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Abstract

The construction (by Kapranov) of the space of infinitesimal paths
on a manifold is extended to include higher dimensional infinitesimal
objects, encoding contractions of infinitesimal loops. This full infinites-
imal groupoid is shown to have the algebra of polyvector fields as its
non-linear cohomology.

What is the infinitesimal version of the fundamental groupoid of a man-
ifold M? The standard answer is that it is the Lie-Rinehart algebra (also
called Lie algebroid) of vector fields on M. However, this answer is not
precise.

Let α, β be two vector fields on M, and assume for simplicity that they
commute, i.e. [α, β] = 0. The left hand side of this equation represents a
loop, while the right hand side stands for the constant path. By equating
the two sides we actually contract a loop.

In [Ka07] another Lie-Rinehart algebra was constructed for each M.
Starting with the space X1 of vector fields, one builds the free Lie-Rinehart
algebra R(X1), generated by X1. The action of R(X1) on functions on M
is generated by the action of X1, but otherwise the Lie bracket is free.

The Lie bracket being free means that one doesn’t contract non-degenerate
loops (we still have Jα,αK = Jα, 0K = 0), and therefore one can call R(X1)
the space of infinitesimal paths. This is a module over the algebra X0

of functions on M, and it defines a vector bundle on M, that we will denote
by RTM. Unless dim(M) ≤ 1, RTM is obviously infinite dimensional.

While X1 is obtained by contracting all loops, R(X1) is built by avoiding
contractions. In this paper we add higher dimensional components to R(X1),
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that represent higher dimensional submanifolds, needed to parametrize con-
tractions. We obtain the full infinitesimal groupoid X∗, graded by the
dimension of submanifolds.

The algebraic structure on X∗ is considerably more complicated than
that of a Lie-Rinehart algebra. In particular there are the homotopy maps

Xk → Xk−1, (1)

that represent contractions of loops. For example: X1 = R(X1), but X1

modulo the image of X2 → X1 is just X1.
We also consider the “non-linear cohomology” H(X∗) of X∗ (for k > 1

the set Xk is not additive), i.e. homotopy classes of elements of X∗, that
themselves do not define non-trivial equivalence relations. We obtain that

H(X∗) is the algebra of polyvector fields
−∞
Σ
k=1

∧−k+1 X1. It is important to

note that this algebra is not Gerstenhaber, since the Lie bracket has degree
0, while the wedge product is of degree −1.1

The idea of construction of X∗ is as follows. A loop like [α, β] is con-
tracted by a 2-morphism, i.e. it happens inside a jet of a submanifold of
dimension 2. While α, β are given as 1-jets, it is not enough to take the 1-jet
of the surface, indeed, if α, β are given as morphisms

α : X0 → X0 ⊗ R[ǫ1]/(ǫ
2
1), β : X0 → X0 ⊗ R[ǫ2]/(ǫ

2
2),

their bracket requires ǫ1ǫ2, and hence we need a morphism

X0 → X0 ⊗ R[ǫ1, ǫ2]/(ǫ
2
1, ǫ

2
2).

In other words we need to consider sections of the second tangent bundle
T 2M. If ν ∈ X2 is such a section, it has α, β as its two projections to X1,
and it defines a homotopy relation in X1 by equating [α, β] = Jα, βK, where
J−,−K is the free bracket on X1 = R(X1).

To understand how ν provides the identification [α, β] = Jα, βK one
should note the two ways to view ν as a one-parameter family of vector
fields on M. On one hand ν is tangent to α, on the other it is tangent to
β. Choosing one of the ways is equivalent to choosing an order on the pair
{α, β}, i.e. choosing an orientation on ν.

The symmetric group S2 acts on the set of these choices, and if σ ∈ S2

is the non-trivial element, its action is well known to produce [α, β], indeed,

1We use the cohomological notation, i.e. differentials raise degrees.
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let α∗(β), β∗(α) be the sections of T 2M, obtained by using functoriality of
T . Then

α∗(β) − β∗(α) = [α, β], (2)

where on the left hand side we use the strong difference of points in T 2M
([KL84], [MR91]), and on the right hand side we use identification of points
in TM with tangents to the fibers of TM → M.

Having two brackets [−,−] and J−,−K on RTM we have two actions of
S2 on T (RTM), and taking their strong difference we obtain [α, β]− Jα, βK.

There are many sections of T 2M, that have α, β as their projections to
X1, and therefore there are many different ways to contract the loop [α, β].
To equate the different ways we need to consider jets of submanifolds of
dimension 3, again these jets should be 3-jets of a particular kind, i.e. maps
to R[ǫ1, ǫ2, ǫ3]/(ǫ

2
i ). So we need sections of T 3M.

Since the combinatorics of {T kM} is not globular but cubical, a section
µ : M → T 3M defines several homotopy relations on X2. There are 3 pairs
of generators in R[ǫ1, ǫ2, ǫ3]/(ǫ

2
i ), and hence there are three homotopy maps

X3 → X2. For an arbitrary k, ν ∈ Xk defines k!
2(k−2)! homotopies.

