be a G-orbit of N. Then, every element of Comp(O)
is flat with relative dimension 1

2 dimOK.

Proof. Let Y ∈ Comp(O). If Y dominates SpecA, then it is flat since A is one-
dimensional. Hence, we assume that Y(K) = ∅ in order to deduce contradiction.
By Theorem 7.1, we have Y(k) ⊂ Xk(k) for some Xk ∈ Comp(Ok). Since Ok is
an single Gk-orbit, we can further assume Y = Xk. Here Y does not appear in
the specializations of the closure of Comp(OK). It follows that N(Ok) > N(OK).
Hence, we have

∑

Ok∈Gk\Nk

N(Ok)
2 >

∑

OK∈GK\NK

N(OK)
2 = #W. (7.1)

For X ∈ Ok, we have p−1
k (X) ∼= ν−1

k (X)× ν−1
k (X). We have

dim p−1
k (Ok) = 2 dim ν−1

k (X) + dimOk = dimNk = dimZk.

By Theorem 7.1 1) and Lemma 7.6, p−1
k (Ok) is a union of N(Ok)

2 irreducible
components of Zk. By (7.1), Zk has more than #W irreducible components.
This contradicts the existence of Y as required.

Proposition 7.8. Let O be a G-orbit of N and let O be a G-orbit of N .

1) Let X ∈ Comp(O). The variety Xk is irreducible.

2) Let Y ∈ Comp(O) be such that YK ∈ Comp(OK). Then, Yk is irreducible.

Proof. Let X ∈ O(A). For two irreducible components Gi
X ,Gj

X ⊂ GX , we set

Z0 := G(Gi
X/B × Gj

X/B) ⊂ Z.

We have
dimZ0 = dim Gi

X/B + dimGj
X/B + dimO = dimZ. (7.2)

Hence, Z0 ⊂ Z is an irreducible component of Z. It follows that (Gi
X)k ∩ (Gj

X)k
does not contain an irreducible component of (GX)k unless Gi

X = Gj
X . By taking

quotient by StabG(X), we conclude the first assertion.
For the second assertion, we uniformly change N by N and V+ by n. Then,

we use the extra assumption to guarantee the flatness of Gi
X . Set CX to be the

component group of StabGK
X . Then, the problem reduces to show:

(♣) Yk = (StabGk
Xk)\(G

+
X)k is irreducible for each CX -orbit G+

X of Gi
X .
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(Notice that CX is not defined over A, and hence G+
X cannot defined directly.)

By Lemma 7.4, an irreducible component Y′
k ⊂ Yk is a union of subvarieties

of orbital varieties of some Gk-orbits of Ok. We have dimY′
k ≤ dimYK with

the equality holds only when Y′
k ∈ Comp(O′

k). By the upper-semicontinuity of
fiber dimensions applied to Y over A, we have necessarily dimY′

k = dimYK.
In particular, we have an irreducible component G0

X ⊂ G+
X corresponding to

Comp(O′
k). Assume that Xk ∈ O′

k(k). Then, Gk(G0
X × G0

X)k is a union of
irreducible components of Zk thanks to the dimension estimate as in (7.2).

Therefore, we deduce that Gk(G0
X × G0

X)k ⊂ (GK(G0
X × G0

X)K)k ⊂ Zk is an irre-
ducible component, which implies that (G0

X)k is irreducible. It follows that an
irreducible component of Comp(O′

k) obtained as

(StabGk
Xk)\(G

0
X)k = ((StabGK

XK)◦\(G0
X)K)k = (StabGK

XK\(G
+
X)K)k

is unique as required.

8 Exotic orbital varieties: proof

This section is devoted to the proof of Theorem 7.1.
The proof itself is a modification of the arguments of Steinberg [Ste74],

Spaltenstein [Spa77], and Joseph [Jos83]. The only essential diffusion in the
proof is contained in the strict semi-smallness of the map ν, which follows from
[K09] §1 and §8. Since the literature is little scattered, we provide a proof with
its necessary modifications.

