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Moduli Spaces of Dirac Operators for Finite Spectral Triples

Branimir Ćaćić

Abstract. The structure theory of finite real spectral triples developed by
Krajewski and by Paschke and Sitarz is generalised to allow for arbitrary KO-
dimension and the failure of orientability and Poincaré duality, and moduli
spaces of Dirac operators for such spectral triples are defined and studied. This
theory is then applied to recent work by Chamseddine and Connes towards
deriving the finite spectral triple of the noncommutative-geometric Standard
Model.

1. Introduction

From the time of Connes’s 1995 paper [6], spectral triples with finite-dimen-
sional ∗-algebra and Hilbert space, or finite spectral triples , have been central to the
noncommutative-geometric (NCG) approach to the Standard Model of elementary
particle physics, where they are used to encode the fermionic physics. As a result,
they have been the focus of considerable research activity.

The study of finite spectral triples began in earnest with papers by Paschke
and Sitarz [20] and by Krajewski [18], first released nearly simultaneously in late
1996 and early 1997, respectively, which gave detailed accounts of the structure of
finite spin geometries, i.e. of finite real spectral triples of KO-dimension 0 mod 8
satisfying orientability and Poincaré duality. In their approach, the study of finite
spectral triples is reduced, for the most part, to the study of multiplicity matri-
ces , integer-valued matrices that explicitly encode the underlying representation-
theoretic structure. Krajewski, in particular, defined what are now called Krajew-
ski diagrams to facilitate the classification of such spectral triples. Iochum, Jureit,
Schücker, and Stephan have since undertaken a programme of classifying Krajewski
diagrams for finite spectral triples satisfying certain additional physically desirable
assumptions [12–14,22] using combinatorial computations [17], with the aim of fix-
ing the finite spectral triple of the Standard Model amongst all other such triples.

However, there were certain issues with the then-current version of the NCG
Standard Model, including difficulty with accomodating massive neutrinos and the
so-called fermion doubling problem, that were only to be resolved in the 2006
papers by Connes [7] and by Chamseddine, Connes and Marcolli [4], which use
the Euclidean signature of earlier papers, and by Barrett [1], which instead uses
Lorentzian signature; we restrict our attention to the Euclidean signature approach
of [7] and [4], which has more recently been set forth in the monograph [8] of
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Connes and Marcolli. The finite spectral triple of the current version has KO-
dimension 6 mod 8 instead of 0 mod 8, fails to be orientable, and only satisfies a
certain modified version of Poincaré duality. It also no longer satisfies S0-reality,
another condition that holds for the earlier finite geometry of [6], though only
because of the Dirac operator. Jureit, and Stephan [15, 16] have since adopted the
new value for the KO-dimension, but further assume orientability and Poincaré
duality. As well, Stephan [25] has proposed an alternative finite spectral triple for
the current NCG Standard Model with the same physical content but satisfying
Poincaré duality; it also just fails to be S0-real in the same manner as the finite
geometry of [4]; in the same paper, Stephan also discusses non-orientable finite
spectral triples.

More recently, Chamseddine and Connes [2, 3] have sought a purely algebraic
method of isolating the finite spectral triple of the NCG Standard Model, by which
they have obtained the correct ∗-algebra, Hilbert space, grading and real structure
using a small number of fairly elementary assumptions. In light of these successes,
it would seem reasonable to try to view this new approach of Chamseddine and
Connes through the lens of the structure theory of Krajewski and Paschke–Sitarz,
at least in order to understand better their method and the assumptions involved.
This, however, would require adapting that structure theory to handle the failure
of orientability and Poincaré duality, yielding the initial motivation of this work.

To that end, we provide, for the first time, a comprehensive account of the
structure theory of Krajewski and Paschke–Sitarz for finite real spectral triples
of arbitrary KO-dimension, without the assumptions of orientability or Poincaré
duality; this consists primarily of straightforward generalisations of the results and
techniques of [20] and [18]. In this light, the main features of the approach presented
here are the following:

(1) A finite real spectral triple with algebra A is to be viewed as an A-
bimodule with some additional structure, together with a choice of Dirac
operator compatible with that structure.

(2) For fixed algebra A, an A-bimodule is entirely characterised by its mul-
tiplicity matrix (in the ungraded case) or matrices (in the graded case),
which also completely determine(s) what sort of additional structure the
bimodule can admit; this additional structure is then unique up to unitary
equivalence.

(3) The form of suitable Dirac operators for an A-bimodule with real structure
is likewise determined completely by the multiplicity matrix or matrices
of the bimodule and the choice of additional structure.

However, we do not discuss Krajewski diagrams, though suitable generalisation
thereof should follow readily from the generalised structure theory for Dirac oper-
ators.

Once we view a real spectral triple as a certain type of bimodule together with a
choice of suitable Dirac operator, it then becomes natural to consider moduli spaces
of suitable Dirac operators, up to unitary equivalence, for a bimodule with fixed
additional structure, yielding finite real spectral triples of the appropriate KO-
dimension. The construction and study of such moduli spaces of Dirac operators
first appear in [4], though the focus there is on the sub-moduli space of Dirac
operators commuting with a certain fixed subalgebra of the relevant ∗-algebra.
Our last point above almost immediately leads us to relatively concrete expressions



FINITE SPECTRAL TRIPLES 3

for general moduli spaces of Dirac operators, which also appear here for the first
time. Multiplicity matrices and moduli spaces of Dirac operators are then worked
out for the bimodules appearing in the Chamseddine–Connes–Marcolli formulation
of the NCG Standard Model [4, 8] as examples.

Finally, we apply these methods to the work of Chamseddine and Connes [2,3],
offering concrete proofs and some generalisations of their results. In particular, the
choices determining the finite geometry of the current NCG Standard Model within
their framework are made explicit.

This work, a revision of the author’s qualifying year project (master’s thesis
equivalent) at the Bonn International Graduate School in Mathematics (BIGS)
at the University of Bonn, is intended as a first step towards a larger project of
investigating in generality the underlying noncommutative-geometric formalism for
field theories found in the NCG Standard Model, with the aim of both better
understanding current versions of the NCG Standard Model and facilitating the
further development of the formalism itself.

The author would like to thank his supervisor, Matilde Marcolli, for her exten-
sive comments and for her advice, support, and patience, Tobias Fritz for useful
comments and corrections, and George Elliott for helpful conversations. The author
also gratefully acknowledges the financial and administrative support of BIGS and
of the Max Planck Institute for Mathematics, as well as the hospitality and support
of the Department of Mathematics at the California Institute of Technology and of
the Fields Institute.

2. Preliminaries and Definitions

2.1. Real C∗-algebras. In light of their relative unfamiliarity compared to
their complex counterparts, we begin with some basic facts concerning real C∗-
algebras.

First, recall that a real ∗-algebra is a real associative algebra A together with
an involution on A, namely an antihomomorphism ∗ satisfying ∗2 = id, and that
the unitalisation of a real ∗-algebra A is the unital real ∗-algebra Ã defined to
be A ⊕ R as a real vector space, together with the multiplication (a, α)(b, β) :=
(ab + αb + βa, αβ) for a, b ∈ A, α, β ∈ R and the involution ⋆ ⊕ idR. Note that if

A is already unital, then Ã is simply A⊕ R.

Definition 2.1. A real C∗-algebra is a real ∗-algebra A endowed with a norm ‖·‖
making A a real Banach algebra, such that the following two conditions hold:

(1) ∀a ∈ A, ‖a∗a‖ = ‖a‖2
(C∗-identity);

(2) ∀a ∈ Ã, 1 + a∗a is invertible in Ã (symmetry).

The symmetry condition is redundant for complex C∗-algebras, but not for
real C∗-algebras. Indeed, consider C as a real algebra together with the trivial
involution ∗ = id and the usual norm ‖ζ‖ = |ζ|, ζ ∈ C. Then C with this choice of
involution and norm yields a real Banach ∗-algebra satisfying the C∗-identity but
not symmetry, for 1 + i∗i = 0 is certainly not invertible in C̃ = C ⊕ R.

Now, in the finite-dimensional case, one can give a complete description of real
C∗-algebras, which we shall use extensively in what follows:
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Theorem 2.2 (Wedderburn’s theorem for real C∗-algebras [11]). Let A be a finite-
dimensional real C∗-algebra. Then

(2.1) A ∼=

N⊕

i=1

Mni
(Ki),

where Ki = R, C, or H, and ni ∈ N. Moreover, this decomposition is unique up to
permutation of the direct summands.

Note, in particular, that a finite-dimensional real C∗-algebra is necessarily uni-
tal.

Given a finite-dimensional real C∗-algebra A with fixed Wedderburn decompo-
sition ⊕N

i=1Mni
(Ki) we can associate to A a finite dimensional complex C∗-algebra

AC, the complex form of A, by setting

(2.2) AC :=

N⊕

i=1

Mmi
(C),

where mi = 2ni if Ki = H, and mi = ni otherwise. Then A can be viewed as a real
∗-subalgebra of AC such that AC = A + iA, that is, as a real form of AC. Here, H
is considered as embedded in M2(C) by

ζ1 + jζ2 7→

(
ζ1 ζ2

−ζ2 ζ1

)
,

for ζ1, ζ2 ∈ C.
In what follows, we will consider only finite-dimensional real C∗-algebras with

fixed Wedderburn decomposition.

2.2. Representation theory. In keeping with the conventions of noncommu-
tative differential geometry, we shall consider ∗-representations of real C∗-algebras
on complex Hilbert spaces. Recall that such a (left) representation of a real C∗-
algebra A consists of a complex Hilbert space H together with a ∗-homomorphism
λ : A → L(H) between real C∗-algebras. Similarly, a right representation of A
is defined to be a complex Hilbert space H together with a ∗-antihomomorphism
ρ : A → L(H) between real C∗-algebras. For our purposes, then, an A-bimodule
consists of a complex Hilbert space H together with a left ∗-representation λ and
a right ∗-representation ρ that commute, i.e. such that [λ(a), ρ(b)] = 0 for all a,
b ∈ A. In what follows, we will consider only finite-dimensional representations
and hence only finite-dimensional bimodules; since finite-dimensional C∗-algebras
are always unital, we shall require all representations to be unital as well.

Now, given a left [right] representation α = (H, π) of an algebra A, one can
define its transpose to be the right [left] representation αT = (H∗, πT ) , where
πT (a) := π(a)T for all a ∈ A. Note that for any left or right representation α,
(αT )T can naturally be identified with α itself. In the case that H = CN , we
shall identify H∗ with H by identifying the standard ordered basis on H with the
corresponding dual basis on H∗. The notion of the transpose of a representation
allows us to reduce discussion of right representations to that of left representations.

Since real C∗-algebras are semisimple, any left representation can be written as
a direct sum of irreducible representations, unique up to permutation of the direct
summands, and hence any right representation can be written as a direct sum of
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transposes of irreducible representations, again unique up to permutation of the
direct summands.

Definition 2.3. The spectrum Â of a real C∗-algebra A is the set of unitary
equivalence classes of irreducible representations of A.

Now, let A be a real C∗-algebra with Wedderburn decomposition ⊕N
i=1Mki

(Ki).
Then

(2.3) Â =
N⊔

i=1

M̂ki
(Ki),

where the embedding of M̂ki
(Ki) in Â is given by composing the representation

maps with the projection of A onto the direct summand Mki
(Ki). The building

blocks for Â are as follows:

(1) M̂n(R) = {[(Cn, λ)]},

(2) M̂n(C) = {[(Cn, λ)], [(CN , λ)]},

(3) M̂n(H) = {[(C2n, λ)]},

where λ(a) denotes left multiplication by a and λ(a) denotes left multiplication by
a.

Definition 2.4. Let A be a real C∗-algebra, and let α ∈ Â. We shall call α
conjugate-linear if it arises from the conjugate-linear irreducible representation
(a 7→ a, Cni) of a direct summand of A of the form Mni

(C); otherwise we shall
call it complex-linear .

Thus, a representation α of the real C∗-algebra A extends to a C-linear ∗-
representation of AC if and only if α is the sum of complex-linear irreducible rep-
resentations of A.

Finally, for an individual direct summand Mki
(Ki) of A, let ei denote its unit,

ni the dimension of its irreducible representations (which is therefore equal to 2ki if
Ki = H, and to ki itself otherwise), ni its complex-linear irreducible representation,
and, if Ki = C, ni its conjugate-linear irreducible representation. We define a strict

ordering < on Â by setting α < β whenever α ∈ M̂ni
(Ki), β ∈ M̂nj

(Kj) for i < j,
and by setting ni < ni in the case that Ki = C. Note that the ordering depends
on the choice of Wedderburn decomposition, i.e. on the choice of ordering of the

direct summands. Let S denote the cardinality of Â. We shall identify MS(R) with

the real algebra of functions Â2 → R, and hence index the standard basis {Eαβ}

of MS(R) by Â2.

2.3. Bimodules and spectral triples. Let us now turn to spectral triples.
Recall that we are considering only finite-dimensional algebras and representations
(i.e. Hilbert spaces), so that we are dealing only with what are termed finite or
discrete spectral triples.

Let H and H′ be A-bimodules. We shall denote by LL
A(H,H′), LR

A(H,H′), and
LLR
A (H,H′) the subspaces of L(H,H′) consisting of left A-linear, right A-linear, and

left and right A-linear operators, respectively. In the case that H′ = H, we shall
write simply LL

A(H), LR
A(H) and LLR

A (H). If N is a subalgebra or linear subspace
of a real or complex C∗-algebra, we shall denote by Nsa the real linear subspace of
N consisting of the self-adjoint elements of N , and we shall denote by U(N) set of
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unitary elements of N . Finally, for operators A and B on a Hilbert space, we shall
denote their anticommutator AB + BA by {A, B}.

2.3.1. Conventional definitions. We begin by recalling the standard definitions
for spectral triples of various forms. Since we are working with the finite case,
all analytical requirements become redundant, leaving behind only the algebraic
aspects of the definitions.

The following definition first appeared in a 1995 paper [5] by Connes:

Definition 2.5. A spectral triple is a triple (A,H, D), where:

• A is a unital real or complex ∗-algebra;
• H is a complex Hilbert space on which A has a left representation λ :
A → L(H);

• D, the Dirac operator , is a self-adjoint operator on H.

Moreover, if there exists a Z/2Z-grading γ on H (i.e. a self-adjoint unitary on
H) such that:

(1) [γ, λ(a)] = 0 for all a ∈ A,
(2) {γ, D} = 0;

then the spectral triple is said to be even. Otherwise, it is said to be odd .

In the context of the general definition for spectral triples, a finite spectral
triple necessarily has metric dimension 0.

In a slightly later paper [6], Connes defines the additional structure on spectral
triples necessary for defining the noncommutative spacetime of the NCG Standard
Model; indeed, the same paper also contains the first version of the NCG Standard
Model to use the language of spectral triples, in the form of a reformulation of the
so-called Connes-Lott model.

Definition 2.6. A spectral triple (A,H, D) is called a real spectral triple of KO-
dimension n mod 8 if, in the case of n even, it is an even spectral triple, and if there
exists an antiunitary J : H → H such that:

(1) J satisfies J2 = ε, JD = ε′DJ and Jγ = ε′′γJ (in the case of even n),
where ε, ε′, ε′′ ∈ {−1, 1} depend on n mod 8 as follows:

n 0 1 2 3 4 5 6 7

ε 1 1 −1 −1 −1 −1 1 1
ε′ 1 −1 1 1 1 −1 1 1
ε′′ 1 −1 1 −1

(2) The order zero condition is satisfied, namely [λ(a), Jλ(b)J∗] = 0 for all a,
b ∈ A;

(3) The order one condition is satisfied, namely [[D, λ(a)], Jλ(b)J∗] = 0 for
all a, b ∈ A.

Moreover, if there exists a self-adjoint unitary ǫ on H such that:

(1) [ǫ, λ(a)] = 0 for all a ∈ A;
(2) [ǫ, D] = 0;
(3) {ǫ, J} = 0;
(4) [ǫ, γ] = 0 (even case);

then the real spectral triple is said to be S0-real .
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Remark 2.7 (Krajewski [18, §2.2], Paschke–Sitarz [20, Obs. 1]). If (A,H, D) is a
real spectral triple, then the order zero condition is equivalent to the statement that
H is an A-bimodule for the usual left action λ and the right action ρ : a 7→ Jλ(a∗)J∗.

It was commonly assumed until fairly recently that the finite geometry of the
NCG Standard Model should be S0-real. Though the current version of the NCG
Standard Model no longer makes such an assumption [4, 7], we shall later see that
its finite geometry can still be seen as satisfying a weaker version of S0-reality.

2.3.2. Structures on bimodules. In light of the above remark, the order one con-
dition, the strongest algebraic condition placed on Dirac operators for real spectral
triples, should be viewed more generally as a condition applicable to operators on
bimodules [18, §2.4]. This then motivates our point of view that a finite real spec-
tral triple (A,H, D) should be viewed rather as an A-bimodule with additional
structure, together with a Dirac operator satisfying the order one condition that
is compatible with that additional structure. We therefore begin by defining a
suitable notion of “additional structure” for bimodules.

Definition 2.8. A bimodule structure P consists of the following data:

• A set P = Pγ⊔PJ ⊔Pǫ, where each set PX is either empty or the singleton
{X}, and where Pǫ is non-empty only if PJ is non-empty;

• If PJ is non-empty, a choice of KO-dimension n mod 8, where n is even
if and only if Pγ is non-empty.

In particular, we call a structure P :

• odd if P is empty;
• even if P = Pγ = {γ};
• real if PJ is non-empty and Pǫ is empty
• S0-real if Pǫ is non-empty.

Finally, if P is a graded structure, we call γ the grading, and if P is real or
S0-real, we call J the charge conjugation.

Since this notion of KO-dimension is meant to correspond with the usual KO-
dimension of a real spectral triple, we assign to each real or S0-real structure P of
KO-dimension n mod 8 constants ε, ε′ and, in the case of even n, ε′′, according to
the table in Definition 2.6.

We now define the structure algebra of a structure P to be the real associative
algebra with generators P and relations, as applicable,

γ2 = 1, J2 = ε, ǫ2 = 1; γJ = ε′′Jγ, [γ, ǫ] = 0, {ǫ, J} = 0.

Definition 2.9. An A-bimodule H is said to have structure P whenever it admits
a faithful representation of the structure algebra of P such that, when applicable,
γ and ǫ are represented by self-adjoint unitaries in LLR

A (H), and J is represented
by an antiunitary on H such that

(2.4) ∀a ∈ A, ρ(a) = Jλ(a∗)J.

Note that a S0-real bimodule can always be considered as a real bimodule,
and a real bimodule of even [odd] KO-dimension can always be considered as an
even [odd] bimodule. Note also that an even bimodule is simply a graded bimodule
such that the algebra acts from both left and right by degree 0 operators, and the
grading itself respects the Hilbert space structure; an odd bimodule is then simply
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an ungraded bimodule. We use the terms “even” and “odd” so as to keep the
terminology consistent with that for spectral triples.

Note also that for a real or S0-real structure P , the structure algebra of P is
independent of the value of ε′. Thus the notions of real [S0-real] A-bimodule with
KO-dimension 1 mod 8 and 7 mod 8 are identical, as are the notions of [S0-real] A-
bimodule with KO-dimension 3 mod 8 and 5 mod 8; again, we make the distinction
with an eye to the discussion of Dirac operators (and hence of spectral triples) later
on.

Now, a unitary equivalence of A-bimodules H and H′ with structure P is a
unitary equivalence of A-bimodules (i.e. a unitary element of LLR

A (H,H′)) that
effects unitary equivalence of the representations of the structure algebra of P .
We denote the set of all such unitary equivalences H → H′ by ULR

A (H,H′;P).

In particular, ULR
A (H,H;P), which we denote by ULR

A (H;P), is a subgroup of

ULR
A (H) := U(LLR

A (H)). In all such notation, we suppress the argument P whenever
P is empty.

Definition 2.10. Let A be a real C∗-algebra, and let P be a bimodule structure.
The abelian monoid (Bimod(A, P ), +) of A-bimodules with structure P is defined
as follows:

• Bimod(A, P ) is the set of unitary equivalence classes of A-bimodules with
structure P ;

• For [H], [H′] ∈ Bimod(A, P ), [H] + [H′] := [H⊕H′].

For convenience, we shall denote Bimod(A, P ) by:

• Bimod(A) if P is the odd structure;
• Bimodeven(A) if P is the even structure;
• Bimod(A, n) if P is the real structure of KO-dimension n mod 8;
• Bimod0(A, n) if P is the S0-real structure of KO-dimension n mod 8.

These monoids will be studied in depth in the next section. In light of our earlier
comment, we therefore have that

Bimod(A, 1) = Bimod(A, 7), Bimod(A, 3) = Bimod(A, 5).

and
Bimod0(A, 1) = Bimod0(A, 7), Bimod0(A, 3) = Bimod0(A, 5).

Finally, for the sake of completeness, we now define the notions of orientabilty
and Poincaré duality in this more general context; in the case of a real spectral
triple (A,H, D, γ, J) of even KO-dimension, where the right action is given by
ρ(a) := Jλ(a∗)J∗, these definitions yield precisely the usual ones (cf. [18, §§2.2,
2.3]).

Definition 2.11. We call an even A-bimodule (H, γ) orientable if there exist
a1, . . . , ak, b1, . . . , bk ∈ A such that

(2.5) γ =

k∑

i=1

λ(ai)ρ(bi).

Definition 2.12. Let A be a real C∗-algebra, and let (H, γ) be an even A-bimodule.
Then the intersection form 〈·, ·〉 : KO0(A) × KO0(A) → Z associated with (H, γ)
is defined by setting

(2.6) 〈[e] , [f ]〉 := tr(γλ(e)ρ(f))
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for projections e, f ∈ A.
In the case that the intersection form is non-degenerate, we shall say that (H, γ)

satisfies Poincaré duality.

The orientability assumption was used extensively in [20] and [18], as it leads
to considerable algebraic simplifactions; we shall later define a weakened version of
orientability that will yield precisely those simplifications.

