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1. Introduction

The goal of this paper is to study the Witten Laplacian corresponding to a

function f on a circle S1 using the methods of resurgent analysis and complex

WKB.

The motivation of this work comes from three sources. Firstly, there is

a number of examples in the literature of computing the spectral asymptotics

for di¤erent Schrödinger equations using the complex WKB method; we are

presenting here one more. This example is di¤erent in two ways from those

described in the literature: namely, the symbol of the Schrödinger operator (as

an h-di¤erential operator) contains more that just a principal part, and instead

of considering wave functions on the whole R1 vanishing at Gy, we study

periodic boundary conditions.

Secondly, we believe that methods of resurgent analysis can be helpful in

precise formulation and proof of the conjecture about the products of solutions

of di¤erent Witten Laplacians that motivate the study of disc instantons and

ultimately of the Fukaya category (see [14, § 5.2]). In one of his next papers the

author hopes to calculate asymptotic, or transseries, expansions of the elements

of the Witten complex and to see very explicitly how the product of elements

of Witten complexes corresponding to two di¤erent functions is expressed via

contributions from disc instantons.

Thirdly, we want to obtain a connection between WKB and disc instantons

in as algebraic way as possible, namely, we want the Planck constant h to be a

variable or an asymptotic parameter, not a real number constrained to a small



interval. If we succeed in our future research to make an appropriate defor-

mation quantization algebra act on resurgent WKB expansions (perhaps in

the spirit of exact deformation quantization, see [4]), we will come closer to

understanding of the Fukaya category in terms of modules over some defor-

mation quantization algebra, which is a project of [25]. It is this reason that

determined our choice of resurgent analysis as a method of investigation.

Literature review (Without any ambition of historical accuracy). Already

in the XIXth century Stokes [29] noticed that asymptotic representations of

a solution of an ODE in a complex domain are not uniform with respect to

the coordinate, or rather, can be made uniform only in certain regions in the

complex plane, called later on Stokes regions.

In 1970s these ideas found their application in quantum mechanics (e.g.,

[1, 2]) when the WKB method was extended into the complex domain and

asymptotic solutions of the Schrödinger equation were sought in terms of

‘‘complex classical trajectories’’. This naturally involved taking the inverse

Laplace transform of the wave function.

Apparent discontinuity in the asymptotic expansions of solutions of dif-

ferential equations is known as Stokes phenomenon, and the problem of quan-

titative calculation of this discontinuity as a connection problem. See [13] for

a clean statement and books on special functions of Olver [26] and Dingle [6]

for solutions of connection problems. Malgrange [22] and Sibuya [28] have

applied this to irregular singular ODEs.

Finally, it has been noticed (see Écalle [11]) that the asymptotic expansions,

although divergent, can be Borel resummed.

These three ideas were nicely (if not completely rigorously) explained and

developed in [30] to study the spectrum of a Schrödinger equation precisely

enough to catch potentially all exponentially small contributions. Alternative

methods of Hel¤er and Sjöstrand (earlier work) [17] only give estimates of

the instanton e¤ect in the spectrum or calculate it to the leading exponential

order as in [16]; a similar comment applies to the Maslov’s complex germ

method [23].

A machinery for solutions of the spectral problem in 1D using resurgent

analysis is explained and illustrated with many examples in [8]. Note also the

paper [20] where some resurgent-analytic study of the supersymmetric double-

well Schrödinger equation has been done.

It should be noted that in the literature di¤erent kind of asymptotic

solutions of di¤erential equations are studied: asymptotics with respect to the

coordinate as we move farther away from the singular point of a singular

di¤erential equation, and asymptotics with respect to a small parameter h

singularly perturbing the equation. Ideas in these two setups are similar, but
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the details of proofs are, to our knowledge, not directly transferable. We are

interested in the latter setup.

Let us mention books [27, 5] as systematic texts on resurgent analysis.

The relationship between the Witten, or Fokker-Planck, Laplacian and the

Morse theory was introduced in [34] and made precise in [17]. These authors

explain that a Morse function on a compact Riemannian manifold M defines

Laplacians PðkÞ ¼ �h2Dþ j‘f j2 þ hðL‘f þL�
‘f Þ on the space of exterior forms

WkðMÞ, define spaces W ðkÞ HWkðMÞ spanned by eigenfunctions corresponding

to its low-lying, i.e. Oðe�c=hÞ for h ! 0þ, eigenvalues, and prove that W ðkÞ

together with the de Rham di¤erential form a complex (the Witten complex)

isomorphic to the Morse complex of the manifold M and the function f .

In the one-dimensional case studied here one takes a standard Riemann

metric on the circle, identifies W1ðS1Þ with functions on S1 and obtains

Pð0Þ ¼ �h2
d 2

dq2
þ ð f 0Þ2 � hf 00;

Pð1Þ ¼ �h2
d 2

dq2
þ ð f 0Þ2 þ hf 00:

Fukaya [14] gives intuition to motivate that there should be an Ay-category

structure on Witten complexes corresponding to di¤erent Morse functions. In

its simplest form the conjecture can be stated as follows:

Conjecture 1.1. Consider functions fi on a manifold M and Lagrangian

submanifolds Li ¼ graph dfi in T �M, i ¼ 1; 2; 3. Let pij be an intersection point

of Li and Lj and let cij be a linear combination of eigenfunctions with small

enough eigenvalues of the Witten Laplacian on k-forms PðkÞ corresponding to

fi � fj and localized around pij . Then

hc125c23;c31iL2 @
X

e
�h�1

Ð
okc12k kc23k kc31kð1Þ

where the integrals are taken over pseudoholomorphic triangles (‘‘disc instantons’’)

as above with vertices pij .

There has been a substantial e¤ort to understand the Fukaya category in

terms of microlocal invariants—note especially [24]. The main di‰culty of

approaching the Fukaya category through semiclassical analysis has been, in our

opinion, the fact that on the right hand side of (1) there appear exponentials

e�c=h with di¤erent c A R and that one needs an appropriate setup from asymp-

totic analysis to even define what the formula (1) precisely means. We believe

that the methods of resurgent analysis, possibly together with related ideas of

[10], are a good toolbox to address this di‰culty.
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It is natural to expect that our WKB approach and the constructible sheaf

approach are related by an analog of a Riemann-Hilbert correspondence, yet to

be discovered.

Main result. The main result of this paper will be the following:

Theorem 1.2. Given a generic enough Morse function f ðqÞ in the circle

S1 ¼ R=Z representable as a polynomial in sin 2pq and cos 2pq with n local

minima and n local maxima and satisfying the assumption 1.3, then the Witten

Laplacian

P ¼ �h2q2q þ ½ f 0ðqÞ�2 � hf 00ðqÞ

with periodic boundary conditions has n resurgent eigenvaluesaOðh2Þ correspond-
ing to eigenfunctions that are resurgent in h except possibly for q A ð f 0Þ�1ð0Þ.

The plan of the proof will be explained in section 4 after we have dis-

cussed the generalities of resurgent analysis in section 2 and its applications to

di¤erential equations in section 3.

A few comments are due: The assumption that f ðqÞ is a generic enough

trigonometric polynomial does not seem to be essential to the matter, but

simplifies the proofs. We believe that a similar statement holds for any f

satisfying f ðqÞ ¼ f ðqþ 1Þ that can be analytically continued to the whole

complex plane. The precise requirement on how generic f should be taken is

formulated in terms of the Newton polygon corresponding to the quantization

condition, see Section 9.1.

In this paper we are relying, among other results, on the theorem stated

in [27, Ch.III.1] concerning existence of resurgent solutions of a di¤erential

equation, see section 3.1. As the status of the proof in [27] is problematic and

in order to make the logical structure of our paper clearer, we will explicitly

state the following assumption on the function f ðqÞ; we believe this assumption

to be fulfilled for any entire function f ðqÞ. We refer the reader to section 2 for

the terminology used.

Assumption 1.3. For any q0 A C such that f 0ðq0Þ0 0, any E1 A C , any

su‰ciently small E0 A C , the di¤erential equation

½�h2q2q þ ½ f 0ðqÞ�2 � hf 00ðqÞ�c ¼ ðE0 þ hE1Þc

has two solutions c1;2ðq; h;E0;E1Þ such that:

1. c1, c2 are resurgent functions with respect to h if ½ f 0ðqÞ�2 0E0;

2. cj is represented by a major Cjðx; q;E0;E1Þ which holomorphically

depends on q, E0, E1, for j ¼ 1; 2;

3. c1ðq0Þ ¼ 1, qqc1ðq0Þ ¼ 0 and c2ðq0Þ ¼ 0, qqc2ðq0Þ ¼ 1.
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It is the word ‘‘resurgent’’ in theorem 1.2 that constitutes the new result.

We are deducing here that the eigenvalues and eigenfunctions that can be

constructed by methods of [17] and were calculated to the first exponential

order by [16] in fact possess good enough asymptotic, or transseries, expansions.

These expansions will be made explicit in our subsequent work.

The eigenfunctions in theorem 1.2 are claimed to be resurgent with respect

to h everywhere except for q A ð f 0Þ�1ð0Þ. Of course, they will be analytic with

respect to q on the whole complex plane, but we do not know if the general

theory of resurgent functions (see section 3.1) expects resurgence of eigenfunc-

tions for the values of q where f 0ðqÞ ¼ 0. This, however, does not seem to be

any more that an aesthetic setback.

Resurgent functions are formal objects with respect to h, they are in fact

classes of functions modulo those that decay faster than any e�c=h for h ! 0þ
and c A R, so all equalities between resurgent functions must be understood

modulo summands of subexponential decay. We believe that the statements

made in this paper can be promoted to the level of actual functions, but do not

address this point.

The contribution of this paper is, in our understanding, the following. The

Introduction contains a novel research proposal connecting several di¤erent

ideas in Mathematical Physics. The sections 2 and 3 are expository, and their

main purpose it to propose terminology that is halfway between those of [5] and

[27] and that is relevant for our project. Sections 4, 5, 6 contain the standard

set-up of the complex WKB method for our specific equation. The section 7

goes over the derivation of connection formulae given in [9] to make sure that

the arguments given by those authors apply equally well in our case; we hope

that we were able to explain this derivation more transparently. Sections 8

and 10 contain a new discussion of the structure and solutions of the quantiza-

tion conditions obtained for the Witten Laplacian. The example in section 11

makes it clear that together with the proof of resurgence of low-lying eigen-

values we have presented a way for e¤ectively calculating them. The method

of finding solutions of a quantization condition presented in 9 and of proving

that these solutions are resurgent is also new and may be used to improve the

level of rigor of other works in resurgent analysis, e.g. [8].

2. Preliminaries from resurgent analysis

We need to combine the setup of [5] (the resurgence is with respect to the

semiclassical parameter h rather than the coordinate q) and mathematical clarity

of [27] and therefore have to mix their terminology. Also, we are somewhat

changing their notation to make sure that typographical peculiarities of fonts

do not interfere with clear understanding of symbols. We make sure to build
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the concepts in such a way that sums of exponents such as e�1=h þ e�2=h as well

as expressions involving logarithms, e.g. hk ln h, can be treated as resurgent

functions.

2.1. Laplace transform and its inverse. Definition of a resurgent function

Morally speaking, we will be studying analytic functions jðhÞ admitting

asymptotic expansions e�c=hða0 þ a1hþ a2h
2 þ � � �Þ for h ! 0 and arg h con-

strained to lie in an arc A of the circle of directions on the complex plane;

respectively, the inverse asymptotic parameter x ¼ 1=h will tend to infinity and

arg x will belong to the complex conjugate arc A�. Such functions can be

represented as Laplace transforms of functions FðxÞ where the complex variable

x is Laplace-dual to x ¼ 1=h and FðxÞ is analytic in x for jxj large enough and

arg x A �AA, the copolar arc to A. The concept of a resurgent function will be

defined by imposing conditions on analytic behavior of F.

2.1.1. ‘‘Strict’’ Laplace isomorphism

For details see [5, Pré I.2].

Let A be a small (i.e. of aperture < p) arc in the circle of directions S1.

Denote by �AA its copolar arc, �AA ¼ 6
a AA

�aa, where �aa is the open arc of legth p

consisting of directions forming an obtuse angle with a.

Denote by OyðAÞ the space of sectorial germs at infinity in direction A of

holomorphic functions and by EðAÞ the subspace of those that are of expo-

nential type in the direction A, i.e. bounded by eK jtj as the complex argument t

goes to infinity in the direction A.

We want to construct the isomorphism

L : Eð �AAÞ=OðCÞexp $ EðA�Þ : L;

where OðCÞexp denotes the space of functions of exponential type in all

directions.

Construction of L. Let F be a function holomorphic in a sectorial

neighborhood W of infinity in direction �AA. For any small arc A 0 HHA we

can choose x0 such that W contains a sector x0 �AA 0 with the vertex x0 and opening

in the direction �AA 0. Define the Laplace transform

FgðxÞ :¼
ð
g

e�xxFðxÞdx
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with g ¼ �qðx0 �AA 0Þ. Then Fg is holomorphic of exponential type in a sectorial

neighborhood of infinity in direction A�. Cauchy theorem shows that if F is

entire of exponential type, then Fg ¼ 0, which allows us to define

LðF mod OðCÞexpÞ ¼ Fg:

The construction of L ¼ L�1 will not be used in this paper.

2.1.2. ‘‘Large’’ Laplace isomorphism

The Laplace transform L defined in the previous subsection can be applied

only to a function FðxÞ satisfying a growth condition at infinity. At a price of

changing the target space of L this restriction can be removed as follows.

