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We analyze the problem of microwave absorption by the Heisenberg-Ising magnet in terms of shifted moments
of the imaginary part of the dynamical susceptibility. When both, the Zeeman field and the wave vector of
the incident microwave, are parallel to the anisotropy axis, the first four moments determine the shift of the
resonance frequency and the line width in a situation where the frequency is varied for fixed Zeeman field. For
the one-dimensional model we can calculate the moments exactly. This provides exact data for the resonance
shift and the line width at arbitrary temperatures and magnetic fields. In current ESR experiments the Zeeman
field is varied for fixed frequency. We show how in this situation the moments give perturbative results for the
resonance shift and for the integrated intensity at small anisotropy as well as an explicit formula connecting the
line width with the anisotropy parameter in the high-temperature limit.

The total magnetization in an isotropic system of interacting
spins rotates as a whole about the axis of a homogeneous ex-
ternal field (see e.g. [1]). We consider L spins- 1

2 , combining
to a total spin S = Sxex + Syey + Szez , Sα =

∑L
j=1 s

α
j ,

in a magnetic field of strength h in z-direction. The Heisen-
berg equation of motion for S with a Zeeman term −hSz is
solved by S(t) = (cos(ht)Sx+sin(ht)Sy)ex−(sin(ht)Sx−
cos(ht)Sy)ey + Szez , a rotation counterclockwise about the
z-axis. In ESR experiments this can be probed by circularly po-
larized microwave radiation propagating along the z-direction.
Since its wavelength is large compared to typical distances
in spin systems, we may assume a magnetic field component
of the form h(t) = A(cos(ωt)ex − sin(ωt)ey), A > 0. It
couples to the total spin as V (t) = −hα(t)Sα and produces a
sharp resonance at ω = h (see (4) below). If the spin system is
perturbed by anisotropic interactions, this resonance is broad-
ened, shifted or even split in a way that is characteristic of the
microscopic interactions between the spins.

For any spin system with Hamiltonian H linear response
theory relates the observed absorbed intensity to the (imaginary
part of the) dynamical susceptibility [2]

χ′′+−(ω, h) =
1

2L

∫ ∞
−∞

dt eiωt
〈
[S+(t), S−]

〉
T
. (1)

Here S± = Sx ± iSy and 〈·〉T stands for the canonical av-
erage at temperature T calculated by means of the statistical
operator ρ = e−(H−hSz)/T / tr e−(H−hSz)/T . Through this
average the dynamical susceptibility depends on h and T . The
absorbed intensity per spin, normalized by the intensity A2 of
the incident wave and averaged over a half-period π/ω of the
microwave field, is

I(ω, h) =
ω

2
χ′′+−(ω, h) . (2)

In current ESR experiments in solids I(ω, h) is measured as
a function of h for fixed ω. Of particular interest are experi-
ments on quasi one-dimensional compounds (reviewed e.g. in
[3, 4]) which provide prototypical realizations of interacting

many-body systems with strong quantum fluctuations. Still,
the data are not always easy to interpret, because of a lack of
reliable theoretical predictions.

Most of the existing theories are based on a priori assump-
tions about the line shape and typically apply for limited ranges
of temperature and magnetic field. Field theoretical approaches
[1] are restricted to small temperatures and small (but not too
small) magnetic fields. The more traditional approaches [2, 5]
rely on the high temperature approximation. Purely numerical
approaches [6] are unbiased, but the extrapolation of the data
to the thermodynamic limit of large chains may be difficult.

A remarkable result for the resonance shift in one-
dimensional antiferromagnetic chains, being valid at arbitrary
temperatures, was obtained in [7]. It utilizes the exact nearest-
neighbor correlation functions of the isotropic spin- 1

2 Heisen-
berg chain. Here we present an alternative framework for the
derivation of the resonance shift which, in the limit of small
anisotropy, reproduces [7]. In our approach the anisotropy is
treated non-perturbatively, and it allows us to derive an exact
formula for the line width ‘in frequency direction’ at fixed
magnetic field, as well as a new explicit expression for the
ESR-line width in the high temperature regime.