2.3.3. Bilateral spectral triples. We now turn to Dirac operators on bimodules
satisfying a generalised order one condition, and define the appropriate notion of
compatibility with additional structure on the bimodule.

Definition 2.13. A Dirac operator for an A-bimodule H with structure P is a
self-adjoint operator D on H satisfying the order one condition:

(2.7) ∀a, b ∈ A, [[D, λ(a)], ρ(b)] = 0,

together with the following relations, as applicable:

{D, γ} = 0, DJ = ε′JD, [D, ǫ] = 0.

We denote the finite-dimensional real vector space of Dirac operators for an an
A-bimodule H with structure P by D0(A,H,P).

Definition 2.14. A bilateral spectral triple with structure P is a triple of the form
(A,H, D), where A is a real C∗-algebra, H is an A-bimodule with structure P , and
D is a Dirac operator for (H, P ).

We shall generally denote such a spectral triple by (A,H, D;P), where P is the
set of generators of the structure algebra; in cases where the presence or absence of
a grading γ is immaterial, we will suppress the generator γ in this notation.

Remark 2.15. In the case that P is a real [S0-real] structure of KO-dimension
n mod 8, a bilateral spectral triple with structure P is precisely a real [S0-real]
spectral triple of KO-dimension n mod 8.

More generally, an odd [even] bilateral spectral triple (A,H, D) is equivalent to
an odd [even] spectral triple (A⊗Aop,H, D) such that [[D,A⊗ 1], 1⊗Aop] = {0},
an object that first appears in connection with S0-real spectral triples [6]

A unitary equivalence of spectral triples (A,H, D) and (A,H′, D′) is then a

unitary U ∈ ULR
A (H,H′) such that D′ = UDU∗. This concept leads us to the

following definition:

Definition 2.16. Let A be a real C∗-algebra, and let H be an A-bimodule with
structure P . The moduli space of Dirac operators for H is defined by

(2.8) D(A,H,P) := D0(A,H,P)/ ULR
A (H,P),

where ULR
A (H,P) acts on D0(A,H,P) by conjugation.

If C is a central subalgebra of A, we can form the subspace

(2.9) D0(A,H,P ; C) := {D ∈ D0(A,H,P) | [D, λ(C)] = [D, ρ(C)] = {0}}.

and hence the sub-moduli space

(2.10) D(A,H,P ; C) := D0(A,H,P ; C)/ ULR
A (H,P),

of D0(A,H,P); the moduli space of Dirac operators studied by Chamseddine,
Connes and Marcolli [4, §2.7],[8, §13.4] is in fact a sub-moduli space of this form.
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Since D(A,H,P) [D(A,H,P ; C)] is the orbit space of a smooth finite-dimension-
al representation of a compact Lie group, it is a priori locally compact Hausdorff,
and is thus homeomorphic to a semialgebraic subset of Rd for some d [24]. The
dimension of D(A,H,P) [D(A,H,P ; C)] can then be defined as the dimension of
this semialgebraic set. Such moduli spaces will be discussed in some detail.

2.3.4. S0-reality. Following Connes [6], we now describe how to reduce the
study of S0-real bimodules of even [odd] KO-dimension to the study of even [odd]
bimodules.

Let (H, J, ǫ) be an S0-real A-bimodule of even [odd] KO-dimension. Define
mutually orthogonal projections Pi, P−i in LLR

A (H) by P±i = 1
2 (1 ± ǫ). Then, at

the level of even [odd] bimodules, H = Hi ⊕H−i for H±i := P±iH, where the left
and right actions on H±i are given by

λ±i(a) := P±iλ(a)P±i, ρ±i(a) := P±iρ(a)P±i,

for a ∈ A, and, in the case of even KO-dimension, the grading on H±i is given by
γ±i := P±iγP±i. Moreoever,

J =

(
0 εJ̃∗

J̃ 0

)
,

where J̃ := P−iJPi is an antiunitary Hi → H−i, so that for a ∈ A,

λ−i(a) = J̃ρi(a
∗)J̃∗, ρ−i(a) = J̃λi(a

∗)J̃∗,

and in the case of even KO-dimension, γ−i = ε′′J̃γJ̃∗. Finally, note that J̃ can
also be viewed as a unitary Hi → H−i, where Hi denotes the conjugate space of
H. Hence, for fixed KO-dimension, an S0-real A-bimodule H is determined, up to
unitary equivalence, by the bimodule Hi.

On the other hand, if V is an even [odd] A-bimodule, we can construct an S0-
real A-bimodule H for any even [odd] KO-dimension n mod 8 such that Hi = V ,

by setting H := Hi ⊕ H−i for Hi := V , H−i := V , defining J̃ : Hi → H−i as the
identity map on V viewed as an antiunitary V → V, then using the above formulas
to define J , γ (as necessary), λ, ρ, and finally setting ǫ = 1V ⊕ (−1V). In the case
that V is already Hi for some S0-real bimodule H, this procedure reproduces H up
to unitary equivalence. We have therefore proved the following:

Proposition 2.17. Let A be a real C∗-algebra, and let n ∈ Z8. Then the map

Bimod0(A, n) →

{
Bimod(A), if n is odd,

Bimodeven(A), if n is even,

defined by [H] 7→ [Hi] is an isomorphism of monoids.

Now, let H is an S0-real A-bimodule, and suppose that D is a Dirac operator
for H. We can define Dirac operators Di and D−i on Hi and H−i, respectively, by

D±i := P±iDP±i; then D = Di ⊕D−i and, in fact, D−i = ε′J̃DiJ̃
∗. Thus, a Dirac

operator D on H is completely determined by Di; indeed, the map D 7→ Di defines
an isomorphism D0(A,H, J, ǫ) ∼= D0(A,H).

Along similar lines, one can show that ULR
A (H, J) ∼= ULR

A (Hi) by means of
the map U 7→ Ui := PiUPi; this isomorphism is compatible with the isomorphism
D0(A,H, J, ǫ) ∼= D0(A,H). Hence, the functional equivalence between H and Hi

holds at the level of moduli spaces of Dirac operators:
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Proposition 2.18. Let H be an S0-real A-bimodule. Then

(2.11) D(A,H, J, ǫ) ∼= D(A,Hi).

One can similarly show that for a central subalgebra C of A,

D(A,H, J, ǫ; C) ∼= D(A,Hi; C).

Let us conclude by considering the relation between orientability and Poincaré
duality for an S0-real bimodule H of even KO-dimension and orientability and
Poincaré duality, respectively, for the associated even bimodule Hi.

Proposition 2.19. Let H be an S0-real A-bimodule of even KO-dimension. Then
H is orientable if and only if there exist a1, . . . , ak, b1, . . . , bk ∈ A such that

(2.12) γi =

k∑

j=1

λi(aj)ρi(bj) = ε′′
k∑

j=1

λi(b
∗
j )ρi(a

∗
j ).

Proof. Let a1, . . . , ak, b1, . . . , bk ∈ A, and set T =
∑k

j=1 λ(aj)ρ(bj). Then

Ti := PiTPi =
k∑

j=1

λi(aj)ρi(bj),

while

T−i := P−iTP−i =
k∑

j=1

λ−i(aj)ρ−i(bj) = J̃

( k∑

j=1

λi(b
∗
j )ρi(a

∗
j )

)
J̃∗.

Hence, T−i = ε′′J̃TiJ̃
∗ if and only if

ε′′
k∑

j=1

λi(b
∗
j )ρi(a

∗
j ) = Ti =

k∑

j=1

λi(aj)ρi(bj).

Applying this intermediate result to aj and bj such that γ =
∑k

j=1 λ(aj)ρ(bj), in the

case that H is orientable, and then to aj and bj such that γi =
∑k

j=1 λi(aj)ρi(bj),
in the case that Hi is orientable, yields the desired result. �

Thus, orientability of an S0-real bimodule H is equivalent to a stronger version
of orientability on the bimodule Hi.

Turning to Poincaré duality, we can obtain the following result:

Proposition 2.20. Let H be an S0-real A-bimodule of even KO-dimension with
intersection form 〈·, ·〉, and let 〈·, ·〉i be the intersection form for Hi. Then for any
p, q ∈ KO0(A),

〈p, q〉 = 〈p, q〉i + ε′′ 〈q, p〉i .

Proof. Let e, f ∈ A be projections. Then

〈[e], [f ]〉 = tr(γλ(e)ρ(f))

= tr(γiλi(e)ρi(f)) + tr(γ−iλ−i(e)ρ−i(f))

= tr(γiλi(e)ρi(f)) + ε′′ tr(J̃γiλi(f)ρi(e)J̃
∗)

= tr(γiλi(e)ρi(f)) + ε′′tr(γiλi(f)ρi(e))

= 〈[e], [f ]〉i + ε′′ 〈[f ], [e]〉i ,

where we have used the fact that the intersection forms are integer-valued. �
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Thus, Poincaré duality on an S0-real bimodule H is equivalent to nondegener-
acy of either the symmetrisation or antisymmetrisation of the intersection form on
Hi, as the case may be.

3. Bimodules and Multiplicity Matrices

We now turn to the study of bimodules, and in particular, to their characterisa-
tion by multiplicity matrices. We shall find that a bimodule admits, up to unitary
equivalence, at most one real structure of any given KO-dimension, and that the
multiplicity matrix or matrices of a bimodule will determine entirely which real
structures, if any, it does admit.

In what follows, A will be a fixed real C∗-algebra.

3.1. Odd bimodules. Let us begin with the study of odd bimodules.
For m ∈ MS(Z≥0), we define an A-bimodule Hm by setting

Hm :=
⊕

α,β∈ bA

Cnα ⊗ Cmαβ ⊗ Cnβ ,

λm(a) :=
⊕

α,β∈ bA

λα(a) ⊗ 1mαβ
⊗ 1nβ

, a ∈ A,

ρm(a) :=
⊕

α,β∈ bA

1nα
⊗ 1mαβ

⊗ λβ(a)T , a ∈ A.

Here we use the convention that 1n is the identity on Cn, with C0 := {0} and hence
10 := 0.

Proposition 3.1 (Krajewski [18, §3.1], Paschke–Sitarz [20, Lemmas 1, 2]). The
map bimod : MS(Z≥0) → Bimod(A) given by m 7→ [Hm] is an isomorphism of
monoids.

Proof. By construction, bimod is an injective morphism of monoids. It there-
fore suffices to show that bimododd is also surjective.

Now, let H be an A-bimodule. For α ∈ Â define projections PL
α and PR

α by

PL
α :=





λ(ei) if α = ni for Ki 6= C,
1
2 (λ(ei) − iλ(iei)) if α = ni for Ki = C,
1
2 (λ(ei) + iλ(iei)) if α = ni for Ki = C,

and

PR
α :=





ρ(ei) if α = ni for Ki 6= C,
1
2 (ρ(ei) − iρ(iei)) if α = ni for Ki = C,
1
2 (ρ(ei) + iρ(iei)) if α = ni for Ki = C,

respectively; by construction, PL
α ∈ λ(A) + iλ(A) and PR

α ∈ ρ(A) + iρ(A), so

that for α, β ∈ Â, PL
α and PR

β commute. We can therefore define projections

Pαβ := PL
α PR

β for each α, β ∈ Â; it is then easy to see that each Hαβ := PαβH is
a sub-A-bimodule of H, and that H = ⊕α,β∈ bAHαβ .

Let α, β ∈ Â. As noted before, the left action of A on Hαβ must decompose
as a direct sum of irreducible representations, but by construction of Hαβ , those
irreducible representations must all be α. Similarly, the right action on Hαβ must
be a direct sum of copies of β. Since the left action and right action commute,
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we must therefore have that Hαβ
∼= HmαβEαβ

for some mαβ ∈ Z≥0. Taking the
direct sum of the Hαβ , we therefore see that H is unitarily equivalent to Hm for
m = (mαβ) ∈ MS(Z≥0), that is, [H] = bimod(m). �

We denote the inverse map bimod−1 : Bimod(A) → MS(Z≥0) by mult.

Definition 3.2. Let H be an A-bimodule. Then the multiplicity matrix of A is
the matrix mult[H] ∈ MS(Z≥0).

From now on, without any loss of generality, we shall assume that an A-
bimodule H with multiplicity matrix m is Hm itself.

Remark 3.3. Multiplicity matrices readily admit a K-theoretic interpretation [10].
For simplicity, suppose that A is a complex C∗-algebra and consider only complex-
linear representations. Then for H an A-bimodule, mult[H] is essentially the Brat-
teli matrix of the inclusion λ(A) →֒ ρ(A)′ ⊂ L(H) (cf. [9, §2]), and can thus
be interpreted as representing the induced map K0(λ(A)) → K0(ρ(A)′) in com-
plex K-theory. Likewise, mult[H]T can be interpreted as representing the map
K0(ρ(A)) → K0(λ(A)′) induced by the inclusion ρ(A) →֒ λ(A)′ ⊂ L(H). Similar
interpretations can be made in the more general context of real C∗-algebras and
KO-theory.

We shall now characterise left, right, and left and right A-linear maps between
A-bimodules. Let H and H′ be A-bimodules with multiplicity matrices m and m′,
respectively, let Pαβ be the projections on H defined as in the proof of Proposi-
tion 3.1, and let P ′

αβ be the analogous projections on H′. Then any linear map

T : H → H′ is characterised by the components

(3.1) T γδ
αβ := P ′

γδTPαβ,

which we view as maps T γδ
αβ : Cnα ⊗ Cmαβ ⊗ Cnβ → Cnγ ⊗ Cm′

γδ ⊗ Cnδ , or equiv-

alently, as elements T γδ
αβ ∈ Mnγ×nα

(C) ⊗ Mm′

γδ
×mαβ

⊗ Mnδ×nβ
(C). Thus we have

an isomorphism

comp : L(H,H′) →
⊕

α,β,γ,δ∈ bA

Mnγ×nα
(C) ⊗ Mm′

γδ
×mαβ

⊗ Mnδ×nβ
(C)

given by comp(T ) := (T γδ
αβ)α,β,γ,δ∈ bA. Note that when H = H′, T is self-adjoint if

and only if T αβ
γδ = (T γδ

αβ)∗ for all α, β, γ, δ ∈ Â.

Proposition 3.4 (Krajewski [18, §3.4]). Let H and H′ be A-bimodules with mul-
tiplicity matrices m and m′, respectively. Then

comp(LL
A(H,H′)) =

⊕

α,β,δ∈ bA

1nα
⊗ Mm′

αδ
×mαβ

(C) ⊗ Mnδ×nβ
(C),(3.2)

comp(LR
A(H,H′)) =

⊕

α,β,γ∈ bA

Mnγ×nα
(C) ⊗ Mm′

γβ
×mαβ

(C) ⊗ 1nβ
,(3.3)

comp(LLR
A (H,H′)) =

⊕

α,β∈ bA

1nα
⊗ Mm′

αβ
×mαβ

(C) ⊗ 1nβ
.(3.4)

Proof. Observe that T ∈ L(H,H′) is left, right, or left and right A-linear if

and only if each T γδ
αβ is left, right, or left and right A. Thus, let α, β, γ and δ ∈ Â

be fixed, and let T ∈ Mnγ×nα
(C) ⊗ Mm′

γδ
×mαβ

⊗ Mnδ×nβ
(C).
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First, write T =
∑k

i=1 Ai⊗Bi for Ai ∈ Mnγ×nα
(C) and for linearly independent

Bi ∈ Mm′

γδ
×mαβ

⊗ Mnδ×nβ
(C). Then, for a ∈ A,

(λγ(a) ⊗ 1m′

γδ
⊗ 1nδ

)T − T (λα(a) ⊗ 1mαβ
⊗ 1nβ

) =

k∑

i=1

(λγ(a)Ai − Aiλα(a)) ⊗ Bi,

so that by linear independence of the Bi, T is left A-linear if and only if each Ai

intertwines the irreducible representations α and γ, and hence, by Schur’s lemma,
if and only if α = γ and each Ai is a constant multiple of 1nα

or each Ai = 0. Thus,

LL
A(Cnα ⊗ Cmαβ ⊗ Cnβ , Cnγ ⊗ Cm′

γδ ⊗ Cnδ)

=

{
1nα

⊗ Mm′

αδ
×mαβ

(C) ⊗ Mnδ×nβ
(C) if α = γ,

{0} otherwise.

Analogously, one can show that

LR
A(Cnα ⊗ Cmαβ ⊗ Cnβ , Cnγ ⊗ Cm′

γδ ⊗ Cnδ)

=

{
Mnγ×nα

(C) ⊗ Mm′

γβ
×mαβ

(C) ⊗ 1nβ
if β = δ,

{0} otherwise,

and then these first two results together imply that

LLR
A (Cnα ⊗ Cmαβ ⊗ Cnβ , Cnγ ⊗ Cm′

γδ ⊗ Cnδ)

=

{
1nα

⊗ Mm′

αβ
×mαβ

(C) ⊗ 1nβ
if (α, β) = (γ, δ),

{0} otherwise,

as was claimed. �

An immediate consequence is the following description of the group ULR
A (H):

Corollary 3.5. Let H be an A-bimodule. Then

comp(ULR
A (H)) =

⊕

α,β∈ bA

1nα
⊗ U(mαβ) ⊗ 1nβ

∼=
∏

α,β∈ bA

U(mαβ),

with the convention that U(0) = {0} is the trivial group.

3.2. Even bimodules. We now turn to the study of even bimodules; let us
begin by considering the decomposition of an even bimodule into its even and odd
sub-bimodules.

Let (H, γ) be an even A-bimodule. Define mutually orthogonal projections
P even and P odd by

P even =
1

2
(1 + γ), P odd =

1

2
(1 − γ).

We can then define sub-bimodules Heven and Hodd of H by Heven = P evenH,
Hodd = P oddH; one has that H = Heven ⊕Hodd at the level of bimodules.

On the other hand, given A-bimodules H1 and H2, we can construct an even
A-bimodule (H, γ) such that Heven = H1 and Hodd = H2 by setting H = H1 ⊕H2

and γ = 1H1
⊕ (−1H2

). If H1 and H2 are already Heven and Hodd for some (H, γ),
then this procedure precisely reconstructs (H, γ). Since this procedure manifestly
respects direct summation and unitary equivalence at either end, we have therefore
proved the following:
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Proposition 3.6. Let A be a real C∗-algebra. The map

C : Bimodeven(A) → Bimod(A) × Bimod(A)

given by

C([H]) := ([Heven], [Hodd])

is an isomorphism of monoids.

One readily obtains a similar decomposition at the level of unitary groups:

Corollary 3.7. Let (H, γ) be an even A-bimodule. Then

ULR
A (H, γ) = ULR

A (Heven) ⊕ ULR
A (Hodd).

Another immediate consequence is the following analogue of Proposition 3.1:

Proposition 3.8. Let A be a real C∗-algebra. The map

bimodeven : MS(Z≥0) × MS(Z≥0) → Bimodeven(A)

defined by bimodeven := C−1 ◦ (bimod× bimod) is an isomorphism of monoids.

Just as in the odd case, we will find it convenient to denote (bimodeven)−1 :
Bimodeven(A) → MS(Z≥0)×MS(Z≥0) by multeven. It then follows that multeven =
(mult×mult) ◦ C.

Definition 3.9. Let (H, γ) be an even A-bimodule. Then the multiplicity matrices
of (H, γ) are the pair of matrices

(mult[Heven], mult[Hodd]) = multeven[(H, γ)] ∈ MS(Z≥0) × MS(Z≥0).

Let us now consider orientability of even bimodules.

Lemma 3.10 (Krajewski [18, §3.4]). Let (H, γ) be an even A-bimodule. Then
(H, γ) is orientable only if LLR(Heven,Hodd) = {0}.

Proof. Suppose that (H, γ) is orientable, so that γ =
∑k

i=1 λ(ai)ρ(bi) for some

a1, . . . , ak, b1, . . . , bk ∈ A. Now, let T ∈ LLR
A (Heven,Hodd), and define T̃ ∈ LLR

A (H)
by

T̃ =

(
0 T ∗

T 0

)
.

Then, on the one hand, since γ = 1Heven ⊕ (−1Hodd), T̃ anticommutes with γ, and

on the other, since γ =
∑k

i=1 λ(ai)ρ(bi), T̃ commutes with γ, so that T̃ = 0. Hence,
T = 0. �

This last result motivates the following weaker notion of orientability:

Definition 3.11. An even A-bimodule (H, γ) shall be called quasi-orientable when-
ever LLR

A (Heven,Hodd) = {0}.

The subset of Bimodeven(A) consisting of the unitary equivalence classes of the
quasi-orientable even A-bimodules will be denoted by Bimodeven

q (A).
We define the support of a real p × q matrix A to be the set

supp(A) := {(i, j) ∈ {1, . . . , p} × {1, . . . , q} | Aij 6= 0}.
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For A ∈ MS(R), we shall view supp(A) as a subset of Â2 by means of the iden-

tification of {1, . . . , S} with Â as ordered sets. We shall also find it convenient to
associate to each matrix m ∈ MS(Z) a matrix m̂ ∈ MN (Z) by

(3.5) m̂ij :=
∑

α∈M̂ni
(Ki)

∑

β∈ ̂Mnj
(Kj)

mαβ.

One can check the map MS(Z) → MN (Z) defined by m 7→ m̂ is linear and respects
transposes.

We can now offer the following characterisation of quasi-orientable bimodules:

Proposition 3.12 (Krajewski [18, §3.3], Paschke–Sitarz [20, Lemma 3]). Let A be
a real C∗-algebra. Then

(3.6) multeven(Bimodeven
q (A))

= {(meven, modd) ∈ MS(Z≥0)
2 | supp(meven) ∩ supp(modd) = ∅}.

Proof. Let (H, γ) be an even A-bimodule and let (meven, modd) be its multi-
plicity matrices. Then by Proposition 3.4,

LLR
A (Heven,Hodd) ∼=

⊕

α,β∈ bA

Mmodd

αβ
×meven

αβ
(C),

whence the result follows immediately. �

We therefore define the signed multiplicity matrix of a quasi-orientable even A-
bimodule (H, γ), or rather, the unitary equivalence class thereof, to be the matrix

multq[(H, γ)] := mult[Heven] − mult[Hodd] ∈ MS(Z).