In the below, we assume the same settings as in Theorem 7.1, but we drop
the subscript K or k for the sake of simplicity.

Lemma 8.1. We have dimX ≤ 1
2 dimO. Moreover, there exists X ∈ Comp(O)

which satisfies the equality.

Proof. Let X ∈ X. We have

1

2
dimGX+ dim ν−1(X) = dimG/B

by the (strict) semi-smallness of ν. Since ν−1(X) = GX/B, we have

1

2
dimGX+ dim GX − dimB = dimG/B.

We have X ⊂ GX/StabG(X). In particular, we have

1

2
dimGX+ dimX+ dimStabG(X) ≤ dimG.

Therefore, we have

dimX ≤ dimG− dimStabG(X)−
1

2
dimGX =

1

2
dimO, (8.1)

which proves the first assertion. The second assertion follows by choosing X so
that dimX = dimGX/StabG(X).
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Proposition 8.2. Assume that dimX = 1
2 dimO. Then there exists w ∈ W

such that
X ⊂ B(V+ ∩ wV+)

is a dense open subset.

Proof. Let X ∈ X. We assume that X ∼= GiX for an irreducible component Gi

of GX ⊂ G. We put E i
X := Gi/B, which is an irreducible component of EX .

By dimX = 1
2 dimO, it follows that E i

X has the maximal dimension among the
irreducible components of EX . In other words, we have

dim E i
X =

1

2
(dimN− dimO). (8.2)

Consider the variety

S := {(g1B, g2B, v) ∈ B × B × V; v ∈ g1V
+ ∩ g2V

+ ∩ O}

and its subvarieties

Sw := {(g1B, g2B, v) ∈ S; g−1
1 g2 ∈ BẇB}

for each w ∈ W . It is straight-forward to check S = ⊔w∈WSw (the arguments
in [Ste74] p133 L14-L20 works merely by changing the meaning of the symbols
appropriately). By considering the third projection p3 : S → O, we deduce that

p−1
3 (X) ∼= EX × EX .

Consider the projection p12 : S → B × B of S to the first two components. By
definition, we have p12(Sw) = G([B × ẇB]) or ∅. It follows that

dimSw =dimB + ℓ(w) + dim(V+ ∩ wV+ ∩ O)

≤ dimB + ℓ(w) + dim(V+ ∩ wV+) = dimG− n = dimS

whenever Sw 6= ∅. Define

Si,i := G(E i
X × E i

X × {X}) ⊂ Gp−1
3 (X) ⊂ S.

This is an irreducible component of S. Since Gp−1
3 (X) = S and (8.2), we

conclude

dimSi,i = dimO + 2dimE i
X = dimO + 2×

1

2
codimO = N = dimG− n.

There exists w ∈ W such that Sw ∩ Si,i ⊂ Si,i is a dense open subset. By
dimension counting, we deduce Si,i = Sw. Now we have

Sw = {(g1B, g2B, v); g−1
1 g2 ∈ BẇB, v ∈ g1(V

+ ∩ wV+ ∩O)}. (8.3)

Since dimS = dimSi,i = dimSw, we deduce that

V+ ∩ wV+ ∩ O ⊂ V+ ∩ wV+

is dense.
Consider the image Gw of Sw under the first and third projection p13 : S → B×V.
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Its second projection q3 : Gw → O satisfies q3 ◦ p13 = p3. In the RHS of (8.3),
g2 plays no rôle for the restriction on v. Therefore, we deduce q−1

3 (X) ⊂ E i
X

(dense open subset). By construction, we have

q−1
3 (X) = {(gB,X);X ∈ g(V+ ∩ wV+ ∩ O)}.

As a consequence, we deduce

X = GiX ⊂ {g−1X ; (gB,X) ∈ q−1
3 (X)} = B(V+ ∩ wV+).

Since the second inclusion is dense by construction, we conclude the result.