To continue this construction further we have to work with iterations of
RT , rather than with iterations of the usual tangent bundle, i.e. instead of
T 2M we should take sections in (RT )2M.

One can construct (RT )2M, but it is too big. It contains infinitesimal
loops, that are completely inside the fibers of RTM → M. Tangents to
these fibers represent infinitesimal automorphisms of tangents to M, and,
as far as M is concerned, infinitesimal loops in these fibers should be con-
tracted.

This leads us to the construction of relatively free Lie-Rinehart al-

gebras. We formulate this in general terms: let π : N1 → N2 be a smooth
map, that locally (on N1) is a trivial bundle (not necessarily linear). We
define R(X1(N1), π) to be the space of infinitesimal paths, obtained from
R(X1(N1)) by contracting all “vertical loops” with respect to π.

If π : N1 → pt is the unique map to a point, we obtain the usual space
of vector fields, if π : N1 → N1 is the identity map, we obtain the space
R(X1(N1)) of all infinitesimal paths from [Ka07].

Applying this construction to M, and iterating, we obtain a sequence
{TkM}, that, just like {T kM}, is a semi-simplicial diagram of linear bun-
dles. We define Xk as the set of sections M → TkM.

For k > 1, the set Xk is not additive, but it has k different additions
over Xk−1. Also there is a cup product and a composition product, encoding
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infinitesimal automorphisms and Lie derivatives respectively. Taking non-
linear cohomology as described above, and factoring out jets of degenerate
submanifolds we obtain the algebra of polyvector fields.

Here is the structure of the paper. In section 1 we recall the construction
and some algebraic properties of the usual iterated tangent bundles, and
describe the additional structure one has on the sets of sections.

In section 2 we give the construction of relatively free Lie-Rinehart al-
gebras and discuss their functorial properties.

In section 3 we construct the full infinitesimal groupoid X∗, discuss some
of the algebraic operations defined on this groupoid, including actions of
symmetric groups, and compute its cohomology H(X∗).

Everything in this paper is formulated for smooth real manifolds. All the
statements and proofs are also valid, if one uses complex analytic manifolds
instead.

Contents

1 k-vectors and k-vector fields 4

2 Relatively free Lie-Rinehart algebras 9

3 The full infinitesimal groupoid 15

1 k-vectors and k-vector fields

In this section we recall the basic properties of points and sections of iterated
tangent bundles, in particular we describe decompositions of sections into
sets of vector fields, subject to action by symmetric groups. These decom-
positions, and the action will be central to our treatment of full infinitesimal
groupoids in section 3.

Let M be a smooth manifold of dimension n. Let T kM, k ≥ 0, be its
k-th iterated tangent bundle, i.e. T kM is the tangent bundle on T k−1M,
and T 0M = M.

It is well known (e.g. [Wh82], [Be08]) that for each k ≥ 1 there are k
vector-bundle projections {πk,i : T kM → T k−1M}0≤i≤k−1, and {πk,i}k≥1

satisfy the usual equations of simplicial boundaries.
From the (semi-)simplicial properties of {πk,i}k≥1 and the equality

π1 ◦ π2,0 = π1 ◦ π2,1,
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it follows easily, that for any k ≥ 1 all possible projections T kM → M are
equal, and we will denote by Xk the set of smooth sections M → T kM.
We will call such sections k-vector fields, and their values at points of M
k-vectors.

There are different ways to interpret points in T kM, and we will use the
notion of F -equivalence, introduced in [Wh82], since it is very well suited for
treatment of k-morphisms, defined as jets of k-dimensional sub-manifolds in
M.

Let ν, ν ′ : (Rk, 0) → (M, p) be two k-jets, ν is F -equivalent to ν ′ if for
any function f on M around p, and any 1 ≤ m ≤ k, we have

∂m

∂i1 . . . ∂im
(f ◦ ν)|0 =

∂m

∂i1 . . . ∂im
(f ◦ ν ′)|0, (3)

if ij’s are pairwise different. Obviously this equivalence relation depends on
the choice of coordinate system on Rk.

Proposition 1 ([Wh82], [Be08]) Let p be a point on M. There is a bijective
correspondence between k-vectors and F -equivalence classes of k-jets of maps
(Rk, 0) → (M, p).

This correspondence is natural in M.

The semi-simplicial structure on {T kM}k≥1 corresponds to the diagram of
coordinate subspaces of Rn. More precisely, let {xi}0≤i<k be the natural
coordinate system on Rk, then each ν : (Rk, 0) → (M, p) has k faces:

νi : (Rk−1, 0) → (M, p), 0 ≤ i ≤ k − 1, (4)

with νi being the restriction of ν to the linear subspace of Rk, given by
vanishing of xi.