The map Bimodeven
q (A) → MS(Z) defined by

[(H, γ)] 7→ multq[(H, γ)]

is then bijective, and multeven[(H, γ)] is readily recovered from multq[(H, γ)]. In-
deed, if (H, γ) is a quasi-orientable even A-bimodule with signed multiplicity matrix
µ, then (cf. [20, Lemma 3],[18, 3.3])

(3.7) γ =
⊕

α,β∈ bA

µαβ1Hαβ
.

These algebraic consequences of quasi-orientability, which were derived from the
stronger condition of orientability in the original papers [20] and [18], are key to
the formalism developed by Krajewski and Paschke–Sitarz, and hence to the later
work by Iochum, Jureit, Schücker, and Stephan [12–14,22].

We can now characterise orientable bimodules amongst quasi-orientable bimod-
ules:

Proposition 3.13 (Krajewski [18, §3.3]). Let (H, γ) be a quasi-orientable A-
bimodule with signed multiplicity matrix µ. Then (H, γ) is orientable if and only if
the following conditions all hold:

(1) For each i ∈ {1, . . . , N} such that Ki = C and all β ∈ Â,

µniβµniβ ≥ 0;
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(2) For all α ∈ Â and each j ∈ {1, . . . , N} such that Kj = C,

µαnj
µαnj

≥ 0;

(3) For all i, j ∈ {1, . . . , N} such that Ki = Kj = C,

µninj
µninj

≥ 0.

In particular, if (H, γ) is orientable, then

(3.8) γ =

N∑

i,j=1

λ(sgn(µ̂ij)ei)ρ(ej).

Proof. First, suppose that (H, γ) is indeed orientable, so that there exist
a1, . . . , an, b1, . . . , bn ∈ A such that γ =

∑n
l=1 λ(al)ρ(bl); in particular, then, for

each α, β ∈ Â,

sgn(µαβ)1nα
⊗ 1|µαβ| ⊗ 1nβ

= γαβ
αβ =

n∑

l=1

λα(al) ⊗ 1|µαβ | ⊗ λβ(bl)
T .

Now, let i ∈ {1, . . . , N} be such that Ki = C, and let β ∈ Â, and suppose that
µniβ and µniβ are both non-zero. It then follows that

sgn(µniβ)1ni
⊗1nβ

=
n∑

l=1

(al)i⊗λβ(bl)
T , sgn(µniβ)1ni

⊗1nβ
=

n∑

l=1

(al)i⊗λβ(bl)
T ,

where (al)i denotes the component of al in the direct summand Mki
(C) of A. If X

denotes complex conjugation on Cni , it then follows from this that

sgn(µniβ)1ni
⊗1nβ

= (X⊗1nβ
)(sgn(µniβ)1ni

⊗1nβ
)(X⊗1nβ

) = sgn(µniβ)1ni
⊗1nβ

,

so that sgn(µniβ) = sgn(µniβ), or equivalently µniβµniβ > 0. One can similarly
show that the other two conditions hold.

Now, suppose instead that the three conditions on µ hold. Then for all i,

j ∈ {1, . . . , N}, all non-zero entries µαβ for α ∈ M̂ki
(Ki), β ∈ M̂kj

(Kj), have the
same sign, so set γij equal to this common value of non-zero sgn(µαβ) if at least
one such µαβ is non-zero, and set γij = 0 otherwise. One can then easily check that

γ =
∑N

i,j=1 λ(γijei)ρ(ej), so that (H, γ) is indeed orientable. Moreover, using the

same three conditions, one can readily check that γij = sgn(µ̂ij), which yields the
last part of the claim. �

Let us now turn to intersection forms and Poincaré duality. In particular,
we are now able to provide explicit expressions for intersection forms in terms of
multiplicity matrices.

Recall that for K = R, C or H, KO0(Mk(K)) is the infinite cyclic group gen-
erated by [p] for p ∈ Mk(K) a minimal projection, so that for A a real C∗-algebra
with Wedderburn decomposition ⊕N

i=1Mni
(Ki),

KO0(A) ∼=

N∏

i=1

KO0(Mni
(Ki)) ∼= ZN ,
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which can be viewed as the infinite abelian group generated by {[pi]}N
i=1 for pi a

minimal projection in Mni
(Ki). Since

τi := tr(pi) =

{
2 if Ki = H,

1 otherwise,

it follows that for α ∈ Â,

(3.9) tr(λα(pi)) =

{
τi if α ∈ M̂ni

(Ki),

0 otherwise.

Now, if (H, γ) is an even A-bimodule with intersection form 〈·, ·〉, we can define
a matrix ∩ ∈ MN(Z) by

(3.10) ∩ij := 〈[pi], [pj ]〉 .

The intersection form 〈·, ·〉 is completely determined by the matrix ∩, and in par-
ticular, 〈·, ·〉 is non-degenerate (i.e. (H, γ) satisfies Poincaré duality) if and only if
∩ is non-degenerate.

Proposition 3.14 (Krajewski [18, §3.3], Paschke–Sitarz [20, §2.4]). Let (H, γ) be
an even A-bimodule with pair of multiplicity matrices (meven, modd). Then

(3.11) ∩ij = τiτj

(
m̂even

ij − m̂odd
ij

)
,

so that (H, γ) satisfies Poincaré duality if and only if the matrix m̂even − m̂odd is
non-degenerate.

Proof. First, since H = Heven ⊕Hodd, we can write

γ =
⊕

α,β∈ bA

1nα
⊗ γαβ ⊗ 1nβ

,

where γαβ = 1meven

αβ
⊕ (−1modd

αβ
). Then,

∩ij = 〈[pi], [pj ]〉

= tr(γλ(pi)ρ(pj))

= tr


 ⊕

α,β∈ bA

λα(pi) ⊗ γαβ ⊗ λβ(pj)




=
∑

α,β∈ bA

tr(λα(pi)) tr(λβ(pj))(m
even
αβ − modd

αβ )

=

N∑

i,j=1

τiτj(m̂even
ij − m̂odd

ij).

This calculation implies, in particular, that ∩ can be obtained from m̂even − m̂odd

by a finite sequence of elementary row or column operations, so that ∩ is indeed

non-degenerate if and only if m̂even − m̂odd is. �

Corollary 3.15. Let (H, γ) be a quasi-orientable A-bimodule with signed multi-
plicity matrix µ. Then (H, γ) satisfies Poincaré duality if and only if µ̂ is non-
degenerate.
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In particular, if we restrict ourselves to complex C∗-algebras and complex-
linear representations, a quasi-orientable bimodule is completely characterised by
the K-theoretic datum of its intersection form.

3.3. Real bimodules of odd KO-dimension. Let us now consider real bi-
modules of odd KO-dimension. Before continuing, recall that

Bimod(A, 1) = Bimod(A, 7), Bimod(A, 3) = Bimod(A, 5).

For m ∈ SymS(Z≥0), we define an antilinear operator Xm on Hm by defining

(Xm)γδ
αβ : Cnα ⊗ Cmαβ ⊗ Cnβ → Cnγ ⊗ Cmγδ ⊗ Cnδ by

(3.12) (Xm)βα
αβ : ξ1 ⊗ ξ2 ⊗ ξ3 7→ ξ3 ⊗ ξ2 ⊗ ξ1,

and by setting (Xm)γδ
αβ = 0 whenever (γ, δ) 6= (β, α).

3.3.1. KO-dimension 1 or 7 mod 8. We begin by determining the form of the
multiplicity matrix for a real bimodule of KO-dimension 1 or 7 mod 8.

Lemma 3.16 (Krajewski [18, §3.2], Paschke–Sitarz [20, Lemma 4]). Let (H, J) be
a real A-bimodule of KO-dimension 1 or 7 mod 8 with multiplicity matrix m. Then

m is symmetric, and the only non-zero components of J are of the form Jβα
αβ for α,

β ∈ Â, which are anti-unitaries Hαβ → Hβα satisfing the relations Jαβ
βα = (Jβα

αβ )∗.

Proof. Let the projections PL
α , PR

β and Pαβ be defined as in the proof of

Proposition 3.1, and recall that Pαβ = PL
α PR

β . By Equation 2.4, it follows that

for all α ∈ Â,JPL
α = PR

α J and JPR
α = PL

α J , and hence that for all α, β ∈ Â,
JPαβ = JPL

α PR
β = PR

α PL
β J = PβαJ . Thus, the only non-zero components of J

are the anti-unitaries Jβα
αβ : Hαβ → Hβα which satisfy Jαβ

βα = (Jβα
αβ )∗; this, in turn,

implies that m is indeed symmetric. �

Next, we show that for every m ∈ SymS(Z≥0), not only does Hm admit a
real structure of KO-dimension 1 or 7 mod 8, but it is also unique up to unitary
equivalence.

Lemma 3.17 (Krajewski [18, §3.2], Paschke–Sitarz [20, Lemma 5]). Let m ∈
SymS(Z≥0). Then, up to unitary equivalence, Jm := Xm is the unique real structure
on Hm of KO-dimension 1 or 7 mod 8.

Proof. First, Xm is indeed by construction a real structure on Hm of KO-
dimension 1 or 7 mod 8.

Now, let J be another real structure on Hm of KO-dimension 1 or 7 mod 8.
Define a unitary K on H by K = JXm; thus, J = KXm. Since the intertwining
condition of Equation 2.4 applies to both J and Xm, we have, in fact, that K ∈
ULR

A (Hm), and hence

K =
⊕

α,β∈ bA

1nα
⊗ Kαβ ⊗ 1nβ

,

for Kαβ ∈ U(mαβ). In particular, since K∗ = XmJ = XmKXm, we have that
Kβα = KT

αβ.

Let (α, β) ∈ supp(m), and suppose that α < β. Let Kαβ = VαβK̃αβV ∗
αβ

be a unitary diagonalisation of Kαβ , and let Lαβ be a diagonal square root of

K̃αβ. ThenKαβ = VαβLαβLαβV ∗
αβ = (VαβLαβ)(VαβLαβ)T , and hence Kβα =
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(VαβLαβ)(VαβLαβ)T . If, instead, α = β, then Kαα is unitary and complex sym-
metric, so that there exists a unitary Wαα such that Kαα = WααWT

αα. We can now

define a unitary U ∈ ULR
A (Hm) by

U =
⊕

α,β∈ bA

1nα
⊗ Uαβ ⊗ 1nβ

,

where Uαβ = 0 if mαβ = 0, and for (α, β) ∈ supp(m),

Uαβ =





VαβLαβ , if α < β,

VβαLβα, if α > β,

Wαα, if α = β.

Then, by construction, K = UXmU∗Xm, and hence, J = UXmU∗, so that U is
the required unitary equivalence between (Hm, Xm) and (Hm, J). �

We can now give our characterisation of real bimodules of KO-dimension 1 or
7 mod 8:

Proposition 3.18 (Krajewski [18, §3.2]). Let n = 1 or 7 mod 8. Then the map
ιn : Bimod(A, n) → Bimod(A) defined by ιn : [(H, J)] 7→ [H] is injective, and

(3.13) (mult ◦ιn)(Bimod(A, n)) = SymS(Z≥0).

Proof. First, since a unitary equivalence of real A-bimodules of KO-dimen-
sion n mod 8 is, in particular, a unitary equivalence of odd A-bimodules, the map
ιn is well defined.

Next, let (H, J) and (H′, J ′) be real A-bimodules of KO-dimension n mod
8, and suppose that H and H′ are unitarily equivalent as bimodules; let U ∈
ULR

A (H′,H). Now, if m is the multiplicity matrix of H, then H and Hm are unitarily

equivalent, so let V ∈ ULR
A (H,Hm). Then V JV ∗ and V UJ ′U∗V ∗ are both real

structures of KO-dimension n mod 8, so by Lemma 3.17, they are both unitarily
equivalent to Jm. This implies that J and UJ ′U∗ are unitarily equivalent as real
structures on H, and hence that (H, J) and (H′, J ′) are unitarily equivalent. Thus,
ιn is injective.

Finally, Lemma 3.16 implies that (mult ◦ιn)(Bimod(A, n)) ⊆ SymS(Z≥0), while
Lemma 3.17 implies the reverse inclusion. �

Thus, without any loss of generality, a real bimodule H of KO-dimension 1 or
7 mod 8 with multiplicity matrix m can be assumed to be simply (Hm, Jm).

One following characterisation of ULR
A (H, J) now follows by direct calculation:

Proposition 3.19. Let (H, J) be a real A-bimodule of KO-dimension 1 or 7 mod 8
with multiplicity matrix m. Then

comp(ULR
A (H, J)) = {(1nα

⊗ Uαβ ⊗ 1nβ
)α,β∈ bA ∈ comp(ULR

A (H)) | Uβα = Uαβ}

∼=
∏

α∈ bA

(
O(mαα) ×

∏

β∈ bA
β>α

U(mαβ)

)
.

(3.14)
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3.3.2. KO-dimension 3 or 5 mod 8. Let us now turn to real bimodules of KO-
dimension 3 or 5 mod 8. We begin with the relevant analogue of Lemma 3.16.

Lemma 3.20. Let (H, J) be a real A-bimodule of KO-dimension 3 or 5 mod 8
with multiplicity matrix m. Then m is symmetric with even diagonal entries, and

the only non-zero components of J are of the form Jβα
αβ for α, β ∈ Â, which are

anti-unitaries Hαβ → Hβα satisfying the relations Jαβ
βα = −(Jβα

αβ )∗.

Proof. The proof follows just as for Lemma 3.16, except that the equation

J2 = −1 forces the relations Jαβ
βα = −(Jβα

αβ )∗, which imply, in particular, that for

each α ∈ Â, (Jαα
αα )2 = −1, so that mαα must be even. �

Let us denote by Sym0
S(Z≥0) the set of all matrices in SymS(Z≥0) with even

diagonal entries. For n = 2k, let

Ωn =

(
0 −1k

1k 0

)
.

Lemma 3.21. Let m ∈ Sym0
S(Z≥0). Define an antiunitary Jm on Hm by

(Jm)γδ
αβ =





(Xm)βα
αβ if (γ, δ) = (β, α) and α < β,

−(Xm)βα
αβ if (γ, δ) = (β, α) and α > β,

Ωmαα
(Xm)αα

αα if α = β = γ = δ,

0 otherwise.

Then, up to unitary equivalence, Jm is the unique real structure on Hm of KO-
dimension 3 or 5 mod 8.

Proof. The proof follows that of Lemma 3.17, except we now have that KT
αα =

Ωmαα
KααΩT

mαα
instead of KT

αα = Kαα; each KααΩmαα
is therefore unitary and

complex skew-symmetric, so that we choose Wαα unitary such that

KααΩmαα
= WααΩmαα

WT
αα,

or equivalently, Kαα = WααΩmαα
WT

ααΩT
mαα

. One can then construct the unitary
equivalence U between (Hm, J) and (H, Jm) as before. �

Much as in the analogous case of KO-dimension 1 or 7 mod 8, Lemmas 3.20
and 3.21 together imply the following characterisation of real bimodules of KO-
dimension 3 or 5 mod 8:

Proposition 3.22. Let n = 3 or 5 mod 8. Then the map ιn : Bimod(A, n) →
Bimod(A) defined by ιn : [(H, J)] 7→ [H] is injective, and

(3.15) (mult ◦ιn)(Bimod(A, n)) = Sym0
S(Z≥0).

Finally, these results immediately imply the following description of ULR
A (H, J):

Proposition 3.23. Let (H, J) be a real A-bimodule of KO-dimension 3 or 5 mod 8
with multiplicity matrix m. Then

comp(ULR
A (H, J)) =

{
(1nα

⊗ Uαβ ⊗ 1nβ
)α,β∈ bA ∈ comp(ULR

A (H)) |
Uαα∈Sp(mαα),

Uβα=Uαβ , α6=β

}

∼=
∏

α∈ bA

(
Sp(mαα) ×

∏

β∈ bA
β>α

U(mαβ)

)
.

(3.16)
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3.4. Real bimodules of even KO-dimension. We now come to the case of
even KO-dimension. Before continuing, note that for (H, γ, J) a real bimodule of
even KO-dimension,

∀p, q ∈ KO0(A), 〈q, p〉 = ε′′ 〈p, q〉 ,

as a direct result of the relation Jγ = ε′′γJ ; this is then equivalent to the condition

(3.17) ∩ = ε′′∩T ,

where ∩ is the matrix of the intersection form. Thus, for KO-dimension 0 or
4 mod 8, the intersection form is symmetric, whilst for KO-dimension 2 or 6 mod 8,
it is anti-symmetric. It then follows, in particular, that a real A-bimodule of KO-
dimension 2 or 6 mod 8 satisfies Poincaré duality only if A has an even number
of direct summands in its Wedderburn decomposition, as an anti-symmetric k × k
matrix for k odd is necessarily degenerate.

3.4.1. KO-dimension 0 or 4 mod 8. We begin with the case where ε′′ = 1 and
hence [γ, J ] = 0, i.e. of KO-dimension 0 or 4 mod 8.

Let (H, γ, J) be a real A-bimodule of KO-dimension n mod 8, for n = 0 or
4; let the mutually orthogonal projections P even and P odd on H be defined as
before. Then, since [J, γ] = 0, we have that J = Jeven ⊕ Jodd, where Jeven =
P evenJP even and Jodd = P oddJP odd. One can then check that (Heven, Jeven) and
(Hodd, Jodd) are real A-bimodules of KO-dimension 1 or 7 mod 8 if n = 0, and
3 or 5 mod 8 if n = 4. On the other hand, given (Heven, Jeven) and (Hodd, Jodd),
one can immediately reconstruct (H, γ, J) by setting γ = 1Heven ⊕ (−1Hodd) and
J = Jeven ⊕ Jodd. Thus we have proved the following analogue of Proposition 3.6:
Proposition 3.24. Let A be a real C∗-algebra. Let k0 denote 1 or 7 mod 8, and
let k4 denote 3 or 5 mod 8. Then for n = 0, 4 mod 8, the map

Cn : Bimod(A, n) → Bimod(A, kn) × Bimod(A, kn)

given by Cn([(H, γ, J)]) := ([(Heven, Jeven)], [(Hodd, Jodd)]) is an isomorphism of
monoids.

One can then apply this decomposition to the group ULR
A (H, γ, J) to find:

Corollary 3.25. Let (H, γ, J) be a real A-bimodule of KO-dimension 0 or 4 mod 8.
Then

(3.18) ULR
A (H, γ, J) = ULR

A (Heven, Jeven) ⊕ ULR
A (Hodd, Jodd).

Combining Proposition 3.24 with our earlier characterisations of real bimodules
of odd KO-dimension, we immediately obtain the following:

Proposition 3.26. Let n = 0 or 4 mod 8. Then the map ιn : Bimod(A, n) →
Bimodeven(A) defined by [(H, γ, J)] 7→ ([(H, γ)]) is injective, and

(multeven ◦ιn)(Bimod(A, n)) =

{
SymS(Z≥0) × SymS(Z≥0) if n = 0 mod 8,

Sym0
S(Z≥0) × Sym0

S(Z≥0) if n = 4 mod 8.

In particular,
Bimodq(A, n) := ι−1

n (Bimodeven
q (A))

is thus the set of all equivalence classes of quasi-orientable real A-bimodules of
KO-dimension n mod 8; the last Proposition then implies the following:

Corollary 3.27. Let n = 0 or 4 mod 8. Then

(3.19) (multq ◦ιn)(Bimodq(A, n)) = SymS(Z).
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3.4.2. KO-dimension 2 or 6 mod 8. Finally, let us consider the remaining case
where ε′′ = −1 and hence {γ, J} = 0, i.e. of KO-dimensions 2 and 6 mod 8.

Let (H, γ, J) be a real A-bimodule of KO-dimension n mod 8 for n = 2 or 6.
Since {J, γ}, we have that

J =

(
0 εJ̃∗

J̃ 0

)
,

where J̃ := P oddJP even is an antiunitary Heven → Hodd, so that for a ∈ A,

λodd(a) = J̃ρeven(a∗)J̃∗, ρodd(a) = J̃λeven(a∗)J̃∗.

It then follows, in particular, that mult[Hodd] = mult[Heven]T .
Now, let J ′ be another real structure on (H, γ) of KO-dimension n mod 8, and

let J̃ ′ = P oddJ ′P even. Define K ∈ ULR
A (H, γ) by K = 1Heven ⊕ (J̃ ′J̃∗). Then, by

construction, J ′ = KJK∗, i.e. K is a unitary equivalence of real structures between
J and J ′. Thus, real structures of KO-dimension 2 or 6 mod 8 are unique. As a
result, we have proved the following analogue of Proposition 2.17:
Proposition 3.28. Let A be a real C∗-algebra, and let n = 2 or 6 mod 8. Then
the map

Cn : Bimod(A, n) → Bimod(A)

given by Cn([(H, γ, J)]) := ([Heven]) is an isomorphism of monoids.

Again, as an immediate consequence, we obtain the following characterisation
of ULR

A (H, γ, J):

Corollary 3.29. Let (H, γ, J) be a real A-bimodule of KO-dimension 2 or 6 mod 8.
Then

ULR
A (H, γ, J) = {U even ⊕ Uodd ∈ ULR

A (Heven) ⊕ ULR
A (Hodd) | Uodd = J̃U evenJ̃∗}

∼= ULR
A (Heven).

(3.20)

Finally, one can combine Proposition 3.28 with our observation concerning
the uniqueness up to unitary equivalence of real structures of KO-dimension 2 or
6 mod 8 and earlier results on multiplicity matrices to obtain the following charac-
terisation:

Proposition 3.30. Let n = 2 or 6 mod 8. Then the map ιn : Bimod(A, n) →
Bimodeven(A) defined by [(H, γ, J)] 7→ ([H, γ]) is injective, and

(multeven ◦ιn)(Bimod(A, n)) = {(meven, modd) ∈ MS(Z≥0)
2 | modd = (meven)T }

∼= MS(Z≥0).