For details see [5, Pré I.3].

Let �AA ¼ ða0; a1Þ be the copolar of a small arc, where a0; a1 A S1 are

two directions in the complex plane, and let g : R ! C be an endless con-

tinuous path. We will say that g is adapted to �AA if limt!�y gðtÞ=jgðtÞj ! a0,

limt!y gðtÞ=jgðtÞj ! a1, and if the length of the part of g contained in a ring

fz : Ra jzjaRþ 1g is bounded by a constant independent of R.

Let us now construct for a small arc A two mutually inverse isomorphisms

L : Oyð �AAÞ=OðCÞ $ EðA�Þ=E�yðA�Þ : L;

where E�yðA�Þ is the set of sectorial germs at infinity that decay faster than

any function of exponential type (cf. [5, Pré I.0]).

Construction of L. Let C be holomorphic in W, a sectorial neighborhood

of infinity of direction �AA. Let g be a path adapted to �AA in W. It is known

that there is a function F bounded on g such that F�C A OðCÞ; define

LðC mod OðCÞÞ :¼
ð
g

e�xxFðxÞdx mod E�yðA�Þ

Definition. Any of the functions CðxÞ satisfying LðC mod OðCÞÞ ¼ cðxÞ
is called a major of the function cðxÞ.

An equivalence class of functions defined on a subset of C modulo adding

an entire function is also called an integrality class.

The map L respects linear combinations and transforms products of resur-

gent functions into appropriately defined convolutions of majors.

2.1.3. Resurgent functions

Resurgent functions are usually understood to be functions of a large

parameter x. For brevity we will speak of resurgent functions of h to mean

resurgent functions of 1=h.
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Definition. A germ f ðxÞ A Ox0 is endlessly continuable if for any L > 0

there is a finite set WL HC such that f ðxÞ has an analytic continuation along

any path of length < L avoiding WL.

Definition (cf. [27, p. 122]). Let AHS1 HC be a small arc and let A�

be obtained from A by complex conjugation. A resurgent function f ðxÞ (of

the variable x ! y) in direction A� is an element of EðA�Þ=E�y such that its

major ðLf ÞðxÞ is endlessly continuable.

Remark. [5] calls the same kind of object an ‘‘extended resurgent

function’’.

Let (cf. [5, Rés I]) RðAÞ denote the set of endlessly continuable sectorial

germs of analytic functions FðxÞ defined in a neighborhood of infinity in the

direction �AA. Then a resurgent function of x in the direction A� has a major

in RðAÞ.
When we mean a resurgent function gðhÞ of a variable h ! 0, under the

correspondence x ¼ 1=h the sectorial neighborhood of infinity in the direction

A� becomes a sectorial neighborhood of the origin in the direction A, and we

will talk about a resurgent function gðhÞ (for h ! 0) in the direction A.

2.1.4. Examples of resurgent functions

Example 1. ha

The major corresponding to hn for n0 1; 2; 3; . . . is �ð�xÞn�1=

f2i sinðpnÞGðnÞg, and xn�1 Ln x=f2piGðnÞg for n ¼ 1; 2; . . . .

Example 2. ln h.

Example 3. FðhÞ :¼ e1=h, FðhÞ :¼ e�1=
ffiffi
h

p
. ([5, Rés II.3.4])

Example 4. e�1=h2
is zero as a resurgent function on the arc ð�p=4; p=4Þ,

but does not give a resurgent function on any larger arc because there it is no

longer bounded by any function ec=h for c A R.

2.2. Decomposition theorem for a resurgent function

Making rigorous sense of a formula of the type

fðhÞ@
X
k

e�ck=hðak;0 þ ak;1hþ ak;2h
2 þ � � �Þ; h ! 0;
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may be done by explicitly writing an estimate of an error that occurs if we

truncate the k-th power series on the right at the Nk-th term. Resurgent

analysis o¤ers the following attractive alternative: if fðhÞ is resurgent, then the

numbers ck can be seen as locations of the first sheet singularities of the major

FðxÞ, which is expressed in terms of a decomposition of FðxÞ in a formal sum

of microfunctions that we are going to discuss now. Microfunctions, or the

singularities of FðxÞ at ck are related to power series ak;0 þ ak;1hþ ak;2h
2 þ � � �

through the concept of Borel summation, see section 2.3.

2.2.1. Microfunctions and resurgent symbols

Definition (see [5, Pré II.1]). A microfunction at o A C in the direction
�AAHS 1 is the datum of a sectorial germ at o in direction �AA modulo holomor-

phic germs in o; the set of such microfunctions is denoted by

CoðAÞ ¼ �OOoðAÞ=Oo:

A microfunction is said to be resurgent if it has an endlessly continuable

representative. The set of resurgent microfunctions at o in direction �AA is

denoted RoðAÞ ([5, Rés I.3.0, p. 178]).

Definition ([5, Rés I.3.3, p. 183]). A resurgent symbol in direction �AA is

a collection _ff ¼ ðfo A RoðAÞÞo AC such that fo is nonzero only for o in a

discrete subset W A C called the support of _ff, and for any a A A the set CnWa

is a sectorial neighborhood of infinity in direction �AA.

The set of such resurgent symbols is denoted _RRðAÞ, and resurgent symbols

themselves can be written as _ff ¼ ðfoÞo AW A _RRðAÞ or as _ff ¼
P

o AW fo A _RRðAÞ.

Definition. A resurgent symbol is elementary if its support W consists of

one point. It is elementary simple if that point is the origin.

2.2.2. Decomposition isomorphism

The correspondence between resurgent symbols in the direction A and

majors of resurgent functions in direction A depends on a resummation direction

a A A, which we will fix once and for all. The direction a can more concretely

be thought of as arg h or as the direction of the cuts in the x-plane that we are

going to draw.

Let _ff ¼ ðfoÞo AW A RðAÞ be a resurgent symbol with the singular support

W, and a A A. Let Wa ¼ 6
o
oa be the union of rays in the direction a emanat-

ing from the points of W:
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Suppose ([5, p. 182–183]) W is a discrete set (of singularities) in the com-

plement of a sectorial neighborhood of infinity in direction �AA, and a holomor-

phic function F is defined on CnWa and is endlessly continuable. Take o A Wa.

Let Do be a small disc centered at o. Its diameter in the direction a cuts

Do into the left and right open half-discs D�
o and Dþ

o (or top and bottom if

a ¼ Rþ). If Do is small enough, the function FjDþ
o , resp FjD�

o , can be analyti-

cally continued to the whole split disc Donoa. Denote by singo
aþ F, resp.

singo
a� F, the microfunction at o of direction �aa defined by the class modulo

Oo of this analytic continuation.

Theorem 2.1. There is a function F A OðCnWaÞ, endlessly continuable, such

that

singo
aþ F ¼ fo if o A W

0 if not

�
:

In this case we write

F ¼ saþ _ff

and call the inverse map ðsaþÞ�1
the decomposition isomorphism.

An endlessly continuable function sa� _ff can be defined analogously.

The maps saþ, sa� respect sums and convolution products (cf. [5, p. 185,

Rés I, section 4]).

If a resurgent function jðhÞ ¼ jðh; tÞ and its major FðxÞ ¼ Fðx; tÞ depend,

say, continuously in some appropriate sense, on an auxiliary parameter t, the

decomposition into microfuctions ðsaþÞ�1F will depend on t ‘‘discontinuously’’—

an e¤ect referred to as Stokes phenomenon.

2.2.3. ‘‘Homomorphisme de passage’’

The intuitive di¤erence between saþ and sa� is the following: given a major

F with several singularities on the same ray in the direction a, as on Fig. 2.

Fig. 1. Singularities of a major and corresponding cuts.
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Take the ‘‘left-most’’ singularity o0 on this ray and draw a cut from it in the

direction a. We have a choice how to let this cut encircle the other singularities

on the ray o0a: either in the clockwise or in the counterclockwise direction.

Depending on this choice, in general, di¤erent singularities will be visible on the

first sheet. The first, resp., second choice gives the formal sum of microfunc-

tions corresponding to ðsaþÞ�1F, resp., ðsa�Þ�1F.

Following [5, p. 188, Rés I], but changing their notation, consider the map

sa :¼ saþ � ðsa�Þ
�1 : _RRðAÞ ! _RRðAÞ

called the ‘‘homorphisme de passage’’. The map sa is determined by its values

on elementary resurgent sumbols, respects sums and convolution products of

majors.

Denote, further, Sa ¼ sa � 1. The alien derivative is defined as Da ¼
LnðsaÞ ¼

Py
n¼1ð�1Þn�1ðSaÞn=n. There is an obvious decomposition

Da ¼
X
o AC

_DDo;

where _DDo associates to a resurgent symbol _ff the microfunction centered at o

contained in the decomposition of Da
_ff and the index a is suppressed on the

right hand side. By shifting its argument, we can make this microfunction

centered at zero,

ð _DDofÞðxÞ ¼ ðDofÞðx� oÞ;

or, abusing notation, _DDo ¼ e�o=hDo.

If fo is a microfunction centered at o A C , then the support of the for-

mal resurgent symbol Daf
o lies entirely on the ray emanating from o in the

direction a.

Equations involving alien derivatives—so-called ‘‘alien di¤erential

equations’’—will be used in section 7.4.

Fig. 2. Di¤erence between saþ and sa�, where a is a positive real direction: a) two additional

singularities around the horizontal cut; b) and c) the singularities that appear in the formal sum

obtained by applying ðsaþÞ�1 and ðsa�Þ�1, respectively.
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2.2.4. Mittag-Le¿er sum

The concept of a Mittag-Le¿er sum formalizes the idea of an infinite sum

of resurgent functions
P

j jjðhÞ where jjðhÞ have smaller and smaller exponential

type, e.g., j ¼ Oðe�cj=hÞ for cj ! y as j ! y.

Following [5, Pré I.4.1], let Fj, j ¼ 1; 2; . . . ; be endlessly continuable

holomorphic functions, Fj A OðWjÞ, where Wj are sectorial neighborhoods of

infinity satisfying Wj HWjþ1 and 6
j
Wj ¼ C . Then [5] show that there is a

function F A W1 such that

F�
Xn
j¼1

Fj A OðWnþ1Þ; n ¼ 1; 2; . . . :

In this case we will call F the Mittag-Le¿er sum of F1;F2; . . . .

2.3. Borel summation. Resurgent asymptotic expansions

Definition. A resurgent transseries is a formal sum

X
k

e�ck=hðak;0 þ ak;1hþ ak;2h
2 þ � � �Þ;

where:

i) ck form a discrete subset in C in the complement to some sectorial

neighborhood of infinity in direction �AA;

ii) the power series of every summand satisfies the Gevrey condition, and

iii) each infinite sum ak;0 þ ak;1hþ ak;2h
2 þ � � � defines, under formal Borel

transform

B : e�ck=hhl 7! ðx� ckÞl�1 logðx� ckÞ
2piGðlÞ if l A N ;

B : e�ck=h 7! 1

2piðx� ckÞ
;

an endlessly continuable microfunction centered at ck. Until corrected by an

anonymous referee, the author was using the term ‘‘resurgent hyperasymptotic

expansion’’ in his other writings.

The authors of [5] denote by _RRðAÞ (regular, as opposed to the bold-

faced, R) the algebra of resurgent transseries.

The right and left summations of resurgent asymptotic expansions are

defined in [9] or [5] as follows. Given a Gevrey power series
Py

k¼1 akh
k, re-

place it by a function (the corresponding ‘‘minor’’) f ðxÞ ¼
Py

k¼1 akx
k�1=ðk � 1Þ!,
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assume that f ðxÞ has only a discrete set of singularities, and consider the

Laplace integrals
Ð
½0;aÞ e

�x=h f ðxÞdx along a ray from 0 to infinity in the direc-

tion a deformed to avoid the singularities from the right or from the left, as

on the figure 3.

After some technical discussion, this procedure defines a resurgent function

of h which [5] denote SaGð
Py

k¼1 akh
kÞ and we, for typographical reasons, will

denote BaGð
Py

k¼1 akh
kÞ. Comparing the results of the left and right resum-

mations lead to the notion of the ‘‘homomorphisme de passage’’ discussed

earlier.

Proposition 2.2. If a resurgent microfunction is given by an asymptotic

expansion in integer powers of h, then it defines a resurgent function for all arg h.

2.4. Small resurgent functions

Definition ([5, Pré II.4, p. 157]). A microfunction j A CðAÞ is said to be

a small microfunction if it has a representative F such that F ¼ oð1=jzjÞ
uniformly in any sectorial neighborhood of direction �AA for A 0 HHA.

Fig. 3. Integration paths for the left and right summation.

Fig. 4. Logical relationship of di¤erent concepts in resurgent analysis.
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For example, ha for a > 0 satisfies that property.

The following definition has been somewhat modified compared to ([5, Rés

II.3.2, p. 219]).

Definition. For a given arc of direction A, a small resurgent function is

such a resurgent function that all singularities of its major oa satisfy Re oa > 0,

except maybe for one o0 ¼ 0, and if o0 ¼ 0 then the corresponding micro-

function is small in the direction of a large (i.e. > 2p) arc B with B̂BIA, see

figure 5.

For example, hae�c=h defines a small resurgent function for any a and

c > 0.

Lemma 2.3 ([15]). A small resurgent function can be represented by a major

that is oð1=jxjÞ around the origin.