If we choose a simplicial model for the n-groupoid of M, i.e. if we
consider k-simplices in M (submanifolds with corners) as k-morphisms, it
is clear, that we can realize ν as the jet of a k-morphism between jets of
k − 1-morphisms {ν0, . . . , νk−1}.

Note that k-morphisms are represented by k-jets, while k−1-morphisms
are represented by k− 1-jets. This is not really an inconsistency, since for a
k − 1-dimensional submanifold of M, the F -equivalence class of its k-jet is
completely determined by its k − 1-jet.

To describe reparametrizations of k-vectors and k-fields, i.e. suitable
changes of coordinates on Rk, we use the dual language of morphisms be-
tween algebras of functions. Consider a sequence of Weil algebras

Wk := R[ǫ0, . . . , ǫk−1]/{ǫ
2
i }0≤i≤k−1, k ≥ 1.
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For any point p ∈ M, let X0
p be the stalk at p of the sheaf of functions on

M. Then points in T kM over p correspond to morphisms of R-algebras

X0
p → Wk,

that factor the evaluation map X0
p → R. Automorphisms of Wk provide

reparametrizations of k-vectors, and lead to polynomial groups ([Be08]).

Among all the automorphisms we will be particularly interested in the
action of the symmetric group Sk, permuting generators of Wk. These per-
mutations induce an action of Sk on T kM, and this action is important to
us, since choosing the order on the generators of Wk allows us to decompose
any section M → T kM into a set of sections M → TM.

This decomposition will allow us to introduce several important opera-
tions on sections of T kM, and these operations are well defined since they
are Sk-invariant.

It is well known (see e.g. [Be08]) that any k-vector field ν ∈ Xk can be
decomposed into a set {αφ} of 1-vector fields, indexed by non-emtpy subsets
φ ⊆ {0, . . . , k − 1}.

Since there are different possible ways to decompose, we discuss this here
in detail, and we start with an example of β ∈ X2.

The two projections T 2M ⇉ TM map β to two 1-vector fields α0, α1.
The image of α0 : M → TM is transversal to the fibers of TM over M,
and hence at the points of the image we have a decomposition of the tangent
spaces into vertical and horizontal parts. Applying this decomposition to β
we obtain

β 7→ {α0, α1, α01}, α0, α1, α01 ∈ X1, (5)

where α01 is tangent to the fibers of TM → M.
This decomposition, however, depends on the choice of α0 as the first

projection. More precisely, there is the canonical action of the symmetric
group S2 on T 2M, and of course we can permute α0 and α1 in (5). If σ ∈ S2

is the non-trivial element, we have

σ(β) 7→ {α1, α0, α01 + [α0, α1]}. (6)

Appearance of [α0, α1] in (6) is due to the following. Every function f on
M defines two functions on TM: one by composition with the projection
π1 : TM → M, and the other is df . Reflecting this fact we can combine the
two lifts into one total lift f ◦ π1 + ǫdf on TM, where ǫ2 = 0.
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Being a collection of tangents to TM, β acts on the total lift f ◦π1 +ǫdf ,
and using the decomposition into horizontal/vertical parts, provided by α0,
we can write this action as follows:

f ◦ π1 + ǫdf 7→ α1(f) ◦ π1 + ǫ(α01(f) + α1α0(f)) ◦ π1. (7)

In fact, β is determined by its first projection to TM, i.e. α0, and its action
(7) on the total lifts of functions from M. On the ǫ-part this action is that of
a second order differential operator, and given some choices, as for example
the order on the pair α0, α1, we can extract the first order part: α01. The
opposite choice produces a different extraction: α01 + [α0, α1].

In general, a section ν : M → T kM is uniquely determined by 2k−1 sec-
tions {αφ : M → TM}, if we fix an order on φ’s. We use the lexicographical
one.

Then a set {αφ} of 1-vector fields uniquely determines a k-vector field:
for each φ of size m, the corresponding differential operator of order m is

Σ
φi>...>φ1

αφi
◦ . . . ◦ αφ1

, (8)

where the sum is taken over all decompositions φ =
⋃

1≤j≤i
φj into pairwise

disjoint subsets. The action of the symmetric group Sk on T kM is expressed
as follows: let 0 ≤ i < k − 1, and let σi,i+1 ∈ Sk be the swapping of i and
i + 1. Then σi,i+1(νk) is given by {α′

φ}, where α′
φ = αψ, if σi,i+1(φ) = ψ,

φ 6= ψ, and for the rest of φ ⊆ {0, . . . , k − 1}

α′
φ = αφ + Σ

φ′<φ′′
[αφ′ , αφ′′ ], (9)

where the sum is taken over all decompositions φ = φ′∪φ′′, s.t. φ′ ∩φ′′ = ∅,
and σi,i+1(φ

′) > σi,i+1(φ
′′).

There are operations on k-vector fields that are performed pointwise, i.e.
they can be defined also for k-vectors, and there are operations that require
sections. Now we describe some of the both types of these operations in
terms of k-vector fields.