(3.21)

Once more, it follows that

Bimodq(A, n) := ι−1
n (Bimodeven

q (A)),

is the set of all equivalence classes of quasi-orientable real A-bimodules of KO-
dimension n mod 8, for which we can again obtain a characterisation in terms of
signed multiplicity matrices:

Corollary 3.31. Let n = 2 or 6 mod 8. Then

(3.22) (multq ◦ιn)(Bimodq(A, n)) = {m ∈ MS(Z) | mT = −m}.
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3.4.3. S0-real bimodules of even KO-dimension. Let us now characterise quasi-
orientability, orientability and Poincaré duality for an even KO-dimensional S0-
real A-bimodule (H, γ, J, ǫ) by means of suitable conditions on (Hi, γi) expressible
entirely in terms of the pair of multiplicity matrices of (Hi, γi)

We begin by considering quasi-orientability:

Proposition 3.32. Let (H, γ, J, ǫ) be an S0-real A-bimodule of even KO-dimension
n mod 8. Then (H, γ) is quasi-orientable if and only if (Hi, γi) is quasi-orientable
and{

supp(meven
i ) ∩ supp((modd

i )T ) = ∅ if n = 0, 4,

supp(meven
i ) ∩ supp((meven

i )T ) = supp(modd
i ) ∩ supp((modd

i )T ) = ∅ if n = 2, 6,

for (meven
i , modd

i ) the multiplicity matrices of (Hi, γi), in which case, if µ and µi =
meven

i −modd
i are the signed multiplicity matrices of (H, γ) and (Hi, γi), respectively,

then

(3.23) µ = µi + ε′′µT
i .

Proof. First, let (meven, modd) and (meven
i , modd

i ) denote the pairs of multi-
picity matrices of (H, γ) and (Hi, γi), respectively. It then follows that

meven =

{
meven

i + (meven
i )T if n = 0, 4,

meven
i + (modd

i )T if n = 2, 6;

modd =

{
modd

i + (modd
i )T if n = 0, 4,

modd
i + (meven

i )T if n = 2, 6.

Thus supp(meven) = supp(meven
i ) ∪ Seven, supp(modd) = supp(modd

i ) ∪ Sodd,
where

Seven =

{
supp((meven

i )T ) if n = 0, 4,

supp((modd
i )T ) if n = 2, 6;

Sodd =

{
supp((modd

i )T ) if n = 0, 4,

supp((meven
i )T ) if n = 2, 6.

Then,

supp(meven)∩ supp(modd) = (supp(meven
i )∩ supp(modd

i ))∪ (Seven ∩ supp(modd
i ))

∪ (supp(meven
i ) ∩ Sodd) ∪ (Seven ∩ Sodd),

so that (H, γ) is quasi-orientable if and only if (Hi, γi) is quasi-orientable and

(Seven ∩ supp(modd
i )) ∪ (supp(meven

i ) ∩ Sodd) = ∅,

as required.
Finally, if µ = meven −modd and µi = meven

i −modd
i are the signed multiplicity

matrices of (H, γ) and (Hi, γi), respectively, then the relations amongst meven,
modd, meven

i , and modd
i given at the beginning immediately yield the equation

µ = µi + ε′′µT
i . �

Let us now turn to orientability:

Proposition 3.33. Let (H, γ, J, ǫ) be a quasi-orientable S0-real A-bimodule of even
KO-dimension n mod 8. Then (H, γ) is orientable if and only if (Hi, γi) is ori-
entable and, if n = 2 or 6 mod 8, for all j ∈ {1, . . . , N} such that Kj = C,

(3.24) (µi)njnj
= (µi)njnj

,
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where µi is the signed multiplicity matrix of (Hi, γi).

Proof. Let µ be the signed multiplicity matrix of (H, γ). Propositions 2.19
and 3.13 together imply that (H, γ, J, ǫ) is orientable if and only if

γi =

N∑

k,l=1

λi(sgn(µ̂kl)ek)ρi(el) = ε′′
N∑

k,l=1

λi(el)ρi(sgn(µ̂kl)ek),

and by considering individual components (γi)αβ , one can easily check that this in
turn holds if and only if (Hi, γi) is orientable and for all k ∈ {1, . . . , N},

sgn(µ̂kk) = ε′′ sgn(µ̂kk).

This last condition is trivial when ε′′ = 1, i.e. when n = 0 or 4 mod 8, so let
us suppose instead that n = 2 or 6 mod 8, so that ε′′ = −1. If (H, γ) is orientable,
then, by the above discussion, (Hi, γi) is orientable and the diagonal entries of µ̂
vanish, which in turn implies by Proposition 3.13 that for each l ∈ {1, . . . , N} and

all α, β ∈ M̂kl
(Kl), µαβ = 0. By antisymmetry of µ, this is equivalent to having,

for all l ∈ {1, . . . , N} such that Kl = C, µnlnl
= 0, or equivalently,

(µi)njnj
= (µi)njnj

,

where µi is the signed multiplicity matrix of (Hi, γi). On the other hand, if (Hi, γi)
is orientable and this condition on µi holds, then µ certainly satisfies the above
condition, so that (H, γ) is indeed orientable. �

Finally, let us consider Poincaré duality.

Proposition 3.34. Let (H, γ, J, ǫ) be an S0-real A-bimodule of even KO-dimension
n mod 8, let (meven

i , modd
i ) denote the multiplicity matrices of (Hi, γi), and let ∩

denote the matrix of the intersection form of (H, γ). Finally, let µi = meven
i −modd

i .
Then

(3.25) ∩kl = τkτl(µ̂i + ε′′µ̂i
T )kl,

so that (H, γ) satisfies Poincaré duality if and only if µ̂i + ε′′µ̂i
T is non-degenerate.

Proof. By Proposition 2.20, ∩ = ∩i + ε′′∩T
i for ∩i the matrix of the inter-

section form of (Hi, γi), which, together with Proposition 3.14, yields the desired
result. �

3.5. Bimodules in the Chamseddine–Connes–Marcolli model. To il-
lustrate the structure theory outlined thus far, let us apply it to the construction
of the finite spectral triple of the NCG Standard Model given by Chamseddine,
Connes and Marcolli [4, §§2.1, 2.2, 2.4] (cf. also [8, §1.13]).

Let ALR = C⊕HL⊕HR⊕M3(C), where the labels L and R serve to distinguish

the two copies of H; we can therefore write ÂLR = {1,1,2L,2R,3,3} without
ambiguity. Now, let (MF , γF , JF ) be the orientable real ALR-bimodule of KO-
dimension 6 mod 8 with signed multiplicity matrix

µ =




0 0 −1 1 0 0
0 0 0 0 0 0
1 0 0 0 1 0
−1 0 0 0 −1 0
0 0 −1 1 0 0
0 0 0 0 0 0




.
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This bimodule is, in fact, an S0-real bimodule for ǫF = λ(−1, 1, 1,−1); E = (MF )i

is then the orientable even ALR-bimodule with signed multiplicity matrix

µE =




0 0 0 0 0 0
0 0 0 0 0 0
1 0 0 0 1 0
−1 0 0 0 −1 0
0 0 0 0 0 0
0 0 0 0 0 0




.

Note, however, that neither MF nor E satisfies Poincaré duality, as

µ̂ =




0 −1 1 0
1 0 0 1
−1 0 0 −1
0 −1 1 0


 , µ̂E =




0 0 0 0
1 0 0 1
−1 0 0 −1
0 0 0 0




are both clearly degenerate; the intersection forms of MF and E are given by the
matrices ∩ = 2µ̂ and ∩E = 2µ̂E , respectively.

In order to introduce N generations of fermions and anti-fermions, one now
considers the real A-bimodule HF := (MF )⊕N ; by abuse of notation, γF , JF and
ǫF now also denote the relevant structure operators on HF . In terms of multiplicity
matrices and intersection forms, the sole difference from our discussion of MF is
that all matrices are now multiplied by N .

Now, let AF = C ⊕H ⊕ M3(C), which we consider as a subalgebra of ALR by
means of the embedding

(ζ, q, m) 7→

(
ζ, q,

(
λ 0

0 λ

)
, m

)
;

just as we could for ALR, we can write ÂF = {1,1,2,3,3} without ambiguity. We
can therefore view HF as a real AF -bimodule of KO-dimension 6 mod 8, whose
pair of multiplicity matrices (meven, modd) is then given by

meven = N




1 1 0 0 0
0 0 0 0 0
1 0 0 1 0
1 1 0 0 0
0 0 0 0 0




, modd = N




1 0 1 1 0
1 0 0 1 0
0 0 0 0 0
0 0 1 0 0
0 0 0 0 0




;

the essential observation is that the irreducible representation 2R of ALR corre-
sponds to the representation 1 ⊕ 1 of AF , whilst 2L, 3 and 3 correspond to 2, 3

and 3, respectively.
Note that HF now fails even to be quasi-orientable let alone orientable, with

the sub-bimodule (HF )11 providing the obstruction, and even if we were to restore
quasi-orientability by setting (HF )11 = 0, (HF )

11
and (HF )

11
would still present

an obstruction to orientability by Proposition 3.13. Note also that HF must nec-
essarily fail to satisfy Poincaré duality, as the matrix ∩F of its intersection form is
a 3 × 3 anti-symmetric matrix, and thus a priori degenerate. Let us nonetheless
compute ∩F :

m̂even − m̂odd = N




2 0 0
1 0 1
2 0 0


− N




2 1 2
0 0 0
0 1 0


 = N




0 −1 −2
1 0 1
2 −1 0


 ,



FINITE SPECTRAL TRIPLES 27

and hence, by Proposition 3.14,

∩F = 2N




0 −1 −1
1 0 1
1 −1 0


 .

Finally, let us consider the S0-real structure on HF the AF -bimodule, inherited
from HF as an ALR-bimodule; we now denote (HF )i by Hf . One still has that
Hf = E⊕N , which is still orientable and thus specified by the signed multiplicity
matrix

µf = N




−1 0 0 −1 0
−1 0 0 −1 0
1 0 0 1 0
0 0 0 0 0
0 0 0 0 0




;

the intersection form is then given by the matrix

∩f = 2N



−1 0 −1
1 0 1
0 0 0


 ,

so that Hf fails to satisfy Poincaré duality as an AF -bimodule.

4. Dirac Operators and their Structure

4.1. The order one condition. We now examine the structure of Dirac
operators in detail. We will find it useful to begin with the study of operators
between A-bimodules (for fixed A) satisfying a further generalisation of the order
one condition. Thus, let A be a fixed real C∗-algebra, and let H1 and H2 be fixed
A-bimodules with multiplicity matrices m1 and m2, respectively.

Definition 4.1. We shall say that a map T ∈ L(H1,H2) satisfies the generalised
order one condition if

(4.1) ∀a, b ∈ A, (λ2(a)T − Tλ1(a))ρ1(b) = ρ2(b)(λ2(a)T − Tλ1(a)).

Note that if H1 = H2, then the generalised order one condition reduces to the
usual order one condition on Dirac operators.

It is easy to check that the generalised order one condition is, in fact, equivalent
to the following alternative condition:

(4.2) ∀a, b ∈ A, (ρ2(a)T − Tρ1(a))λ1(b) = λ2(b)(ρ2(a)T − Tρ1(a)).

Thus, the following are equivalent for T ∈ L(H1,H2):

(1) T satisfies the generalised order one condition;
(2) For all a ∈ A, λ2(a)T − Tλ1(a) is right A-linear;
(3) For all a ∈ A, ρ2(a)T − Tρ1(a) is left A-linear.

Now, since the unitary group U(A) of A is a compact Lie group, let µ be the
normalised bi-invariant Haar measure on U(A).
Lemma 4.2. Let H1 and H2 be A-bimodules. Define operators Eλ and Eρ on
L1
A(H1,H2) by

(4.3)

Eλ(T ) :=

∫

U(A)

dµ(u)λ2(u)Tλ1(u
−1), Eρ(T ) :=

∫

U(A)

dµ(u)ρ2(u
−1)Tρ1(u).
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Then Eλ and Eρ are commuting idempotents such that

im(Eλ) = LL
A(H1,H2), im(Eρ) = LR

A(H1,H2),

and

ker(Eλ) = im(id−Eλ) ⊆ LR
A(H1,H2), ker(Eρ) = im(id−Eρ) ⊆ LL

A(H1,H2),

while

im(EλEρ) = LLR
A (H1,H2).

Proof. First, the fact that Eλ and Eρ are idempotents follows immediately
from the Fubini-Tonelli theorem together with translation invariance of the Haar
measure µ, whilst commutation of Eλ and Eρ follows from the Fubini-Tonelli the-
orem together with the commutation of left and right actions on H1 and on H2.
Moreover, by construction, Eλ and Eρ act as the identity on LL

A(H1,H2) and
LR
A(H1,H2), respectively, so that

im(Eλ) ⊇ LL
A(H1,H2), im(Eρ) ⊇ LR

A(H1,H2).

Now, let T ∈ L1
A(H1,H2). Then, by translation invariance of the Haar measure,

it follows that for any u ∈ U(A),

Eλ(T ) = λ2(u)Eλ(T )λ1(u)∗, Eρ(T ) = ρ2(u)Eρ(T )ρ1(u)∗,

or equivalently,

λ2(u)Eλ(T ) = Eλ(T )λ1(u), ρ2(u)Eρ(T ) = Eρ(T )ρ1(u).

By the real analogue of the Russo-Dye theorem [19, Lemma 2.15.16], the convex
hull of U(A) is weakly dense in the unit ball of A, so that

λ2(a)Eλ(T ) = Eλ(T )λ1(a), ρ2(a)Eρ(T ) = Eρ(T )ρ1(a)

for all a ∈ A, i.e. Eλ(T ) ∈ LL
A(H1,H2) and Eρ(T ) ∈ LR

A(H1,H2).
On the other hand,

(id−Eλ)(T ) =

∫

U(A)

dµ(u)(Tλ1(u) − λ2(u)T )λ1(u
−1),

(id−Eρ)(T ) =

∫

U(A)

dµ(u)(Tρ1(u
−1) − ρ2(u

−1)T )ρ1(u),

so that by the generalised order one condition, (id−Eλ)(T ) ∈ LR
A(H1,H2) and

(id−Eρ)(T ) ∈ LL
A(H1,H2).

Finally, the commutation of Eλ and Eρ together with our identification of
im(Eλ) and of im(Eρ) imply the desired result about im(EλEρ). �

Now, since

im(id−Eλ) ⊆ im(Eρ), im(id−Eρ) ⊆ im(Eλ),

one has that

(id−Eλ)Eρ = id−Eλ, (id−Eρ)Eλ = id−Eρ,

which implies in turn that id−Eρ, EλEρ and id−Eλ are mutually orthogonal idem-
potents such that

(id−Eρ) + EλEρ + (id−Eλ) = id .

We have therefore proved the following:
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Proposition 4.3 (Krajewski [18, §3.4]). Let LR
A(H1,H2)

0 denote ker(Eλ), and let
LL
A(H1,H2)

0 denote ker(Eρ). Then

(4.4) L1
A(H1,H2) = LL

A(H1,H2)
0 ⊕ LLR

A (H1,H2) ⊕ LR
A(H1,H2)

0,

where

(4.5) LL
A(H1,H2)

0 ⊕ LLR
A (H1,H2) = LL

A(H1,H2)

and

(4.6) LLR
A (H1,H2) ⊕ LR

A(H1,H2)
0 = LR

A(H1,H2).

Thus, elements of LL
A(H1,H2)

0 can be interpreted as the “purely” left A-linear
maps H1 → H2, whilst elements of LR

A(H1,H2)
0 can be interpreted as the “purely”

right A-linear maps H1 → H2.
One can readily check that the decomposition of Proposition 4.3 is respected

by left multiplication by elements of LLR
A (H2) and right multiplication by elements

of LLR
A (H1):

Proposition 4.4. For any T ∈ L1
A(H1,H2), A ∈ LLR

A (H1), B ∈ LLR
A (H2),

Eλ(AT ) = AEλ(T ), Eρ(TB) = Eρ(T )B.

Now, if T ∈ L(H1,H2), it is easy to see that T satisfies the generalised order

one condition if and only if each T γδ
αβ satisfies the generalised order one condition

within L((H1)αβ , (H2)γδ); by abuse of notation, we will also denote by Eλ and Eρ

the appropriate idempotents on each L((H1)αβ , (H2)γδ). It then follows that

Eλ(T )γδ
αβ = Eλ(T γδ

αβ), Eρ(T )γδ
αβ = Eρ(T

γδ
αβ).

Finally, let us turn to characterising ker(Eλ) and ker(Eρ); before proceeding,
we first need a technical lemma:

Lemma 4.5. Let G be a compact Lie group, and let µ be the bi-invariant Haar
measure on G. Let (H, π) and (H′, π′) be finite-dimensional irreducible unitary
matrix representations of G. Then for any T ∈ L(H′,H), if π ≇ π′ then

(4.7)

∫

G

dµ(g)π(g)Tπ′(g−1) = 0,

and if π ∼= π′, then for any unitary G-isomorphism U : H′ → H,

(4.8)

∫

G

dµ(g)π(g)Tπ′(g−1) =
1

dimH
tr(TU∗)U.

Proof. Let

T̃ =

∫

G

dµ(g)π(g)Tπ′(g−1).

which, by translation invariance of the Haar measure µ, is a G-invariant map. If
π ≇ π′, then Schur’s Lemma forces T̃ to vanish. If instead π ∼= π′, let U : H → H′

be a unitary G-isomorphism. Then by Schur’s Lemma there exists some α ∈ C
such that T̃ = αU ; in fact,

α = α
1

dimH
tr(UU∗) =

1

dimH
tr(T̃U∗).

One can then show that tr(T̃ U∗) = tr(TU∗) by introducing an orthonormal basis
of H and then calculating directly. �

We now arrive at the desired characterisation:
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Proposition 4.6. If T ∈ LR
A(H1,H2), then Eλ(T ) = 0 if and only if for all α,

β ∈ supp(m1) ∩ supp(m2),

T αβ
αβ ∈ sl(nα) ⊗ M(m2)αβ×(m1)αβ

(C) ⊗ 1nβ
,

and if T ∈ LL
A(H1,H2), then Eρ(T ) = 0 if and only if for all α, β ∈ supp(m1) ∩

supp(m2),

T αβ
αβ ∈ 1nα

⊗ M(m2)αβ×(m1)αβ
(C) ⊗ sl(nβ).

Proof. Let T ∈ LR
A(H1,H2). Then, by Proposition 3.4, it suffices to consider

components T γβ
αβ for α, β, γ ∈ Â, which take the form

T γβ
αβ = Mγ

αβ ⊗ 1nβ

for Mγ
αβ ∈ Mnγ×nα

(C) ⊗ M(m2)γβ×(m1)αβ
(C).

Now fix α, β, γ ∈ Â, and write

Mγ
αβ =

k∑

i=1

Ai ⊗ Bi

for Ai ∈ Mnγ×nα
(C) and for Bi ∈ M(m2)γβ×(m1)αβ

(C) linearly independent. It then
follows by direct computation together with Lemma 4.5 that

Eλ(T γβ
αβ ) =

{
1

nα

(∑k
i=1 tr(Ai)1nα

⊗ Bi

)
⊗ 1nβ

if α = γ,

0 otherwise,

so that by linear independence of the Bi, Eλ(T γβ
αβ ) vanishes if and only if either

α 6= γ or, α = β and each Ai is traceless, and hence, if and only α 6= γ or, α = β
and Mα

αβ ∈ sl(nα) ⊗ M(m2)γβ×(m1)αβ
(C), as required.

Mutatis mutandis , this argument also establishes the desired characterisation
of ker(Eρ). �

4.2. Odd bilateral spectral triples. Let us now take H1 = H2 = H. By
construction of Eλ and Eρ, the following conditions are readily seen to be equivalent
for T ∈ L1

A(H):

(1) T is self-adjoint;
(2) Eλ(T ) and (id−Eλ)(T ) are self-adjoint;
(3) (id−Eρ)(T ) and Eρ(T ) are self-adjoint;
(4) (id−Eρ)(T ), (EλEρ)(T ) and (id−Eλ)(T ) are self-adjoint.

Thus, in particular,

(4.9) D0(A,H) = LL
A(H)0sa ⊕ LLR

A (H)sa ⊕ LR
A(H)0sa.

In light of Proposition 4.4, we therefore have the following description of D(A,H):

Proposition 4.7. Let H be an A-bimodule. Then

(4.10) D(A,H) =
(
LL
A(H)0sa × LLR

A (H)sa × LR
A(H)0sa

)
/ ULR

A (H),

where ULR
A (H) acts diagonally by conjugation.

Now, in light of Propositions 3.4, 4.3 and 4.6, we can describe how to construct
an arbitrary Dirac operator on an odd A-bimodule H with multiplicity matrix m:

(1) For α, β, γ ∈ Â such that α < γ, choose Mγ
αβ ∈ Mnγmγβ×nαmαβ

(C);

(2) For α, β, δ ∈ Â such that β < δ, choose N δ
αβ ∈ Mmαδnδ×mαβnβ

(C);
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(3) For α, β ∈ Â, choose Mα
αβ ∈ Mnαmαβ

(C)sa and Nβ
αβ ∈ Mmαβnβ

(C)sa;

(4) Finally, for α, β, γ, δ ∈ Â, set

(4.11) Dγδ
αβ =





Mγ
αβ ⊗ 1nβ

if α < γ and β = δ,

(Mα
γβ)∗ ⊗ 1nβ

if α > γ and β = δ,

1nα
⊗ N δ

αβ if α = γ and β < δ,

1nα
⊗ (Nβ

αδ)
∗ if α = γ and β > δ,

Mα
αβ ⊗ 1nβ

+ 1nα
⊗ Nβ

αβ if (α, β) = (γ, δ),

0 otherwise.