We refer to [15] for a proof that if gðtÞ is a holomorphic function in

the neighborhood of the origin and jðhÞ is a small resurgent function, then

gðjðhÞÞ is again resurgent. In particular, in this case the function 1=ðcþ jðhÞÞ
is resurgent for 00 c A C , and therefore functions representable by resurgent

asymptotic expansions Bfe�c=hða0 þ a1hþ a2h
2 þ � � �Þg with a0 0 0 have a re-

surgent inverse. We do not know if an arbitrary nonzero resurgent function

has a resurgent inverse.

3. Resurgent solutions of a di¤erential equation

3.1. Existence problem

The book [27, Ch.III.1] discusses the resurgence properties of solutions of

an equation

hm qmc

qqm
þ hm�1Pm�1ðqÞ

qm�1c

qqm�1
þ � � � þ P0ðqÞc ¼ 0;ð2Þ

Fig. 5. Arcs in the definition of a small resurgent microfunction.
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where PjðqÞ are entire functions on C ; or, equivalently, one discusses why the

Laplace transformed equation

q

qx

� ��m
qmC

qqm
þ Pm�1ðqÞ

q

qx

� ��mþ1
qm�1C

qqm�1
þ � � � þ P0ðqÞC ¼ 0ð3Þ

has m linearly independent multivalued endlessly continuable solutions Cjðq; xÞ
giving resurgent solutions of (2) via cjðq; hÞ ¼ LCjðq; xÞ.

The author has been unable to verify certain claims in the proof in [27] but

believes that its result is correct. We are also aware of existence of the preprint

[12], addressing similar questions. The author hopes to o¤er a further expo-

sition of this background material in his future work.

The methods of [27] should equally well work to prove the existence result

in the case when P0; . . . ;Pm�1 are analytic with respect to q in the whole

complex plane and depend polynomially on h. This covers the equations of

the form

½�h2q2q þ V0ðqÞ þ hV1ðqÞ�c ¼ Ec;ð4Þ

where either E is a complex number (‘‘energy level’’), or E ¼ hEr and Er is a

complex number (‘‘rescaled energy’’). In these cases we expect that the major

of cðE; q; hÞ, resp., cðEr; q; hÞ can be chosen to holomorphically depend on E,

respectively, on Er, and on q.

We proved in [15] that this would imply that the equation (4) also has

resurgent solutions when E ¼ hjðhÞ and jðhÞ is a small resurgent function.

3.2. Towards the notion of a parameter-dependent resurgent function

Solutions of equations of type (2) should provide examples of parameter-

dependent resurgent functions. An ultimate treatment of this notion should

perhaps wait until all the details in [27]’s or other authors’ approach to (3)

have been clarified and we precisely know the properties of functions Cðx; qÞ,
therefore we will restrict ourselves here to some preliminary remarks.

First of all, resurgent functions were defined in section 2.1.3 as equivalence

classes of true functions modulo functions of sub-exponential decay for h ! 0.

If we want to introduce a function cðq; hÞ which is, say, analytic with respect

to q and resurgent with respect to h, we can either:

1) require that for any fixed value of q the function cðq; hÞ mod E�y is

resurgent in h, that cðq; hÞ analytically depends on q as a true function of h,

and not assume that majors Cðq; xÞ have anything to do with each other for

di¤erent values of q, or
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2) require that there exist a choice of majors Cðq; xÞ (as true functions

of x, not as classes modulo entire functions) which analytically depend on q for

q in some open set in C and x on a Riemann surface where all corresponding

Cðq; xÞ are simultaneously defined.

We prefer the latter concept, as it allows us to define a derivative of a

resurgent function with respect to a parameter easily, and we hope that this

property will eventually be established for solutions of (3) as functions of q and

of the coe‰cients of the equation (3). Working with the former concept is

probably more di‰cult because di¤erentiation with respect to q does not a priori

preserve the E�y-condition with respect to h.

The next issue is substitution of a resurgent function fðhÞ into a parameter

E of a resurgent function cðE; hÞ whose major CðE; xÞ analytically depends

on E. The choice of E in this notation should be suggestive of the main

example—when E is a parameter in the Schrödinger equaton, say, (6); we will

for the moment suppress the dependence on q. Substitution of E ¼ fðhÞ ¼ Erh

where Er is a complex number is routinely done in [8] and [9], and we will

not discuss it here. It is important, however, that locations of singularities

of majors C rðEr; xÞ of crðEr; hÞ ¼ cðErh; hÞ do not depend on Er, and it is

expected from the general theory that majors C rðEr; xÞ are analytic with respect

to Er. In [15] we have proven that for a small resurgent function fðhÞ the

composite function crðfðhÞ; hÞ is again resurgent and has a transseries expansion

that one would expect from formal manipulation with transseries expansions

of f and cr.

3.3. Formal resurgent symbol solutions of the Schrödinger equation

Given now an h-di¤erential operator Pðq; hqq; hÞ, one can consider ‘‘actual’’

solutions of Pj ¼ 0 that are resurgent with respect to q. The word ‘‘actual’’ is

put here in the quotation marks because resurgent solutions are still formal

objects defined mod E�y, and they solve the di¤erential equation in the sense

of transseries expansions, i.e. mod E�y. On the other hand, we have formal

solutions of this equation:

Definition. fðqÞ ¼ eSðqÞ=hða0ðqÞ þ ha1ðqÞ þ � � �Þ is called an elementary for-

mal resurgent (WKB) solution of Pf if fðqÞ defines a resurgent microfunction

for any q and if a0ðqÞ þ ha1ðqÞ þ � � � satisfies the equation eSðqÞ=hPe�SðqÞ=h in the

sense of formal power series in h, and the Borel sum of the series defines a

resurgent microfunction for every q in an appropriate domain.

A formal resurgent symbol solution, or, for brevity, formal solution, is a

formal sum of elementary formal solutions which defines, via decomposition

theorem, a resurgent function for every value of q in the considered domain.
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Now let us specialize to a Schrödinger-type equation

Pcðq; hÞ :¼ �h2q2qcðq; hÞ þ Vðq; hÞcðq; hÞ ¼ 0;ð5Þ

where Vðq; hÞ ¼ V0ðqÞ þ hV1ðqÞ. Define a turning point of P as a q� such that

V0ðq�Þ ¼ 0. A turning point is called simple, double, etc., depending on the

multiplicity of this zero.

We will define the classical momentum by pðqÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�V0ðqÞ

p
; two determi-

nations of this square root define a two-sheeted ramified cover of the complex

plane of the variable q, which is customarily referred to as the Riemann surface

of the classical momentum. Fixing a point q0 on the Riemann surface of pðqÞ,
we further consider a classical action Sðq; hÞ ¼

Ð q
q0
pðq 0Þdq 0 which is defined on

the universal cover of C with the turning points removed.

In a neighborhood of every q A C that is not a turning point, there are two

linearly independent formal solutions of (5) of the form

fðq; hÞ ¼ eiSðqÞ=hða0ðqÞ þ a1ðqÞhþ a2ðqÞh2 þ � � �Þ:

We will say that f corresponds to the first or to the second sheet of the

Riemann surface of pðqÞ depending in whether dSðqÞ=dq coincides with first or

the second sheet value of pðqÞ.
Once the result about existence of resurgent solutions for (5) is established,

resurgence of formal solutions fðq; hÞ will follow as well.

The correspondence between actual and formal solutions of a di¤erential

equations is not straightforward is the subject of the next subsection.

3.4. Stokes phenomenon

Assume cðq; hÞ ¼
Ð
g
Cðq; xÞe�x=h dx be a Laplace integral representing a

q-dependent resurgent function c and C and c both depend analytically on q

in a suitable sense. Then we expect that locations of singularities of C move

continuously with respect to q, which may result in that the collection of

singularities visible on the first sheet will start changing and this result in an

apparent discontinuity of the transseries expansion with respect to h; see

example on figure 6.

Not every time, however, when c2ðqÞ crosses the cut starting at c1ðqÞ the

transseries expansion has to change. It is also possible that the singularity that

disappears from the first sheet equals the singularity that simultaneously appears

on the first sheet, figure 7. In this situation [30] says that the singularities at

c1ðqÞ and c2ðqÞ are decoupled and that there is no Stokes phenomenon.

According to [30], for an equation of type (5) the Stokes phenomenon can

only happen when q crosses one of at most countably many curves on the

complex plane of q. More specifically, let us give the following
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Definition. A Stokes curve corresponding to P and to resummation

direction a is a curve on the Riemann surface of the classical momentum given

by arg½iSðqÞ � iSðq0Þ� ¼ a, where SðqÞ is the classical action.

Stokes curves either go from a turning point to infinity, or end in an

other turning point. In the last case we call them double, or bounded Stokes

curves. Stokes curves split the complex plane of q into Stokes zones or Stokes

regions.

The canonical length of an unbounded Stokes curve is defined to be infinite,

and that of a bounded Stokes curve is taken to be the absolute value ofÐ
pðq 0Þdq 0 along this curve.

Fig. 6. On this figure the first sheet of the Riemann surface of Cðq; xÞ is shown for fixed q in

projection to the complex plane of x. Suppose Cðq; xÞ has two singularities c1ðqÞ and c2ðqÞ present

on the first sheet (part a) and therefore cðq; hÞ has a transseries expansion of the form e�c1=hð. . .Þþ
e�c2=hð. . .Þ. As the value of q changes, the singularities move along the shown trajectories, and for

a di¤erent value of q (part b) the singularity c2ðqÞ has moved to under the cut starting at c1 to the

second sheet; in this situation cðq; hÞ@ e�c1ðqÞ=hð. . .Þ.

Fig. 7. Two equal singularities at c2ðqÞ: one appearing on and the other disappearing from the first

sheet; c1 is drawn as independent of q for simplicity.
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Fix a Stokes zone A. It is explained in [30] that if cþðq; hÞ, c�ðq; hÞ are

elementary formal resurgent solutions of (5) corresponding to di¤erent deter-

minations of the classical momentum and if cðq; hÞ is an ‘‘actual’’ resurgent

solution of (5), then there are resurgent symbols Aþ, A� (which we will by

abuse of notation write as if they were functions of h) such that a transseries

expansion

cðq; hÞ@AþðhÞcþðq; hÞ þ A�ðhÞc�ðq; hÞ

holds for all q inside A. In the resurgent literature this idea is usually expressed

by saying that away from the Stokes curves analytic continuation of formal

solutions of a di¤erential equation corresponds to analytic continuation of actual

solutions.

Given two Stokes zones A and B and two transseries expansions of the

same ‘‘actual’’ resurgent solution cðq; hÞ@AþðhÞcþðq; hÞ þ A�ðhÞc�ðq; hÞ and

cðq; hÞ@BþðhÞcþðq; hÞ þ B�ðhÞc�ðq; hÞ valid in A and B respectively, the

connection problem consists in finding a 2� 2 matrix of resurgent symbols

such that

Bþ
B�

� �
¼ cþþ cþ�

c�þ c��

� �
Aþ
A�

� �
:

This matrix is called a connection matrix.

Typically one solves the connection problem for neighboring Stokes zones

first. The basic result is the following:

Theorem 3.1 (see [30]). Suppose q1 is a simple turning point, and L is an

unbounded Stokes curve emanating from q1. Consider two elementary formal

WKB solutions c�, cþ corresponding to two opposite determinations of classical

momentum and normalized to be 1 at a point q0 in the Stokes region A. Let cþ
be exponentially growing, and c� exponentially decreasing away from q1 along

L. Then a solution representable by a formal resurgent symbol Aþcþ þ A�c�
in the Stokes region A will be representable by a formal resurgent symbol

Aþcþ þ ðA� þ CAþÞc� in the Stokes region B, where C is the monodromy of

the formal solution cþ along the path s, see figure 8.

The equation (6) that will occupy us in this article has double turning

points, and the derivation of connection formulae for that case from Theorem

3.1 is the subject of section 7.

If a di¤erential equation (5) admits two linearly independent solutions

representable (away from the turning points) by resurgent transseries with

respect to h, then its connection coe‰cients between di¤erent Stokes regions

will be automatically resurgent. Indeed, calculation of these connection coef-
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ficients involves splitting a major of a resurgent solution cðq; hÞ into resurgent

microfunctions and dividing those microfunctions by resurgent microfunctions of

the type BðeSðqÞ=hða0ðqÞ þ a1ðqÞhþ � � �Þ representing formal WKB solutions of

(5) and having resurgent inverses by section 2.4.

4. Plan of the proof of the main result

In order to solve the eigenvalue problem for the equation

�h2
d 2

dq2
þ ð f 0Þ2 � hf 00

� �
cðq; hÞ ¼ Ecðq; hÞ; E ¼ Oðe�const=hÞ;ð6Þ

and to prove theorem 1.2, we start by studying in section 5 its formal solutions.

Unlike actual solutions of (6), its formal solutions are not in general univalued

functions of q, and they can have monodromies around various loops in the

q-plane, discussed in subsection 5.3.

In order to pass from formal to actual solutions of (6), we need to study

the geometry of its Stokes curves in section 6. For E ¼ hEr ¼ Oðe�const=hÞ, the
turning points of (6) will be double, and the derivation of relevant connection

formulas will be given in section 7.

In section 8.1 we will define a transfer matrix F dependent on Er which is

basically the product of connection matrices across the double turning points.

It is in terms of F that we will write the quantization condition (20)—the

condition on Er that (6) has an actual solution satisfying cðqÞ ¼ cðqþ 1Þ. In

section 8.2 we will rewrite the quantization condition as a polynomial in terms

of quantities mj and tj that are, morally, const � Er and const � Ere
�const=h.

