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Abstract. We show how to measure the failure of the Whitney trick in dimension 4 by constructing higher-
order intersection invariants of Whitney towers built from iterated Whitney disks on immersed surfaces in

4–manifolds. For Whitney towers on immersed disks in the 4–ball, we identify some of these new invariants

with previously known link invariants like Milnor, Sato-Levine and Arf invariants. We also define higher-
order Sato-Levine and Arf invariants and show that these invariants detect the obstructions to framing a

twisted Whitney tower. Together with Milnor invariants, these higher-order invariants are shown to classify

the existence of (twisted) Whitney towers of increasing order in the 4–ball. A conjecture regarding the non-
triviality of the higher-order Arf invariants is formulated, and related implications for filtrations of string

links and 3-dimensional homology cylinders are described.

Figure 1. Part of a Whitney tower in 4–space.

1. Introduction

Despite how it may appear in high school, mathematics is not all about manipulating numbers or functions
in more and more complicated algebraic or analytic ways. In fact, one of the most interesting quests in
mathematics is to find a good notion of space. It should be general enough to cover many real life situations
and at the same time sufficiently specialized so that one can still prove interesting properties about it. A first
candidate was Euclidean n-space Rn, consisting of n-tuples of real numbers. This covers all dimensions n but
is too special: the surface of the earth, mathematically modelled by the 2–sphere S2, is 2-dimensional but
compact, so it can’t be R2. However, S2 is locally Euclidean: around every point one can find a neighborhood
which can be completely described by two real coordinates (but global coordinates don’t exist).

This observation was made into the definition of an n-dimensional manifold in 1926 by Kneser: It’s a
(second countable) Hausdorff space which looks locally like Rn. The development of this definition started at
least with Riemann in 1854 and important contributions were made by Poincaré and Hausdorff at the turn
of the 19th century. It is believed to cover many important important physical notions, like the surface of the
earth, the universe, and space-time (for n = 2, 3, and 4, respectively) but is special enough to allow interesting
structure theorems. One such statement is Whitney’s (strong) embedding theorem: Any n-manifold Mn can
be embedded into R2n (for all n ≥ 1).

The proof in small dimensions n = 1, 2 is fairly elementary and special, but in all dimensions n > 2,
Hassler Whitney [38] found the following beautiful argument: By general position, one finds an immersion
M → R2n with at worst transverse double points. By adding local cusps, one can assume that all double
points can be paired up by Whitney disks as in Figure 2, using the fact that R2n is simply connected. Since
2 + 2 < 2n and n + 2 < 2n, one can arrange that all Whitney disks are disjointly embedded and also meet
the image of M only on the boundary (as well as satisfying a certain normal framing condition). Then a
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Figure 2. Left: A canceling pair of transverse intersections between two local sheets of
surfaces in a ‘3-dimensional slice’ of 4-space. The horizontal sheet appears entirely in the
‘present’, and the other sheet appears as an arc which is assumed to extend into ‘past’ and
‘future’. Middle: A Whitney disk W pairing the intersections. Right: A Whitney move
guided by W eliminates the intersections.

sequence of (what today are called) Whitney moves leads to the desired embedding of M (Figure 2). To be
more precise, one needs to distinguish between topological and smooth manifolds. A topological n–manifold
is locally homeomorphic to Rn, whereas a smooth manifold is locally diffeomorphic to it (in the given smooth
structure). Whitney’s argued in the smooth setting where transversality and isotopy extension theorems were
readily available. Kirby and Siebenmann [21] made these tools available also in the topological category in
dimensions > 4, see for example page 122 for the topological Whitney move.

The Whitney move, sometimes also called the Whitney trick, remains a primary tool for turning algebraic
information (counting double points) into geometric information (existence of embeddings). It was success-
fully used in the classification of manifolds of dimension > 4, specifically in Smale’s celebrated h-cobordism
theorem [35] (implying the Poincaré conjecture) and the surgery theory of Kervaire-Milnor-Browder-Novikov-
Wall [37]. The failure of the Whitney move in dimension 4 is the main reason that, even today, there is no
classification of 4-dimensional manifolds in sight.

Casson realized that in the setting of the 4-dimensional h-cobordism theorem, even though Whitney disks
can’t always be embedded (because 2 + 2 = 4), they always fit into what is now called a Casson tower.
This is an iterated construction that works in simply connected 4–manifolds, where one adds more and more
layers of disks onto the singularities of a given (immersed) Whitney disk [6]. In an amazing tour de force,
Freedman [12, 13] showed that there is always a topologically embedded disk in a neighborhood of certain
Casson towers (originally, one needed 7 layers of disks, later this was reduced to 3). This result implied the
topological h-cobordism theorem (and hence the topological Poincaré conjecture) in dimension 4. At the
same time, Donaldson used Gauge theory to show that the smooth h-cobordism theorem is wrong [11], and
both results were awarded with a Fields medal in 1982. Surprisingly, the smooth Poincaré conjecture is still
open in dimension 4 – the only remaining unresolved case.

In the non-simply connected case, even the topological classification of 4–manifolds is far from being
understood because Casson towers cannot always be constructed. See [17, 14, 22] for a precise formulation
of the problem and a solution for fundamental groups of subexponential growth. However, there is a simpler
construction, called a Whitney tower, which can be performed in many more instances. The current authors
have developed an obstruction theory for such Whitney towers in a sequence of papers [1, 2, 3, 4, 5, 10, 30,
32, 33]. Even though the existence of a Whitney tower does not lead to an embedded (topological) disk, it
is still a necessary condition. Hence our obstruction theory provides higher-order (intersection) invariants
for the existence of embedded disks, spheres, or surfaces in 4–manifolds.