Note that for any K = (1nα
⊗Kαβ ⊗ 1nβ

)α,β∈ bA ∈ LLR
A (H)sa (so that each Kαβ

is self-adjoint), we can make the replacements

Mα
αβ 7→ Mα

αβ + 1nα
⊗ Kαβ , Nβ

αβ 7→ Nβ
αβ − Kαβ ⊗ 1nβ

,

and still obtain the same Dirac operator D; by Proposition 4.3, this freedom

is removed by requiring either that Mα
αβ ∈ sl(nα) ⊗ Mmαβ

(C) or that Nβ
αβ ∈

Mmαβ
(C) ⊗ sl(nβ).

We now turn to the moduli space D(A,H) itself. By the above discussion and
Corollary 3.5, we can identify the space D0(A,H) with

(4.12) D0(A, m) :=
∏

α,β∈ bA

∏

γ∈ bA
γ>α

Mnγmγβ×nαmαβ
(C) ×

(
sl(nα) ⊗ Mmαβ

(C)
)
sa

×
∏

δ∈ bA
δ≥α

Mmαδnδ×mαβnβ
(C) × Mmαβnβ

(C)sa,

and identify ULR
A (H) with

(4.13) U(A, m) :=
∏

α,β∈ bA

U(mαβ).

By checking at the level of components, one sees that the action of ULR
A (H) on the

space D0(A,H) corresponds under these identifications to the action of U(A, m) on
D0(A, m) defined by having (Uαβ) ∈ U(A, m) act on

(Mγ
αβ; Mα

αβ ; N δ
αβ; Nβ

αβ) ∈ D0(A, m)

by

Mγ
αβ 7→ (1nγ

⊗ Uγβ)Mγ
αβ(1nαβ ⊗ U∗

αβ), N δ
αβ 7→ (Uαδ ⊗ 1nδ

)N δ
αβ(U∗

αβ ⊗ 1nβ
).

We have therefore proved the following:

Proposition 4.8. Let H be an odd A-bimodule with multiplicity matrix m. Then

(4.14) D(A,H) ∼= D0(A, m)/ U(A, m).
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4.3. Even bilateral spectral triples. For this section, let (H, γ) be a fixed
even A-bimodule with pair of multiplicity matrices (meven, modd).

Now, let D be a self-adjoint operator on H anticommuting with γ. Then, with
respect to the decomposition H = Heven ⊕Hodd we can write

D =

(
0 ∆∗

∆ 0

)
,

where ∆ = P oddDP even, viewed as a map Heven → Hodd. Thus, D is uniquely
determined by ∆ and vice versa. Moreover, one can check that D satisfies the
order one condition if and only if ∆ satisfies the generalised order one condition as
a map Heven → Hodd. We therefore have the following:

Lemma 4.9. Let (H, γ) be an even A-bimodule. Then the map D0(A,H, γ) →
L1
A(Heven,Hodd) defined by D 7→ P oddDP even is an isomorphism.

We now apply this Lemma to obtain our first result regarding the form of
D(A,H, γ):

Proposition 4.10. The map

D(A,H, γ) → ULR
A (Hodd)\L1

A(Heven,Hodd)/ ULR
A (Heven)

defined by [D] 7→ [P oddDP even] is a homeomorphism.

Proof. Recall that ULR
A (H, γ) = ULR

A (Heven,Hodd). We therefore have for

D ∈ D0(A,H, γ) and U = U even ⊕ Uodd ∈ ULR
A (Heven,Hodd) that

P oddUDU∗P even = UoddP oddDP even(U even)∗.

Thus, under the correspondence D0(A,H, γ) ∼= L1
A(Heven,Hodd), the action of

ULR
A (H, γ) decouples into an action of ULR

A (Hodd) by multiplication on the left and

an action of ULR
A (Heven) by multiplication by the inverse on the right. Thus, the

map [D] → [P oddDP even] is not only well-defined but manifestly homeomorphic.
�

Combining this last Proposition with Proposition 4.3, we immediately obtain
the following:

Corollary 4.11. Let (H, γ) be an even A-bimodule. Then

(4.15) D(A,H, γ) ∼= ULR
A (Hodd)\(LL

A(Heven,Hodd)0

× LLR
A (Heven,Hodd) × LR

A(Heven,Hodd)0)/ ULR
A (Heven),

where ULR
A (Hodd) acts diagonally by multiplication on the left, and ULR

A (Heven) acts
diagonally by multiplication on the right by the inverse.

Now, just as we did in the odd case, let us describe the construction of an
arbitary Dirac operator D on (H, γ):

(1) For α, β, γ ∈ Â, choose Mγ
αβ ∈ Mnγmodd

γβ
×nαmeven

αβ
(C);

(2) For α, β, δ ∈ Â, choose N δ
αβ ∈ Mmodd

αδ
nδ×meven

αβ
nβ

(C);
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(3) Construct ∆ ∈ L1
A(Heven,Hodd) by setting, for α, β, γ, δ ∈ Â,

(4.16) ∆γδ
αβ =





Mγ
αβ ⊗ 1nβ

if α 6= γ and β = δ,

1nα
⊗ N δ

αβ if α = γ and β 6= δ,

Mα
αβ ⊗ 1nβ

+ 1nα
⊗ Nβ

αβ if (α, β) = (γ, δ),

0 otherwise;

(4) Finally, set D =
(

0 ∆∗

∆ 0

)
.

Again, note that for any K = (1nα
⊗ Kαβ ⊗ 1nβ

)α,β∈ bA ∈ LLR
A (Heven,Hodd) ,

we can make the replacements

Mα
αβ 7→ Mα

αβ + 1nα
⊗ Kαβ , Nβ

αβ 7→ Nβ
αβ − Kαβ ⊗ 1nβ

,

and still obtain the same Dirac operator D; by Proposition 4.3, this freedom is
removed by requiring either that

Mα
αβ ∈ sl(nα) ⊗ Mmodd

αβ
×meven

αβ
(C)

or that
Nβ

αβ ∈ Mmodd

αβ
×meven

αβ
(C) ⊗ sl(nβ).

Just as in the odd case, the above discussion and Corollary 3.5 imply that we
can identify D0(A,H, γ) with

(4.17) D0(A, meven, modd) :=
∏

α,β∈ bA

∏

γ∈ bA
γ 6=α

Mnγmodd

γβ
×nαmeven

αβ
(C)

×
(
sl(nα) ⊗ Mmodd

αβ
×meven

αβ
(C)
)
×
∏

δ∈ bA

Mmodd

αδ
nδ×meven

αβ
nβ

(C),

and identify ULR
A (Heven) and ULR

A (Hodd) with U(A, meven) and U(A, modd), respec-

tively, which are defined according to Equation 4.13. The actions of ULR
A (Heven) and

ULR
A (Hodd) on L1

A(Heven,Hodd) therefore correspond under these identifications to
the actions of U(A, meven) and U(A, modd), respectively, on D0(A, meven, modd)
defined by having (Uodd

αβ ) ∈ U(A, modd) and (U even
αβ ) ∈ U(A, meven) act on

(Mγ
αβ ; Mα

αβ; N δ
αβ) ∈ D0(A, meven, modd)

by
Mγ

αβ 7→ (1nγ
⊗ Uodd

γβ )Mγ
αβ , N δ

αβ 7→ (Uodd
αδ ⊗ 1nδ

)N δ
αβ ,

and
Mγ

αβ 7→ Mγ
αβ(1nα

⊗ (U even
αβ )∗), N δ

αβ 7→ N δ
αβ((U even

αβ )∗ ⊗ 1nβ
),

respectively. Thus we have proved the following:

Proposition 4.12. Let (H, γ) be an even A-bimodule with multiplicity matrices
(meven, modd). Then

(4.18) D(A,H, γ) ∼= U(A, modd)\D0(A, meven, modd)/ U(A, meven).

In the quasi-orientable case, the picture simplifies considerably, as all com-

ponents ∆αβ
αβ necessarily vanish. One is then left, essentially, with the situation

described by Krajewski [18, §3.4] and Paschke–Sitarz [20, §2.II] ; as mentioned
before, one can find in the former the original definition of what are now called
Krajewski diagrams . These diagrams, used extensively by Iochum, Jureit, Schücker
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and Stephan [12–16, 22], offer a concise, diagrammatic approach to the study of
quasi-orientable even bilateral spectral triples that strongly emphasizes the under-
lying combinatorics. Though they do admit ready generalisation to the non-quasi-
orientable case, we will not discuss them here.

We conclude our discussion of even bilateral spectral triples by recalling a result
of Paschke and Sitarz of particular interest in relation to the NCG Standard Model.

Proposition 4.13 (Paschke–Sitarz [20, Lemma 7]). Let (H, γ) be an orientable
A-bimodule. Then for all D ∈ D0(A,H, γ),

(4.19) D =
N∑

i,j=1
i6=j

λ(ei)[D, λ(ej)] +
N∑

k,l=1
k 6=l

ρ(ek)[D, ρ(el)].

Proof. Fix D ∈ D0(A,H, γ), and let

T := D −
N∑

i,j=1
i6=j

λ(ei)[D, λ(ej)] −
N∑

k,l=1
k 6=l

ρ(ek)[D, ρ(el)]

= D −
N∑

i,j=1
i6=j

λ(ei)Dλ(ej) −
N∑

k,l=1
k 6=l

ρ(ek)Dρ(el).

Then for all α, β, γ, δ ∈ Â,

T γδ
αβ =





Dγδ
αβ if r(α) = r(γ), r(β) = r(δ),

−Dγδ
αβ if r(α) 6= r(γ), r(β) 6= r(δ),

0 otherwise,

where for α ∈ Â, r(α) is the value of j ∈ {1, . . . , N} such that α ∈ M̂kj
(Kj).

However, by Proposition 4.3, Dγδ
αβ must vanish in the second case, whilst by Propo-

sition 3.13, Dγδ
αβ must vanish in the first, so that T = 0. �

Now, let (A,H, D, J, γ) be a real spectral triple of even KO-dimension. A gauge
potential for the triple is then a self-adjoint operator on H of the form

n∑

k=1

λ(ak)[D, λ(bk)],

where a1, . . . , an, b1, . . . , bn ∈ A, and an inner fluctuation of the metric is a Dirac
operator DA ∈ D0(A,H, J, γ) of the form

DA := D + A + ε′JAJ∗ = D + A + JAJ∗,

where A is a gauge potential. One then has that for any gauge potential A,
(A,H, D, J, γ) and (A,H, DA, J, γ) are Morita equivalent. In this light, the last
Proposition admits the following interpretation:

Corollary 4.14. Let (H, J, γ) be an orientable real A-bimodule of even KO-dimen-
sion. Then for all D ∈ D0(A,H, γ, J),

(4.20) A = −
N∑

i,j=1
i6=j

λ(ei)[D, λ(ej)]
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is a gauge potential for the real spectral triple (A,H, D, J, γ) such that DA = 0.

Thus, every finite orientable real spectral triple (A,H, D, J, γ) of even KO-
dimension is Morita equivalent to the dynamically trivial triple (A,H, 0, J, γ).

4.4. Real spectral triples of odd KO-dimension. For this section, let
(H, J) be a real A-bimodule of odd KO-dimension n mod 8 with multiplicity matrix
m. We begin by reducing the study of Dirac operators on (H, J) to that of self-
adjoint right A-linear operators on H.

Proposition 4.15 (Krajewski [18, §3.4]). Let (H, J) be a real A-bimodule of odd
KO-dimension n mod 8. Then the map Rn : LR

A(H)sa → D0(A,H, J) defined

by Rn(M) := M + ε′JMJ∗ is a surjection interwining the action of ULR
A (H, J)

on LR
A(H)sa by conjugation with the action on D0(A,H, J) by conjugation, and

ker(Rn) ⊆ LLR
A (H)sa.

Proof. First, note that Rn is indeed well-defined, since by Equation 2.4, for
any M ∈ LR

A(H)sa, JMJ∗ ∈ LL
A(H)sa, and hence Rn(M) ∈ D0(A,H, J).

Now, let Eλ and Eρ be defined as in Lemma 4.2, and let E′
λ = id−Eλ, E′

ρ =

id−Eρ. Then, by construction of Eλ and Eρ and Equation 2.4, for any T ∈ L1
A(H),

Eλ(JTJ∗) = JEρ(T )J∗, Eρ(JTJ∗) = JEλ(T )J∗.

Hence, in particular, for D ∈ D0(A,H, J), since JDJ∗ = ε′D,

D =
1

2
(E′

λ + Eρ)(T ) +
1

2
(Eλ + E′

ρ)(T )

=
1

2
(E′

λ + Eρ)(T ) + ε′J
1

2
(E′

λ + Eρ)(T )J∗

= Rn

(
1

2
(E′

λ + Eρ)(T )

)
,

where 1
2 (E′

λ + Eρ)(T ) ∈ LR
A(H)sa.

Finally, that Rn interwtines the actions of ULR
A (H, J) follows from Proposi-

tion 4.4 together with the fact that elements of ULR
A (H, J), by definition, commute

with J , whilst the fact that Rn(M) = 0 if and only if M = −ε′JMJ∗ implies that
ker(Rn) ⊆ LLR

A (H)sa. �

It follows, in particular, that ker(Rn) is invariant under the action of ULR
A (H, J)

by conjugation, so that the action of ULR
A (H, J) on LR

A(H)sa induces an action on
the quotient LR

A(H)sa/ ker(Rn), and hence Rn induces an isomorphism

(4.21) D0(A,H, J) ∼= LR
A(H)sa/ ker(Rn)

of ULR
A (H, J)-representations. Thus we have proved the following:

Corollary 4.16. Let (H, J) be a real A-bimodule of odd KO-dimension n mod 8.
Then

(4.22) D(A,H, J) ∼=
(
LR
A(H)sa/ ker(Rn)

)
/ ULR

A (H, J).

Discussion of D(A,H, J) thus requires discussion first of ker(Rn):

Lemma 4.17. If K = (1nα
⊗ Kαβ ⊗ 1nβ

)α,β∈ bA ∈ LLR
A (H)sa, then K ∈ ker(Rn) if

and only if for each α, β ∈ Â such that α 6= β,

(4.23) Kβα = −ε′KT
αβ ,
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and for each α ∈ Â,

(4.24) Kαα ∈ Rα(n) =





Symmαα
(R) if n = 1,

isp(mαα) if n = 3,

Mmαα/2(H)sa if n = 5,

iso(mαα) if n = 7.

Proof. By definition of Rn, K ∈ ker(Rn) if and only if K = −ε′JKJ∗ =

−εε′JKJ , and this in turn holds if and only if, for α, β ∈ Â such that α 6= β,

Kαβ = −ε′KT
βα,

while for α ∈ Â,

Kαα =

{
−ε′Kαα, if n = 1 or 7,

ε′IαKααI∗α if n = 3 or 5,

where Iα = Ωmαα
◦ complex conjugation. In the case that n = 3 or 5, however, by

construction, Mmαα/2(H), viewed in the usual way as a real form of Mmαα
(C), is

precisely the set of matrices in Mmαα
(C) commuting with Iα. This, together with

the hypothesis that K is self-adjoint, so that each Kαβ is self-adjoint, yields the
desired result. �

We can now describe the the construction of an arbitrary Dirac operator D on
(H, J):

(1) For α, β, γ ∈ Â such that α < γ, choose Mγ
αβ ∈ Mnγmγβ×nαmαβ

(C);

(2) For α, β ∈ Â, choose Mα
αβ ∈ Mnαmαβ

(C)sa;

(3) For α, β, γ, δ ∈ Â, set

(4.25) Mγδ
αβ =





Mγ
αβ ⊗ 1nβ

if α < γ and β = δ,

(Mα
γβ)∗ ⊗ 1nβ

if α > γ and β = δ,

Mα
αβ ⊗ 1nβ

if (α, β) = (γ, δ),

0 otherwise.

(4) Finally, set D = Rn(M).

Now, let K = (1nα
⊗ Kαβ ⊗ 1nβ

)α,β∈ bA ∈ ker(Rn), so that each Kαβ is self-

adjoint, and for α, β ∈ Â such that α 6= β, Kβα = −ε′KT
αβ and Kαα ∈ Rα(n).

Thus, K is uniquely specified by the matrices Kαβ ∈ Mmαβ
(C)sa for α < β and by

the Kαα ∈ Rα(n). Then, we can replace M by M +K, i.e. make the replacements,

for α, β ∈ Â such that α < β,

Mα
αβ 7→ Mα

αβ + 1nα
⊗ Kαβ, Mβ

βα 7→ Mβ
βα + 1nβ

⊗ (−ε′KT
αβ),

Mα
αα 7→ Mα

αα + 1nα
⊗ Kαα

and obtain the same Dirac operator D. However, this is a freedom cannot generally
be removed as we did in earlier cases, as it reflects precisely the non-injectivity of
Rn.
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By the above discussion and Propositions 3.19 and 3.23, we can identify the
space D0(A,H, J) with

(4.26) D0(A, m, n) :=
∏

α∈ bA

[
Mnαmαα

(C)sa/(1nα
⊗Rα(n))

×
∏

β∈ bA
β>α

(Mnαmαβ
(C)sa ⊕ Mnβmαβ

(C)sa)/Mmαβ(C)sa ×
∏

β,γ∈ bA
γ>α

Mnγmγβ×nαmαβ
(C)

]
,

where Mmαβ
(C)sa is viewed as embedded in Mnαmαβ

(C)sa ⊕ Mnβmαβ
(C)sa via the

map

K 7→ (1nα
⊗ K) ⊕ (−ε′1nβ

⊗ KT ),

and ULR
A (H, J) with

(4.27) U(A, m, n) :=
∏

α∈ bA

(
Uα(n) ×

∏

β∈ bA
β>α

U(mαβ)

)
,

where

Uα(n) :=

{
O(mαα) if n = 1 or 7,

Sp(mαα) if n = 3 or 5.

Then the action of ULR
A (H; J) on D0(A,H; J) corresponds under these identifica-

tions to the action of U(A, m, n) on D0(A, m, n) defined by having the element

(Uαα; Uαβ) ∈ U(A, m, n) act on
(
[Mα

αα]; [(Mα
αβ , Mβ

βα)]; Mγ
αβ

)
∈ D0(A, m, n) by

[Mα
αα] 7→

[
(1nα

⊗ Uαα)Mαα(1nα
⊗ U∗

αα)
]
;

[(Mα
αβ , Mβ

βα)] 7→

[(
(1nα

⊗ Uαβ)Mα
αβ(1nα

⊗ U∗
αβ), (1nβ

⊗ Uαβ)Mβ
βα(1nβ

⊗ UT
αβ)
)]

;

Mγ
αβ 7→





(1nγ
⊗ Uγβ)Mγ

αβ(1nα
⊗ U∗

αβ) if α < β, γ < δ,

(1nγ
⊗ Uγβ)Mγ

αβ(1nα
⊗ UT

βα) if α > β, γ < δ,

(1nγ
⊗ Uβγ)Mγ

αβ(1nα
⊗ U∗

αβ) if α < β, γ > δ,

(1nγ
⊗ Uβγ)Mγ

αβ(1nα
⊗ UT

βα) if α > β, γ > δ.

We have therefore proved the following:

Proposition 4.18. Let (H, J) be a real A-bimodule of odd KO-dimension n mod 8
with multiplicity matrix m. Then

(4.28) D(A,H, J) ∼= D0(A, m, n)/ U(A, m, n).

4.5. Real spectral triples of even KO-dimension. We now turn to real
spectral triples of even KO-dimension. Because of the considerable qualitative
differences between the two cases, we consider separately the case of KO-dimension
0 or 4 mod 8 and KO-dimension 2 or 6 mod 8.

In what follows, (H, γ, J) is a fixed real A-bimodule of even KO-dimension
n mod 8 with multiplicity matrices (meven, modd); we denote by L1

A(Heven,Hodd; J)
the subspace of L1

A(Heven,Hodd) consisting of δ such that
(

0 ∆∗

∆ 0

)
∈ D0(A,H; γ, J).



38 BRANIMIR ĆAĆIĆ

It then follows that

(4.29) D0(A,H, γ, J) ∼= L1
A(Heven,Hodd; J)

via the map D 7→ P oddDP even.
4.5.1. KO-dimension 0 or 4 mod 8. Let us first consider the case where n = 0

or 4 mod 8, i.e. where ε′ = 1. Then J = Jeven ⊕ Jodd for anti-unitaries Jeven and
Jodd on Heven and Hodd, respectively, such that (Heven, Jeven) and (Hodd, Jodd) are
real A-bimodules of KO-dimension n′ mod 8, where n′ = 1 or 7 if n = 0, 3 or 5 if
n = 4. In light of Corollary 3.25, one can readily check the following analogue of
Proposition 4.10:

Proposition 4.19. The map

D(A,H, γ, J) → ULR
A (Hodd, Jodd)\L1

A(Heven,Hodd; J)/ ULR
A (Heven, Jeven)

defined by [D] 7→ [P oddDP even] is a homeomorphism.

Here, as before, ULR
A (Hodd, Jodd) acts by multiplication on the left, whilst the

group ULR
A (Heven, Jeven) acts by multiplication on the right by the inverse.

We now prove the relevant analogue of Proposition 4.15:

Proposition 4.20. The map Rn : LR
A(Heven,Hodd) → L1

A(Heven,Hodd, J) de-
fined by Rn(M) := M + JoddM(Jeven)∗ is a surjection interwining the actions of

ULR
A (Hodd, Jodd) by multiplication on the left and of ULR

A (Heven, Jeven) by multipli-
cation on the right by the inverse on LR

A(Heven,Hodd) and L1
A(A,Heven,Hodd, J),

and ker(Rn) ⊆ LLR
A (Heven,Hodd).

Proof. First note that

L1
A(Heven,Hodd, J) = {∆ ∈ L1

A(Heven,Hodd) | ∆ = Jodd∆(Jeven)∗},

so that Rn is indeed well-defined by construction. Moreover, since ULR
A (Heven, Jeven)

and ULR
A (Hodd, Jodd) commute by definition with Jeven and Jodd, respectively, it

then follows by construction of Rn that Rn does indeed have the desired intertwin-
ing properties.