The section 9 deals with the question how to solve an equation of such

form for Er. We will draw a Newton polygon of the equation by plotting a

term E jek=h as a point with coordinates ð j; kÞ and present an iterative procedure

to recursively obtain smaller and smaller e�const=h-order terms in the transseries

Fig. 8. The path used in the calculation of the connection coe‰cient in Theorem 3.1. As q1 is a

branch point of the classical momentum pðqÞ, we drew a corresponding branch cut.
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expansion of Er. The outcome of the section 9 is that the quantization condi-

tion that we set up treating Er as a complex number, can be solved for Er and

the solution will be a resurgent function in h if all the ingredients mj and tj of

the quantization condition are resurgent (plus some additional technical con-

ditions). Note that we can substitute small resurgent functions for Er in the

equation (6) for E ¼ hEr, as we discussed in detail in [15].

We finish the proof by plotting in section 10 the Newton polygon corre-

sponding to the quantization conditon (21) and concluding that this quantiza-

tion condition has a correct number of exponentially small solutions.

5. Formal WKB solutions and formal monodromies

From now on we let the function f ðqÞ be a polynomial in sin 2pq and

cos 2pq, real for real q, we let f have n real local minima q1; . . . ; q2n�1 and n

real local maxima q2; . . . ; q2n on the period, where 0 < q1 < q2 < � � � < q2n�1 <

q2n < 1. We require f 00ðqjÞ0 0.

A monodromy of an elementary formal WKB solution along some path

rðtÞ on a universal cover ~CC of Cnfturning ptsg is defined as cðrð1ÞÞ=cðrð0ÞÞ
and will be denoted exp½2pisr�. Since this expression is a quotient of two

resurgent microfunctions representable in the form eSðqÞ=hðconstþOðhÞÞ, it is

a resurgent microfunction and therefore the power series in h representing sr
is resurgent.

We are going to calculate various monodromy exponents sg, sd, etc. as a

resurgent symbol, and therefore we do not therefore care about Stokes phe-

nomena in this section.

5.1. Cuts, signs and branches

In this section we will discuss formal WKB solutions of

Pc :¼ ½�h2q2q þ ð f 0Þ2 � hf 00�c ¼ Ec;ð7Þ

where E is a complex number.

For E0 0 and jEj su‰ciently small, the classical momentum pðqÞ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E � ð f 0ðqÞÞ2

q
is defined on a two sheeted cover of the complex plane of q.

For E ¼ 0, the two determinations of pðqÞ areGf 0ðqÞ, and one can think of the

Riemann surface of pðqÞ as of two separate sheets having contact at points qj
where f 0ðqjÞ ¼ 0.

The formulas related to formal solutions of the equation 7 can be estab-

lished, for definiteness, for E > 0, and then analytically continued to other

values of E, whenever appropriate.
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When E > 0 and jEj is su‰ciently small, the double turning points qj on

the real axis for E ¼ 0 split into pairs q�j < qj < qþj ð< q�jþ1Þ of simple turning

points still on the real axis. The Riemann surface of

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E � ð f 0Þ2

q
will be de-

scribed as the plane with cut connecting q�j to qþj and going a little below the

real axis. To specify the determination of pðq;EÞ on the first sheet, we define

ArgðE � ð f 0Þ2Þ for real values of q on figure 9. As E ! 0, on the first sheet

ipðq;EÞ ! f 0ðqÞ.

5.2. Formal solutions

In order to find a formal WKB solution of (7), we will be looking for a

series

yðh; qÞ ¼ y0ðqÞ þ hy1ðqÞ þ h2y2ðqÞ þ � � �

solving

ðP� EÞ exp

ð q i
h

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E � ð f 0Þ2

q
þ yðq 0Þdq 0

� �� �
¼ 0:

We arrive at the Riccati equation

�2yðqÞi
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E � ð f 0Þ2

q
� hyðqÞ2 þ i

f 0f 00ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E � ð f 0Þ2

q � hy 0ðqÞ � f 00 ¼ 0;

that allows to calculate yj’s recursively:

y0ðqÞ ¼
f 0f 00

2ðE � ð f 0Þ2Þ
� f 00

2i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E � ð f 0Þ2

q ;

etc.

There is a following way to repackage this series in h. Let us argue more

generally for an equation

�h2q2qcþ VðqÞc ¼ Ecð8Þ

where E A C and VðqÞ ¼ V0ðqÞ þ hV1ðqÞ.

Fig. 9. Choice of Arg E � ð f 0Þ2.
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Proposition 5.1. There is a power series ~yyðqÞ ¼ ~yy0ðqÞ þ h~yy1ðqÞ þ h2~yy2ðqÞ
þ � � � such that

c ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E � VðqÞ

p
þ h~yy

q exp
i

h

ð q
f
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E � VðqÞ

p
þ h~yygdq

� �
ð9Þ

is a formal solution of (8). Moreover:

1) Changing the determination of
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E � VðqÞ

p
changes the sign of ~yy;

2) ~yy contains only odd powers of h, starting from h1, i.e. ~yy2k ¼ 0.

Proof. Solving a Riccati equation corresponding to (8), e.g. [21, § 2.1], we

can obtain a power series yðqÞ ¼ y0 þ y1hþ � � � such that

exp

ð
dq

i

h

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E � VðqÞ

p
þ yðqÞ

� �� �

is a formal WKB solution of (8). Knowing yðqÞ and the relation

yðqÞ ¼ i

h
f
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E � VðqÞ

p
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E � V0ðqÞ

p
þ h~yyg � 1

2
d lnf

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E � VðqÞ

p
þ h~yyg;

we can obtain a recursive relation for ~yyj’s.

To prove the first property, substitute (9) into (8) and obtain after simpli-

fication:

�h2qq
ð�1Þ
2

qqð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E � VðqÞ

p
þ h~yyÞ

ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E � VðqÞ

p
þ h~yyÞ3=2

þ ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E � VðqÞ

p
þ h~yyÞ2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

E � VðqÞ
p

þ h~yy
q

þ VðqÞ � Effiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E � VðqÞ

p
þ h~yy

q ¼ 0:

It is obvious that simultaneous change of the determination of
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E � VðqÞ

p
and

of the sign of ~yy preserves this equality.

This equality will also be preserved if we simultaneously change of sign of h

and the sign of ~yy, therefore ~yy contains only odd powers of h. r

5.3. Calculation of monodromy exponents

Given a formal WKB solution cðq; hÞ of our di¤erential equation and

a path rðtÞ, 0a ta 1, on the Riemann surface of the classical momentum, we

will define the formal monodromy of c along the path r as e2pisr ¼ cðrð1Þ; hÞ=
cðrð0Þ; hÞ and call sr the monodromy exponent. In case cðq; hÞ is representable

by a product eSðqÞ=h times a resurgent power series in h, the formal monodromy

405Resurgent Analysis of the Witten Laplacian



and the monodromy exponent will be resurgent as well. One can think of sr
and e2pisr as of resurgent asymptotic expansions in h or as of corresponding

microfunctions; we will be suppressing this distinction.

As before, let gk (resp., g 0k) be a counterclockwise loop around the pair of

turning points qþk , q
�
k on the first (resp., second) sheet of the Riemann surface

of the momentum, and denote e2pisg1 and e
2pisg 0

1 the corresponding monodromies

of formal WKB solutions along these loops. Analogously, let e2pisdk and e
2pisd 0

k

be the monodromies of formal solutions along the figure-eight loops shown on

the Figure 10.

It is elementary to calculate directly the leading powers of h in the power

series representing resurgent symbols sgk . In order to derive the corresponding

expansions of sg 0
k
, sdk , sd 0k , one argues as follows for g 0k, and similarly for dk

and d 0k.

Lemma 5.2. We have sgk þ sg 0
k
¼ �1.

Proof. Denote VðqÞ ¼ ½ f 0ðqÞ�2 � hf 00ðqÞ and use proposition 5.1. If we

multiply two formal solutions corresponding to di¤erent sheets, we will get

�1=f
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E � VðqÞ

p
þ h~yyg. Since h~yy can be disregarded for the sake of this argu-

ment, and E � VðqÞ has two zeros inside the contour, the argument of this

fraction turns by �2p as we run around gk. Hence the lemma. r

Summarizing,

Proposition 5.3. The monodromy exponents satisfy the formulas listed on

the figure 10, where the sign A means mod OðE2=hÞ þOðhÞ.

The knowledge about two more formal monodromies will be needed in the

later sections. Let qk � e be close enough to qk. The path sk is defined for

Fig. 10. Various formal monodromy exponents.
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E > 0 as starting at qk � e on the first sheet, going under the cut between q�k
and qþk , and ending at qk � e on the second sheet; the path s 0

k is obtained

from sk by interchanging the sheets, figure 11.

We easily obtain:

Lemma 5.4. e�2pissk ¼ �e
2piss 0

k .

Yet another elementary calculation shows that:

Proposition 5.5. We have for k odd

ð
sk

� f 00

2i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E � ð f 0Þ2

q
2
64

3
75dq ¼ Ln � 2f 0ðqk � eÞffiffiffiffi

E
p

� �
ð1þOðEÞÞ;

and for k even

ð
s 0
k

� f 00

2i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E � ð f 0Þ2

q
2
64

3
75dq ¼ �Ln

2f 0ðqk � eÞffiffiffiffi
E

p
� �

ð1þOðEÞÞ:

Here the branch of the logarithm is real for qk � e on the real line to the left

of q�k .

Finally, we will define paths s 00
k and sk as on figure 12.

By deforming integration contours one immediately sees that

ss 00
k
¼ �ssk þ sd 0k ; ssk ¼ �ss 0

k
þ sdk :ð10Þ

Fig. 11. Paths sk and s 0
k .

Fig. 12. Paths s 00
k and sk .
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6. Stokes pattern and the connection problem

We are interested in the spectrum of the Witten Laplacian

P ¼ �h2q2q þ ð f 0Þ2 � hf 00

with periodic f and periodic boundary conditions on the eigenfunctions. Ac-

cording to the usual philosophy (see, e.g., [8]), we will take the formal WKB

solutions of this equation, consider the Stokes curves and the Stokes regions and

solve the connection problems between di¤erent Stokes regions.

If arg h ¼ 0, the Stokes pattern (i.e. the picture formed by all Stokes curves)

for the equation

ð�h2q2q þ ð f 0Þ2 � hf 00Þcðq; hÞ ¼ hErcðq; hÞð11Þ

is as shown on figure 13. Namely, from every real turning point there will

emanate four perpendicular Stokes curves two of which will go along the real

line and connect nearby real turning points.

As is made clear in [9], it is easier to solve the connection problems when

all Stokes curves are simple. Since there are only finitely many turning points

inside a period 0aRe q < 1, there is a number a0 > 0 that for 0 < arg h < a0
there are no double Stokes curves. Then, by continuity considerations cus-

tomary in resurgent analysis, for these values of arg h the decomposition of

solutions into microfunctions is the same as for arg h ¼ 0þ.

Therefore from now on we shall fix such arg h > 0; the Stokes pattern will

deform as shown on figure 14. We will further choose e so that qj � e lie

between Stokes curves. These points will be used in the calculation of the

connection matrices across the double turning points.

6.1. Properties of the Stokes pattern

The fact that for a polynomial f the Stokes pattern does not have any

pathologies, is almost obvious and well known. Our f is not a polynomial,

but instead a trigonometric polynomial f ðqÞ ¼ Pðsin 2pq; cos 2pqÞ. Still, this is

enough to have a nice Stokes pattern (without, e.g., dense families of Stokes

Fig. 13. The Stokes pattern for the equation (11) in case arg h ¼ 0.
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curves), as we will now demonstrate. The condition that f is a trigonomet-

ric polynomial in this paper is imposed in order to be able to prove these

lemmas.

Lemma 6.1. If f ðqÞ ¼ Pðsin 2pq; cos 2pqÞ, P a polynomial, then for 0a

Re q < 1 there are only finitely many critical points.

Proof. Indeed, by passing to t ¼ sin 2pq, one can find an algebraic equa-

tion satisfied by sines of all critical points of f . r

Lemma 6.2. Under above assumptions, all the Stokes curves are contained

in the union of finitely many real curves given by algebraic equations on Re and

Im of sin 2pq.

Proof. The condition for a point q to lie on a Stokes curve emanating

from a turning point qj (real or not), arg½ f ðqÞ � f ðqjÞ� ¼ a can be translated

into Re½ f ðqÞ � f ðqjÞ� ¼ k Im½ f ðqÞ � f ðqjÞ� for some constant k A C , which in

turn implies an algebraic equation on Re and Im of sin 2pq. Since there are

finitely many critical points qj, and every real algebraic curve has finitely many

connected components ([33, Th.3]), the lemma follows. r

Lemma 6.3. Under above assumptions there is 0 < y0 f 1 such that for

0 < jarg hj < y0 there are no double Stokes curves.

Proof. It follows from the finiteness of the set

farg½ f ðqiÞ � f ðqjÞ� j qi; qj turning ptsg: r

Fig. 14. The Stokes pattern for 0 < arg hf 1.
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7. Connection formulae for a double turning point

Consider the equation

½�h2q2q þ ð f 0Þ2 � hf 00�c ¼ Ec:ð12Þ

For E A C and 0 < jEjf 1, the equation (12) pairs of simple turning points

q�j and qþj , dependent on E, which coalesce to double turning points qj when

E becomes zero or hEr for Er A C or Er a small resurgent function of h. We

are going to imitate [9, section 4.1]’s method of passing to the limit E ! 0

and deriving connection formulae across Stokes curves emanating from qj for

E ¼ hEr based on connection formulas across Stokes curves emanating from

qþj , q�j for E0 0. We will see that [9]’s argument does not change signifi-

cantly, but a detailed discussion of [9]’s method will stay outside of the scope of

this article.