We consider an important example of anisotropic interac-
tions described by the Heisenberg-Ising Hamiltonian

H = J
∑
〈ij〉

(
sxi s

x
j + syi s

y
j + (1 + δ)szi s

z
j

)
. (3)

Here the sum is over nearest neighbors, and δ is the anisotropy
parameter. If δ = 0, then (1), (2) imply that the normalized
absorbed intensity is

I(ω, h) = πδ(ω − h)hm(T, h) . (4)

It is proportional to the magnetic energy hm(T, h) per lattice
site. This case includes the familiar paramagnetic resonance
(Zeeman effect) for J = 0, for which the magnetization is
m(T, h) = 1

2 th
(
h

2T

)
.

For non-zero δ the function χ′′+− is unknown and hard to
calculate. Still, some more elementary spectral characteristics,
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FIG. 1. Resonance shift δω/J for the 1D model in the critical regime
at δ = −0.1 as function of the magnetic field. Crosses from fully
numerical calculation for a finite chain Hamiltonian of 16 sites.

such as the position of the resonance or the line width, may be
expressed in terms of certain static correlation functions that
determine the moments of the normalized intensity function.

Let us assume for a while that our chain is large but finite.
Then the spectrum is bounded and the integrals

In =

∫ ∞
−∞

dω ωnI(ω, h) (5)

exist for all non-negative integers n. Since I(ω, h) is non-
negative everywhere and since I0 > 0, we may interpret
I(ω, h)/I0 as a probability distribution and the In as its mo-
ments. As we shall see, it is convenient to express the In in
terms of another closely related sequence of integrals

mn(T, h) = J−n
∫ ∞
−∞

dω

2π
(ω − h)nχ′′+−(ω, h) (6)

which, by slight abuse of language, will be called (shifted)
moments. Again they exist for every finite chain.

By definition the shift of the resonance for fixed h is

δω =
I1
I0
− h = J

Jm2 + hm1

Jm1 + hm0
. (7)

A measure for the line width is the mean square deviation

∆ω2 =
I2
I0
− I2

1

I2
0

= J2 Jm3 + hm2

Jm1 + hm0
− δω2 . (8)

Hence, in order to calculate the resonance shift and the line
width, we need to know the first four shifted moments m0, m1,
m2, m3 of the dynamic susceptibility χ′′+−.

In the following we shall employ the notation adX · = [X, ·]
for the adjoint action of an operator X . Then S+(t) =
e−ihteit adHS+, since [H,Sz] = 0 and [Sz, S+] = S+, and it
follows with (1) and (6) that

mn =
1

2L

〈
[S+, adnH/J S

−]
〉
T
. (9)
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FIG. 2. Line width ∆ω/J for the 1D model in the critical regime at
δ = −0.1 as function of temperature. Crosses from fully numerical
calculation for finite chain Hamiltonians of 16 and 24 sites.

The latter formula shows that the moments mn are static
correlation functions whose complexity grows with growing n.
The first few of them can be easily calculated. We shall show
the results for the one-dimensional model, for which

m0 =
1

2L

〈
[S+, S−]

〉
T

=
1

L

〈
Sz
〉
T
, (10)

which is the magnetization per lattice site. The subsequent
moments are less intuitive,

m1 = δ〈s+
1 s
−
2 − 2sz1s

z
2〉T , (11a)

m2 =
1

2
δ2〈sz1 + 4sz1s

z
2s
z
3 − 4sz1s

+
2 s
−
3 〉T , (11b)

m3 =
1

4
δ2
〈
2s+

1 s
+
2 s
−
3 s
−
4 + 4s+

1 s
−
2 s

+
3 s
−
4 − 2s+

1 s
−
2 s
−
3 s

+
4

− 8sz1s
z
2s

+
3 s
−
4 − 4sz1s

+
2 s

z
3s
−
4 + 8sz1s

+
2 s
−
3 s

z
4 − 4s+

1 s
−
2

− s+
1 s
−
3 + 8sz1s

z
2s
z
3s
z
4 + 2sz1s

z
3 − 4sz1s

z
2

+ δ(8sz1s
+
2 s
−
3 s

z
4 + 2s+

1 s
−
2 − 8sz1s

z
2)
〉
T
. (11c)