Next, for M ∈ LR
A(Heven,Hodd), we have that Rn(M) = 0 if and only if

M = −JoddM(Jeven)∗, but M is right A-linear if and only if JoddM(Jeven)∗ =
εJoddMJeven is left A-linear, so that M ∈ LLR

A (Heven,Hodd) as claimed.
Finally, it is easy to check, just as in the proof of Proposition 4.15, that for

∆ ∈ L1
A(Heven,Hodd, J),

∆ = Rn

(
1

2
(E′

λ + Eρ)(∆)

)
,

where 1
2 (E′

λ + Eρ)(∆) ∈ LR
A(Heven,Hodd). �

Again, just as in the case of odd KO-dimension, this last result not only implies
that the actions of ULR

A (Heven, Jeven) and ULR
A (Hodd, Jodd) on LR

A(Heven,Hodd) de-
scend to actions on LR

A(Heven,Hodd)/ ker(Rn), but that Rn descends to an isomor-
phism LR

A(Heven,Hodd)/ ker(Rn) ∼= L1
A(Heven,Hodd; J) intertwining the actions of

ULR
A (Heven, Jeven) and ULR

A (Hodd, Jodd), thereby yielding the following

Corollary 4.21. Let (H, γ, J) be a real A-bimodule of KO-dimension n mod 8 for
n = 0 or 4. Then
(4.30)

D(A,H, γ, J) ∼= ULR
A (Hodd, Jodd)\

(
LR
A(Heven,Hodd)/ ker(Rn)

)
/ ULR

A (Heven, Jeven)
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Mutatis mutandis , the proof of Lemma 4.17 yields the following characterisation
of ker(Rn):

Lemma 4.22. If K = (1nα
⊗ Kαβ ⊗ 1nβ

)α,β∈ bA ∈ LLR
A (Heven,Hodd), then K ∈

ker(Rn) if and only if for each α, β ∈ Â such that α 6= β,

(4.31) Kβα = −Kαβ,

and for each α ∈ Â,

(4.32) Kαα ∈ Rα(n) =

{
iMmodd

αα ×meven
αα

(R) if n = 0,

iMmodd
αα /2×meven

αα /2(H) if n = 4.

Note that such a map K ∈ LLR
A (Heven,Hodd) is therefore entirely specified by

the Kαβ ∈ Mmodd

αβ
×meven

αβ
(C) for α < β and by the Kαα ∈ Rα(n).

Let us now describe the construction of an arbitrary Dirac operator D on the
real A-bimodule (H, γ, J) of KO-dimension n = 0 or 4 mod 8:

(1) For α, β, γ ∈ Â, choose Mγ
αβ ∈ Mnγmodd

γβ
×nαmeven

αβ
(C);

(2) Construct M ∈ LR
A(Heven,Hodd) by setting for α, β, γ, δ ∈ Â,

(4.33) Mγδ
αβ =

{
Mγ

αβ ⊗ 1nβ
if β = δ,

0 otherwise;

(3) Finally, set

(4.34) D =

(
0 Rn(M)∗

Rn(M) 0

)
.

Just as before, if Rn is non-injective, we can make the substitution M 7→
M + K for any K ∈ ker(Rn) and obtain the same Dirac operator D; at the level of

components, we have for α, β ∈ Â such that α < β,

Mα
αβ 7→ Mα

αβ + 1nα
⊗ Kαβ, Mβ

βα 7→ Mβ
βα + 1nα

⊗ (−Kαβ)

Mα
αα 7→ Mα

αα + 1nα
⊗ Kαα.

With these observations in hand, we can revisit the moduli space D(A,H, γ, J).
By the discussion above and Corollaries 3.19 and 3.23, we can identify the space

D0(A,H, γ, J) with

(4.35) D0(A, meven, modd, n) :=
∏

α∈ bA

[
Mnαmodd

αα ×nαmeven
αα

(C)/(1nα
⊗Rα(n))

×
∏

β∈ bA
β>α

(Mnαmodd

αβ
×nαmeven

αβ
(C) ⊕ Mnβmodd

αβ
×nβmeven

αβ
(C))/Mmodd

αβ
×meven

αβ
(C)

×
∏

β,γ∈ bA
γ 6=α

Mnγmodd

γβ
×nαmeven

αβ
(C)

]
,

where Mmodd

αβ
×meven

αβ
(C) is viewed as embedded in the space

Mnαmodd

αβ
×nαmeven

αβ
(C) ⊕ Mnβmodd

αβ
×nβmeven

αβ
(C)
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via the map K 7→ (1nα
⊗K)⊕(−1nβ

⊗K), and identify the groups ULR
A (Heven; Jeven)

and ULR
A (Hodd; Jodd) with U(A, meven, n′) and U(A, modd, n′), respectively. Then

the actions of ULR
A (Heven; Jeven) and ULR

A (Hodd; Jodd) on L1
A(Heven,Hodd; J) cor-

responds under these identifications to the actions of the groups U(A, meven, n′)
and U(A, modd, n′), respectively, on D0(A, meven, modd, n) defined by having

(Uodd
αα ; Uodd

αβ ) ∈ U(A, modd; n′), (U even
αα ; Uodd

αβ ) ∈ U(A, meven; n′)

act on
(
[Mα

αα]; [(Mα
αβ , Mβ

βα)]; Mγ
αβ

)
∈ D0(A, m, n) by

[Mα
αα] 7→

[
(1nα

⊗ Uodd
αα )Mαα

]
;

[(Mα
αβ , Mβ

βα)] 7→

[(
(1nα

⊗ Uodd
αβ )Mα

αβ, (1nβ
⊗ Uodd

αβ )Mβ
βα

)]
;

Mγ
αβ 7→

{
(1nγ

⊗ Uodd
γβ )Mγ

αβ if γ < δ,

(1nγ
⊗ Uodd

βγ )Mγ
αβ if γ > δ;

and

[Mα
αα] 7→

[
Mαα(1nα

⊗ (U even
αα )∗)

]
;

[(Mα
αβ , Mβ

βα)] 7→

[(
Mα

αβ(1nα
⊗ (U even

αβ )∗), Mβ
βα(1nβ

⊗ (U even
αβ )T )

)]
;

Mγ
αβ 7→

{
Mγ

αβ(1nα
⊗ (U even

αβ )∗) if α < β,

Mγ
αβ(1nα

⊗ (U even
βα )T ) if α > β;

respectively. We have therefore proved the following:

Proposition 4.23. Let (H, γ, J) be a real A-bimodule of even KO-dimension
n mod 8 for n = 0 or 4, with multiplicity matrices (meven, modd). Then

(4.36) D(A,H, γ, J) ∼= U(A, modd, n′)\D0(A, meven, modd, n)/ U(A, meven, n′).

It is worth noting that considerable simplifications are obtained in the quasi-
orientable case, as all components of the form Mα

αβ ⊗ 1nβ
of M ∈ LR

A(Heven,Hodd)

must necessarily vanish, as must ker(Rn) itself. In particular, then, one is left with

D0(A, meven, modd, n) =
∏

α,β,γ∈ bA

Mnγmodd

γβ
×nαmeven

αβ
(C).

4.5.2. KO-dimension 2 or 6 mod 8. Let us now consider the case where n = 2
or n = 6 mod 8, i.e. where ε′ = −1. Then

J =

(
0 εJ̃∗

J̃ 0

)

for J̃ : Heven → Hodd anti-unitary, and modd = (meven)T . In light of Corollary 3.29,
one can easily establish, along the lines of Propositions 4.10 and 4.20, the following
result:

Proposition 4.24. Let ULR
A (Heven) act on L1

A(Heven,Hodd; J) by

(U, ∆) 7→ J̃UJ̃∗∆U∗

for U ∈ ULR
A (Heven) and ∆ ∈ L1

A(Heven,Hodd; J). Then the map

D(A,H, γ, J) → L1
A(Heven,Hodd; J)/ ULR

A (Heven)
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defined by [D] 7→ [P oddDP even] is a homeomorphism.

In the same way, we can define an action of ULR
A (Heven) on LR

A(Heven,Hodd).
We now give the relevant analogue of Propositions 4.15 and 4.20:

Proposition 4.25. The map Rn : LR
A(Heven,Hodd) → L1

A(Heven,Hodd; J) de-

fined by Rn(M) := M + εJ̃M∗J̃ is a surjection intertwining the actions of the

group ULR
A (Heven) on LR

A(Heven,Hodd) and L1
A(Heven,Hodd; J), and ker(Rn) ⊂

LLR
A (Heven,Hodd).

Proof. First note that

L1
A(Heven,Hodd; J) = {∆ ∈ L1

A(Heven,Hodd) | ∆ = εJ̃∆∗J̃},

as can be checked by direct calculation, so that Rn is indeed well-defined. It also
readily follows by construction of Rn and the definition of the actions of ULR

A (Heven)
that Rn has the desired intertwining properties.

Now, for M ∈ LR
A(Heven,Hodd), one has that Rn(M) = 0 if and only if M =

−εJ̃M∗J̃ , but J̃M∗J̃ is manifestly left A-linear, so that M ∈ LLR
A (Heven,Hodd), as

claimed.
Finally, just as in the proof of Propositions 4.15 and 4.20, one can easily check

that for ∆ ∈ L1
A(Heven,Hodd; J),

∆ = Rn

(1
2
(E′

λ + Eρ)(∆)
)
,

where 1
2 (E′

λ + Eρ)(∆) is right A-linear. �

Just as in the earlier cases, the action of ULR
A (Heven) on LR

A(Heven,Hodd) de-
scends to an action on the quotient LR

A(Heven,Hodd)/ ker(Rn), so that Rn descends

to an ULR
A (Heven,Hodd)-isomorphism

(4.37) LR
A(Heven,Hodd)/ ker(Rn) ∼= L1

A(Heven,Hodd; J),

thereby yielding the following:

Corollary 4.26. Let (H, γ, J) be a real A-bimodule of KO-dimension n mod 8 for
n = 2 or 6. Then

(4.38) D(A,H, γ, J) ∼= (LR
A(Heven,Hodd)/ ker(Rn))/ ULR

A (Heven).

Again, mutatis mutandis , the proof of Lemma 4.17 yields the following charac-
terisation of ker(Rn):

Lemma 4.27. If K = (1nα
⊗ Kαβ ⊗ 1nβ

)α,β∈ bA ∈ LLR
A (Heven,Hodd), then K ∈

ker(Rn) if and only if for each α, β ∈ Â such that α 6= β,

(4.39) Kβα = −εKT
αβ,

and for each α ∈ Â,

(4.40) Kαα ∈ Rα(n) =

{
Symmeven

αα
(C) if n = 2,

so(meven
αα , C) if n = 6.
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Thus, such a map K ∈ ker(Rn) is entirely specified by the components Kαβ ∈
Mmeven

βα
×meven

αβ
(C) for α < β and by the Kαα ∈ Rα(n).

Note that the discussion of the construction of Dirac operators and of the
freedom in the construction provided by ker(Rn) in the case of KO-dimension 0 or
4 mod 8 holds also in this case. Thus we can identify D(A,H, γ, J) with

(4.41) D0(A, meven, n) :=
∏

α∈ bA

[
Mnαmeven

αα
(C)/

(
1nα

⊗Rα(n)
)

×
∏

β∈ bA
β>α

(
Mnαmeven

βα
×nαmeven

αβ
(C) ⊕ Mnβmeven

αβ
×nβmeven

βα
(C)
)
/Mmeven

βα
×meven

αβ
(C)

×
∏

β,γ∈ bA
γ 6=α

Mnγmeven

βγ
×nαmeven

αβ
(C)

]
,

where Mmeven

βα
×meven

αβ
(C) is viewed as embedded in the space

Mnαmeven

βα
×nαmeven

αβ
(C) ⊕ Mnβmeven

αβ
×nβmeven

βα
(C)

via the map K 7→ (1nα
⊗ K) ⊕ (−ε1nβ

⊗ KT ), and identify ULR
A (Heven) with

U(A, meven). Then the action of ULR
A (Heven) on L1

A(Heven,Hodd; J) corresponds un-
der these identifications with the action of U(A, meven) on D0(A, meven, n) defined

by having (Uαβ) ∈ U(A, meven) act on
(
[Mα

αα]; [(Mα
αβ , Mβ

βα)]; Mγ
αβ

)
∈ D0(A, m, n)

by

[Mα
αα] 7→

[
(1nα

⊗ Uαα)Mα
αα(1nα

⊗ U∗
αα)
]
;

[
(Mα

αβ , Mβ
βα)
]
7→

[(
(1nα

⊗ Uβα)Mα
αβ(1nα

⊗ U∗
αβ), (1nβ

⊗ Uαβ)Mα
βα(1nβ

⊗ U∗
βα)
)]

;

Mγ
αβ 7→ (1nγ

⊗ Uβγ)Mγ
αβ(1nα

⊗ U∗
αβ).

This, then, proves the following:

Proposition 4.28. Let (H, γ, J) be a real A-bimdoule of even KO-dimension
n mod 8 for n = 2 or 6, with multiplicity matrices (meven, (meven)T ). Then

(4.42) D(A,H, γ, J) ∼= D0(A, meven, n)/ U(A, meven).

Again, considerable simplifications are obtained in the quasi-orientable case,
just as for KO-dimension 0 or 4 mod 8.

4.6. Dirac operators in the Chamseddine–Connes–Marcolli model.

Let us now apply the above results on Dirac operators and moduli spaces thereof
to the bimodules appearing in the Chamseddine–Connes–Marcolli model.

We begin with (HF , γF , JF , ǫF ) as an S0-real ALR-bimodule of KO-dimension
6 mod 8, which, as we shall now see, is essentially S0-real in structure:

Proposition 4.29. For the S0-real ALR-bimodule (HF , γF , JF , ǫF ) of KO-dimen-
sion 6 mod 8,

D0(ALR,HF , γF , JF ) = D0(ALR,HF , γF , JF , ǫF ),

and

ULR
ALR

(H, γF , JF ) = ULR
ALR

(H, γF , JF , ǫF ),
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so that

D(ALR,HF , γF , JF ) = D(ALR,HF , γF , JF , ǫF ).

Proof. To prove the first part of the claim, by Proposition 4.25, it suffices
to show that any right ALR-linear operator Heven

F → Hodd
F commutes with ǫF .

Thus, let T ∈ LR
ALR

(Heven
F ,Hodd

F ). Then, since the signed multiplicity matrix µ of
(HF , γF ) as an orientable even ALR-bimodule is given by

µ = N




0 0 −1 +1 0 0
0 0 0 0 0 0

+1 0 0 0 +1 0
−1 0 0 0 −1 0
0 0 −1 +1 0 0
0 0 0 0 0 0




,

it follows from Proposition 3.4 that the only non-zero components of T are T 2L1

2R1

and T 2L3

2R3
, which both have domain and range within Hf = (HF )i, where ǫ acts as

the identity. Thus, T commutes with ǫF .
To prove the next part of the claim, it suffices to show that any left and right

ALR-linear operator on HF commutes with ǫF . But again, if K ∈ LLR
ALR

(HF ), then

the only non-zero components of K are of the form Kαβ
αβ , each of which therefore

has both domain and range either within Hf or Hf = JFHf , so that K commutes
with ǫF . The last part of the claim is then an immediate consequence of the first
two parts. �

Thus, by Proposition 2.18, we have that

(4.43) D0(ALR,HF , γF , JF ) = D0(ALR,HF , γF , JF , ǫF ) ∼= D0(ALR,Hf , γf )

and

(4.44) D(ALR,HF , γF , JF ) = D(ALR,HF , γF , JF , ǫF ) ∼= D(ALR,Hf , γf ),

where (Hf , γf) = ((HF )i, (γF )i) is the orientable even ALR-bimodule with signed
multiplicity matrix

µf = N




0 0 0 0 0 0
0 0 0 0 0 0

+1 0 0 0 +1 0
−1 0 0 0 −1 0
0 0 0 0 0 0
0 0 0 0 0 0




.

In particular, then, (HF , γF , JF ) as a real ALR-bimodule admits no off-diagonal
Dirac operators, that is, Dirac operators with non-zero P−iDPi : Hf → Hf , or
equivalently, that have non-vanishing commutator with ǫF . Let us now exam-
ine D0(ALR,HF , γF , JF ) and D(ALR,HF , γF , JF ), or rather, D0(ALR,Hf , γf ) and
D(ALR,Hf , γf ), in more detail.

First, it follows from the form of µf and Proposition 3.4 that LL
ALR

(Heven
f ,Hodd

f )
vanishes, whilst

LR
ALR

(Heven
f ,Hodd

f ) = M2N (C) ⊕ (M2N (C) ⊗ 13) ∼= M2N(C) ⊕ M2N (C).

so that any Dirac operator on Hf (and hence on HF ) is completely specified by

a choice of M2R

2L1
, M2R

2L3
∈ M2N (C). Indeed, if (meven, modd) denotes the pair of
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multiplicity matrices of (Hf , γf ), then, in the notation of subsection 4.5.2,

D0(ALR, meven, 6) = M2N(C) ⊕ M2N (C).

At the same time,

ULR
ALR

(Heven
f ) = (12 ⊗U(N))⊕ (12 ⊗U(N)⊗13) ∼= U(N)×U(N) =: U(ALR, meven)

and

ULR
ALR

(Hodd
f ) = (12 ⊗U(N))⊕ (12 ⊗U(N)⊗ 13) ∼= U(N)×U(N) =: U(ALR, modd).

It then follows that

D(ALR,Hf , γf ) ∼= U(ALR, modd)\D0(ALR, meven, 6)/ U(ALR, meven)(4.45)

=
(
U(N)\M2N (C)/ U(N)

)2
,(4.46)

where U(N) acts on the left by multiplication and on the right by multiplication
by the inverse as 12 ⊗ U(N). The two factors of the form U(N)\M2N (C)/ U(N)
can thus be viewed as the parameter spaces of the components M2R

2L1
and M2R

2L3
,

respectively.
Let us now consider (HF , γF , JF , ǫF ) as an S0-real AF -bimodule, so that the

multiplicity matrices (meven, modd) of (HF , γF ) are given by

meven = N




1 1 0 0 0
0 0 0 0 0
1 0 0 1 0
1 1 0 0 0
0 0 0 0 0




, modd = N




1 0 1 1 0
1 0 0 1 0
0 0 0 0 0
0 0 1 0 0
0 0 0 0 0




= (meven)T .

Now it follows from the form of (meven, modd) that

LR
AF

(Heven
F ,Hodd

F ) = MN (C)⊕2 ⊕ MN×2N(C)⊕2 ⊕ MN×3N(C)⊕2

⊕ (MN×2N(C) ⊗ 13)
⊕2,

whilst

ker(R6) = sl(N, C) ⊆ MN(C)

for the copy of MN (C) corresponding to LR
A((Heven

F )11, (Hodd
F )11). Since MN(C) =

SymN (C) ⊕ sl(N, C), MN(C)/sl(N, C) can be identified with SymN (C), so that

D0(AF ,HF , γF , JF )

∼=LR
AF

(Heven
F ,Hodd

F )/ ker(R6)

= SymN (C) ⊕ MN(C) ⊕ MN×2N(C)⊕2 ⊕ MN×3N(C)⊕2 ⊕ (MN×2N (C) ⊗ 13)
⊕2.

Thus, a Dirac operator D, which is specified by a choice of class

[M ] ∈ LR
AF

(Heven
F ,Hodd

F )/ ker(R6),

is therefore specified in turn by the choice of the following matrices:

• M1

11
∈ SymN (C), M1

11
∈ MN (C);

• M1

21
, M1

21
∈ MN×2N (C);

• M1

31
, M1

31
∈ MN×3N (C);

• M1

23
, M1

23
∈ MN×2N (C).
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Indeed, it follows that

(4.47) D0(AF , meven, 6) = SymN (C) ⊕ MN (C) ⊕ MN×2N(C)⊕2 ⊕ MN×3N(C)⊕2

⊕ MN×2N (C)⊕2.

Next, we have that U(AF , meven) = U(N)6, with a copy of U(N) corresponding
to each of (Heven

F )11, (Heven
F )

11
, (Heven

F )21, (Heven
F )23, (Heven

F )31, and (Heven
F )

31
.

Then, by Proposition 4.28,

(4.48) D(AF ,HF , γF , JF ) ∼= D0(AF , meven, 6)/ U(AF , meven)

for the action of U(AF , meven) on D0(AF , meven, 6) given by having the element
(Uαβ) ∈ U(AF , meven) act on (Mγ

αβ) ∈ D0(AF , meven, 6) by

Mγ
αβ 7→ (1nγ

⊗ Uβγ)Mγ
αβ(1nα

⊗ U∗
αβ).

Note that in the notation of [8, §§13.4, 13.5], for (Mγ
αβ) ∈ D0(AF , meven, 6),

M1

11
=

1

2
ΥR,

so that the so-called Majorana mass term is already present in its final form, whilst
for U ∈ U(AF , meven),

U = (U11, U
11

, U21, U23, U31, U
31

) = (V2, V1, V3, W3, W2, W1).

Finally, let us compute the sub-moduli space D(AF ,HF , γF , JF ; CF ) for

CF = {(ζ, diag(ζ, ζ), 0) ∈ AF | λ ∈ C} ∼= C.

It is easy to see that [M ] ∈ LR
AF

(Heven
F ,Hodd

F )/ ker(R6) yields an element of the
subspace D0(AF ,HF , γF , JF ; CF ) if and only if M commutes with λ(CF ), but this

holds if and only if for all ζ ∈ C and β ∈ ÂF ,

ζM1

1β = M1

1βζ, ζM1

1β = M1

1βζ,

ζM1

2β = M1

2β(diag(ζ, ζ) ⊗ 1N), ζM1

2β = M1

2β(diag(ζ, ζ) ⊗ 1N),

0M1

3β = M1

3βζ, 0M1

3β = M1

3βζ,

which is in turn equivalent to having M1

11
, M1

31
and M1

31
all vanish, and

M1

21
=
(
Υν 0

)
, M1

21
=
(
0 Υe

)
, M1

23
=
(
Υu 0

)
, M1

23
=
(
0 Υd

)
,

for Υν , Υe, Υu, Υd ∈ MN(C). One can check that our notation is consistent with
that of [8, §§13.4, 13.5]. Indeed, if D0(AF , meven, 6; CF ) denotes the subspace of
D0(AF , meven, 6) corresponding to D0(AF ,HF , γF , JF ; CF ), then

(4.49) D(AF ,HF , γF , JF ; CF ) ∼= D0(AF , meven, 6; CF )/ U(AF , meven) ∼= Cq × Cl

for

(4.50) Cq :=
(
U(N) × U(N)

)
\
(
MN(C) × MN (C)

)
/ U(N),

where U(N) acts diagonally by multiplication on the right, and

Cl :=
(
U(N) × U(N)

)
\
(
MN (C) × MN(C) × SymN (C)

)
/ U(N),

where U(N) × U(N) acts trivially on SymN (C) and U(N) acts on SymN (C) by

(V2, ΥR) 7→ V2ΥRV T
2 ;
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note that Cq is the parameter space for the matrices (Υu, Υd), whilst Cl is the
parameter space for the matrices (Υν , Υe, ΥR). Thus we have recovered the sub-
moduli space of Dirac operators considered by Chamseddine–Connes–Marcolli [4,
§§2.6, 2.7] (cf. also [8, §§13.4, 13.5]).