To simplify notation, we will argue in this section for double turning points

q1 where f 00ðq1Þ > 0 and q2 where f 00ðq2Þ < 0; similar connection formulae hold

true for other double turning points qj as well.

Take a point q1 for which f 0ðq1Þ ¼ 0. Consider the basis c�ðq;E; hÞ,
cþðq;E; hÞ of formal resurgent WKB solutions of (12) normalized to be 1 at

some point q1 � e near q1. For E near 0, the geometry Stokes curves will

vary, but the Stokes zones R and R 00, figure 15, will remain well-defined.

Let the resurgent symbol cðE; zÞ be one of the connection coe‰cient

between the Stokes zones R and R 00 for di¤erent values of E with jEj small

enough, given in the basis c�ðq;EÞ, cþðq;EÞ.
Although cðE; zÞ (or, by abuse of notation cðE; hÞ) is discontinuous with

respect to E, the corresponding resurgent function defined for E > 0 as CðE; hÞ ¼
L½sarg hþcðE; zÞ� and analytically continued for other values of E, is a holomor-

phic function of E (for E A U HC), i.e. has a representative (as a sectorial germ

mod E�y) that is holomorphic with respect to E. This follows by the same

argument as given in [9, p. 60, section 4.1]. This will allow to calculate cðE; zÞ

Fig. 15. Deformation of a double turning point into a pair of simple turning points.
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for E > 0, pass to CðE; hÞ, analytically continue the result to the case E ¼ Erh

and pass again to a resurgent symbol cðErh; zÞ.
We will obtain a formula for the transseries expansion of CðE; hÞ for E a

positive real number, but this transseries will look singular for E ! 0, and so

there is no hope of naively substituting hEr for E in that expression. When

E ! 0, the behavior of the microfunction decomposition of CðE; hÞ resembles

the behavior of a WKB asymptotic wave function near a turning point.

Namely, CðE; hÞ is a resurgent function of h for any E, but when E A Cnf0g
and orbits around the origin, the decomposition of CðE; hÞ into microfunction

undergoes Stokes phenomena, as we shall see shortly. When one analyzes the

behavior of a WKB wave function near a simple turning point, one compares it

to the Airy function; we will see that CðE; hÞ for E ! 0 should be compared

with an expression involving Gamma function.

Notation. Following [9] and others, denote ar ¼ e2pisr the monodromy of

a formal WKB solution along a contour (or even any path) r on the Riemann

surface of the classical momentum.

7.1. Connection paths for nonsingular E

Let us assume 0 < Ef 1 and study the ‘‘deformed’’ equation (12), its

Stokes pattern and its connection problem.

7.1.1. Case when f has a local minimum

Consider the complex plane of q near the point q1 where f ðqÞ has a local

minimum. The equation (12) for 0 < Ef 1 will have two turning points q�1
and qþ1 ; the Stokes curves and the Stokes zones R, R 00 are shown on fig. 16.

Let us consider two formal solutions cþðq; hÞ and c�ðq; hÞ of (12) corre-

sponding to the first and to the second sheets of the Riemann surface of the

classical momentum and normalized in such a way that cþðq1 � eÞ ¼ c�ðq1 � eÞ
¼ 1. In order to make them univalued functions of q, introduce additional

‘‘vertical’’ cuts on both sheets as shown on fig. 16.

For E ! 0 the formal solution cþ, resp. c�, will behave like e
f f ðqÞ� f ðq1�eÞg=h,

resp. e�f f ðqÞ� f ðq1�eÞg=h, and so cþ and c� will be dominant (exponentially

growing) or recessive (exponentially decreasing) in the direction away from the

turning point along the Stokes curves marked by dom or rec on fig. 16.

Following [8] and using Theorem 3.1, an actual solution representable by a

formal WKB solution cþ in the Stokes zone R is representable in the zone R 00

as the sum of analytic continuations of that formal solution along the paths

1 and 2 0, fig. 16, left, and the path 2 0 is homotopic to the path 1 0 of analytic

continuation of the formal solution c� from R to R 00 concatenated with s1.
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Similarly, an actual solution representable by the formal solution c� in R is

representable by the sum of analytic continuations of c� along the paths 1 0, 2,

3, fig. 16, right, and the paths 2 and 3 are homotopic to the path 1 of analytic

continuation of the formal solution cþ from R to R 00 concatenated with the

path reverse to s1 and with the path s 00
1 , respectively.

Paths 1, 1 0, 2, 2 0, 3 are called connection paths in the literature on

resurgent analysis. Paths gj, sj, etc. have been defined on fig. 10, 11, and 12.

We see that

C ðq1Þ ¼ cþþ c�þ
cþ� c��

� �
¼ 1 ðas1Þ�1 þ as 00

1

as1 1

 !

¼ 1 ðas1Þ�1ð1þ ed
0
1Þ

as1 1

 !
¼ 1 ðas1Þ�1ð1� ag1Þ

as1 1

 !
;

where we have used (10).

The monodromies ad1 , ad 01 are analytic in E when E ! 0, the limiting

behavior of ss1 will be studied in more details the next subsection.

7.1.2. Case when f has a local maximum

Around q2 which splits for E > 0 into two simple turning points qG2 , the

horizontal Stokes curves on the first sheet will be recessive.

Let us consider two formal solutions cþðq; hÞ and c�ðq; hÞ of (12) corre-

sponding to the first and to the second sheets of the Riemann surface of the

Fig. 16. The Stokes pattern for (12) near q1 and the ‘‘connection paths’’ on the first sheet (left)

and on the second sheet (right).
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classical momentum and normalized in such a way that cþðq2 � eÞ ¼ c�ðq2 � eÞ
¼ 1. In order to make them univalued functions of q, introduce additional

‘‘vertical’’ cuts on both sheets as shown on fig. 17.

In all of the considerations of the q1 case reverse the roles of the upper and

the lower sheets and obtain:

C ðq2Þ ¼ 1 as 0
2

ðas 0
2Þ�1 þ as2 1

� �
¼ 1 as 0

2

ðas 0
2Þ�1ð1þ ad2Þ 1

� �

¼ 1 as 0
2

ðas 0
2Þ�1ð1� ðag2Þ�1Þ 1

� �
:

7.2. Asymptotic representation of C

Throughout this subsection E is a number 0 < jEjf 1 such that all

turning points are simple. Let q�1 ðEÞ and qþ1 ðEÞ be simple turning points

near q1.

Earlier we have associated to a connection coe‰cient cðE; hÞ :¼
cþ�ðE; hÞ ¼ expð2piss1Þ (which is a resurgent symbol) a resurgent function

CðE; hÞ that is representable by cðE; hÞ for E > 0 and has (as a class mod E�y)

a representative holomorphic with respect to E in a full complex neighborhood

of the origin.

Definition (cf. [9, def.0.6.3]). A parameter-dependent resurgent function

jðu; hÞ is said to depend regularly on u near u0 its major has the origin as its

only singularity in a small disc jxj < e, independent of u near u0.

Let, further, Fðu; xÞ be a major of a parameter dependent resurgent func-

tion jðu; hÞ. As u ! u0, some singularities on the Riemann surface of Fðu; xÞ,
say, x ¼ s1ðuÞ and x ¼ s2ðuÞ may collide, s1ðu0Þ ¼ s2ðu0Þ, in which case they are

called confluent singularities for u ! u0, as opposed to other singularities which

are isolated for u ! u0.

A parameter-dependent microfunction centered at oðuÞ is called a local

resurgence constant, if it has a representative jðu; xÞ without singularities on

Fig. 17. Domain of definition of cþ (left) and c� (right) near q2.
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the first sheet confluent with oðuÞ for u ! u0. Equivalently, we require that
_DDoj ¼ 0 for every o in some neighborhood of u0 independent of u.

These concepts apply to our situation with u equal to E and u0 ¼ 0.

Theorem 7.1 (Compare [9, Th.4.1.1, p. 61]). We have

CðE; hÞ ¼ e2½ f ðq1Þ� f ðq1�eÞ�=h
ffiffiffiffiffiffi
2p

p
h�sd1

Gðsd1 þ 1=2ÞC
redðE; hÞ;ð13Þ

where sd1 ¼ sd1ðE; hÞ is the monodromy exponent along d1, whereas C redðE; hÞ is

an invertible holomorphic function of E, resurgent with respect to h and corre-

sponding to an elementary simple resurgent symbol, depending regularly on E in

a neighborhood of 0.

Remark. One can see from the integral representations given in [3] that

the function h�sd1=Gðsd1 þ 1=2Þ is resurgent with respect to h and has a repre-

sentative (as a class modulo E�y) that is holomorphic with respect to E.

However, the function h�sd1 and Gðsd1 þ 1=2Þ are not resurgent by themselves

because they do not satisfy the growth conditions for h ! 0þ.

A more precise calculation of Cred is carried out below by using the exact

matching method.

Proof of the theorem.

In the subsection 7.4 we will give a proof (compare [9, p. 58]) that c

satisfies the following local resurgence equation (see section 2.2.3 for notation)

_DD�inog1
c ¼ ð�1Þn�1

n
a�nd1c ðn A Znf0gÞð14Þ

and its minor has no other confluent singularities than the integral multiples of

og1 ¼
Ð
g1
i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E � ½ f 0ðqÞ�2

q
dq. This equation is a local resurgence equation in the

following sense: the statement about the alien derivative should hold for jEj
small enough (how small, depends on n), and the equality is true only modulo

microfunctions whose supports are separated from zero for E ! 0.

To write a general solution of that resurgence equation, recall that [5, Pro

I.4.3] states (up to rescaling of x ¼ 1=h) that if for a microfunction a

_DD2pina ¼ ð�1Þn�1

n
e�2pinxa for n A Z � ¼ Znf0g;

Doa ¼ 0 for o B 2piZ �;

then

ðsaÞðxÞ ¼ ðx=eÞx
ffiffiffiffiffiffi
2p

p
=Gðxþ 1=2ÞðsbÞ;ð15Þ
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where _DDob ¼ 0 for all o A C close enough to the center of the microfunction b.

Note also [3] for an excellent exposition of resurgence properties of the gamma

function.

Take sd1 as a new resurgent variable instead of x ¼ 1=h; then the resurgence

equation found earlier becomes

_DD
ðsd1 Þ
2pin c ¼

ð�1Þn�1

n
e�2pinsd1 c;

hence, by (15),

ðscÞðE; hÞ ¼ ðsd1e�sd1 Þ
ffiffiffiffiffiffi
2p

p

Gðsd1 þ 1=2Þ sðc
0ðE; hÞÞ;

for a local resurgence constant c 0.

Since ðhsd1Þ
�sd1 is a local resurgence constant as well, we can absorb it in

C 0 and obtain a new local resurgent consant Cred whose resurgent symbol is

credðE; hÞ:

CðE; hÞ ¼
ffiffiffiffiffiffi
2p

p
h�sd1

Gðsd1 þ 1=2Þ sðc
redðE; hÞÞð16Þ

The facts that Cred is holomorphic in E and invertible and that the symbol cred

is elementary and simple for all 00E A C can be shown as in [9]. r

The contributions to the connection coe‰cients CðE; hÞ due to the turning

points far away are of the exponential order negative the length of some double

Stokes curves for appropriate arg h. This is what some authors probably mean

when they say that di¤erent turning points are ‘‘decoupled’’.

It is clear that analogous statements will hold for the formal monodromy

along s 0
2.

7.3. Calculation of C red by the exact matching method

In this section we will take the formula (13) for the connection coe‰cient

and pass to the limit when E stops being a positive real number and becomes

hEr. We will use the fact that hEr can be substituted into the fraction

h�sd1 =Gðsd1 þ 1=2Þ easily. Thus, the real task will be to calculate credðE; hÞ
for E replaced by hEr.

We are studying the connection problem across the double turning point qk,

k ¼ 1; 2; . . . ; 2n, for the di¤erential equation

½�h2q2q þ VðqÞ þ hV1ðqÞ�c ¼ hErc;ð17Þ

where in our case VðqÞ ¼ ½ f 0ðqÞ�2 and V1ðqÞ ¼ � f 00ðqÞ.
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The exact matching method given in [9, § 5.1.1, p. 74] for the Schrödinger

equation without the hV1ðqÞ term and the argument justifying it applies equally

well to our case. It would be perhaps desirable to give a more detailed treat-

ment of this method and its proof, as we plan to do elsewhere.

For odd j, we will denote by c 0j the limit of the monodromy e2pissj of

formal solutions of (12) when a positive real number E is replaced by hEr, and

for even j let cj denote the corresponding limit of e2pissj .

To simplify notation, we are going to treat two representative double

turning points q1 and q2, where f ðqÞ has a local minimum and a local maxi-

mum, respectively; the analogous formulas will hold for other qj as well.

7.3.1. Exact matching method around q1

Instead of calculating the monodromies of formal solutions of (17), we will

calculate them for the equation

½�h2q2q þ VðqÞ þ hðV1ðqÞ � V1ðq1ÞÞ�c ¼ hðEr � V1ðq1ÞÞc ¼ hE 0
rcð18Þ

and then substitute E 0
r ¼ Er � V1ðqÞ in the answer. Denote by ~ccred , ~ssd1 etc. the

objects defined from the equation (18) similarly to cred , sd1 etc. for (17).