The easiest example of our intersection invariant is Wall’s self-intersection number for disks in 4-manifolds.
If A : (D2, ∂D2)→ (M4, ∂M) has trivial self-intersection number (we say that the order zero invariant τ0(A)
vanishes) then all self-intersections can be paired up by Whitney disks Wi. However, the Wi now self-intersect
and intersect each other and also the original disk A. Our (first order) intersection invariant τ1(A,Wi)
measures the intersections A t Wi and vanishes if they all can be paired up by (second order) Whitney
disks Wi,j . This procedure continues with an invariant τ2(A,Wi,Wi,j) which measures both A t Wi,j and
Wi t Wk intersections, and the construction of a higher-order Whitney tower W if the invariant vanishes.
W is the union of A (at order 0) and all Whitney disks Wi (order 1), Wi,j (order 2) and continuing with
higher-order Whitney disks. If A is homotopic (rel. boundary) to an embedding then these constructions
can be continued ad infinitum.
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Figure 3. Left: Part of an order 2 Whitney tower on order 0 surfaces Ai, Aj , Ak, and Al.
Right: The labeled tree tp associated to the order 2 intersection point p.

The intersection invariants τn(A,Wi,Wi,j , . . . ) = τn(W) take values in a finitely generated abelian group
Tn which is generated by certain trivalent trees that describe the 1-skeleton of a Whitney tower (Figure 3).
The relations in Tn correspond to Whitney moves, and quite surprisingly most of these relations can be
expressed in terms of the so called IHX-relation which is a geometric incarnation of the Jacobi identity for
Lie algebras. All the relations can be realized by controlled manipulations of Whitney towers, and as a result
we recover the following approximation of the “algebra implies geometry” principle that is available in high
dimensions:

Theorem 1 (Raising the order of a Whitney tower). If A supports an order n Whitney tower W with
vanishing τn(W), then A is homotopic (rel. boundary) to A′ which supports an order n+ 1 Whitney tower.
Compare Theorem 22.

As usual in an obstruction theory, the dependence on the lower order Whitney towers makes it hard
to derive explicit invariants that prevent the original disk A from being homotopic to an embedding. In
this paper we discuss how to solve this problem in the easiest possible ambient manifold M = B4, the
4-dimensional ball. We start with maps

A1, . . . , Am : (D2, S1)→ (B4, S3)

which exhibit a fixed link in the boundary 3–sphere S3. If this link is slice then the Ai are homotopic (rel.
boundary) to disjoint embeddings and our Whitney tower theory gives obstructions to this situation. In the
simplest example discussed above we have m = 1 and the boundary of A is just a knot K in S3:

Theorem 2 (The easiest case of knots [2]). The first order intersection invariant τ1(A,Wi) ∈ T1
∼= Z2 can

be identified with the Arf invariant of the knot K. It is thus a well-defined invariant that only depends on
∂A = K. Moreover, it is the complete obstruction to finding a Whitney tower of arbitrarily high order ≥ 1
with boundary K.

There is a very interesting refinement of the theory for knots in the setting of Cochran, Orr, and Teichner’s
n-solvable filtration: Certain special symmetric Whitney towers of orders which are powers of 2 have a refined
measure of complexity called height, and are obstructed by higher-order signatures of associated covering
spaces [9]. However there are no known algebraic criteria for “raising the height” of a Whitney tower, as
given by Theorem 1.

If m > 1 then the order zero invariant τ0(A1, . . . , Am) is given by the linking numbers of the components
Li := ∂Ai of the link L = ∪mi=1Li ⊂ S3 that is the boundary of the given disks. Milnor [27, 28] showed in
1954 how to generalize linking numbers µ(i, j) inductively to higher order. Here we use the total order n
Milnor invariants µn which correspond to all length (n+ 2) Milnor numbers µ(i1, . . . , in+2).

Theorem 3 (Milnor numbers as intersection invariants). If a link L bounds a Whitney tower W of order n
then the Milnor invariants µk of order k < n vanish. Moreover, the order n Milnor invariants of L can be
computed from the intersection invariant τn(W) ∈ Tn. Compare Theorem 26.

In the remaining sections, we will make these statements precise and explain how to get complete ob-
structions for the existence of Whitney towers for links. Unlike the case of knots, these get more and more
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interesting for increasing order. In addition to the above Milnor invariants (higher-order linking numbers),
we’ll need higher-order versions of Sato-Levine and Arf invariants. In a fixed order, these are finitely many
Z2-valued invariants, so that, surprisingly, the Milnor invariants already detect the problem up to this
2-torsion information.

Theorem 4 (Classification of Whitney tower concordance). A link L bounds a Whitney tower W of order n
if and only if its Milnor invariants, Sato-Levine invariants and Arf invariants vanish up to order n. Compare
Corollary 12.

To prove this classification, we use Theorem 1 to show that the intersection invariant τn(W) leads to a
surjective realization map Rn : Tn � Wn, where Wn consist of links bounding Whitney towers of order n,
up to order n+ 1 Whitney tower concordance (see the next section). The Milnor invariant can be translated
into a homomorphism µn : Wn → Dn, where the latter is a group defined from a free Lie algebra (which can
be expressed via rooted trivalent trees modulo the Jacobi identity). The composition

ηn : Tn →Wn → Dn

is hence a map between purely combinatorial objects both given in terms of trivalent trees. Using a geometric
argument (grope duality), we show that it is simply given by summing over all choices of a root in a given
tree (which is a more precise statement of Theorem 3). This map was previously studied by Jerry Levine in
his work on 3-dimensional homology cylinders [24, 25], where he made a precise conjecture about the kernel
and cokernel of ηn. He verified the conjecture for the cokernel in [26], using a generalized Hall algorithm.

In [3] we prove Levine’s full conjecture via an application of combinatorial Morse theory to tree homol-
ogy. In particular, we show that the kernel of ηn consists only of 2-torsion. This 2-torsion corresponds to
our higher-order Sato-Levine and Arf invariants, and is characterized geometrically in terms of a framing
obstruction for twisted Whitney towers (in which certain Whitney disks are not required to be framed).