Lemma 8.1 and Proposition 8.2 claim that the both assertions of Theorem
7.1 hold for at least one X ∈ Comp(O). To derive Theorem 7.1 for general
irreducible components, we need some preparation:

For each 1 ≤ i ≤ n, we put V(i) := U(b)siV+. We define V+
i := V+/(V+ ∩

siV+) and Vi := V(i)/(V+ ∩ siV+).
For each 1 ≤ i ≤ n, we put Pi := BṡiB∪B. It is a parabolic subgroup of G.
The derived group of the Levi part of Pi is isomorphic to SL(2). Its action

on Vi is equivalent to either sl(2) (adjoint representation, 1 ≤ i < n) or K2

(vector representation, i = n).
Since the both of V(i) and (V+ ∩ siV+) are Pi-stable, it follows that Vi

admits a natural Pi-action. Let πi : V(i) −→ Vi. The map πi is Pi-equivariant.
We define Xi := πi(X).

Lemma 8.3. Let 1 ≤ i ≤ n. Assume that the both assertions of Theorem 7.1
hold for X ∈ Comp(O). Then, PiX ∩ V+ is a union of elements of Comp(O)
which satisfy the both assertions of Theorem 7.1.

Proof. By Proposition 8.2, it suffices to verify Theorem 7.1 1).
By construction, Xi ⊂ V+

i is a B-stable subset. We have dimV+
i = 1. Hence,

we have Xi = {0} or Xi = V+
i . If Xi = {0}, then X is Pi-stable. Thus, the

assertion trivially holds.
Therefore, we concentrate ourselves to the case Xi = V+

i in the below. Let
X′ ∈ Comp(O) such that X′ ∩ PiX 6⊂ X. If X′ does not exist, then we have
PiX ∩ V+ = X. Hence, the assertion trivially holds. Thus, we assume the
existence of X′.

Let D := X∩ π−1
i ({0}) ⊂ X. This is a purely codimension one subscheme of

X. Since π−1
i ({0}) = (V+ ∩ siV+) is Pi-stable, it follows that

PiD ⊂ PiX ∩ π−1
i ({0}) ⊂ V+.

Let 0 6= X ∈ V+
i . By an explicit SL(2)-computation, we have gX ∈ V+

i

(g ∈ Pi) if and only if g ∈ Pi ∩B. This implies

Pi(X−D) ∩ V+ = X−D.

Hence, we have X′ ∩ PiD 6= ∅. Let D0 ⊂ D be an irreducible component such
that X′ ∩ PiD0 6⊂ D. We have necessarily PiD0 6= D0. This implies

dimPiD0 = dimD0 + 1 = dimX.

As a consequence, PiD0 contains a (unique) element of Comp(O) which is dif-
ferent from X. Letting X′ and D0 vary arbitrary, we conclude the result.
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In order to complete the proof of Theorem 7.1, it suffices to prove that a
successive application of Lemma 8.3 eventually exhausts the whole of Comp(O).
This is guaranteed by the following:

Proposition 8.4. Let X,X′ ∈ Comp(O). Assume that X′ satisfies the both as-
sertions of Theorem 7.1. Then, there exists a sequence of integers i1, i2, . . . , im ∈
[1, n] and a sequence X1,X2, . . . ,Xm ∈ Comp(O) such that

X′ = X1, X = Xm, and Xk−1 ⊂ PikXk

hold for every 2 ≤ k ≤ m.

Proof. Let i1, . . . im ∈ [1, n] be a sequence of integers such that

X′ ⊂ Pi1Pi2 · · ·PimX. (8.4)

We assume that (⋆): X′ 6⊂ Pi′
1
Pi′

2
· · ·Pi′

m′
X does not holds for any sequence

i′1, . . . , i
′
m′ if m′ < m. This implies that si1si2 · · · sim is a reduced expression.

We prove that there exists a sequence X1,X2, . . . ,Xm ∈ Comp(O) which satisfies
the required condition. By (8.4) and (⋆), we deduce

Z := Bṡi1X
′ ∩Bṡi2B · · ·BṡimX 6= ∅.

Claim 8.5. We have dimZ = dimX′.

Proof. By (⋆), we have Pi1X
′ 6= X′. Hence, we have

Pi1X
′ = dimX′ + 1.