They are certain combinations of static short-range correlation
functions. This implies, in particular, that they all exist in the
thermodynamic limit L → ∞. It follows that the line shape
for fixed h cannot be strictly Lorentzian, as is often assumed
in the literature.

All static correlation functions of the one-dimensional
Heisenberg-Ising model are polynomials in the derivatives
of three functions ω, ω′ and ϕ [8] which, as is common in
integrable models, can be expressed in terms of the solutions
of certain well behaved linear and non-linear integral equa-
tions [9]. This is the reason why in this case the moments
m0,m1,m2,m3 can be calculated exactly by means of the
techniques developed in [10].

We parameterize the anisotropy as δ = (q − 1)2/2q. Then,
with the shorthand notations ϕ(n) = ∂nxϕ(x)|x=0, f(m,n) =
∂mx ∂

n
y f(x, y)|x=y=0, for f = ω, ω′, we obtain
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m0 = −1

2
ϕ(0) , m1 =

(q − 1)2(q2 + 4q + 1)ω′(0,1)

16q2
−

(q3 − 1)ω(0,0)

4q(q + 1)
,

m2 =
(q − 1)2

256q4

[
4q(q + 1)(q3 − 1)(ω(0,2)ϕ(0) − 2ω(1,1)ϕ(0) − ω(0,0)ϕ(2))

+ (q2 − 1)2(q2 + 4q + 1)(ω′(1,2)ϕ(0) + ω′(0,1)ϕ(2))− 16q2(q − 1)2ϕ(0)

]
,

m3 =
(q − 1)4

98304q8(q4 − 1)(q6 − 1)[
16q2(q2 − 1)3(q4 − 1)(q6 − 1)(q2 + 4q + 1)(ω(0,2)ω

′
(0,1) + ω(0,0)ω

′
(1,2))

+ 64q2(q2 − 1)4(2q10 − q9 + 4q8 − 4q7 − 12q6 − 14q5 − 12q4 − 4q3 + 4q2 − q + 2)ω(0,0)ω(1,1)

− 16q2(q2 − 1)2(q4 − 1)(q6 − 1)(3q4 + 14q2 + 3)ω′(0,3)

+ 8q2(q2 − 1)(q4 − 1)2(q6 − 1)(q + 1)2(8ω′(1,2) − ω
′
(2,3))

+ 192q4(q2 − 1)2(q4 − 1)(q6 + 18q4 + 8q3 + 18q2 + 1)ω(0,2)

+ 64q2(q2 − 1)2(q4 − 1)(q + 1)2(2q8 − 5q7 + 26q6 − 49q5 + 28q4 − 49q3 + 26q2 − 5q + 2)ω(1,1)

− 16q2(q2 − 1)2(q4 − 1)(q + 1)2(q8 − q7 + q6 + q5 + 2q4 + q3 + q2 − q + 1)(2ω(1,3) − 3ω(2,2))

+ 64q2(q4 − 1)(q6 − 1)(3q8 + 2q6 + 24q5 − 130q4 + 24q3 + 2q2 + 3)ω′(0,1)

+ (q4 − 1)(q6 − 1)(q + 1)2(q10 − 2q9 + 25q8 + 16q7 + 118q6 + 164q5

+ 118q4 + 16q3 + 25q2 − 2q + 1)(ω′(0,3)ω
′
(1,2) + ω′(0,1)ω

′
(2,3))

− 1536q5(q4 − 1)(4q8 − 9q7 − 2q6 − 6q5 + 8q4 − 6q3 − 2q2 − 9q + 4)ω(0,0)