In the above classification of Whitney tower concordance there remains one key geometric question:
Although our higher-order Arf invariants are well-defined, it is not currently known if they are in fact non-
trivial. All potential values are indeed realized by simple links, so the question here is whether or not there
are any further geometric relations; see Definition 11. We conjecture that there are indeed new higher-order

Arf invariants, or equivalently, that our realization maps R̃n : T̃n → Wn are isomorphisms for all n. Here

T̃n is a certain quotient of Tn by what we call framing relations which come from IHX-relations on twisted

Whitney towers. For n ≡ 0, 2, 3 mod 4 we do show that R̃n is an isomorphism, implying that in this further
quotient the intersection invariant τn(W) only depends on the link ∂W, and not on the choice of Whitney
tower W. The higher-order Arf invariants appear when n = 4k − 3, and our conjecture says that the same
conclusion holds in these orders.

This conjecture is in turn equivalent to the vanishing of the intersection invariants on all immersed
2–spheres in S4. Of course all such maps are null-homotopic, and a general goal of the Whitney tower
theory is to extract higher-order invariants of representatives of classes in the second homotopy group π2M .
This obstruction theory is still being developed but certain aspects of it appeared in [10, 31, 32, 33]. The
fundamental group π1M leads to more interesting obstruction groups Tn(π1M) and a non-trivial π2M leads
to more relations to make the intersection invariants only dependent on the order zero surfaces.

In this paper, we will give a survey of the necessary material that is needed to understand the above
results for Whitney towers in the 4-ball. More details and proofs can be found in our recent series of five
papers [1, 2, 3, 4, 5] from which we’ll also survey here the following aspects of the theory:

• Twisted Whitney towers and obstruction to framing them
• Geometrically k-slice links and vanishing Milnor invariants
• String links and the Artin representation
• Levine’s Conjecture and filtrations of homology cylinders

2. Whitney towers

We work in the smooth oriented category (with discussions of orientations mostly suppressed), even
though all results hold in the locally flat topological category by the basic results on topological immersions
in Freedman–Quinn [17]. In particular, our techniques do not distinguish smooth from locally flat surfaces.

Order n Whitney towers are defined recursively as follows.
4



Definition 5. A surface of order 0 in an oriented 4–manifold M is a connected oriented surface in M with
boundary embedded in the boundary and interior immersed in the interior of M . A Whitney tower of order
0 is a collection of order 0 surfaces. The order of a (transverse) intersection point between a surface of order
n and a surface of order m is n+m. The order of a Whitney disk is (n+ 1) if it pairs intersection points
of order n. For n ≥ 1, a Whitney tower of order n is a Whitney tower W of order (n − 1) together with
(immersed) Whitney disks pairing all order (n− 1) intersection points of W.

The Whitney disks in a Whitney tower may self-intersect and intersect each other as well as lower order
surfaces but the boundaries of all Whitney disks are required to be disjointly embedded. In addition, all
Whitney disks are required to be framed, as will be discussed below.

2.1. Whitney tower concordance. We now specialize to the case M = B4, and also assume that a
Whitney tower W has disks for its order 0 surfaces which have an m-component link in S3 = ∂B4 as their
boundary, denoted ∂W. Let Wn be the set of all framed links ∂W where W is an order n Whitney tower,
and the link framing is induced by the order 0 disks in W. This defines a filtration · · · ⊆W3 ⊆W2 ⊆W1 ⊆
W0 ⊆ L of the set of framed m-component links L = L(m). Note that W0 consists of links that are evenly
framed because a component has even framing if and only if it bounds a framed immersed disk in B4.

In order to detect what stage of the filtration a particular link lies in, it would be convenient to define a
set measuring the difference between Wn and Wn+1. Because these are sets and not groups, the quotient is
not defined. However we can still define an associated graded set in the following way.

Suppose W is an order n + 1 Whitney tower in M = S3 × [0, 1] where each of the order 0 surfaces
A1, . . . , Am is an annulus with one boundary component in S3 × {0} and one in S3 × {1}. Then we say
that the link ∂0W is order n+ 1 Whitney tower concordant to ∂1W. This allows us to define the associated
graded set Wn as Wn modulo order n+ 1 Whitney tower concordance. Knots have a well-defined connected
sum operation, but the analogous band-sum operation for links is not well-defined, even up to concordance.
This makes the following proposition somewhat surprising; it follows from Theorem 1.

Proposition 6 ([1]). Band sum of links induces a well-defined operation which makes each Wn into a finitely
generated abelian group.

Our goal is to determine these groups Wn.

2.2. Free Lie and quasi-Lie algebras. Let L = L(m) denote the free Lie algebra (over the ground ring
Z) on generators {X1, X2, . . . , Xm}. It is N-graded, L = ⊕nLn, where the degree n part Ln is the additive
abelian group of length n brackets, modulo Jacobi relations and the self-annihilation relation [X,X] = 0.
The free quasi-Lie algebra L′ is gotten from L by replacing the self-annihilation relation with the weaker
anti-symmetry relation [X,Y ] = −[Y,X].

The bracketing map L1 ⊗ Ln+1 → Ln+2, has a nontrivial kernel, denoted Dn. The analogous bracketing
map on the free quasi-Lie algebra is denoted D′n. For later purposes, we now define a homomorphism
s`2n : D2n → Z2 ⊗ Ln+1. Given an element X, of D2n, its image under the bracketing map is zero in
L2n+2. However, regarding the bracket as being in L′2n+2, we get an element of the kernel of the projection
L′2n+2 → L2n+2. This kernel is isomorphic to Z2⊗Ln+1 by [26], and so we get an element s`2n(x) of Z2⊗Ln+1

as desired.

2.3. The total Milnor invariant. Let L be a link where all the longitudes lie in Γn+1, the (n+1)th term of

the lower central series of the link group Γ := π1(S3 \L). By Van Kampen’s Theorem Γn+1

Γn+2

∼= Fn+1

Fn+2

∼= Ln+1,

where F = F (m) is the free group on meridians. Let µin(L) ∈ Ln+1 denote the image of the i-th longitude.
The total Milnor invariant µn(L) of order n is defined by

µn(L) :=
∑
i

Xi ⊗ µin(L) ∈ L1 ⊗ Ln+1

It turns out that in fact µn(L) ∈ Dn (by “cyclic symmetry”). The invariant µn(L) is a convenient way of
packaging all Milnor invariants of length n+ 2 in one piece.