Since Z is an open subset of a codimension one subscheme of Pi1X
′, we deduce

the result.

We return to the proof of Proposition 8.4.
We have Bṡi1X

′ ⊂ V(i1). We put w = si2 · · · sim . This is a reduced expres-
sion. Since ℓ(w) < ℓ(si1w), we have v[−α∨

i1
] 6∈ ẇV+, where α∨

i = αi (i 6= n) or
ǫn (i = n). It follows that

(K×v[−α∨
i1
] + V[0] + V+) ∩BẇV+ = ∅

by a weight comparison. (Here we need to replace K with k when the subscripts
are k.) Hence, we have V(i1) ∩ BẇV+ ⊂ V+. Taking account into (⋆), this
implies that

∅ 6= Bṡi1X
′ ∩BẇX ⊂ V+.

In particular, there exists an irreducible component X′′ ⊂ Pi1X
′ ∩V+ such that

X′′ ∩Bṡi2B · · ·BṡimX 6= ∅,X′ ⊂ Pi1X
′′,

and the intersection at the most LHS is a maximal dimensional irreducible
component of Z. By Lemma 8.3, it suffices to prove the assertion for X,X′′ ∈
Comp(O) with

X′′ ⊂ Bṡi2B · · ·BṡimX = Pi2Pi3 · · ·PimX.

Since the assertion for m = 1 is proved in Lemma 8.3, the downward induction
on m yields the result.
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9 Comparison of Springer correspondences

We work under the same setting as in §1.2.
Let X be a T -equivariant scheme over A. Let KT∗(X∗)Q be the Q-coefficient

Grothendieck group of T∗-equivariant coherent sheaves on X∗ which are flat
over the base (∗ = A,K, k). Let R(T )Q be the representation ring of T with
coefficient Q. For a T -module V , we define chTV to be the class [V ] ∈ R(T )Q.
Consider a map

p : KT (n)Q −→ R(T )Q

which sends a T -equivariant closed subset C ⊂ n to the ratio

chTΓ(n,OC)/chTΓ(n,On) ∈ R(T )Q.

Replacing T and n with T∗ and n∗ (where ∗ = A,K, k), we define the corre-
sponding maps p∗. Similarly, consider a map

q : KT (V+)Q −→ R(T )Q

which sends a T -equivariant closed subset C ⊂ V+ to the ratio

chTΓ(V
+,OC)/chTΓ(V

+,OV+) ∈ R(T )Q.

Replacing T and V+ with T∗ and V+
∗ (where ∗ = K, k), we define the corre-

sponding maps q∗.
Let fx : R(T ) → C[[t]] be the map given by the formal expansion of a function

on T along 1. For f ∈ R(T ), we denote the lowest non-zero homogeneous term
of fx(f) by lt(f). By definition, lt(f) is a homogeneous polynomial on t.

Let O be a G-orbit in N . For each Y∗ ∈ Comp(O∗) (∗ = A,K, k), we define
the Joseph polynomial attached to Y∗ as lt

(
p∗(Y∗)

)
. Let O be a G-orbit in N.

For each X∗ ∈ Comp(O∗) (∗ = K, k), we define the Joseph polynomial attached
to X∗ as J(X∗) := lt

(
q∗(X∗)

)
.

We denote the set of Q-multiples of Joseph polynomials attached to orbital
varieties of O∗ or O∗ (∗ = A,K, k) by Jos(O∗) or Jos(O∗), respectively.

Proposition 9.1. Let X ⊂ V+ and Y ⊂ n be T -equivariant flat subfamilies
over A. Then, we have

qK(XK) = qk(Xk) and pK(YK) = pk(Yk).

Proof. Each character of tori is defined over A. In particular, specialization (to
K or k) of a T -equivariant flat A-module of rank one preserves the character.
Hence, the assumption implies that the coordinate rings K[XK] and k[Xk] share
the same character. Hence, we conclude the result for X . The case Y is entirely
the same.