We have already mentioned that for each k ≥ 1 there are k vector bundle
structures on T kM over T k−1M. Obviously these k additions on T kM
translate to k additions on Xk: two sections {µφ}, {νφ} can be added if
there is a k− 1-dimensional face ψ ⊂ {0, . . . , k− 1}, i.e. ψ has exactly k− 1
elements, s.t.

µφ = νφ, ∀φ ⊆ ψ. (10)
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Then µ +ψ ν is given as follows: if φ ⊆ ψ, then (µ +ψ ν)φ = µφ = νφ, if
φ * ψ then (µ+ψ ν)φ = µφ + νφ.

An operation, closely related to the additions, is the strong difference

between two 2-vectors. It is not defined for every couple of β1, β2 ∈ T 2M,
but only for those that have same projections to TM, i.e.

π2,0(β1) = π2,0(β2), π2,1(β1) = π2,1(β2). (11)

In this case it is easy to see that the difference between β1, β2 as vectors
on π2,0(β1) ∈ TM is a vector tangent to the fiber of π2,0(β1) over M.
This vector can be obtained by vertical lift of some α ∈ TM, which is by
definition the strong difference of β1, β2

α := β1 − β2. (12)

Clearly, one can take strong difference of a pair of k-vectors for any k ≥ 2,
considered as 2-vectors on T k−2M. This operation is defined also for k-fields,
and in terms of decompositions into 1-fields it is represented as follows.

Let µ = {αφ}, ν = {βφ} be two k-fields. We can define µ− ν only if all
k− 1-faces of µ, ν coincide, i.e. for any φ ⊂ {0, . . . , k− 1} of of size ≤ k− 1,
we have αφ = βφ. Then µ − ν = {γψ} is the k − 1-field defined as follows:
for any ψ ⊆ {0, . . . , k − 3}

γψ = αψ = βψ, γψ∪{k−2} = αψ∪{k−2,k−1} − βψ∪{k−2,k−1}. (13)

There is another important pointwise operation: the cup product,
however, it is only partially defined. Consider the following Weil algebras

Vk := R[ε1, . . . , εk]/(εiεj).

For k > 1 Vk 6= Wk, and there are several R-algebra morphisms Vk → Wk.
Now let p be a point in M, and let x : X0

p → Wk, y : X0
p → Wm be

a k-vector and an m-vector at p. Suppose that y factors through some
g : Vm → Wm. Then we can define a k+m-vector x∪ y, using the following
R-algebra morphism

Wk

∏

R

Vm → Wk+m, ǫi 7→ ǫi, εj 7→ h ◦ g(εj)ǫ0 . . . ǫk−1, (14)

where h : Wm → Wk+m maps ǫi to ǫk+i.
For example: if m = k = 1, then x ∪ y is the evaluation at x of the

well known “vertical lift” of y to TM. Similarly there are vertical lifts of
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1-vectors to T kM for k > 1. If m > 1, this operation is not everywhere
defined anymore, but only for those y : X0

p → Wm, that factor through Vm.
Notice that the cup product is invariant with respect to the action of

symmetric groups, i.e. if σk ∈ Sk, σm ∈ Sm, then

(σkx) ∪ (σmy) = (σk × σm)(x ∪ y). (15)

In terms of sequences of 1-vector fields cup product is represented as
follows: let {αφ} = µ ∈ Xk and {βψ} = ν ∈ Xm, and suppose their cup
product {γχ} = µ∪ν ∈ Xk+m is everywhere defined (i.e. ν : X0 → Wm⊗RX0

factors through Vm ⊗R X0), then

γφ = αφ, γφ∪ψ = βψ, (16)

and the rest of components are 0. Here we consider φ ⊆ {0, . . . , k − 1} and
ψ ⊆ {0, . . . ,m − 1} as subsets of {0, . . . , k + m − 1} given by the (lexico-
graphical) order preserving bijection

{0, . . . , k − 1}
∐

{0, . . . ,m− 1}
≃
→ {0, . . . , k +m− 1}. (17)

An important operation, that is not defined pointwise, is the com-

position product of vector fields. Let µ ∈ Xk, ν ∈ Xm. Since µ is a
map M → T kM, applying the tangent functor m times we obtain a map
µ∗ : TmM → Tm+kM. Evaluating at ν : M → TmM we get a section
µ× ν : M → Tm+kM.

In terms of sequences of 1-vector fields this operation is written as follows.
Let {αφ}, {βψ}, {γχ} be µ, ν, µ× ν respectively. Then

γφ = αφ, γψ = βψ , (18)

and the rest of components are 0. Here again we consider φ,ψ as subsets of
{1, . . . , k +m} using (17).

Notice that also composition product is invariant with respect to the
action of symmetric groups, i.e. for any σk ∈ Sk, σm ∈ Sm we have

(σkµ) × (σmν) = (σk × σm)(µ× ν). (19)

2 Relatively free Lie-Rinehart algebras

In this section we recall (from [Ka07]) the construction of the bundle of
infinitesimal paths on a manifold, and relativize it, i.e. construct bundles
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of infinitesimal paths, where we contract some of the loops. This relative
version has nice functorial properties, and we use them in the next section
to build the iterated bundles of infinitesimal paths on a manifold.