Theorem 7 ([4]). For all n ∈ N, the total Milnor invariant is a well-defined homorphism µn : Wn → Dn
such that
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(i) µn is an epimorphism for odd n; denote its kernel by Kµn.
(ii) For even n, µn is a monomorphism with image D′n < Dn.

So µn is an algebraic obstruction for L bounding a Whitney tower of order n + 1 which is a complete
invariant in half the cases. In the other half, we’ll need the following additional invariants.

2.4. Higher-order Sato-Levine invariants. Suppose L ∈ W2n−1 and µ2n−1(L) = 0. This implies that
the longitudes lie in Γ2n, so that µ2n(L) ∈ D2n is defined. Define the order 2n− 1 Sato-Levine invariant by
SL2n−1(L) = s`2n ◦ µ2n(L), where s`2n is defined above.

Theorem 8 ([4]). For all n, the Sato-Levine invariant gives a well-defined epimorphism SL2n−1 : Kµ2n−1 �
Z2 ⊗ Ln+1. Moreover, it is an isomorphism for even n.

The case SL1 is the original Sato-Levine [29] invariant of a 2-component classical link, and we describe in
[4] (and below) how the SL2n−1 are obstructions to “untwisting” an order 2n twisted Whitney tower.

2.5. Higher-order Arf invariants. We saw above that the structure of the groups Wn is completely
determined for n ≡ 0, 2, 3 mod 4 by Milnor and higher-order Sato-Levine invariants.

Theorem 9 ([4]). Let KSL
4k−3 be the kernel of SL4k−3. Then there is an epimorphism αk : Z2⊗ Lk � KSL

4k−3.

Conjecture 10. αk is an isomorphism.

This conjecture is true when k = 1, and indeed the inverse map α−1
1 : W1 → Z2 ⊗ L1 is given by the

classical Arf invariant of each component of the link.
Regardless of whether or not Conjecture 10 is true, αk induces an isomorphism αk on (Z2 ⊗ Lk)/Kerαk.

Definition 11. The higher-order Arf invariants are defined by

Arfk := (αk)−1 : KSL
4k−3 → (Z2 ⊗ Lk)/Kerαk

Any of the Arfk which are non-trivial would the only possible remaining obstructions to a link bounding
a Whitney tower of order 4k − 2, following the Milnor and Sato-Levine invariants:

Corollary 12 ([4]). The associated graded groups Wn are classified by µn, SLn if n is odd, and, for n = 4k−3,
Arfk.

The first unknown Arf invariant is Arf2 : W5 → Z2 ⊗ L2, which in the case of 2-component links would
be a Z2-valued invariant, evaluating non-trivially on the Bing double of any knot with non-trivial classical
Arf invariant. Evidence supporting the existence of non-trivial Arfk is provided by the fact that such links
are known to not be slice [7]. All cases for k > 1 are currently unknown, but if Arf2 is trivial then all
higher-order Arfk would also be trivial [2].

3. Twisted Whitney towers

The order n Sato-Levine invariants are defined as a certain projection of order n + 1 Milnor invariants,
suggesting that a slightly modified version of the Whitney tower filtration would put the Milnor invariants
all in the right order, with no more need for the Sato-Levine invariants. In this section we discuss how this
corresponds to the geometric notion of twisted Whitney towers.

I

I

J

J

W

Figure 4. The Whitney section over the boundary of a framed Whitney disk is indicated
by the dotted loop.
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3.1. Twisted Whitney disks. The normal disk-bundle of a Whitney disk W # M is isomorphic to
D2×D2, and comes equipped with a canonical nowhere-vanishing Whitney section over the boundary given
by pushing ∂W tangentially along one sheet and normally along the other.

In Figure 4, the Whitney section is indicated by a dotted loop shown on the left for a Whitney disk W
pairing intersections between surface sheets I and J in a 3-dimensional slice of 4–space. On the right is
shown an embedding into 3–space of the normal disk-bundle over ∂W , indicating how the Whitney section
determines a nowhere-vanishing section which lies in the I-sheet and avoids the J-sheet.

The Whitney section determines the relative Euler number ω(W ) ∈ Z which represents the obstruction
to extending the Whitney section across W . It depends only on a choice of orientation of the tangent bundle
of the ambient 4-manifold restricted to the Whitney disk, i.e. a local orientation. Following traditional
terminology, when ω(W ) vanishes W is said to be framed. (Since D2 ×D2 has a unique trivialization up to
homotopy, this terminology is only mildly abusive.) If ω(W ) = k, we say that W is k-twisted, or just twisted
if the value of ω(W ) is not specified.

j

i

Dj
Dj

Di

W(i,j)

Figure 5. Pushing into the 4–ball from left to right: An i- and j-labeled twisted Bing
double of the unknot bounds disks Di and Dj , which support a 2-twisted Whitney disk
W(i,j). The Whitney section is indicated by the dotted loop in the bottom center, and the
intersections between its extension and the Whitney disk are shown in the bottom right.

In the definition of an order n Whitney tower given above all Whitney disks are required to be framed
(0-twisted). It turns out that the natural generalization to twisted Whitney towers involves allowing non-
trivially twisted Whitney disks only in at least “half the order” as follows:

Definition 13. A twisted Whitney tower of order (2n−1) is just a (framed) Whitney tower of order (2n−1)
as in Definition 5 above.

A twisted Whitney tower of order 2n is a Whitney tower having all intersections of order less than 2n
paired by Whitney disks, with all Whitney disks of order less than n required to be framed, but Whitney disks
of order at least n allowed to be k-twisted for any k.

Note that, for any n, an order n (framed) Whitney tower is also an order n twisted Whitney tower. We
may sometimes refer to a Whitney tower as a framed Whitney tower to emphasize the distinction, and will
always use the adjective “twisted” in the setting of Definition 13.