Proposition 9.2. Let C be a Tk-stable flat subfamily of V+ over A1
k whose fibers

are irreducible schemes. Let Ct := C∩̇π−1(t). Then, we have

lt(pk([C1])) ∈ Z≥1lt(qk([F
−1
1 (C0)])).
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Proof. For the sake of simplicity, we drop the subscripts k during this proof.
A T -character does not admit a non-trivial deformation. We express OC0

by a
T -equivariant free resolution

0 → FN → · · · → F2 → F1 → OC0
→ 0

such that N < ∞ and each Fi is isomorphic to a product of T -module and
OF1(V+) (c.f. Chriss-Ginzburg [CG97] §5.1 or Sumihiro [Sum74]). Utilizing the
Frobenius splitting of V1, we deduce that OV+ is a free OF1(V+)-module of rank
2n. It follows that q([F∗

1(C0)]) = p([C1]). Now the sheaf F∗
1(OC0

) is a vector
bundle of rank m along an open subset of F−1

1 (C0) for some m > 0. Taking
the lowest term of q neglects the effects from subsets of F−1

1 (C0) which has
codimension ≥ 1. Therefore, we conclude that

mltq([F−1
1 (C0)]) = ltq([F∗

1(C0)]) = ltp([C1])

as desired.

Theorem 9.3 (Joseph [Jos83, Jos89]). Let O be a G-orbit of N and let O be a
G-orbit of N. The C-span of Jos(OK) or Jos(OK) form an irreducible W -module
with a basis Jos(OK) or Jos(OK).

Proof. The proof for the case OK is the original case and is treated in [CG97]
6.5.13 and 7.4.1. The case OK follows from the same construction as in [CG97]
6.5 and 7.4 if we replace nK with V+

K , NK with NK, and OK with OK uniformly.

Corollary 9.4 ((♠)1 in §7). We have
∑

OK∈GK\NK
(Comp(OK))

2
= #W .

Proof. Since our exotic Springer correspondence is a bijection between the orbits
of N and W∨, Theorem 9.3 and the Wedderburn theorem yields the result.

Corollary 9.5 ((♠)2 in §7). For a G-orbit O of N, there are at least #Comp(OK)
orbital varieties of Ok contained in the closure of that of OK.

Proof. Straight-forward consequence of Proposition 9.1 and Theorem 9.3.

Theorem 9.6. Let O be a G-orbit in N . Let O be a G-orbit in N such that
df(Ok) ⊂ Ok is a open dense subset. Then, we have

Jos(OK) = Jos(OK).

Proof. Since the construction of Joseph polynomials factors through the closures
of orbital varieties, we may refer an orbital variety closure as an orbital variety
during this proof (for the sake of simplicity). We prove the following identities:

Jos(OK) = Jos(Ok) = Jos(Ok) = Jos(OK). (9.1)

(Proof of Jos(OK) ⊂ Jos(Ok)) Let Y ∈ Comp(O) be such that YK ∈ Jos(OK).
The variety Yk is irreducible by Proposition 7.8 2). Since Y dominates A, we
deduce that Y is a flat over A. Therefore, Jos(OK) ⊂ Jos(Ok) follows from
Proposition 9.1 as desired.
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(Proof of Jos(Ok) = Jos(Ok)) Let Xk ∈ Comp(Ok). Consider a family ml(Xk).
This is a Bk-stable equidimensional subfamily of V+. By the comparison of
dimensions, it is a flat family of orbital varieties over A1

k. Hence the equality
Jos(Ok) = Jos(Ok) follows from Proposition 9.2.

(Proof of Jos(OK) = Jos(Ok)) Let X ∈ Comp(O). The variety Xk is irreducible
by Proposition 7.8 1). Since X is flat over A, the equality Jos(OK) = Jos(Ok)
follows from Proposition 9.1.
Thanks to Theorem 9.3, we deduce (9.1), which implies the result.

Let OK be a GK-orbit of NK. Let Y ∈ OK. We define

BY := {g ∈ GK;Y ∈ Ad(g)nK}/BK ⊂ BK

and call it the Springer fiber along Y .