We will calculate the asymptotic expansion in h representing ~ccredðE; hÞ for

0 < Ef 1 from the formula

sð~ccredðE; hÞÞ ¼ expð2pi~ssd1Þ
ffiffiffiffiffiffi
2p

p
h�~ssd1

Gð~ssd1 þ 1=2Þ

" #�1

;

and then substitute hE 0
r for E into this power series.

Easy algebra shows that

expð2pi~sss1Þ ¼ �i exp
i

h
DS þ DRþOðhÞ

� �
;

where

DSðE; q0Þ ¼
ð
s1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E � ð f 0Þ2

q
dq 0; DR ¼

ð
s1

f 00 � f 00ðq1Þ

2i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E � ð f 0Þ2

q dq

with determinations of the square root given as on figure 9.

The Stirling formula (applied for jhj ! 0 with E fixed) together with the

property ~ssd1 þ 1=2 ¼ �~ssg1 and the definition og1 ¼
Ð
g1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E � ½ f 0ðqÞ�2

q
dq yieldffiffiffiffiffiffi

2p
p

h�~ssd1

Gð~ssd1 þ 1=2Þ ¼ exp
1

h
�og1

2p
þ og1

2p
ln �og1

2p

� �� �� �
ð1þOðhÞÞ:
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Therefore

~ccredðE; hÞ ¼ �i exp
1

h
iDS þ og1

2p
� og1

2p
ln �og1

2p

� �� �
þ DR

� �
ð1þOðhÞÞ:

An elementary but lengthy calculation shows that iDS þ og1=ð2pÞ �
og1=ð2pÞ ln½�og1=ð2pÞ� is analytic with respect to E for E near zero, and

iDS þ og1

2p
� og1

2p
ln �og1

2p

� �

¼ 2½ f ðq1Þ � f ðq1 � eÞ� �
ð
s1

E dq

2i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E � ð f 0Þ2

q � og1

2p
ln �og1

2p

� �
þOðE 2Þ:

Using results of section 5.3, we haveð
s1

dq

2i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E � ð f 0Þ2

q ¼ 1

f 00ðq1Þ

ð
s1

f 00ðqÞdq

2i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E � ð f 0Þ2

q � 1

f 00ðq1Þ

ð
s1

f 00ðqÞ � f 00ðq1Þ

2i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E � ð f 0Þ2

q dq

¼ � 1

f 00ðq1Þ
Ln � 2f 0ðq1 � eÞffiffiffiffi

E
p ð1þOðEÞÞ

� �
� 1

f 00ðq1Þ
DR;

and also

�E

ð
s1

dq

2i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E � ð f 0Þ2

q � og1

2p
ln �ogðEÞ

2p

� �

¼ E
1

f 00ðq1Þ
Ln � 2f 0ðq1 � eÞffiffiffiffi

E
p

� �
þ 1

2f 00ðq1Þ
ln

E

2f 00ðq1Þ

� �� �
þ oðEÞ

¼ E

f 00ðq1Þ
Ln � 2f 0ðq1 � eÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2f 00ðq1Þ
p

" #
þ oðEÞ:

Now we can substitute E ¼ hE 0
r in the above expression and calculate the

connection coe‰cient for the equation (18) (up to a factor ð1þOðhÞ þOðEÞÞ)

e2pi~ssd1 jE¼hE 0
r
A�ie2½ f ðq1Þ� f ðq1�eÞ�=h

ffiffiffiffiffiffi
2p

p
h�E 0

r =ð2f 00ðq1ÞÞ

GðE 0
r=ð2f 00ðq1ÞÞ þ 1=2Þ

� exp
E 0
r

f 00ðq1Þ
Ln � 2f 0ðq1 � eÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2f 00ðq1Þ
p

" #
þ E 0

r

f 00ðq1Þ
� 1

� �
DR

" #
;

where it is important that DR as a function of E is bounded for E ! 0.

Inserting E 0
r ¼ Er þ f 00ðq1Þ, obtain:
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e2pisd1 jE¼hEr
A�i

ffiffiffiffiffiffi
2p

p
h�ðErþ f 00ðq1ÞÞ=ð2f 00ðq1ÞÞ

GððEr þ f 00ðq1ÞÞ=ð2f 00ðq1ÞÞ þ 1=2Þ

� exp
Er þ f 00ðq1Þ

f 00ðq1Þ
Ln � 2f 0ðq1 � eÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2f 00ðq1Þ
p

" #" #

� exp
Er

f 00ðq1Þ

� �
DRþ 2½ f ðq1Þ � f ðq1 � eÞ�

h

� �
:

We will need this result for Er not a complex number, but a resurgent function

of negative exponential type, in which case we can simplify:

c 01jEr¼OðhÞ ¼ e2pisd1 jE¼hEr¼Oðh2ÞA
2i

ffiffiffi
p

p
f 0ðq1 � eÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hf 00ðq1Þ

p e2½ f ðq1Þ� f ðq1�eÞ�=h;

where A means that an equality holds up to a factor 1þOðhÞ.

7.3.2. Exact matching method around q2

Following the same line of thought for the situation around the turning

point q2, we conclude

c2A�Er

i
ffiffiffiffiffiffi
ph

p

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j f 00ðq2Þj

p
f 0ðq2 � eÞ

e�2½ f ðq2Þ� f ðq2�eÞ�=h;

where A stand for an equality up to a factor ð1þOðhÞÞ.

7.4. Alien di¤erential equation for the connection coe‰cient

We will derive here an alien di¤erential equation of a connection coe‰cient

c ¼ e2piss1 , where q1 A R is a local minimum of the function f . Up to small

details, a similar argument can be repeated for a local maximum of f as well.

The main theoretical ingredient is the following:

Theorem 7.2 ([7]). Let g be a path on the Riemann surface of the momen-

tum (closed or not). Let ag the monodromy of the formal solution along g. Fix

a resummation direction, or arg h, to be a. Then:

1) If g intersects no Stokes curves in direction a, then Daa
g ¼ 0;

2) same if g intersects a simple Stokes curve;

3) if g intersects a double Stokes curve in the direction a with a period

cycle r, then saa
g ¼ ð1G arÞag.

The period cycle of a double Stokes curve is a closed path r encircling both

ends of the double Stokes curve and oriented in such a way that the exponential

type of ar is negative, figure 18.
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We will consider the equation (12) for 0 < Ef 1, but for all possible values

of arg h. As we know, the Stokes curves depend on the resummation direction

arg h. In particular, for arg h ¼Gp=2 there will be a short double Stokes curve

connecting q�1 and qþ1 , and for arg h close to these two values the Stokes pattern

will ‘‘bifurcate’’ as shown on figures 19 and 21.

Consider the connection problem for resurgent solutions of (12) from a

neighborhood of the point a to the neighborhood of b shown on fig. 19. Let

cþ and c� be, as usual, formal WKB solutions such that cþðaÞ ¼ c�ðaÞ ¼ 1.

They will be univalued functions of q once we make a cut between q�1 and qþ1
and a horizontal cut (dashed line) to the right of qþ1 .

Fig. 18. A period cycle of a double Stokes curve.

Fig. 19. Bifurcation of the Stokes pattern around q1 for Arg h ¼ p=2G 0.

Fig. 20. Connection paths l1, l2, l 0
1 , l 0

2 .
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For Arg h ¼ p=2þ 0 the actual solution of (12) represented by cþ at a is

represented by cþ þ ðal1 þ al2Þc� at b; for Arg h ¼ p=2� 0 the representation

at b is cþ þ ðal1Þc�. Since c�ðbÞ is a resurgence constant, we obtain

sp=2þ0ððal1 þ al2ÞÞ ¼ sp=2�0a
l1 ;

sp=2ðal1 þ al2Þ ¼ al1 ;

and since al2ðal1Þ�1 ¼ ad1 by deformation of the integration contour, we obtain:

sp=2a
l1 ¼ al1ð1þsp=2a

d1Þ�1

Using the definition of the alien derivative as LnðsaÞ, obtain (14) for positive n.

Now let us study a similar bifurcation of the Stokes pattern for Arg h ¼
�p=2G 0.

For Arg h ¼ �p=2þ 0 the solution represented by cþ at a is represented

by cþ þ ðal 0
1 þ al 0

2Þc� at b; for Arg h ¼ �p=2� 0 the representation at b is

cþ þ ðal 0
1 Þc�. Since cþðbÞ is a resurgence constant, therefore

s�p=2þ0ðal 0
1 þ al 0

2Þ ¼ s�p=2�0a
l 0
1 ;

s�p=2ðal 0
1 þ al 0

2Þ ¼ al 0
1 :

Using the fact that s is a multiplicative homomorphism get:

s�p=2ðal1ðal 0
1 þ al 0

2ÞÞ ¼ al 0
1s�p=2a

l1 ;

ðal 0
1 Þ�1s�p=2ð�1þ al1al 0

2ÞÞ ¼ s�p=2a
l1 ;

al1s�p=2ð1� ðag1Þ�1Þ ¼ s�p=2a
l1 :

Fig. 21. Bifurcation of the Stokes pattern around q1 for Arg h ¼ �p=2G 0.
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We will now use the equality s�p=2ð1� ðag1Þ�1Þ ¼ 1� ðag1Þ�1 þ r, where the

exponential type of r is estimated by the canonical length of the Stokes curves

for arg h ¼ p=2 starting at qG1 . Modulo terms of that exponential type, obtain:

s�p=2a
l1 Aal1ð1þ ad1Þ;

and taking the logarithm of sa, obtain the part of (14) for negative n.

8. Transfer matrix and quantization condition

In this section we are studying the quantization condition for the Witten

Laplacian with the superpotential f having n local minima and n local maxima.

The eigenvalue of the Witten Laplacian in this section will be written as hEr,

Er A C .

Let fþ, f� be the formal resurgent solutions of

ð�h2q2q þ ½ f 0�2 � hf 00Þf ¼ hErfð19Þ

corresponding to the first and second sheet of the Riemann surface, normalized

in such a way that fþðq0Þ ¼ f�ðq0Þ ¼ 1 and defined on the domains (complex

plane with vertical cuts starting at qj) shown on fig. 22.

8.1. The transfer matrix

We would like to write down a condition that for a given Er our equation

(19) has a periodic solution, jðq; hÞ ¼ jðqþ 1; hÞ. After that, the eigenvalue

problem for (19) will reduce to solving that condition with respect to Er.

The following definition of the transfer matrix F will in spirit resemble the

definition of the connection matrices between two Stokes zones. Suppose an

actual solution jðq; hÞ is representable as A�c� þ Aþcþ around q0, where A�
and Aþ are some constant resurgent symbols and c� and cþ the element-

ary formal solutions of our di¤erential equation with, to fix ideas, c�ðq0Þ ¼
cþðq0Þ ¼ 1, and, as we assume the statements of section 3.1, q0 A C can be

chosen arbitrarily so that f 0ðq0Þ0 0. Since the coe‰cients of (19) are periodic,

Fig. 22. Domains of fþ and f�.
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the function jðqþ 1Þ will also be its solution, and therefore representable as

B�c� þ Bþcþ. We will define the transfer matrix F by the relation

B�
Bþ

� �
¼ F

B�
Bþ

� �
:

This matrix F is obtained as a composition of analytic continuations of

formal solutions inside the Stokes regions and connection matrices between

di¤erent Stokes regions, as explained below.

The entries of the matrix F are formal resurgent symbols dependent on Er.

It is clear that Er is an eigenvalue of the Witten Laplacian if and only if it is a

solution of the following quantization condition:

detðFðErÞ � IdÞ ¼ 0:ð20Þ

In fact, we will presume that Er is a number to set up this equation, then solve

it and find its resurgent solutions, then by [15] one can substitute Er into the

original equation and obtain its resurgent solutions satisfying the periodic

boundary conditions.

8.2. From connection matrices to quantization condition

If in the basis cþ, c� of formal WKB solutions such that cþðq1 � eÞ ¼
c�ðq1 � eÞ ¼ 1 the connection matrix across the turning point q1 equals C, then

in the basis fþ, f� of formal WKB solutions such that fþðq0Þ ¼ f�ðq0Þ ¼ 1 the

corresponding matrix will be written as

fþðq1 � eÞ 0

0 f�ðq1 � eÞ

� ��1

C
fþðq1 � eÞ 0

0 f�ðq1 � eÞ

� �
:

Composing connection matrices from the Stokes zone containing q1 � e (cf.

fig. 14) to the zone containing q2 � e, from the zone containing q2 � e to the

zone containing q3 � e, etc, to the zone containing ðq1 � eÞ þ 1, obtain:

Proposition 8.1. In the basis fþ, f� the transfer matrix F equals

F ¼

fþð1Þ
fþðq2n � eÞ 0

0
f�ð1Þ

f�ðq2n � eÞ

0
BBB@

1
CCCAC ðq2n; eÞ

fþðq2n�1 � eÞ
fþðq2n�1 � eÞ 0

0
f�ðq2n � eÞ
f�ðq2n�1 � eÞ

0
BBB@

1
CCCA

� . . .�

fþðq2 � eÞ
fþðq1 � eÞ 0

0
f�ðq2 � eÞ
f�ðq1 � eÞ

0
BBB@

1
CCCAC ðq1; eÞ fþðq1 � eÞ 0

0 f�ðq1 � eÞ

� �
:
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Here C ðqj ; eÞ is a connection matrix across a double turning point qj in the basis of

formal WKB solutions normalized to 1 at qj � e, as in section 7.