+ 4q2(q6 − 1)(q + 1)2(q2 + 1)(5q8 − 2q7 + 32q6 + 50q5 + 70q4 + 50q3 + 32q2 − 2q + 5)

(2ω(1,3)ω
′
(0,1) − 3ω(2,2)ω

′
(0,1) + ω(0,2)ω

′
(0,3) − 2ω(1,1)ω

′
(0,3) − 3ω(0,2)ω

′
(1,2) − ω(0,0)ω

′
(2,3))

− 16q2(q + 1)2(q16 − q15 + 8q14 + 9q13 + 47q12 + 45q11 + 96q10 + 91q9 + 128q8 + 91q7 + 96q6

+ 45q5 + 47q4 + 9q3 + 8q2 − q + 1)(3ω2
(0,2) − 6ω(1,1)ω(0,2) + 2ω(0,0)ω(1,3) − 3ω(0,0)ω(2,2))

]
. (12)

These functions represent the moments in the thermodynamic
limit. Since they can be calculated to arbitrary precision, we
obtain numerically accurate results for the resonance shift and
for the line width as functions of temperature or magnetic field
over the whole range of the phase diagram. In particular, our
approach is not restricted to small anisotropies. Examples for
δ = −0.1 are shown in figures 1 and 2. We find a broadening
of the line width as defined by (8) for small temperatures in
the critical (δ < 0) as well as in the massive (δ > 0) regime
(latter case not shown here).

At first sight this seems to contradict experimental results
[4] which claim a narrowing. Still, one has to take into ac-
count that usually in the analysis of experimental data rather
different definitions of the line width, as e.g. the distance be-
tween the turning points right and left to the maximum of the
intensity, are used. In particular, if the intensity distribution
has long shallow tails the definition (8) will give considerably
larger values than the distance between the turning points. We
have performed a detailed numerical study of the dynamical
susceptibility for chains of 16, 20 and 24 lattice sites (to be
published elsewhere) and we see indeed such long tails at low
temperature (compare also [6]). In experiments they may be

misinterpreted as background stemming from couplings of the
spin chain to other degrees of freedom, but in fact they are due
to the spin-spin interactions and are part of the true absorption
line. For the determination of the resonance shift tails are ex-
pected to have less influence. As long as they are not too much
asymmetric the shift calculated by means of (7) should agree
with the shift of the maximum of the absorbed intensity.

In current ESR experiments the microwave frequency ω is
kept fixed and the Zeeman field h is modulated. This means
that, as opposed to most of the theoretical treatments, including
our considerations above, the absorbed intensity I(ω, h) =
ωχ′′+−(ω, h)/2 is determined as a function of h for fixed ω,
and the resonance shift and line width are measured in ‘h-
direction’. Away from the isotropic point (δ = 0), where
χ′′+−(ω, h) is symmetric and the absorption line is extremely
narrow, this may clearly lead to rather different values. To be
closer to present-day ESR experiments one should calculate
resonance shift and line width in terms of the moments of the
dynamical susceptibility in ‘h-direction’.

We define

Mn(T, ω) = J−n
∫ ∞
−∞

dh

2π
(h− ω)nχ′′+−(ω, h) . (13)
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For these functions we obtain the representation

Mn(T, ω) = (−1)n
∞∑
k=0

(−J)k

k!
m

(k)
k+n(T, ω) , (14)

where the superscript (k) denotes the kth derivative with re-
spect to the second argument. We see that the Mn are deter-
mined by infinitely many of the mn and their derivatives, i.e.,
they depend on static correlation functions for arbitrarily large
distances. For this reason they cannot be calculated by our
exact method above. Yet, in certain cases only finitely many
terms of the series are needed for a good approximation.