Corollary 9.7. Let O be a G-orbit of N with its codimension 2d. Let O be a
G-orbit of N such that df(Ok) ⊂ Ok is a dense open subset. Let X ∈ OK and let
Y ∈ OK. Let CY := StabGK

(Y )/StabGK
(Y )◦. Then, we have a W -equivariant

isomorphism
H2d(BY ,C)

CY ∼= H2d(EX ,C),

compatible with their embeddings into H2d(B,C). Moreover, the bases given by
irreducible components of BY and EX coincide up to scalar multiplication.

Proof. This is a direct consequence of Theorem 9.6 and [CG97] 6.5.13. Here
the counter-part of [CG97] 6.5.13 for N is obtained by merely by replacing the
meaning of the symbols as N by N, O by O, and BY by EX .

10 An explicit description of the correspondence

Keep the setting of the previous section, but fix the base to be K (or rather its
scalar extension to C). Here we use the notation Vλ,Vλ

01, . . . defined in §5.
We start from a dimension formula which seems to go back to Kraft-Procesi

[KP82] §8.1. Here we present a slightly modified form which is suitable for
applications.

Theorem 10.1 (Kraft-Procesi [KP82]). Let λ be a partition of n and let 0 =
(0, 0, . . .) be a sequence of zeros. We put λ := (λ,0). Then, we have

dimO(λ,0) = 2dim(O(λ,0) ∩ V0) = 4
∑

i<j

(dλi − dλi−1)(d
λ

j − dλj−1),

where {dλi }i≥1 is a sequence obtained from λ as in Definition 5.2.

Lemma 10.2. For each marked partition λ, there exists Xλ ∈ Comp(Oλ) such
that

Xλ = BVλ.

Proof. We set d∇i := dλi − dλi−1. By Theorem 7.1 and Corollary 5.7, it suffices
to prove dimBVλ ≥ |µ| + 2

∑
i<j d

∇
i d∇j . The subspace Vλ

1 is B-stable and

has dimension |µ|. Since BVλ = BVλ
01, we have only to prove dimBVλ

0 ≥
2
∑

i<j d
∇
i d∇j . Here Vλ

0 is N0-stable and dimVλ
0 =

∑
i<j d

∇
i d∇j . Thus, it suffices
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to prove that dimG2x ≥
∑

i<j d
∇
i d∇j for a generic element x ∈ Vλ

0 . Since the

dimension of the G2-stabilizer is an upper semi-continuous function along Vλ
0 ,

it is enough to show dimG2x ≥
∑

i<j d
∇
i d

∇
j for some x ∈ Vλ

0 . For x ∈ V0, we
have

dim g2x = dim g−2x.

Theorem 10.1 implies that

dimO(λ,0) = dim gx = 2dim g0x = 4
∑

i<j

d∇i d∇j .

In particular, we have dim g2x =
∑

i<j d
∇
i d∇j as desired.

Lemma 10.3. Let λ = (λ, a) be a marked partition. Then, we have an equality

Xλ = Vλ

1 ⊕ X

for some orbital variety X of O(λ,0).

Proof. The number d∇i from the proof of Lemma 10.2 is some parts of t(µλ)
if i ≤ µλ

1 and count some parts of t(νλ) if i > µλ
1 . We define {d′i} to be the

parts of the partition tλ. Since λj = µλ

j + νλj for all j, we deduce that the two

sequences {d∇i }i and {d′i}i coincides up to changing their ordering.
Here {d′i}i is a decreasing sequence. It follows that the dense open part of

Vλ
0 has the same Jordan normal form as that of V

(λ,0)
0 . Here, Vλ

1 is B-stable.
Therefore, Lemma 10.2 and Corollary 5.7 implies that

dimX = dimXλ − dµλ

1
=

1

2
dimOλ − |µλ| =

1

2
dimO(λ,0).

By Theorem 7.1, the closure BVλ
0 must be the closure of an orbital variety of

O(λ,0) as desired.

Definition 10.4 (Special vectors). Let λ be a marked partition of n and let
(µλ, νλ) be its associated bi-partition (c.f. Theorem 5.1 and the line below it).
We define

D0
i (λ) :=

∏

di<k<l≤di+1

(ǫ2k − ǫ2l ), and D+
i (λ) := D0

i (λ)
∏

di<k≤di+1

ǫk.