3.2. Twisted Whitney tower concordance. Let Wn be the set of framed links in S3 which are boundaries
of order n twisted Whitney towers in B4, with no requirement that the link framing is induced by the order
0 disks. Notice that W2n−1 = W2n−1. While not immediately obvious, it is true that this defines a filtration
· · · ⊆W3 ⊆W2 ⊆W1 ⊆W0 = L. As in the framed setting above, letting Wn be the set Wn modulo order
(n+ 1) twisted Whitney tower concordance yields a finitely generated abelian group.

Theorem 14 ([2, 4]). The total Milnor invariants give epimorphisms µn : Wn � Dn which are isomorphisms
for n ≡ 0, 1, 3 mod 4. Moreover, the kernel K4k−2 of µ4k−2 is isomorphic to the kernel KSL

4k−3 of the Sato-
Levine map from the previous section.

Conjecture 10 hence says that K4k−2
∼= Z2⊗ Lk and our Arf-invariants Arfk represent the only remaining

obstruction to a link bounding an order 4k − 1 twisted Whitney tower:

Corollary 15. The groups Wn are classified by µn and, for n = 4k − 2, Arfk.
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3.3. Gropes and k-slice links. Roughly speaking, a link is said to be “k-slice” if it is the boundary of a
surface which “looks like a collection of slice disks modulo k-fold commutators in the fundamental group of
the complement of the surface”. Precisely, L ⊂ S3 is k-slice if L bounds an embedded orientable surface
Σ ⊂ B4 such that π0(L)→ π0(Σ) is a bijection and there is a push-off homomorphism π1(Σ)→ π1(B4 \ Σ)
whose image lies in the kth term of the lower central series (π1(B4 \Σ))k. Igusa and Orr proved the following
“k-slice conjecture” in [20]:

Theorem 16 ([20]). A link L is k-slice if and only if µi(L) = 0 for all i ≤ 2k − 2.

A k-fold commutator in π1X has a nice topological model in terms of a continuous map G→ X, where G
is a grope of class k. Such 2-complexes G (with specified “boundary” circle) are recursively defined as follows.
A grope of class 1 is a circle. A grope of class 2 is an orientable surface with one boundary component. A
grope of class k is formed by attaching to every dual pair of basis curves on a class 2 grope a pair of gropes
whose classes add to k. A curve γ : S1 → X in a topological space X is a k-fold commutator if and only if it
extends to a continuous map of a grope of class k. Thus one can ask whether being k-slice implies there is a
basis of curves on Σ that bound disjointly embedded gropes of class k in B4\Σ. Call such a link geometrically
k-slice.

Proposition 17 ([2]). A link L is geometrically k-slice if and only if L ∈W2k−1.

This is proven using a construction from [30] which allows one to freely pass between class n gropes and
order n−1 Whitney towers. So the higher-order Arf invariants Arfk detect the difference between k-sliceness
and geometric k-sliceness. It turns out that every Arfk value can be realized by (internal) band summing
iterated Bing doubles of the figure-eight knot. Every Bing double is a boundary link, and one can choose
the bands so that the sum remains a boundary link. This implies

Theorem 18 ([2]). A link L has vanishing Milnor invariants of orders up to 2k − 2 if and only if it is
geometrically k-slice after connected sums with internal band sums of iterated Bing doubles of the figure-eight
knot.

Here (and in Theorem 20 below), the figure-eight knot can be replaced by any knot with non-trivial
(classical) Arf invariant.

The added boundary links in the above theorem bound disjoint surfaces in S3 which clearly allow immersed
disks in B4 bounded by curves representing a basis of first homology. In [2] we will show that this implies:

Corollary 19. A link has vanishing Milnor invariants of orders up to 2k − 2 if and only if its components
bound disjointly embedded surfaces Σi ⊂ B4, with each surface a connected sum of two surfaces Σ′i and Σ′′i
such that

(i) a basis of curves on Σ′i bound disjointly embedded framed gropes of class k in the complement of
Σ := ∪iΣi,

(ii) a basis of curves on Σ′′i bound immersed disks in the complement of Σ∪G, where G is the union of
all class k gropes on the surfaces Σ′i.

This is an enormous geometric strengthening of Igusa and Orr’s result who, under the same assumption
on the vanishing of Milnor invariants, show the existence of a surface Σ and maps of class k gropes, with no
control on their intersections and self-intersections. Our proof uses the full power of the obstruction theory
for Whitney towers, whereas they do a sophisticated computation of the third homology of the groups F/F2k.

3.4. String links and the Artin representation. Let L be a string link with m strands embedded in
D2 × [0, 1]. By Stallings’ Theorem [36], the inclusions (D2 \ {m points}) × {i} ↪→ (D2 × [0, 1]) \ L for
i = 0, 1 induce isomorphisms on all lower central quotients of the fundamental groups. In fact, the induced
automorphism of the lower central quotients F/Fn of the free group F = π1(D2 \ {m points}) is explicitly
characterized by conjugating the meridional generators of F by longitudes. Let Aut0(F/Fn) consist of those
automorphisms of F/Fn which are defined by conjugating each generator and which fix the product of
generators. This leads to the Artin representation SL→ Aut0(F/Fn+2) where SL is the set of concordance
classes of pure framed string links.

The set of string links has an advantage over links in that it has a well-defined monoid structure given
by stacking. Indeed, modulo concordance, it becomes a (noncommutative) group. Whitney tower filtrations
can also be defined in this context, giving rise to filtrations SWn and SWn of this group SL.
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Theorem 20 ([5]). The sets SWn and SWn are normal subgroups of SL which are central modulo the next
order. We obtain nilpotent groups SL/SWn and SL/SWn and the associated graded are isomorphic to our
previously defined groups

Wn
∼= SWn/SWn+1 and SWn/SWn+1

∼= Wn

Finally, the Artin representation induces a well-defined epimorphism Artinn : SL/SWn � Aut0(F/Fn+2)
whose kernel is generated by internal band sums of iterated Bing doubles of the figure-eight knot.