In [Ka07] the space of infinitesimal paths on M is defined as the free
Lie-Rinehart algebra, generated by X1. Here are the details of this free
construction in the general case.

Let A be an R-algebra, and let M be an A-module with an anchor,
i.e. there is an A-map M → DerR(A). Let L(M) be the free Lie algebra
over R, generated by M . By its construction L(M) is a graded space, with
L(M)d being generated by Lie monomials of length d. There is an obvious
extension of the anchor L(M) → DerR(A).

The free Lie-Rinehart algebra R(M), generated by M , is a filtered A-
module, inductively defined as follows:

• R(M)≤1 = M ,

• for n > 1 R(M)≤d is
⊕

1≤i≤d
L(M)i modulo the following relations

[x, fy] − [fx, y] = x(f)y + y(f)x, [x, q] = 0, (20)

where x, y ∈ L(M), f ∈ A, q is in the kernel of

⊕

1≤i≤d−1

L(M)i → R(M)≤d−1,

and for any x ∈ L(M) we write x(f) for the action of x on f through
the anchor.

It is easy to see that the kernel of L(M) → R(M) is a Lie ideal, and hence
R(M) inherits a Lie structure. Also it is easy to check that the anchor
L(M) → DerR(A) vanishes on the kernel of L(M) → R(M), and hence
there is a well defined action of R(M) on A. Finally, the action of A on
R(M) is given by

f [x, y] = [fx, y] + y(f)x = [x, fy] − x(f)y. (21)

Applying the above construction to the set X1 of vector fields on M, we
get a new Lie-Rinehart algebra R(X1), which is the space of infinitesimal
paths, without contractions of surfaces, except for the degenerate ones (i.e.
we do have [α,α] = 0).

The sheaf R(X1) is locally free, and hence we can form the linear bundle
RTM, having R(X1) as the set of sections. We would like to iterate this
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construction, i.e. we would like to consider spaces of infinitesimal paths on
spaces of infinitesimal paths on M, and so on. First we need to establish
some of the functorial properties of R.

Proposition 2 Let M, N be two manifolds, and let F : M → N be a
smooth map, that locally (on M) is an embedding. Then F extends to a
map of pairs

RTM

��

RF
// RTN

��

M
F

// N

(22)

and this extension is functorial in F .

Proof: Since construction of RT can be done locally ([Ka07]), we can
(choosing local coordinates) assume that M = Rm, N = Rn = Rm × Rk,
and F : Rm → Rm × Rk is inclusion of a coordinate subspace.

Using the natural flat structure on Rn we have a map

F∗ : X1(Rm) → X1(Rn), (23)

that is a morphism of Lie algebras. Consequently there is an induced mor-
phism

L(F∗) : L(X1(Rm)) → L(X1(Rn)).

There is also a projection Rn = Rm × Rk → Rm, and hence we have an
inclusion of algebras of functions

X0(Rm) → X0(Rn). (24)

Using this inclusion it is easy to see that L(F∗) maps kernel of L(X1(Rm)) →
R(X1(Rm)) to the kernel of L(X1(Rm)) → R(X1(Rm)), and hence we have
an R-linear map

R(F∗) : R(X1(Rm)) → R(X1(Rn)).

This map is also X0(Rm)-linear, where we see R(X1(Rn)) as an X0(Rm)-
module through (24).

Now we compose R(F∗) with the projection

R(X1(Rn)) → R(X1(Rn)) ⊗X0(Rn) X0(Rm),
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and obtain a morphism of bundles

RF : RTM → F ∗(RTN ). (25)

We claim that RF is independent of the choice of local coordinates on
N . Indeed, a different choice produces different maps in (23), (24), but they
become the same, when restricted to the image of M in N , and it is easy
to check that this implies the resulting RF ’s are equal.

Having two smooth maps M → N → N ′, s.t. each one is a local embed-
ding, it is clear that locally we can present them as inclusions of coordinate
subspaces Rm → Rm+k → Rm+k+k′, and the corresponding choice of local
coordinates implies functoriality. �

Now we would like to iterate the RT construction. In some of our ar-
guments we assume that the manifolds in question are finite dimensional,
while RTM is infinite dimensional, if dimension of M is greater than 1.
However, since RTM is filtered, and each RTM≤d is finite dimensional,
we can treat RTM as if it is finite dimensional itself, as long as everything
that we do happens in some RTM≤d for d large enough.

We are interested in particular in tangent vectors to RTM, and we will
always assume that each vector is tangent to some RTM≤d. Therefore,
as long as there are only finitely many tangents involved, there is a finite
dimensional manifold RTM≤d, where these tangents live.