Using this, we define

D(µλ, νλ) :=

µ1−1∏

i=0

D0
i (λ)×

µ1+ν1−1∏

i=µ1

D+
i (λ).

For an arbitrary bi-partition (µ, ν) of n, we define the Macdonald represen-
tation attached to (µ, ν) as

L(µ, ν) := C[W ]D(µ, ν) ⊂ C[t].

We remark that L(µ, ν) is well-defined due to Theorem 5.1. Let C[t]m denote
the degree m-part of the polynomial ring C[t]. For a subset I ⊂ C[t], we put
Im := I ∩ C[t]m.
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Theorem 10.5 (Macdonald c.f. Lusztig-Spaltenstein [LS79]). For each bi-
partition (µ, ν) of n, the Macdonald representation L(µ, ν) is an irreducible rep-
resentation of W . Moreover, we have

HomW (L(µ, ν),C[t]m) =

{
0 (m < degD(µ, ν))

1 (m = degD(µ, ν))
.

We define

Wl := 〈sisi+1 · · · sn−1snsn−1 · · · si; 1 ≤ i ≤ n〉 ⊂ W.

We have Wl
∼= (Z/2Z)n. Moreover, we have a short exact sequence of groups

{1} −→ Wl −→ W −→ Sn −→ {1}.

Corollary 10.6. Let λ be a partition of n. For each integer m, we have

1. HomW (L(λ, ∅),C[t]m) = HomSn
(L(λ, ∅),C[ǫ21, . . . , ǫ

2
n]m);

2. HomW (L(∅, λ),C[t]m) = HomSn
(L(∅, λ),

(
ǫ1ǫ2 · · · ǫnC[ǫ21, . . . , ǫ

2
n]
)
m
).

Proof. An irreducibleW -module for which Wl acts trivially yields aSn-module.
The invariant ring C[t]Wl is generated by ǫ21, . . . , ǫ

2
n. This implies the first asser-

tion. The whole ring C[t] is a free C[t]Wl-module of rank 2n. The sign representa-
tion of Wl also defines a rank one C[t]Wl -submodule C[t]Wl(ǫ1ǫ2 · · · ǫn) ⊂ C[t] via
taking the isotypical component. Hence, we deduce the second assertion.

Theorem 10.7. Let λ and (µλ, νλ) be a marked partition of n and its associated
bi-partition. Let Xλ be the orbital variety of Oλ defined in Lemma 10.2 (c.f.
Definition 5.1). We have

J(Xλ) ∈ QD(µλ, νλ).

In particular, the Q-span of Jos(Oλ) is equal to L(µλ, νλ) as W -submodules of
Q[t].

Proof of Theorem 10.7. We define

q0(λ) :=
∏

i>|µ|

ǫi ×
∏

i≥0

∏

di<j<k≤di+1

(ǫj − ǫk).

The map pr : V+ −→ V+/(V1 ⊕ V2) is a B-equivariant fibration. Hence, it
induces the associated map Xλ −→ pr(Xλ), which is generically a flat fibration.
By Lemma 5.5, we have pr(Xλ) = Vλ ∩ V0. Moreover, each Xλ is written as a
product of

⊕
1≤i≤|µ| V1[ǫi] and Xλ ∩ V2. It follows that

q0(λ) divides J(Xλ). (10.1)

By a dimension counting, we deduce that

dY := dim EY =
1

2
codimNGY = deg J(Xλ) = degD(µ, ν) (10.2)

for each Y ∈ Oλ.

27



Applying the argument of [CG97] 6.5.3 and 7.4.1, we know that

H2dY
(EY ,C) →֒ H•(B,C) →֒ C[t]

is some Macdonald representation. (The second inclusion is realized by the
harmonic polynomials determined by T -equivariant fundamental classes.) By
[K09] Theorem 8.3 and [CG97] §8.9, this establishes a one-to-one correspondence
between the set of Macdonald representations and the set of G-orbits of N.