The product of the matrices in proposition 8.1 has the structure

F ¼
B2n

B 0
2n

� �
1 c2n

c 02n 1

� �
A2n�1

A 0
2n�1

� �
1 c2n�1

c 02n�1 1

� �

� . . .� A2

A 0
2

� �
1 c2

c 02 1

� �
A1

A 0
1

� �
1 c1

c 01 1

� �
B0

B 0
0

� �
:

Put

F 0 ¼
B0

B 0
0

� �
F

B0

B 0
0

� ��1

and put A2n :¼ B2nB0, then

F 0 ¼
A2n A2nc2n

A 0
2nc

0
2n A 0

2n

� �
A2n�1 A2n�1c2n�1

A 0
2n�1c

0
2n�1 A 0

2n�1

� �

� . . .� A2 A2c2

A 0
2c

0
2 A 0

2

� �
A1 A1c1

A 0
1c

0
1 A 0

1

� �
;

F 0 ¼
A2nA2n�1 þ A2nc2nA

0
2n�1c

0
2n�1 A2nA2n�1c2n�1 þ A2nc2nA

0
2n�1

A 0
2nc

0
2nA2n�1 þ A 0

2nA
0
2n�1c

0
2n�1 A 0

2nc
0
2nA2n�1c2n�1 þ A 0

2n�1A
0
2n

� �

� � � A2A1 þ A2c2A
0
1c

0
1 A2A1c1 þ A2c2A

0
1

A 0
2c

0
2A1 þ A 0

2A
0
1c

0
1 A 0

2c
0
2A1c1 þ A 0

1A
0
2

� �
:

Let mk ¼ ckc
0
k and consider what [8] call monodromies along the tunneling

cycles:

t2k�1 ¼ c 02k�1A
�1
2k�1c2kA

0
2k�1; t2k ¼ c2kðA 0

2kÞ
�1
c 02kþ1A2k;

where k ¼ 1; . . . ; n and c2nþ1 ¼ c1.

F 0 ¼ c2n

1

� �
� A2nA2n�1c

�1
2n þ A2nA

0
2n�1c

0
2n�1 A2nA2n�1c

�1
2n c2n�1 þ A2nA

0
2n�1

A 0
2nA2n�1c

0
2n þ A 0

2nA
0
2n�1c

0
2n�1 A 0

2nA2n�1c2n�1c
0
2n þ A 0

2n�1A
0
2n

� �

� . . .� c2

1

� �
A2A1c

�1
2 þ A2A

0
1c

0
1 A2A1c1c

�1
2 þ A2A

0
1

A 0
2A1c

0
2 þ A 0

2A
0
1c

0
1 A 0

2A1c1c
0
2 þ A 0

1A
0
2

� �
:

After some calculations, get
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F 0 ¼ c2nA2nðA 0
2nÞ

�1

1

 !
t�1
2n�1 þ 1 m2n�1t

�1
2n�1 þ 1

m2nt
�1
2n�1 þ 1 m2n�1m2nt

�1
2n�1 þ 1

� �
c 02n�1

1

� �

� . . .� c2A2ðA 0
2Þ

�1

1

 !
t�1
1 þ 1 m1t

�1
1 þ 1

m2t
�1
1 þ 1 m1m2t

�1
1 þ 1

� �

� c 01
1

� �
A 0

1A
0
2A

0
3 . . .A

0
2n�1A

0
2n:

Define the matrix G by

c 01
1

� �
F 0 ¼ G

c 01
1

� �
;

then

G ¼ c 02nþ1c2nA2nðA 0
2nÞ

�1

1

 !
t�1
2n�1 þ 1 m2n�1t

�1
2n�1 þ 1

m2nt
�1
2n�1 þ 1 m2n�1m2nt

�1
2n�1 þ 1

� �

� . . .� c 03c2A2ðA 0
2Þ

�1

1

 !
t�1
1 þ 1 m1t

�1
1 þ 1

m2t
�1
1 þ 1 m1m2t

�1
1 þ 1

� �
c 01

1

� �
A 0

1A
0
2 . . .A

0
2n;

G ¼ t2n

1

� �
t�1
2n�1 þ 1 m2n�1t

�1
2n�1 þ 1

m2nt
�1
2n�1 þ 1 m2n�1m2nt

�1
2n�1 þ 1

� �

� . . .� t2

1

� �
t�1
1 þ 1 m1t

�1
1 þ 1

m2t
�1
1 þ 1 m1m2t

�1
1 þ 1

� �
A 0

1A
0
2A

0
3 . . .A

0
2n�1A

0
2n:

Let k be such that A 0
1A

0
2 . . .A

0
2n ¼ 1þ Erk; more precisely:

Lemma 8.2. For every Er A C small enough, there exists a resurgent symbol

k ¼ kðEr; hÞ ¼ a0ðErÞ þ a1ðErÞhþ a2ðErÞh2 þ . . . such that

A 0
1A

0
2 . . .A

0
2n ¼ 1þ Erk

and k is holomorphic with respect to Er.

Remark that the coe‰cients ajðErÞ are also holomorphic with respect to E,

as immediately follows from the iterative procedure of calculating them.

Proof of the lemma. Recall that A 0
j ¼ f�ðqjþ1 � eÞ=f�ðqj � eÞ, where

f�ðq; hÞ is the formal solution corresponding to the lower sheet of pðqÞ. This

means that the product A 0
1A

0
2 . . .A

0
2n is the formal monodromy around the loop

from q0 to q0 þ 1 of the formal solution corresponding to the second sheet.

But for Er ¼ 0 this solution can be taken as exp½�ð f ðqÞ � f ð0ÞÞ=h� with the

trivial monodromy, hence the lemma. r
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Introduce a new matrix G0 by G0 ¼ ð1þ ErkÞ�1
G.

Lemma 8.3. The matrix G0 can be written in the form

G0 ¼
1þ Eg11 Eg12

Eg21 1þ Eg22

� �
;

where gij are resurgent symbols holomorphically dependent on Er.

Proof. Easily shown by induction. It is true for n ¼ 1 and a product of

two such matrices is again of this form. r

The quantization condition can now be rewritten as detðG � IÞ ¼ 0, i.e.

1

1þ Erk

� �2
� Tr G0

1

1þ Erk
þ det G0 ¼ 0:ð21Þ

8.3. Ingredients of the quantization condition

In order to solve the quantization condition (21) for Er, it is important to

understand the determinant and the trace of the matrix G0.

Lemma 8.4. We have

det G0 ¼ t�1
1 t2 . . . t

�1
2n�1t2nð1� m1Þð1� m2Þ . . . ð1� m2nÞ ¼ 1þ Erd;

where d depends holomorphically on Er.

Proof. For the first equality, use multiplicativity of det and the case n ¼ 1.

The second equality follows from the expressions for tj and mj established

below. r

To simplify notation, we will calculate tj for j ¼ 1; 2; the similar formulae

will hold for other j’s.

Calculation of t1. We know from 7.3.1 that

c 01 ¼
2i

ffiffiffi
p

p
f 0ðq1 � eÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hf 00ðq1Þ

p e2½ f ðq1Þ� f ðq1�eÞ�=hð1þOðhÞ þOðErÞÞ;

c2 ¼ �Er

i
ffiffiffiffiffiffi
ph

p

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j f 00ðq2Þj

p
f 0ðq2 � eÞ

e�2½ f ðq2Þ� f ðq2�eÞ�=hð1þOðhÞ þOðErÞÞ;

and we are going to calculate that

A�1
1 A 0

1 ¼ e�2½ f ðq2�eÞ� f ðq1�eÞ�=h f 0ðq2 � eÞ
f 0ðq1 � eÞ ð1þOðhÞ þOðErÞÞ:
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Together, this will yield

t1 ¼ c 01c2A
�1
1 A 0

1

¼ Er
pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

f 00ðq1Þj f 00ðq2Þj
p e�2½ f ðq2Þ� f ðq1Þ�=hð1þOðhÞ þOðErÞÞ:

This is how A�1
1 A 0

1 is calculated: A1 and A 0
1 are formal monodromies

along the contours shown on figure 23.

The exponent is obvious. To find the Oð1Þ term, calculateð q2�e

q1�e

f 0f 00

2ðE � ð f 0Þ2Þ
� f 00

2i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E � ð f 0Þ2

q
2
64

3
75dq;

where the path of integration is chosen on the first sheet.

First summand: When we calculate the di¤erence of
Ð q2�e

q1�e
f 0f 00=f2ðE�

ð f 0Þ2Þgdq along the paths on the first and on the second sheets, since the

function does not change on the first and on the second sheet, we can reduce

the question to calculating
Ð
g1
f 0f 00=f2ðE � ð f 0Þ2Þgdq and this integral is �pi.

Second summand: Notice that the integral on the first sheet from q1 � e

to q2 � e isð q2�e

q1�e

f 00

2i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E � ð f 0Þ2

q dq ¼
ð q2�e

q1�e

f 00

2f 0 dqþOðEÞ

¼ 1

2
log

f 0ðq2 � eÞ
j f 0ðq1 � eÞj

� �
þ pi

2
þOðEÞ:

A similar calculation works for the second sheet and yieldsð q2�e

q1�e

f 00

2i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E � ð f 0Þ2

q dq ¼ � 1

2
log

f 0ðq2 � eÞ
j f 0ðq1 � eÞj

� �
þ pi

2
þOðEÞ;

so we get

A�1
1 A 0

1 ¼ e�2½ f ðq2�eÞ� f ðq1�eÞ�=h f 0ðq2 � eÞ
f 0ðq1 � eÞ ð1þOðEÞÞ:

Fig. 23. Integration contours defining A1 and A 0
1.
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Calculation of t2 yields analogously

t2 ¼ c2c
0
3A2ðA 0

2Þ
�1 ¼ Er

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j f 00ðq2Þj f 00ðq3Þ

p e�2½ f ðq2Þ� f ðq3Þ�=hð1þOðhÞ þOðErÞÞ:

Remark. Further terms in the asymptotic expansion of tj can perhaps be

calculated similarly to [9, p. 82–83].

Calculation of mj. We defined mj as the products of o¤-diagonal elements

in the connection matrices C ðqjÞ obtained in subsection 7.1. We have for odd j:

mj ¼ 1þ e
2pisd 0

j ¼ 2pi sdj �
1

2

� �
ð1þOðErÞ þOðhÞÞ

¼ Er

pi

f 00ðqjÞ
ð1þOðhÞ þOðErÞÞ;

and similarly for even j:

mj ¼ 1þ e
2pisdj ¼ Er

pi

j f 00ðqjÞj
ð1þOðhÞ þOðErÞÞ:

9. Resurgent solutions of a resurgent transcendental equation

The quantization condition will be an equation on Er whose left hand side

can be written as a polynomial in Er, plus a correction that is exponentially

small for h ! 0þ. More precisely, the quantization condition will satisfy the

assumptions of the following:

Lemma 9.1. If we have an ‘‘approximately’’ polynomial equation on Er

fnðEr; hÞEn
r þ an�1 fn�1ðEr; hÞEn�1

r þ � � � þ a1 f1ðEr; hÞEr þ a0 f0ðEr; hÞ ¼ 0ð22Þ

with jakja ½Ce�c=h�n�k
and fkðEr; hÞ ¼ 1þOðErÞ þOðhÞ, then its solutions are

of exponential typeaCe�c=h.

Proof. It is obvious. r

9.1. Newton polygon

Given an equation of the form (22), for every term E j
r ð1þOðErÞÞek=h on

its left hand side plot a point with the coordinates ð j; kÞ on the plane and a

quadrant with its vertex there and opening in the direction down and to the

right. The convex hull of the union of these quadrants will be called the

Newton polygon of our equation.
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E.g., the equation

3þ ð2þ hÞEre
3=h þ h2Ere

4=h þ E2
r e

5=h

produces a Newton polygon shown on figure 24.

If the equation (22) represents a quantization condition for the Witten

Laplacian, it will satisfy the following additional properties:

Property 1. All terms corresponding to the vertices on the boundary of

the Newton polygon will be of the form e�c=h times a resurgent (micro)func-

tion representable as gðErÞ þ ðsmallÞ and that microfuntion has representatives

holomorphic with respect to Er. This follows essentially from the connection

formulae and from the properties of a major of a resurgent solution of a

di¤erential equation constructed in [27].

Property 2. Singular exponents, i.e. the numbers c in the e�c=h-factors of

the terms of (22), do not depend on Er, since the classical action SðqÞ of the

Witten Laplacian does not depend on Er. Therefore we can decompose the

LHS of (22) into a sum of resurgent microfunctions corresponding to the trans-

series representation
P

i e
ci=hð. . .Þ with ci independent of Er.

It will also be important to keep in mind that the construction of a major

for substitution of a small resurgent function rðhÞ for a holomorphic parameter

E of gðE; hÞ implies that the Newton polygon of a composite function can be

obtained from the Newton polygons of gðE; hÞ and of rðhÞ in exactly the same

way as expected from formal manipulations with the formulas.

9.2. Algebraic equation corresponding to an edge of the Newton polygon

Consider an equation FðEr; hÞ ¼ 0 of type (22) and its corresponding

Newton polygon. It is clear that if the exponential type of a resurgent symbol

Fig. 24. An example of a Newton polygon.
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fðhÞ is not equal to the slope of an edge of the Newton polygon, then such

resurgent symbol cannot be a solution of the equation.

Suppose there is an edge of the Newton polygon on the line y ¼
kxþ b, k > 0, and the two extreme vertices on this edge are E l

r e
ðklþbÞ=h and

E lþneðk½lþn�þbÞ=h. Let us find all resurgent solutions of the equation FðEr; hÞ ¼ 0

of exponential type k.