The Artin representation is thus an invariant on the whole group SL/SWn , not just on the associated
graded groups as in the case of links. It packages the total Milnor invariants µk, k = 0, . . . , n on string links
together into a group homomorphism.

4. Higher-order intersection invariants

Proofs of the above results depend on two essential ideas: The higher-order intersection theory of Whitney
towers comes with an obstruction theory whose associated invariants take values in abelian groups of (un-
rooted) trivalent trees. And by mapping to rooted trees, which correspond to iterated commutators, the
obstruction theory for Whitney towers in B4 can be identified with algebraic invariants of the bounding link
in S3. A critical connection between these ideas is provided by the resolution of the Levine Conjecture (see
below), which says that this map is an isomorphism.

Figure 6. From left to right: An unpaired intersection in a Whitney tower, (part of) its
associated tree, and the result of surgering to a grope.

In fact, it can be arranged that all singularities in a Whitney tower are contained in 4-ball neighborhoods
of the associated trivalent trees, which sit as embedded ‘spines’; and all relations among trees in the target
group are realized by controlled manipulations of the Whitney disks. Mapping to rooted trees corresponds
geometrically to surgering Whitney towers to gropes, and these determine iterated commutators of meridians
of the Whitney tower boundaries as in Figure 6.

4.1. Trees and intersections. All trees are unitrivalent, with cyclic orderings of the edges at all trivalent
vertices, and univalent vertices labeled from an index set {1, 2, 3, . . . ,m}. A rooted tree has one unlabeled
univalent vertex designated as the root. Such rooted trees correspond to formal non-associative bracketings
of elements from the index set. The rooted product (I, J) of rooted trees I and J is the rooted tree gotten
by identifying the root vertices of I and J to a single vertex v and sprouting a new rooted edge at v. This
operation corresponds to the formal bracket, and we identify rooted trees with formal brackets. The inner
product 〈I, J〉 of rooted trees I and J is the unrooted tree gotten by identifying the roots of I and J to a
single non-vertex point. Note that all the univalent vertices of 〈I, J〉 are labeled.

The order of a tree, rooted or unrooted, is defined to be the number of trivalent vertices, and the following
associations of trees to Whitney disks and intersection points respects the notion of order given in Definition 5.

To each order zero surface Ai is associated the order zero rooted tree consisting of an edge with one vertex
labeled by i, and to each transverse intersection p ∈ Ai ∩ Aj is associated the order zero tree tp := 〈i, j〉
consisting of an edge with vertices labeled by i and j. The order 1 rooted Y-tree (i, j), with a single trivalent
vertex and two univalent labels i and j, is associated to any Whitney disk W(i,j) pairing intersections between
Ai and Aj . This rooted tree can be thought of as an embedded subset of M , with its trivalent vertex and
rooted edge sitting in W(i,j), and its two other edges descending into Ai and Aj as sheet-changing paths.

Recursively, the rooted tree (I, J) is associated to any Whitney disk W(I,J) pairing intersections between
WI and WJ (see left-hand side of Figure 7); with the understanding that if, say, I is just a singleton i, then
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WI denotes the order zero surface Ai. To any transverse intersection p ∈ W(I,J) ∩WK between W(I,J) and
any WK is associated the un-rooted tree tp := 〈(I, J),K〉 (see right-hand side of Figure 7).

4.2. Intersections trees for Whitney towers. The group Tn (for each n = 0, 1, 2 . . .) is the free abelian
group on (unitrivalent labeled vertex-oriented) order n trees, modulo the usual AS (antisymmetry) and IHX
(Jacobi) relations:

In even orders we define T̃2n := T2n, and in odd orders T̃2n−1 is defined to be the quotient of T2n−1 by the
framing relations. These framing relations are defined as the image of homomorphisms ∆2n−1 : Z2⊗Tn−1 →
T2n−1 which are defined for generators t ∈ Tn−1 by ∆(t) :=

∑
v∈t〈i(v), (Tv(t), Tv(t))〉, where Tv(t) denotes

the rooted tree gotten by replacing v with a root, and the sum is over all univalent vertices of t, with i(v)
the original label of the univalent vertex v. For example, in orders 1 and 3 the framing relations are:

i i

i i i ii i k k k k

k

j j

j

j jj j

j
== 0

The obstruction theory works as follows:

Definition 21. The order n intersection tree τn(W) of an order n Whitney tower W is defined to be

τn(W) :=
∑

εp · tp ∈ T̃n

where the sum is over all order n intersections p, with εp = ±1 the usual sign of a transverse intersection
point (via certain orientation conventions, see e.g. [1]).

All relations in T̃n can be realized by controlled manipulations of Whitney towers, and further maneuvers
allow algebraically canceling pairs of tree generators to be converted into intersection-point pairs admitting
Whitney disks. As a result, we get the following partial recovery of the “algebraic cancelation implies
geometric cancellation” principle available in higher dimensions:

Theorem 22 ([1]). If a collection A of properly immersed surfaces in a simply-connected 4–manifold supports

an order n Whitney tower W with τn(W) = 0 ∈ T̃n, then A is homotopic (rel ∂) to A′ which supports an
order n+ 1 Whitney tower.

4.3. Intersections trees for twisted Whitney towers. For any rooted tree J we define the corresponding
-tree (“twisted-tree”), denoted by J , by labeling the root univalent vertex with the symbol “ ” (which

will represent a “twist” in a Whitney disk normal bundle): J := −−J .