By Lemma 10.3, we have Xλ ∩ V2 = X∼
λ

for some X∼
λ

∈ Comp(O(λ,0)).
Hence, we have an equality

(
∏

i≤|µ|

ǫi)J(Xλ) = J(X∼
λ
). (10.3)

For f ∈ C[ǫ21, . . . , ǫ
2
n], it is standard to see

(ǫi − ǫj) (resp. ǫi) divides f if and only if (ǫi + ǫj) (resp. ǫi) divides f. (10.4)

By Corollary 10.6, if J(Xλ) ∈ L(γ, ∅) or J(Xλ) ∈ L(∅, γ) for a partition γ, then
we have

J(Xλ) ∈ CD(µλ, νλ) (10.5)

by a degree counting.
We prove the condition (10.5) by induction on the usual partition λ of n

constituting λ = (λ, a).

Claim 10.8. If λ = (1, 1, . . . , 1), then (10.5) holds.

Proof. We have either a = {0} or {1, 0, · · · }. If a = {0}, then the weight
configuration of V+ is the same as the positive roots of SO(2n+ 1). It follows
that J(Xλ) = D(∅, λ), which implies J(Xλ) ∈ L(∅, λ). If a = {1, 0, · · · }, then we
have J(Xλ) = D(λ, ∅) ∈ L(λ, ∅). This proves (10.5) in all cases.

Claim 10.9. Assume that (10.5) holds for λ = (λ,0). Then, we have (10.5)
for all marked partition of shape (λ, ∗).

Proof. We have L(µ(λ,0), ν(λ,0)) ⊂ C[t]Wl(ǫ1 · · · ǫn). Hence, for every marked
partition of shape (λ, a′), we have J(X∼

(λ,a′)) ∈ C[t]Wl(ǫ1 · · · ǫn). Hence, we

deduce (10.5) for (λ, a′) from (10.1), (10.3), and (10.4).

We return to the proof of Theorem 10.7
Assume that we know (10.5) for all λ = (λ, a) when degD(µ(λ,0), ν(λ,0)) >

M . We prove the case degD(µ(λ,0), ν(λ,0)) = M . We a priori knows that
{L(µ, ν)}(µ,ν) gives a complete collection of W∨. Therefore, the induction hy-

pothesis implies that each D(µλ, νλ) ∈ C[t]M which we have not yet proved
(10.5) admits a factorization by (ǫ1 . . . ǫn) and aWl-invariant polynomial. Hence,
we deduce (10.5) for λ = (λ,0) such that degD(µ(λ,0), ν(λ,0)) = M from (10.1)
and (10.4). Now Claim 10.9 proceeds the induction and we obtain (10.5) for
every marked partition.

Since an equivariant Hilbert polynomial has rational coefficients, we deduce

J(Xλ) ∈ QD(µλ, νλ)

as desired.
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Birkhäuser Boston, Inc., Boston, MA, 1997. x+495 pp. ISBN 0-8176-3792-3

[DK85] J. Dadok, and V. Kac, Polar representations. J. Algebra 92 (1985), no. 2, 504–
524.

[Gin97] V. Ginzburg, Geometric methods in representation theory of Hecke algebras and
quantum groups. Notes by Vladimir Baranovsky. NATO Adv. Sci. Inst. Ser. C
Math. Phys. Sci., 514, Representation theories and algebraic geometry (Montreal,
PQ, 1997), 127–183, Kluwer Acad. Publ., Dordrecht, 1998.

[Hot84] R. Hotta, On Joseph’s construction of Weyl group representations, Tôhoku Math.
J. (2) 36 (1984), no. 1, 49–74.

[Hes79] W. H. Hesselink, Nilpotency in Classical Groups over a Field of Characteristic
2, Math. Zeit. 166, 165–181, (1979)

[Jos83] A. Joseph, On a variety associated to highest weight modules, J. Algebra 88
238–278, (1984).

[Jos89] A. Joseph, On the characteristic polynomials of orbital varieties, Ann. Sci. École
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