A substitution Er ¼ e�k=hE0 performs a shearing transformation on the

Newton polygon. If we plot all the terms of the equation f0ðE0; hÞ ¼ 0, where

f0ðE0; hÞ ¼ e�b=hE�l
0 Fðe�k=hE0; hÞ, in the axes corresponding to powers of E0

and of e1=h (figure 25), we will see terms on the horizontal axis between E0
0 and

En
0 , and all other terms will be below the horizontal axis. We are interested

now in finding all resurgent solutions of f0ðE0; hÞ ¼ 0 of zero exponential type;

let us show now that in our situation the number of these solutions equals the

length n of the edge.

Suppose the algebraic equation corresponding to the upper horizontal edge

of the polygon on figure 25 is of the form

A0 þ A1E0 þ � � � þ AnE
n
0 ¼ 0;ð23Þ

where Ak ¼ ak þ bk, where ak are complex numbers such that the equation

a0 þ a1xþ � � � þ anx
n has only simple roots and bk are small resurgent func-

tions. This will be our nondegeneracy condition for the superpotential in the

Witten Laplacian.

Since An is invertible, we can assume An ¼ 1. Let r be a simple root of

this equation modulo OðhÞ, then it is resurgent. Indeed, roots of a polynomial

equation analytically depend on the coe‰cients outside of the discriminant

locus. Then, if the coe‰cients are of the form constð0 0Þ þOðhÞ, we can use

the theorem on resurgence of composition of a holomorphic function and a

small resurgent function ([15]) to conclude that roots will be resurgent.

Fig. 25. A Newton polygon after a shearing transformation Er ¼ e�k=hE0.
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The question of whether more degenerate polynomial equations with resur-

gent coe‰cients have resurgent roots will be studied elsewhere. Note that the

appropriate generality should include resurgent coe‰cients given by resurgent

power series expansions not simply in h, but also in ln h, since this is the form

of the tunnel cycle monodromies tj.

9.2.1. Exponentially small corrections—the second Newton polygon

Viète’s formula shows that every one of resurgent roots r1; . . . ; rn of (23)

has a resurgent inverse; indeed, r1 . . . rn ¼ ð�1ÞnA0=An, so rj ¼ ð�1ÞnAn � A�1
0 �Q

j 00j rj 0 and every factor of this product is resurgent. Now we replace every

Ek
0 e

�d=h, k A Z by ðrþ E1Þke�d=h and get a new Newton polygon with respect

to E1 and we will look for solutions of the new equation with respect to E1

which we will require to be exponentially small. That Newton polygon will

have E1
1 as its leading term because it follows from our assumptions that r is

multiplicity one.

Write our equation in the form

A0 þ A1E0 þ � � � þ An�1E
n�1
0 þ En

0 þ
X

aklE
k
0 e

�cl=h ¼ 0;

where k is also allowed to be negative. If r is the root of the polynomial part

A0 þ A1E0 þ � � � þ AnE
n
0 ¼ 0, use an ansatz E0 ¼ rþ E1. Expanding ðrþ E1Þk

in powers of E1, obtain

B1E1 þ � � � þ Bn�1E
n�1
1 þ En

1 þ
X
kb0;l

e�cl=hbklE
k
1 ;

where bkl are elementary simple resurgent symbols and with B1 ¼ ðconst0 0Þþ
fðhÞ for a small resurgent microfunction f.

The Newton polygon for this new equation now looks like the one on

figure 26, and it is clear that we get only one exponentially small (or zero)

solution.

Fig. 26. A Newton polygon in the E1 variable.
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In case there are term of degree zero in E, there is an upper left edge of the

Newton polygon; using its slope, find an ansatz E1 ¼ e�k=hE2, obtain a Newton

polygon for E2 with the horizontal edge of length one, see figure 27.

Let r1 be the solution of the corresponding linear equation on E2, and use

the ansatz E2 ¼ r1 þ E3 where E3 will be required to stay exponentially small.

Again we get a Newton polygon of the same kind. Etc., we keep obtain-

ing exponentially small corrections of smaller and smaller exponential type. On

the j-th step we are getting solutions modulo E�Nj , where Nj is a sum of

positive numbers 2j f ðqnÞ � f ðqn 0 Þj, where f is the function appearing in (19)

and qn are its real zeros. Therefore the exponents Nj form a discrete subset

of R and therefore the Mittag-Le¿er sum of corrections that we obtain on

successive step of the procedure described in this section is a resurgent function.

9.3. Remarks on justification of the above procedure

The terms of the quantization conditions, or of the equation that we have

been solving, will be shown in the next section to be polynomials in resurgent

symbols tj and mj , as will be derived and explained in the next section. There

arises the following

Terminology issue: mðEr; hÞ is not a function of h, it is a resurgent symbol.

It would be more appropriate to denote it mðEr; zÞ and reserve mðEr; hÞ for

LsþmðEr; zÞ. It is shown in [15] that for Er a number mðEr; zÞ is holomor-

phic for ðEr; zÞ A Dr �Sm for some disc Dr HC and an endlessly continuable

Riemann surface Sm. The same is true for microfunctions t defined on Riemann

surfaces St.

Further, we know that m and t are essentially made of (convolution)

quotients of microfunctions corresponding to singularities on the Riemann sur-

face of the major of a resurgent solution. As that major can be chosen to

analytically depend on Er, so can representatives for mj and tj and also the

majors for samj and samj (cf. [15]). Conclude that the left hand side of our

quantization condition f ðEr; hÞ ¼ 0, which is a polynomial in mj and tj, has a

Fig. 27. A Newton polygon in the E2 variable.
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major that holomorphically depends on Er and defined on the Riemann surface
ySm1 � � � � � ySt2n .

By construction of a major for f ðErðhÞ; hÞ for ErðhÞ a small resurgent

function carried out in [15] and valid just the same for ErðE1; hÞ for ErðE1; hÞ
representable by a major holomorphically dependent on E1, one can see that

the Newton polygon for f ðErðE1; hÞ; hÞ (with respect to the powers of E1 now)

will be what is expected from the formal manipulation with symbols.

10. Solving the quantization condition

We think it is helpful at this point to consider

Special case n ¼ 1, in which

G0 ¼
t2t

�1
1 þ t2 t2m1t

�1
1 þ t2

m2t
�1
1 þ 1 m1m2t

�1
1 þ 1

� �
;

Tr G0 ¼ t2t
�1
1 þ t2 þ m1m2t

�1
1 þ 1; det G0 ¼ t�1

1 t2ð1� m1Þð1� m2Þ:

The Witten Laplacian in this case has an eigenvalue Er ¼ 0 corresponding

to the eigenfunction e�f ðqÞ=h; let us see what it means for the Newton polygon

(figure 29) of the quantization condition (21).

For Er ¼ 0 the condition (21) reduces to

1� Tr G0 þ det G0 ¼ 0;

or

�t2 � m1m2t
�1
1 þ t�1

1 t2ð�m1 � m2 þ m1m2Þ ¼ 0;

where every term on the left hand side vanishes for Er ¼ 0.

We see therefore that all the terms corresponding to the degree ð0; 0Þ vertex
on figure 29 cancel each other, so the Newton polygon will be the hashed subset

without edges of positive slope, and hence the quantization condition (21) has

no nonzero exponentially small solutions.

Fig. 28. A Newton polygon in the E3 variable.
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Newton polygon of the quantization condition in the general case. For each

entry of the matrix G0 one can draw a Newton polygon with respect to powers of

Er and e1=h, as prescribed in section 9.1. In case n ¼ 1 and n ¼ 2 the Newton

polygons are shown on figure 30 and 31. For drawing these figures as well for

the rest of the section we are using that tjs are exponentially small for all j.

Given a resurgent symbol g dependent on Er and subject to appropriate

conditions, its Newton polygon will have several edges of positive slope; take

the right end of the rightmost edge of positive slope and call it the leading term

of the symbol g and denote it by L:T: g. Clearly, L:T:ðg1g2Þ ¼ L:T:g1 L:T:g2.

Lemma 10.1. The leading term of the Newton polygon of (the left hand

side of ) the equation (21) is m1m2 . . . m2nt
�1
1 t�1

3 . . . t�1
2n�1 and has degree n in Er.

Proof. We need to look at the terms of Tr G0 only, because all other

terms give contributions of the form cEk with c of exponential type zero.

Fig. 29. The Newton polygon in the special case n ¼ 1.

Fig. 30. Newton polygons for entries of G0 in case n ¼ 1.
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By the L.T. of a matrix we will denote the matrix of leading terms of each

of its entries.

One shows by induction on n that

L:T:G0 ¼ m1m2 . . . m2nt
�1
1 t�1

3 . . . t�1
2n�1

m�1
1 m�1

2n t2n m�1
2n t2n

m�1
1 1

� �
;

from which the statement of the lemma follows. r

This finishes the proof of the main result of this paper, theorem 1.2.

11. Example

Take as the superpotential

f ¼ 1

2p
sin 2p qþ 1

8

� �
þ cos 4p qþ 1

8

� �� �
;

f 0 ¼ cos 2p qþ 1

8

� �
� 2 sin 4p qþ 1

8

� �
:

Fig. 31. Newton polygons for entries of G0 when n ¼ 2. In case of ðG0Þ12, resp., ðG0Þ21, resp.,
ðG0Þ22. only terms m1t2t

�1
1 t4t

�1
3 and m3t4t

�1
3 , resp., m4t

�1
3 t2t

�1
1 and m2t

�1
1 , resp., m3m4t

�1
3 , m1m2t

�1
1 ,

and m1m4t
�1
1 t2t

�1
3 contribute to the vertex of the Newton polygon of degree 1, resp., 0, resp. 1, with

respect to Er, unless their contributions cancel in which case the corresponding vertex may be

absent or lie lower.
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The critical points of f are all real in this case:

q1 ¼
1

8
f ðq1Þ ¼ 0 f 00ðq1Þ ¼ 6p;

q2 ¼
3

8
� 1

2p
arcsin

1

4
f ðq2Þ ¼

9

16p
f 00ðq2Þ ¼ �7:5p;

q3 ¼
5

8
f ðq3Þ ¼ � 1

p
f 00ðq3Þ ¼ 10p;

q4 ¼
7

8
þ 1

2p
arcsin

1

4
f ðq4Þ ¼

9

16p
f 00ðq4Þ ¼ �7:5p:

The study of the equation (21) tells us that the Witten Laplacian corre-

sponding to the function f will have two low-lying eigenvalues: the zero and

one nonzero exponentially small eigenvalue that will be expressible in terms of

ms and ts. The Newton polygon corresponding to the equation (21) will have

a vertex corresponding to the leading term of degree 2 in Er that can be

obtained by looking at the summand m1m2m3m4t
�1
1 t�1

3 . Our present task is to

find the vertex of the Newton polygon corresponding to term of degree 1 with

respect to Er.

We get (using the formulas for tk)

t1Ae�9=ð8phÞ Erffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6� 7:5

p t2Ae�25=ð8phÞ Erffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
10� 7:5

p

t3Ae�25=ð8phÞ Erffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
10� 7:5

p t4Ae�9=ð8phÞ Erffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6� 7:5

p

m1A i
Er

6
m2A i

Er

7:5

m3A i
Er

10
m4A i

Er

7:5

We have seen in the picture that the there are four terms in the equation

(21) that can produce the vertex of degEr
¼ 1, and they are:

m2m3t
�1
1 t4t

�1
3 A�Er

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
10� 7:5

p e25=ð8phÞ;

m3m4t
�1
3 A�Er

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
10� 7:5

p e25=ð8phÞ;

m1m2t
�1
1 A�Er

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6� 7:5

p e9=ð8phÞ;

m1m4t
�1
1 t2t

�1
3 A�Er

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6� 7:5

p e9=ð8phÞ:
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Therefore the corresponding vertex comes as a sum of contributions of the first

two summands and is located at Ere
17=ð8phÞ.

The leading term in the Newton polygon is

m1m2m3m4t
�1
1 t�1

3 AE2
r

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6� 7:5� 10� 7:5

p eð25þ9Þ=ð8phÞ;

Hence

ErA2

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
10� 7:5

p e25=ð8phÞ

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6� 7:5� 10� 7:5

p eð25þ9Þ=ð8phÞ
A2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6� 7:5

p
e�9=ð8phÞ:

Remark 1. In a more general case, since mj A iRþ and tj A Rþ for E > 0,

h > 0, conclude that the term in the numerator cannot cancel.

Remark 2. The result is clearly what one would expect from [16], but our

case does not satisfy their nondegeneracy conditions.
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[12] Écalle, J., Cinq applications des fonctions résurgentes, Preprint 84T62 (Orsay).

[13] Evgrafov, M. A. and Fedoryuk, M. V., Asymptotic behavior as l ! y of the solution of the

equation w 00ðzÞ � pðz; lÞwðzÞ ¼ 0 in the complex z-plane, Russian Math. Surveys, 21 (1966),

1–48.

[14] Fukaya, K., Multivalued Morse theory, Asymptotic Analysis, and Mirror Symmetry,

Graphs and patterns in mathematics and theoretical physics, Proc. Sympos. Pure Math.,

73, Amer. Math. Soc., Providence, RI, 2005, pp. 205–278.

[15] Getmanenko, A., On eigenfunctions corresponding to a small resurgent eigenvalue,

arXiv:0809.0439v3.

[16] Hel¤er, B., Klein, M. and Nier, F., Quantitative analysis of metastability in reversible

di¤usion processes via a Witten complex approach, Mat. Contemp., 26 (2004), 41–85.
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