5. Applications to the Recent Work of Chamseddine and Connes

In this section, we reformulate the results of Chamseddine and Connes in [2,3]
and give new proofs thereof using the theory of bimodules and bilateral triples
developed above.

Before continuing, recall that, up to automorphisms, the only real forms of
Mn(C) are Mn(C), Mn(R), and, if n is even, Mn/2(H).

5.1. Admissible real bimodules. We begin by studying what Chamsed-
dine and Connes call irreducible triplets, namely, real A-bimodules satisfying cer-
tain representation-theoretic conditions, along the lines of [3, §2]. However, we
shall progress by adding Chamseddine and Connes’s various requirements for irre-
ducible triplets one by one, bringing us gradually to their classification of irreducible
triplets.

In what follows, A will once more denote a fixed real C∗-algebra, and for
(H, J) a real A-bimodule of odd KO-dimension, LLR

A (H; J) will denote the real
∗-subalgebra of LLR

A (H) consisting of elements commuting with J .
Let us now introduce the first explict requirement for irreducible triplets.

Definition 5.1. Let (H, J) be a real A-bimodule of odd KO-dimension. We shall
say that (H, J) is irreducible if 0 and 1 are the only projections in LLR

A (H; J).

To proceed, we shall need the following:

Lemma 5.2. Let (H, J) be a real A-bimodule of odd KO-dimension n mod 8 with
multiplicity matrix m. Then
(5.1)

LLR
A (H; J) ∼=





(⊕
α∈ bA Mmαα

(R)

)
⊕
⊕

α,β∈ bA
α<β

Mmαβ
(C), if n = 1 or 7 mod 8,

(⊕
α∈ bA Mmαα/2(H)

)
⊕
⊕

α,β∈ bA
α<β

Mmαβ
(C), if n = 3 or 5 mod 8.

Proof. Let T = (1nα
⊗ Tαβ ⊗ 1nβ

) ∈ LLR
A (H). Just as for Propositions 3.19

and 3.23, one can show that [T, J ] = 0 if and only if for all α, β ∈ Â, Tβα = Tαβ if
α 6= β and

Tαα ∈

{
Mmαα

(R), if n = 1 or 7 mod 8,

Mmαα/2(H), if n = 3 or 5 mod 8.

Thus, T ∈ LLR
A (H; J) is completely specified by the matrices Tαα and Tαβ for

α > β, giving rise to the isomorphisms of the claim. �

We can now formulate the part of the results of [3, §2] that depends only on
this notion of irreducibility.

Proposition 5.3. Let (H, J) be a real A-bimodule of odd KO-dimension n mod 8
with multiplicity matrix m. Then (H, J) is irreducible if and only if one of the
following holds:
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(1) There exists α ∈ Â such that m = 2(1−ε)/2Eαα;

(2) There exist α, β ∈ Â, α 6= β, such that m = Eαβ + Eβα.

Proof. By definition, (H, J) is irreducible if and only if the only projections
in the real C∗-algebra LLR

A (H, J) are 0 and 1, but by Lemma 5.2, this in turn holds
if and only if one of the following holds:

(1) LLR
A (H; J) ∼= R, so that n = 1 or 7 mod 8, and m = Eαα for some α ∈ Â,

(2) LLR
A (H; J) ∼= H, so that n = 3 or 5 mod 8, and m = 2Eαα for some α ∈ Â,

(3) LLR
A (H; J) ∼= C, so that m = Eαβ + Eβα for some α, β ∈ Â, α 6= β,

which yields in turn the desired result. �

We shall call an irreducible odd KO-dimensional real A-bimodule (H, J) type
A if the first case holds, and type B if the second case holds; Chamseddine and
Connes’s first and second case for irreducible triplets [3, Lemma 2.2] correspond to
the type A and type B case, respectively. We shall also find it convenient to define
the skeleton skel(H, J) of such a bimodule as follows:

(1) if (H, J) is type A, then skel(H, J) := {α}, where α ∈ Â is such that

mult[H] = 2
1−ε
2 Eαα;

(2) if (H, J) is type B, then skel(H, J) := {α, β}, where α, β ∈ Â, α 6= β, are
such that mult[H] = Eαβ + Eβα.

Let us now introduce the second explicit requirement for irreducible triplets.

Definition 5.4. An A-bimodule H is (left) separating if there exists some ξ ∈ H
such that λ(A)′ξ = H. Such a vector ξ is then called a separating vector for A.

Recall that for a representation X of a complex C∗-algebra C, ξ ∈ X is a
separating vector if and only if the map C → X given by c 7→ cξ is injective.

Lemma 5.5. Let p, q ∈ N. There exists a separating vector ξ for the usual action
of Mp(C) on Cp ⊗ Cq as Mp(C) ⊗ 1q if and only if p ≤ q.

Proof. Let {ei}
p
i=1 be a basis for Cp, and let {fj}

q
j=1 be a basis for Cq.

First suppose that p ≤ q. Let ξ ∈ Cp ⊗Cq be given by ξ =
∑p

i=1 ei ⊗ fi. Then
for any a, b ∈ Mp(C),

(a ⊗ 1q) ξ − (b ⊗ 1q) ξ =

p∑

i=1

(
p∑

l=1

(al
i − bl

i)el

)
⊗ fi

so that by linear independence of the ei and fj , the left-hand side vanishes if and
only if for each i and l, al

i − bl
i = 0, i.e. a = b. Hence, ξ is indeed a separating

vector.
Now suppose that p > q. Then dimC Mp(C) − dimC Cp ⊗ Cq = p(p − q) > 0,

so that for any ξ ∈ Cp ⊗ Cq, the map Mp(C) 7→ Cp ⊗ Cq given by a 7→ (a ⊗ 1q) ξ
cannot possibly be injective, and hence ξ cannot possibly be separating. �

We can now reformulate that part of the results in [3, §2] that depends only on
irreducibility and the existence of a separating vector.

Proposition 5.6. Let (H, J) be an irreducible real A-bimodule of odd KO-dimen-
sion n mod 8.

(1) If (H, J) is type A, then it is separating;
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(2) If (H, J) is type B with skeleton (α, β), then (H, J) is separating if and
only if nα = nβ.

Proof. First suppose that (H, J) is type A. Let {α} = skel(H, J), and let
mn = 2(1−ε)/2. Then H = Cnα ⊗ Cmn ⊗ Cnα = Cnα ⊗ Cmnnα , and the left action
λ of A on H is thus given by λα ⊗ 1mnnα

. Now

λ(A)′ = (λα(A) ⊗ 1mnnα
)′ = (Mnα

(C) ⊗ 1mnnα
)′ ,

so that the action λ of A admits a separating vector if and only if the action of
Mnα

(C) as Mnα
(C)⊗ 1mnnα

admits a separating vector, but by Lemma 5.5 this is
indeed the case, as nα ≤ mnnα.

Now, suppose that (H, J) is type B. Let {α, β} = skel(H, J). Then

H = (Cnα ⊗ Cnβ ) ⊕ (Cnβ ⊗ Cnα),

and the left action λ of A on H is given by λ = (λα ⊗ 1nβ
) ⊕ (λβ ⊗ 1nα

). Since
α 6= β,

λ(A)′ =
(
(λα(A) ⊗ 1nβ

) ⊕ (λβ(A) ⊗ 1nα
)
)′

=
(
(Mnα

(C) ⊗ 1nβ
) ⊕ (Mnβ

(C) ⊗ 1nα
)
)′

,

so that the action λ of A admits a separating vector if and only if the action of
Mnα

(C)⊕Mnβ
(C) as (Mnα

(C)⊗1nβ
)⊕(Mnβ

(C)⊗1nα
) admits a separating vector.

Since dimC Mnα
(C)⊕Mnβ

(C)−dimC H = (nα −nβ)2, if nα 6= nβ then no injective
linear maps Mnα

(C) ⊕ Mnβ
(C) → H can exist, and in particular, there exist no

separating vectors for the action of Mnα
(C) ⊕ Mnβ

(C), and hence for λ. Suppose
instead that nα = nβ = n. Then

H = (Cn ⊗ Cn) ⊕ (Cn ⊗ Cn)

so that, since α 6= β, λ(A)′ = (Mn(C) ⊗ 1n)′ ⊕ (Mn(C) ⊗ 1n)′. Thus, if ξ is
the separating vector for the action of Mn(C) on Cn ⊗ Cn given by the proof of
Lemma 5.5, then ξ ⊕ ξ is also a separating vector for the action λ of A, and hence
(H, J) is indeed separating. �

Let us now introduce the final requirement for irreducible triplets; recall that
the complex form of a real C∗-algebra A a real C∗-algebra is denoted by AC.

Definition 5.7. We shall call an A-bimodule H complex-linear if both left and
right actions of A on H extend to C-linear actions of AC, making H into a complex
AC-bimodule.

It follows immediately that a A-bimodule H is complex-linear if and only if
for m = mult[H], mαβ = 0 whenever α or β is conjugate-linear. In particular, by
Proposition 3.13, it follows that a complex-linear quasi-orientable graded bimodule
is always orientable.

We can now reformulate Chamseddine and Connes’s definition for irreducible
triplets:

Definition 5.8. An irreducible triplet is a triplet (A,H, J), where A is a finite-
dimensional real C∗-algebra and (H, J) is a complex-linear, separating, irreducible
real A-bimodule of odd KO-dimension such that the left action of A on H is faithful.
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Note that for H a real A-bimodule, the left action of A is faithful if and only
if the right action is faithful.

By combining the above results, we immediately obtain Chamseddine and
Connes’s classification of irreducible triplets:

Proposition 5.9 (Chamseddine–Connes [3, Propositions 2.5, 2.8]). Let A be a
finite-dimensional real C∗-algebra, and let (H, J) be a real A-bimodule of odd KO-
dimension n mod 8. Then (A,H, J) is an irreducible triplet if and only if one of
the following cases holds:

(1) There exists n ∈ N such that A = Mk(K) for a real form Mk(K) of Mn(C),
and

(5.2) mult[H] = 2(1−ε)/2Enn;

(2) There exists n ∈ N such that A = Mk1
(K1) ⊕ Mk2

(K2) for real forms
Mk1

(K1) and Mk2
(K2) of Mn(C), and

(5.3) mult[H] = En1n2
+ En2n1

.

5.2. Gradings. We now seek a classification of gradings inducing even KO-
dimensional real bimodules from irreducible triplets.

Definition 5.10. Let (A,H, J) be an irreducible triplet. We shall call a Z2-grading
γ on H as a Hilbert space compatible with (A,H, J) if and only if the following
conditions all hold:

(1) For every a ∈ A, γλ(a)γ ∈ λ(A);
(2) The operator γ either commutes or anticommutes with J .

Given a compatible grading γ for an irreducible triplet (A,H, J), one can view
(H, γ, J) as a real Aeven-bimodule of even KO-dimension, for Aeven = {a ∈ A |
[λ(a), γ] = 0}, with KO-dimension specified by the values of ε and ε′′ such that
J2 = ε, γJ = ε′′Jγ.

Now, recall that a Z2-grading on a real C∗-algebra A is simply an automorphism
Γ on A satisfying Γ2 = id; we call such a grading admissible if and only if Γ extends
to a C-linear grading on AC. Thus, if (A,H, J) is an irreducible triplet and γ is
a grading on H, then γ satisfies the first condition for compatibility if and only if
there exists some admissible grading Γ on A such that Adγ ◦λ = λ ◦ Γ, where Adx

denotes conjugation by x.

Lemma 5.11. Let Mk(K) be a real form of Mn(C), and let α ∈ Aut(Mn(C)).
Then α is an admissible grading on Mk(K) if and only if there exists a self-adjoint
unitary γ in Mk(K) or iMk(K), such that α = Adγ .

Proof. Suppose that α is an admissible grading. Let K0 be C if K = C, and
R otherwise. Then Mk(K) is central simple over K0, so that there exists some
invertible element S of Mk(K) such that α = AdS . Since α respects the involution,
for any A ∈ Mk(K) we must have

(S−1)∗A∗S∗ = (SAS−1)∗ = α(A)∗ = α(A∗) = SA∗S−1,

i.e. [A, S∗S] = 0, so that S∗S is a positive central element of Mk(K), and hence
S∗S = c1 for some c > 0. Thus, U = c−1/2S is a unitary element of Mk(K) such
that α = AdU . Now, recall that α2 = id, so that AdU2 = id, and hence U2 = ζ1 for
some ζ ∈ T ∩ K0. If K = C, then one can simply set γ = λU for λ is a square root
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of ζ. Otherwise, U2 = ±1, so that if U2 = 1, set γ = U ∈ Mk(K), and if U2 = −1,
set γ = iU ∈ iMk(K).

On the other hand, if γ is a self-adjoint unitary in either Mk(K) or iMk(K),
then Adγ is readily seen to be an admissible grading on Mk(K). �

Let us now give the classification of compatible gradings for a type A irreducible
triplet; it is essentially a generalisation of [3, Lemma 3.1].

Proposition 5.12. Let (A,H, J) be a type A irreducible triplet of odd KO-dimen-
sion n mod 8, so that A is a real form Mk(K) of Mn(C) for some n, and let γ be
a grading on H as a Hilbert space. Then γ is compatible if and only if there exists
a self-adjoint unitary g in Mk(K) or iMk(K) such that

(5.4) γ = ±g ⊗ 1mk
⊗ gT ,

in which case γ necessarily commutes with J .

Proof. Let mn = 2(1−ε)/2. Then H = Cn ⊗ Cmn ⊗ Cn, and for all a ∈ A,

λ(a) = λα(a)⊗1mn
⊗1n = a⊗1mnk⊗1n, ρ(a) = 1n⊗1mn

⊗λα(a)T = 1n⊗1mn
⊗aT .

Suppose that γ is compatible. Then by Lemma 5.11 there exists some self-
adjoint unitary g in either Mk(K) or iMk(K) such that for all a ∈ A,

γ(a ⊗ 1mn
⊗ 1n)γ = (gag) ⊗ 1mk

⊗ 1n.

Now, let γ0 = g ⊗ 1mn
⊗ gT . Then, by construction, γ0 is a compatible grading

for (A,H, J) that induces the same admissible grading on A as γ, and moreover

commutes with J . Then ν := γγ0 ∈ ULR
A (H; J), so that ν = 1n ⊗ νnn ⊗ 1n for some

νnn ∈

{
{±1}, if n = 1 or 7 mod 8,

SU(2), if k = 3 or 5 mod 8.

Thus γ = g ⊗ νnn ⊗ gT , and hence, since γ is self-adjoint, νnn must also be self-
adjoint. Therefore ναα = ±1mk

, or equivalently, γ′ = ±γ.
On the other hand, if g is a self-adjoint unitary in either Mk(K) or iMk(K),

then γ = g⊗1mk
⊗gT is certainly a compatible grading that commutes with J . �

Thus, irreducible triplets can only give rise to real Aeven-bimodules of KO-
dimension 0 or 4 mod 8.

Let us now turn to the type B case.

Proposition 5.13. Let (A,H, J) be a type B irreducible triplet of odd KO-dimen-
sion n mod 8, so that for some n ∈ N, A = Mk1

(K1) ⊕ Mk2
(K2) for real forms

Mk1
(K1) and Mk2

(K2) of Mn(C), and let γ be a grading on H as a Hilbert space.
Then γ is compatible if and only if one of the following holds:

(1) There exist gradings γ1 and γ2 on Cn, with γj ∈ Mkj
(Kj) or iMkj

(Kj),
such that

(5.5) γ =

(
γ1 ⊗ γT

2 0
0 ε′′γ2 ⊗ γT

1

)
,

in which case γJ = ε′′Jγ, and if γ′ is any other compatible grading,
Adγ′ = Adγ if and only if γ′ = ±γ.
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(2) One has that K1 = K2 = K and k1 = k2 = k, and there exist a unitary
u ∈ Mk(K) and η ∈ T such that

(5.6) γ =

(
0 ηu∗ ⊗ u

ηu ⊗ uT 0

)
,

in which case γ necessarily commutes with J , and if γ′ is any other com-
patible grading, Adγ′ = Adγ if and only if γ′ = (ζ1n2 ⊕ ζ1n2)γ for some
ζ ∈ T.

Proof. Let γ be a compatible grading. Then, with respect to the decomposi-
tion H = (Cn ⊗ Cn) ⊕ (Cn ⊕ Cn), let us write

γ =

(
A B
C D

)

for A, B, C and D ∈ Mn(C)⊗Mn(C). Applying self-adjointness of γ, we find that
A and D must be self-adjoint, and that B = C∗, and then applying the fact that
γ2 = 1, we find that

A2 + C∗C = 1, CA + DC = 0, CC∗ + D2 = 1.

Finally, applying the condition that γ commutes or anticommutes with J , i.e. that
γJ = ε′′Jγ for ε′′ = ±1, we find that

D = ε′′XAX, C∗ = ε′′XCX,

where X is the antiunitary on Cn ⊗ Cn given by X : ξ1 ⊗ ξ2 7→ ξ2 ⊗ ξ1.
Now, since γ is compatible, and since (1, 0) and (0, 1) are projections in A

satisfying (1, 0) + (0, 1) = 1, there exist projections P and Q in A such that

Adγ λ(1, 0) = λ(P, 1 − Q), Adγ λ(0, 1) = λ(1 − P, Q),

that is, (
P ⊗ 1n 0

0 (1 − Q) ⊗ 1n

)
= γ

(
1 0
0 0

)
γ =

(
A2 AC∗

CA CC∗

)

and (
(1 − P ) ⊗ 1n 0

0 Q ⊗ 1n

)
= γ

(
0 0
0 1

)
γ =

(
C∗C C∗D
DC D2

)
.

Thus, A is a self-adjoint partial isometry with support and range projection P ⊗1n,
D is a self-adjoint partial isometry with support and range projection Q ⊗ 1n, and
C is a partial isometry with support projection (1 − P ) ⊗ 1n and range projection
(1 − Q) ⊗ 1n.

Now, recalling that D = ε′′XAX , we see that

Q ⊗ 1n = D2 = XA2X = XP ⊗ 1nX = 1n ⊗ P .

If Q = 0, then certainly P = 0. Suppose instead that Q 6= 0, and let ξ ∈ QCn ⊗Cn

be non-zero. Then

idξ⊗Cn = (Q ⊗ 1n)|ξ⊗Cn = (1 ⊗ P )|ξ⊗Cn ,

so that P = 1 and hence Q = 1 also. We therefore have two possible cases:

(1) We have

γ =

(
A 0
0 ε′′XAX

)

for A a grading on Cn ⊗ Cn;
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(2) We have

γ =

(
0 C∗

C 0

)

for C a unitary on Cn ⊗ Cn such that C∗ = (−1)mXCX .

First suppose that the first case holds. Then, on the one hand, AdA |Mn(C)⊗1n

induces an admissible grading for Mk1
(K1), so that there exists a self-adjoint unitary

γ1 in either Mk1
(K1) or iMk1

(K1) such that AdA |Mn(C)⊗1n
= Adγ1⊗1n

, and on
the other hand, Adε′′XAX |Mn(C)⊗1n

induces an admissible grading for Mk2
(K2),

so that there exists a self-adjoint unitary γ2 in Mk2
(K1) or iMk2

(K1) such that
Adε′′XAX |Mn(C)⊗1n

= Adγ2⊗1n
. Since for a ⊗ b ∈ Mn(C) ⊗ Mn(C) we can write

a ⊗ b = (a ⊗ 1n)X(b ⊗ 1n)X,

it therefore follows that AdA = Adγ1⊗γT
2

on the central simple algebra Mn(C) ⊗

Mn(C) ∼= Mn2(C) over C. Hence, there exists some non-zero η ∈ C such that
A = ηγ1 ⊗ γT

2 , and since both A and γ1 ⊗ γT
2 are self-adjoint and unitary, it follows

that η = ±1. Absorbing ±1 into γ1 or γ2, we therefore find that

γ =

(
γ1 ⊗ γT

2 0
0 ε′′γ2 ⊗ γT

1

)
.

On the other hand, γ so constructed is readily seen to be a compatible grading
satisfying γJ = ε′′Jγ.

Now suppose that the second case holds. Then, since γ is compatible, it is clear
that the automorphisms α, β of Mn(C) specified by

α(a) ⊗ 1n = C(a ⊗ 1n)C∗, β(a) ⊗ 1n = C∗(a ⊗ 1n)C,

are inverses of each other, and that α, in particular, induces an isomorphism
Mk1

(K1) → Mk2
(K2), so that K1 = K2 = K and k1 = k2 = k. Next, by the

proof of Lemma 5.11, there exists some unitary u in Mn(C)I such that α = Adu,
from which it follows that β = Adu∗ . By the same trick as above, we then find that
AdC = Adu⊗uT on the central simple algebra Mn(C) ⊗ Mn(C) ∼= Mn2(C) over C.
Hence, there exists some non-zero η ∈ C such that C = ηu ⊗ uT , and since both C
and u ⊗ uT are unitary, it follows that η ∈ T. Thus,

γ =

(
0 ηu∗ ⊗ u

ηu ⊗ uT 0

)
.