Let X1(RTM) be the space of vector fields on RTM, s.t. for every field
α there is d < ∞, s.t. α is tangent to RTM≤d. Applying R for each d,
and using functoriality of R with respect to local embeddings, we obtain a
bundle (RT )2M of infinitesimal paths on RTM.

Iterating this procedure further, we get a sequence of (filtered infinite
dimensional) manifolds {(RT )kM}k≥1. However, this sequence is not the
right substitute for the (semi-simplicial) sequence {T kM}k≥1 of iterated
tangent bundles.

For k ≥ 2 (RT )kM is too big. For example, there are loops in (RT )2M
that are built of vector fields, tangent to the fibers of RTM → M. These
fibers are linear spaces and have a natural flat connection. As far as paths
and surfaces on M are concerned, we are interested only in flat vertical fields
on RTM, and the corresponding loops have unique flat fillings.

All this forces us to introduces a relative version of the free Lie-Rinehart
algebra construction. Instead of anchored modules we have the following.

Definition 1 Let A be a commutative R-algebra, and let (g
a
→ DerR(A)) be

a Lie-Rinehart algebra. An anchored (g, A)-module is an A-module M ,
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together with A-maps

g
ι
→M

b
→ DerR(A),

s.t. ι is injective, a = bι, and having a Lie module structure g ⊗R M →M ,
s.t.

γ(fm) = γ(f)m+ fγ(m), (fγ)(m) = fγ(m) −m(f)ι(γ), (26)

b(γ(m)) = [a(γ), b(m)]. (27)

An example of an anchored (g, A)-module is given by a morphism of Lie-
Rinehart algebras g → h over A, where we take h to be M .

If we fix g and A we have a forgetful functor from the category of Lie-
Rinehart algebras under g to the category of anchored (g, A)-modules. This
functor has a left adjoint, that we now describe.

Let M be an anchored (g, A)-module. Recall that L(M) is the free Lie
algebra over R, generated by M . The action of g on M extends to an action
on L(M), by requiring that γ([x, y]) = [γ(x), y] + [x, γ(y)].

We inductively define R(M, g) as follows:

• R(M, g)≤1 = M ,

• for d > 1 R(M, g)≤d is
⊕

1≤i≤d
L(M)i modulo the following relations

[x, fy] − [fx, y] = x(f)y + y(f)x, [x, q] = 0, (28)

[ι(γ), x] = γ(x), (29)

where x, y ∈ L(M), f ∈ A, γ ∈ g, q is in the kernel of

⊕

1≤i≤n−1

L(M)i → R(M)≤n−1,

and for any x ∈ L(M) we write x(f) for the action of x on f through
the anchor.

Here we consider L(M) as an R-space, and divide it by the subspace, gen-
erated by (28), (29). From the construction it is clear that R(M, g) is a
Lie algebra over R, inheriting the Lie structure from L(M). We claim that
in addition R(M, g) is an A-module, and the projection L(M) → R(M, g)
factors through R(M).

Notice that the action of g on L(M) is compatible with (28), i.e. the
kernel of L(M) → R(M) is stable under the action of g. Therefore this

13



action extends to R(M), and hence (29) are well defined on R(M). This
implies that L(M) → R(M, g) factors through R(M).

There is an A-module structure on R(M), given by f [x, y] = [fx, y] +
y(f)x = [x, fy] − x(f)y. We claim that the kernel of R(M) → R(M, g) is
an A-submodule. Indeed, we have

f([ι(γ), x] − γ(x)) = [ι(γ), fx] − γ(fx), (30)

for any x ∈ L(M), f ∈ A, and γ ∈ g. Consequently R(M, g) is an A-module.
Finally we note that R(M, g) inherits an action on A from R(M). This

is rather obvious, since elements of the kernel of R(M) → R(M, g) act
trivially on A (this is a consequence of (27)).

For us the main applications of the relatively free Lie-Rinehart algebra
construction are for locally trivial bundles, i.e. smooth maps F : M →
N , s.t. locally (on M) F is a trivial bundle. Let X1(F ) be the vector fields
tangent to the fibers of F , then we have the relatively free Lie-Rinehart
algebra R(X1(M),X1(F )) over X0(M), that defines the bundle RTNM of
F -horizontal infinitesimal paths on M.

If we choose F to be the unique map M → pt, we have RTptM = TM,
the usual tangent bundle. If we choose F to be the identity map M = M,
we have RTMM = RTM, the space of infinitesimal paths from [Ka07].

A nice property of RTNM, that will be used in the next section, is that
it is functorial in both arguments, as the following proposition shows.

Proposition 3 Let F1 : M1 → N1, F2 : M2 → N2 be two locally (on
domains) trivial bundles. Suppose we are given a commutative diagram of
smooth maps

M1

��

// M2

��

N1
// N2

(31)

s.t. also the horizontal arrows are locally trivial bundles. Then we have a
smooth map

RTN1
M1 → RTN2

M2, (32)

and (32) is functorial in (31).