Definition 23. The abelian group T2n−1 is the quotient of T̃2n−1 by the boundary-twist relations:

〈(i, J), J〉 = i −−< J
J = 0

Here J ranges over all order n− 1 rooted trees (and the first equality is just a reminder of notation).
10



The abelian group T2n is gotten from T̃2n = T2n by including order n -trees as new generators and
introducing the following new relations (in addition to the IHX and antisymmetry relations on non- trees):

J = (−J) I = H +X − 〈H,X〉 2 · J = 〈J, J〉

The left-hand symmetry relation corresponds to the fact that the framing obstruction on a Whitney disk
is independent of its orientation; the middle twisted IHX relations can be realized by a Whitney move near
a twisted Whitney disk, and the right-hand interior twist relations can be realized by cusp-homotopies in
Whitney disk interiors. As described in [4], the twisted groups T2n can naturally be identified with a universal
quadratic refinement of the T2n-valued intersection pairing 〈 ·, · 〉 on framed Whitney disks.

Recalling from Definition 13 that twisted Whitney disks only occur in even order twisted Whitney towers,
intersection trees for twisted Whitney towers are defined as follows:

Definition 24. The order n intersection tree τn (W) of an order n twisted Whitney tower W is defined to
be

τn (W) :=
∑

εp · tp +
∑

ω(WJ) · J ∈ Tn

where the first sum is over all order n intersections p and the second sum is over all order n/2 Whitney
disks WJ with twisting ω(WJ) ∈ Z (computed from a consistent choice of local orientations).

By “splitting” the twisted Whitney disks [1] it can be arranged that |ω(WJ)| ≤ 1, leading to signs like εp
(or zero coefficients). The obstruction theory also holds for twisted Whitney towers:

Theorem 25 ([1]). If a collection A of properly immersed surfaces in a simply-connected 4–manifold supports
an order n twisted Whitney towerW with τn (W) = 0 ∈ Tn , then A is homotopic (rel ∂) to A′ which supports
an order n+ 1 twisted Whitney tower.

4.4. Remark on the framing relations. The framing relations in the untwisted groups T̃2n−1 correspond
to the twisted IHX relations among -trees in T2n via a geometric boundary-twist operation which converts
an order n -tree (i, J) to an order 2n− 1 (untwisted) tree 〈(i, J), J〉.

4.5. Realization maps. In [1] we describe how to construct surjective realization maps R̃n : T̃n � Wn

and Rn : Tn � Wn by applying the operation of iterated Bing doubling. This construction is essentially
the same as the well-known application of Habiro’s clasper-surgery [19] and Cochran’s realization of Milnor
invariants [8], extended to twisted Bing doubling (Figures 8 and 5). To prove the realization maps are
well-defined we need to use Theorems 22 and 25 respectively.

Figure 8. Realizing an order 2 tree in a Whitney tower by Bing doubling.

The above Conjecture 10 on the non-triviality of the higher-order Arf invariants can be succinctly

rephrased as the assertion that the realization maps R̃n and Rn are isomorphisms for all n. Progress
towards confirming this assertion – namely complete answers in 3/4 of the cases and partial answers in the
remaining cases, as described by the above-stated results – has been accomplished by identifying intersection
trees with Milnor invariants, as we describe next.
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4.6. Intersection trees and Milnor’s link invariants. The connection between intersection trees and
Milnor invariants is via a surjective map ηn : Tn → Dn which converts trees to rooted trees (interpreted as
Lie brackets) by summing over all ways of choosing a root:

For v a univalent vertex of an order n (un-rooted non- ) tree denote by Bv(t) ∈ Ln+1 the Lie bracket of
generators X1, X2, . . . , Xm determined by the formal bracketing of indices which is gotten by considering v
to be a root of t.

Denoting the label of a univalent vertex v by `(v) ∈ {1, 2, . . . ,m}, the map ηn : Tn → L1⊗Ln+1 is defined
on generators by

ηn(t) :=
∑
v∈t

X`(v) ⊗Bv(t) and ηn(J ) :=
1

2
ηn(〈J, J〉)

where the first sum is over all univalent vertices v of t, and the second expression lies in L1 ⊗ Ln+1 because
the coefficient of ηn(〈J, J〉) is even.

The proof of the following theorem (which implies Theorem 14 above) shows that the map η corresponds
to a construction which converts Whitney towers into embedded gropes [30], via the grope duality of [23]:

Theorem 26 ([2]). If L bounds a twisted Whitney tower W of order n, then the total Milnor invariants
µk(L) vanish for k < n, and µn(L) = ηn ◦ τn (W) ∈ Dn.

Thus one needs to understand the kernel of ηn before the obstruction theory can proceed. This is accom-
plished by resolving [3] a closely related conjecture of J. Levine [25], as discussed next.

4.7. The Levine Conjecture and its implications. The bracket map kernel Dn turns out to be relevant
to a variety of topological settings (see e.g. the introduction to [3]), and was known to be isomorphic to Tn
after tensoring with Q, when Levine’s study of the cobordism groups of 3-dimensional homology cylinders
[24, 25] led him to conjecture that Tn is in fact isomorphic to the quasi-Lie bracket map kernel D′n, via the
analogous map η′n which sums over all choices of roots (as in the left formula for η above).

Levine made progress in [25, 26], and in [3] we affirm his conjecture:

Theorem 27 ([3]). η′n : Tn → D′n is an isomorphism for all n.

The proof of Theorem 27 uses techniques from discrete Morse theory on chain complexes, including an
extension of the theory to complexes containing torsion. A key idea involves defining combinatorial vector
fields that are inspired by the Hall basis algorithm for free Lie algebras and its generalization by Levine to
quasi-Lie algebras.

As described in [4], Theorem 27 has several direct applications to Whitney towers, including the completion
of the calculation of Wn in three out of four cases:

Theorem 28 ([4]). ηn : Tn → Dn are isomorphisms for n ≡ 0, 1, 3 mod 4. As a consequence, both the
total Milnor invariants µn : Wn → Dn and the realization maps Rn : Tn →Wn are isomorphisms for these
orders.

The consequences listed in the second statement follow from the fact that ηn is the composition

ηn : Tn
Rn // // Wn

µn // // Dn

Theorem 27 is also instrumental in determining the only possible remaining obstructions to computing
W4k−2:

Proposition 29 ([4]). The map sending a rooted tree J to (J, J) ∈ T4k−2 induces an isomorphism

Z2 ⊗ Lk ∼= Ker(η4k−2)

These symmetric -trees (J, J) correspond to twisted Whitney disks, and determine the higher-order
Arf invariants Arfk. All of our above conjectures are equivalent to the statement that W4k−2 is isomorphic
to D4k−2 ⊕ (Z2 ⊗ Lk) via these maps.