On the other hand, γ so constructed is readily seen to be a compatible grading
satisfying [γ, J ] = 0.

Finally, let γ and γ′ be two compatible gradings. Suppose that Adγ = Adγ′ ,
and set U = γ′γ. Then, by construction, U is a unitary element of LLR

A (H; J), so
that there exists some ζ ∈ T such that

U = ζ1n2 ⊕ ζ1n2 .

If the second case holds, then nothing more can be said, but if the first case holds,
so that

γ =

(
γ1 ⊗ γT

2 0
0 ε′′γ2 ⊗ γT

1

)

for suitable γ1 and γ2, then

γ′ =

(
ζγ1 ⊗ γT

2 0

0 ε′′ζγ2 ⊗ γT
1

)
,
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so that by self-adjointness of γ′, γ1 and γ2, we must have ζ = ±1, as required. �

Thus, we can obtain a real bimodule of KO-dimension 6 mod 8 only from a
type B irreducible triplet together with a compatible grading satisfying the first
case of the last result.

5.3. Even subalgebras and even KO-dimensional bimodules. We now
consider real bimodules of KO-dimension 6 mod 8 obtained from irreducible triplets.
Thus, let (A,H, J) be a fixed type B irreducible triplet of KO-dimension 1 or
7 mod 8, and let γ be a fixed compatible grading for (A,H, J) anticommuting with
J , so that for some n ∈ N,

• A = Mk1
(K1) ⊕ Mk2

(K2) for real forms Mkj
(Kj) of Mn(C);

• mult[H] = En1n2
+ En2n1

;
• There exist self-adjoint unitaries γj ∈ Mkj

(Kj) or iMkj
(Kj) with signature

(rj , n − rj) such that

γ =

(
γ1 ⊗ γT

2 0
0 −γ2 ⊗ γT

1

)
.

It is worth noting that (H, J) admits, up to sign, a unique S0-real structure, given
by ǫ = 1n2⊕−1n2, which certainly commutes with γ. We can exploit the symmetries
present to simplify our discussion by taking, without loss of generality, rj > 0, and
requiring that γ1 ∈ iMk1

(K1) only if γ2 ∈ iMk2
(K2), and that γ1 = 1n only if

γ2 = 1n.
Our main goal in this section is to give an explicit description of Aeven and of

(H, γ, J) as a real Aeven-bimodule. To do so, however, we first need the following:

Lemma 5.14. Let Mk(K) be a real form of Mn(C), let g be a self-adjoint unitary in
Mk(K) or iMk(K), and let r = null(g−1). Set Mk(K)g := {a ∈ Mk(K) | [a, g] = 0}.

• If g ∈ Mk(K), then Mk(K)g ∼= Mkr/n(K) ⊕ Mk(n−r)/n(K);
• If g ∈ iMk(K), then r = n/2 and

Mk(K)g ∼= {(a, b) ∈ Mk/2(C)2 | b = a} ∼= Mk/2(C).

Proof. Let P+ := 1
2 (1 + g) and P− := 1

2 (1 − g), which are thus projections
in Mn(C) of rank r and n − r, respectively. Define an injection φ : Mk(K)g 7→
Mr(C) ⊕ Mn−r(C) by φ(A) := (P evenAP even, P oddAP odd).

First, suppose that g ∈ Mk(K). Then P+ and P− are also in Mk(K), from
which it immediately follows that φ(Mk(K)g) = Mkr/n(K) ⊕ Mk(n−r)/n(K).

Suppose instead that g ∈ iMk(K) and K 6= C. Then Mk(K) = {A ∈ Mn(C) |
[A, I] = 0} for a suitable antiunitary I on Cn satisfying I2 = α1, where α = 1 if
K = R and α = −1 if K = H. Then {g, I} = 0, and hence, with respect to the
decomposition Cn = P+Cn ⊕ P−Cn ∼= Cr ⊕ Cn−r,

I =

(
0 αĨ∗

Ĩ 0

)
,

where Ĩ = P oddIP even is an antiunitary Cr 7→ Cn−r. Thus, n is even and r = n/2,

and taking Ĩ, without loss of generality, to be complex conjugation on Cr, for all
A ∈ Mn(C) commuting with g, [A, I] = 0 if and only if P−AP− = P+AP+, and
hence φ(Mk(K)g) = {(a, a) | a ∈ Mn/2(C)} ∼= Mn/2(C). �
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In light of the form of γ, this last Lemma immediately implies the aforemen-
tioned explicit description of Aeven and (H, γ, J):

Proposition 5.15. Let (meven, modd) = (meven, (meven)T ) be the pair of multi-
plicity matrices of (H, γ, J) as an even KO-dimensional real Aeven-bimodule. Let
r′i = n − ri, and, when n is even, let c = n/2. Then:

(1) If γ1 ∈ iMk1
(K1), γ2 ∈ iMk2

(K), then

(5.7) Aeven = Mc(C) ⊕ Mc(C),

and

(5.8) meven = Ec1c2
+ Ec1c2

+ Ec2c1
+ Ec2c1

;

(2) If γ1 ∈ iMk1
(K1), γ2 ∈ Mk2

(K) \ {1n}, then

(5.9) Aeven = Mc(C) ⊕ Mk2r2/n(K2) ⊕ Mk2r′

2
/n(K2).

and

(5.10) meven = Ecr2
+ Ecr

′

2
+ Er2c

+ Er′
2
c;

(3) If γ1 ∈ iMk1
(K1), γ2 = 1, then

(5.11) Aeven = Mc(C) ⊕ Mk2
(K2),

and

(5.12) meven = Ecn + Enc;

(4) If γ1 ∈ Mk1
(K1) \ {1n}, γ2 ∈ Mk2

(K2) \ {1n}, then

(5.13) Aeven = Mk1r1/n(K1) ⊕ Mk1r′

1
/n(K1) ⊕ Mk2r2/n(K2) ⊕ Mk2r′

2
/n(K2),

and

(5.14) meven = Er1r2
+ Er

′

1
r
′

2
+ Er2r

′

1
+ Er

′

2
r1

;

(5) If γ1 ∈ Mk1
(K1) \ {1n}, γ2 = 1n, then

(5.15) Aeven = Mk1r1/n(K1) ⊕ Mk1r′

1
/n(K1) ⊕ Mk2

(K2),

and

(5.16) meven = Er1n
+ Enr′

1
;

item If γ1 = γ2 = 1n, then

(5.17) Aeven = Mk1
(K1) ⊕ Mk2

(K2),

and

(5.18) meven = En1n2
.

One can check in each case that (H, γ) is quasi-orientable as an even Aeven-
bimodule. However, Propositions 3.13 and 3.14 immediately imply the following:

Corollary 5.16. The following are equivalent for (H, γ) as an even Aeven-bimodule:

(1) γ1 ∈ Mk1
(K1) and γ2 ∈ Mk2

(K2);
(2) (H, γ) is orientable;
(3) (H, γ) has non-vanishing intersection form;
(4) (H, γ) is complex-linear.

This then motivates us to restrict ourselves to the case where γ1 ∈ Mk1
(K1)

and γ2 ∈ Mk2
(K2). Note, however, that in no case is Poincaré duality possible.
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5.4. Off-diagonal Dirac operators. Let us now consider the slightly more
general S0-real Aeven-bimodule (HF , γF , JF , ǫF ) of KO-dimension 6 mod 8 given
by taking the direct sum of N copies of (H, γ, J, ǫ), where N ∈ N. If we modify our
earlier conventions slightly to allow for the summand 0 in Wedderburn decomposi-
tions, we can therefore write

(5.19) Aeven = Mk1r1/n(K1) ⊕ Mk1r′

1
/n(K1) ⊕ Mk2r2/n(K2) ⊕ Mk2r′

2
(K2),

so that (HF , γF , JF ) is the real Aeven-bimodule of KO-dimension 6 mod 8 with
signed multiplicity matrix

(5.20) µF = N(Er1r2
− Er1r

′

2
− Er

′

1
r2

+ Er
′

1
r
′

2
− Er2r1

+ Er2r
′

1
+ Er

′

2
r1

− Er
′

2
r
′

1
),

whilst (Hf , γf ) := ((HF )i, (γF )i) is the even Aeven-bimodule with signed multiplic-
ity matrix

(5.21) µf = N(Er1r2
− Er1r

′

2
− Er′

1
r2

+ Er′
1
r′
2
).

It then follows also that (Hf , γf ) := (JFHf ,−(JF γfJF )|JF Hf
) is the even Aeven-

bimodule with signed multiplicty matrix

µf = −µT
f = N(−Er2r1

+ Er2r
′

1
+ Er

′

2
r1

− Er
′

2
r
′

1
).

Now, for C a unital ∗-subalgebra of Aeven, let us call a Dirac operator D ∈
D0(C,HF , γF , JF ) off-diagonal if it does not commute with ǫF , or equivalently [3,
§4] if [D,Z(A)] 6= {0}. If D1(C,HF , γF , JF , ǫF ) ⊆ D0(C,HF , γF , JF ) is the subspace
consisting of Dirac operators anti-commuting with ǫF , then, in fact,

(5.22) D0(C,HF , γF , JF ) = D0(C,HF , γF , JF , ǫF ) ⊕D1(C,HF , γF , JF , ǫF ),

as can be seen from writing

D =
1

2
{D, ǫF}ǫF +

1

2
[D, ǫF ]ǫF

for D ∈ D0(C,HF , γF , JF ). Thus, non-zero off-diagonal Dirac operators exist for
(HF , γF , JF , ǫF ) as an S0-real C-bimodule if and only if

D1(C,HF , γF , JF , ǫF ) 6= {0}.

Our goal is to generalise Theorem 4.1 in [3, §4] and characterise subalgebras of
Aeven of maximal dimension admitting off-diagonal Dirac operators.

The following result is the first step in this direction:

Proposition 5.17 ([3, Lemma 4.2]). A unital ∗-subalgebra C ⊆ Aeven admits off-
diagonal Dirac operators if and only if there exists some partial unitary T ∈ L(Cr1⊕

Cr′

1 ⊕ Cr2 ⊕ Cr′

2) with support contained in one of Cr1 or Cr′

1 and range contained

in one of Cr2 or Cr′

2 , such that

C ⊆ A(T ) := {a ∈ Aeven | [a, T ] = [a∗, T ] = 0}.

Proof. First note that the map D1(C,HF , γF , JF , ǫF ) → L1
C(Hf ,Hf ) given by

D 7→ P−iDPi is an isomorphism, so that C admits off-diagonal Dirac operators if
and only if L1

C(Hf ,Hf ) 6= {0}. Since a map S ∈ L(Hf ,Hf ) satisfies the generalised

order one condition for C if and only if ρf (c)S−Sρf(C) is left C-linear for all c ∈ C,
C admits off-diagonal Dirac operators only if

{S ∈ LL
C (Hf ,Hf ) | −γfS = Sγf} 6= {0},
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or equivalently,

C ⊆ AS := {a ∈ Ceven | λf (a)S = Sλ(a), λf (a∗)S = Sλ(a∗)}

for some non-zero S ∈ L(Hf ,Hf ) such that −γfS = Sγf .

Now, let S ∈ L(Hf ,Hf ) be non-zero and such that −γfS = Sγf . Then, the

support of S must have non-zero intersection with one of (HF )r1r2
or (HF )r′

1
r
′

2
, and

the range of S must have non-zero intersection with one of (HF )r2r1
or (HF )r′

2
r′
1
.

Thus, Sγδ
αβ 6= 0 for some (α, β) ∈ {(r1, r2), (r

′
1, r

′
2)} and (γ, δ) ∈ {(r2, r1), (r

′
2, r

′
1)},

so that AS ⊆ ASγδ
αβ

. Let us now write

Sγδ
αβ =

∑

i

Ai ⊗ Bi

for non-zero Ai ∈ Mnγ×nα
(C) and for linearly independent Bi ∈ MNnδ×Nnβ

(C).
Then for all a ∈ Aeven,

λf (a)S − Sλf (a) =
∑

i

(
λγ(a)Ai − Aiλα(a)

)
⊗ Bi,

so by linear independence of the Bi, a ∈ ASγδ
αβ

if and only if for each i,

λγ(a)Ai = Aiλα(a), λγ(a∗)Ai = Aiλα(a),

and hence

A(S) ⊆ ASγδ
αβ

⊆ A(T0) := {a ∈ Aeven | [a, T0] = 0, [a∗, T1] = 0}

for T0 = A1, say, viewing T0 and the elements of Aeven as operators on Cr1 ⊕Cr′

1 ⊕
Cr2 ⊕ Cr′

2 . However, if T0 = PT is the polar decomposition of T0 into a positive
operator P on Cnγ and a partial isometry T : Cnα → Cnγ , it follows that a ∈ Aeven

commutes with T0 only if it commutes with T , and hence A0 ⊆ A(T0) ⊆ A(T ),
proving the one direction of the claim.

Now suppose that C = A(T ) for a suitable partial isometry T , which we view
as a partial isometry Cnα0 → Cnγ0 for some α0 ∈ {r1, r

′
1}, γ0 ∈ {r2, r

′
2}. Then

for any non-zero Υ ∈ MN (C), we can define an element S(Υ) ∈ LLR
C (Hf ,Hf ) by

setting

S(Υ)γδ
αβ =

{
T ⊗ Υ ⊗ T ∗ if α = δ = α0, β = γ = γ0,

0 otherwise,

which, as noted above, corresponds to a unique non-zero element of the space
D1(C,HF , γF , JF , ǫF ), so that C does indeed admit off-diagonal Dirac operators. �

In light of the above characterisation, it suffices to consider subalgebras A(T )
for partial isometries T : Cr1 → Cr2 , so that

A(T ) = {(a1, a2, b1, b2) ∈ Aeven | b1T = Ta1, b∗1T = Ta∗
1}(5.23)

∼= A0(T ) ⊕ Mk1r′

1
/n(K1) ⊕ Mk2r′

2
/n(Kk),(5.24)

where

(5.25) A0(T ) := {(a, b) ∈ Mk1r1/n(K1) ⊕ Mk2r2/n(K2) | bT = Ta, b∗T = Ta∗},

so that our problem is reduced to that of maximising the dimension of A0(T ).
It is reasonable to assume that T is, in some sense, compatible with the algebraic

structures of Mk1r1/n(K1) and Mk2r2/n(K2), so as to minimise the restrictiveness of
the defining condition on A0(T ), and hence maximise the dimension of A0(T ). It
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turns out that this notion of compatibility takes the form of the following conditions
on T :

(1) The subspace supp(T ) of Cr1 is either a K1-linear subspace of Cr1 =

K
k1r1/n
1 or, if K1 = H, supp(T ) = E ⊕ C for E an H-linear subspace of

Cr1 = Hr1/2;

(2) The subspace im(T ) of Cr2 is either a K2-linear subspace of Cr2 = K
k2r2/n
1

or, if K2 = H, im(T ) = E ⊕C for E an H-linear subspace of Cr2 = Hr2/2.

Now, let r = rank(T ), let d(r) = dimR(A0(T )), and let

di =





1 if Ki = R,

2 if Ki = C,
1
2 if Ki = H.

Under these assumptions, then, one can show that

(1) If K1 = K2 or K2 = C, and, if K1 = H, r is even, then

(5.26) A0(T ) ∼= Mk1r/n(K1) ⊕ Mk1(r1−r)/n(K1) ⊕ Mk2(r2−r)/n(K2),

and hence

d(r) = d1r
2 + d1(r − r1)

2 + d2(r − r2)
2;

(2) If (K1, K2) = (H, R) and r is odd, then

(5.27) A0(T ) ∼=
(
M(r−1)/2(H) ∩ Mr−1(R)

)
⊕ R ⊕ M(r2−r−1)/2(H) ⊕ Mr1−r(R),

and hence

d(r) = (r − 1)2 + 1 +
1

2
(r − r2 + 1)2 + (r − r1)

2;

(3) If (K1, K2) = (H, C) and r is odd, then

(5.28) A0(T ) ∼= M(r−1)/2(H) ⊕ C ⊕ M(r2−r−1)/2(H) ⊕ Mr1−r(C),

and hence

d(r) =
1

2
(r − 1)2 + 2 +

1

2
(r − r2 + 1)2 + 2(r − r1)

2;

(4) If K1 = K2 = H and r is odd, then

(5.29) A0(T ) ∼= M(r−1)/2(H) ⊕ C ⊕ M(r1−r−1)/2(H) ⊕ M(r2−r−1)/2(H),

and hence

(5.30) d(r) =
1

2
(r − 1)2 + 2 +

1

2
(r − r1 + 1)2 +

1

2
(r − r2 + 1)2.

The other cases are obtained easily, by symmetry, from the ones listed above.
Now, let Rmax be the set of all r ∈ {1, . . . , min(r1, r2)} maximising the value

of d(r). By checking case by case, one can arrive at the following generalisation of
Theorem 4.1 in [3]:

Proposition 5.18. Let T : Cr1 → Cr2 be a partial isometry. Then A(T ) attains
maximal dimension only if rank(T ) ∈ Rmax, where Rmax = {1} except in the
following cases:

(1) (K1, K2) = (C, C) and (r1, r2) = (2, 2), in which case Rmax = {2};
(2) (K1, K2) = (C, C) and (r1, r2) = (3, 3), in which case Rmax = {1, 2};
(3) (K1, K2) = (C, R) and (r1, r2) = (2, 2), in which case Rmax = {1, 2};
(4) (K1, K2) = (C, H) and (r1, r2) = (2, 2), in which case Rmax = {1, 2};
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(5) (K1, K2) = (R, C) and (r1, r2) = (2, 2), in which case Rmax = {1, 2};
(6) (K1, K2) = (R, R) and (r1, r2) = (2, 2), in which case Rmax = {2};
(7) (K1, K2) = (R, R) and (r1, r2) = (3, 3), in which case Rmax = {1, 2};
(8) (K1, K2) = (R, H) and r1 = 2, in which case Rmax = {1, 2};
(9) (K1, K2) = (H, C) and (r1, r2) = (2, 2), in which case Rmax = {1, 2};

(10) (K1, K2) = (H, R) and r2 = 2, in which case Rmax = {1, 2};
(11) (K1, K2) = (H, H) and (r1, r2) = (4, 4), in which case Rmax = {4};
(12) (K1, K2) = (H, H) and (r1, r2) 6= (4, 4), in which case Rmax = {2}.

Moreover, if T satisfies the aforementioned compatibility conditions, then A(T ) does
indeed attain maximal dimension whenever rank(T ) ∈ Rmax.

One must carry out the same calculations for the other possibilities for the
domain and range of T , but this can be done simply by replacing (r1, r2) in the above
equations and claims with (r1, r

′
2), (r′1, r2) and (r′1, r

′
2). Thus, one can determine

the maximal dimension of a subalgebra of Aeven admitting off-diagonal operators
by comparing the maximal values of dimR(A(T )) for T : Cr1 → Cr2 , T : Cr1 → Cr′

2 ,

T : Cr′

1 → Cr2 , and T : Cr′

1 → Cr′

2 .
Finally, by means of the discussion above and the fact that Sp(n) acts tran-

sitively on 1-dimensional subspaces of Cn, one can readily check that the real
C∗-algebra AF and the S0-real AF -bimodule (HF , γF , JF , ǫF ) of KO-dimension
6 mod 8 of the NCG Standard Model are uniquely determined, up to inner auto-
morphisms of Aeven and unitary equivalence, by the following choice of inputs:

• n = 4;
• (K1, K2) = (H, C);
• g1 ∈ M2(H), g2 ∈ M4(C);
• (r1, r2) = (2, 4);
• N = 3.

The value of N , by construction, corresponds to the number of generations of
fermions, whilst the values of n, r1 and r2 give rise to the number of species of
fermion of each chirality per generation. The significance of the other inputs remains
to be seen.

6. Conclusion

As we have seen, the structure theory first developed by Paschke and Sitarz [20]
and by Krajewski [18] for finite real spectral triples of KO-dimension 0 mod 8 and
satisfying orientability and Poincaré duality can be extended quite fully to the
case of arbitrary KO-dimension and without the assumptions of orientability and
Poincaré duality. In particular, once a suitable ordering is fixed on the spectrum of
a finite-dimensional real C∗-algebra A, the study of finite real spectral triples with
algebra A reduces completely to the study of the appropriate multiplicity matrices
and of certain moduli spaces constructed using those matrices. This reduction is
what has allowed for the success of Krajewski’s diagrammatic approach [18, §4] in
the cases dealt with by Iochum, Jureit, Schücker, and Stephan [12–17,22]. We have
also seen how to apply this theory both to the “finite geometries” of the current
version of the NCG Standard Model [4, 7, 8] and to Chamseddine and Connes’s
framework [2, 3] for deriving the same finite geometries.

Dropping the orientability requirement comes at a fairly steep cost, as even
bimodules of various sorts generally have fairly intricate moduli spaces of Dirac
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operators. It would therefore be useful to characterise the precise nature of the
failure of orientability (and of Poincaré duality) for the finite spectral triple of
the current noncommutative-geometric Standard Model. It would also be useful
to generalise and study the physically-desirable conditions identified in the extant
literature on finite spectral triples, such as dynamical non-degeneracy [22] and
anomaly cancellation [18]. Indeed, it would be natural to generalise Krajewski
diagrams [18] and the combinatorial analysis they facilitate [17] to bilateral spectral
triples of all types. The paper by Paschke and Sitarz [20] also contains further
material for generalisation, namely discussion of the noncommutative differential
calculus of a finite spectral triple and of quantum group symmetries. In particular,
one might hope to characterise finite spectral triples equivariant under the action
or coaction of a suitable Hopf algebra [21, 23].

Finally, as was mentioned earlier, the finite geometry of the current NCG Stan-
dard Model fails to be S0-real. However, this failure is specifically the failure of
the Dirac operator D to commute with the S0-real structure ǫ. The “off-diagonal”
part of D does, however, take a very special form; we hope to provide in future
work a more geometrical interpretation of this term, which provides for Majorana
fermions and for the so-called see-saw mechanism [4].
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