Proof: First we prove functoriality in the second variable, i.e. consider the
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diagram

M1

F1

}}zz
zz

zz
zz F2

!!DD
DD

DD
DD

N1
// N2

(33)

It is clear that X1(F1) < X1(F2) < X1(M1) as Lie algebras, and therefore it
is easy to check that there is a canonical surjective morphism of Lie-Rinehart
algebras

R(X1(M1),X
1(F1)) → R(X1(M1),X

1(F2)),

and hence a morphism of bundles RTN1
M1 → RTN2

M1, that is obviously
functorial in (33).

Now we prove functoriality in the first variable. Choosing local coordi-
nates we can represent F1 as the projection Rk+n = Rk × Rn → Rn, and
then every element of R(X1(M1),X

1(F1)) can be written as follows:

∞
Σ
i=1
fj1,...,ji [∂j1, [. . . [∂ji−1

, ∂ji ] . . .], (34)

where the sum is finite, and i > 1 implies that fj1,...,ji = 0 if at least one of
∂j ’s is tangent to the fibers of F1.

Consider the following diagram

M1
//

F1 !!D
DD

DD
DD

D
M2

F2}}zz
zz

zz
zz

N2

(35)

Since all maps are locally trivial bundles, we can choose local coordinates in
a compatible way, i.e. locally (35) becomes

Rn+m1+m2 //

F1
%%KKKKKKKKKK Rn+m2

F2
{{vv

vv
vv

vv
v

Rn

(36)

and it is clear how to define the map RTN2
M1 → RTN2

M2 locally. Func-
toriality and independence of the choice of coordinates are easy to check. �

3 The full infinitesimal groupoid

In this section we use the relatively free Lie-Rinehart construction of the
previous section to define the sequence {TkM}k≥0 of iterated bundles of
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spaces of infinitesimal paths on a manifold M. In particular we get a semi-
simplicial structure on {TkM}k≥1.

For k ≥ 1 we define Xk to be the set of sections M → TkM, and
X0 := X0(M). We show how every ν ∈ Xk, k ≥ 1, can be decomposed
into a sequence {αφ}, with αφ ∈ X1, and φ running over non-empty subsets
of {0, . . . , k − 1}. This allows us to define a rich algebraic structure on
X∗ := {Xk}k≥0, and we call it the full infinitesimal groupoid of M.

Finally we show that the non-linear cohomology of X∗ is the algebra of
polyvector fields on M.

Definition 2 Let M be a manifold. We define a sequence of (in general
non-linear) locally trivial bundles {πk : TkM → M}k≥0 as follows: T0M :=
M, if we have defined πk : TkM → M, then

Tk+1M := RTM(TkM), (37)

and the projection πk+1 : Tk+1M → M is obvious.

Notice that, just like {T kM}k≥1, the sequence {TkM}k≥1 has a semi-
simplicial structure, i.e. for each k ≥ 1 there are k projections

πk,i : TkM → Tk−1M, 0 ≤ i ≤ k − 1.

When i = 0 πk,0 is the projection of the bundle RTM(Tk−1M) on Tk−1M,
when i > 0 πk,i is obtained from πk−i,0 by functoriality of RT .

Moreover, each πk,i is a linear bundle. This is a general fact: consider a
morphism of locally trivial bundles

M1

π1

!!B
BB

BB
BB

B

F
// M2

π2

}}||
||

||
||

B

s.t. F is a linear bundle. By functoriality of RT we have the diagram

RTBM1

RTB(π1)
%%LLLLLLLLLL

RTB(F )
// RTBN

RTB(π2)yyttttttttt

RTBB

(38)

It is easy to see that fibers of RTB(π1) are the tangent bundles to the fibers
of π1, and similarly for π2, and therefore fibers of RTB(F ) are the same as
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fibers of T (F ). It is well known (e.g. [MK05]) that the latter is a linear
bundle, when F is.

Let X0 := X0(M), and let Xk be the set of sections of TkM → M. Just
like with Xk, using functoriality of RT with respect to local embeddings
(proposition 2), we obtain a decomposition of each ν ∈ Xk into a set {αφ},
where each α ∈ X1, and φ runs over all non-empty subsets of {1, . . . , k}.

As with Xk, for ν ∈ Xk the decomposition into {αφ} depends on the
order on the set of projections of ν on X1. Also here we have an action of
the symmetric group Sk given as in (9), but with the Lie bracket substituted
by the free bracket J−,−K on X1 = RT (X1).

It is clear how to extend additions, strong differences, the cup product,
and the composition product from {Xk} to {Xk}, and we will freely use the
notation of section 1. We will call X∗ := {Xk} together with these (and
other) operations the full infinitesimal groupoid of M.

In addition to the operations listed above, X∗ has homotopy opera-

tions, defined as maps {Xk
hk

ij
→ Xk−1}0≤i<j≤k−1 for each k ≥ 2.