We first of all express the resonance shift δh = 〈h〉 − ω and
the mean square deviation from the center of the absorption
peak ∆h2 = 〈h2〉 − 〈h〉2 in terms of the Mn,

δh

J
=
M1

M0
,

∆h2

J2
=
M2

M0
− M2

1

M2
0

. (15)

We have identified two cases, where these formulae simplify
and finitely many of the mn are enough to determine δh and
∆h approximately.

The equation for the resonance shift simplifies for small
anisotropy |δ| � 1. Since M0 = m0 + O(δ), M1 = m1 +
O(δ2) and, generically, m1 itself is of order δ (see (11), (14))
we obtain to linear order in δ

δh

J
= −m1

m0
. (16)

In [5, 7] the same equation was obtained by a more intuitive
reasoning. It leads to results which compare rather well to
experiments [7]. However, some care is necessary with the
interpretation of (16). m1/δ vanishes at δ = h = 0. It follows
thatm1 = δ(ah+bδ+. . . ) with some coefficients a, b, whence
h must be large compared to δ for (16) to be applicable. Note
that all higher moments mn are of order δ2. Hence, there
is no simplification for small anisotropy, like in (16), for the
line width. But the integrated intensity M0 has again a finite
approximation to first order in δ, M0 = m0 − Jm′1.

The representation (14) is a series in ascending powers of
J/T (with still temperature dependent coefficients). This can
be used to evaluate (15) asymptotically for high temperatures.
It turns out that that the leading terms in the J/T expansion
of m1 and Jm′2 cancel each other: δh ∼ h

2T δ → 0 in the
high-temperature limit T � J , and

∆h

J
=
|δ|√

2
(17)

for arbitrary microwave frequency ω. This formula provides a
simple means to directly measure the anisotropy parameter δ.

It may be instructive to illustrate our formula with one of the
few explicit results, namely with the formula for the intensity
in the free fermion case δ = −1 at T →∞ [11]. In this case
I(ω, h) ∼ (ω2/J2) exp

(
−(ω − h)2/J2

)
and, in agreement

with (17), we obtain the line width ∆h
J = 1√

2
, whereas the

width in omega direction depends on h.
Our work is the first exact result for the resonance shift

and the line width in microwave absorption experiments on
the Heisenberg-Ising chain. The reduction to moments is not
restricted to the integrable case and may be interesting for the
two- and three-dimensional models as well. Our approach is
unbiased. It makes no a priori assumptions about the shape of
the spectral line. As opposed to all other approaches it is valid
for all temperatures and magnetic fields and in addition for
arbitrary values of δ. For small δ close to the isotropic point
we recover the result of [7] for the line shift. The resonance
shift δω/J or δh/J and the line width ∆ω/J or ∆h/J defined
in terms of moments show a simple scaling behavior. They
depend on the exchange interaction only through the ratios
T/J and h/J . In this sense the curves in figures 1 and 2 are
universal.

The intensity I(ω, h) is a function of ω and h. With our
definitions of δω and ∆ω we determine the resonance shift and
the line width in ω-direction as functions of h, while in standard
ESR experiments the resonance shift δh and line width ∆h in
h-direction are measured as functions of ω, which should be
clearly distinguished. For the resonance shift it follows from
(7), (16) that δh(T, ω) = −δω(T, h)|h=ω to linear order in δ.
For the line width there is no such simple relation between
∆ω and ∆h. However, for ∆h we obtained the simple high-
temperature formula (17) which we suggest to be useful to
measure the anisotropy directly. We are further convinced that
it may be worth trying to measure ∆ω, which is now known
exactly, directly in multi-frequency ESR experiments.
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particular, Y. Maeda for stimulating discussions.

[1] M. Oshikawa and I. Affleck, Phys. Rev. Lett., 82, 5136 (1999);
Phys. Rev. B, 65, 134410 (2002).

[2] R. Kubo and K. Tomita, J. Phys. Soc. Jpn., 9, 888 (1954).
[3] Y. Ajiro, J. Phys. Soc. Jpn., Suppl. B, 72, 12 (2003).
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