Theorem 28 and Proposition 29 imply Theorem 14 and Corollary 15 above, and [4] describes analogous
implications of the above-described results in the framed setting (Theorems 7, 8, 9, and Corollary 12).
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5. Framed versus twisted Whitney towers

This section describes how the higher-order Sato-Levine and Arf invariants can be interpreted as obstruc-
tions to framing a twisted Whitney tower. The starting point is the following surprisingly simple relation
between twisted and framed Whitney towers of various orders:

Proposition 30 ([1, 4]). For any n ∈ N, there is a commutative diagram of exact sequences

0 // W2n
// W2n

// W2n−1
// W2n−1

// 0

0 // T̃2n

R̃2n

OOOO

// T2n

R2n

OOOO

// T̃2n−1

R̃2n−1

OOOO

// T2n−1

R2n−1

OOOO

// 0

Moreover, there are isomorphisms

Cok(T2n → T2n) ∼= Z2 ⊗ L′n+1
∼= ker(T̃2n−1 → T2n−1)

In the first row, all maps are induced by the identity on the set of links. To see the exactness, observe
that there is a natural inclusion Wn ⊆Wn , and by definition W2n−1 = W2n−1. One then needs to show that
indeed W2n ⊆ W2n−1, which is accomplished in [1], and then the exact sequence in Proposition 30 follows
since Wn := Wn/Wn+1 and Wn := Wn/Wn+1.

If our above conjectures hold, then for every n the various (vertical) realization maps in the above diagram
are isomorphisms, which would lead to a computation of the cokernel and kernel of the map Wn →Wn . As
a consequence, we would obtain new concordance invariants with values in Z2 ⊗ L′n+1 and defined on W2n,
as the obstructions for a link to bound a framed Whitney tower of order 2n. In fact [4], the above-defined
higher-order Sato-Levine invariants detect the quotient Z2⊗Ln+1 of Z2⊗L′n+1. Levine [25] showed that the
squaring map X 7→ [X,X] induces an isomorphism

Z2 ⊗ Lk ∼= ker(Z2 ⊗ L′2k � Z2 ⊗ L2k),

which leads to our proposed higher-order Arf invariants Arfk.
It is interesting to note that the case n = 0 leads to the prediction Cok(W0 →W0 ) ∼= Z2⊗L1

∼= (Z2)m This
is indeed the group of framed m-component links modulo those with even framings! In fact, the consistency
of this computation was the motivating factor to consider filtrations of the set of framed links L, rather than
just oriented links.

6. Filtrations of homology cylinders

Let Σg,1 denote the compact orientable surface of genus g with one boundary component. A homology
cylinder over Σg,1 is a compact 3 manifold M which is homologically equivalent to the cylinder Σg,1× [0, 1],
equipped with standard parameterizations of the two copies of Σg,1 at each “end.” Two homology cylinders
M0 and M1 are said to be homology cobordant if there is a compact oriented 4-manifold N with ∂N =
M0 ∪Σg,1

(−M1), such that the inclusions Mi ↪→ N are homology isomorphisms. Let Hg be the set of
homology cylinders up to homology cobordism over Σg,1. Hg is a group via the “stacking” operation.

Adapting the usual string link definition, Garoufalidis and Levine [18] introduced an Artin-type represen-
tation σn : Hg → A0(F/Fn+1) where F is the free group on 2g generators, and A0(F/Fn+1) is the group of
automorphisms φ of F/Fn+1 such that φ fixes the product [x1, y1] · · · [xg, yg] modulo Fn+1. Here {xi, yi}gi=1 is
a standard symplectic basis for Σg,1. The Johnson (relative weight) filtration of Hg is defined by Jn = kerσn.
Define the associated graded group Jn = Jn/Jn+1. Levine showed in [24] that Jn ∼= Dn.

On the other hand, there is a filtration related to Goussarov-Habiro’s theory of finite type 3-manifold
invariants. One defines the relation of An-equivalence to be generated by the following move: M ∼n M ′ if
M ′ is diffeomorphic to MC , for some connected clasper C with n nodes. Let Yn be the subgroup of Hg of all
homology cylinders An-equivalent to the trivial one, and let Yn = Yn/ ∼n+1. Rationally, Levine showed the
associated graded groups for these two filtrations to be the same, and are even classified by the tree group
Tn:
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Theorem 31 (Levine). Levine’s map ηn is the composition

Tn // // Yn // Jn
∼= // Dn

All three maps are rational isomorphisms.

The story is more subtle over the integers. Using the algebraic methods that we have developed for
higher-order intersections we are able to understand how things behave integrally in 3/4 of the cases, and
modulo the question of the non-triviality of higher-order Arf invariants in the remaining cases:

Theorem 32 ([5]). For all k ≥ 1, there are exact sequences

(i) 0→ Y2k → J2k → Z2 ⊗ Lk+1 → 0
(ii) 0→ Z2 ⊗ L2k+1 → Y4k−1 → J4k−1 → 0

(iii) 0→ KY
4k−3 → Y4k−3 → J4k−3 → 0

(iv) Z2 ⊗ Lk
ak→ KY

4k−3 → Z2 ⊗ L2k → 0.

The calculation of the kernel KY
4k−3 is thus reduced to the calculation of ker(ak). This is the precise

analog of the questions for Whitney towers about the injectivity of αk and nontriviality of higher-order Arf
invariants.

Conjecture 33. The homomorphisms ak are injective for all k ≥ 1 and hence KY
4k−3

∼= Z2 ⊗ L′2k.

The proof of Theorem 32 depends crucially on the resolution of the Levine conjecture, as well as geometric

arguments showing that the framing relations in T̃ are also present for homology cylinders.
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