To define the homotopy operations we notice that X1 has actually two
Lie structures. They come from two Lie structures on L(X1). The first one
is the free bracket J−,−K given by L, and the other is the Lie bracket [−,−]
on X1, extended to L(X1) by the requirement that

[x, Jy, zK] = J[x, y], zK + Jy, [x, z]K.

It is easy to check that the kernel of L(X1) → R(X1) is a Lie ideal also for
[−,−], and hence X1 inherits [−,−].

Now, having an additional bracket on X1, we have an additional action
of Sk on Xk, written in terms of {αφ}, αφ ∈ X1. That is, we apply the same
formula (9), but instead of the free bracket we use [−,−].

For k ≥ 2 let ν ∈ Xk, and let σij ∈ Sk be the swapping of i and j. Let µ ∈

Xk−2 be the projection of ν on the φ-face, where φ = {0, . . . , î, . . . , ĵ, . . . , k−
1} (if k = 2 µ is just M itself). Clearly µ is also projection of σij(ν), σ

′
ij(ν),

where σij acts using J−,−K, and σ′ij acts using [−,−].

As 2-vector fields on the image of µ in Tk−2M, σij(ν), σ
′
ij(ν) have the

same boundaries, and we can take their strong difference. It is an element
of Xk−1, and we define hkij(ν) to be this element. A straightforward but

long computation shows that modulo homotopies h<k∗∗ , hkij is well defined
with respect to the actions of symmetric groups, i.e. for any σ ∈ Sk there is
τ ∈ Sk−1 s.t.

hkσ(i)σ(j)(σν) ∼ τ(hkij(ν)).
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The equivalence relation on Xk−1, defined by hkij(ν) is the following:

for ξ, ξ′ ∈ Xk−1 ξ ∼ ξ′ if ξ −φ ξ
′ = hkij(ν). Consequently, it is natural to

say that ν ∈ Xk defines trivial homotopies, if σij(ν) = σ′ij(ν) for any

0 ≤ i < j ≤ k − 1, i.e. if hkij(ν) consists of trivial vectors on the φ-face of ν.

What do we get if we take the subset of X∗, consisting of elements, that
define trivial homotopies, and divide it by the homotopy equivalence? We
denote the result by H(X∗) and call it the cohomology of X∗.

First of all it is clear that any ν ∈ Xk is equivalent to some ν ′ ∈ Xk, and
no two ν ′, ν ′′ ∈ Xk are equivalent.

Secondly, a {αφ} = ν ∈ Xk defines trivial homotopies if and only if for
any φ,ψ ⊆ {0, . . . , k − 1}, s.t. φ ∩ ψ = ∅ we have that either αφ = αψ or at
least one of αφ, αψ is 0. This is just the condition for Jαφ, αψK = 0.

There are quite many such ν’s, but not that many if we discard degener-
ate k-submanifolds and divide by reparametrizations. Note, that taking the
canonical zero section, we can consider any α ∈ X1 as a section of T 2M, i.e.
we take α ∪ 0, and this is obviously a degenerate 2-vector field. Also α ∪ α
is degenerate, since it is the jet of a 1-dimensional submanifold. Together
we have

α ∼ α ∪ 0 ∼ α ∪ α ∼ 0 ∪ α,

In addition, for k ≥ 2 we have reparametrizations of k-vectors, i.e. maps
Wk → Wk, that have 1 as their Jacobian.

Discarding degenerate fields implies that any ν ∈ X∗, that defines trivial
homotopies, is equivalent to some ν ′ = {α′

φ}, s.t. α′
φ = 0, unless φ =

{0, . . . , i} for some i ≤ k− 1. Dividing by reparametrizations means that ν ′

is linear over X0 in each one of α′
φ’s, and discarding degenerate fields again

we get that ν ′ is an element of some alternating power of X1 over X0, i.e.
H(X∗) is the set of decomposable elements of ∧∗X1. Taking the X0-module
generated by H(X∗) we get all of ∧∗X1.

Finally we discuss algebraic operations on H(X∗). On X∗ we have some
additions, cup product, and the composition product. Additions translate
to the addition on ∧∗X1, and the cup product becomes the wedge product.

With the composition product it is not as simple. Recall how one defines
the Lie derivative of a vector field α along another vector field β: one takes
the composition product α × β ∈ X2, uses trivialization of TM over the
integral curves of β to find the projection of α×β on the fibers of TM, and
then uses the linear structure on these fibers to identify tangents to fibers
with their points. The resulting section of TM is [β, α].

In terms of higher categories this is what is called a thin structure,
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i.e. α× β is not the composition, but one of its faces is. Since H(X∗) is not
additive, but multi-linear, we need not one face but many, and the resulting
operation is the Schouten bracket.2

We would like to stress that ∧∗X1, obtained as above from H(X∗), is
not a Gerstenhaber algebra. Elements of ∧kX1 represent k-morphisms, and
hence sit in degree −k + 1, if we use cohomological notation. Therefore,
while the bracket is of degree 0, the cup product is of degree −1.
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